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Resistive Random Access Memory (RRAM) is an emerging technology of non-

volatile memory (NVM). Although the observation of metal oxide that can

undergo an abrupt insulator-metal transition into a conductive state has been

known for over 40 years, researchers started investigating those materials for

memory applications in late 1990s. It has been considered as the next gen-

eration memory technology to replace current flash memory because RRAM

has demonstrated feasible switching characteristics and potential to build high

density arrays and also RRAM is also compatible with contemporary CMOS

processes, which means RRAM can be integrated into current CMOS chips.

While the structure of RRAM is a simple metal-insulator-metal (MIM) device,

there are numerous materials that exhibit resistive switching. The switching

behavior is not only dependent on the switching layer materials but also depen-

dent on the choice of metal electrodes and their interfacial properties. Many
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metal oxides such as hafnium oxide (HfO2), titanium oxide (TiO2), aluminum

oxide (Al2O3), nickel oxide (NiO), tantalum oxide (TaO2) and etc. have been

studied in details; however, some materials are unexplored such as cerium ox-

ide. In addition to nonvolatile storage applications, RRAM is considered as

one of essential elements for advancing neuromorphic computing because of its

analog switching and retention characteristics. This thesis investigated CeOx-

based RRAMs, from its fundamental device characteristics to neuromorphic

applications.
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Chapter 1

Introduction

1.1 Memory Technology

In the ”Big Data” era, massive amount of data is stored in data centers

and computed at the server end, which is also referred to as cloud computing.

In future, the majority of data mining and machine learning problems will be

solved in the ”cloud” instead of local machines because data set is too large to

be handled efficiently on a local machine. The performance of cloud computing

will strongly depend on the performance of the memory architecture and the

memory technologies. Figure 1.1 shows the spectrum of the current memory

technologies and emerging memory technologies: spin-transfer torque mag-

netic random access memory (STT-MRAM), resistive random access memory

(RRAM) and phase change random access memory (PCRAM). The left end of

the spectrum represents fast, small capacity and volatile memory technologies,

on the other hand, the right end of the spectrum represents slow, large capac-

ity and non-volatile technologies. Current L1/L2/L3 cache, dynamic random

access memory (DRAM), and solid state drive (SSD) are based on comple-

mentary metal-oxide-semiconductor (CMOS) technology. These conventional

memory technologies might not be able to meet the requirement with device

scaling. Thus, these emerging memory technologies have been investigated
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Figure 1.1: The current memory technology spectrum and emerging memory
technologies. Note that register, cache and DRAM are considered as volatile
memory, whereas SSD and HDD are considered as NVM.

wildly for volatile and non-volatile memory (NVM) applications.

STT-MRAM, PCRAM and RRAM are most popular candidates among

all potential technologies and share some common properties such as: two-

terminal device structure, non-volatile memory, device switches between a

high resistance state (HRS) and a low resistance states (LRS). Two differ-

ent resistance states can be used to store ”0” and ”1” for digital memory

device. Nevertheless, the physics behind resistance state change is quite dif-

ferent: STT-MRAM utilizes the parallel configuration and anti-parallel con-

figuration of two ferromagnetic layers separated by a tunneling insulator layer

to generate LRS and HRS. PCRAM uses chalcogenide compound for switch-

ing between the crystalline phase and the amorphous phase to provide LRS

and HRS. RRAM switches between LRS and HRS by modulating conductive

filament length or interracial reaction on electrode to exchange oxygen de-

2



fects. These three technologies have different I-V characteristics because of

their switching mechanisms. Table 1.1 compares the device performance of

conventional CMOS based memory technologies and emerging memory tech-

nologies. In Figure 1.1 the arrow of STT-MRAM has overlap with register and

L1/L2/L3 cache, and the reason is well explained in Table 1.1. STT-MRAM

has smaller area, lower switching energy, similar endurance and comparable

read/write time compared to SRAM. Next, RRAM and PCRAM have sim-

ilar overlap with SSD, HDD and DRAM in Figure 1.1, and it can be seen

that both RRAM and PCRAM are better in terms of area, switching energy,

read/write time and endurance. These make RRAM and PCRAM very at-

tractive to replace NAND Flash for storage. Recently Intel Inc. and Micron

Technology Inc. announced transistor-less NVM product, which is called 3D

XPointTM. The product could use PCRAM or RRAM technology based on

patents filed by both companies[4–6] and the array architecture revealed. In-

tel Inc. claimed that the 3D XPoint NVM can be part of main memory like

DRAM[7]. This indicates that RRAM and PCRAM have potentials to re-

place DRAM. Although in Table 1.1 DRAM has faster read/write time and

lower switching energy, RRAM and PCRAM do not require refresh to retain

data; this can significantly improve the efficiency of the computing system.

Furthermore, this will blur the borderline between volatile and non-volatile

memory. These emerging NVM technologies can be revolutionary for memory

subsystem design.
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Table 1.1: Performance metrics of current and emerging memory technologies
SRAM DRAM NAND Flash STT-MRAM PCRAM RRAM

Area (F2) 140 6-12 1-4 20 4-16 <4
Switching energy (pJ) 0.0005 0.005 10-100 2-25 2-25 2.6
Read Time (ns) 0.1-0.3 10 25000 <2 10-50 <10
Write time (ns) 0.1-0.3 10 220000 <10 50-500 25
Retention N/A <1s yrs yrs yrs yrs
Endurance >1016 >1016 104−6 >1015 109 108

1.2 Resistive Random Access Memory

As mention in the previous section, RRAM has been considered as one

of the promising candidates for the next generation of NVM because of the fast

write and read rates, long data retention time, and feasible scalability[8–10].

The resistive switching phenomenon was observed by Hickmott[11] in 1960s.

The structure of RRAM is a simple metal-insulator-metal (MIM) device, and

there are numerous materials that exhibit resistive switching. Figure 1.2 (a)

provides the schematic of a common metal oxide RRAM cell.[1] The basic op-

eration of RRAM is as follows: For the pristine samples in its initial resistance

state, a larger voltage is needed to trigger the resistive switching behaviors

for the subsequent cycles. This is called the electroforming or forming pro-

cess. Forming is the process which forms certain phase or configuration so

that the switching layer becomes conductive. After forming process RRAM is

at high resistance state (HRS). The switching event from HRS to low resis-

tance stae (LRS) is called the set process, which usually requires lower voltage.

Conversely, the switching event from LRS to HRS is called the reset process.

The switching modes of metal−oxide RRAM can be broadly classified into

two switching modes: unipolar and bipolar, which depend on the choice of
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materials stack for the RRAM cell. Unipolar switching means the switching

polarity of set and reset processes is the same, and set or reset happens at cer-

tain voltage amplitude. If the unipolar switching can symmetrically occur at

both positive and negative polarity, then it is also called nonpolar switching.

Bipolar switching means the switching polarity of set and reset depends on

the polarity of the applied voltage. So set can only occur at one polarity and

reset can only occur at the other polarity. For either switching modes, to avoid

a permanent dielectric breakdown in the set process, the common practice is

to apply current compliance if voltage sweep is selected (voltage compliance

if current sweep is selected). This usually can be done by the semiconductor

parameter analyzer, or transistor or rectifying diode. To read the data from

the cell, similar to a flash memory, a small read voltage is applied to determine

the memory state (HRS or LRS), without disturbing the memory state. Figure

1.2 (b)(c) demonstrates the concept of unipolar and bipolar switching. Note

that even the same switching layer can demonstrate both unipolar and bipolar

with different combinations of metal electrodes or different stoichiometric ratio

of switching layer.

Many reports have studied the current transport mechanisms in LRS

and HRS. Most reports show a linear or ohmic relationship in the LRS. How-

ever, the conduction characteristics in HRS are quite different: Poole−Frenkel

emission, [12, 13] Schottky emission [14, 15], the space charge limited current

(SCLC) characteristic[16, 17] were observed in various metaloxide RRAMs.

Figure 1.3 summarizes possible transport mechanisms in RRAM.
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Figure 1.2: (a) Schematic of MIM structure for metaloxide RRAM. (b) (c)
Schematic of IV characteristics, showing two modes of operation: (b) unipolar
and (c) bipolar

1.3 Current state of Research

High dielectric constant binary transition metal oxide RRAMs have

attracted a lot of interest because of operating voltage compared with sili-

con dioxide RRAMs and Pr0.7Ca0.3MnO3 (PCMO). Besides, the fabrication is

compatible with current CMOS process[18–20]. There are some materials also

demonstrate decent resistive switching characteristics, for example, cerium ox-

ide.

RRAM is a memory technology that can be integrated with conven-

tional CMOS in a simple way, using a material set compatible with the con-

ventional CMOS fabrication environment and process temperatures that al-

low its integration at back-end-of-line (BEOL). Because of its low-temperature

process, RRAM is often envisioned to be stacked in 3-D in a crossbar archi-

tecture with an effective memory cell area of 4F2=n, where n is the number

of 3-D-stacked memory layers[21]. At the system level, it is envisioned that

6



a revolution in memory hierarchy and system architecture will be realized by

this low-cost, BEOL-compatible, nonvolatile memory with tens of nanosecond

bit-alterable read/write speed, over 106 endurance cycles, and potentially low

power/energy consumption.

To achieve implementing RRAM, many efforts have been made on

memory cell design for optimal memory array design, 3D crossbar architec-

ture. A current limiter, which can optimally constrain the forming/set current,

is necessary for the filamentary switching device to prevent the degradation

of HRS and even the failure of the memory device. A serial transistor with

RRAM cell is a good candidate of current limiter than an external electrical

measurement instrument because of faster response and very large resistance

at saturation region. Special consideration must be taken for design of mem-

ory cell of one-transistor-one-RRAM (1T1R) structure to avoid having a large

parasitic capacitance between the transistor and the RRAM. The parasitic

capacitance causes overshoot current during the forming/set process which

in turn increases the reset current. Specifically, during the forming/set pro-

cess, the RRAM resistance changes instantly while the voltage drop across

the RRAM cannot drop instantly due to the presence of parasitic capacitance.

Therefore, during the overshoot period that the voltage across the RRAM

gradually decreases, excessive oxygen vacancies form and the conductive fila-

ments (CFs) tend to grow laterally and increase in diameter or multiple CFs

can be generated. Another popular candidate as current limiter is a bidirec-

tional diode with non-linear I-V characteristics for a bipolar switching device
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or a p-n diode for unipolar/nonpolar switching device. The advantage of this

approach is that this has no area overhead compared to 1T1R scheme and it

is easy to fabricate for 3D memory arrays. Such bidirectional diode should

have high current density when it turns on and matching operating voltage

with RRAM cell. It should not break down while forming process takes place

(or RRAM cell is forming-free). There are still no conclusive results on such a

bidirectional diode although many promising devices have been proposed, such

as mixed ionic electronic conduction (MIEC)[22],VO2 utilizing metal-insulator

transition[23], Ovonic threshold switch (OTS) [24] and Schottky diode[25].

What makes RRAM such an exciting technology is not only NVM

applications, but also great potential for realizing neuromorphic computing

paradigm. RRAM device behaves similarly to what memristor[26] should be

like: RRAM retains its resistance state during switching. Some RRAM devices

share similar properties with biological synapses, which is analog switching in

conductance. This raises a lot of interest in RRAM for building neuromorphic

computing system. Traditional Von-Neumann architecture has bottleneck in

parallel computing due to the bandwidth limit between central processing unit

(CPU) and memory. On the other hand, the brain-like architecture which em-

ulates human brain functions overcome the bandwidth limit. Neuromorphic

architecture provides several benefits in machine learning problems. One re-

cent progress in machine learning is the development of deep learning. Deep

learning utilizes the architecture of human brain neural networks, which com-

prises pre-neurons, synapses and post-neurons. Pre-neurons and post-neurons
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propagate or generate electrical signals to synapses and synapses are the key

elements for learning. They received signals and update their weight accord-

ingly. RRAM with analog switching is the ideal device to perform weight

updating because of the similarity to biological synapse. Figure 1.4 shows a

RRAM crossbar array for neuromorphic computing. Top and bottom electrode

connect to CMOS neuron circuits; RRAM, which is called memristor in (a)

is sandwiched by bottom electrode and top electrode, represents an electrical

synapse.

1.4 Chapter Overview

This thesis investigates the fundamental electrical and physical char-

acterization of cerium oxide based RRAM devices, bilayer RRAM devices,

selector devices, short-term relaxation issue, and lastly, neuromorphic appli-

cations. This chapter introduced background and current key issues related

to NVM and RRAM technology. Chapter 2 studies the basic CeOx RRAM

device, starting from device fabrication, materials characterization to electri-

cal characterization. Performance metrics are discussed in Chapter 2 as well.

Chapter 3 addresses the issue of non-analog switching in reset operation for

simple CeOx RRAM. The novel bilayer HfOx/CeOx is proposed in Chapter 3,

and the bilayer device provides several benefits compared to single layer CeOx

RRAM. Chapter 4 proposes metal-semiconductor-metal (MSM) diode as selec-

tor device to eliminate leakage current in RRAM array. Chapter 5 discusses the

origin of short-term relaxation issue in RRAM and combined RRAM/selector
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structure. Chapter 5 demonstrates a potential solution to short-term relax-

ation. Chapter 6 demonstrates the fabrication of RRAM arrays for nerual

network based pattern classifiers. Various configurations of neural network

are proposed and demonstrated. A conclusion is given in Chapter 7.
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Figure 1.3: Schematic of the possible electron conduction paths through a
MIM stack. (1) Schottky emission: thermally activated electrons injected over
the barrier into the conduction band. (2) FowlerNordheim (FN) tunneling:
electrons tunnel from the cathode into the conduction band; usually occurs
at high field. (3) Direct tunneling: electron tunnel from cathode to anode di-
rectly; usually occur when the oxide is thin enough. If the oxide has substantial
number of traps (e.g., oxygen vacancies), trap-assisted tunneling contributes
to additional conduction, including the following steps: (4) tunneling from
cathode to traps; (5) emission from trap to conduction band, which is essen-
tially the PooleFrenkel emission; (6) FN-like tunneling from trap to conduction
band; (7) trap to trap hopping or tunneling, maybe in the form of Mott hop-
ping when the electrons are in the localized states or maybe in the form of
metallic conduction when the electrons are in the extended states depending
on the overlap of the electron wave function; and (8) tunneling from traps to
anode. Adapted from [1].
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Figure 1.4: (a) shows the analogy of biological a neuron/synapse connection
and electrical representation of neuron/synapse. (b) shows a typical RRAM
array representing an artificial neural network.[2]
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Chapter 2

Characterization of Cerium Oxide RRAM

2.1 Introduction

Similar to other high dielectric constant binary transition metal oxides,

such as hafnium oxide and titanium oxide, cerium oxide has high dielectric

constant and several valance states, making cerium oxide a potential material

for RRAM application. Nevertheless, fundamental characterization of CeOx

based RRAMs, i.e., the scalability, reliability, and mechanism, has been only

partially reported[27–29]. In this chapter, we demonstrate key characteristics

of CeOx RRAMs. One of the prevailing explanations of resistive switching

is the formation of filament path in the switching layer. The typical RRAM

device can be described as a sandwich MIM structure: an insulator thin film

stacking on the first metal layer followed by second metal layer above the in-

sulator film. The first metal layer is called bottom electrode (BE), and the

second metal layer is called top electrode (TE). When the bias is applied on

the insulator, oxygen vacancies build up filament paths, which change the re-

sistance of MIM. This process is reversible. For bipolar RRAMs, applying the

opposite polarity can reverse the process; the oxygen vacancies move back to

bulk region of insulator. Certain types of MIM structure show unipolar switch-

ing. Most binary transition metal oxide based RRAMs show bipolar switching.
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Although some groups have already reported resistive switching of CeOx based

RRAMs, there are still many unanswered questions and interesting behaviors

of the system needed to be addressed, since cerium oxide is a relatively new

material in the field. In this work, we report scalability, thickness dependence,

endurance test, and mechanism discussion.

2.2 Fabrication

Devices were fabricated on a n-type Si (111) substrate with 300 nm

plasma-enhanced chemical vapor deposition (PECVD) grown silicon dioxide

on the top. Gold was used as the bottom electrode and deposited above the

silicon dioxide layer by electron beam evaporation. Cerium oxide thin film

was then deposited at room temperature (RT) by physical vapor deposition

(PVD) in in situ oxygen plasma and molecular beam epitaxy (MBE) at 500

degree in Celsius. Then, devices were patterned by photolithography using

AZ-5209 photoresist, followed by developing in AZ 726 MIF developer. The

top electrode (500 nm - 300 µm in diameter) was deposited by electron beam

evaporation above the cerium oxide layer, and put in an acetone bath at room

temperature for a day to lift off photoresist, followed by washing the device

with acetone and isopropyl alcohol. The final step is to wet etch CeOx by

using the top electrode as hard mask; the etching solution is the mixture of

hydrochloric acid, potassium hexacyanoferrate, K4[Fe(CN)6]·3H2O, and wa-

ter. The mechanism of etching is based on cyanide ions forming coordination

compounds with cerium ions. The detailed chemical reactions and solution
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preparation were illustrated in the article by A.Kossoyet al..[30] Figure 2.1

shows color change of etchant and sample before and after reaction.

2.3 Electrical and Physical Characterization

Electric characterization of devices were taken by Agilent Semiconduc-

tor Parameter Analyzer B1500 and Lakeshore CRX-VF Probe Station. De-

vices were measured by applying voltage to the top electrode while the bottom

electrode is grounded. For most RRAMs, there are two basic operation modes

called set and reset. When applying bias upon certain point, the current

through RRAM suddenly rises; this process is called set. After set process,

RRAM is at LRS. If RRAM is bipolar when the bias is applied with the op-

posite polarity relative to the bias during the set process, the current will

suddenly drop after a certain point. This process is called reset. After reset,

RRAM is at HRS. The HRS appeared after reset process can be changed again

to LRS by set. The resistance change between LRS and HRS is repeatable

and nonvolatile. For the first voltage application on RRAM, usually it requires

higher voltage to switch from HRS to LRS, this process is called forming and it

is usually considered as a soft breakdown of the MIM structure. Dimension of

each device is the same and MBE grown CeOx RRAM shows lower set and reset

voltage and larger operation window than PVD CeOx counterpart. The opera-

tion window is defined as the ratio of resistance between HRS and LRS. These

phenomena can be explained by difference in oxygen point defect mobility in

CeOx film.[31] The decrease of the mobility of oxygen vacancy may result in
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Figure 2.1: Upper right panel shows that the etchant before etching reaction
is white while lower right panel shows the etchant becomes Persian blue after
etching. Left panels show color change of bulk CeOx film after etching.
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higher voltages needed to drive oxygen vacancies in the dielectric layer. MBE

CeOx film has better interfacial properties at CeOx/Al interface, and thus less

pinning of oxygen vacancies. Superior operation window observed in MBE

CeOx can be explained by difference in the effective defect levels. In the work

by Goux et al.[32], CeOx film with high temperature process (750◦C) tends to

have higher activation energy (Ea = 320 meV), which means point defects are

more trapped. A similar mechanism may result in higher resistance values for

the HRS in MBE film. Compared with other high- k dielectric based RRAM

devices, such as TiO2, AlO3, and HfOx, both MBE and PVD CeOx based

RRAMs have competitive value of the operation window (104 for PVD CeOx

and 106 for MBE CeOx). MBE CeOx RRAM shows low set and reset voltage

(1.1 V for set, 0.9 V for reset, and 2.8 V for forming), making CeOx RRAM

a suitable candidate for low power consumption applications. Figure 2.2(a)

represents a typical dc-sweep of CeOx RRAM device.The physical dimension

of each device is the same and MBE grown CeOx RRAM shows lower set

and reset voltage and larger operation window than PVD CeOx counterpart.

Figure 2.2(b) shows cross-sectional transmission electron microscope (TEM)

image of MBE grown CeOx RRAM at pristine state and LRS state. Insets

of Figure 2.2(b) show crystalline structure at each state. Lattice constant of

crystalline structure near Al/CeOx interface calculated from analytic software

indicates that CeO2 is dominant phase at pristine state and more Ce2O3 at

LRS. In addition, CeOx based RRAM devices can switch between HRS and

LRS at 50ns pulse width, which indicates that the switching speed can go up
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to 20 MHz.

Figure 2.2: (a) The typical dc sweep I-V characteristics of Al/CeOx/Au struc-
ture. Arrows and numbers indicate the sweeping direction and order. The
size of each device is 100 µm dot in diameter and sandwiched structure of 30
nm Au, 13nm CeOx, and 30nm Au. (b) Cross-sectional TEM image with Fast
Fourier Transform (FFT) graphs in inset show thickness of each layer. Lattice
constant is 5.4Å at pristine state and 3.93Å at LRS.

There are two prevailing hypothesis for the resistive switching mecha-

nism in metal oxide based RRAMs. The first one is filamentary conduction

in metal oxide. In this model, oxygen vacancies generated by applying a bias

form filamentary conduction paths in dielectric. The formation and rupture of

filament enable resistive switching in metal oxide based RRAM. The second

one is called interface model. The change of oxidation state in memory ma-

terials causes resistive switching. In NiO system by Kinoshita et al.[33], the

resistance switching happened on the anodic side of the conductive filaments

in NiO, which implied that the electrochemical reaction involved in resistive

switching. The change in the oxidation state is analogous to anodic oxidation.
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To understand the conduction mechanism and reason performance dis-

crepancy between MBE CeOx and PVD CeOx, the chemical composition and

chemical bond condition of dielectric layer have been investigated by X-ray

photoelectron spectroscopy (XPS). All XPS spectra were acquired at room

temperature by Vacuum Generator Scientific SCALAB Mark II system and

monochromatic Al KA (hν = 1486.7 eV) X-ray radiation source. The back-

ground pressure was kept below 7.5×10−8 Torr.[34] And the pass energy for

high resolution spectra of Ce 3d and O 1s was 50 eV and 20 eV. Figure 2.3(a)

shows Ce 3d XPS spectra of both MBE and PVD grown CeOx. The typical

Ce 3d XPS core-level spectra have three-lobed envelopes (around 882−890 eV,

895−910 eV, and 916 eV) due to different final states of a mixed valency.[35, 36]

Note that u′′′ (v′′′), u′′ (v′′), and u (v) represent Ce4+ final states: Ce 3d94f0

O 2p6, Ce 3d94f1 O 2p5, and Ce 3d94f4 O 2p4, respectively, for Ce3d3/2 and

Ce3d5/2. Besides Ce4+ has three final states, Ce3+ final states also appear:

3d94f1 O 2p5 and 3d94f2 O 2p4, expressed as u′ (v′) and uo vo. Final states

configuration of Ce 3d XPS spectra have been studied previously[37, 38], and

the focus on Ce 3d XPS spectra in this work is to distinguish and analyze the

difference between MBE and PVD grown CeOx thus discuss the mechanism of

resistive switching in Al/CeOx/Au system. Arrows in Figure 2.3(a) indicate

different final states of Ce 3d XPS spectra and uo and vo have stronger influ-

ence on Ce 3d core-level XPS spectra than uo and vo do. The deconvoluted

components of Ce 3d XPS spectra structure have been discussed by Adnot

and Bernis and Hasegawa et al.[35] In Figure 2.3(a), MBE Ce 3d XPS spectra
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have higher amplitude of peaks than PVD Ce 3d spectra at 904 eV and 885

eV, which corresponds to µ′ and ν′ components. In addition, O 1s spectra also

show similar trend between MBE and PVD samples. Figure 2.3(b) shows O

1s spectra of both MBE and PVD grown CeOx thin film. O 1s peak of PVD

CeOx is less steep at lower binding energy side than O 1s peak of MBE CeOx

at lower binding energy side. The binding energy of O 1s in CeOx and Ce2O3

has been reported as 529.2 eV and 530.3eV, respectively. The difference of the

binding energy implies that O 1s peak of MBE grown CeOx has more Ce2O3

than PVD grown CeOx. From XPS spectra results of Ce 3d and O 1s, it can

be concluded that MBE sample includes more Ce3+ than PVD sample. A

report by Yoshitake et al. about cerium oxide based RRAM claims that the

reduced cerium would inhibit the resistive switching in cerium oxide; however,

in Al/CeOx/Au system, the influence of Ce3+ is not obvious. MBE sample

shows even lower operation voltage and better operation window than PVD

sample. Although Ce3+ is presented in dielectric layer, the majority oxidation

state of cerium is still Ce4+. So the presence of Ce3+ would not deteriorate

the resistive switching behavior of CeOx.

One of the requirements for potential RRAM device is switching reli-

ability. Two basic tests to demonstrate device reliability are the cycling test

and the data retention test. 13 nm PVD grown CeOx film 10 µm-size cell is

tested for cycling test at room temperature. The endurance test was carried

out by automated program of 1µs pulses with set voltage at 2.5V and reset

voltage at -2.1V by Agilent Semiconductor Parameter Analyzer B1500. Re-
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Figure 2.3: (a) Ce 3d core-level XPS spectra of MBE and PVD samples. The
three-lobed envelopes structure of Ce 3d XPS spectra is due to multiple final
states from Ce4+ and Ce3+. Arrows and symbols are referred to different final
states and oxidation state of Ce. Note that symbols with blue color such as
u′′′ , u′′, u, v′′′ , v′′, and v are final states from Ce4+; symbols with green
color such as uo and vo are finals states from Ce3+. Other two final states
like lo and to are not shown in this figure due to relatively low amplitude
and little contribution to the three-lobed envelop structure. (b) O 1s XPS
spectra of MBE and PVD samples. The binding energy value of peak of MBE
sample is higher than PVD sample, which means MBE sample has more Ce3+

component than PVD sample.
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sistance is determined when voltage is at 0.3V during dc read. Figure 2.4(a)

shows the result that the device could endure at least 105 cycles, with fair

accuracy of resistance for both HRS and LRS, and so far no report on CeOx

RRAM has tested reliability over 104 cycles. The device shows a feasible op-

erating window and also good repeatability of switching. After 105 cycles,

the resistance value at HRS suddenly drops at certain point, and it requires

either a strong set or reset to recondition the filament; however, this process

increases the electrical stress in the dielectric and gradually damages the de-

vice. Figure 2.4(b) shows retention capability for both resistance states of

the device. The device was sampled at every 50s with read voltage at 0.3 V

at both room temperature and 150 ◦C. Both HRS and LRS are stable till

105 s. These two tests indicate that the device can be potentially applied

for future RAM device. To study Al/CeOx/Au system for NVM devices in

more details, the device is scaled horizontally and vertically. Figures 2.5(a)

and 5(b) show that PVD CeOx RRAMs have area-independent set and reset

voltages as device scaled down from 250 µ to 500 nm. Figures 2.4(c) and

4(d) also show that MBE CeOx RRAMs have the similar area- independent

set and reset voltages. Although further scaling of CeOx RRAM needs to be

done for building arrays, Figures 2.5(a)2.5(d) show that Al/CeOx/Au system

has decent scalability in size. The set and reset voltage do not scale down

while the size of device shrinks and resistance values at the HRS and LRS can

retain at the same order while the device scales down. In addition, horizon-

tal scaling results also indicate that the interfacial oxidation and reduction in
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our Al/CeOx/Au system are excluded from possible mechanism since the set

and reset voltage are independent to the area of device. For vertical scaling,

Figures 2.5(a) and 2.5(b) show that the forming voltage increases when thick-

ness of CeOx increases in both MBE and PVD films; this thickness dependent

behavior has been observed in other filamentary path type RRAM devices.

Chen[39] proposed a first-order model based on probability analysis showing

that thickness scaling would change the forming voltage since the forming is a

random process in filamentary path type RRAMs. On the other hand, set and

reset voltage are independent to thickness of CeOx film because set and reset

process are local formation and rupture of the filament in switching materials,

it requires less energy to eliminate or generate oxygen vacancies compared to

forming process.[18] Figures 2.5(c) and 2.5(d) show that Al/CeOx/Au system

with both MBE and PVD films has thickness independent behaviors and this

makes the system promising for building extremely scaled devices.

2.4 Conclusion

Resistive switching random access memory devices based on Al/CeOx/Au

sandwiched structure are fabricated by molecular beam epitaxy and electron

beam evaporation and demonstrate low set and reset voltage, large operation

window (MBE grown CeOx RRAM is larger than 106), stable scalability, and

good reliability. Cerium oxide is as favorable as other high-k dielectric ma-

terials and should receive more attention for further research and advanced

applications such as neuromorphic computing. Besides, based on experiments
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Figure 2.4: (a) HRS and LRS resistance along with switch cycles. The struc-
ture of tested device is 30 nm Al/13 nm PVD grown CeOx/30 nm Au at room
temperature. (b) HRS and LRS resistance under a continuous 300-mV read
voltage. The structure of tested device is 30 nm Al/13nm PVD grown CeOx/
30 nm Au at room temperature and 150◦C. The voltage sweep followed the
numerical order in Fig. 2.2(a) for each cycle. Step 1: voltage ramps up to 2.5
V. Step 2: voltage ramps down to 0V, after this half cycle, voltage ramps up
to 300mV to read and records the resistance. Step 3: voltage ramps up to -2.2
V. Step 4: voltage ramps down to 0V. Then, voltage ramps up to read and
records the resistance.

performed in the chapter, conductive filament path formation and rupture

seem more reasonable than interfacial oxidation/reduction.
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Figure 2.5: (a) and (b) Diameter of device versus set voltage and reset voltage
of MBE grown CeOx RRAMs. (c) and (d) Diameter versus set voltage and
reset voltage of PVD grown CeOx RRAMs. For each area value, 20 devices
have been tested. Inset graphs in (a) and (b) represent the LRS and HRS
resistance dependence of MBE devices and inset graphs in (c) and (d) represent
the LRS and HRS resistance dependence of PVD devices.
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Figure 2.6: (a) and (b) Switching layer thickness dependence of forming voltage
with MBE and PVD grown thin film. (c) and (d) Set voltage is independent
of CeOx film thickness for both MBE and PVD CeOx film. For each thickness
value, 15 PVD and MBE grown CeOx RRAM devices have been tested.
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Chapter 3

Bilayer Cerium Oxide RRAM

3.1 Introduction

Nanoscale metal oxide RRAM have potential in the development of

brain-inspired computing systems that are scalable and efficient. In the field

of neuromorphic computing, RRAM is also referred as memristor, the cir-

cuit element predicted by Chua [26] and found by Hewlett Packard Labs.

In Chua’s work [3], biological synapses can be treated as memristor because

those synapses have dc current-voltage characteristics matching the definition

of generic memristors. That is, dc current-voltage characteristics with hys-

teresis and it passes the origin. In neuromorphic computing systems, memris-

tors represent the native electronic analogues of the biological synapses. This

demonstration is an important step towards the physical construction of high

density and high connectivity neural networks. A memristor is a two-terminal

memory resistor electronic device, in which a metal oxide switching layer is

sandwiched between two metal electrodes [40–43]. In general, memristors offer

non-linear switching characteristics, and materials and process compatibility

with advanced silicon manufacturing. These attributes have spurred the ex-

ploration of memristors as synaptic devices for realizing spike-based hardware

learning systems that are capable of processing unstructured, temporal data
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[2, 44–47]. However, for memristor-based technologies to be viable, the device

should exhibit several key characteristics. It should have a compact nanoscale

footprint, operate at a voltage close to 1V that is compatible with comple-

mentary metal oxide semiconductor (CMOS) technology, have reproducible

electrical characteristics, and possess high switching speed to minimize the

energy consumption [42]. Furthermore, the hardware integration of synaptic

connections in advanced neural networks requires memristors with multiple re-

sistive states [48, 49]. These are challenging requirements and are difficult to

implement without significant innovations. The phenomenological principle of

memristor device operation is based on the change in the physical properties

of a conductive filament (associated with the presence of oxygen vacancies)

by applying an electric field across the metal oxide switching layer [50, 51].

The resulting motion of the oxygen vacancies alters the device resistance be-

tween low (Set) and high (Reset) states, depending on the direction and the

amplitude of the electric field. So far, a variety of structures from a large set

of materials (various combinations of metal oxide switching layers and metal

electrodes) have been studied in the literature [9]. Several key findings can be

drawn from those studies regarding the performance, energy and scalability of

this type of devices. The most important finding reveals the trade-off between

the switching energy and the data retention time, that is often referred to as

voltage-time dilemma[52]. This trade-off is associated with the energy barrier

of the device structure.

For example, devices made of metal oxides with small energy bandgap
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(Eg), such as titanium oxide (TiOx, Eg∼3.4eV), generally exhibit low operat-

ing voltage and compromised data retention, while those with large bandgap,

such as hafnium oxide (HfOx, Eg∼5.4eV) demonstrate the opposite [53]. How-

ever, the fabrication of devices with bilayer switching stacks has shown to be

effective in mitigating this trade-off. In particular, the improvement in data

retention was obtained by the incorporation of an ultra-thin wide bandgap

metal oxide capping layer (for example aluminum oxide) [54]. On the other

hand, the addition of a reactive capping metal (for example titanium, hafnium,

etc.) as an oxygen scavenging layer provided a pathway for reducing the op-

erating voltage of the devices [39, 55]. Despite significant advances, a sub-1V

memristive device that simultaneously affords built-in analog behavior, en-

ergy efficiency on par with a biological synapse, forming-free operation and

low device-to-device variations is still elusive.

The cerium oxide RRAM device shows decent operating voltage, fast

speed, reliable switching and high operating window; however, it doesn’t

demonstrate prominent analog behaviors when it resets. In order to improve

analog switching and realize multiple states, an ultra-thin, non-stoichiometric

HfOx is added into device stack. In this chapter cerium oxide based bi-

layer memristors that is forming-free, low-voltage (|0.8V|), energy-efficient (full

On/Off switching at 2pJ, intermediate states switching at fJ), and reliable

are shown. Furthermore, pulse measurements reveal the analog nature of the

memristive device; that is it can be directly programmed to intermediate re-

sistance states. Leveraging this finding, the device stack demonstrate spike-
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timing-dependent plasticity (STDP), a spike-based Hebbian learning rule. In

those experiments, the memristor exhibits a marked change in the normalized

synaptic strength (>30 times) when the pre- and post-synaptic neural spikes

overlap.

3.2 Hafnium Oxide and Cerium Oxide Stacked Resis-
tive Random Access Memory

With memristive-based synaptic device by engineering the material

properties of an HfOx capping layer in a bilayer structure with a cerium ox-

ide (CeOx) switching layer, the combination of sub-stoichiometric structural

properties of the HfOx capping layer and its enhanced thermal resistivity at

nanoscale dimensions leads to the significant improvement in switching be-

havior of the devices in terms of the operating voltages, device performance

uniformity, reproducibility, and reliability . Furthermore, this structure yields

forming-free devices with an analog resistance state that is inherent to the

device itself. This key attribute of our HfOx/CeOx devices enables the imple-

mentation of Hebbian learning [56], validating the plasticity of the synaptic

connection. Memristor devices (150µm diameter) were fabricated on silicon

substrates capped with 300nm silicon dioxide. The device structure consists

of gold bottom electrode, HfOx/CeOx switching layer, and aluminum top elec-

trode. The total thickness of the bilayer switching layer in all experiments was

kept at 20nm, while varying the thickness of individual the HfOx and CeOx

layers. The metal electrodes were deposited using electron-beam evaporation.
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Figure 3.1(a) conceptually illustrates the effect of the engineered HfOx cap-

ping layer on the concentration of oxygen vacancies in the CeOx switching

layer. X-ray photoelectron spectroscopy (XPS) was performed to guide the

development of the bilayer structure. Figure 3.1(b) shows the Hf 4f spectrum

of the engineered HfOx capping layer, revealing the sub-stoichiometric nature

of the film. The data indicates the presence of Hf 4f7/2 and Hf 4f5/2 peaks

at 16.32eV and 18.03eV, respectively, which is consistent with the previous

reports in the literature [57, 58]. Metallic Hf was also found in the engineered

HfOx layer, evident from the peak at 15.02 eV. The chemical composition of

the HfOx was quantified using the CasaXPS software, in which x was found

to be about 1.75. Figure 3.1(c) shows the Ce 3d XPS spectra of the CeOx

switching layer with and without the engineered HfOx capping layer. In these

experiments, the CeOx and HfOx layers were 20nm and 0.8nm, respectively.

The thickness of HfOx was chosen so that it allowed X-ray beam to penetrate

into underneath CeOx layer and received decent signal strength. As a result,

the adequately small thickness of the HfOx capping layer allowed the XPS an-

alyzer to receive signal from the CeOx layer. As can be seen in Figure 3.1(c),

the bilayer structure exhibits discernable u′ and v′ peaks at 904 eV and 885

eV [35, 36, 59] that are absent in the spectrum of the CeOx layer with no

HfOx capping layer. The u′ and v′ peaks signals the reduction of the Ce4+

to Ce3+ states, which can be translated to the formation of excess oxygen

vacancies at regions near the HfOx/CeOx interface. The marked increase of

the oxygen vacancy concentration in the bilayer structure permits the forma-
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tion of the conductive filament using a smaller electric field, thereby enabling

the low-voltage operation of the bilayer structure. Figure 3.1(d) shows the

representative dc current-voltage characteristics of two CeOx-based devices

with and without the engineered HfOx capping layer, demonstrating signifi-

cant reduction of the Set voltage to below 0.8V. In a memristive device, the

transition from low to high resistance states occurs as the polarity of the elec-

tric field across the device is reversed. As the reverse electric field increases,

the oxygen anions in the conductive filament begin to disperse through drift

and diffusion processes [47]. Considering the similar thickness of the switching

layer in Figure 3.1(d), the improved Reset voltage of the bilayer device may

be explained by locally enhanced diffusion of oxygen vacancies. We infer that

the enhanced thermal resistivity of HfOx at nanoscale dimensions amplifies

Joule heating in the CeOx switching layer, thereby accelerating the disper-

sion of oxygen anions at a lower electric field. To elucidate this concept, we

performed numerical heat transfer analysis using COMSOL simulator for two

devices in Figure 3.1(e) at the bias of -0.6V. The simulation results indicate

significant enhancement of Joule heating in the bilayer structure. For these

simulations, we used the measured electrical parameters of the layers, while

the thermal parameters were obtained from the literature[60–63]. The fabri-

cation procees is as follows: CeOx layer was reactively evaporated in oxygen

plasma ambient at 0.2mTorr and an average deposition rate of 0.06nm/s. The

HfOx layer was formed by plasma-assisted atomic layer deposition (PE-ALD)

using water and tetrakis (dimethylamido) hafnium (Hf(NMe2)4) precursors.
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The film optimization involved varying a wide range of deposition conditions.

The optimal HfOx capping layer was deposited at 200◦C. The pulse width of

the hafnium precursor was 0.25s and the hold time between each pulse was

5s. The optimal oxygen plasma power was found to be 300W. The devices

were isolated using a wet etching process by first patterning the HfOx film

in buffered oxide etch followed by removing the CeOx layer in a mixture of

hydrochloric acid, potassium hexacyanoferrate, and de-ionized water. Devices

were measured under vacuum in a Lakeshore CRX-VF Probe Station using

Agilent semiconductor parameter analyzer B1500 equipped with B1525 Semi-

conductor Pulse Generator Unit (SPGU). Care was taken to minimize the

impact of parasitic elements, for example, the capacitance.

Low device variability is critical for the implementation of large neural

networks with high density of memristive synaptic connections. Therefore,

we statistically examined the effect of the HfOx thickness on the important

device parameters: Set, Reset, and forming voltages. In these experiments,

the HfOx thickness was varied, while keeping the total thickness of the bilayer

stack fixed at 20nm. The thickness ratio defined here is the HfOx thickness

to the total thickness in bilayer. The data in Figure 3.2 indicates that the in-

sertion of an HfOx capping layer with the optimal thickness ratio of about 0.1

significantly improves the uniformity of the key device parameters. Interest-

ingly, this optimal thickness ratio also coincides with the minimum operating

voltages of the bilayer structure. We surmise that the HfOx film begins to

act as an independent switching layer beyond this optimal thickness ratio, re-
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Figure 3.1: Improving memristor device characteristics using an engineered
sub-stoichiometric HfOx capping layer. (a) Schematic structure of two mem-
ristors with and without the engineered HfOx, conceptually illustrating the
increase of the oxygen vacancy density in the CeOx switching layer. This at-
tribute of the bilayer memristor results in the forming-free operation and the
reduction of the Set voltage. XPS spectra of the (b) engineered HfOx, and (c)
CeOx films with and without the HfOx capping layer. The XPS studies indi-
cate the increase of the oxygen vacancy concentration in the CeOx film capped
with the oxygen-deficient HfOx layer. (d) Representative current-voltage char-
acteristics of two memristors, indicating the sub-1V operation of the bilayer
memristive device. (e) Heat transfer simulations illustrate enhanced Joule
heating in the bilayer structure, causing the marked reduction of the Reset
voltage (scale bars are 2nm). The observed increase in Joule heating arises
from the high thermal resistivity of HfOx at nanoscale. The thickness of HfOx

is 2nm and the total thickness is 20nm.
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sulting in significant increase in both the device operating voltages and the

device variability. Moreover, the Reset voltage begins to increase as the HfOx

film becomes thicker. This observation is in agreement with our heat transfer

simulation results in Figure 3.3. In Figure 3.2(c), the Reset voltage at 0.4 was

too large compared to other ratios so it wasn’t included in Figure 3.2(c).

A fresh memristive device generally requires an initial electroforming

step; that is the formation of a conductive filament using a relatively large

electric potential (known as the forming voltage) before the device can op-

erate at normal Set and Reset voltages. The disparity between the Set and

the forming voltages necessitates that the devices in a crossbar array are iso-

lated and accessed individually for electroforming [64, 65] in order to avoid the

breakdown of the neighboring formed devices in the array. However, the phys-

ical constraints of these strategies limit the implementation of high-density

crossbar arrays. Our bilayer HfOx/CeOx device is free from such a limitation,

exhibiting forming-free behavior; i.e. the Set voltage is adequate to form the

conductive filament in a fresh memristive device (See Figure 3.2(a) and (b)).

This characteristic is attributed to the efficacy of the HfOx capping layer in

creating sufficiently high concentration of excess oxygen vacancies in the CeOx

switching layer. Figure 3.3 shows the heat transfer simulations by COMSOL

for devices with varying HfOx/CeOx thickness ratio, with the total thickness

of the HfOx/CeOx stack was 20 nm. The peak temperature value was found to

be the highest when the thickness ratio was about 0.1. The simulation results

suggest that capping the CeOx switching layer with a sufficiently thin layer
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Figure 3.2: Effect of HfOx thickness ratio on the memristor device behavior.
The data indicates that the optimal device characteristics ((a) forming volt-
age, (b) Set voltage, and (c) Reset voltage) occurs at the thickness ratio of
about 0.1. Moreover, the device-to-device variation is reduced at this optimal
thickness ratio. The equivalency of the forming and Set voltages at the op-
timal thickness ratio confirms the forming-free operation of the device. Low
device variability is critical for implementation of large neural networks with
high density of memristive synaptic connections. Therefore, we statistically
examined the effect of the HfOx thickness on the important device parameters:
Set, Reset, and forming voltages. In these experiments, the HfOx thickness
was varied, while keeping the total thickness of the bilayer stack fixed at 20nm.
The thickness ratio defined in this work is HfOx thickness to total thickness in
bilayer. The data in Figure 3.2 indicates that the insertion of an HfOx capping
layer with the optimal thickness ratio of about 0.1 significantly improves the
uniformity of the key device parameters. Interestingly, this optimal thickness
ratio also coincides with the minimum operating voltages of the bilayer struc-
ture. We surmise that the HfOx film begins to act as an independent switching
layer beyond this optimal thickness ratio, resulting in significant increase in
both the device operating voltages and the device variability. Moreover, the
Reset voltage begins to increase as the HfOx film becomes thicker. This ob-
servation is in agreement with our heat transfer simulation results in Figure
3.3. In (c), the Reset voltage at 0.4 was too large compared to other ratios so
it wasnt included.

of HfOx enhances the Joule heating, owing to the pronounced thermal resis-

tivity of HfOx at nanoscale. However, as the thickness of the HfOx increases,
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the Joule heating begins to diminish, which is consistent with the thickness

dependence of the HfOx thermal conductivity. The enhanced Joule heating

effect in the optimal structure is therefore expected to enhance the diffusion

of the oxygen vacancies during the Reset process, thereby reducing the Reset

voltage.

Figure 3.3: Effect of HfOx film thickness on Joule heating. Numerical heat
transfer simulation results for several bilayer HfOx/CeOx structures with vary-
ing HfOx to total thickness ratio at the bias voltage of -0.6V. The total thick-
ness of the HfOx/CeOx stack was kept at 20nm. The Joule heating begins
to diminish as the thickness of the HfOx was increased, which arises from the
thickness dependence of the HfOx thermal conductivity.

The bilayer structure exhibits excellent switching reliability at the thick-

ness ratio of 0.1, which conceivably stems from the reduced operating voltage

of the device. In Figure 3.4(a), the optimal memristor bilayer structure sur-

vives more than 2×105 cycles of programing (endurance test). The device

with closed-loop programming algorithm can survive over 5×107 cycles. The
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adaptive programming works as below: the system set up targeted Set current

and Reset current, in our case, we set 10µA as Set threshold and 1µA as Reset

threshold so the opearing window we target is 10. The adaptive programming

algorithm tries to switch device starting from 0V then read once to check if the

read current is above or below the threshold current, if yes, then the device is

considered to have switched, if not, the algorithm increases the write voltage

by steps of 0.1V until the device switches. The accelerated retention test in

Figure 3.4(b) indicates projected data retention of 10 years for the bilayer de-

vices. The cumulative distribution function (CDF) in Figure 3.4(c) illustrates

the representative switching characteristics between different programing cy-

cles for two CeOx devices with and without the engineered HfOx capping layer

and also bilayer device with adaptive programming, also referred as close-loop

testing. The CDF plot indicates the on-off ratio of bilayer device is larger than

single CeOx device. The Off-state characteristic of the device appears to have

been degraded, perhaps due to the non-uniformity of the Joule heating effect.

The bilayer device exhibits average low- and high-resistance states (LRS and

HRS) of about 600Ω and 2.8MΩ that are larger than those of the device with

no HfOx capping layer by factors of 4 and 10, respectively. The resulting

increase in the LRS and HRS values is beneficial for reducing the switching

power consumption of the device during the Set and Reset operations.

The series connection of one transistor and one memristor (1T-1R) is a

popular approach for implementing multi-state memory function. The use of

such configurations, however, limits the memristor integration density because
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Figure 3.4: Device reliability studies. (a) The endurance test results for the
CeOx and the optimal HfOx/CeOx devices. In addition to the improved en-
durance properties, the bilayer device exhibits larger HRS and LRS values
compared to the device with no HfOx. The increase of the LRS and HRS val-
ues is favorable for reducing the switching power consumption of the bilayer
device. Besides, when bilayer device were tested in close loop with adaptive
programming and relaxed on-off ratio, it survives over 5×107 cycles without
any degradation. (b) The accelerated retention test for the CeOx and the
HfOx/CeOx devices measured at 150C at constant stress voltage of +0.2V.
The results indicate projected data retention of 10 years for both devices. (c)
Representative CDF plot of the cycle-to-cycle programing characteristics for
two devices with and without the engineered HfOx layer.

of the physical constraints imposed by the transistor dimensions as well as the

need for a complicated driver circuit in order to independently control each

transistor. To circumvent these practical issues, the multi-state characteristic

must be inherent to the two-terminal memristive device itself. Figures 3.5(a)

and (b) illustrate the pulse measurement results for a bilayer device (with the

optimal structure), indicating the gradual change in the conductance of the

filament between the fully On and Off states. The observed resistive states

are inherent to the device because no current compliance limit was used dur-

ing these measurements. Interestingly, the bilayer device also exhibits weak

voltage-time dependence for pulses shorter than a few microseconds, which
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could be attributed to the dominant effect of the HfOx capping layer on the

device switching behavior. Using the corresponding transient voltage and cur-

rent waveforms in Figure 3.5(c) and (d), the full On/Off energy consumption

during Set and Reset steps was calculated to be 2.6 and 2.1 pJ, respectively.

Considering the analog characteristic of the resistive states together with the

large HRS to LRS ratio in excess of 103, the energy consumption for switching

between the intermediate resistance states will be much smaller (about tens

of fJ, assuming memory states with an increment of 100Ω, please see Figure

3.6).

Inspired by the brain, spike-based hardware learning systems have po-

tential to be efficient and compact for processing unstructured data [66]. In

such systems, the learning mechanism follows the spike-based form of Heb-

bian learning, i.e. STDP, in which the change in the strength of the synapse

depends on the time difference (t) between the pre- and post-synaptic neural

spikes. Figure 3.7(a) illustrates the synaptic waveforms. The waveforms with

exponential decays were emulated with a series of square pulses. For these ex-

periments, we have chosen an average spike rate of about 1MHz, which is 105

times faster than that of the brain. This corresponds to a time step of 1µs for

updating the internal state of neurons and calculating the synaptic currents,

assuming the neuron spiking probability of 0.01 as in the brain. Note that

the acceleration of the learning rate is beneficial for handling large amount

of data, while allowing the reduction of the energy consumption of the mem-

ristors. Figure 3.7(b) shows the plot of the normalized conductance change
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Figure 3.5: Analog memory characteristic of the bilayer memristor. The nor-
malized conductance of (a) bilayer memristor is plotted as a function of pulse
widths and amplitudes when the device switches from a, fully Off state to fully
On state, and (b), fully On state to fully Off state. The dashed lines are guide
to the eye and the hatched regions denote unmeasured points. The data in (a),
and (b) reveal the gradual change in the conductance of the device between
the fully Off and On states. Full On/Off switching energy consumptions of 2.6
and 2.1pJ were calculated from the transient (c), Set and (d), Reset voltage
and current waveforms, respectively.

of the optimal bilayer device as a function of the time difference between the

pre- and post-synaptic neural spikes. The data is fitted with exponential de-

cay functions, confirming an STDP behavior similar to that of a biological

synapse. Moreover, the data indicates a remarkable change in the normalized

conductance of the device (>30 times) when the pre- and post-synaptic spikes

overlap.
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Figure 3.6: Switching cycles of intermediate states. Cycle test is conducted in
both positive polarity and negative polarity to examine if intermediate states
are separable and stable. The pulse voltage increased after every 100 cycles in
(a) and (b). The resistance variation in each resistance state is very small1,
which means it is very stable. The separation of each resistance state is not
linear with applied voltage. But it has potential to generate more resistance
states if more voltage interval are added between each applied voltage properly.
This also shows that the switching energy between each intermediate state is
at femto joule scale

3.3 Conclusion

In the chapter summary, a new bilayer HfOx/CeOx memristors is demon-

strated by tailoring the structural properties of the nanoscale HfOx capping

layer. The memristive device was readily implemented using CMOS-compatible

materials and processes. The device is forming-free and thus amenable to

high-density integration. More importantly, this device also exhibits analog

resistance states, sub-1V operating voltages, high conductance change at fast

nanosecond pulses, and energy efficient operation. Furthermore, the STDP

learning rule was successfully implemented, following the Hebbs rule of learn-
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Figure 3.7: Implementation of STDP learning using the HfOx/CeOx memris-
tive device. (a) Schematic representation of the learning experiment. Two
waveforms with identical shapes were applied to the top and bottom elec-
trodes. In the learning experiments, the time intervals between the pre- and
post-synaptic spikes were varied in order to probe the synaptic depression
(δt<0) and potentiation (δt>0). The positive (negative) time difference indi-
cates that the pre-synaptic spike occurs before (after) the post-synaptic one.
(b) The plot clearly indicates the marked change in the synaptic strength as
a function of different pre/post spike intervals.

ing; that is, neurons fire together wire together. The salient features of this

new memristor meet the main requirements for a native synaptic device and

can be used for hardware implementation of STDP-based learning systems.
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Figure 3.8: Generation of waveforms for Spike-Timing-Dependent Plasticity
(STDP) measurements. Multiple square waves with various pulse heights were
tailored for emulating exponential decay pulses used in STDP studies. The
time interval of the pulses on the top and bottom electrodes (that are pre-
and post-neural spikes) was varied relative to each other while monitoring
the conductance of the device. The pulses were created using the Keysight
B1500 pulse generator unit. Depending on the time difference between the
pulses illustrated in Figure 3.8(a) and (b), the device demonstrates long-term
depression (δt<0) and potentiation (δt >0)

.
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Chapter 4

Selector Device for RRAM

4.1 Introduction

One of the serious issues of RRAM technology is leakage current. With

continuously scaled nanodevices and electrodes, challenges associated with the

sneak path leakage and the interconnect series resistance in such a purely pas-

sive crossbar architecture become major concerns as they diminish the read

margin and limit the maximum array size. To mitigate these problems, sev-

eral solutions have been proposed to introduce nonlinear IV characteristics to

the memory cells.[67, 68] For unipolar resistive devices, an extra diode can be

connected in series to inhibit reverse conduction through unselected cells. For

the more preferable bipolar resistive devices, bipolar nonlinear selector devices

are needed. The simplest way to address the issue is to add a transistor along

with memory cell. Adjusting the transistor’s gate, source and drain bias can

provide leakage current control and current compliance; however, this is not

favorable due to the larger area (6F2), making RRAM unpreferable to one-

transistor-one-diode for DRAM applications (6F2) and NAND Flash (4F2 to

6F2) for NVM applications. Researchers have been are active to find simple

bipolar selector devices which can provide 4F2 area. To date, selectors based

on different mechanisms, such as Schottky barriers, tunnel barriers, metalin-
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sulator transition, Zener diodes, mixed ionic electronic conduction (MIEC),

and punchthrough diodes, have been investigated. Recently, the feasibility of

complementary resistive switch and electromechanical diodes has also been ex-

plored. Despite the reported progress on selector performance, a series of bot-

tlenecks on large current density, high ON/OFF ratios, fast switching speed,

and process reliability remain to be resolved.[69–74]

4.2 S-type NDR Niobium Oxide

Devices exhibiting negative differential resistance(NDR) can be clas-

sified into two categories: current-controlled [75] (CC-NDR), or S-type, and

voltage-controlled (VC-NDR), or N-type. Circuit elements exhibiting N-type

NDR are available in the form of Esaki diodes, Gunn diodes and resonant tun-

nel diodes (RTD). On the other hand, although S-type NDR has been observed

in structures exhibiting interband tunneling[76, 77], threshold switching[78],

electronic instabilities[79], insulator-metal transitions in metal oxides, and as

a precursor to memristive on-switching, S-type discrete or integrated circuit

components are not readily available. The advent of easily fabricated S-type

NDR devices would be of great commercial interest both as a circuit ele-

ment in existing technologies and as an enabler of emerging technologies. A

prime example of the latter is resistance-based memory technologies that uti-

lize memristive, phase-change, conductive bridge, or spin-torque memory el-

ements in crossbar array architectures. These technologies are under intense

development due to their potential for providing fast, low-power, nonvolatile
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random-access memory (NVM). Such memory would revolutionize computer

architectures by facilitating the consolidation of memory and storage, ulti-

mately replacing hard drives, Flash, and conventional DRAM in both mem-

ory and storage roles. One of the prime impediments to utilization of these

emerging NV-RAM technologies is that they store information in the form of

resistances that depend only weakly on voltage.

Consequently, when used in crossbar arrays, these memory elements

must be paired with a highly non-linear two-terminal circuit element that

passes current when the full voltage is applied across an addressed memory

cell but sharply limits the current leaking through partially biased memory

cellsin the array. Without such a selector, reading and writing individual

linear memory elements in a large array is not possible. The extremely non-

linear current-voltage characteristics of NDR devices are ideal for this role.

Note that conventional diode technologies do not meet all the requirements of

a selector,which include small size, low temperature CMOS compatible back-

end-of-line (BEOL) manufacturability, high current density operation, and, in

most cases, bipolar operation. We describe here an easily manufactured, bipo-

lar, room temperature S-type NDR circuit element that fulfills the needs of a

crossbar memory selector. These devices rely on the fact that any electrical

conduction mechanism whose conductivity depends strongly enough on tem-

perature can, in principle, exhibit NDR due to Joule self-heating at sufficiently

large biases and currents. In practice, NDR is only observed for a limited set of

conduction mechanisms where the onset of NDR occurs at temperatures and
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fields low enough for the devices materials to survive. This chapter is focused

on an instantiation of a Joule-heating based S-type NDR selector based on

niobium oxide (NbOx).

Figure 4.1 shows a cross-sectional transmission electron microscope

(TEM) image of one of these selectors. To fabricate these devices, planarized

substrates were prepared that included TiN nanovias through a dielectric bi-

layer of SiO2 and Si3N4. These nanovias range from 32 nm to 2 µm across

and are connected at the bottom to a common tungsten electrode. Blanket

films of NbOx, TiN, Pt, and Cr were deposited on top of these substrates after

removing the native oxide from the exposed surface of the TiN nanovias. The

NbOx was deposited by reactively sputtering Nb in different partial pressures

of oxygen to create samples with values of x near either 2 or 2.5 as deter-

mined from XPS measurements. TEM-based electron diffraction shows that

the NbOx films were amorphous as deposited. The Cr was included as a hard

etch mask for photolithographically patterning top Pt contacts above each

nanovia, which enabled individual testing of the resulting isolated selectors.

After an initial electrical forming process, stable NDR is observed in the

devices with starting Nb to O ratios near 2:5 (a-Nb2O5), but not in those that

start with a 1:2 ratio (a-NbO2). The initially oxygen rich samples are formed

by applying slow (1s) logarithmic current ramps with successively greater am-

plitude using a Keysight B1500 Parameter Analyzer. Depending upon the

a-Nb2O5 layer thickness, the forming proceeds in one of two ways. For thin-

ner devices, the conductivity increases and a region of NDR appears in their
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Figure 4.1: Bright field cross-sectional TEM image of a representative NbOx

selector. Active area of NbOx is assumed to be at a uniform temperature
TN that is higher than the surrounding ambient temperature, Tamb, due to
Joule heating. This heated region is thermally connected to Tamb through
the effective thermal resistance, Rth, and thermal capacitance, Cth, of the
surrounding device structures.

voltage - current characteristics (V-I) at higher currents (type I forming). The

conductivity of thicker devices also increases initially but then abruptly de-

creases, again resulting in NDR at higher currents (type II forming, see Figure

4.2 for representative progression of V-I curves for both forming types). In

both cases, the process is stopped when increasing the amplitude of the cur-

rent sweep no longer changes the V-I curves. The sweep currents required to

reach a stable state and the resulting low bias conductance both scale with

the area of the bottom contact for both types of forming, suggesting that

the entire region above the contact is formed. TEM-based electron energy-

loss spectroscopy composition maps and electron diffraction measurements on
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cross-sections of the formed selectors reveal that the a-Nb2O5 is reduced by

reaction with the TiN electrodes during both type I and type II forming pro-

cesses. For type II devices, this reduction is followed by crystallization into

the tetragonal NbO2 structure, which impedes further reduction. Films with

a starting composition near a-NbO2 on the other hand are rapidly reduced,

before crystallization can occur, to a composition that is too close to metallic

to exhibit NDR. Empirically, selectors with the thickest tested a-Nb2O5 layers

(42 nm) usually underwent type II forming, although a metastable type I state

could sometimes be achieved through careful control of the maximum applied

current. Stabilizing a partially reduced type I state became easier for thinner

films, with the thinnest tested layers (8 nm) always exhibiting only type I

forming.

The NDR in these devices actually results from runaway Joule self-

heating governed by a bulk electrical conduction mechanism in the NbOx that

is well-described by a modified three-dimensional Poole-Frenkel (3DmodPF)

expression. This has important implications for improving the performance of

selectors based on this principle. It provides, for example, guidance on how

to lower their leakage current and tune their threshold voltage. It also pro-

vides insights into the dynamical thermal and electrical interactions between

these selectors and their adjacent memory elements, which strongly impact

the writing and reading processes. The standard expression for Poole-Frenkel

conduction assumes that the carriers hop in just one dimension. Hartke[80]

developed a more realistic three-dimensional treatment which Young[81] mod-
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Figure 4.2: I-V curves of two different electroforming processes. Numbers in-
dicate order of sweeps; arrows indicate time evolution. (a) Type I forming.
This results in increasing currents as the initially amorphous Nb2O5 is reduced
through interaction with the TiN electrodes. (b) Type II forming. This in-
cludes crystallization to a more resistive tetragonal NbO2 state after the initial
reduction. The slope of curve 5 in (b) is positive at high currents due to a
∼100 Ω resistance in series with the selector.

ified to include the effects of traps and donors in a fashion first applied to the

one dimensional expression by earlier groups.[82, 83] The following is for the

current density in NbOx:

j(F, T ) = σF = σ0(T )(
kB
β

)2

{
1 + (

β
√
F

akBT
− 1)e

β
√
F

akBT

}
+
σ0(T )F

2
(4.1)

where

σ0(T ) = eµNc(
Nd
Nt

)2eEd+Et
2kBT

F = electric field, kB = Boltzmanns constant, µ = electron mobility,

Nd and Nt are the volume densities of donors and traps, respectively. Ed and

Et are the corresponding energies. Nc is the effective density of states in the
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conduction band, and εi is the high frequency dielectric constant. The quan-

tity a is unity for standard Poole-Frenkel conduction and two in the modified

process. Note that in the latter case the factor β/a mimics the value of β that

scales the energy barrier lowering term in the standard expression for Schottky

emission. This fact is often used to explain what is referred to as anomalous

Poole-Frenkel conduction: bulk conduction that has the exponential depen-

dence on electric field and temperature expected for interface-limited Schot-

tky emission. The electrical conductance described by Eq. (4.1) grows rapidly

with increasing temperature. Consequently, as the current driven through the

NbOx increases the resulting Joule-heating induced temperature rise leads to

increased conductivity and, therefore, greater power dissipation. This pro-

duces further increases in temperature. At a critical current, this positive

feedback results in NDR. A simple but accurate compact model for this be-

havior is obtained by assuming the temperature, TN, of the active region of

the NbOx is uniform and described by

Cth
dTN
dt

=
Tamb − TN

Rth

+ IV (4.2)

Here, Rth is the effective thermal impedance between the current-carrying por-

tion of the NbOx and the surrounding ambient environment. Similarly, Cth

is the effective thermal capacitance of the active region. This is illustrated

by an equivalent thermal circuit in Figure 4.1. In this model, the NbOx can

be viewed as a locally active memristor[26], with the temperature TN as the

dynamical state variable. Eqs.(4.1) and (4/2) serve, respectively, as the in-

stantaneous conduction and dynamical state equations in this formalism. We
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have used Eqs. (4.1) and (4.2) to simultaneously fit sets of quasistatic V-

I curves taken over a range of ambient temperatures for type I and type II

formed devices with a variety of NbOx layer thicknesses and bottom electrode

diameters. Representative results for a 52 nm diameter device with an 8 nm

thick NbOx film that underwent type I forming are displayed in Figure 4.3(a)

for temperatures between 275 and 450 K. These data were taken using an

MMR Technologies Variable Temperature Microprobe System. Our compact

model accurately matches the data. The fitting parameters were determined

by first plotting the natural logarithm of the measured low bias conductivity as

a function of 1/T as indicated in Figure 4.3(b). The slope and intercept of this

Arrhenius plot yield the energy E ≡ (Ed+Et)/2 and prefactor σ ≡ eµNC(Nd
Nt

)2

because in the low field limit Eq. (4.1) implies

σlow(T ) =
a2 + 1

2a2
σo(T ) = σp(

a2 + 1

2a2
)e
−E
kBT (4.3)

In all cases, we assumed a=2. The full V-I curves were then matched

at all the measured ambient temperatures by choosing a single temperature-

independent value for each of two parameters: Rth =1.27 × 106 K/W and

εi = 22. Similar temperature-dependent sets of V-I curves for devices with

diameters between 32 and 165 and NbOx thicknesses from 8 to 42 nm were

modeled with comparably close agreement between theory and data. The

values determined for the activation energy E ranged from 0.15 to 0.24 eV. In

all cases, a value of εi = 22 worked well, implying an index of refraction at

frequencies near the visible of ni = 4.7. This is in reasonable agreement with

ellipsometric measurements on NbOx films with compositions close to NbO2.
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Figure 4.3: (a) Measured (solid) and calculated (dashed) V-I curves for
TiN/NbOx/TiN selector with 52 nm diameter bottom electrode and 8 nm
thick NbOx layer for Tamb = 275−450 K. (b) Arrhenius plot of the conduc-
tance measured at biases low enough for it to be ohmic.

4.3 Back-to-back Schottky Diode

The nonlinear (NL) device must be Back-End-Of-Line (BEOL) com-

patible because most RRAM processes are currently integrated in BEOL. In

this section, we present highly NL devices, which are fast, robust, have low

operating voltage, with high current density, and offer good scalability. They

use a simple fabrication processes employing symmetric back-to-back Schottky

diodes by metal-semiconductor-metal(MSM) structure. We also discuss im-

pacts of material choices and device geometry on performance of these MSM

diodes by numerical simulation, Schottky diode current characteristics and ex-

perimental results. We stared with simulations on Sentaurus to evaluate the

feasibility of MSM diode as selector device for future RRAM crossbar arrays.

We are interested in the correlation between performance metrics of selector

device and physical properties of MSM diode. In our simulation setup, we

chose metal work function to match experimental values of Schottky barrier

height values reported in literature which means we take Fermi-level pinning
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into account. We assume the dominant current transport mechanism in this

ultra-thin MSM diode to be thermionic emission, recombination and tunnel-

ing. The doping concentration is assumed to be n-type doped (1013cm−3). DC

characteristics in Figure 4.4(a) with different thickness for Schottky barrier

height of 0.6 eV, which is close to experimental values of titanium of silicon

barrier. We see a thickness dependence on current density and NL ratio. The

definition of NL ratio in this paper follows half-read scheme which is widely

used in many memory systems. The NL ratio is defined as the current density

ratio of 1 MA/cm2 and the current at half of voltage where current density

reaches 1 MA/cm2. As thickness increases, the NL ratio decreases. This is

probably because the voltage region where current grows exponentially is de-

layed by higher resistance in the diode, and higher series resistance in thicker

film also affects effective voltage drop in diode at higher current region. This

makes I-V characteristics of thicker diodes deviate from ideal exponential curve

at lower current compared to thinner diodes, thus NL ratio in thicker film is

lower. The relation between Schottky barrier height and current density in

Figure 4.4(b) agrees well with simple Schottky diode model. In our simula-

tion, we found out the high doping concentration adversely affects NL ratio.

This is intuitive since CMOS technology has been using highly doped source

and drain to achieve ohmic contact, which contradict our purpose of reaching

a high NL ratio. We will discuss more details about current characteristics of

MSM diode later, and the effect of Schottky barrier height in current charac-

teristics of MSM diode is similar to simple Schottky diode. Higher Schottky
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barrier height results in lower current density near zero bias. One important

design consideration of selector device is to have both high NL ratio and high

current density at low voltage. Hence, based on the above simulation results,

the desired MSM diode should have thin thickness of semiconductor layer (less

than 14nm), low doping concentration and appropriate Schottky barrier height

to give decent current density while keeping good NL ratio.

After optimizing the design by numerical simulation, devices were fab-

ricated on a n-type Si (111) substrate with 300 nm plasma-enhanced chemical

vapor deposition (PECVD) grown silicon dioxide on the top as an isolation

layer. 80nm bottom electrode (BE) was formed by electron beam evaporation

at 273K. 10nm to 20nm semiconductor layer was deposited on the top of BE

by PECVD at 250◦C without ex-situ annealing. The growth condition and

parameters were adopted from Moravej et al.[84], to aim to grow nanoscale

hydrogenated amorphous silicon thin film. Then 80nm top electrode (TE)

were formed by electron beam evaporation of titanium at 273K. Devices were

patterned as crossbar with variant device perimeters from 300nm to 10µm

by electron beam lithography. Electric measurements were taken by Agilent

Semiconductor Parameter Analyzer B1500 and Lakeshore CRX-VF Probe Sta-

tion. Pulse measurement was carried out by Agilent B1525 Pulse Generator

Unit. Devices were measured by applying voltage to the TE while the BE is

grounded. The equivalent circuit diagram in Figure 4.5(a) illustrates series

resistance in MSM diode. The design of the crossbar is targeted to minimize

impacts on parasitic components when doing pulse measurements. It can be
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seen in Figure 4.5(b) metal lines are tapered to reduce parasitic capacitance.

The overlap area of BE and TE defines the area of MSM diode.

Figure 4.6(a) compares experimental DC I-V characteristics of Ti−aSi−Ti

for different thickness of silicon layer. The effect of series resistance in 20nm

amorphous Si MSM diode can be observed in the region highlighted by dashed

circle. Ti−aSi−Ti has higher current density than Ni−aSi−Ni at the same

thickness of amorphous silicon in Figure 4.6(b), which implies amorphous

silicon is unintentionally doped with n-type impurities. For n-type silicon,

nickle tends to pin closer to valence band of silicon while titanium is pinned

at midgap. Thus we observe lower current density in Ni−aSi−Ni. NL ra-

tio in Figure 4.6(c) agrees well with Figure 4.6(c), which also indicates series

resistance plays an important role when designing high current density se-

lector. The inset of Figure 4.6(c) shows linear scale plot of current density.

It is obvious that there is asymmetry of current density between each polar-

ity for titanium and nickel MSM diodes. Amorphous silicon and electrodes

weren’t deposited in the same instrument or same vacuum environment. So

this causes inevitable interface difference between the two Schottky diodes. To

extract Schottky diode parameters from I-V characteristics of MSM diode, we

need to start with simple Schottky diode current characteristics and combine

with some assumptions to derive an insightful current equation for MSM diode

device. Later we will point out when ideality factor larger than 1, MSM diode

also demonstrates asymmetric I-V curve. Overall, experimental results are

in good agreement with simulation prediction except for a lower current den-
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sity, probably because in simulation some materials-related parameters such

as effective mass, recombination coefficients, and bandgap are not an very

accurately known for amorphous silicon.

Figure 4.4: (a) DC I-V characteristics from two-dimensional numerical simu-
lation by Sentaurus from Synopsys Inc.. Two orange dashed lines represent
voltage values calculated for NL ratio. The choice of 1MA/cm2 is based on
matching current density of RRAM devices. (b) I-V characteristics on Schot-
tky barrier height dependence. Note that non-linear step size of simulation
caused I-V curves to show a small hysteresis at low bias during positive polar-
ity sweep, which is an artifact. (c) NL ratio extracted from Figure 4.4(a)(b).

We want to understand current-voltage characteristics of MSM diode

so that we can extract fundamental parameters such as Schottky barrier height

and ideality factor by fitting experimental I-V curves. The band diagram in

Figure 4.5(a) indicates that MSM diode can be considered to be back-to-back

Schottky diodes. The current-voltage equation of a simple Schottky diode is

in the following form:

J = JS exp (
qV

ηkT
) (4.4)

Js is reverse saturation current of Schottky diode:

Js = A ∗ T 2 exp (
qφ0

b

kT
) (4.5)
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Figure 4.5: (a) Band diagrams at equilibrium and forward bias on D1. The
equivalent circuit diagram was shown at forward bias on D1. Series resistance
is labeled as RS.φb1 and φb2 represents Schottky barrier height at D1 and D2.
(b) Cartoon illustration of cross-sectional view of device. The green arrow
indicates the effective area of device.

where A is Richardson constant, T is temperature and k is Boltzmann con-

stant. The voltage drops in two Schottky diodes are V1 and V2 and voltage

across MSM diode is VMSM = V1 + V2. We can also write J1 = −J2 from cur-

rent continuity. Based on these two conditions we can write current-voltage

equation as in Nouchiet al.[85]:

JMSM =
2JS1JS2 sinh( qVMSM

2ηkT
)

JS1 exp ( qVMSM

2ηkT
) + JS2 exp (−qVMSM

2ηkT
)

(4.6)

The equation above can be further simplified if Schottky barrier height of diode

1 and diode 2 are symmetric:

JMSM = JS tanh(
qVMSM

2ηkT
) (4.7)

However, the current obtained from (4.7) reaches saturation at very low bias;

this is contradicting to reported experimental results[86, 87] and our experi-
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mental data. Note that (4.7) doesn’t consider image-force lowering. Image-

force lowering is based on image charges in metal layer induced by charges in

semiconductor layer near metal-semiconductor interface. Image charges estab-

lish an electric field along metal-semiconductor interface and Schottky barrier

height becomes voltage dependent:

φb1(V1) = φ0
b1 + qV1(1−

1

η
) (4.8)

φb2(V2) = φ0
b2 + qV2(1−

1

η
) (4.9)

where φ0
b is Schottky barrier height under zero bias and η is ideality factor.

Assuming voltage drop in MSM diode is mostly on diode 2 since diode 1 is

forward bias in Fig.2(a), we have VMSM ≈ V2. We also assume (4.8) equals to

(4.9) because of symmetric MSM structure, then we can rewrite (1):

J = JS sinh(
qVMSM

2kT
) exp (

qVMSM

2kT
) exp (

−qVMSM

ηkT
) (4.10)

With Eq.(4.10) we can evaluate Schottky barrier height and ideality factor in

MSM diodes and discuss the impacts on performance matrices of selector de-

vice.Fig.3(d) shows fitting by Eq. (4.10) on 10nm Ti−aSi−Ti and Ni−aSi−Ni

MSM diode. The Schottky barrier height between titanium and amorphous

silicon extracted by curve fitting with Eq. (4.10) is ≈ 0.79eV , and the Schottky

barrier height between nickle and amorphous silicon is about 0.86eV .Note that

the bandgap of hydrogenated amorphous silicon is around 1.6-1.8eV .Titanium

is usually pinned at midgap at silicon interface and nickel is usually pinned

closer to valence band of silicon, so the barrier height values extracted from
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Fig3.(d) are what we expect. The ideality factor extracted from Figure 4.6(d)

are 1.18 and 1.36 for titanium and nickel respectively. Eq. (4.10) implies that

non-ideal ideality factor can be attributed to unequal current density in MSM

diode. The magnitude of current density difference between each polarity is

sensitive to ideality factor. As mentioned in the previous section, two Schottky

diodes might have slightly different interfaces with silicon. This might cause

slightly different Schottky barrier height and thus contribute to asymmetric

I-V characteristics. Although there is asymmetric current density for the same

voltage when applying different polarity, the ratio of current density asymme-

try is less than one order, as seen in Figure 4.6(c). The voltage difference to

reach 1MA/cm2 is only 0.1V for different voltage polarity for both Ti−aSi−Ti

and Ni−aSi−Ni MSM diode. This will not impact the operation of selector

device, but the effect of non-ideal MSM diode and interface properties should

be taken into account when applying the selector device in RRAM arrays.

We performed transient analysis to test the speed of Ti−aSi−Ti device.

The test setup is shown in Figure 4.7(a). We did impedance matching for

the source to ensure the actual voltage drop in device under test (DUT) was

correct and we normalized the current scale measured at oscilloscope because

input channel impedance was 50 ohm but the impedance through DUT was

a few thousands ohm. It can be seen that in Figure 4.7(b) MSM diode can

response to 60ns pulse without any notable delay or distortion of signal. The

current overshoot was only 25% higher than the mean current level during

pulses. The result of transient anaylsis is reasonable because the dominant
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current transport in MSM diode is thermionic emission. This makes MSM

diode favorable over pn junction diode which is based on minority carrier

injection.

MSM diode also shows excellent reliability as potential selector device.

Figure 4.8(a) illustrates cycle test scheme of MSM diode. This is very similar

to the test scheme of RRAM device since selector devices need to be integrated

with RRAM cells. After each set or reset pulse, DC read at read voltage or half

read voltage was performed to record the value of resistance. Figure 4.8(b)

shows MSM diodes survived after 108 cycles without any notable degradation.

Besides, MSM diodes demonstrated very good DC stress test, as seen in Figure

4.8(c) at half-read voltage over 103 seconds. These test results validate that

the MSM diode is very robust and a suitable candidate of selector device.

4.4 Conclusion

This chapter introduces two devices with potential for selector device

of RRAM : NbOx based NDR device and highly nonlinear MSM diode. The

Ti-a-Si-Ti MSM diode with Schottky emission provides very high nonlinear

ratio and low turn-on voltage, which can help eliminate sneak path leakage

in RRAM array and MSM diode with over 105 nonlinear ratio is capable for

building gigabyte (GB) crossbar array. The asymmetric I-V characteristics can

be modeled by different Schottky barriers, which indicates that top electrode

interface and bottom electrode interface can cause asymmetry I-V curves.
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Figure 4.6: (a) Semilog plot of I-V characteristics of different thickness
Ti−aSi−Ti diodes. The dashed circle is where series resistance effect becomes
prominent. (b) I-V characteristics of Ti−aSi−Ti and Ni−aSi−Ni with 10 nm
amorphous silicon. (c) Comparison of the NL ratio between Ti−aSi−Ti and
Ni−aSi−Ni at different thickness. The inset of (c) is linear scale I-V character-
istics of (b). (d) I-V curve fitting by using (7). (7) fits well at intermediate bias
where series resistance effect was low and thermionic emission is dominant.
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Figure 4.7: (a) Pulse measurement setup and impedance at each stage.The
pulse generator has an output impedence of 50 Ω, and input channel impedance
of oscilloscope is 50 Ω as well. (b) shows the transient current response of DUT.
Black curve and arrow is input pulse generated by source and blue curve and
arrow is current response of MSM diode. The device is a 300 nm × 300 nm
crossbar.

Figure 4.8: (a) Test scheme of cycle test. (b) Endurance test up to 108 cycles.
(c) DC stress test at 0.9 V for 1000 seconds.
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Chapter 5

Short Term Relaxation of RRAM

5.1 Introduction

Data programming stability is one of key factors for evaluating emerg-

ing non-volatile memory technology. The cycle-to-cycle stability, sometimes

called repeatability, has been studied in the previous chapters. In this chap-

ter, another programming stability issue will be discussed, which is usually

referred as short-term relaxation. This phenomenon relates to the decay of

the resistance state right after applying a programming pulse. The short-term

relaxation occurs at a timescale on the order of µs to a fraction of second.

As such, this phenomenon is different from the retention issues cycle-to-cycle

stability. This problem is particularly important for the implementation of

adaptive programming algorithms and artificial neural networks (ANN) be-

cause in these implementations the output is fed back in short time intervals

(e.g. recursive neural network (RNN)). Fantini[88] et al. has reported the

pioneering statistical study of this problem in HfOx-based RRAMs. In this

chapter, we systematically examine the short-term program instability and

its ensuing reliability issues in our CeOx bilayer RRAM with and without

a selector device. Our selector device is a MSM diode, which provides high

non-linearity (NL) ratio and a current density in excess of (1MA/cm2). The
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RRAM device is made of CeOx filament and a sub-stoichiometric HfOx oxygen

scavenging layer[89]. Figure 5.1 shows cumulative distribution function(CDF)-

like curves of resistance at HRS and LRS evolve as time elapses, and the gap

between HRS and LRS gradually shrinks as time elapses.

Figure 5.1: Green and black curves in Figure 5.1 are initial resistance of HRS
and LRS after programming to RRAM cell. Blue triangles and red dots are
resistance after given time delay. From left to right, the time delay between
initial read and delay read is 100 µs, 1ms ,and 1s, respectively.

5.2 Device Fabrication and Measurement

In our process, the MSM selector diode and the RRAM device are

stacked vertically. The MSM diode was fabricated first followed by the fab-

rication of the RRAM device on top. For short-term relaxation studies, we

focused on the adaptive programming algorithm because it provides better en-

durance compared to the open-loop single pulse programming scheme. Figure

5.2 illustrates the procedure for the adaptive programming algorithm and the

continuous pulse reads. Figure 5.3 shows the testing setup for adaptive pro-

gramming algorithm. Field programmable gate array (FPGA) board provides
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flexibility to design experiments for fast-sampling tests. Digital-to-analog data

converter (DAC) was used to generate test pulses to device under test (DUT).

Transimpedance amplifier (TIA) and analog-to-digital data converter (ADC)

send the response from DUT back to FPGA. Here we used 200 ns pulses for

write and read operation. The read pulses were applied for up to 1s after each

successful SET or RESET. Continuous read pulses provide real-time informa-

tion about the fluctuation and the relaxation of the stored bit in the RRAM

device under test, which is important for understanding the short-term relax-

ation phenomenon.

5.3 Results and Discussion

To examine the effect of the MSM selector on the short-term relax-

ation, we compared the post-programming read current distributions of two

structures, namely a one-RRAM (1R) structure and a one-selector-one-RRAM

(1S1R) structure. All experiments were performed on virgin devices to elimi-

nate the possible effect of device history on the short-term relaxation behavior.

These devices were preconditioned by switching 50 cycles using the adaptive

programming algorithm while skipping the continuous read step. The contin-

uous read steps were disabled during device preconditioning to avoid possible

degradation of the RRAM operating window. The operating window of an

RRAM is defined as the ratio of the resistance at HRS to LRS. After pre-

conditioning, the devices were switched once with the adaptive programming

algorithm, followed by a continuous read step that lasts up to 1s. This test
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Figure 5.2: Schematic illustration of the adaptive programming algorithm.
Read pulses are 200ns at 0.2V. Write pulses start at 0.2V with 0.1V increment.
The interval between each pulse is 10µs. At each attempt to switch the resistive
state of the device, a write pulse is applied to the RRAM device followed by a
read pulse to check whether the value of the read current is higher(lower) than
the target value during the SET(RESET) cycles. If this condition is met, we
consider this attempt as a successful SET (RESET).

procedure enabled us to distinguish the short-term relaxation from the long-

term degradation induced by repetitive read cycles. The test results of a 1R

device is shown in Figure 5.4(a), revealing the presence of two distinct cur-

rent states at the LRS and a continuum of random states at the HRS. Figure

5.4(b) shows the distribution of the read current for a 1S1R structure. Com-

pared to the 1R structure, the 1S1R structure demonstrates larger spread in

the read currents at both the HRS and the LRS. These results indicate higher

degradation of the operating window of the 1S1R structures, which can conse-
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Figure 5.3: Testing setup for fast sampling measurement. LabView software
was used for programming and controlling FPGA and Python was used for
data processing after data collecting by FPGA and LabView.

quently lead to the increase of the raw read error rate. The degradation of the

operating window is particularly important for devices with small operating

current. Increasing the resistance difference between the HRS and the LRS is

a potential solution for mitigating this problem. However, we observed that

increasing the operating window of our bilayer CeOx-based RRAMs degrades

the endurance properties of the device. This issue will be discussed in more

detail later.

The continuous read procedure affords higher time resolution, which is

important for studying the short-term relaxation issue. In Figure 5.5(a)(b),

with continuous read, we are able to observe random telegraph noise (RTN)

in 1R and 1S1R. And it can be seen that RTN in MSM device has current

amplitude dependence. This dependence affects short-term relaxation in 1S1R

device. To clearly illustrate the change in the operating window between 1R

and 1S1R structure, the HRS curves were plotted in the form of 1 − p(x).

Furthermore, the probit unit [90] was used in Figure 5.6 because it linearizes
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Figure 5.4: Distribution of HRS and LRS read currents for (a) 1R and (b)
1S1R structures.

Figure 5.5: RTN noise at different current amplitude of MSM selector. (a)
operating at 12.8µA, (b) operating at 1µA.
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Figure 5.6: CDF plots using probit units for (a) 1S1R, (b) 1R with 100ns
forming pulse, and (c) 1R with 5µs forming pulse. The arrows labeled ”time”
in (a) indicate the temporal progress of the experiment. The horizontal arrows
indicate the gap between tail bits of the HRS and the LRS. Probit of the HRS
curves are plotted in a decreasing fashion versus current, while the LRS curves
are plotted in an increasing fashion versus current. The read pulse voltage in
(a) is 1.7V because of voltage drop at selector device.

a lognormal-like distribution. In The measurement results reveal that the tail

bits of the 1S1R structure in Figure 5.6(a) exhibit a narrower gap than the

1R device in Figure 5.6(b). This is possibly due to strong random telegraph

noise (RTN) from MSM device in HRS. Note that the MSM selector devices

typically exhibit RTN behavior, as shown in the Figure 5.5. The RTN in an

MSM device primarily originates from the charge trapping at the interfaces

between the metal electrodes and the semiconductor [91]. The peak-to-peak

variation in Figure 5.5(a) is about 0.6µA and the peak-to-peak variation is

about 0.8µA in Figure 5.5(b). The lower current amplitude with larger noise

fluctuation indicates worse signal to noise ratio. Thus, in a 1S1R structure,

the noise of the MSM diode can give rise to the fluctuation of the voltage drop

across the RRAM device in HRS, thereby increasing to the overall inherent
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noise of the RRAM in a 1S1R structure compared to that of the 1R structure

in HRS. Since the implementation of the 1S1R structures are pursued for most

practical applications, it is important to consider their short-term relaxation

behavior when designing algorithms for ANN applications.

Next, we examined the effect of the forming pulse duration on the short-

term relaxation behavior of the 1R structures, shown in Figure 5.6(b) and (c).

The RRAM device in Figure 5.6(b) was formed using a 100ns long pulse, while

the device in Figure 5.6(c) was formed using a 5µs long pulse. The compari-

son of the test results in Figure 5.6 clearly illustrates the improvement of the

tail bits distribution for the RRAM device formed using the 5µs long form-

ing pulse. This observation can be explained using the previously proposed

model based on the diffusive dynamics [92–95]. The thermodynamic stabiliza-

tion is the basis for this model, in which the charged defects are assumed to

relax to a thermal equilibrium state after biasing the RRAM cell. The use of

longer forming pulses is expected to give rise to the formation of more stable

states for charge defects, thereby mitigating the short-term relaxation issue.

Furthermore, we compared the short-term relaxation behavior of the bilayer

CeOx/HfOx device in Figure 5.6(b) with the HfOx device in [88], indicating

faster relaxation of the bilayer device. We attribute this observation to the

increase of the diffusion pre-factors at the interface of the CeOx and the HfOx,

confirmed by the hybrid density functional theory and molecular dynamics

(DFT-MD) simulations [96].

Lastly, we investigated the effect of the forming pulse duration on the
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Figure 5.7: Effect of the operating window and the forming pulse duration on
the long-term reliability endurance of RRAMs. Devices were subject to the
adaptive programming with a read pulse width of 200 ns.

long-term endurance of the device. Figure 5.7 shows the comparison of the

endurance behavior for 1R devices with 100ns forming pulse and 5µs forming

pulse. Furthermore, we examined the effect of the operating window on the en-

durance characteristics of 1R devices, shown in Figure 5.7. Black square curve

in Figure 5.7 is 1R device operated at typical on-off ratio, which is LRS 20

kΩ, HRS 200 kΩ. The blue diamond curve in Figure 5.7 represents 1R de-

vice with intentionally enlarged on-off ratio by setting switching threshold in

adaptive programming, and this gave LRS around 1 kΩ, HRS around 1 MΩ.

A 100ns pulse was used for forming the 1S1R structures. As pointed out ear-

lier, increasing the operating window can mitigate the short-term relaxation

issue. However, our results indicate the degradation of the endurance charac-
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teristics of the bilayer RRAM device upon increasing the operating window.

Our findings suggest that the use of longer forming pulses might be a more

favorable solution because it does not compromise the device endurance while

mitigating the short-term relaxation problem.

5.4 Conclusion

In this chapter, we examined the short-term program instability of the

1S1R and the 1R structures using CeOx-based bilayer RRAM devices. Our

results indicate that the 1S1R structures are more susceptible to the short-term

relaxation. Furthermore, we found out that increasing the forming pulse width

can alleviate the short-term relaxation without compromising the long-term

endurance.
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Chapter 6

Neuromorphic Applications

6.1 Introduction

In 1971, Chua[26] postulated that there should be a missing circuit

element besides resistor, capacitor, and inductor. He named this element as

”memristor” because it can retain its resistance state. In 2008, R.S.Williams

from Hewlett Packard Labs(HP Labs) claimed that his team discovered the

missing memristor[40], which has similar material stack and I-V character-

istics as RRAM. L.Chua confirmed that the HP memristor is the missing

memristor. Chua’s definition of generic memristor[3] is that any two-terminal

device that exhibits a pinched hysteresis loop in the voltage-current plane

when driven by any periodic voltage or current signal that elicits a periodic

response of the same frequency. Figure 6.1 shows a voltage controlled generic

memristor I-V characteristics. Based on this relaxed definition of memristor,

biological synapses and RRAMs can be considered as generic memristors. In

chapter 3, the bilayer HfOx/CeOx has demonstrated long-term potentiation

and depression behaviors of human synapses. This raises a lot of interest

in RRAM for building brain-liked computers. Traditional Von-Neumann ar-

chitecture has bottleneck in parallel computing due to the bandwidth limit

between central processing unit(CPU) and memory. To overcome the bot-
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tleneck, a new computing paradigm has been proposed by some research

groups[2, 46, 48, 49, 97, 98]. This new architecture emulates human brain func-

tions, especially in Hebbian learning. The brain-inspired computing paradigm

sometimes is referred as neuromorphic computing. CMOS based neuromor-

phic circuits has been reported; however, this approach consumes too much

power. Note that the average power consumption of human brain is about

15 mW, which is much lower than the power of personal computer(PC) CPU,

which is about 90W[42]. Low-power memristor synapse circuits combines with

CMOS neuron circuits can meet low power consumption while fulfilling other

performance requirements. Thus, it’s worth to study RRAM devices for neu-

romorphic applications.

6.2 Supervised and Unsupervised Learning

One of potential applications of neuromorphic computing is supervised

learning. Typically speaking, machine learning tasks can fall into two types:

supervised and unsupervised learning. The key difference between supervised

learning and unsupervised learning is, during the training stage, whether the

training data is labeled or not[99]. The labeled training data is fed to the

model as the input; on the other hand, the learning model of unsupervised

learning tries to cluster the unlabeled training data into groups. The number

of cluster groups to be petitioned is defined by the model, and the petitioning

is purely based on the statistical properties of the input data. Figure 6.2

shows various types of learning tasks in each category. Figure 6.3 illustrates
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Figure 6.1: The I-V characteristics of voltage contorlled generic memristor can
be derived from state dependent Ohm’s law and state equation. The I-V curve
shown here is from a sinusoidal voltage source.[3]

the difference between classification and clustering. In classification, the input

data during training process is labeled. In this example, the labels are black
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cross and smiley face. The classifier is the model which classify labels. The

classifier shown in Figure 6.3 is a support vector machine(SVM). SVM is a

linear classifier which provides easy implementation and quick analysis on the

input data[100]. However, it’s not a very accurate classifier when the input

data is not linearly separable. For the clustering model in Figure 6.3, it can be

seen that all the data are gray triangles and they are not labeled. There are

three groups of data separated by three red dashed circles. In this example,

each group of data is a cluster. The clustering model itself defines how many

clusters there should be in the model, whle in classification, the number of

classes in classifier is determined by the number of classes seen in the training

data.

Figure 6.2: Yellow circle represents supervised learning and blue circle repre-
sents unsupervised learning. The intersection of two circles is the ”intermedi-
ate” learning.
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Figure 6.3: The black crosses and smiley faces represent the input data for
classification. The red dashed line is the SVM classifier. The gray triangles in
the right diagram represent the input data for clustering.

6.3 Neural Networks

In recent years, artificial neural network (ANN) has become popular

and raised a lot of interest among machine learning researchers. A simple def-

inition of a neural network by M.Caudill[101] is as:”a computing system made

up of a number of simple, highly interconnected processing elements, which

process information by their dynamic state response to external inputs”. All

types of ANNs have learning rules which determine the way that synapses

update their weights. A typical feed-forward ANN with delta learning rule is

shown in Figure 6.4. The hidden layer and output layer in Figure 6.4 are fully

connected layers. In a fully connected layer each neuron/synapse is connected

to every neuron/synapse in the previous layer, and each connection has it’s

own weight. This is a general purpose connection pattern and makes no as-

sumptions about the features in the data. There can be multiple hidden layers
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between input layer and the output layer, some ANNs utilize multiple hid-

den layers such as convolutional neural network(CNN)[102]. The connection

between hidden layer in CNN is not fully connected, instead, it’s called con-

volutional connection. In a convolutional layer each synapse is only connected

to a few nearby synapses in the previous layer, and the same set of weights

is used for every synapse. This connection pattern only makes sense in cases

where the data can be interpreted with the features to be extracted being local

and equally likely to occur at any input position, such as human face image

recognition and human voice recognition. Generally, ANNs are useful for both

supervised learning and unsupervised learning tasks. In the following sections,

some simple classification tasks with ANN will be presented.

6.4 Device Fabrication

Crossbar arrays were used for the implementation of RRAM based

ANN. The bottom metal lines and contact pads were patterned by electron

beam (E-beam) lithography first then followed by E-beam evaporation. The

metal line width is between 100 nm to 300 nm. Contact pad size was 100 µm

by 100 µm. After forming bottom metal lines, CeOx and HfOx were deposited

by PVD and ALD. The deposition procedure is similar to bilayer RRAM de-

vices in Chapter 3. Lastly, top metal lines and contact pads were patterned by

E-beam lithography and followed by E-beam evaporation again. The geome-

try of top layer was the same as the bottom layer. Figure 6.5 shows a 10 ×

10 crossbar array under optical microscope and scanning electron microscope
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Figure 6.4: Schematics representation of ANN. The activation function of
synapse in the hidden layer is a delta function. The total number of input
neurons is R. Total number of synapse in the hidden layer is M.

(SEM).

6.5 Single Hidden Layer ANN for Simple Image Recog-
nition

This section demonstrates a pair of 4 × 4 CeOx/HfOx bilayer RRAM

crossbar arrays for simple image recognition. In this demonstration, the 4

× 4 neural network classifies a 4 × 4 binary image of letter ”4”. Figure

6.6 shows the training and Figure 6.7 shows testing procedure of the image

recognition. All the training and testing images are binary pixel images. The
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Figure 6.5: Optical microscope images of a 10 × 10 RRAM array are at left
and 30 degree tilted and top view SEM images are at right.

classifier implemented here is a binary classifier, which only predicts whether

the testing image is ”4” or not. The training data set was created by one-bit

deviation from the ideal ”4” letter. Due to limited probes in probe station,

the training data was encoded by one-hot encoding, so that the encoded data

can be used for training RRAM synapses. One neural network was trained

with red pixels and the complemented one was trained with blue pixels. The

voltage applied on each hot synapse was 1.3 V. The signal pulse width was

100 ns. During testing stage, both neural network were fed with the same

input signals for each column, which is different from the training stage. The

readout current from each corresponding pair was then fed into a comparator.

82



If any pair has the higher current from inverted array than the current from

non-inverted array, then the comparator outputs ”No”. On the other hand, if

the current from non-inverted array is higher than the current from inverted

array, then the comparator outputs high, which means ”Yes”.

Figure 6.6: The input training data was encoded to input signals for training
neural networks. Red pixels in training data were converted to hot for non-
inverted neural network and blue pixels were converted to hot for inverted
neural network.

Figure 6.8(a) shows the relation between conductance change of the

bilayer HfOx/CeOx RRAM and number of pulses applied on it. It can be

seen that the transition of conductance change is nonlinear, which is common

among conductive filament type RRAMs[2, 98, 103]. Ideally the conductance

change is linear with number of pulses so there will be maximum number of

resistance states. The more resistance states, the better prediction accuracy.

Besides, device-to-device variation is also observed in Figure 6.8(b). Figure

6.8(c) shows the prediction accuracy at different pulse voltage during training

from two RRAM ANN classifiers. The pulse voltage dependence in Figure
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Figure 6.7: Testing data was encoded into input signals for each column,
then passing to all columns in each neural network. The result is based on
comparison of current between non-inverted array and inverted array.

6.8(c) indicates that larger pulse voltage would shorten the required training

period; however, it might result synapse weight update overshoot for multi-

level pixel pattern recognition. Although two ANN classifiers have different

magnitude of device-to-device variation, the prediction accuracy has similar

trend along with the pulse voltage. This is interesting because this process

related variation is inevitable, but it doesn’t impact the prediction accuracy

when classifying binary pixel images. To study deeper into device-to-device

variation, TensorFlow simulation was performed to show dependence of device-

to-device variation on prediction accuracy. It can be seen that in Figure 6.9(b),

the prediction accuracy has low dependence on non-linearity for binary pixel

image recognition. Figure 6.9(c) shows relation between the magnitude of

non-linearity and prediction accuracy. Both binary pixel and gray level pixel

image recognition show similar trend, and gray level pixel images are more
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prone to non-linearity of weight change.

Figure 6.8: (a) represent a RRAM device with nonlinear weight change func-
tion versus in a crossbar array. The dashed line in the middle represents the
ideal linear weight change. (b) shows the device-to-device variation from 10
RRAM devices in the same array. (c) The prediction accuracy at different
pulse voltage during the training. Note that there are two color groups in (c).
The red one and blue one are results from different RRAM arrays. Note that
the prediction accuracy is precision. Precision in statistics is defined by the
ratio of true positives over true positives plus false positives.

Figure 6.9: (a) represents different magnitude of non-linearity used in Ten-
sorFlow simulation for (c). (b) shows the result by TensorFlow simulation of
device-to-device variation on prediction accuracy. Moderate nonlinear weight
change is 2 in (a) and strong nonlinear weight change is 4 in (a). (c) Ten-
sorFlow simulation of non-linearity on prediction accuracy. Note that the
simulation assumes no device variation on RRAM synapses.
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6.6 Multiclass Image Recognition

Binary classification has been demonstrated in the previous section, and

this section demonstrates multiclass classification. The ANN classifier learns

how to classify three different letters: ”T”, ”H” and ”L” and the training

data set is shown in Figure 6.10. Overall, the training scheme for multiclass

classification is similar to binary classification except each training image only

trains the assigned columns instead of the whole array. In other words, this

ANN multiclass classifier comprises three binary classifier, and the prediction

decision is based on prediction from each binary classifier and compares one to

the rest of all. This is called ”One-vs-All” method. The RRAM array which

can classify N/2 classes of M pixels image is shown in Figure 6.11. In Figure

6.11, the training image is encoded into signals and both non-inverted and

inverted signals pass to assigned column for letter ”T”. The testing scheme

is different from binary classification in the previous section since there are

multiple classes can be the answer. The testing scheme is shown in Figure

6.12. The testing image is encoded into non-inverted signals and pass to all

columns. The prediction is based on the highest current from each binary

classifier.

The experimental result is shown in Figure 6.13. It can be seen that

the prediction accuracy of each letter has similar dependence on the number

of training set. In the testing data set, two-pixel deviated images are included

for ”H” and ”L”, and these ambiguous images causes the prediction error for

recognizing ”H” and ”L” in Figure 6.13. However, there are only ideal and
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Figure 6.10: Training images used for multiclass image recognition. The left
images are ideal patterns for each class.

Figure 6.11: Training scheme for multiclass image recognition. The input
image encoded into signals and pass to the assigned columns in RRAM array.
One column is trained with non-inverted signals, and the other is trained with
inverted signals.

one-pixel deviated images for ”T”, thus the prediction accuracy can reach to

100%. To improve the prediction accuracy, multiple layer ANN is helpful when
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Figure 6.12: Testing scheme for multiclass image recognition. The non-
inverted input passed to all columns. The prediction result is based on ”One-
vs-All” method, i.e, each binary classifier provides its prediction and the final
result is the one with maximum current.

the image is complicated or the image has local features.

6.7 Simple Convolutional Neural Network for Image
Recognition

In the above sections, single hidden layer ANNs have been demon-

strated for binary and multiclass classification. In this section, a simple con-

volutional neural network(CNN) is proposed for binary classification. A CNN

comprises one or more convolutional layers, and then followed by one or more

fully connected layers as in a conventional multilayer neural network[104]. Fig-

ure 6.14 shows the typical architecture of CNN. Key operations of CNN are:

convolution, pooling and backpropagation. The purpose of convolution is to
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Figure 6.13: Prediction accuracy versus number of training data set. Note
that the prediction accuracy of each letter is based on definition of precision.
And averaged accuracy is based on marco-average of precision.

extract features presented locally in the image. Figure 6.15 shows the proce-

dure of convolution; a filter matrix is used to extract local features from the

image. In Figure 6.15, the filter matrix is for edge detection. The selection of

size of filter matrix depends on how local features present in the image. The

difference between a fully connected layer and a convolutional layer is that, in a

fully connected layer, each synapse receives signals from all synapses/neurons

in the previous layer, while in a convolutional layer, each synapse only receives

signals from a small portion of synapses/neurons in the previous layer.

Pooling process is illustrated in Figure 6.16. Pooling is important in

CNN because it reduces the dimensionality of each feature map but retains

the crucial information. Synapses in the feature layer are divided into several

pools with size of 2×2. Pooling process chooses either the maximum weight,
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Figure 6.14: A Simple CNN architecture with depth of three. The input data is
mapped to the feature layer with convolution by filter matrix. Then the feature
layer is mapped to subsample layer by pooling. Finally, the classification is
performed by a fully connected layer. The depth in CNN means the number
of feature layers used for convolution. Each feature layer might have different
filter matrix.

Figure 6.15: The input data is convoluted with the filter matrix and mapped
to feature layer. Here, a 3×3 filter matrix is used for edge detection. The 3×3
pink matrix represents the feature layer.
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the averaged weight, or the summed weight, then maps selected weights to the

subsample layer. In Figure 6.16, the maximum weight is chosen for pooling

process. Synapses in the subsample layer finally connects to the fully connected

layer. Synapses in the fully connected layer take all inputs from the subsample

layer with the summation function. In Figure 6.16, red arrows present negative

weights and blue arrows present positive weights. The classification result is

based on outputs from the fully connected layer.

Figure 6.16: The synapses in the feature layer are divided into several pools,
and pooling process chooses the maximum weight in each pool then mapping
all to a subsample layer. The pool size is 2×2 and the size of feature layer
is 4×4, therefore, the subsample layer is 2×2. Synapses in the subsample
layer connects to a fully connected layer for classification. Synapses in fully
connected layer sums up weights with blue arrows minus weights with red
arrows. The fully connected layer provides classification result.

The filter matrix and weights in the fully connected layer in this section

is shown in Figure 6.17. Generally, these parameters are determined by back-

propagation. Backpropagation is a common algorithm to train ANNs together

with some optimization methods such as gradient descent[105]. The algorithm
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basically consists of two phase cycle, propagation and weight update. While

training an ANN, the input data propagated through whole layers and generate

prediction output. The output is then compared to the label (answer), then

generate an error value. This is called propagation. The second phase is to

use the error value to calculate the gradient of the loss function. This gradient

can be used to update the parameters such as filter matrix and summation

function in the fully connected layer. To simplify the experiment complex-

ity, the filter matrix and weights in the fully connected layer is adapted from

TensorFlow simulation with similar CNN architecture and training data set.

Figure 6.18 and 6.19 shows the training and testing scheme for CNN image

recognition. In this experiment, 10×10 binary pixel images of letter ”H” and

”L” with ambiguous images presented in training data sets. Two 8×8 RRAM

arrays were used to update weights in the feature layer for ”H” and ”L”, re-

spectively. The pooling layer and the fully connected layer are combined for

comparing output current to provide the prediction result. There are two

testing data sets used in the experiment: One is the normal test set, which

contains only ideal ”H”, ”L” images and flipped pixels images with maximum

3 flipped pixels. The other one is the difficult test set, which contains 50%

ambiguous images and 50% ideal and flipped pixels images with maximum 3

flipped pixels. Figure 6.20 shows testing results on both cases between single

hidden layer ANN and CNN. It can be seen that in Figure 6.20(a), both ANN

and CNN can achieve high accuracy given enough training images. However,

CNN outperforms ANN in Figure 6.20(b) for the difficult data set. Figure
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6.20(b) demonstrates the power of CNN, even the architecture of the CNN is

simple, it still can improve the prediction accuracy significantly. Figure 6.21(a)

shows prediction accuracy of CNNs with different filter matrices. The result in

Figure 6.21(a) shows that the prediction accuracy can change significantly by

simply changing filter matrix. This implies that the extraction of important

features is important for achieving high accuracy when using CNN algorithms.

Identity filter matrix in the CNN removes features at the edge of the image,

and thus improve the prediction accuracy. Figure 6.21(b) illustrates reason of

the lower prediction accuracy of using sharpen filter matrix in Figure 6.21(a),

that is, the failure of predicting ”H” results the low prediction accuracy.

Figure 6.17: The filter matrix and connection between the subsample layer and
the fully connected layer is adapted from the result by TensorFlow simulation.

In the demonstration, RRAM arrays are used for storing and updat-

ing weights in the feature layer. Using RRAM arrays can be beneficial for

implementing hardware neuromorphic systems because RRAM arrays can be
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Figure 6.18: Training scheme of the CNN. Note that during the training, the
write voltage is always 1.2V and no connection to the subsample layer.

Figure 6.19: Testing scheme of the CNN. The read voltage is 0.2V and the
output is based on the comparison of current from each subsample layer.

integrated into BEOL CMOS processes, which means tremendous reduction

in delay between logic and memory. Comparing to conventional NVM tech-

nologies, RRAM consumes much lower energy and has higher writing speed.

This is desired for low-power System on a Chip(SoC) with pattern recognition
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Figure 6.20: (a) Prediction accuracy of regular testing data set between single
hidden layer ANN and CNN. (b) Prediction accuracy of 50% ambiguous testing
data set between single hidden layer ANN and CNN.

Figure 6.21: (a) Prediction accuracy of CNN with different filter matrix for
ambiguous testing data set. The filter matrix is also shown in (a), the one
at left is identity filter and the one at right is sharpen filter. (b) Prediction
accuracy of each class for CNN with sharpen filter.
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tasks.

6.8 Conclusion

This chapter demonstrates RRAM arrays for image recognition by re-

alizing ANN algorithms. Both binary and multiclass classification with single

hidden layer ANN are demonstrated. Furthermore, a simple CNN algorithm

has been demonstrated with RRAM arrays and it shows improved accuracy

for recognizing ambiguous images compared to single hidden layer ANN. This

also indicates that using RRAM arrays to store data in feature layers would

be energy-saving and faster than pure CMOS approach.
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Chapter 7

Conclusions

7.1 Summary

The performance requirements for NVM in Big Data era are increas-

ing, thus a new NVM technology is needed for developing future data center

and mobile devices. RRAM is one of potential candidates and it has several

advantages over CMOS based NAND flash, such as switching speed, switching

energy, area density and etc.. This thesis explores the feasibility of CeOx for

RRAM device and the potential of using CeOx RRAM as synaptic device for

neuromorphic computing. The contributions of this thesis include:

1. The fabrication process for CeOx RRAM device. MBE and PVD

thin film growth method has been studied. wet etching method CeOx has

been demonstrated. The basic performance parameters of CeOx from different

growth method has been studied, such as operating voltage, on/off window,

data retention and endurance.

2. Study of switching mechanism in CeOx RRAM. This thesis addresses

the switching mechanism of CeOx by analyzing vertical and horizontal scaling

of CeOx RRAM. The results indicate that set and reset voltage of CeOx RRAM

are independent of vertical and horizontal scaling, and forming voltage is de-
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pendent of vertical scaling. It can be concluded that one-diemensional filament

type is very likely for resistive swithcing in CeOx RRAM. TEM cross-sectional

images of MBE grown CeOx RRAM reveal Ce2O3 nanophase in switching layer,

and it plays an important role for oxygen vacancies in CeOx.

3. Performance improvement by introducing the bilayer structure. The

CeOx RRAM doesn’t show analog switching in reset operation. Adding a

non-stoichiometric HfOx layer can not only reduce operating voltage by Hf

metallic bonds around HfOx and CeOx interface and enhanced joule heating,

but also provide analog switching in reset operation. With capability of analog

switching in both set and reset, HfOx/CeOx bilayer RRAM can emulate synap-

tic behavior and demonstrate Hebbian learning. This leads to neuromorphic

applications in Chapter 6.

4. Chapter 4 demonstrates highly nonlinear MSM diode as selector

device and propose I-V characteristics model of it. The Ti-a-Si-Ti MSM diode

with Schottky emission provides very high nonlinear ratio and low turn-on

voltage, which can help eliminate sneak path leakage in RRAM array and

MSM diode with over 105 nonlinear ratio is capable for building gigabyte

(GB) crossbar array. The asymmetric I-V characteristics can be modeled by

different Schottky barriers, which indicates that top electrode interface and

bottom electrode interface can cause asymmetry I-V curves.

5. Study of short-term relaxation of 1R and 1S1R structure with adap-

tive programming algorithms. Chapter 5 observes the different magnitude of

short-term relaxation between 1R and 1S1R, and proposes the root cause the
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worse relaxation effect in 1S1R. A potential solution is provided with long

forming pulses, which reduces the short-term relaxation with sacrificing long

term reliability.

6. Demonstration of pattern recognition with RRAM array as artificial

neural network. Training and testing scheme for binary/multiclass classifi-

cation are proposed and demonstrated. For large scale pattern recognition,

peripheral RRAM array circuits are proposed and circuit level simulation is

demonstrated for single layer neural network for pattern recognition.

7.2 Recommendations for Future Work

It is a great time to be researching emerging memory technology like

RRAM. The potential replacement by novel NVM technologies is exciting and

it is happening. These novel technologies could be revolutionary in memory

system design. The next big thing comes after Big Data will be artificial intel-

ligence and neuromorphic applications. RRAM is a great tool to implement

brain-liked computing hardware.

The above works outlined a comprehensive study of CeOx which pro-

vides a solid foundation for more exciting future work in several directions. The

bilayer study of HfOx/CeOx shed light on materials engineering for RRAM de-

vices. There are several combination of materials worth to try out. Not only

switching layers, even different electrode materials can change switching be-

havior. There are a lot of room for research.
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For selector device, novel low-dimensional materials such as MoSe2,

could be potential material for MSM diode selector because of its native thin

film properties and lower bandgap. The ultra low turn-on voltage would be

desirable when scaling RRAM arrays.

With respect to neuromorphic applications, the learning algorithms

applied on crossbar RRAM arrays have been tested and verified. The next

step can be tape out circuit level design and validate functionality of the chip.

Multilayer ANN with System on a Chip(SoC) applications is very attractive

for Internet of Things(IoT) devices.
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