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The contactless credit card protocol in use today is insecure. The credit

card industry has chosen to use the NFC channel for contactless transactions.

However, reliance on NFC’s short range has led to poor assumptions in the

contactless credit card protocol. For example, the card assumes (sometimes

incorrectly) that its ability to receive a solicitation implies the cardholder’s

intent to purchase. In this dissertation, we examine the protocol currently in

use, and present a family of three replacement protocols to defend against its

deficiencies.

First, we consider “outsider” attacks (e.g. eavesdropping, skimming at-

tacks, relay attacks, and attacks facilitated by compromised points of sale) and

design our first protocol to defend against these attacks. We call this protocol

the Externally Secure CC Protocol, and design it using stepwise refinement.
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This protocol makes use of single-use “charge tokens” verifiable by the bank,

while minimizing computation that needs to occur on the card.

Second, we identify two attacks which may be carried out by malicious

retailers: Over-charge attacks and Transparent Bridge attacks. Both attacks

are predicated on the customer’s lack of participation in the protocol, and

involve modifying or replacing a charge after it has been confirmed by the

customer. We look to Electronic Wallet applications (such as Android Pay

and Apple Wallet), which provide a channel between customer and card. We

augment the Externally Secure CC Protocol using this channel to construct

the Secure CC Protocol, binding charge tokens to a given price, and thus

stymieing both outsider and malicious retailer attacks.

The Secure CC Protocol supports a property known as linkability : while

only the bank can verify charge tokens, tokens from the same card can be recog-

nized as such by the retailer. This property is also supported by the (insecure)

protocol in use today, and is commonly used by retailers to construct mar-

keting profiles on their customers. However, linkability has serious consumer

privacy consequences, so we consider the converse property of unlinkability,

where a retailer cannot identify different purchases as having been made by

the same card. We require that our unlinkable protocol make use of exist-

ing infrastructure, so as not to require retailer cooperation. In response, we

design the Unlinkable Wallet Protocol, leveraging techniques from the Secure

CC Protocol to guard against malicious outsiders and retailers, while tunneling

secure and unlinkable charge tokens through the protocol in use today.
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Chapter 1

Introduction

Near Field Communication (NFC) is short-range wireless channel which

permits two devices to communicate wirelessly, allowing for arbitrary compu-

tation on both devices. A distinctive feature of NFC is that one of the two

devices may eschew having its own power source (termed a “passive device”),

drawing power from the other device in order to perform computation and

respond [7]. This feature makes NFC particularly useful for use in contactless

integrated circuit cards (often termed “Proximity Cards”) [19], where a per-

son may authenticate through demonstrating ownership of a physical token

(by bringing it close to a reader). Such applications are commonly used for

access control to buildings, parking garages, and public transit [12, 35, 43, 45].

These same properties also make NFC an attractive channel for use

in contactless payment protocols, of which common examples include Master-

Card’s PayPassTM [33] and Visa’s payWaveTM [44]. Use of NFC has also been

standardized more generally in EMV’s Contactless Specifications for Payment

Systems [10].
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1.1 Security Concerns

The protocol in use today by contactless credit cards falls short of

addressing even basic security issues. It employs no authentication, allowing

any device to effectively pose as a point of sale. Furthermore, it transmits

sensitive information (the credit card number, expiration date, etc.) wirelessly

in plaintext. This transmission of data is then considered sufficient to allow

an arbitrary charge to occur. This leads to a number of potential security

vulnerabilities.

The contactless credit card protocol equates the ability to communicate

with an intent to pay. Relying on NFC’s short range, this is intended as a

stand-in for equating proximity with intent to pay. However, much work has

been done to dissociate the two concepts [2, 6, 14, 15, 32], such as by proxying

and relaying communications over greater distances.

Even the notion that proximity is tantamount to an intention to pay is

flawed when used in a protocol without authentication. For example, skimming

a contactless credit card is easy, because a phone can be moved close to a

pocket containing a credit card. Simply instruct an NFC-capable phone to send

out solicitation messages claiming to be a point of sale, and any contactless

credit cards within range will respond with their information. Indeed, there

is an Android application [18] which simplifies this process down to clicking

a button. This skimmed data can then be replayed to a real point of sale in

order to perform a purchase on behalf of the skimmed credit card.
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Eavesdropping is likewise easy. NFC range is quite short, greatly limit-

ing the possible location of an eavesdropper. However, constructing an eaves-

dropping antenna out of an inexpensive NFC tag is a simple procedure, as

described in Section 2.3. Concealing such an antenna within a few centimeters

of (or even attached to) a point of sale is sufficient to harvest credit card infor-

mation, due to the plaintext nature of the messages being sent. Furthermore,

work has also been done to increase the range at which NFC communication

may be captured [2, 23], exacerbating the issue.

A credit card’s response to a solicitation is likewise overly permissive

in how it may be used: while a point of sale may display a given price to the

customer, there is no protocol-level assurance that the card will be charged

the price on the screen. Instead, a credit card’s response provides a point of

sale with the ability to charge any arbitrary single purchase to the credit card.

This charge need not even come from the same retailer or establishment which

solicited it.

In this dissertation, we present a family of three replacement protocols

to defend against the deficiencies of the contactless credit card protocol in

use today. The first two (described in Chapters 3 and 4) answer to security

concerns, and the third (described in Chapter 8) answers to privacy concerns.

In Chapter 3, we construct the Externally Secure CC Protocol. We

tackle the problems that are raised by malicious outsiders: parties external

to the customer and the retailer. We find that the contactless credit card

protocol in use today is vulnerable to eavesdroppers, skimming attacks, relay

3



attacks, and attacks facilitated by compromised points of sale. We construct

a replacement protocol to transmit single-use charge tokens which leak no

sensitive information, nullifying their value outside of the current transaction.

These charge tokens are also bound to a randomized challenge included in the

solicitation, and thus cannot be skimmed ahead of time.

In Chapter 4, we construct the Secure CC Protocol. We explore the

overly permissive nature of the credit card’s response, and approach the pro-

tocol from the perspective of a malicious retailer. We enumerate two attacks

which a malicious retailer may perform: over-charge attacks and transparent

bridge attacks. These attacks affect both the contactless credit card proto-

col in use today, as well as the Externally Secure CC Protocol described in

Chapter 3. Both attacks involve using the credit card’s response to authorize

a purchase which differs from the one accepted by the customer. We extend

the Externally Secure CC Protocol to limit the utility of charge tokens for use

outside of the current (confirmed) transaction.

1.2 Privacy Concerns

In Chapter 6, we discuss the benefits and drawbacks associated with

an additional property: linkability. This property allows a retailer to identify

multiple purchases made with the same credit card. Naturally, any proto-

col which transmits a credit card number (or any other unique and constant

identifier) maintains this property. This includes all protocols discussed thus

far.
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Linkability is valuable to retailers, as it enables the construction of

purchasing profiles, which can then be used for marketing purposes or sold to

interested third parties. However, this behavior may be undesirable to con-

sumers concerned about their privacy: purchasing habits can reveal extremely

sensitive information [8].

Our third protocol, described in Chapter 8 and termed the Unlinkable

Wallet Protocol, renders retailers unable to identify purchases made using the

same credit card (in addition to protecting customers from malicious outsiders

and malicious retailers). While the Externally Secure CC Protocol and the

Secure CC Protocol require significant retailer cooperation in modifying or

replacing all point of sale devices, the Unlinkable Wallet Protocol makes use

of existing point of sale infrastructure, requiring no modification to point of

sale devices and thus no retailer cooperation.

1.3 Related Work

Related work in this area falls into a number of broad categories: the se-

curity of the NFC channel itself, breaking the distance and range assumptions

built into NFC, the legitimate use of phones as credit card payment devices,

the malicious use of phones as NFC relay or credit card skimming and cloning

devices, and other NFC payment or communication research.

Relating to channel security, Haselsteine and Breitfuß provide a broad

survey of various attacks and defenses applicable to protocols built on the

NFC channel [17]. Their focus is on channel-layer defenses, shielding NFC

5



communication itself from attackers, and suggesting that NFC participants

perform a key-exchange protocol such as Diffie-Hellman [5], then using this

key to encrypt subsequent communication.

Similarly, Madlmayr et al. analyze the state of NFC communication

[31], focusing on not only the security and privacy of communications, but

also the continued operability of device and host controller. They enumer-

ate and discuss the viability and consequences of a number of attacks, limiting

discussion to channel security. Kortvedt further explores the problem of eaves-

dropping on NFC communications [25], suggesting various improvements such

as using a symmetric encryption solution with strong mutual authentication,

with “Over-the-Air Programming” (OTA) as a solution for key management.

These works [17, 25, 31] focus on channel security, and thus are effec-

tive against channel attacks such as eavesdropping. However, confidentiality

and integrity of the channel cannot provide authentication or assurance of cor-

rect operation of the receiver. As such, these approaches are not effective at

protecting NFC credit card payments.

Hanke discusses a practical relay attack against ISO 14443 (NFC “prox-

imity cards”) [15], demonstrating that such attacks are viable and can be

invisible to the application layer.

Kfir et al. explore maximizing the distance over which a relay attack

may occur using only readily available equipment [23]. They explore the prob-

lem from both sides, focusing on increasing the distance between the two relay
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devices and their subsequent communication endpoints. For example, increas-

ing the distance between the relay and the tag (in our case, the credit card)

increases the distance from which credit card information may be skimmed.

Similarly, Brown et al. explore maximizing eavesdropping range [2].

They find that range appears to be determined primarily by background noise,

and that with proper equipment they can achieve an eavesdropping range of

90cm. This represents a much larger sphere volume in which an eavesdropping

node may be located.

On the topic of using mobile phones legitimately for contactless credit

card transactions (i.e. the concept of an Electronic Wallet), Roland et al.

discuss the relative merits and weaknesses inherent when mobile devices em-

ulate NFC cards in [37] and [39]. These works discuss several attack vectors

(including relay attacks, denial-of-service attacks, and unauthorized usage at-

tacks), and analyze APIs provided by mobile phones. In particular, multiple

Electronic Wallet applications anchored to the same secure element is high-

lighted as potentially problematic. A proposed defense is to store sensitive

information remotely, and access this data on demand via an authorized relay

application.

In [40], Roland et al. discuss relay attacks targeting Electronic Wallet

applications in general, describing a relay attack involving malware in which

relay attackers need not even be within NFC range of the victim’s phone.

In subsequent work [41], Roland et al. investigate the feasibility of relay at-

tacks on Google Wallet (now called Android Pay) in particular. They relay
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transmissions out-of-band over a TCP connection and suggest three primary

countermeasures: short point of sale timeouts, Wallet Application PIN verifi-

cation, and strong limits on the capabilities afforded to applications interfacing

with the phone’s NFC API.

Drimer and Murdoch present an attack on credit card payment systems

[6], which we described in Section 4.1.2 as the Transparent Bridge attack. This

attack relies on the ability to perform out-of-band real-time proxying and

relaying of messages between two parties. Drimer et al. implement this attack

against EMV “Chip” cards, demonstrating its practicality. They recommend

defending against such attacks via distance bounding protocols. Hancke et al.

present such a distance bounding protocol for RFID / NFC tags in [16]. This

protocol seeks to infer an upper bound on distance between communicating

endpoints, based on response times and the speed of light.

Anderson discusses the move towards using mobile phones as payment

devices [1], and predicts that such devices (programmable by the end-user)

would make excellent platforms from which to conduct relay attacks on pay-

ment protocols. In [13], Francis et al. discuss the ability for NFC capable mo-

bile phones to operate as skimming platforms, They propose countermeasures

to prevent NFC mobile phones from being used as such, with the intention of

raising the difficulty bar.

In addition, Francis et al. find that out-of-band real-time proxying and

relaying of general NFC communication is possible in [14]. They demonstrate

two NFC devices communicating over a distance much larger than NFC range,
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by using phones to relaying NFC communications over Bluetooth. While

Drimer et al. perform the Transparent Bridge attack with EMV Chip cards,

this result indicates that the attack applies to contactless credit cards as well.

Francis et al. propose to use location information such as GPS coordi-

nates in order to detect and defend against this relaying of messages, which

in turn would render the Transparent Bridge attack infeasible. However, lo-

cation information can be unreliable or unavailable, and as such, one cannot

rely on its availability and correctness. Furthermore, passive NFC tags such

as physical contactless credit cards do not have access to location information.

In a followup work [32], Markantonakis et al. construct and demon-

strate a practical NFC relay over Bluetooth using mobile phones. They sug-

gest using distance bounding and location information to defend against prox-

ying NFC communication. They also suggest using the NFC tag’s UID token

from the communication layer’s anti-collision operation, but acknowledge that

tag UIDs are often randomized for privacy reasons. Finally, they recommend

restricting what mobile phone applications may do with regards to NFC com-

munication.

While the distance bounding approaches suggested by these works [14,

32, 6] are reasonable when reading responses directly from chip I/O or a ded-

icated tag, they do not lend themselves well to a protocol in which Electronic

Wallets participate: determining an upper-bound to distance based on re-

sponse times using the speed of light as a metric becomes a very coarse mea-

surement when dealing with a multitasking operating system on a smart phone,

9



where delays can be variable, and depend on page faults, context switching,

and unrelated software. In contrast, our approach does not seek to detect or

prevent attacks relying on the proxying or relaying of information. Instead,

our protocol aims to render such attacks harmless.

With regard to contactless credit card protocol security, Lee provides

some analysis of relay and skimming attacks on NFC credit card transactions

[29]. The stated goal of this work is to demonstrate the simplicity of performing

these attacks, emphasizing that they are easily performed by the general public

(having little-to-no knowledge of NFC or credit card protocols). To this end,

he presents an Android application NFCProxy [18] which implements these

attacks. The application is easily installed, and transforms contactless credit

card skimming into no more than a button-push endeavor.

Subsequently, Lifchitz performs a more detailed exploration of the con-

tactless credit card protocol [30], and emphasizes the near total lack of security

in contactless credit cards. Roland et al. then demonstrate how such attacks

may be used to clone contactless credit cards [38].

In [3], Chen et al. explore using the challenge-response mechanism

built into 3G to perform authentication for payment protocols. They propose

such a protocol for contactless payments (albeit not for credit card payments),

and analyze the risks inherent to using this authentication method. This pro-

posed protocol involves mutual authentication and customer price confirmation

(communicated to the phone from the point of sale device via NFC).

10



In [11], Eun et al. explore the issue of privacy in the face of NFC

eavesdroppers, considering mobile payments as a case study. They suggest the

creation of an NFC-SEC protocol, complete with key-exchange and public key

cryptography, including requirements of unobservability (an individual trans-

action may not be distinguishable from other transactions) and unlinkability

(two transactions from the same card may not be identifiable as such), while

still maintaining traceability (it must be possible to ascertain who generated a

given set of data in order to troubleshoot problems which may arise). Eun et

al. approach this problem from a clean slate perspective and do not constrain

themselves to making use of existing infrastructure, imposing a significant bar-

rier to adoption where infrastructure has already been deployed. Furthermore,

the lack of unlinkability of current credit card transactions is profitable to re-

tailers. As such, a clean-slate unlinkable protocol is unlikely to see adoption

for contactless credit card processing.

Taking a more general view of using NFC for secure applications, Coskun

et al. discuss a general view of where NFC technology is expected to go [4].

Comparing NFC to Bluetooth and Zigbee, they suggest that NFC will become

the channel of choice for anything from unlocking doors, payment systems,

identification, etc., and posit an end-goal of having a mobile phone replace

everything one would otherwise need to use for such purposes.

Nandakumar et al. discuss an alternate implementation of NFC-like

communication for mobile phones [34]. In particular, this work is directed to-

wards providing NFC-like functionality to phones which do not support NFC.

11



Rather than using RF communication, this work explores using the speaker

and microphone to transmit data between two phones over short range. Of

particular interest is their use of a self-jamming signal, effectively prevent-

ing eavesdroppers. Exploration of a self-jamming NFC carrier-wave would be

particularly intriguing.
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Chapter 2

The Insecure CC Protocol

Contactless credit card payment systems are rapidly gaining popularity.

Such systems allow customers to pay using their credit cards by simply bringing

the card close to a point of sale, and without actually swiping or necessarily

coming into direct contact with it.∗

This chapter describes the protocol for such payments in use at retailers

today. We refer to this protocol as the Insecure CC Protocol, because it

employs hardly any protection against fraudulent use.

2.1 Goals

A credit card payment system has five fundamental principals:

1. A customer who wants to make a purchase.

2. A bank at which the customer has an account.

3. A credit card issued by the bank to the customer.

∗ Portions of this chapter have previously been published in [20]. While most of the
contributions in this chapter are my own, acknowledgements are due to Mohamed Gouda
for helping construct clear and concise protocol descriptions.
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4. A retailer from whom the customer wishes to make the purchase.

5. A point of sale controlled and initialized by the retailer. It displays the

purchase price to the customer, and communicates with both the credit

card and its issuing bank to coordinate the transaction.

The underlying goal of any credit card payment protocol is to enable the

customer and the retailer to negotiate a transaction, after which the customer’s

bank debits the appropriate funds from the customer’s account and issues a

payment to the retailer.

Traditional magnetic-stripe credit card systems have been in operation

in this space for many years, but they face several important drawbacks: it

is easy to accidentally de-magnetize your credit card, and dirty or corroded

contacts on the point of sale can make even a well-magnetized card difficult

to read. As a result, it is not at all uncommon for a retailer to need to swipe

a credit card multiple times before a successful read occurs.

The primary goal of the Insecure CC Protocol is to solve these draw-

backs by using a contactless (i.e. wireless) communication channel. However,

due to the reduction of control that a contactless solution presents, this pro-

tocol has a secondary goal as well: to prevent a malicious actor from cloning

a credit card simply by querying its contents.
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2.2 Design of the Protocol

The Insecure CC Protocol uses the NFC channel to transmit messages

between the credit card and the point of sale. This decision is based on the

following factors:

• NFC is a wireless channel, and thus it is unaffected by card demagneti-

zation or read errors due to dirty or corroded contacts.

• NFC has a very short range (under 10 cm), mitigating many of the

privacy concerns commonly associated with wireless channels.

• NFC supports communication with unpowered (termed “passive”) de-

vices, allowing the credit card to forego having its own power source.

• Even passive NFC devices such credit cards can perform complex com-

putation while being wirelessly powered by the point of sale.

In the Insecure CC Protocol, the customer indicates the intention to

pay by enabling communication between the point of sale and the contactless

credit card. This is done by the customer bringing the credit card within a few

centimeters of the point of sale. Once within range of each other, the point of

sale may send messages to the credit card and receive any resulting responses.

The steps involved in this protocol, illustrated in Figure 2.1, are as follows:

1. The point of sale displays the price of the purchase on its screen, while

simultaneously attempting to establish communication over NFC.
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2. After checking the displayed price, the customer places the credit card

within NFC range of the point of sale, and communication between the

point of sale and the credit card is established.

3. The point of sale sends a Solicitation message to the credit card.

4. The credit card responds to the solicitation message with a Card Infor-

mation message, supplying the point of sale with the necessary informa-

tion to initiate a transaction, and identifying the credit card’s issuing

bank.

5. Then the point of sale sends a Charge Request message to the bank.

This message is sent securely over the Internet.

6. The bank verifies the details of the charge request, and responds to the

point of sale with a Approval message, indicating whether the Charge

Request has been accepted.

The message contents in the Insecure CC Protocol are as follows:

Solicitation: In practice, the solicitation message actually consists of a num-

ber of messages sent in both directions. The purpose of these messages

is to exchange information about the credit card type (e.g. Visa Credit)

and the point of sale model (e.g. 2PAY.SYS.DDF01 ), which defines the

format of subsequent messages. It is a choreographed dance with a spe-

cific (and constant) set of messages for a given model of point of sale
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Figure 2.1: The Insecure CC Protocol

Bank Point of Sale Customer
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solicitation
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charge request
(CC#, exp, iCVV, $)

approve?
(Y / N)

and credit card, so we abstract this conversation to a single solicitation

message.

Card Information: This message contains all information necessary to co-

ordinate an arbitrary charge to the customer’s account. It consists of

four components:

• The credit card number, identical to the number printed on the

front of the card.

• The credit card’s expiration date.

• An iCVV (“integrated Card Verification Value”). This iCVV is

a security code, similar to the 3-digit number printed on the back

of a credit card, but is newly generated for each transaction. It

is an element in a pseudo-random sequence generated by a secret

seed known only to the credit card and its issuing bank, making it
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unpredictable to third parties.

• The issuing bank name. This field is used for routing purposes and

is not a component of the subsequent Charge Request. As such, it

is not pictured in Figure 2.1.

Charge Request: This message is sent to the bank identified in the card

information message, and consists of four components:

• The credit card number, identifying the account to be charged.

• The credit card’s expiration date.

• The credit card’s iCVV.

• The dollar amount to be charged.

Approval: This message consists of a response code determined by the bank,

indicating its decision relating to this charge. The bank makes this de-

cision after verifying the information supplied in the Charge Request

message, and after performing additional checks such as matching the

purchase to a known location of the customer. The most common re-

sponse codes are the result of a simple approval decision (i.e. “approved”

or “declined”), although a number of different codes (e.g. “Pick up card”

if the card was reported lost or stolen, etc.) are also supported. We ab-

stract this message as a single bit: whether or not the customer’s account

has been charged.
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Figure 2.2: Eavesdropping

Bank Point of Sale Eavesdropper Credit Card
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approve?
(Y / N)

2.3 Attacks on the Protocol

The Insecure CC Protocol is vulnerable to a number of attacks that

can be performed by an external adversary. We classify these attacks into four

broad categories: eavesdropping, skimming attacks, relay attacks, and attacks

facilitated by compromised points of sale. In this section, we describe these

attacks in detail.

2.3.1 Eavesdropping

The goal of an eavesdropper is to gain the victim’s credit card number

and expiration date. Eavesdropping is a passive attack, where the eavesdrop-

per hears all communication between the point of sale and the credit card.

(Communication between the bank and the point of sale is securely transmit-

ted over the Internet.) An outline of this attack is shown in Figure 2.2.

We have demonstrated the feasibility of this attack by building a very

low form-factor antenna capable of eavesdropping on NFC communications.

Similar to the device described in [24], we modified a MIFARE NFC tag to
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Figure 2.3: Eavesdropping Antenna (credit card for scale)

act as an antenna by disabling the chip at the center and attaching leads to

either side of the coil where they connect to the chip. We then measure the

voltage induced in the coil.

In Figure 2.3, we show our NFC eavesdropping antenna next to a credit

card for scale. The resulting antenna is paper thin, flexible, approximately

three centimeters in diameter and adhesive on one side. As such, it can easily

be concealed within range of a point of sale.

By connecting such a makeshift antenna to a software-defined radio

(available very inexpensively online) and recording the captured signal with a

program like GNU Radio, an eavesdropper can record all transmissions that

20



occur between the point of sale and credit cards. We have written a sim-

ple program to read these signal-recordings and decode the messages in each

direction.

In the Insecure CC Protocol, an eavesdropper acquires the credit card

number, expiration date, and the issuing bank name. (The eavesdropper also

acquires the iCVV, but since this is used immediately in the current transac-

tion, the acquired iCVV is of no value.)

2.3.2 Skimming

The goal of a skimmer is to perform a purchase on behalf of the victim,

without the victim’s knowledge or consent. First, the skimmer masquerades

as a point of sale to the victim’s credit card, acquiring the credit card num-

ber, expiration date, issuing bank name, and the next iCVV. Subsequently,

the skimmer masquerades as a credit card to a legitimate point of sale, mak-

ing a purchase on behalf of the victim by replaying the skimmed credit card

information and iCVV. An outline of this attack is shown in Figure 2.4.

This attack can be performed using a smart-phone with NFC capabil-

ities. An Android application called NFCProxy† automates this attack and

is freely available online. While NFCProxy is not listed in the Google Play

store, it can be downloaded from SourceForge and installed on the phone in a

matter of minutes.

†NFCProxy [18], presented at Defcon 20, can be downloaded here:
http://sourceforge.net/projects/nfcproxy/
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Figure 2.4: Skimming
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With NFCProxy running, the skimmer brings its phone briefly within

range of an NFC credit card to acquire the credit card information and the

iCVV. When the skimmer wishes to perform the illegitimate purchase on behalf

of the victim, the skimmer moves its phone within range of a point of sale as

though it were a credit card.

In the Insecure CC Protocol, a skimmer may perform a single purchase

(limited by the lack of subsequent iCVVs). The skimmer must take care to

perform this purchase before the credit card holder makes a purchase of their

own, as this would invalidate the skimmed iCVV. (The skimmer also gains all

information that an eavesdropper would learn.)

2.3.3 Relay Attacks

Much like the skimmer, the goal of the relay attacker is to perform

purchases on behalf of the victim, without the victim’s knowledge or consent.
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Figure 2.5: Relay Attack
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Multiple devices may be used to relay skimmed credit card information across

a separate channel, effectively breaking the assumption of proximity built into

NFC. This attack can also be performed using the NFCProxy Android appli-

cation, described in Section 2.3.2. An outline of this attack is shown in Figure

2.5.

In implementation, a relay attack is very similar to a skimming attack,

with the exception that the skimmer is separated into two entities, called

“proxy” and “relay”. These two entities are spatially disparate, but are con-

nected through an out-of-band communication channel. The relay positions

its phone near the victim’s credit card, while the proxy approaches a point of

sale. Whenever the proxy is ready to make a purchase, it sends a message to

the relay requesting fresh values from the victim’s credit card.
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The relay skims the credit card and forwards the card’s information

back to the proxy, enabling the proxy to make a purchase on behalf of the

victim. These messages may be transmitted over any communication channel,

but are most easily sent over a wireless LAN.

In the Insecure CC Protocol, a proxy may perform multiple purchases

if the relay remains in proximity of the victim’s credit card, querying it for

fresh iCVVs for every purchase.

2.3.4 Attacks Facilitated by Compromised Points of Sale

The Insecure CC Protocol implicitly trusts the ability of a retailer to

keep its data secure. By allowing persistent sensitive information (e.g. the

credit card number and expiration date) to be transmitted to a device under

the retailer’s control, this protocol invites attacks on the retailer’s own systems.

We use this category of attacks to refer to any attack which involves the

point of sale or merchant performing (possibly unintentional) actions leading

to credit card theft‡. For example, a point of sale might be compromised and

re-programmed to transmit credit card information to an attacker after every

successful purchase. An outline of this attack is shown in Figure 2.6.

Point of sale compromise is far from a theoretical threat: these attacks

‡ When discussing compromised points of sale, we consider only devices which correctly
adhere to the protocol. We explicitly exclude what we term malicious points of sale, those
which may perform arbitrary actions such as refusing to randomize random values, etc.
Defending against a malicious point of sale in any payment setting is much more involved,
and is discussed in Chapter 4.
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Figure 2.6: Compromised Point of Sale
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card information

have become alarmingly commonplace, to the point that they have been cov-

ered by mainstream news sources including the New York Times [9] and the

Wall Street Journal [36][42].

In November through December 2013, unauthorized access was gained

to an estimated 40,000 points of sale used by U.S. retailer Target. This data

breach was widely publicized, as it resulted in the compromise of 40 million

credit and debit cards, and other personal information of 70 million customers

as reported in the Wall Street Journal [36].

More recently, in September 2014, Home Depot confirmed a similar

data breach. According to subsequent investigations, it appears that the same

malware as was used against Target was at the heart of the Home Depot

breach. During this breach, attackers stole 56 million credit and debit cards,

also as reported in the Wall Street Journal [42].

Other recent victims of compromised points of sale include other retail-

ers (e.g. Neiman Marcus in July through October of 2013, in which attackers
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stole an estimated 1.1 million credit and debit cards [9]), grocery stores (e.g.

Supervalu in June through July of 2014, in which it is estimated that attack-

ers stole “millions” of credit and debit cards [22]), as well as restaurants (e.g.

P.F. Chang’s in September 2013 through June 2014, in which attackers stole

an estimated 7 million credit and debit cards [27]).

Since 2014, headlines regarding data theft from compromised points of

sale have diminished, not because the attacks have slowed, but because they

have become so prevalent they are no longer headline-worthy.
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Chapter 3

The Externally Secure CC Protocol

In Chapter 2 we described the protocol in use today for contactless

credit card transactions and showed that this protocol is vulnerable to four

types of external attacks. In this chapter, we show how to modify the protocol

in order to defend against these attacks. This modified protocol is called the

Externally Secure CC Protocol.∗

3.1 Goals of the Protocol

The Externally Secure CC Protocol has two goals. First, this protocol

should defend against the four categories of external attacks: eavesdropping,

skimming attacks, relay attacks, and attacks facilitated by compromised points

of sale. Second, we construct this protocol to minimize the computation which

occurs on the card itself.

Contactless credit cards today are capable of only very limited compu-

tation and do not engage in any cryptographic operations. We hypothesize

that the limited computational power on credit cards is to reduce costs to a

∗ Portions of this chapter have previously been published in [20]. While most of the
contributions in this chapter are my own, acknowledgements are due to Mohamed Gouda
for helping construct clear and concise protocol descriptions.
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minimum: credit cards must be disposably cheap to manufacture so that they

can be immediately replaced on suspicion of compromise or theft. As a result,

we seek to minimize any additional computation required to be executed on

the card.

3.2 Design of the Protocol

In designing the Externally Secure CC Protocol, we do not add any

computationally expensive operations such as signature verification, or even

hashing on the credit card: beyond its current function, we restrict a credit

card to performing only basic arithmetic, indexing, XOR, and similarly in-

expensive operations. We design the protocol using a process called stepwise

refinement :

1. First, we define the protocol in terms of an abstract function H.

2. We then identify two desired properties of function H, namely H1 and

H2, and show that if function H satisfies these two properties, then

the protocol is not vulnerable to the four classes of attacks described in

Section 2.3.

3. Next, we define function H in terms of two abstract functions F and G.

We then identify three properties, namely F1, F2, and G1, and prove

that if function F satisfies properties F1 and F2 and function G satisfies

property G1, then function H satisfies the two desired properties H1

and H2.
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4. We then propose concrete implementations of functions F and G.

5. Finally, we argue that our proposed implementation of function F sat-

isfies properties F1 and F2, and that our proposed implementation of

function G satisfies property G1.

In so doing, we provide a concrete implementation of the Externally

Secure CC Protocol and show that it is not vulnerable to any of the four

classes of outsider attacks described in Section 2.3.

The Externally Secure CC Protocol uses the same four messages that

are used in the Insecure CC Protocol. However, the contents of these messages

have become more involved. In particular, we incorporate a challenge-response

mechanism in the Solicitation and Card Information messages. An outline of

this protocol is shown in Figure 3.1.

Figure 3.1: Externally Secure CC Protocol

Bank Point of Sale Customer

price display ($)

Card

enable device

solicitation
(ch)

card information
(ID, T)

charge request
(ch, ID, T, $)

approve?
(Y / N)
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The four messages used in the Externally Secure CC Protocol are as

follows:

Solicitation (ch): The point of sale sends a Solicitation message much like in

the Insecure CC Protocol. However, this message now includes a random

challenge ch. This challenge is used by the credit card when constructing

its response.

Card Information (ID, T): The credit card’s response consists of two pri-

mary components, ID and T. They are as follows:

ID, a Universally Unique Identifier [28], is used to identify the card

without revealing the card’s information to eavesdroppers or any

other party. This value is computed by the credit card manufacturer

and stored on the card as a constant.

T = H(info, ch, iCVV) is used to authenticate the card’s identity.

This abstract function H will be defined later through stepwise

refinement, but informally we can think of it as similar to a crypto-

graphic hash function: it can be used to verify its arguments while

leaking no information about them.

In so doing, ID provides identification and T provides authentication.

In addition, this message is accompanied by the bank name B, as before,

so that the point of sale may route its Charge Request to the proper

entity.
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Charge Request (ID, T, ch, $): After receiving the Card Information mes-

sage, the point of sale issues a Charge Request to the credit card’s issuing

bank. The point of sale does not learn the card’s private information,

but simply forwards the card identification (ID) and authentication (T )

to the bank B, specified in the Card Information message. The point of

sale also includes the challenge ch (so that the bank can verify that T

is a valid response to ch from card ID), as well as the dollar amount to

be charged.

Approval (Y/N): The bank maintains an index of ID into its account database.

When the bank receives a Charge Request message, it identifies the

matching record as specified by ID, looking up infobank and iCV Vbank.

It then calculates Tbank = H(infobank, ch, iCV Vbank) and verifies that

T = Tbank. This step is equivalent to verifying the credit card informa-

tion and iCVV in the Insecure CC Protocol, and results in a decision to

accept or reject the charge request.

3.2.1 Desired Properties of Function H

We pit the Externally Secure CC Protocol against the attacks described

in Section 2.3 and identify the two properties H1 and H2 needed from function

H in order for these attacks to be thwarted.
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Defending Against Eavesdropping

When eavesdropping on a transaction, the eavesdropper learns a valid

(ch, ID, T, B) tuple. The challenge ch, the card identifier ID, and the bank

name B are all public information, of no value to the eavesdropper. Only

T = H(info, ch, iCV V ) contains authentication information useful to an

eavesdropper. In order to guarantee that no sensitive information is leaked,

we require that function H satisfies the following property:

H1: If iCVV is indistinguishable from random, then H(info, ch, iCV V ) is

indistinguishable from random.

If function H satisfies property H1, then the eavesdropper (ignorant of

iCVV ) cannot distinguish T from random and gains no useful information.

Defending Against Skimming

When sending a Solicitation message to a credit card, the skimmer

includes a challenge chskim, which the card uses to construct its response.

From the resulting Card Information message, the skimmer learns ID, Tskim =

H(info, chskim, iCV V ) and B. When the skimmer attempts to perform a pur-

chase using this information, it will be issued a challenge chpos by the point

of sale. In order to prevent the skimmer from correctly responding to this

challenge, we require that function H satisfies the following property:

H2: Given H(info, ch, iCV V ), ch, and ch′ such that ch 6= ch′, one cannot

infer H(info, ch′, iCV V ).
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If function H satisfies property H2, then the skimmer cannot use the

value of Tskim in order to construct a response to the point of sale’s challenge

chpos, and thus cannot perform purchases on behalf of the credit card.

Defending Against Relay Attacks

The relay attack operates similarly to the skimming attack. When

performing a relay attack, the relay provides challenge chrelay to the card. As

in the skimming attack, the relay learns ID, Trelay = H(info, chrelay, iCV V ),

and B, and then transmits this information to the proxy. When the proxy

attempts to perform a purchase, it is issued a challenge chpos by the point of

sale.

Thus, if function H satisfies the property H2, then the proxy cannot

use the value of Trelay in order to construct a valid response to the point of

sale’s challenge chpos, and as a result, cannot perform this purchase on behalf

of the credit card.

Defending Against Compromised Points of Sale

A compromised point of sale will result in an attacker learning a valid

(ch, ID, T, B) tuple, which the point of sale requires in order to construct a

Charge Request message. Note that this is the same information learned by the

attacker in the eavesdropping case. As such, if the function H satisfies property

H1, then the information learned by a compromised point of sale is of no value:

no private information about the credit card is leaked, and the authentication
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token T cannot be reused since the iCVV used in its construction is no longer

valid after the charge has occurred.

In summary, in order to defend against the four classes of attacks de-

scribed in Section 2.3, we require that the iCVV be a pseudorandom value,

and that function H upholds the following two properties:

H1: If iCVV is indistinguishable from random, then H(info, ch, iCV V ) is

indistinguishable from random.

H2: Given H(info, ch, iCV V ), ch, and ch′ such that ch 6= ch′, one cannot

infer H(info, ch′, iCV V ).

3.2.2 Implementing Function H

We find it convenient to define function H as a composition of functions

F and G as follows:

H(info, ch, iCV V ) = F (x, iCV V ) where x = G(info, ch)

Once defined in these terms, we posit the properties H1 and H2 in

terms of functions F and G. We then show that if function F satisfies the

properties F1 and F2, and function G satisfies the property G1, then function

H satisfies the desired properties H1 and H2.

F1: If y is indistinguishable from random, then F (x, y) is indistinguishable

from random.

F2: Given only x, or given only y, one cannot infer F (x, y).
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G1: Given G(u, v), v, and v′ such that v 6= v′, one cannot infer G(u, v′)

without knowledge of u.

Theorem 1. If function F satisfies property F1, then function H satisfies

property H1.

Proof. Let x = G(info, ch) for any info, ch. Then H(info, ch, iCV V ) =

F (x, iCV V ). Thus if y = iCV V is indistinguishable from random, then by

property F1, F (x, y) = H(info, ch, iCV V ) is indistinguishable from random.

Theorem 2. If function F satisfies property F2, and function G satisfies

property G1, then function H satisfies property H2.

Proof. Let x = G(info, ch) and x′ = G(info, ch′) for any info. By property

F2, evaluating H(info, ch′, iCV V ) requires knowledge of x′ = G(info, ch′).

However, by property G1, one cannot infer G(info, ch′) without knowledge of

info. Further, by property H1, no bits of info are leaked and thus info remains

secret. Thus, given H(info, ch, iCV V ), ch, and ch′ such that ch 6= ch′, one

cannot infer H(info, ch′, iCV V ).

While info is considered secret, it cannot be used directly in function

G. This is because while most of the data in info is unpredictable, many of the

bits are not random. For example, in a typical credit card number, the first six

digits are taken from the Issuer Identification Number, a public value assigned

to the issuing bank. Similarly, the attacker can guess the bytes representing the
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expiration month and year from a very small set of possibilities. Furthermore,

the credit card number and expiration date are transmitted as decimal values

transliterated into hexadecimal (e.g. “4491” is transmitted as two bytes: 0x44

and 0x91). As such, inferences may be made about the value of particular

bits, since each such byte is drawn from only 154 possible values.

To resolve this problem, we use a keyed hash function known as an

HMAC [26] to compute hk(info), using a key k known only to the bank. As

info does not change over the lifetime of the credit card, hk(info) is stored as

a constant on the card. As such, the computation necessary for hashing is not

executed on the credit card, and the card requires no knowledge of the bank’s

secret key k. For convenience we will refer to the output of hk(info) as the

constant khi.

We propose implementations for functions G and F (and thus H ) in

Figure 3.2. Note that function G is defined as the function which returns those

bits of a keyed HMAC hk(info) for which the corresponding bit of ch was set

to 1. Also note that function F is defined as XOR.

In the Insecure CC Protocol, info is composed of 96 bits, and iCV V is

composed of 32 bits. If we maintain these field-lengths in the Externally Secure

CC Protocol, and use an HMAC function which also outputs 96 bits, then our

implementation of F and G requires that ch must be a 96 bit value with 32

1’s and 64 0’s. More generally, our implementation requires that hk(info) and

ch have the same number of bits, and that the number of 1-bits in ch is equal

to the number of bits in iCVV.
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Figure 3.2: Implementation of F, G and H

function G(info, ch):

const khi = HMAC(bank_key, info)

result = empty list of bits

for each of the n bits of ch:

if the n’th bit of ch is 1:

append n’th bit of khi to result

return result

function F(x, iCVV):

return x XOR iCVV

function H(info, ch, iCVV):

x = G(info, ch)

return F(x, iCVV)

Note that the XOR operation satisfies properties F1 and F2, so our

implementation of function F (trivially) satisfies them as well.

The output of G(info, ch) is composed of a number of bits of

khi = hk(info) selected by the challenge ch. If ch1 6= ch2, one cannot infer

G(khi, ch2) from G(khi, ch1) without knowledge of khi, because the results

are composed of different bits of khi selected by the challenges ch1 and ch2.

These bits are indistinguishable from random to any party without knowledge

of info and the bank’s secret key k. These bits are then masked by the iCV V

and as such are not learned by any party. As a result, our implementation of

function G satisfies the property G1.
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Chapter 4

The Secure CC Protocol

The Externally Secure CC Protocol described in Chapter 3 focuses on

defending the retailer and customer from malicious external parties, termed

“outsiders”. In this chapter, we examine the problems posed by malicious

retailers and focus on how to secure contactless credit cards against them.

As will be described shortly, attacks by malicious retailers are particularly

pernicious, as they are less easily identified as fraud. Even when these attacks

are detected, the resolutions are not always simple.∗

4.1 Goals of the Protocol

Recall that when making a payment, the customer first views the price

about to be charged on the screen of the retailer’s point of sale. Using this

information, the customer makes its one and only decision: whether to allow

the payment protocol to occur, or not. The underlying assumption that the

customer makes is that the price displayed on the screen is equal to the price

∗ Portions of this chapter have previously been published in [21]. While most of the
contributions in this chapter are my own, acknowledgements are due to Tyler O’Meara for
suggesting the Transparent Bridge attack in the context of contactless credit cards, and to
Mohamed Gouda for helping construct clear and concise protocol descriptions.
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which will be charged to the credit card. This need not be the case. The

information displayed on the screen is merely an assurance in the informal

sense: the numbers displayed to the customer should reflect the dollar amount

which will subsequently be sent with the Charge Request message to the bank,

but there is no mechanism in place to require this. Two attacks emerge as

a result. The goal of the Secure CC Protocol presented in this chapter is

to extend the protection provided by the Externally Secure CC Protocol to

defend against these two additional attacks.

4.1.1 The Over-charge Attack

An Over-charge attack, illustrated in Figure 4.1, is characterized by the

malicious point of sale displaying one price to the customer and then sending a

higher price to the bank (in the Charge Request message of the CC Protocols).

As a result, the customer authorizes and expects to be charged one amount,

but is instead charged an arbitrarily higher amount. Since the customer is

uninvolved in the protocol besides the initial step of allowing the protocol to

occur, there is no mechanism ensuring that the price displayed to the customer

matches the price that the (malicious) point of sale sends to the bank.

Should a customer become aware of an over-charge when reviewing the

credit card’s monthly statement, the customer may file a charge-back request

with his bank, nullifying the payment as fraudulent. As a result, while the

amount by which the customer may be overcharged is unconstrained by the

protocol, it should be relatively small for the attack to ultimately be successful.
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Figure 4.1: Over-charge Attack
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For example, it is easy to notice a gas station charge for $500.00 instead

of $21.87 on a monthly statement, and the resulting investigation would be

uncomplicated. However, should the struggling business choose to increase

charges by 5%, the resulting gas station charge of $22.96 could very easily

be overlooked. Even were it to be noticed, the victim customer may have

difficulty proving the discrepancy.

4.1.2 The Transparent Bridge Attack

A more interesting attack is described by Drimer and Murdoch [6].

The authors consider a man-in-the-middle attack, perpetrated by a malicious

retailer and an accomplice with specialized equipment. This attack involves

four parties: a victim customer, a malicious retailer, a malicious customer, and

a victim retailer. The malicious retailer and the malicious customer collude to

perform this attack.
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The malicious customer is issued with a special device, capable of re-

laying all messages it receives from a point of sale to the malicious retailer in

real time. Similarly, it can relay any responses it receives from the malicious

retailer back to this point of sale. As a result, the malicious customer and

malicious retailer can together form a bridge between the victim credit card

and the victim retailer’s point of sale. The attack is illustrated in Figure 4.2

and runs as follows:

1. First, the victim customer attempts to make a relatively inexpensive

purchase from the malicious retailer. Simultaneously, the malicious cus-

tomer prepares to make a relatively expensive purchase from a victim

retailer.

2. The victim retailer’s point of sale issues a Solicitation message to the

malicious customer, who relays it to the malicious retailer.

3. The malicious retailer then forwards this Solicitation message to the

victim credit card.

4. The victim credit card responds with a Card Information message to

the malicious point of sale, who relays this message to the malicious

customer.

5. The malicious customer forwards this Card Information message to the

victim retailer’s point of sale.
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Figure 4.2: Transparent Bridge Attack
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6. The victim retailer’s point of sale issues a Charge Request message to the

victim credit card’s bank, charging the victim customer for the expensive

purchase.

In this attack, all messages are transparently relayed between the victim

retailer’s point of sale and the victim customer’s credit card. As a result, the

victim customer expects to be charged for an inexpensive purchase at the

malicious retailer, but is instead charged for an expensive purchase at the

victim retailer. The malicious retailer loses the inexpensive sale, but acquires

the merchandise from an expensive purchase in exchange.

This Transparent Bridge attack is particularly interesting because the
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malicious parties leave no trace with either of the victims: to the victim cus-

tomer, there is only a record of an expensive purchase at the victim retailer,

and to the victim retailer, there is only the customer record of the victim cus-

tomer. The amount which can be successfully stolen by the malicious retailer

is unconstrained, and needs not evade notice: if the discrepancy is noticed

and the victim customer files a charge-back request, it will be against the vic-

tim retailer (and not the malicious retailer). As such, detected or not, it is

one of the two victims that will be left facing the bill, making the Transpar-

ent Bridge attack significantly more dangerous than the Over-charge attack

described earlier.

Drimer et al. propose a defense against this attack in the context of

EMV “chip” cards. However, this solution is not applicable to a contactless

credit card protocol.

4.2 Design of the Protocol

Since the attacks described in the previous section (allowing a malicious

retailer to exploit a customer) are tied to the retailer’s ability to display one

price and charge another, our proposed defense against these attacks is built

around removing this ability. If using a credit card implemented on a smart

phone, the phone’s interface provides an additional communication channel

between the customer and the credit card. In this case we refer to the card as

a “virtual” credit card. The communication channel between the smart phone

and the customer can be harnessed to allow the customer to participate in the
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credit card protocol beyond simply allowing it to occur.

The Externally Secure CC Protocol described in Chapter 3 defines a

function H, proves several of its properties, and uses it to defend against exter-

nal attacks such as skimming and eavesdropping. We note that each property

required of this function H is a property enjoyed by common cryptographic

hash functions, such as those in the SHA family. As such, using a hash function

instead of the derived function H does not reduce the security of the Secure

CC Protocol. In the context of virtual credit cards, the computational cost of

executing a hash function is no longer a concern.

We remind the reader of the following terms:

ch: a fresh, randomly generated challenge value, chosen by the point of sale.

info: the credit card’s payment information, consisting of the credit card num-

ber and expiration date.

ID: a UUID, uniquely identifying an individual credit card without revealing

any information about info. This identifier is stored as a constant on the

credit card.

iCVV: an unpredictable value freshly generated by the credit card for each

transaction (the issuing bank can generate the same sequence of values).

B: the name of the issuing bank, used for the purpose of routing transactions

as before.
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T: a charge token, to authenticate a single transaction.

The Secure CC Protocol, operating between a point of sale and a virtual

credit card, is illustrated in Figure 4.3 and proceeds as follows:

1. The point of sale displays a price $d on its screen, inviting the customer

to bring a credit card within NFC range.

2. The point of sale sends a Solicitation message to the credit card, includ-

ing a fresh random challenge ch and the price to be charged $s. (Recall

that if the point of sale is honest, $s = $d.)

3. The virtual credit card displays the price $s on the smart phone to the

customer, who can choose to accept or reject it. Rejecting the price

aborts the protocol here.

4. If the price is accepted by the customer, the virtual credit card calculates

T = H(info, ch, $s , iCVV )

and responds to the point of sale with a Card Information message con-

sisting of (ID, T, B).

5. The point of sale sends a charge request message to the issuing bank

(identified by B) consisting of (ID, T, ch, $r). (Again, if the point of

sale is honest, $r = $d)
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Figure 4.3: Secure CC Protocol
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6. The bank uses ID to look up infobank and then calculates iCVVbank. It

then uses the ch and $r supplied in the Charge Request message to

calculate

Tbank = H(infobank, ch, $r , iCVV bank)

If T 6= Tbank, the bank will decline the charge, otherwise it approves the

charge for $r.

When using a physical credit card instead of a virtual one, no commu-

nication channel exists between the card and the customer. As a result, the

steps above in which the card displays the price sent with the Solicitation mes-

sage ($s) to the customer and waits for the customer to allow the protocol to

proceed cannot occur. Instead, a physical credit card must implicitly assume

successful authorization from the customer, effectively skipping step 3. As
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a result, while not providing protections from malicious retailers to physical

credit cards, the protocol maintains backwards compatibility with no loss of

functionality or security against malicious outsiders.

We note that a naive implementation of the protocol above might re-

quire excessively long timeouts between the point of sale sending its solicitation

message and receiving the response. Should long timeouts not be desired, a

simple solution would be for the point of sale to send periodic solicitations

(with new challenges). The virtual credit card, upon receiving permission

from the customer, could then cache this authorization and respond immedi-

ately to the subsequent solicitation. Besides noting this particular case, we

emphasize that issues such as these are implementation details, the decisions

for which are best left to those implementing the protocol.

4.2.1 Defending Against the Over-charge Attack

The Secure CC Protocol prevents the Over-charge attack against cus-

tomers using a virtual credit card. In step 3, the customer verifies that

$d = $s through visual comparison. Due to the inclusion of $s in the hash

when generating token T, we gain the assurance that for any charge accepted

by the bank, $s = $r.

Thus, through a transitive argument, the customer can be assured that

for any successful charge, $d = $r. Should the malicious retailer attempt to

issue a charge request with some $r 6= $d , then Tbank 6= T and the charge will

be declined by the bank.
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4.2.2 Defending Against the Transparent Bridge Attack

The Secure CC Protocol makes no attempt to prevent this attack from

occurring. Instead, it removes the economic incentive of performing such an

attack against customers using virtual credit cards.

In the Transparent Bridge attack, the malicious retailer loses the sale

paid by the victim customer, in return for acquiring the purchase made by the

malicious customer. In order for the Transparent Bridge attack to be viable,

the malicious actors must have something to gain: the value of the malicious

customer’s purchase must be greater than the value of the victim customer’s

purchase. When the Secure CC Protocol is used, one of two scenarios occurs:

1. The price associated with the malicious customer’s purchase differs from

(i.e. is greater than) the price of the victim customer’s purchase. The

victim customer compares the price displayed by the point of sale and the

price displayed by the virtual credit card. The would-be victim customer

immediately detects the attack and aborts the transaction.

2. The price associated with the malicious customer’s purchase is equal to

the price of the victim customer’s purchase. The victim customer does

not detect this attack, and allows the transaction to occur. The end

result: the victim customer paid for the price of what it received, and

the victim retailer received the price of what it sold.

As a result, there is no longer any incentive to carrying out this attack,
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as the only successful instance results in all parties getting paid exactly as

much as they would had they been honest.
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Chapter 5

Virtual Credit Cards and Electronic Wallets

When describing the Secure CC Protocol in Chapter 4, we referred to

“virtual credit cards”. In this chapter, we describe them more formally.

5.1 Virtual Credit Cards

Many consumer smart phones today support the ability to communicate

over the NFC channel. Indeed, as described in Section 2.3, this ability can be

used by skimmers and relay attackers in order to perform fraudulent purchases.

Moreover, this ability can be used by an authorized party to perform non-

fraudulent purchases.

A virtual credit card is an application on an NFC-capable smart phone

which emulates a credit card in a CC Protocol by receiving Solicitation mes-

sages and responding with Card Information messages. To emulate a physical

credit card, the virtual card needs to have access to the following information:

• The credit card number

• The expiration date

• The next iCVV
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• The issuing bank name

Note that the credit card number, expiration date, and bank name can

be input to the virtual credit card by the cardholder. However, in order to

be able to generate valid iCVVs, a virtual credit card needs to have access

to the seed from which iCVVs are generated. This value is not known to

the cardholder, and as such, a virtual credit card cannot normally be created

without the cooperation of the physical card’s issuing bank.

5.2 Electronic Wallets

A logical extension of the virtual credit card is the storage and manage-

ment of multiple virtual cards in a single unit. Applications such as Android

Pay and Apple Wallet exemplify this idea, allowing a customer to select the

desired credit card in the application, following which the phone emulates the

selected credit card. We refer to a collection of virtual credit cards and ac-

companying software (e.g. the interface for allowing the customer to select a

card, password protection, etc.) as an “Electronic Wallet”. Figure 5.1 shows

how an Electronic Wallet can be used in the CC protocols discussed so far

(namely, the Insecure CC Protocol, the Externally Secure CC Protocol, and

the Secure CC Protocol), enabling the customer to participate in the protocol

as described in the Secure CC Protocol in Chapter 4.
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Figure 5.1: Use of an Electronic Wallet in the CC Protocols
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Electronic Wallets are advantageous for several reasons:

• Convenience: Electronic Wallets allow a customer to carry an essentially

unlimited number of credit cards on their person without taking up extra

space.

• Security: Electronic Wallets protect the customer from skimming and

relay attacks, because Electronic Wallets are typically programmed not

to respond to solicitations without customer consent. (Recall that phys-

ical credit cards will always respond to Solicitation messages, regardless

of the customer’s intention.)

• Interface: Electronic Wallets can provide a rich interface between the

customer and the virtual credit card. This interface allows the customer

to participate in the protocol.
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Chapter 6

Protecting Customer Privacy: Unlinkability

Retailers today enjoy the ability to link multiple purchases to an indi-

vidual customer by identifying multiple purchases made using the same credit

card. We argue that this is problematic from a privacy standpoint and present

the prevention of this ability as a goal for a new contactless credit card proto-

col.

6.1 Linkability and Unlinkability

All CC Protocols discussed so far provide retailers with a property of

credit card payments known as linkability : retailers are able to link distinct

purchases that are made using the same credit card, in order to build purchas-

ing profiles on their customers. Customer purchasing profiles are valuable to

retailers, because they allow for more targeted and effective marketing, and

can be sold to interested third parties.

Recall that in the Insecure CC Protocol described in Chapter 2 (and

in widespread use today), the credit card discloses its card number, expiration

date, and iCVV to the point of sale with every purchase. Therefore, a retailer

can link purchases that are made using the same credit card simply by compar-
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ing the card numbers of these purchases. Note that any credit card protocol

which gives the retailer access to the card number is linkable by definition.

These purchasing profiles can be unpleasant to the customer from a

privacy standpoint: purchasing habits can reveal sensitive and personal infor-

mation [8]. Furthermore, a customer cannot opt-out of this profiling except

by avoiding the use of credit cards altogether.

With this in mind, we consider how to provide credit card payments

with the converse property: unlinkability. Informally, if credit card purchases

are unlinkable, then retailers cannot use them to construct purchasing profiles

efficiently.

While allowing the retailer access to the card number is sufficient to

undermine unlinkability, it is not necessary. For example, consider the Secure

CC Protocol, presented in Chapter 4 and shown in Figure 6.1 for convenience.

In this protocol, the credit card number is not disclosed, and all authentication

data (contained within the value T ) is indistinguishable from random to the

retailer. However, the charge token contains a constant card identifier ID,

required by the bank in order to identify the customer for which T must be

verified. No two credit cards have the same ID, and ID does not change, so

the retailer can simply link purchases using ID instead of the card number.

More generally, if the protocol includes a message received by the retailer from

which the customer’s identity can be inferred, then the protocol cannot provide

unlinkability.
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Figure 6.1: Secure CC Protocol
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While we wish to conceal the customer’s identity from the retailer, it

must be disclosed to the bank in order for a charge to be processed. As such,

the problem reduces to one where we wish the contents of a message generated

by a credit card (the message source) to be opaque to the point of sale (the

carrier), but not to the bank (the final destination). A natural approach to

this problem is to use cryptography.

6.2 The Simple Unlinkable Protocol

In considering a cryptographic approach to creating an Unlinkable

Credit Card Protocol, let us first consider the simpler approach of using sym-

metric cryptography. In a cryptographic scheme employing symmetric cryp-

tography, the original sender (the credit card) and the final destination (the
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bank) share a secret key used for both encryption and decryption. While sym-

metric cryptography can provide confidentiality of a message from the card

to the bank, it cannot provide unlinkability. This is because the message re-

ceived by the bank must include some method for determining which of its

customer’s keys the bank should use to decrypt the message. The retailer may

then simply use this key identifier to link purchases.

Let us next consider using asymmetric (or “public key”) cryptography,

a system in which anybody (having access only to publicly available informa-

tion) may encrypt a message that only the intended recipient may decrypt.

Asymmetric cryptography allows the recipient to use a single key in order to

decrypt messages originating from any party, sidestepping the key identifier

issue above.

We thus present the Simple Unlinkable Wallet Protocol, employing

asymmetric encryption to maintain unlinkability. This protocol is illustrated

in Figure 6.2, and operates as follows:

Figure 6.2: Simple Unlinkable Wallet Protocol

Bank Point of Sale
Cryptographic
Virtual Card

solicitation

card information
T = Enc(cc#, exp, iCVV)

charge request
(T, $)

decrypt T,
verify details

approve?
(Y / N)
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1. The point of sale sends a Solicitation message to the customer’s (virtual)

credit card.

2. The customer’s card encrypts its credit card information (consisting of

the credit card number, expiration date, and iCVV) using the bank’s

public key, and sends this data (along with the bank name) as a Card

Information message.

3. The point of sale receives the Card Information message, appends the

price to charge, and sends this data to the bank named in the Card

Information message.

4. The bank decrypts the Card Information data to recover the customer’s

credit card number, expiration date, and iCVV. It then continues exactly

as before in the Insecure CC Protocol described in Chapter 2, responding

to the point of sale with an Approval message.

In this protocol, the Card Information message consists of an encrypted

blob, and the bank name in plaintext. The point of sale learns nothing about

the customer besides the name of the card’s issuing bank. As a result, this

protocol is unlinkable.

Barring any other requirements, asymmetric cryptography provides suf-

ficient primitives for constructing an unlinkable payment protocol. However,

asymmetric cryptography requires comparatively large (2048 bit) keys to be

secure and results in ciphertexts at least as long as the key. For reasons to be
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discussed shortly in Section 7.1, our goals for an Unlinkable Wallet Protocol

require much shorter message lengths. As a result, using asymmetric cryptog-

raphy in a secure manner is incompatible with our goals for a new Unlinkable

Wallet Protocol.
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Chapter 7

Additional Goals for the Unlinkable Wallet

Protocol

The Secure CC Protocol presented in Chapter 4 is a significant im-

provement over the status quo (described in Chapter 2). However, the Secure

CC Protocol neglects to provide two properties (in addition to Unlinkability)

which we find desirable in a payment protocol: the ability to use existing point

of sale infrastructure, and the ability to use any credit card. In this chapter,

we define and justify these goals. In Chapter 8 we use these three proper-

ties to guide the construction of a new protocol, which we call the Unlinkable

Wallet Protocol. This new protocol will defend against malicious outsiders an

retailers, while simultaneously satisfying unlinkability, allowing for the use of

existing point of sale infrastructure and any credit card.

7.1 Use Existing Point of Sale Infrastructure

While constructing new and better protocols is an effective way to de-

fend against attacks, requiring modification or updates to widely established

infrastructure imposes a significant barrier to the adoption of this new pro-

tocol. For example, in order to implement the Secure CC Protocol described
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in Chapter 4, every point of sale must be modified or replaced. In order to

sidestep this barrier, we consider the protocol in use today (the Insecure CC

Protocol in Chapter 2) from the perspective of a point of sale.

A point of sale may do rudimentary checks on the structure of the

Card Information messages that it receives, but it relies on the bank in order

to validate the data in these messages. The Insecure CC Protocol, from the

perspective of the point of sale, is illustrated in Figure 7.1 and operates as

follows:

1. The point of sale issues a Solicitation message over the NFC channel.

This message contains no payload of interest.

2. The point of sale receives a Card Information message over the NFC

channel. This message consists of the following fields:

• A 16-digit card number

• A 4-digit expiration date

• An 8-digit iCVV

In practice, this is an opaque∗ 28-digit numeric value (16 + 4 + 8). This

data is accompanied by the bank name.

∗ There are some constraints on this value. For example, an expiration date of “8321”
does not need to be verified by a bank to be declared invalid. Similarly, there are constraints
on credit card numbers as well. These have little effect on our approach, so we ignore them
for simplicity.
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3. After receiving the Card Information message, the point of sale issues a

Charge Request message to the bank specified by the bank name field in

the Card Information message. The Charge Request message consists of

the card’s credit card number, expiration date, iCVV, and the price to

charge. In practice, this repeats the same 28-digit numeric value received

in the Card Information message, accompanied by the price to charge.

4. Later, the point of sale receives an Approval message in response to the

Charge Request message. The Approval message consists of the bank’s

decision on whether to accept the charge, as described in Section 2.2.

Figure 7.1: Insecure CC Protocol, Point of Sale Behavior

Point of Sale
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card information
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charge request
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approve?
(Y / N)

A key observation of the point of sale’s behavior is that it consists of

relaying data specified by the card to a destination also specified by the card.

While the point of sale may interpret the 28-digit data content of the Card

Information message as consisting of three fields describing a credit card, the

customer may instead use these fields to encode an arbitrary 28-digit mes-

sage, provided that the recipient of the Charge Request message decodes it

accordingly.
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We leverage this observation in the construction of the Unlinkable Wal-

let Protocol, conforming to existing point of sale behavior by using this 28-digit

message as a carrier for the data we wish to transmit. In so doing, we ensure

that the point of sale in the Unlinkable Wallet Protocol remains identical to

its counterpart in the Insecure CC Protocol.

7.2 Use of Any Credit Card

Few credit cards today support contactless transactions natively. As

a result, the majority of credit cards available to customers cannot generate

valid iCVVs. The Unlinkable Wallet Protocol should allow the use of any

credit card, including those for which no valid iCVVs exist.

This matter is complicated by our goal of using existing point of sale

infrastructure: current point of sale devices require an iCVV as part of an

NFC Card Information message. To get around this, we can leverage the

architecture of credit cards themselves.

Each credit card is a collection of independent interfaces. Common

interfaces seen on credit cards today include:

• Visual: the data which can be visually read from the card

• Magstripe: the data encoded on the magnetic strip

• NFC: the data and computation involved in contactless payments

• Chip: the data and computation involved in chip payments
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These interfaces operate independently: a transaction involves the use

of a single interface as negotiated by the customer and the retailer. The bank

accepts a valid Charge Request over any interface supported by the credit

card. While some cards support a different set of interfaces than others, an

important observation is that every credit card supports the visual interface.

Making use of NFC communication is desirable for a new credit card

protocol, because a smart phone supporting NFC communication enables the

customer to send and receive arbitrary messages. However, for a charge to be

successful, the bank must receive a Charge Request pertaining to a non-NFC

interface due to the lack of valid iCVVs associated with non-contactless credit

cards.

These two seemingly contradictory requirements suggest the construc-

tion of a tunneled protocol: if we place an entity between the point of sale and

the bank, this entity may receive an NFC Charge Request from the point of

sale, convert it into a Charge Request of another interface (for example, the

visual interface), and send this converted Charge Request to the bank.
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Chapter 8

Design of the Unlinkable Wallet Protocol

In this chapter, we present our design for the Unlinkable Wallet Proto-

col, which achieves our three primary goals: supporting unlinkable payments

and allowing the use of any credit card, while using existing point of sale

infrastructure.

First, we base our design of the Unlinkable Wallet Protocol on the

following two assumptions:

• The retailer is not malicious

• The Wallet Application is connected to the Internet at all times

Later, as we refine the protocol, we erode these assumptions to yield a secure

and resilient protocol.

The Unlinkable Wallet Protocol is designed solely for use with Elec-

tronic Wallets and cannot be used with physical credit cards. Thus, the first

step for a customer is to download the Wallet Application and initialize a

virtual credit card by registering a physical card into the Wallet Application.

The card registration process is simple. The customer launches the

Wallet Application and enters the credit card information for the card to be
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registered. This information consists of the cardholder name, card number,

expiration date, and billing address. The Wallet Application then sends this

data in a Registration message to a new principal: the Wallet Server. This

Registration message is transmitted securely over the Internet.

The customer may then use any card registered through the Wallet

Application to make unlinkable transactions.

8.1 Basic Unlinkable Wallet Protocol

When the Wallet Server receives a Registration message, it stores the

card information and associates a unique card identifier, denoted Ident, with

this record. In the basic protocol, the Wallet Server responds to the Reg-

istration message with this identifier Ident. The Wallet Application stores

this value securely, associating it with the credit card being registered. The

protocol, illustrated in Figure 8.1, operates as follows:

1. The customer selects a credit card in the Wallet Application.

2. The Wallet Application sends a Token Request message to the Wallet

Server. This message consists of the card identifier Ident associated with

the selected card, and is sent securely over the Internet. Note that this

message should be authenticated to prevent a customer from requesting

a token to a different customer’s card.

3. The Wallet Server then generates a random 93-bit token T and associates
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Figure 8.1: Basic Unlinkable Wallet Protocol
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it with the card identified by Ident. The Wallet Server responds to the

Wallet Application with a Token message containing T.

4. The point of sale displays the price to charge ($) on its screen.
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5. The Wallet Application now enables the virtual credit card, initializing

it with token T. The virtual credit card begins listening for Solicitation

messages.

6. The point of sale sends a Solicitation message to the virtual credit card

over the NFC channel.

7. The virtual credit card converts token T into a 28-digit number k (note

that 28 digits is sufficient to store a 93 bit value: log10(2
93) ≈ 27.995).

It then responds with a Card Information message. This message has

the following fields:

• Pseudo Card number: the first 16 digits of k

• Pseudo Expiration date: the subsequent 4 digits of k

• Pseudo iCVV: the remaining 8 digits of k

• Pseudo Bank name: the Wallet Server

8. The point of sale constructs an Charge Request message from the (pseudo)

card number, expiration date, iCVV, and the price it wishes to charge.

This message is sent to the bank named in the Card Information mes-

sage. As a result, the Charge Request message is directed to the Wallet

Server and not an actual bank. Note that from the perspective of the

point of sale, the Wallet Server appears to be a bank like any other.

9. The Wallet Server reconstructs k from the Charge Request message and

computes the 93-bit token it represents. The Wallet Server then searches

67



its database for this token, in order to identify the card used in this

transaction. If the token is not found, the Wallet Server sends a “de-

clined” Approval message to the point of sale and aborts the protocol.

Otherwise, the stored card details are retrieved from the Wallet Server’s

database. The Wallet Server then invalidates the token and sends a

visual Charge Request to the card’s bank with the following fields:

• Cardholder name

• Card number

• Expiration date

• Billing address

Note that unlike the Card Information message sent by the Wallet Ap-

plication, this data reflects the actual credit card information, acquired

by the Wallet Server during the card registration.

10. The bank receives the visual Charge Request from the Wallet Server

and processes this transaction as normal. It then responds to the Wallet

Server with an Approval message indicating whether the charge has been

accepted.

11. The Wallet Server forwards the bank’s Approval message to the point of

sale.

Note that in this protocol, the Wallet Server has a dual role: to the
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point of sale, the Wallet Server appears to be a bank, while to the bank, the

Wallet Server appears to be a point of sale.

Note too that the Wallet Application needs to have a ready connection

to the Internet. Each transaction requires secure communication with the

Wallet Server in order to receive the next token T. Should a connection to the

Internet be unavailable to the Wallet Application, after using T, the customer

is unable to perform subsequent purchases with this virtual credit card until

a Token Request exchange can take place.

This protocol is unlinkable, because the information received by the

point of sale consists solely of a random value, accompanied by a bank name

identifying the Wallet Server. Any credit card can be used in this protocol,

because the bank receives visual Charge Request messages, and all credit cards

support the visual interface. Finally, this protocol uses existing infrastructure

in that the behaviors of the point of sale and the bank are unchanged from

those of the Insecure CC Protocol.

8.2 Protecting against Malicious Retailers

The Basic Unlinkable Wallet Protocol is vulnerable to attacks by ma-

licious retailers, as described in Section 4.1. In this section, we describe the

Secure Unlinkable Wallet Protocol to defend against these attacks while con-

tinuing to support unlinkable transactions.

This new protocol is very similar to the Basic Unlinkable Wallet Proto-
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col described in Section 8.1. In the Basic Unlinkable Wallet Protocol, a 93-bit

token was used to identify a virtual credit card to the Wallet Server. In the

Secure Unlinkable Wallet Protocol, this token consists of only 80 bits, leaving

13 bits with which to bind a price to the token. In binding a price to a given

token, we provide the same defense against malicious retailer attacks as the

Secure CC Protocol described in Chapter 4.

When the Wallet Server receives a Registration message, it stores the

card information and associates a card identifier Ident with this record. The

Wallet Server also generates a secret key SK associated with this card. In the

Secure Unlinkable Wallet Protocol, the Wallet Server responds to the Registra-

tion message with this identifier Ident and the key SK. The Wallet Application

stores these values securely, associating them with the credit card being regis-

tered. The protocol, illustrated in Figure 8.2, operates as follows:

1. The customer selects a credit card in the Wallet Application.

2. The Wallet Application sends a Token Request message to the Wallet

Server. This message consists of the card identifier Ident associated with

the selected card, and is sent securely over the Internet. Note that this

message should be authenticated to prevent a customer from requesting

a token to a different customer’s card.

3. The Wallet Server then generates a random 80-bit token T, and asso-

ciates it with the card identified by Ident. The Wallet Server responds

to the Wallet Application with a Token message containing T.
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Figure 8.2: Secure Unlinkable Wallet Protocol
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4. The point of sale displays the price to charge ($d) on its screen.

5. The customer enters the price to be charged ($c) into the Wallet Appli-
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cation.

6. The Wallet Application now enables the virtual credit card, initializing

it with token T and price $c. The virtual credit card begins listening for

Solicitation messages.

7. The point of sale sends a Solicitation message to the virtual credit card

over the NFC channel.

8. The virtual credit card calculates the HMAC of token T combined with

price $c, keyed with key SK, and selects the first 13 bits of this hash.

It then combines the 80-bit token T with this 13-bit hash to acquire a

93-bit value. Finally, it converts this 93-bit value into a 28-digit number

k, and responds with a pseudo Card Information message as before.

9. The point of sale constructs a Charge Request message from the (pseudo)

card number, expiration date, iCVV, and the price it wishes to charge.

This message is sent to the bank named in the Card Information message.

As a result, the Charge Request message is directed to the Wallet Server

and not an actual bank. Note that from the perspective of the point of

sale, the Wallet Server appears to be a bank like any other.

10. The Wallet Server reconstructs k from the Charge Request message and

computes the 80-bit token and 13-bit price hash that it represents. The

Wallet Server then searches its database for the token to identify the card

used in this transaction. If the token is not found, the Wallet Server
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sends a “declined” Approval message to the point of sale and aborts

the protocol. Otherwise, the secret key SK is retrieved from the Wallet

Server’s database, and the Wallet Server calculates its own version of the

price hash using the price indicated by the point of sale in the Charge

Request message.

If the Wallet Server’s price hash does not match the price hash in the

Charge Request message, the Wallet Server sends a “declined” Approval

message to the point of sale and aborts the protocol. Otherwise, the

stored card information is retrieved from the Wallet Server’s database.

The Wallet Server invalidates the token, and sends a visual Charge Re-

quest to the card’s bank with the following fields:

• Cardholder name

• Card number

• Expiration date

• Billing address

Note that unlike the Card Information message sent by the Wallet Ap-

plication, this data reflects the actual credit card information, acquired

by the Wallet Server during the card registration.

11. The bank receives the visual Charge Request from the Wallet Server,

and processes this transaction as normal. The bank then responds to the

Wallet Server with an Approval message indicating whether the charge

has been accepted.
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12. The Wallet Server forwards the bank’s Approval message to the point of

sale.

In the Secure Unlinkable Wallet Protocol, the Card Information mes-

sages are bound to the price entered by the customer: a malicious retailer,

lacking knowledge of SK, cannot generate a replacement price hash should it

charge a different price in the Charge Request message. This protocol is also

unlinkable: all 93 bits represented by the (pseudo) Card Information values

are indistinguishable from random to the retailer.

However, like in the Basic Unlinkable Wallet Protocol, the Wallet Ap-

plication needs to have a ready connection to the Internet. Once a token has

been used, a subsequent token must be acquired from the Wallet Server in

order to make a subsequent purchase.

8.3 Tolerating Lack of Internet Access

Both the Basic Unlinkable Wallet Protocol described in Section 8.1 and

the Secure Unlinkable Wallet Protocol described in Section 8.2 suffer from re-

quiring access to the Internet when a transaction is being made. Each transac-

tion requires the virtual credit card to acquire a new token T from the Wallet

Server. As such, temporary lack of Internet access (e.g. paying for parking

in an underground garage, or making purchases while in a foreign country)

significantly hampers the ability for customers to use their credit cards. This

can be alleviated somewhat by requesting multiple tokens at once, but remains
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a fundamental limitation of the protocols.

In this third protocol (termed simply the Unlinkable Wallet Protocol),

we solve this problem by generating the single-use tokens within the Wallet

Application. Tokens are generated deterministically and using information

available to both the Wallet Server and Wallet Application. As a result, both

the Wallet Application and Wallet Server are able to independently generate

the same tokens for a given card without needing to communicate (over the

Internet). Communication between the Wallet Application and the Wallet

Server is no longer necessary besides during card registration (and during the

resolution of any synchronization problems).

As before, when the Wallet Server receives a Registration message, it

stores the card information and associates a card identifier Ident with this

record. The Wallet Server also generates a secret key SK associated with this

card. In the Unlinkable Wallet Protocol, the Wallet Server responds to the

Registration message with this identifier Ident and the key SK. The Wallet

Application stores these values securely, associating them with the credit card

being registered.

Both the Wallet Application and the Wallet Server initialize a trans-

action counter for this card and set it to zero. In addition, the Wallet Server

calculates the initial token T by calculating the keyed HMAC of the trans-

action counter (currently at 0) keyed with SK. The Wallet Server stores this

initial value of T with the credit card record. The protocol, illustrated in

Figure 8.3, operates as follows:
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Figure 8.3: Unlinkable Wallet Protocol
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1. The customer selects a credit card in the Wallet Application.

2. The point of sale displays the price to charge ($d) on its screen.
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3. The customer enters the price to be charged ($c) into the Wallet Appli-

cation.

4. The Wallet Application now enables the virtual credit card, initializing

it with price $c. The virtual credit card begins listening for Solicitation

messages.

5. The point of sale sends a Solicitation message to the virtual credit card

over the NFC channel.

6. The virtual credit card calculates token T by calculating the HMAC of

the transaction counter keyed with SK and selecting the first 80 bits. The

virtual credit card then proceeds as before. It calculates the price hash

by combining T with price $c and calculating the HMAC of this value

with key SK, then selecting the first 13 bits. It then combines the 80-bit

token T with this 13-bit price hash to acquire a 93-bit value. Finally, it

converts this 93-bit value into a 28-digit number k and responds with a

pseudo Card Information message as before.

7. The point of sale constructs a Charge Request message from the (pseudo)

card number, expiration date, iCVV, and the price it wishes to charge.

This message is sent to the bank named in the Card Information message.

As a result, the Charge Request message is directed to the Wallet Server

and not an actual bank. Note that from the perspective of the point of

sale, the Wallet Server appears to be a bank like any other.
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8. The Wallet Server reconstructs k from the Charge Request message and

computes the 80-bit token and 13-bit price hash that it represents. The

Wallet Server then searches its database for the token to identify the

card used in this transaction. If exactly one token is not found, the

Wallet Server sends a “declined” Approval message to the point of sale,

and aborts the protocol. Otherwise, the secret key SK is retrieved from

the Wallet Server’s database, and the Wallet Server calculates its own

version of the price hash using the price indicated by the point of sale in

the Charge Request message.

If the Wallet Server’s price hash does not match the price hash in the

Charge Request message, the Wallet Server sends a “declined” Approval

message to the point of sale and aborts the protocol. Otherwise, the

stored card information is retrieved from the Wallet Server’s database.

The Wallet Server then sends a visual Charge Request to the card’s bank

with the following fields:

• Cardholder name

• Card number

• Expiration date

• Billing address

Note that unlike the Card Information message sent by the Wallet Ap-

plication, this data reflects the actual credit card information acquired

by the Wallet Server during the card registration.
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9. The bank receives the visual Charge Request from the Wallet Server and

processes this transaction as normal. The bank then responds to the

Wallet Server with an Approval message indicating whether the charge

has been accepted.

10. The Wallet Server examines the Approval message from the bank. If the

charge was accepted, it increments the transaction counter associated

with the virtual credit card and recalculates the next expected value of

T. The Wallet Server then forwards the bank’s Approval message to the

point of sale.

11. The Wallet Application prompts the customer as to whether the charge

was accepted by the bank. Note that the Approval message is not sent

to the Wallet Application or virtual credit card as part of the protocol,

and so the Wallet Application must rely on the customer to enter this

data. If the charge was approved, then the virtual credit card increments

its transaction counter.

The Unlinkable Wallet Protocol is identical to the Secure Unlinkable

Protocol, with the exception that the tokens T are generated independently in

both the Wallet Application and the Wallet Server. As a result of this change,

there are two potential failure cases which must be considered.

First, since the protocol relies on the customer manually maintaining

the transaction counter within a virtual credit card, we must account for po-

tential customer error. If a customer fails to increment the transaction counter
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on a successful purchase (or incorrectly increments it on a failed purchase),

then the Wallet Server and the virtual credit card will not agree on subsequent

values of T. The transaction counter can be re-synchronized by way of an au-

thenticated message exchange with the Wallet Server, sent securely over the

Internet. Customer error in maintaining a virtual credit card’s internal trans-

action counter thus results in an inoperative virtual credit card until such a

time as the Wallet Application regains temporary access to the Internet.

Second, since the Wallet Server can no longer exercise full control over

token generation, we need to consider the possibility of token collisions. A

token collision occurs when two different virtual credit cards calculate the

same token T around the same time. This occurs when H(SK1, txn ctr1) =

H(SK2, txn ctr2). In this case, both virtual cards become inoperative until

at least one of the corresponding Wallet Applications regains access to the

Internet and negotiates a new transaction counter∗. Note however that the

probability of such a collision is negligibly small and will be examined below

in Chapter 9.

∗ We refer to the value as a “transaction counter” because we increment it with every
transaction successful, but there is no requirement that it reflect an accurate number of
transactions. It need only be a value which (a) changes on every successful transaction,
and (b) changes in such a way that both the Wallet Application and Wallet Server can
independently agree on the new value. As such, resolution to a collision consists simply of
incrementing the transaction counter of whichever card is first to reconnect to the Internet,
then synchronizing this value with the Wallet Application.
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Chapter 9

Analysis of the Unlinkable Wallet Protocol

The Unlinkable Wallet Protocol has several tangible benefits, as de-

scribed in the previous chapter. However, collision mitigation strategies are

inconvenient, so we consider the expected frequency of such events. In this

chapter, we analyze the features of the Unlinkable Wallet Protocol which make

it attractive, as well as the statistical frequency of collisions.

9.1 Security Analysis of the Protocol

The Unlinkable Wallet Protocol is secure against malicious outsiders.

Simply by using an Electronic Wallet, the customer is protected from skimming

and relay attacks “for free”, because the phone must be unlocked and ready to

transmit in order to respond to a Solicitation message. The Unlinkable Wallet

Protocol provides protection against eavesdroppers and compromised points

of sale, because each message consists of two single-use tokens which lose all

value after the transaction takes place.

Due to the inclusion of the price validation hash (the last 13 bits of

the 93-bit message), the Unlinkable Wallet Protocol defends against malicious

retailers by binding the charge token to a price confirmed by the customer.
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Furthermore, the Unlinkable Wallet Protocol provides the customer

with the privacy property of unlinkability from the retailer. In this protocol,

retailers lose the ability to use credit card numbers as a method to correlate

purchases and track customer purchasing profiles through purchase records.

In [20] and [21], we considered unlinkability an explicit non-goal: for

deployment, the protocol required extensive cooperation from retailers who

currently enjoy this property. The Unlinkable Wallet Protocol requires no

such cooperation from retailers or the payment industry, which means that

acquiescing to retailers’ wishes is not necessary.

Note that the information correlating an individual credit card to an

individual purchase is not lost: it is now learned by the Wallet Server in-

stead. Indeed, the Wallet Server finds itself in a very privileged position: by

inserting itself between retailers and banks, it appropriates knowledge from

retailers regarding transaction correlation and appropriates knowledge from

banks regarding transaction locations∗.

Even so, the Unlinkable Wallet Protocol protects customer privacy by

separating knowledge of itemized purchases and correlation between purchases.

It is potentially valuable for an entity to be able to answer the questions “where

does the customer spend money? What does the customer spend money on?”

∗ This appears to be consistent with the operation of Electronic Wallet applications
like Android Pay and Apple Wallet: Android Pay has announced partnerships with some
banks, which results in your credit card’s purchases through Android Pay continuing to
earn rewards normally offered by your credit card (e.g. 5 points per dollar spent on gas, 3
points per dollar spent on groceries, etc.). This suggests that, lacking a partnership with
Electronic Wallet providers, banks lose information on the nature and location of purchases.
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Currently, banks have complete information on where customers spend

their money and retailers have complete information on what their customers

purchase (at that retailer). The Unlinkable Wallet Protocol breaks part of

this information away from both parties: all purchases appear to the bank as

being made out to the Wallet Server, and all purchases appear to the retailer

as being made by a unique credit card.

9.2 Collision Analysis of the Protocol

Every transaction processed by the Wallet Server service updates a

card’s token T to a new 80-bit value. If at any time two cards possess the

same token, the Wallet Server can no longer process purchases for either card,

as a Charge Request message cannot identify which card to charge. While

hash functions such as those in the SHA-2 family are collision resistant, this

does not mean that collisions cannot occur. Furthermore, truncating the token

down to 80 bits greatly increases the probability of collisions.

We wrote a simulator to model Wallet Server behavior in order to en-

sure that messages contained sufficient information for the protocol to succeed

and to monitor for collisions. We seeded it with 10 million credit cards and

processed several million transactions. During the simulation, no collisions

were observed.

Modeling this behavior mathematically, we note that the Birthday

Paradox plays a role in determining the number of credit cards that a database

can contain before expecting a token collision: the expected number of cards
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registered before observing a collision is approximately
√

π
2
· 280 ≈ 1.4 · 1012.

However, registering a credit card is by definition an event in which the Wallet

Application is connected to the Internet (and thus to the Wallet Server). As

such, collisions during registration are not a concern, as a differing key SK or

counter value can simply be chosen and synchronized between the Wallet and

the Server. Provided that there are fewer than 279 (approximately 6.04 ∗ 1024)

credit cards registered, card registration is computationally easy (expecting

no more than two attempts without causing a collision).

A credit card transaction is then modeled by selecting a single token

and replacing it. In such a transaction, the Birthday Paradox is not relevant:

intuitively, updating the token for card number 83 cannot cause the tokens for

cards 12 and 41 to collide with each other. As a result, given a database of n

Account Hashes, the expected number of transactions before a collision occurs

is 280

n
. Using the 10 million cards from our simulation, this implies that the

expected number of transactions before a collision occurs is 280

10,000,000
≈ 1.2·1017,

or approximately 120 million billion transactions. It is thus hardly surprising

that no collisions were observed in simulation.

As such, the inconvenience of rendering both cards inoperative until at

least one of them reconnects to the Internet is not particularly onerous.
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Chapter 10

Summary and Future Work

In this chapter, we summarize the main contributions of this disser-

tation, and describe a number of future research directions suggested by this

work.

10.1 Summary

The contactless credit card protocol in use today neglects even basic

protections. In Chapter 2, we examine the protocol in detail and show that it

is vulnerable to four categories of outsider attacks: eavesdropping, skimming

attacks, relay attacks, and attacks facilitated by compromised points of sale.

The current contactless credit card protocol is likewise vulnerable to attacks

perpetrated by malicious retailers as discussed in Chapter 4, providing no

protection to customers from retailers wishing to take advantage of them. In

addition, the contactless credit card protocol poses significant privacy risks to

customers as discussed in Chapter 6, allowing retailers to correlate purchases

made using the same credit card.

In response, we design a family of three replacement contactless credit

card protocols to guard against the deficiencies in the current protocol:
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1. The Externally Secure CC Protocol

2. The Secure CC Protocol

3. The Unlinkable Wallet Protocol

The Externally Secure CC Protocol guards against the outsider attacks listed

above. The Secure CC Protocol guards against both outsiders and malicious

retailers. The Unlinkable Wallet Protocol guards against both outsiders and

malicious retailers while protecting customer privacy from curious retailers

and banks.

The Externally Secure CC Protocol is described in Chapter 3. We take

particular note of the fact that in the existing contactless credit card proto-

col, no cryptographic operations are in use. We hypothesize that this is to

keep manufacturing costs of these cards down so that they can be inexpen-

sively replaced on suspicion of theft or misuse. As such, the Externally Secure

CC Protocol seeks not to increase computational requirements on the credit

card. We make use of the existing iCVV generation algorithm as our source

of entropy, and eschew using any other expensive operations (such as hash

functions).

We design the Externally Secure CC Protocol to incorporate a challenge-

response structure and base the response-generation function around an ab-

stract function H. We determine that while a cryptographic hash function

would suffice, such functions are comparatively expensive and provide proper-

ties unneeded for this application.
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Thus, we begin by determining what properties are required of func-

tion H to prevent the outsider attacks described. We then decompose H into

simpler sub-functions F and G, and map the determined properties of H onto

corresponding properties of F and G. We provide inexpensive implementa-

tions of functions F and G using only indexing and XOR, and show that these

implementations satisfy the necessary properties of F and G. In so doing, we

provide a concrete implementation of function H which uses minimal com-

putation and prove that its use as the response-generation function in our

challenge-response protocol is sufficient to defend against outsider attacks.

The Secure CC Protocol is described in Chapter 4. We begin by explor-

ing possibilities for retailers to behave maliciously and describe two attacks

which a retailer may carry out: an Over-charge attack, and a Transparent

Bridge attack. Both attacks take advantage of the fact that a credit card’s

response to a solicitation (in both the existing contactless credit card proto-

col, and the Externally Secure CC Protocol) may be used to issue an arbitrary

charge to the credit card.

The Over-charge attack is quite simple: the retailer displays the correct

price to the customer, but then issues a Charge Request accompanied by an

arbitrarily higher price to the bank. Should the fraud be detected on the

victim customer’s monthly statement, the customer may declare the charge as

fraudulent to his bank and request a charge-back. However, small increases

are unlikely to be noticed.

The Transparent Bridge attack is more insidious: the malicious re-
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tailer’s point of sale and a malicious accomplice’s specialized device work

together to relay data out-of-band in real time. When a victim customer

attempts to make a (comparatively inexpensive) purchase from the malicious

retailer, the malicious accomplice is also ready to make a (comparatively ex-

pensive) purchase at another (victim) retailer. The malicious accomplice for-

wards any communication it receives from the victim point of sale to the

malicious retailer, who in turn forwards these messages to the victim credit

card. Likewise, any responses sent by the victim credit card are forwarded

to the malicious accomplice’s device, which sends them to the victim point

of sale. In so doing, the victim customer is actually paying for the malicious

accomplice’s (expensive) purchase, while the malicious retailer is losing the

(inexpensive) purchase. This is particularly dangerous because the malicious

parties leave no traces: should the fraud be detected and declared as such to

the victim’s bank, the victim retailer is left facing the charge-back. In either

case, one of the two victims is left facing the (fraudulent) bill.

We note that both of these attacks are predicated on the customer’s

lack of participation in the protocol (beyond simply allowing it to occur), and

involve modifying or replacing a charge after it has been confirmed by the

customer. To defend against these attacks, we leverage the use of Electronic

Wallets. Electronic Wallets are applications like Android Pay or Apple Wallet,

which allow a smart phone to emulate a contactless credit card. In particu-

lar, we design the Secure CC Protocol to allow the customer to confirm the

purchase price on a device under the customer’s control: we augment the So-
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licitation message to include the price to be charged, and the customer’s credit

card then binds this price to the charge token.

If the customer uses an Electronic Wallet, this application (running on

the customer’s device) requests that the customer confirm the purchase price.

The resulting charge token is then bound to this price, and cannot be used to

complete a more expensive purchase. As such, while the Secure CC Protocol

does not outright prevent the Transparent Bridge attack, it renders the attack

mostly harmless.

If the customer does not use an Electronic Wallet and is instead using a

physical credit card, there is no interface on which the customer may confirm

a price, and so the card needs to assume confirmation for any price. As such,

users of physical credit cards do not gain protection from malicious retailers.

Nonetheless, they remain protected from malicious outsiders when using this

protocol.

In Chapter 5 we discuss the use of Electronic Wallets in more detail. An

Electronic Wallet is a collection of (virtual) credit cards, emulated by a smart

phone. This model provides a significant advantage over physical credit cards:

the wallet may virtualize an unlimited number of credit cards precluding a

bulky wallet, virtualized cards do not respond to solicitations while the phone

is locked and unattended, and the wallet provides a rich interface with which

the customer may communicate with a (virtual) credit card.

In Chapter 6, we discuss the properties known as linkability and un-
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linkability. All contactless credit card protocols discussed thus far (including

the protocol in use today) are linkable: retailers are able to identify multiple

purchases made using the same credit card. This ability is valuable to retail-

ers, because it allows them to construct purchasing profiles on their customers.

These profiles can then be used for more effective marketing, or can be sold

to interested third parties.

Purchasing habits can reveal sensitive information about a customer,

and thus some customers may wish to prevent retailers from constructing such

profiles on them. Currently, the only way in which to do so is to eschew the

use of credit cards entirely. We consider how to approach constructing an

unlinkable payment protocol for customers concerned about their privacy.

To construct an unlinkable protocol, we must transmit identifying in-

formation from the credit card to the bank, by way of a carrier (the retailer)

who may not learn the contents of the message. As such, employing cryptogra-

phy is a natural approach. However, symmetric cryptography cannot yield an

unlinkable protocol: the card must identify to the bank which customer’s key

to use to decrypt the message, and so the retailer may simply identify cards

based on this key identifier. By contrast, asymmetric cryptography provides

sufficient primitives to construct an unlinkable protocol, since all cards can

encrypt their messages using the same key (the bank’s public key).

However, as described in Chapter 7, we espouse two additional goals

when constructing an unlinkable contactless credit card protocol: being able to

use any credit card and making use of existing point of sale infrastructure. The
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latter goal is particularly important, as requiring modification to points of sale

would require retailer cooperation, and one cannot expect retailer cooperation

when removing a feature valuable to retailers. Furthermore, using existing

infrastructure alleviates significant barriers to adoption, in that one doesn’t

need to replace all points of sale across all retailers to use the new protocol.

Existing point of sale infrastructure expects a Card Information mes-

sage including a 16-digit credit card number, a 4-digit expiration date, and an

8-digit iCVV. This yields 28 numeric digits, or just over 93 bits, of message-

space in which a new protocol may operate. Asymmetric cryptography re-

quires block sizes of thousands of bits in order to be secure, and thus is not

an appropriate choice for an unlinkable contactless credit card protocol.

The Unlinkable Wallet Protocol is described in Chapter 8. This proto-

col is designed for Electronic Wallet applications rather than physical credit

cards and can be used by privacy conscious customers to virtualize any credit

card. We take advantage of the fact that the Card Information message indi-

cates the destination of the subsequent Charge Request message, constructing

a tunneled protocol. We construct the protocol in three phases, reminiscent

of the stepwise refinement process we used in Chapter 3.

The first iteration of this protocol (described in Section 8.1) begins

with two strong assumptions: that retailers are not malicious, and that the

customer’s Wallet Application has access to the Internet at all times. Before

each transaction, the Wallet Application and the Wallet Server agree on a 93-

bit token. When the (virtual) credit card sends a Card Information message, it
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encodes this 93-bit token into a 28-digit value and splits it into pseudo-values

for a credit card number, expiration date and iCVV. These pseudo-values are

then sent in the Card Information message, along with the Bank Name field

indicating the Wallet Server. The Wallet Server decodes the pseudo values to

reconstruct the 93-bit token, and looks up which of its registered cards is asso-

ciated with this token. Upon finding it, the Wallet Server then issues a visual

Charge Request to the issuing bank (consisting of the information one would

normally type into an online form to make a purchase on the Internet), relay-

ing the bank’s Approval message back to the point of sale. Since the pseudo

card information consists of randomized data, this protocol is unlinkable

The second iteration of this protocol (described in Section 8.2) erodes

the assumption that retailers are non-malicious. In this version, the agreed

upon token consists of only 80 bits, leaving 13 bits left over. We use these

remaining 13 bits to contain a “price hash”, consisting of an HMAC over the

80-bit token concatenated with the price, keyed with a key known only to

the (virtual) card and the Wallet Server. This price hash binds the token to

a particular price, employing a defense much like in the Secure CC Protocol

described in Chapter 4.

The third and final iteration of this protocol (described in Section 8.3)

erodes the assumption that the (virtual) card is connected to the Internet

at all times. Instead of the Wallet Application receiving a token from the

Wallet Server, both the Application and the Server generate this token inde-

pendently. The Wallet Server and the Wallet Application both maintain a
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successful transaction counter. To generate a token for use in a transaction,

both parties calculate the HMAC of this counter, keyed with the same key

used to calculate the price hash.

Since tokens are now generated rather than chosen, some care must

be taken to deal with collisions and synchronization issues. Thus, it is neces-

sary to construct a collision mitigation strategy. While the Unlinkable Wallet

Protocol does suffer from potential collisions, a collision merely renders two

individual virtual credit cards inoperative until one of the respective Wallet

Applications regains access to the Internet. This may be inconvenient, but

does not pose a significant problem, and cannot result in mis-routed charges.

We analyze the expected frequency of such collisions in Chapter 9, working

both mathematically and in simulation. The expected frequency of such colli-

sions is very low, to the point where they are expected not to occur in practice.

No collisions were observed in simulation.

10.2 Future Work

The work described in this dissertation suggests the following avenues

that merit further research:

1. Protocols relying on an iCVV (i.e. the Insecure CC Protocol currently

in use, the Externally Secure CC Protocol, and the Secure CC Protocol)

may suffer de-synchronization. This happens when Card Information

messages are generated and sent by the card, but resulting Charge Re-
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quest messages not reach the bank (as a result of persistent network fail-

ures at the point of sale or as a result of repeated skimming attempts).

When the card’s internal iCVV has progressed past the number of fail-

ures anticipated by the bank, contactless functionality of the card be-

comes inoperative. The construction of a re-synchronization protocol for

iCVV states would alleviate this issue.

2. The Unlinkable Wallet Protocol involves fast lookup on a table of reg-

istered credit card records by the Wallet Server, via the corresponding

single-use token. This table contains every credit card registered with

the Wallet Server, and may therefore contain millions of rows. Our de-

scription of the protocol suggests pre-computing the next expected token

for each card, and using this value as an index over the table. This value

is replaced on each transaction, and as a consequence results in frequent

index rebuilding, which may result in a performance bottleneck at scale.

The construction of a better data-structure for use on the Wallet Server

to represent registered credit cards, allowing fast record lookup given a

frequently changing lookup key, would provide a significant performance

gain and allow the system to scale more effectively.

3. While unlinkable transactions are a significant gain to customer privacy,

they present drawbacks in specific scenarios. For example, unlinkable

transactions hamper any system in which customers identify themselves

via a previously used credit card. This is commonly seen in retail returns
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and ticket collection kiosks, where the customer presents the credit card

used to make the purchase. The Unlinkable Wallet Protocol renders this

form of identification impossible by design. The construction of a pro-

tocol in which the Wallet Application can allow the customer to choose,

on a per-purchase basis, whether the transaction should be linkable or

unlinkable provides the flexibility needed to work around this issue.

The family of protocols presented in this dissertation represents a strong

step above the status quo. We consider protection from malicious outsiders to

be an urgent priority. Protecting customers from malicious retailers is less ur-

gent, but is nonetheless important given the severity of attacks which malicious

retailers may perpetrate. Whether to adopt a protocol providing linkability

or unlinkability should be a customer choice: while we do not presume to

dictate the best move for the industry in this regard, we place the decision

of a customer’s privacy in the customer’s hands rather than in those of the

retailers.
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