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With advances in technology expanding the capabilities of robots, while at

the same time making robots cheaper to manufacture, robots are rapidly becoming

more prevalent in both industrial and domestic settings. An increase in the num-

ber of robots, and the likely subsequent decrease in the ratio of people currently

trained to directly control the robots, engenders a need for robots to be able to act

autonomously. Larger numbers of robots present together provide new challenges

and opportunities for developing complex autonomous robot behaviors capable of

multirobot collaboration and coordination.

The focus of this thesis is twofold. The first part explores applying machine
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learning techniques to teach simulated humanoid robots skills such as how to move

or walk and manipulate objects in their environment. Learning is performed using

reinforcement learning policy search methods, and layered learning methodologies

are employed during the learning process in which multiple lower level skills are

incrementally learned and combined with each other to develop richer higher level

skills. By incrementally learning skills in layers such that new skills are learned in

the presence of previously learned skills, as opposed to individually in isolation, we

ensure that the learned skills will work well together and can be combined to perform

complex behaviors (e.g. playing soccer). The second part of the thesis centers on

developing algorithms to coordinate the movement and efforts of multiple robots

working together to quickly complete tasks. These algorithms prioritize minimizing

the makespan, or time for all robots to complete a task, while also attempting to

avoid interference and collisions among the robots. An underlying objective of this

research is to develop techniques and methodologies that allow autonomous robots

to robustly interact with their environment (through skill learning) and with each

other (through movement coordination) in order to perform tasks and accomplish

goals asked of them.

The work in this thesis is implemented and evaluated in the RoboCup 3D

simulation soccer domain, and has been a key component of the UT Austin Villa

team winning the RoboCup 3D simulation league world championship six out of the

past seven years.
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Chapter 1

Introduction

With advances in technology expanding the capabilities of robots, while at the same

time making robots cheaper to manufacture, robots are rapidly becoming more

prevalent in both industrial and domestic settings. It is estimated that by 2025

about 1.2 million advanced robots will be added to and deployed in these settings

in the U.S. alone [1]. Such an increase in the number of robots, and the likely

subsequent decrease in the ratio of people currently trained to directly control the

robots, will necessitate more robots to be able to act autonomously. In addition

to the heightened importance of robot autonomy, larger numbers of robots present

together in the same environment will provide new challenges and opportunities for

multirobot collaboration and coordination. More robots, coupled with the advent

of improved robot capabilities, motivate and provide a fertile ground for developing

autonomous robot and multirobot behaviors capable of completing complex tasks.

The focus of this thesis is twofold. The first part explores using machine

learning techniques—automated computing algorithms and methods that adapt or

learn from data—to teach humanoid robots skills (e.g. how to move or walk and
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manipulate objects in their environment) within a realistic physics-based simulator.

Multiple lower level skills are incrementally learned and combined with each other

to develop richer higher level skills for use in complex behaviors. After robots have

developed higher level skills, and can complete single robot complex behaviors, the

second part of the thesis segues to the development of algorithms to coordinate

the movement and efforts of multiple robots working together to quickly complete

tasks. These algorithms prioritize minimizing the makespan, or time for all robots

to complete a task, while also attempting to avoid interference and collisions among

the robots. An underlying objective of this research is to develop techniques and

methodologies that allow autonomous robots to robustly interact with their environ-

ment (through skill learning) and with each other (though movement coordination)

in order to perform tasks and accomplish goals asked of them.

The work in this thesis is implemented and evaluated in simulation using

physically realistic simulated humanoid robots in the RoboCup 3D simulation soccer

domain. Working in simulation enables the use of large-scale machine learning

techniques where learning can be performed on hundreds of simulated robots in

parallel running as fast as computationally possible (faster than real-time). Learning

in simulation avoids many of the difficulties and limitations of learning directly

on physical robots, including time and cost constraints as well as wear and tear

on robots. There is a drawback to learning in simulation, however, as policies

learned in simulation are often not directly transferable to physical robots due to

differences between a simulator and the real world. Although not a focus of this

thesis, there is work to bridge the gap between learning in simulation and on physical

robots [46, 54, 36, 85].

The remainder of this chapter is organized as follows. Section 1.1 presents
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the research question that this thesis focuses on answering. Section 1.2 enumerates

and describes each of the contributions of this thesis, and Section 1.3 provides an

organizational overview and road map of the dissertation.

1.1 Research Question

Given the preceding problem description and motivation, the key question to be

addressed in this thesis is the following:

How can autonomous simulated mobile robots leverage extensive computational

resources to learn complex multilayered skills, and then apply these learned skills

to perform coordinated behavior in spatial, time-pressured environments?

To answer this question this thesis focuses on two topics we believe are most

pertinent for skill creation and coordinated behavior of autonomous robots: skill

learning and movement coordination. First, robots must acquire the necessary skills

to perform tasks in their environment. Then, using these acquired skills, autonomous

robots need to coordinate their behavior and movement to efficiently complete tasks

asked of them.

Skill learning for robots is an active area of research [139]. Recent work in this

space has focused on learning directly on physical robots, and employing techniques

such as learning from demonstration, for which sample complexity is an important

consideration [18, 134]. Other work has focused on learning parameterized skills

that generalize to different tasks presented to a robot [37]. The work in this thesis

differs in than it is concerned with learning multiple skills, through reinforcement

learning policy search methods, that can be combined to perform complex behaviors.

The focus of the work is less on learning individual skills in isolation, but instead on
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developing learning methodologies and designing optimization tasks to produce skills

that work well together. As learning is carried out in simulation, sample complexity

is not a primary concern; rather learning is targeted to best take advantage of

parallel computation resources provided by distributed computing clusters.

Problems in coordination and role assignment of multiple robots have also

been explored. Previous work on assigning agents to target positions has often

focused on minimizing the sum of distances all agents must travel which is the well

known assignment problem [138]. The work in this thesis differs as it minimizes

the makespan (time for all robots to reach target goal positions) instead of the sum

of distances traveled. Minimizing the makespan is a decisive factor in performance

when robots are moving to target positions to complete a shared task where all

robots must be in place before the task can be completed and/or started.

1.2 Contributions

This thesis provides the following contributions:

1. Methodologies for learning complex robot skills in simulation. This

thesis presents new paradigms for constructing and learning complex robot be-

haviors through the introduction and use of overlapping layered learning, an

extension of the hierarchical layered learning paradigm [155]. Layered learn-

ing enables learning of complex behaviors by incrementally learning a series

of sub-behaviors where learning of subsequent layers depend on previously

learned behavior layers. Overlapping layered learning presents ways of com-

bining learning of different behavior layers that extend the traditional sequen-

tial layered learning methodology through the use of overlapping or shared

parameter sets across behavior layers.
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2. Development and analysis of multirobot role assignment functions.

In multirobot spatial settings robots may need to be assigned to move to differ-

ent locations or role positions in order to complete a task. This thesis presents

and analyzes different role assignment functions for assigning robots to role

positions. Properties of role assignment functions analyzed include total dis-

tance traveled by all robots, makespan completion time, dynamic consistency,

collision avoidance, and standard deviation of the distances traveled by robots.

3. Novel algorithms for multirobot movement coordination. Often robots

need to be able to move around and interact with their environment in the

presence of other robots. While doing so, it is important that robots do

not interfere with each other and/or collide with other robots or obstacles

in the environment. This thesis surveys existing approaches for robot move-

ment coordination and introduces new algorithms that focus on important

considerations of formation completion time, collision avoidance, and scalabil-

ity. Specifically scalable polynomial time role assignment algorithms known

as SCRAM that avoid collisions among robots and minimize the makespan,

or time for robots to complete a formation, are introduced.

4. Complete autonomous robot soccer playing agent. Another contri-

bution of this thesis is that of the UT Austin Villa RoboCup 3D simulation

league team, a successful state of the art agent having won the RoboCup 3D

simulation competition six out of the past seven years. This agent incorpo-

rates the ideas and algorithms presented in this thesis, thus serving as a proof

of concept of them, and a public base code release of the agent provides a

testbed for future research in multirobot systems.
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5. Detailed empirical evaluation of presented learning methodologies

and coordination algorithms. This thesis provides detailed empirical eval-

uations of the presented learning methodologies and movement coordination

algorithms. Results from within the RoboCup 3D simulation competition are

analyzed as well as controlled experiments external to the competition.

1.3 Dissertation Overview

While this dissertation is intended to be read sequentially, it is not necessary to do

so to understand all parts of it. Background information on direct policy search

in reinforcement learning (Section 2.1) is only applicable to those chapters covering

overlapping layered learning (Chapters 3 and 4), and details of the RoboCup 3D

simulation domain (Section 2.2) are pertinent to just the chapters on robot soccer

(Chapters 4, 7, and 8). Additionally, the chapters on overlapping layered learning

can be read independently of the chapters on role assignment (Chapters 5, 6, and 7).

For ease of navigation, a flow chart of the dependencies of the parts of this thesis is

provided in Figure 1.1.

The remainder of this dissertation is organized as follows.

Chapter 2 – Background: This chapter provides background information useful

for understanding subsequent chapters. Specifically it provides background

information on direct policy search in reinforcement learning and the CMA-

ES algorithm needed for Chapters 3 and 4, and also gives an overview of the

RoboCup 3D simulation domain used in Chapters 4, 7, and 8.

Chapter 3 – Overlapping Layered Learning: This chapter presents the over-

lapping layered learning paradigm—one of the primary contributions of this
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Figure 1.1: Block diagram showing dependencies between parts of this thesis. Solid
arrows represent dependencies between chapters, with the solid arrows pointing
in the direction of the order in which chapters should be read. The dashed lines
represent associations between chapters and appendices.

dissertation (contribution 1 in Section 1.2). Overlapping layered learning is

a major extension to the layered learning [155] hierarchical machine learning

paradigm that enables learning of complex behaviors by incrementally learning

a series of sub-behaviors. Overlapping layered learning allows learning certain

behaviors independently, and then later stitching them together by learning

at the “seams” where their influences overlap.

Chapter 4 – Overlapping Layered Learning Applied to Robot Soccer:
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This chapter presents a case study of overlapping layered learning (presented

in Chapter 3) applied to robot soccer which showcases overlapping layered

learning as a paradigm for efficient behavior learning. The provided analysis

of the overlapping layered learning methodologies serves as part of contribu-

tion 5 in Section 1.2.

Chapter 5 – Scalable Collision-avoiding Role Assignment with Minimal-

makespan (SCRAM): This chapter introduces SCRAM role assignment al-

gorithms for formational positioning of mobile agents, and presents theoretical

and empirical analysis of the role assignment problem—how to assign agents

to target positions in a one-to-one mapping such that the time for all agents

to reach their assigned target positions (makespan) is minimized while avoid-

ing collisions among the agents. Specifically this chapter addresses primary

thesis contributions 2 (role assignment function analysis) and 3 (role assign-

ment algorithms) in Section 1.2. SCRAM role assignment algorithms run in

polynomial time and can scale to thousands of agents.

Chapter 6 – Prioritized SCRAM Role Assignment: This chapter introduces

an extension to SCRAM role assignment presented in Chapter 5 allowing for

subsets of role positions to be given different priorities, and in doing so further

addresses thesis contributions 2 and 3 in Section 1.2.

Chapter 7 – SCRAM Applied to Robot Soccer: This chapter presents case

studies and analysis of SCRAM role assignment—introduced in Chapter 5—applied

to robot soccer. The chapter’s empirical evaluation of SCRAM fulfills part of

thesis contribution 5 in Section 1.2. SCRAM role assignment is used to assign

robots to team formation target positions on the soccer field, and prioritized
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SCRAM role assignment—introduced in Chapter 6—is utilized in a marking

system to defend and cover members of the opposing soccer team.

Chapter 8 – UT Austin Villa RoboCup 3D Simulation Agent and Code

Release: This chapter presents the University of Texas at Austin’s RoboCup

3D simulation team UT Austin Villa—a successful state of the art agent hav-

ing won the RoboCup 3D simulation competition six out of the past seven

years—and in doing so addresses thesis contribution 4 in Section 1.2. The

UT Austin Villa agent incorporates the ideas and algorithms presented in this

thesis, thus serving as a proof of concept of them as detailed in Chapters 4

and 7. Furthermore, a public base code release of the UT Austin Villa agent

introduced in this chapter provides a testbed for future research in multirobot

systems.

Chapter 9 – Related Work: This chapter discusses work related to this thesis.

Chapter 10 – Conclusion and Future Work: This chapter presents ideas for

future work and concludes.

Appendix A – Learned Behavior Layers: This appendix provides a detailed

description of the different behavior layers for robot soccer learned through an

extensive layered learning approach incorporating overlapping layered learning

layered learning as discussed in Chapter 4.

Appendix B – Additional SCRAM Proof Sketches: This appendix provides

proof sketches for properties of role assignment functions discussed in Chap-

ter 5: minimizing the makespan, avoiding collisions, and dynamic consistency.

Appendix C – Dynamic Programming Algorithm for MMDR: This ap-

pendix details the dynamic programming algorithm for computing the Mini-
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mum Maximal Distance Recursive (MMDR) role assignment function that is

compared against SCRAM role assignment algorithms in Section 5.4.

Appendix D – UT Austin Villa RoboCup 3D Simulation Team Strategy:

This appendix provides details of some of the strategy components used by

the UT Austin Villa agent team presented in Chapter 8.

Appendix E – RoboCup Competition Results: This appendix provides RoboCup

competition results of the UT Austin Villa RoboCup 3D simulation team from

2011–2017 referenced in Chapters 4, 7, and 8.

Appendix F – Acronyms: This appendix provides a lookup table of acronyms

used in this dissertation.

Appendix G – Online Materials: This appendix provides links to some of the

online content referenced in this dissertation.
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Chapter 2

Background

This chapter provides background information useful for understanding further

chapters. Section 2.1 provides information on direct policy search in reinforcement

learning and the CMA-ES algorithm needed for chapters covering overlapping lay-

ered learning: Chapters 3 and 4. Section 2.2 gives an overview of the RoboCup 3D

simulation domain used in Chapters 4, 7, and 8.

2.1 Reinforcement Learning

Reinforcement learning (RL) [159] is a type of of machine learning inspired by be-

havioral psychology and used for learning in sequential decision making problems.

In RL an agent exists in an environment and, given the current state of the world,

chooses an action to take. After taking each action, the agent typically receives

a reward from the environment. Broadly speaking, the goal of RL is to learn a

behavior—a policy mapping the current state of the world to actions—that maxi-

mizes the (possibly discounted) cumulative reward over time that the agent receives.

Figure 2.1 presents a high level canonical view and description of RL.
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Figure 2.1: A high level view and block diagram of RL. At each time step (t) an
agent observes a state (s) of the environment and chooses an action (a) to take.
The agent receives a reward (r) after taking an action. Typically the goal of RL
is to learn a policy mapping states to actions (s 7→ a) that maximizes the sum of
(possibly discounted by γ) rewards over time: maxπ:s 7→a

∑n
t=1 γ

tr(st, at).

2.1.1 Direct Policy Search

A variant of RL is direct policy search. Rather than learning a specific mapping of

states to actions, direct policy search focuses on learning or optimizing parameter

values for a parameterized policy, where the parameter values of the policy determine

what action the policy selects given the current state of the environment. During

learning an agent performs some optimization task, and instead of an agent receiving

a reward from the environment after every action that the agent takes, an agent

receives an overall return or fitness value at the conclusion of the optimization task

as a measure of how well the agent performed on the task. Given the parameter

values of a policy, and the fitness value received by an agent when performing an

optimization task using that policy, an optimization algorithm attempts to adjust

the parameter values of the policy such that the agent will receive higher fitness

values on the optimization task. Figure 2.2 provides a high level view and description
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of this optimization process used in direct policy search.

Figure 2.2: The optimization process used in direct policy search. An optimization
algorithm produces candidate set of parameter values for a parameterized policy
used by an agent while performing an optimization task. At the conclusion of the
optimization task, the agent receives a fitness value as a measure of how well it
performed on the optimization task. Given the fitness values achieved by an agent
using different sets of policy parameter values, the optimization algorithm attempts
to produce new sets of policy parameter values to try on the optimization task that
will improve an agent’s fitness measure on the optimization task.

In Chapters 3 and 4 we use direct policy search, and the CMA-ES optimiza-

tion algorithm (described next in Section 2.1.2), for robot skill learning.

2.1.2 Covariance Matrix Adaptation Evolutionary Strategy

(CMA-ES)

We use the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [57]

algorithm for optimizing policy parameter values as described in Section 2.1.1. A

complete understanding of CMA-ES is not required for following the work in this

thesis, and for comprehension purposes it may suffice to view CMA-ES as a generic
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optimization algorithm in Figure 2.2. In this section we provide a brief description

of CMA-ES with all details necessary for understanding our use of the algorithm.

A full explanation of CMA-ES, including all details necessary for implementation1

of the algorithm, can be found in the tutorial at [56].

CMA-ES is a derivative-free stochastic optimization algorithm that succes-

sively generates and evaluates sets of candidate parameter values for a policy. Once

CMA-ES generates a group of candidate parameter value sets (a population), each

candidate parameter value set is evaluated with respect to a fitness measure. When

all the candidates in the group are evaluated, the next group (or generation) of

candidate parameter value sets is generated by sampling from a probability that is

biased towards directions of previously successful search steps.

At the start of optimization, CMA-ES is given an initial multivariate nor-

mal distribution—with each dimension of the distribution representing a different

parameter—as a seed to sample the first group of candidate parameter value sets

from. After this first set of candidates have been evaluated, and each member of

the population has been assigned a fitness value, the means of this distribution are

updated as a weighted by rank average of the top half highest fitness members of

the current generation. Weighting by rank, as opposed to relative fitness values,

makes CMA-ES invariant under monotonic transformations of the fitness function.

Additionally the covariance matrix of the distribution is updated to control the step

sizes in each dimension and maximize the likelihood of previously successful search

steps. This way of updating both the means and variances of the distribution, which

is used to sample candidate parameter set values from for the next generation, can

be thought of as a form of natural gradient descent [10, 135]. Figure 2.3 shows

1In our work we use an implementation of the CMA-ES algorithm available at
https://www.lri.fr/~hansen/cmaes_inmatlab.html#java
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an example of how the distribution from which parameter values are sampled is

updated across three iterations of CMA-ES.

Figure 2.3: CMA-ES searching in a two-dimensional fitness landscape with higher
fitness shown in darker blue. Members of a population for each generation are
shown as red dots and the dashed lines show the distributions that they are
being sampled from. [Image from https://en.wikipedia.org/wiki/CMA-ES#/

media/File:Concept_of_directional_optimization_in_CMA-ES_algorithm.

png accessed 2015-08-15.]

2.2 RoboCup 3D Simulation Domain Description

Robot soccer has served as an excellent testbed for learning scenarios in which

multiple skills, decisions, and controls have to be learned by a single agent, and

agents themselves have to cooperate or compete. There is a rich literature based on

this domain addressing a wide spectrum of topics from low-level concerns, such as

perception and motor control [20, 145], to high-level decision-making [77].

In the RoboCup 3D simulation league, teams of simulated humanoid robots

play soccer against each other. Programming humanoid agents in simulation, rather

than in reality, brings with it several advantages, such as making simplifying as-

sumptions about the world, low installation and operating costs, and the ability to
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automate experimental procedures. All these factors make the RoboCup 3D simu-

lation environment an ideal domain for conducting research in robotics, multiagent

systems, and machine learning. For a discussion of some of the research efforts

within the RoboCup 3D simulation league see [11].

The RoboCup 3D simulation environment is based on SimSpark [24, 180],2 a

generic physical multiagent systems simulator. SimSpark uses the Open Dynamics

Engine3 (ODE) library for its realistic simulation of rigid body dynamics with colli-

sion detection and friction. ODE also provides support for the modeling of advanced

motorized hinge joints.

The robot agents in the simulation are modeled after the Nao robot, which

has a height of about 57 cm and a mass of 4.5 kg. The agents interact with the

simulator by sending torque commands and receiving perceptual information. Each

robot has 22 degrees of freedom: six in each leg, four in each arm, and two in the

neck. In order to monitor and control its hinge joints, an agent is equipped with

joint perceptors and effectors. Joint perceptors provide the agent with noise-free

angular measurements every simulation cycle (20ms), while joint effectors allow the

agent to specify the torque and direction in which to move a joint. Although there

is no intentional noise in actuation, there is slight actuation noise that results from

approximations in the physics engine and the need to constrain computations to be

performed in real-time. Figure 2.4 provides a box model of the robot, and Figure 2.5

shows the robot model’s joints.

In addition to the standard Nao robot model, four additional variations of the

standard model, known as heterogeneous types, are available for use. The variations

from the standard model include two models with changes in leg and arm length

2http://simspark.sourceforge.net/
3http://www.ode.org/
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Figure 2.4: Box model diagram of the robot model. [Image from http://simspark.

sourceforge.net/wiki/images/4/42/Models_NaoBoxModel.png accessed 2017-
07-02.]
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Figure 2.5: Joints of the robot model. [Image from http://simspark.

sourceforge.net/wiki/images/d/d0/Models_NaoAnatomy.png accessed 2017-07-
02.]
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as well as hip width, one model with different joint speeds for its ankle joints, and

also a model with the addition of toes to the robot’s feet. During 11 versus 11

games, which consist of two five minute halves, teams are required to use at least

three different robot models, with no more than seven agents of any single robot

type, and no more than nine agents of any two robot types. Figure 2.6 shows a

visualization of the different Nao robot types, and a view of the soccer field during

a game is shown in Figure 2.7.

Figure 2.6: Different robot body model types, with the number above an agent
corresponding to its robot body type: 0 = standard model, 1 = longer legs and
arms, 2 = faster ankle pitch and slower ankle roll, 3 = longest arms and legs as well
as wider hips, 4 = toe model.

Visual information about the environment is given to an agent every third

simulation cycle (60ms) through noisy measurements of the distance and angle to

objects within a restricted vision cone (120◦). These objects include landmarks on
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Figure 2.7: A view of the soccer field during a 11 versus 11 game.

the field (goal posts and corner flags), field lines, robots (with separate objects for

each robot’s head, arms, and feet) and the ball. Figure 2.8 shows the locations of

landmarks and lines on the 30m X 20m in length and width field. There is no occlu-

sion—an agent can see all objects within its vision cone. Agents are also outfitted

with noisy accelerometer and gyroscope perceptors, as well as force resistance per-

ceptors on the sole of each foot. Additionally, a single agent can communicate with

the other agents every other simulation cycle (40ms) by sending messages limited

to 20 bytes.

During RoboCup 3D simulation league soccer games each team is a provided

a single computer to run all of their 11 agents. The server is run on a separate third

computer, and a fourth computer is used to run a monitor for visualizing games.

It is important that agents are not too computationally intensive such that all 11
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Figure 2.8: Landmarks (F1L, F1R, F2L, F2R, G1L, G1R, G2L, G2R) and
lines (in black) on the simulated soccer field. [Image from http://simspark.

sourceforge.net/wiki/images/thumb/3/31/SoccerSimulation_FieldPlan.

png/600px-SoccerSimulation_FieldPlan.png accessed 2017-07-02.]

agents on a team can respond to the server every 20ms simulation cycle—if an agent

fails to respond to the server during a simulation cycle it may become unstable and

fall over due to not updating what torques to put on its joints.

Most rules of 3D simulation league soccer games are modeled after human

soccer, however there are a few rules put in a place to help make simulated soccer

games run smoothly. Instead of a team being awarded a free kick when a member

of the other team commits a foul, the player who committed the foul is immediately

moved or “teleported” to a position just outside the sideline near the middle of the

field. An automated referee determines when fouls have been committed, and robots
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are penalized for charging into each other, having more than three players in their

defensive penalty area (to prevent teams from purposely blocking their own goal and

making it impossible for the other team to score), as well as having more than two

players touching each other at a time (robot collisions can slow down and destabilize

the server). Additionally, when the ball goes out of bounds, robots perform a kick-in

instead of a throw-in as agents have yet to develop the ability to pick up the ball

and perform a throw-in. Rules within the 3D simulation league are changed from

year to year in an effort to move closer towards realism and increase the technical

challenges from a scientific perspective (keep things scientifically relevant). Some of

the rule changes that have occurred from 2011–2017 are summarized in Appendix E.
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Chapter 3

Overlapping Layered Learning

This chapter4 presents the overlapping layered learning paradigm—one of the pri-

mary contributions of this dissertation (contribution 1 in Section 1.2). Overlapping

layered learning is a major extension to the layered learning [155] hierarchical ma-

chine learning paradigm that enables learning of complex behaviors by incrementally

learning a series of sub-behaviors. A key feature of layered learning is that higher

layers directly depend on the previously learned lower layers. In layered learn-

ing’s original formulation, lower layers are frozen prior to learning higher layers.

Overlapping layered learning, on the other hand, allows learning certain behaviors

independently, and then later stitching them together by learning at the “seams”

where their influences overlap. An application of overlapping layered learning to

robot soccer is discussed in Chapter 4.

The remainder of this chapter is organized as follows. Section 3.1 gives a high

level overview of layered learning paradigms including overlapping layered learn-

ing. Section 3.2 provides background information on the original layered learning

paradigm which is the basis for this work. Section 3.3 specifies and gives examples

4This chapter contains material from previously published work in [106].
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of the overlapping layered learning paradigm while contrasting it with other lay-

ered learning paradigms. Section 3.4 summarizes and mentions directions for future

work.

3.1 Overview

Task decomposition is a popular approach for learning complex control tasks when

monolithic learning—trying to learn the complete task all at once—is difficult or

intractable [152, 174, 175]. Layered learning [155] is a hierarchical task decompo-

sition machine learning paradigm that enables learning of complex behaviors by

incrementally learning a series of sub-behaviors. A key feature of layered learning

is that higher layers directly depend on the learned lower layers. In its original

formulation, lower layers were frozen prior to learning higher layers. Freezing lower

layers can be restrictive, however, as doing so limits the combined behavior search

space over all layers. Concurrent layered learning [176] reduced this restriction in

the search space by introducing the possibility of learning some of the behaviors

simultaneously by “reopening” learning at the lower layers while learning the higher

layers. A potential drawback of increasing the size of the search space, however, is

an increase in the dimensionality and thus possibly the difficulty of what is being

learned.

This chapter considers an extension to the layered learning paradigm, known

as overlapping layered learning, that allows learning certain parameterized behaviors

independently, and then later stitching them together by learning at the “seams”

where their influences overlap. Overlapping layered learning aims to provide a mid-

dle ground between reductions in the search space caused by freezing previously

learned layers and the increased dimensionality of concurrent layered learning. Ad-
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ditionally, for complex tasks where it is difficult to learn one subtask in the presence

of another, it reduces the dimensionality of the parameter search space by focusing

only on parts responsible for subtasks working together.

3.2 Layered Learning Paradigm

Table 3.1 summarizes the principles of the original layered learning paradigm which

are described in detail in this section.5

1. A mapping directly from inputs to outputs is not tractably learnable.

2. A bottom-up, hierarchical task decomposition is given.

3. Machine learning exploits data to train and/or adapt. Learning occurs sepa-

rately at each level.

4. The output of learning in one layer feeds into the next layer.

Table 3.1: The key principles of layered learning.

Principle 1

Layered learning is designed for domains that are too complex for learning a mapping

directly from the input to the output representation. Instead, the layered learning

approach consists of breaking a problem down into several task layers. At each layer,

a concept needs to be acquired. A machine learning (ML) algorithm abstracts and

solves the local concept-learning task.

5This section is adapted from [155].
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Principle 2

Layered learning uses a bottom-up incremental approach to hierarchical task decom-

position. Starting with low-level subtasks, the process of creating new ML subtasks

continues until reaching the high-level task that deal with the full domain complex-

ity. The appropriate learning granularity and subtasks to be learned are determined

as a function of the specific domain. The task decomposition in layered learning

is not automated. Instead, the layers are defined by the ML opportunities in the

domain.

Principle 3

Machine learning is used as a central part of layered learning to exploit data in

order to train and/or adapt the overall system. ML is useful for training functions

that are difficult to fine-tune manually. It is useful for adaptation when the task

details are not completely known in advance or when they may change dynamically.

In the former case, learning can be done off-line and frozen for future use. In the

latter, on-line learning is necessary: since the learner needs to adapt to unexpected

situations, it must be able to alter its behavior even while executing its task. Like

the task decomposition itself, the choice of machine learning method depends on

the subtask.

Principle 4

The key defining characteristic of layered learning is that each learned layer directly

affects the learning at the next layer. A learned subtask can affect the subsequent

layer by:

• constructing the set of training examples;
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• providing the features used for learning; and/or

• pruning the output set.

Formalism

Consider the learning task of identifying a hypothesis h from among a class of

hypotheses H which map a set of state feature variables S to a set of outputs O such

that, based on a set of training examples, h is most likely (of the hypotheses in H) to

represent unseen examples. When using the layered learning paradigm, the complete

learning task is decomposed into hierarchical subtask layers {L1, L2, . . . , Ln} with

each layer defined as

Li = (~Fi, Oi, Ti,Mi, Hi, hi)

where:

~Fi is the input vector of state features relevant for learning subtask Li. ~Fi =<

F 1
i , F

2
i , . . . >. ∀j, F j

1 ∈ S.

Oi is the set of outputs from among which to choose for subtask Li. On = O.

Ti is the set of training examples used for learning subtask Li. Each element of

Ti consists of a correspondence between an input feature vector ~f ∈ ~Fi and

o ∈ Oi.

Mi is the ML algorithm used at layer Li to select a hypothesis mapping ~Fi 7→ Oi

based on Ti.

Hi is the policy representation mapping ~Fi to Oi.
6

6Previous work [155, 176] includedHi withinMi, however we separate outHi for ease of notation.
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hi is the result of running Mi on Ti. hi is a specific instantiation of Hi and is a

function from ~Fi to Oi.

As set out in Principle 2 of layered learning, the definitions of the layers Li are given

a priori. Principle 4 is addressed via the following stipulation. ∀i < n, hi directly

affects Li+1 in at least one of three ways:

• hi is used to construct one or more features F k
i+1.

• hi is used to construct elements of Ti+1; and/or

• hi is used to prune the output set Oi+1.

It is noted above in the definition of ~Fi that ∀j, F j
1 ∈ S. Since ~Fi+1 can consist

of new features constructed using hi, the more general version of the above special

case is that ∀i, j, F j
i ∈ S ∪i−1

k=1 Ok.

In the context of this work all learned behaviors—or hypotheses—are repre-

sented by parameterized policies, where a parameterized policy with k parameters

for layer Li is the set of parameters Hi = {H1
i , . . . , H

k
i }, and the hypothesis is the

corresponding set of the parameters’ learned values hi = {h1i , . . . , hki }.

3.3 Overlapping Layered Learning Paradigm

As explained in Section 3.2, layered learning is a hierarchical learning paradigm

that enables learning of complex behaviors by incrementally learning a series of sub-

behaviors—each learned sub-behavior is a layer in the learning progression. Higher

layers depend on lower layers for learning. This dependence can include providing

features for learning, such as initial seed values for parameters when H is a param-

eterized policy, as well as a previous learned layer’s behavior being incorporated
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into the learning task for the next layer to be learned. In layered learning’s original

sequential formulation, layers are learned in a sequential bottom-up fashion and,

after a layer is learned, it—the learned hypothesis h of the layer—is frozen before

beginning learning of the next layer.

Concurrent layered learning, on the other hand, purposely does not freeze

newly learned layers, but instead keeps them open during learning of subsequent

layers: hi is not frozen before the training of Li+1 begins. Thus, the effect that hi

has on Ti+1 is not fixed during learning of Li+1, and in fact changes as hi continues

to be learned. We denote the continued learning of hi as Hi ⊆ Hi+1, meaning

that Hi—the set of of parameters that the values of hi are assigned to—is a subset

of Hi+1, and thus the parameters Hi are fully included in what is learned for the

hypothesis hi+1—the parameter values hi are re-learned—in the subsequent layer

of learning Li+1. Previously learned layers’ behaviors are left open so that learning

may enter areas of the behavior search space that are closer to the combined layers’

optimum behavior as opposed to being confined to areas of the joint layer search

space where the behaviors of previously learned layers are fixed. While concurrent

layered learning does not restrict the search space in the way that freezing learned

layers does, the increase in the search space’s dimensionality can make learning

slower and more difficult.

Overlapping layered learning seeks to find a tradeoff between freezing each

layer once learning is complete and leaving previously learned layers open. It does

so by keeping some, but not necessarily all, parts of previously learned layers open

during learning of subsequent layers. The part of previously learned layers left

open is the “overlap” with the next layer being learned. In this regard concurrent

layered learning can be thought of as an extreme of overlapping layered learning
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with a “full overlap” between layers. Additionally, overlapping layered learning

allows for behaviors to be learned independently in parallel—not just sequentially

in series—and then later stitched together by learning at the “seams” where their

influences overlap.

Overlapping Layered Learning: Layered learning both in series and parallel

in which some, but not necessarily all, parts of previously learned layers are left

open during learning of subsequent layers.

A layer of learning can be partially left open by freezing only a subset of

its learned behavior’s policy’s parameters during subsequent layers of learning. We

denote a set of parameters H ′ as being open and learned in a layer of learning Li

if the set of parameters are included in the layer’s learned policy representation Hi

(i.e. H ′ ⊆ Hi), and conversely a set of previously learned values h′ for parameters

H ′ are frozen if they are still part of the layer of learning—in the context of this

work previously learned and frozen parameter values serve to define behavior used

in the training task Ti which we denote as h′ ≺ Ti—but are not included in the

layer’s learned policy representation (i.e. H ′ ∩Hi = ∅). A previously learned set of

parameter values h′ may also be used to initialize or seed values of Hi. We denote

such a relationship as h′ 99K Hi

The following are several general scenarios, depicted in the bottom row of

Figure 3.1, for overlapping layered learning that help to clarify the learning paradigm

and identify situations in which it is useful:

Combining Independently Learned Behaviors (CILB): Two or more behav-

iors are learned independently in the same or different layers, and then are

combined together for a joint behavior at a subsequent layer by relearning
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some subset of the behaviors’ parameters or “seam” between the behaviors.

Let Li,b represent learning of the bth independent behavior in the ith layer of

learning. In the case of two independent behaviors learned in parallel in the

same layer, which we notate as hi,1 learned in Li,1 and hi,2 learned in Li,2,

they are combined in a subsequent layer of learning Lj,b, where j > i, to learn

a joint behavior hj,b containing parts or all of either or both of Hi,1 and Hi,2

(i.e. Hi,1 ∈ Lj,b, Hi,2 ∈ Lj,b, and ∃H ′ ⊆ {Hi,1 ∪ Hi,2} s.t. both H ′ 6= ∅ and

H ′ ⊆ Hj,b). This scenario is best when subtask behaviors are too complex

and/or potentially interfere with each other during learning, such that they

must be learned independently, but ultimately need to work together for a

combined task. Example: A basketball playing robot that must be able to drib-

ble the ball across the court and shoot it in the basket. The tasks of dribbling

and shooting are too complex to attempt to learn them together, but after the

tasks are learned independently they can be combined by re-optimizing param-

eters that control the point on the court at which the robot stops dribbling and

the angle at which the robot shoots the ball.

Partial Concurrent Layered Learning (PCLL): Only part, but not all, of a

previously learned layer’s behavior parameters are left open when learning a

subsequent layer with new parameters. Thus there exists a non-empty proper

subset of parameters H ′
i of a learned behavior hi that are re-learned in the

behavior hi+1 as part of the subsequent layer of learning Li+1 (i.e. ∃H ′
i ⊂ Hi

s.t. H ′
i 6= ∅ and H ′

i ⊂ Hi+1). The part of the previously learned layer’s

parameters left open is the “seam” between the layers. Partial concurrent

learning is beneficial if full concurrent learning unnecessarily increases the

dimensionality of the search space to the point that it hinders learning, and
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completely freezing the previous layer diminishes the potential behavior of the

layers working together. Example: Teaching one robot to pick up and hand

an object to another robot. First a robot is taught to pick up an an object and

then reach out its arm and release the object. The second robot is then taught

to reach out its arm and catch the object released by the first robot. During

learning by the second robot to catch the object, the part of the previously

learned behavior of the first robot to hand over the object is left open so that

the first robot can adjust its release point of the object to a place that the second

robot can be sure to reach.

Previous Learned Layer Refinement (PLLR): After a layer is learned and frozen,

and then a subsequent layer is learned, part or all of the previously learned

layer is then unfrozen and relearned to better work with the newly learned

layer that is now fully or partially frozen. We consider re-optimizing a pre-

viously frozen layer under new conditions as a new learned layer behavior

with the “seam” between behaviors being the unfrozen part of the previous

learned layer. Thus there exists a non-empty subset of parameters H ′
i of a

learned behavior hi that is frozen in a subsequent layer of learning Lj , where

j > i, but then is eventually unfrozen and re-learned in the behavior hk as

part of a later layer of learning Lk, where k > j (i.e. ∃H ′
i ⊆ Hi s.t. H

′
i 6= ∅,

h′i ≺ Tj but H ′
i ∩ Hj = ∅ (learned values h′i for parameters H ′

i are frozen in

Lj), and H ′
i ⊆ Hk (learned values h′i for parameters H ′

i are unfrozen in Lk)).

This scenario is useful when a subtask is required to be learned before the next

subsequent task layer can be learned, but then refining or relearning the initial

learned subtask layer’s behavior to better work with the newly learned sub-

sequent task layer’s behavior provides a benefit. Example: Teaching a robot
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to walk. First the robot needs to learn how to stand up so that if it falls over

it can get back up and continue trying to walk. Eventually the robot learns to

walk so well that it barely if ever falls over during training. Later, when the

robot does eventually fall over, it is found that the walking motion learned by

the robot is not stable if the robot tries to walk right after standing up. The

robot needs to relearn the standing up behavior layer such that after doing so it

is in a stable position to start walking with the learned walking behavior layer.

3.4 Summary and Discussion

This chapter introduced the overlapping layered learning paradigm, and presented

general scenarios where its use is beneficial. Chapter 4 presents a case study of

overlapping layered learning applied to robot soccer which showcases overlapping

layered learning as a paradigm for efficient behavior learning.

Currently the overlapping layered learning methodologies require a person

to select which parameters to freeze and leave open during each successive layer

of learning. Additionally, learning of complex skills is manually segmented into

different layers of learning. Future work in the area of layered learning includes

the automated determination of appropriate subtasks for layered learning, as well

as automated identification and selection of useful layer overlap or “seams” to use

with overlapping layered learning methodologies. If these selection processes can be

automated it would lessen the burden and potential need for someone with expert

domain knowledge when performing optimizations.
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Figure 3.1: Paradigms for layered learning. Boxes represent different behaviors with
the behaviors or parts of behaviors being learned shown in red. The arrows represent
the transition from one layer of learning to the next.
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Chapter 4

Overlapping Layered Learning

Applied to Robot Soccer

This chapter7 presents a case study and analysis of overlapping layered learning

paradigms—introduced in Chapter 3—applied to robot soccer. The chapter’s em-

pirical evaluation of overlapping layered learning methodologies fulfills part of thesis

contribution 5 in Section 1.2.

The University of Texas at Austin has been a perennial participant in the

annual RoboCup 3D simulation soccer competitions—described in Section 2.2—and

has won the championship six times between 2011 and 2017 due in large part to the

main contributions of this dissertation.8 UT Austin’s RoboCup team, known as UT

Austin Villa, began using sequential layered learning in 2011 [103], but introduced

overlapping layered learning in 2014, and has used it since. In this chapter, we

therefore focus on that year’s team.

The remainder of this chapter is organized as follows. Section 4.1 details the

7This chapter contains material from previously published work in [106].
8RoboCup competition results from these years are provided in Appendix E.
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overlapping layered learning approach of the 2014 UT Austin Villa team, and in

Section 4.2 we provide detailed analysis of its performance. Section 4.3 summarizes.

4.1 Overlapping Layered Learning Approach

The 2014 UT Austin Villa team introduced an extensive layered learning approach

to learn skills for the robot such as getting up, walking, and kicking. This approach

includes sequential layered learning where a newly learned layer is frozen before

learning of subsequent layers, as well as overlapping layers where parts of previously

learned layers are re-optimized as part of the current layer being learned.

In total over 500 parameters were optimized during the course of layered

learning. All parameters were optimized using the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) algorithm [57]—described in Section 2.1.2—which

has been successfully applied previously to learning skills in the RoboCup 3D sim-

ulation domain [172].

A total of 705,000 learning trials were performed during the process of opti-

mizing 19 behaviors. As CMA-ES is a parallel search algorithm, optimization was

performed on a Condor [165] distributed computing cluster allowing for many jobs

to be run in parallel. Running the complete optimization process took about 5

days, and we calculated it could theoretically be completed in as little as 49 hours

assuming no job queuing delays on the computing cluster, and all possible paral-

lelism during the optimization process is exploited. Note that this same amount

of computation, when performed sequentially on a single computer,9 would take

approximately 561 days, or a little over 1.5 years, to finish.

The following subsections document the overlapping layered learning parts of

9As measured on an Intel(R) Xeon(R) CPU E31270 @ 3.40GHz.
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the approach used by the team. Full details of all of the learned behavior layers are

provided in Appendix A,10 and a diagram of how all the different layered learning

behaviors fit together during the course of learning can be seen in Figure 4.1.

Figure 4.1: Different layered learning behaviors with the number of parameters
optimized for each behavior shown in parentheses (best viewed in color). Solid
black arrows show number of learned and frozen parameters passed from previously
learned layer behaviors, dashed red arrows show the number of overlapping param-
eters being passed and relearned from one behavior to another, and the dotted blue
arrows show the number of parameter values being passed as seed values to be used
in new parameters at the next layer of learning. Overlapping layers are colored with
CILB layers in orange, PCLL in green, and PLLR in yellow. Descriptions of the
layers are provided in Appendix A.

4.1.1 Getup and Walking using PLLR

The UT Austin Villa team employs an omnidirectional walk engine using a double

inverted pendulum model to control walking. The walk engine has many parameters

that need to be optimized in order to create a stable and fast walk including the

length and frequency of steps as well as center of mass offsets. Full details of the

10Videos of some of the behaviors being learned are available at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/overlappingLayeredLearning.

html
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walk engine and its parameters are given in Section 8.2.5. Instead of having a single

set of parameters for the walk engine, which in previous work we found to limit

performance [103], walking is broken up into different subtasks for each of which a

set of walk engine parameters is learned.

Before optimizing parameters for the walk engine, “getup” behaviors are

learned so that if the robot falls over it is able to stand back up and start walking

again. Getup behaviors are necessary for faster learning during walk optimizations,

as without the ability to get up after falling, a walk optimization task would have

to be terminated as soon as the robot fell over. There are two such behaviors

for getting up: GetUp Front Primitive for standing up from lying face down and

Getup Back Primitive for standing up from lying face up. Each getup behavior

consists of different joint angle movements that form a fixed series of poses. The

poses themselves are specified in a parameterized skill description language. Infor-

mation about the skill description language is provided in Section 8.2.6. During

learning, getup behaviors are evaluated based on how quickly the robot is able to

stand up [104].

After the getup primitive behaviors are learned, we start optimizing the first

walk engine parameter set in the next layer of learning. This is theWalk GoToTarget

behavior which is used for walking to different target locations on the soccer field.

Learning this walk is accomplished by having the robot walk to a series of target

points on the field in the form of an obstacle course, and the robot is rewarded

for how quickly it can complete the obstacle course while being penalized for every

time it falls over. After theWalk GoToTarget parameter set is learned and fixed, the

Walk Sprint walk engine parameter set used to quickly walk straight forward—to

targets within 15◦ of the robot’s current heading—is then optimized in the third
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layer of learning using the same obstacle course optimization task. Full details

of how these walk parameter sets are optimized can be found in Appendix A.1.

Note that the optimization tasks used for learning different walk parameter sets

purposely transition between all previously learned walk parameter sets and the

current one being learned to ensure that the robot can smoothly transition between

them without losing stability.

After learning both the Walk GoToTarget and Walk Sprint walk engine pa-

rameter sets, we re-optimize the getups by learning the GetUp Front Behavior and

GetUp Back Behavior behaviors in the fourth layer of learning. GetUp Front Behavior

and GetUp Back Behavior are overlapping layered learning behaviors as they con-

tain the same parameters as the previously learned GetUp Front Primitive and

GetUp Back Primitive behaviors respectively. The getup behavior parameters are

re-optimized from their primitive behavior values through the same optimization

as the getup primitives, but with the addition that right after completing a getup

behavior the robot is asked to walk in different directions and is penalized if it falls

over while trying to do so. Unlike the getup primitive behaviors, which were learned

in isolation, the relearned getup behaviors are stable transitioning from standing up

and then almost immediately walking. One might think that the walk parameter

sets learned would be stable transitioning from the original learned getups due to

the getup primitive behaviors being used in the walk parameter optimization tasks,

however this is not always the case. During learning, walks become stable such that

toward the end of optimizing a walk parameter set the robot almost never falls, and

thus rarely uses the getup primitive behaviors. Relearning the getup behaviors is

an example of previous learned layer refinement (PLLR).
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4.1.2 Kicking using CILB

Four primitive kick behaviors were learned by the 2014 UT Austin Villa team

(Kick Long Primitive, Kick Low Primitive, Kick High Primitive, andKick Fast Primitive).

Each kick primitive, or kicking motion, was learned by placing the robot at a fixed

position behind the ball and having it optimize joint angles for a fixed set of key

motion frames defined by a skill description language. Information about the skill

description language is provided in Section 8.2.6. Note that initial attempts at learn-

ing kicks directly with the walk, instead of learning kick primitives independently,

proved to be too difficult due to the variance in stopping positions of the walk as

the robot approached to kick the ball.

While the kick primitive behaviors work quite well when the robot is placed

in a standing position behind the ball, they are very hard to execute when the robot

tries to walk up to the ball and kick it. One reason for this difficulty is that when the

robot approaches the ball to kick it using the Walk ApproachToKick walk parameter

set—used for approaching and stopping at a precise position behind the ball before

executing a kick—the precise offset position from the ball that the kick primitives

were optimized to work with do not match that of the position the robot stops at

after walking up to the ball. In order to allow the robot to transition from walking

to kicking, full kick behaviors for all the kicks are optimized (Kick Long Behavior,

Kick Low Behavior, Kick High Behavior, Kick Fast Behavior). Each full kick be-

havior is learned by having the robot walk up to the ball and attempt to kick

it from different starting positions—as opposed to having the robot just standing

behind the ball as was done when optimizing the kick primitive behaviors.

The full kick behaviors are overlapping layered learning behaviors because

they re-optimize previous learned parameters. In the case of Kick Fast Behavior,
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only the x and y kick primitive offset position parameters from the ball, which

is the target position for the walk to reach for the kick to be executed, are re-

optimized. The fast kick is quick enough that it almost immediately kicks the ball

after transitioning from walking, and thus just needs to be in the correct position

near the ball to do so. A comparison of overlapping layered learning paradigms

for learning Kick Fast Behavior is shown in Figure 4.2. The above overlapping

layered approach of first independently learning the walk approach and kick, and

then learning the two position parameters, does better than both the sequential

layered learning approach where all kick parameters are learned after freezing the

approach, and the concurrent layered learning approach where both approach and

kick parameters are learned simultaneously.

For the other full kick behaviors, all kick parameters from their respective

kick primitive behaviors are re-optimized. Unlike the fast kick, there is at least a one

second delay between stopping, walking, and kicking the ball, during which the robot

can easily become destabilized and fall over. By opening up all kicking parameters

the robot has the necessary freedom to learn kick motions that maintain its stability

between stopping after walking and making contact with the ball. Learning the kick

behaviors by combining them with the Walk ApproachToKick behavior for walking

up to the ball are all examples of combining independently learned behaviors (CILB).

4.1.3 KickOff using both CILB and PCLL

For kickoffs the robot is allowed to “teleport” itself to a starting position next to the

ball before kicking it, and thus does not need to worry about walking up to the ball.

Scoring directly off a kickoff is not allowed, however, as another robot must first

touch the ball before it goes into the opponent’s goal. In order to score on a kickoff
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Figure 4.2: Performance of different layered learning paradigms across generations
of CMA-ES when optimizing Kick Fast Behavior. Results are averaged across five
optimization runs and error bars show the standard error.

we perform a multiagent task where one robot touches the ball before another kicks

it.

The first behavior optimized for scoring off the kickoff isKickOff Kick Primitive

in which a robot kicks the ball from the middle of the field. The robot is rewarded

for kicking the ball as high and as far as possible as long as the ball crosses the

goal line below the height of the goal. In parallel a behavior for another robot is

learned to lightly touch the ball called KickOff Touch Primitive. Here a robot is

rewarded for touching the ball lightly and, after ensuring that the robot has made
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contact with the ball, that the ball moves as little as possible. Finally an overlap-

ping layered behavior called KickOff Kick Behavior is learned which re-optimizes x,

y, and θ angle offset positions from the ball from both the KickOff Kick Primitive

and KickOff Touch Primitive behaviors. Re-optimizing these positioning parame-

ters together is important so that the robots do not accidentally collide with each

other and also so that the kicking robot is at a good position to kick the ball after

the first agent touches it. Learning KickOff Kick Behavior is another example of

combining independently learned behaviors (CILB).

In addition to the positioning parameters of both robots being re-optimized

for KickOff Kick Behavior, a new parameter that determines the time at which the

first robot touches the ball is optimized. This synchronized timing parameter is

necessary so that the robots are synced with each other and the kicking robot does

not accidentally try to kick the ball before the first robot has touched it. As a

new parameter is optimized along with a subset of previously learned parameters,

learning KickOff Kick Behavior is also an example of partial concurrent layered

learning (PCLL).

Further information about the kickoff, including how a seed for the kick was

learned through observation, can be found in [41].

4.2 Results and Analysis

At the 2014 RoboCup 3D simulation competition—the first year the UT Austin

Villa team used overlapping layered learning—UT Austin Villa finished first among

12 teams while scoring 52 goals and conceding none across 15 games.11 Considering

that most of the team’s strategy layer—including team formations using a dynamic

11Full game results are provided in Appendix E.
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role assignment and formation positioning system [111]—remained unchanged from

that of the previous year’s second place finishing team, a key component to the 2014

team’s improvement and success at the competition was the new approach incorpo-

rating overlapping layered learning used to learn the team’s low level behaviors.

After every RoboCup competition teams are required to release the binaries

that they used during the competition. In order to analyze the performance of the

different components of our overlapping layered learning approach before the 2014

competition, we played 1000 games with different versions of the UT Austin Villa

team against each of the top three teams from the RoboCup 2013 competition.

The following subsections provide analysis of game results when turning on and off

the kickoff and kicking components learned though an overlapping layered learning

approach. Additionally, to demonstrate the generality of our overlapping layered

learning approach, we provide data that isolates the performance of our complete

overlapping layered learning approach applied to different robot models.

4.2.1 Overall Team Performance

Table 4.1 shows the average goal difference across all games against each opponent

achieved by the complete 2014 UT Austin Villa team. Against all opponents the

team had a significantly positive goal difference, and in fact out of the 3000 games

played the team only lost one game (to AustinVilla2013). These game results show

the effectiveness of the team’s overlapping layered learning approach in dramatically

improving the performance of the team from the previous year in which the team

achieved second place at the competition—the 2014 team is able to beat the previous

year’s team by an average of 1.525 goals.

Data provided in Appendix E, showing the overall team’s performance when
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Table 4.1: Full game results, averaged over 1000 games. Each row corresponds to
one of the top three finishing teams at RoboCup 2013. Entries show the average goal
difference achieved by the 2014 UT Austin Villa team versus the given opponent
team. Values in parentheses are the standard error. Total number of wins, losses,
and ties across all games was 2852, 1, and 147 respectively.

Opponent Average Goal Difference

Apollo3D 2.726 (0.036)

AustinVilla2013 1.525 (0.032)

FCPortugal 3.951 (0.049)

playing against the released 2014 teams’ binaries, corroborates the overall team’s

strong performance. When playing 1000 games against each of the eleven 2014 oppo-

nents UT Austin Villa did not lose a single game out of the 11,000 played, and had at

least an average goal difference of 2 against every opponent. Additionally, bolstered

by the team’s strong set of skills developed through overlapping layered learning

techniques, UT Austin Villa won all games it played at the RoboCup 2015 [108],

2016 [114], and 2017 competitions.12

4.2.2 KickOff Performance

To isolate the performance of the learned multiagent behavior to score off the kickoff,

we disabled this feature and instead just had the robot taking the kickoff kick the

ball toward the opponent’s goal to a position as close as possible to one of the goal

posts without scoring. Table 4.2 shows results from playing against the top three

teams at RoboCup 2013 without attempting to score on the kickoff.

By comparing results in Table 4.2 to that of Table 4.1 we see a significant

drop in performance when not attempting to score on kickoffs. This result is not

surprising as we found that the kickoff was able to score around 90% of the time

against Apollo3D and FCPortugal, and over 60% of the time against the 2013 version

12Competition results are provided in Appendix E.
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Table 4.2: Full game results, averaged over 1000 games. Each row corresponds to
one of the top three finishing teams at RoboCup 2013. Entries show the average goal
difference achieved by a version of the 2014 UT Austin Villa team not attempting
to score on a kickoff versus the given opponent team. Values in parentheses are the
standard error. Total number of wins, losses, and ties across all games was 2644, 5,
and 351 respectively.

Opponent Average Goal Difference

Apollo3D 2.059 (0.038)

AustinVilla2013 1.232 (0.032)

FCPortugal 3.154 (0.046)

of UT Austin Villa. The combination of using both CILB and PCLL overlapping

layered learning led to a large boost to the team’s performance.

4.2.3 Kicking Performance

To isolate the performance of kicking learned through an overlapping layered learn-

ing approach we disable all kicking (except for on kickoffs where we once again have

a robot kick the ball as far as possible toward the opponent’s goal without scoring)

and used an “always dribble” behavior. Data from playing against the top three

teams at the RoboCup 2013 competition when only dribbling is shown in Table 4.3.

Table 4.3: Full game results, averaged over 1000 games. Each row corresponds to
one of the top three finishing teams at RoboCup 2013. Entries show the average
goal difference achieved by a version of the 2014 UT Austin Villa team using a
dribble only strategy versus the given opponent team. Values in parentheses are the
standard error. Total number of wins, losses, and ties across all games was 2480,
15, and 505 respectively.

Opponent Average Goal Difference

Apollo3D 1.790 (0.033)

AustinVilla2013 0.831 (0.023)

FCPortugal 1.593 (0.028)

Here we see another significant drop in performance when comparing Ta-
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ble 4.3 to Table 4.2. Kicking provided a large gain in performance, nearly doubling

the average goal difference against FCPortugal, compared to only dribbling. This

result is in stark contrast to when UT Austin Villa won the 2011 RoboCup com-

petition, in which the team tried to incorporate kicking skills without using an

overlapping layered learning approach, and found that kicking actually hurt the

performance of the team [117].

4.2.4 Different Robot Models

At the 2014 RoboCup competition teams were given the option of using five different

robot types with the requirement that at least three different types of robots must

be used on a team and no more than seven of any one type. The five types of robots

available were the following:

Type 0: Standard Nao model

Type 1: Longer legs and arms

Type 2: Quicker moving feet

Type 3: Wider hips and longest legs and arms

Type 4: Added toes to foot

We applied our overlapping layered learning approach for learning behaviors

to each of the available robot types. Game data from playing against the top three

teams at RoboCup 2013 is provided in Table 4.4 for each robot type.

While there are some differences in performance between the different robot

types, likely due to the differences in their body models, all of the robot types are

able to reliably beat the top teams from the 2013 RoboCup competition. This shows

the efficacy of our overlapping layered learning approach and its ability to generalize
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Table 4.4: Full game results, averaged over 1000 games. Each row corresponds to
one of the top three finishing teams at RoboCup 2013. Entries show the average goal
difference achieved by a version of the 2014 UT Austin Villa team using different
heterogeneous robot types versus the given opponent team.

Avg. Goal Difference per Robot Type

Opponent Type 0 Type 1 Type 2 Type 3 Type 4

Apollo3D 1.788 1.907 1.892 1.524 2.681

AustinVilla2013 0.950 0.858 1.152 0.613 1.104

FCPortugal 2.381 2.975 3.331 2.716 3.897

to different robot models. During the 2014 competition the UT Austin Villa team

used seven type 4 robot models as they showed the best performance, two type 0

robot models as they displayed the best performance on kickoffs, and one each of

the type 1 and type 3 robot models as they were the fastest at walking [105].

4.2.5 Summary of Results

Results from the data we collected in Section 4.2.1 and Appendix E provide evidence

of the 2014 team’s overall improvement and success gained by incorporating overlap-

ping layered learning into the approach used to learn the team’s low level behaviors.

In particular, kicks learned through overlapping layered learning techniques boosted

the performance of the team as shown by the data isolating the kicks’ contributions

to game results in Sections 4.2.2 and 4.2.3. Finally, the generality of our learning

approach is demonstrated by its success when applied to different robot models in

Section 4.2.4.

4.3 Summary

This chapter provided a detailed description and experimental analysis of the ex-

tensive overlapping layered learning approach used by the UT Austin Villa team in
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winning the 2014 RoboCup 3D simulation competition.13 Furthermore, the com-

plete learning process is repeated on four different robot body types, showcasing its

generality as a paradigm for efficient behavior learning. While first introduced in

2014, overlapping layered learning has continued to be used successfully by the UT

Austin Villa team in all years since then as well.

A base code release of the 2015 UT Austin Villa RoboCup 3D simulation

agent [115], which includes hooks for optimizing the skills and behaviors presented

in this work, is discussed in Chapter 8.

13Team video highlights from the competition can be found on the team’s homepage at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/#2014
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Chapter 5

Scalable Collision-avoiding Role

Assignment with

Minimal-makespan (SCRAM)

This chapter14 presents Scalable Collision-avoiding Role Assignment with Minimal-

makespan (SCRAM) role assignment functions and algorithms—another primary

contribution of this dissertation. Specifically this chapter addresses thesis contribu-

tions 2 and 3 in Section 1.2.

Coordinated movement among mobile agents is an important research area

with many applications such as search and rescue [81] and warehouse operations [178].

A topic within this space is role assignment—deciding which agent moves to which

position or role. Work in this chapter focuses on the problem of assigning mobile

agents to move to a set of fixed target positions such that the makespan—time for

all agents to reach their targets positions—is minimized. Minimizing the makespan

14This chapter contains material from previously published work in [111].
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is a decisive factor in performance when agents are moving to target positions to

complete a shared task where all agents must be in place before the task can be

completed and/or started.

The remainder of this chapter is organized as follows. Section 5.1 gives a high

level overview of SCRAM role assignment. Section 5.2 provides a formulation of the

role assignment problem we are solving. Two role assignment functions, as well as

algorithms implementing them, are presented in Section 5.3. An empirical evaluation

of role assignment functions and algorithms is given in Section 5.4. Section 5.5

summarizes.

An extension to SCRAM role assignment for the prioritization of target po-

sitions is presented in Chapter 6, and Chapter 7 provides applications and case

studies of positioning systems incorporating SCRAM role assignment used within

RoboCup robot soccer domains.

5.1 Overview

Movement coordination of mobile agents spans multiple research topics including

role assignment [29, 123, 70], path planning [121, 151, 90], and collision avoid-

ance [64, 144, 173]. The work in this chapter focuses on role assignment—specifically

tackling the problem of assigning interchangeable homogeneous mobile agents to

move to a set of fixed target positions such that an agent is present at every target

position in as little time as possible. Path planning and collision avoidance issues are

addressed during role assignment, as mappings of agents to target positions operate

under the constraint that no agents collide.

Previous work on assigning agents to target positions has focused on minimiz-

ing the sum of distances all agents must travel which is the well known assignment
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problem [138]. Our work differs as we minimize the makespan—time for all agents

to reach goal positions—instead of the sum of distances traveled. Minimizing the

makespan is a decisive factor in performance when agents are moving to target

positions to complete a shared task where all agents must be in place before the

task can be completed and/or started. Such tasks include those requiring agents be

synchronized when they start jobs at their target positions, e.g., mobile robots as-

suming necessary positions on an assembly line. Other such tasks involve scenarios

for which the bottleneck is the time it takes for the last agent to get to its target

position, e.g., warehouse robots delivering items for an order to be shipped, and

mobile robots used as pixels to display images [15].

We refer to our role assignment as SCRAM, for Scalable Collision-avoiding

Role Assignment with Minimal-makespan. It provides a collision free mapping of

agents to target positions, minimizes the makespan, and scales to thousands of

agents as role assignment algorithms run in polynomial time. Primary contributions

of this chapter include a complete specification of SCRAM, the presentation of role

assignment functions for assigning agents to target positions, algorithms (both new

and existing) for computing the role assignment functions,15 as well as a thorough

theoretical and empirical analysis of the role assignment problem.

5.2 Role Assignment Problem

Let there be n homogeneous mobile agents with current positions A := {a1, ..., an},

and we want to assign the agents to move to n specified target goal positions or

roles P := {p1, ..., pn} such that the time for agents to have reached every goal

15Videos of SCRAM role assignment in action, as well as C++ implementations of the role assign-
ment algorithms, can be found at http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
scram.html
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position is minimized under the constraint that no agents collide with each other.

Figure 5.1 illustrates an example problem with six agents and target positions.

This problem can be thought of as finding a perfect matching M∗ within the set

of perfect matchings M of a weighted bipartite graph G := (A,P,E) that meets

the above criteria with the weight for each edge in E being the Euclidean distance

between associated agent and target positions.

Figure 5.1: Role assignment problem where we want to assign agents (circles)
{a1,...,a6} to target positions (crosses) {p1,...,p6}. Dashed arrows show solution
with minimal makespan.

Similar to path planning work by Broucke [25, 26], we model agents as point

masses with zero width. Additionally, we make two more assumptions. First, no two

agents and no two target positions occupy the same position. Second, we assume

that all agents move toward fixed target positions along a straight line at the same

constant speed. While the assumptions may not hold in practice, they are necessary

for theoretical analysis of the role assignment problem and are often good enough

approximations, as corroborated by our successful empirical results in RoboCup

domains presented in Chapter 7. We mention a potential extension of our work in

Section 10.2.2 that includes allowing for non-point masses as well as obstacles in the

environment.
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We consider a role assignment function f to be CM valid (Collision-avoiding

with Minimal-makespan) if and only if it always returns a perfect mapping M∗ that

satisfies two properties:

1. Minimizing longest distance - M∗ minimizes the longest distance from an

agent to target, with respect to all possible mappings. Such a mapping for the

problem shown in Figure 5.1 would not include a2 → p5 as that is the longest

distance between an agent and target. Instead M∗ includes a1 → p3 which is

the minimal longest distance any agent travels across all possible assignments

of agents to targets.

2. Avoiding collisions - agents do not collide with each other as they move to

their assigned positions. In Figure 5.1 a mapping including both a1 → p1 and

a2 → p2 would not have this property as it would cause agents a1 and a2 to

collide.

A third desirable property, although not necessary for a role assignment

function f to be CM valid, is the following:

3. Dynamically consistent - Given a fixed set of target positions, if f outputs a

mapping M of agents to targets at time T , then f continues to output M for

every time t > T as the agents move to the targets specified by M .

The first two properties come directly from the definition of the role assign-

ment problem. The third property guarantees that once a role assignment function

f outputs a mapping, f will always output that same mapping as long as there is no

change in the target positions. This guarantee is desirable as otherwise agents might

thrash between roles thus impeding progress. In the following section we construct

CM valid role assignment functions.
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5.3 Role Assignment Functions

The following subsections present two CM valid role assignment functions for the

role assignment problem detailed in Section 5.2. Algorithmic implementations of

the functions and analysis of their time and space complexities are also given.

5.3.1 Minimum Maximal Distance Recursive (MMDR) Function

One potential role assignment function is to find a mapping of agents to target posi-

tions which recursively minimizes the maximum distance that any agent travels. We

refer to this as this the Minimum Maximal Distance Recursive (MMDR) function.

It is also known as the lexicographic bottleneck assignment problem [138]. In this

section we first analyze properties of MMDR, and then identify efficient polynomial

time algorithms to compute MMDR.

Let M be the set of all one-to-one mappings between agents and roles. If

there are n agents and n target role positions, then there are n! possible mappings

M ∈M. Let the cost of a mapping M be the n-tuple of distances from each agent to

its target, sorted in decreasing order. We can then sort all the n! possible mappings

based on their costs, where comparing two costs is done lexicographically. Sorted

costs of mappings for a small example are shown in Figure 5.2.
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Figure 5.2: Lowest lexicographical cost (shown with arrows) to highest cost order-
ing of mappings from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row
represents the cost of a single mapping.

1:
√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√
2 (A3→P3), 1 (A2→P1)

3:
√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√
5 (A2→P3), 2 (A1→P2),

√
2 (A3→P1)

5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)

6: 3 (A1→P3),
√
2 (A2→P2),

√
2 (A3→P1)

Denote the role assignment function that always outputs the lexicographi-

cally smallest cost mapping as MMDR. Here we provide an informal proof sketch

that MMDR is CM valid and is also dynamically consistent; we provide a longer,

more thorough derivation showing MMDR as CM valid in Appendix B.1, and being

dynamically consistent in Appendix B.2.

Theorem 1. MMDR is CM valid and dynamically consistent.

Proof Sketch: MMDR minimizes the longest distance (Property 1) as the lexico-

graphical ordering of distance tuples sorted in descending order ensures this. If two

agents in a mapping are to collide (Property 2) it can be shown, through the triangle
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inequality, that MMDR will find a lower cost mapping as switching the two agents’

targets reduces the maximum distance either must travel. Finally, as we assume all

agents move toward their targets at the same constant rate, the distance between

an agent and any target will not decrease any faster than the distance between any

agent and the target that agent is assigned to. This observation provides dynamic

consistency (Property 3) by preserving the lowest lexicographical cost ordering of a

MMDR mapping across all timesteps. �

O(n5) Polynomial Time Algorithm for MMDR

We can compute the MMDR role assignment function in polynomial time by trans-

forming MMDR into the assignment problem—finding a perfect matching in a bi-

partite graph that minimizes the sum of edge weights—which is solvable by the

Hungarian algorithm [86] in O(n3) time.

In order to transform MMDR into the assignment problem we modify the

weights of the edges of our bipartite graph to be a set of values such that the weight

of any edge e is greater than the sum of weights of all edges with weight values less

than that of e. A key insight into this transformation is expressed in Lemma 1.

Lemma 1. Denote Wn := {w0, ..., wn} where wi := 2i. Then for all W ⊆ Wn−1 :

wn >
∑

w∈W

w.

By sorting all edges in ascending order by distance, and then relabeling edge

weights to be the value 2i where i is the index of an edge in this sorted list, the

sum of all edge weights of shorter distance edges will be less than any sum of edge

weights with a longer edge. Solutions to the assignment problem return lowest cost

MMDR mappings as the sum of modified weights of any mapping with a higher cost

is greater than that of a lower cost mapping.
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Algorithm 1 gives a polynomial time solution for computing MMDR. First,

weights are sorted in ascending order of distance (line 1). Next, edge weights are

transformed into appropriate values for the assignment problem as expressed in

Lemma 1 (line 8). Finally, the re-weighted edges are given as input into the Hun-

garian algorithm which returns the lowest cost MMDR mapping (line 10). Time

complexity is dominated by the O(n3) Hungarian algorithm. Note that our trans-

formed edge weights, represented as bit vectors with the ith bit of a 2i value turned

on, are of size n2. The Hungarian algorithm must do comparisons of these weights

and thus the time complexity of Algorithm 1 is O(n5). As our implementation of

the Hungarian algorithm requires us to store length n lists of size n2 transformed

weights, Algorithm 1 has a space complexity of O(n3). Algorithm 1 meets the

criterion for being SCRAM as it computes the CM valid MMDR role assignment

function with polynomial time and space complexities.

Algorithm 1 MMDR O(n5) Polynomial Time Implementation

Input:
Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {a1p1, a1p2, ..., anpn}; |aipj | := euclideanDist(ai,pj)

1: edgesSorted := sortAscendingDist(Edges)
2: lastDistance := −1
3: rank, currentIndex := 0
4: for each e ∈ edgesSorted do
5: if |e| > lastDistance then
6: rank := currentIndex
7: lastDistance := |e|
8: |e| := 2rank

9: currentIndex := currentIndex+ 1

10: return hungarianAlg(edgesSorted)

There exists previous work in modifying edge weights to transform the lex-

icographic bottleneck assignment problem into the assignment problem. For cases
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in which there are n2 edges, with each having a unique cost, a higher complexity

O(n5 log n) algorithm exists [27]. Work by Croce et al. [35] changes edge weights

into weight vectors of length n before solving the assignment problem and has the

same time complexity as our method of O(n5). However, on modern computer ar-

chitectures Algorithm 1 is more efficient as we represent edge weights as bit vectors

instead of vectors of integers. The compact format of bit vectors allows for integer

operations to be performed on w bits in parallel where w is the size of a processor’s

maximum word length. This parallelism reduces the running time by a factor of w,

e.g., a factor of 64 on a 64-bit architecture.

O(n4) Polynomial Time Algorithm for MMDR

Another approach to compute MMDR, introduced by Sokkalingam and Aneja [153],

and detailed in Algorithm 2, alternates between solving the bottleneck assignment

problem [138]—finding the smallest maximum edge in a perfect matching—and a

0-1 cost version of the assignment problem.

At every iteration of Algorithm 2 solving the bottleneck assignment problem

(line 5 implemented by Algorithm 3 discussed later in this section) returns the cur-

rent largest edge weight value in the MMDR mapping. Next solving the assignment

problem using the Hungarian algorithm (line 7), with 0-1 edge costs as specified in

line 6, returns a mapping whose sum of costs (line 8) reveals the number of edges

of this weight in the MMDR mapping.

At the same time the Hungarian algorithm naturally computes a potential

function poten over the set of vertices in the bipartite graph such that ∀ea,p ∈ Edges :

poten(a) + poten(p) <= cost(ea,p). It is revealed by Sokkalingam and Aneja [153]

that all perfect matchings of the subset of tight edges—defined as edges for which
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Algorithm 2 MMDR O(n4) Polynomial Time Implementation

Input:
Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,

−−→a1p2, ...,
−−→anpn}; |−−→aipj | := euclideanDist(ai,pj)

1: function getTightEdges(poten)
2: return ea,p ∈ Edges, s.t. poten(a) + poten(p) = cost(ea,p)

3: numEdgesLeft := n
4: loop
5: minLongestEdge := getMinimalMaxEdgeInPerfectMatching(Edges)

6: ∀e ∈ Edges







|e| < |minLongestEdge| : cost(e) := 0
|e| = |minLongestEdge| : cost(e) := 1
|e| > |minLongestEdge| : cost(e) :=∞

7: {matching, poten} := hungarianAlgWithEdgeCosts(Edges)
8: numLongestEdges :=

∑

e∈matching

cost(e)

9: numEdgesLeft := numEdgesLeft− numLongestEdges
10: if numEdgesLeft = 0 then
11: return matching

12: Edges := getTightEdges(poten)
13: ∀e ∈ Edges, s.t. |e| = |minLongestEdge| : |e| := −1

poten(a) + poten(p) = cost(ea,p)—contain exactly numLongestEdges edges of length

|minLongestEdge|. Given this knowledge we remove all non-tight edges from con-

sideration in the MMDR mapping (line 12). The reduction to tight edges, and

reducing the weight of edges of length |minLongestEdge| (line 13), results in subse-

quent solutions of the bottleneck assignment problem revealing the next largest edge

weight value in the MMDR mapping as every perfect matching will have exactly

numLongestEdges edges of length |minLongestEdge|. We learn the weight of num-

LongestEdges edges in the MMDR mapping during every iteration of Algorithm 2,

and after determining the weights for n edges, the solution returned by the Hungar-

ian algorithm is the MMDR mapping (line 11).

Algorithm 3 finds the minimal maximum edge in a perfect matching by in-

60



crementally adding edges to the graph in order of increasing distance from the list

of edges sorted in ascending order of weight (line 23). It interleaves adding edges

(line 30) with running the Ford-Fulkerson algorithm [47] for finding a maximum car-

dinality, i.e., maximum number of edges, matching. Ford-Fulkerson—implemented

with the flood, resetFlood, and reversePath functions—works by using a breath-

first search to find augmenting paths from an agent to a target. Augmenting paths

are alternating paths between agents and targets, along directed edges, whose start

and end points have a degree of one.

Algorithm 3 starts with a graph with the empty set of edges allowedEdges

(line 1), and whenever the breadth-first search of the Ford-Fulkerson algorithm is

unable to find a path from an agent to a target, Algorithm 3 adds an edge to

the graph (line 30) and continues the breadth-first search. At the point when the

algorithm finds n paths from agents to target, the last edge added is the minimal

maximum edge for a perfect matching.

An important factor for performance in Algorithm 3 is that it can pick up

the Ford-Fulkerson breadth-first search where it left off after adding an edge as any

nodes previously reachable in the graph remain reachable. Because the algorithm

does not lose state in each breadth-first search, each breadth-first search takes O(E)

time. Thus the total time for running Algorithm 3 to find a perfect matching with

the minimum maximal edge length is O(nE) which is less than the O(n3) time

complexity of the Hungarian algorithm.

Note that one can compute a maximum cardinality matching using the

Hopcroft-Karp algorithm [65] in O(E
√
n) time, and thus can perform a binary

search across all n2 edges to find the minimal maximum edge in a perfect matching

in O(n2.5 log n2) time. Empirically we found this approach to be slower than the
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Algorithm 3 Minimal-maximum Edge Perfect Matching

Input:
Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,

−−→a1p2, ...,
−−→anpn}; |−−→aipj | := euclideanDist(ai,pj)

1: matchedAgents, allowedEdges := {}
2: function flood(curNode, prevNode)
3: curNode.visited := true
4: curNode.previous := prevNode
5: if curNode ∈ Positions and 6 ∃ e ∈ allowedEdges, s.t. e.start = curNode

then
6: return currentNode
7: for each e ∈ allowedEdges, s.t. (e.start = curNode and not e.end.visited)

do
8: val := flood(e.end, e.start)
9: if val 6= ∅ then

10: return val
11: return ∅

12: function resetFlood
13: for each node ∈ {Agents ∪ Positions} do
14: node.visited := false
15: node.previous := ∅

16: for each a ∈ {Agents \matchedAgents} do
17: flood(a,∅)

18: function reversePath(node)
19: while node.previous 6= ∅ do

20: reverseEdgeDirection(
−−−−−−−−−−−−−−→
node,node.previous)

21: node := node.previous

22: return node

23: edgeQ := sortAscendingDist(Edges)
24: longestEdge := ∅

25: for match := 1 to n do
26: resetFlood()
27: matchedPosition := ∅

28: while matchedPosition = ∅ do
29: longestEdge := edgeQ.pop()
30: allowedEdges← longestEdge
31: matchedPosition := flood(longestEdge.end, longestEdge.start)

32: matchedAgent := reversePath(matchedPosition)
33: matchedAgents← matchedAgent

34: return longestEdge
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breadth-first search approach of Algorithm 3, possibly due to the overhead of con-

structing different graphs, which is not that surprising as other have found similar

results [150]. For dense graphs there exists an algorithm with a better time complex-

ity than Hopcroft-Karp of O(n1.5
√

E/ logn) for computing a maximum cardinality

matching [16], however we have not tried using this algorithm with a binary search

to find the minimal maximum edge in a perfect matching.

At least one new minimal maximum edge in a perfect matching is determined

during every iteration of the loop in Algorithm 2. Thus no more than n instances of

both the Hungarian algorithm and Algorithm 3 need to be computed. As the O(n3)

time complexity of the Hungarian algorithm dominates Algorithm 2’s loop, the time

complexity of Algorithm 2 is O(n4). The breadth-first search of Ford-Fulkerson in

Algorithm 3 gives a space complexity of O(n2). Algorithm 2 meets the criterion for

being SCRAM as it computes the CM valid MMDR role assignment function with

polynomial time and space complexities.

5.3.2 Minimum Maximal Distance + Minimum Sum Distance2

(MMD+MSD2) Function

Another role assignment function to map agents to target goal positions is one which

minimizes the maximum distance any agent has to travel—but not recursively as

done by MMDR in Section 5.3.1—after which it minimizes the sum of distances

squared that all agents travel. We call this the Minimum Maximal Distance +

Minimum Sum Distance2 (MMD+MSD2) role assignment function. Specifically we
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want to find a perfect matching M∗ such that

M
′′ := {X ∈M | ‖X‖∞ = min

M∈M
(‖M‖∞)} (5.1)

M∗ := argmin
M∈M′′

(‖M‖22) (5.2)

Here we provide an informal proof sketch that MMD+MSD2 is a CM valid

role assignment; we provide a longer, more thorough derivation in Appendix B.1.

Theorem 2. MMD+MSD2 is CM valid but not necessarily dynamically consistent.

Proof Sketch: By only considering the set of perfect matchings M′′ with minimal

longest edges (equation 5.1) we are minimizing the longest distance any agent must

travel (Property 1). If two agents in a mapping are to collide (Property 2), it

can be shown, through the triangle inequality, that MMD+MSD2 will find a lower

cost mapping as switching the two agents’ targets reduces, but never increases, the

distance that one or both must travel thereby reducing the sum of distances squared

(equation 5.2) and the longest distance (equation 5.1).

Unlike MMDR, MMD+MSD2 is not dynamically consistent because dis-

tances squared do not decrease at a constant rate, but in fact decrease at faster

rates for larger distances, as agents move toward targets. As an example, the dif-

ference in distance squared as an agent moves from 5 meters to 4 meters from a

target (52− 42 = 9) is greater than the difference moving from 4 meters to 3 meters

(42 − 32 = 5). This lack of a constant rate of decrease for distances squared allows

for squared distances between an agent and targets it is not assigned to travel to-

ward to decrease faster than the squared distance between an agent and the target

it is assigned to. The sum of distances squared for non-MMD+MSD2 mappings

can thus become less than the current MMD+MSD2 mapping as agents travel to
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their targets. An example of where MMD+MSD2 is shown to not be dynamically

consistent is referred to in Appendix B.2. �

A potentially beneficial byproduct of minimizing the sum of distances squared

is that, as alluded to in [25], subsets of edges in a mapping that hold this property

will never cross. This is useful in preventing collisions if the assumption that agents

all move at the same constant speed does not hold true. Note that finding a smallest

maximum edge perfect matching—one that minimizes the makespan—with no path

crossings has been shown to be NP-hard [7, 28].

Polynomial Time Algorithm for MMD+MSD2

Algorithm 4 implements MMD+MSD2 by first finding a perfect matching with the

smallest maximum edge (line 1) which is computed by Algorithm 3 presented earlier

in Section 5.3.1. Algorithm 4 then creates a set of minimalEdges consisting of all

edges with length less than or equal to the longest edge in the perfect matching

(line 2) and uses it as input to the Hungarian algorithm (line 3). Note that edge

weights are their distances squared and thus the Hungarian algorithm minimizes the

sum of distances squared. As all edges greater in length than the minimal maximum

edge in a perfect matching are removed before running the Hungarian algorithm,

the maximum distance any agent travels is also minimized.

Algorithm 4 MMD+MSD2 O(n3) Polynomial Time Implementation

Input:
Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,

−−→a1p2, ...,
−−→anpn}; |−−→aipj | := euclideanDist(ai,pj)

2

1: longestEdge := getMinimalMaxEdgeInPerfectMatching(Edges)
2: minimalEdges := e ∈ Edges, s.t. |e| ≤ |longestEdge|
3: return hungarianAlg(minimalEdges)
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The O(n3) time complexity of the Hungarian algorithm dominates Algo-

rithm 3 and thus the time complexity of Algorithm 4 is O(n3). The breadth-

first search of Ford-Fulkerson in Algorithm 3 gives a space complexity of O(n2).

Algorithm 4 meets the criterion for being SCRAM as it computes the CM valid

MMD+MSD2 role assignment function with polynomial time and space complexi-

ties.

5.4 Assignment Function and Algorithm Analysis

To evaluate role assignment algorithms, we generated mapping scenarios for n agents

and targets. Both agents and targets were assigned random integer value positions

on a two dimensional square grid with sides of length n2. Table 5.2 shows the average

run-time of the SCRAM algorithms presented in Section 5.3 for different values of n.

For comparison purposes Table 5.2 also includes data from a couple of non-SCRAM

algorithms:16 an exponential time dynamic programming algorithm for MMDR

presented in Appendix C, and a brute force algorithm that evaluates all possible

mappings. The slowest was the brute force algorithm evaluating all n! possible

mappings. The fastest was MMD+MSD2 which has the lowest time complexity and

a relatively low space complexity as shown in Table 5.1. MMD+MSD2 took less

than half a second for 1000 agents and less than two minutes for 10,000 agents.

The polynomial time implementations of MMDR scale well to 100s of agents and

are much faster than the dynamic programming implementation of MMDR. The

O(n4) implementation of MMDR scales to 1000 agents and is faster than the O(n5)

implementation except for smaller (n ≤ 20) inputs—our use case for RoboCup

discussed later in Chapter 7—where it takes longer due to the extra computations

16Algorithms do not run in polynomial time and thus do not meet the scalable criterion to be
considered SCRAM.
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needed in its main loop.

Table 5.1: Time and space complexities of algorithms. SCRAM algorithms are
shown in bold.

Algorithm Time Complexity Space Complexity

MMD+MSD2 O(n3) O(n2)

MMDR O(n4) O(n4) O(n2)

MMDR O(n5) O(n5) O(n3)

MMDR dyn. prog. O(n22(n−1)) O(n
(

n
n/2

)

)

brute force O(n!n) O(n)

Table 5.2: Average running time (ms) of algorithms for values of n on an Intel(R)
Xeon(R) CPU E31270 @ 3.40GHz. Dashes indicate inputs to algorithms that did
not complete within five minutes. SCRAM algorithms are shown in bold.

Algorithm n = 10 n = 20 n= 100 n= 300 n = 103 n = 104

MMD+MSD2 0.016 0.062 1.82 21.2 351.3 115006

MMDR O(n4) 0.049 0.262 17.95 403.0 14483 —

MMDR O(n5) 0.022 0.214 306.4 40502 — —

MMDR dyn. prog. 0.555 2040 — — — —

brute force 317.5 — — — — —

In Table 5.4 we compare MMDR and MMD+MSD2 against the following

role assignment functions when assigning 10 agents to targets on a 100 X 100 grid.

MSD Minimize sum of distances between agents and targets.

MSD2 Minimize sum of distances2 between agents and targets.

Greedy Assign agents to targets in order of shortest distances.

Random Random assignment of agents to targets.

Both MMDR and MMD+MSD2 have the same lowest average makespan for they

are defined so as to minimize the makespan. As can be seen in Table 5.3 none of

the other functions are CM valid as they fail to minimize the makespan—further

analysis of how other functions fail to hold properties is provided in Appendix B.3.
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MMDR is the only dynamically consistent function of the ones we compare.

Table 5.3: Role assignment function properties from Section 5.2. CM valid functions
are shown in bold.

Function Minimum
Makespan

No Collisions Dynam.
Consistent

MMD+MSD2 Yes Yes No

MMDR Yes Yes Yes

MSD2 No Yes No

MSD No No No

Random No No No

Greedy No No No

Table 5.4: Average makespan, average distance, and distance standard deviation
over 106 assignments of 10 agents to targets on a 1002 grid. CM valid role assignment
functions are shown in bold.

Function Average
Makespan

Average Distance Distance StdDev

MMD+MSD2 45.79 27.38 10.00

MMDR 45.79 28.02 9.30

MSD2 48.42 26.33 10.38

MSD 55.63 25.86 12.67

Random 90.78 52.14 19.38

Greedy 81.73 28.66 18.95

Average distance is not something CM valid role assignment functions ex-

plicitly attempt to minimize. However, this metric can be useful if agents exhaust

a shared resource such as fuel when moving. MSD by definition minimizes the av-

erage distance and thus represents the best possible value for this metric. MMDR

and MMD+MSD2 both have average distance values close to that of MSD. A third

metric is distance standard deviation which is useful if there is a preference for hav-

ing agents travel similar distances, e.g., wanting to have equal wear and tear across

robots. MMDR has the best value for this metric with MMD+MSD2 being second.
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MMDR and MMD+MSD2 do well across all metrics in Table 5.4.

5.5 Summary

This chapter introduced SCRAM role assignment algorithms for formational posi-

tioning of mobile agents, and presented theoretical and empirical analysis of the

role assignment problem. SCRAM minimizes the makespan for agents to reach tar-

get goal positions while also avoiding collisions among agents. As role assignment

algorithms run in polynomial time SCRAM scales to thousands of agents.

An extension to SCRAM role assignment for the prioritization of target po-

sitions is presented in Chapter 6, and Chapter 7 provides applications and case

studies of positioning systems incorporating SCRAM role assignment used within

RoboCup robot soccer domains.
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Chapter 6

Prioritized SCRAM Role

Assignment

This chapter17 introduces an extension to SCRAM role assignment presented in

Chapter 5 allowing for subsets of role positions to be given different priorities, and

in doing so further addresses thesis contributions 2 and 3 in Section 1.2.

It is not always the case that minimizing the makespan—completing a forma-

tion as fast as possible—is what is best for a team of robots. There are cases where

it is preferable to have a subset of high priority role positions be reached by agents

as soon as possible. One example of this is soccer where it is often desirable for play-

ers to arrive as fast as possible at positions for marking, i.e., covering/defending,

opponents in dangerous offensive locations. An application of a marking system for

robot soccer using prioritized role assignment is presented in Section 7.3.

The remainder of this chapter is organized as follows. Section 6.1 presents an

extension to SCRAM for prioritized role assignment. An analysis of this extension

17This chapter contains material from previously published work in [113].
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is provided in Section 6.2, and Section 6.3 summarizes.

6.1 Prioritized Role Assignment

This section presents an extension to SCRAM for prioritized role assignment.

Figure 6.1 shows an example of two agents being assigned to both high

priority (H) and low priority (L) target positions using SCRAM role assignment.

As SCRAM does not take into account priorities of different positions, the high

priority position H will not be reached by an agent until time = 3 despite agent A2

starting only a distance of 1 from H.

Figure 6.1: Agents A1 and A2 being assigned and moving to the high priority (H)
and low priority (L) target positions using SCRAM role assignment.

To bias SCRAM into producing an assignment that has agents reach all high

priority positions as fast as possible we can add a large priority value P to costs for

reaching all high priority positions. As long as P is greater than all possible distances

71



to lower priority positions, SCRAM will assign the closest agents to high priority

positions before considering the assignment of agents to lower priority positions.

This bias of SCRAM assigning closer agents to higher priority positions is due to all

costs to higher priority positions being greater and thus needing to be minimized

before that of costs to lower priority positions.

Figure 6.2 shows an example of two agents being assigned to both high

priority (H) and low priority (L) target positions using the MMDR SCRAM role

assignment algorithm, but with a large priority value P added to the costs of reaching

H. This results in H being reached at time = 1 by agent A2, but unfortunately later

agent A1, on its way to its assigned position L, collides with A2. Assigning the

closest agents to high priority target positions, and thereby no longer necessarily

recursively minimizing the maximum distance that any agent must travel to reach

its assigned target, breaks the collision avoidance property of SCRAM.

To preserve collision avoidance, but still prioritize a subset of targets being

reached as fast as possible, we can define a priority distance D around high priority

targets for which agents within D distance of a target will not have the priority

value P added to the cost of that target.

cost(agent,target) =











|agent,target|+ P if |agent,target| > D

|agent,target| otherwise

Figure 6.3 shows an example of two agents being assigned to both high

priority (H) and low priority (L) target positions using SCRAM role assignment,

but with a large priority value P added to the costs of reaching H when agents are

outside a priority distance D of H. This results in H being reached at time = 1
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Figure 6.2: Agents A1 and A2 being assigned and moving to the high priority (H)
and low priority (L) target positions using SCRAM role assignment, but with a
large priority value P added to the costs of reaching H. At time = 2 agents A1 and
A2 collide with each other.

by agent A2, and then later when agent A1 gets within D of H agents A1 and A2

switch targets and avoid colliding.

Defining a priority distance D causes agents to arrive within a distance D

of all high priority targets as fast as possible. Although agents might not arrive

exactly at the high priority targets in as little time as possible, this is often fine for

many applications including marking in soccer. When marking a player does not

need to be right next to an opponent, but just within a close enough distance to

the opponent to be able to react quickly and prevent the opponent from receiving

the ball. Assuming D is not too large, should a player come within D distance of

an opponent who is already being marked by a teammate, it should then be safe for

the players to switch who is marking the opponent.

Augmenting costs with a large P priority value and D priority distance for
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Figure 6.3: Agents A1 and A2 being assigned and moving to the high priority (H)
and low priority (L) target positions using SCRAM role assignment, but with a large
priority value P added to the costs of reaching H for any agents outside the priority
distance of H (the purple circle). At time = 2 agents A1 and A2 switch targets due
to agent A1 being within the priority distance of H.

high priority positions extends SCRAM role assignment to allow for prioritization

of targets. The collision avoidance property of SCRAM, based on the triangle in-

equality and fully explained in Appendix B.1, is still preserved with prioritization

as any agents within D distance of a high priority target will switch targets before

they collide.

It is possible to have multiple subsets of targets with different priorities, or

a hierarchy of prioritization, by assigning different P values to different subsets of

targets. An example of a hierarchy of prioritization is discussed in [113] for which a

highest priority target is given a priority value of Ps, and other high priority targets

are given a priority value of Pm, where Ps >> Pm.
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6.2 Prioritized Role Assignment Function Analysis

Similar to the process used to generate the data in Table 5.4, Table 6.1 compares

the results of using SCRAM with and without prioritized role assignment, discussed

in Section 6.1, when assigning 10 agents to targets on a 100 X 100 grid, but this

time with half of the targets (5) being labeled as high priority. Both MMDR and

MMD+MSD2 CM valid role assignment functions are evaluated with P = 99,999

and D = 1 when adjusting costs for prioritization. The values listed under the High

Priority Targets columns in Table 6.1 are measured from when an agent is within

D distance of the high priority target it is assigned to. As expected prioritization

minimizes the makespan and reduces the average distance to reach high priority

targets, although in doing so both the makespan and average distance for having

reached all targets increase.

Table 6.1: Average makespan and average distance over 106 assignments of 10 agents
to targets on a 1002 grid for both high priority (5 of the targets) and all targets.
Role assignment functions using prioritization are shown in bold.

High Priority Targets All Targets

Function Avg.
Makespan

Avg.
Distance

Avg.
Makespan

Avg.
Distance

MMD+MSD2 prior. 31.71 9.61 59.72 28.58

MMDR prior. 31.71 9.68 57.76 29.50

MMDR 40.86 13.52 45.86 28.03

MMD+MSD2 41.03 13.21 45.86 27.41

6.3 Summary

This chapter introduced an extension to SCRAM role assignment presented in Chap-

ter 5 allowing for subsets of role positions to be given different priorities, and pre-

sented theoretical and empirical analysis of prioritized role assignment. Prioritized
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SCRAM role assignment minimizes the makespan for agents to reach higher priority

target goal positions while also avoiding collisions among agents. As role assignment

algorithms run in polynomial time prioritized SCRAM scales to thousands of agents.

Combining SCRAM with target prioritization makes it well suited for use in

general patrol and coverage tasks. An application of a marking system for robot

soccer using prioritized role assignment is presented in Section 7.3.
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Chapter 7

SCRAM Applied to Robot

Soccer

This chapter18 presents case studies and analysis of SCRAM role assignment—introduced

in Chapter 5—applied to robot soccer. The chapter’s empirical evaluation of SCRAM

fulfills part of thesis contribution 5 in Section 1.2.

The University of Texas at Austin has been a perennial participant in the

annual RoboCup 3D simulation soccer competitions—described in Section 2.2—and

has won the championship six times between 2011 and 2017 due in large part to

the main contributions of this dissertation.19 In 2010 UT Austin’s RoboCup team,

known as UT Austin Villa, first began using the MMDR role assignment func-

tion—detailed in Section 5.3.1—to assign players to move to target formation posi-

tions on the soccer field. In 2010 games were only 6 versus 6, and so it was possible

to compute MMDR using a brute force method that checked all 6! possible assign-

ments of players to target formation positions. In 2011 games were expanded to

18This chapter contains material from previously published work in [111, 113].
19RoboCup competition results from these years are provided in Appendix E.
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9 versus 9, at which point the team switched to using the dynamic programming

algorithm in Appendix C to compute MMDR as a brute force method of doing so

was no longer tractable. However, when games were further expanded to 11 versus

11 in 2012, the dynamic programming algorithm for computing MMDR was not al-

ways fast enough to compute an assignment of players to target formation positions

within a single simulation cycle time step (20ms) [104].

Beginning in 2013, UT Austin Villa started using polynomial time SCRAM

algorithms for role assignment that easily scale to 11 versus 11 matches. As an exten-

sion and improvement to the team’s positioning system, UT Austin Villa developed

and employed a marking system for the 2016 RoboCup competition incorporating

prioritized role assignment—introduced in Chapter 6—to cover and defend against

opponents in dangerous offensive positions from receiving passes.

The remainder of this chapter is organized as follows. Section 7.1 provides

an overview of UT Austin Villa’s positioning system for players using SCRAM role

assignment, while Section 7.2 analyses the positioning system’s performance. Sec-

tion 7.3 presents a marking system using prioritized role assignment, and Section 7.4

analyses the marking system’s performance. Finally, Section 7.5 evaluates the use of

SCRAM in the RoboCup 2D simulation domain—and environment focusing more

on high level strategy and coordination that abstracts away many of the low-level

behaviors required for humanoid robot soccer in the RoboCup 3D simulation league,

after which Section 7.6 summarizes.

7.1 Positioning using SCRAM

UT Austin Villa uses SCRAM role assignment when determining which positions

on the field players should move to during games. In UT Austin Villa’s positioning
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system players’ positions are determined in three steps. First, a full team formation

is computed using Delaunay triangulation [14] based on set offset positions from the

ball. An example formation is shown in Figure 7.1.

Figure 7.1: UT Austin Villa base soccer formation.

Second, each player computes an assignment of players to positions in the

formation in Figure 7.1 according to its own view of the world. The player closest

to the ball is automatically assigned the onBall role and is told to go to the ball

to try and dribble or kick it toward the opponent’s goal. The supporter role is also

assigned to the agent closest to it as it was found in [102] that doing so provides a

small boost in team performance due to having a player in a key position to recover

the ball should the player assigned to the onBall role lose it. All other field players

are assigned to roles using SCRAM role assignment.

For the third and final step of the positioning system a voting coordination

mechanism synchronizes players’ computed assignments. In order for agents on a

team to assume correct positions on the field they all must coordinate and agree on
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which mapping of agents to roles to use. If every agent had perfect information of

the locations of the ball and its teammates this would not be a problem as each could

independently calculate the optimal mapping to use. Agents do not have perfect

information, however, and are limited to noisy measurements of the distance and

angle to objects within a restricted vision cone (120◦). Fortunately agents can share

information with each other every other simulation cycle (40ms). The bandwidth

of this communication channel is very limited, however, as only one agent may send

a message at a time and messages are limited to 20 bytes.

The positioning system utilizes the agents’ limited communication bandwidth

in order to coordinate role mappings as follows. Each agent is given a rotating

time slice to communicate information, as in [158], which is based on the uniform

number of an agent. When it is an agent’s turn to send a message it broadcasts

to its teammates its current position, the position of the ball, and also what it

believes the optimal mapping should be using the communication system discussed

in Section 8.2.3. By sending its own position and the position of the ball, the agent

provides necessary information for computing the optimal mapping to those of its

teammates for which these objects are outside of their view cones. Sharing the

optimal mapping of agents to role positions enables synchronization between the

agents, as follows.

First note that just using the last mapping received is dangerous, as it is

possible for an agent to report inconsistent mappings due to its noisy view of the

world. This can easily occur when an agent falls over and accumulates error in its

own localization. Additionally, messages from the server are occasionally dropped

or received at different times by the agents preventing accurate synchronization. To

help account for inconsistent information, a sliding window of received mappings
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from the last n time-slots is kept by each agent where n is the total number of

agents on a team. Each of these kept messages represents a single vote by each of

the agents as to which mapping to use. The mapping chosen is the one with the

most votes or, in the case of a tie, the mapping tied for the most votes with the

most recent vote cast for it. By using a voting system, the agents on a team are able

to synchronize the mapping of agents to role positions in the presence of occasional

dropped messages or an agent reporting erroneous data.

As a test of the voting system the number of cycles all agents shared a syn-

chronized mapping of agents to roles was measured during five minutes of gameplay

(15,000 cycles). The agents were synchronized 100% of the time when using the

voting system compared to only 36% of the time when not using it.

7.2 Positioning System Analysis

A SCRAM positioning system using the MMDR role assignment function—presented

in Section 5.3.1—was a key component in UT Austin Villa winning the RoboCup

3D simulation world championship in 2011 [117], 2012 [104], 2014 [106], 2015 [108],

2016 [114], and 2017. SCRAM using the MMD+MSD2 role assignment function

—presented in Section 5.3.2—was also an important factor in the team achieving

2nd place in 2013. In Table 7.1 we show UT Austin Villa’s performance against the

top three teams20 at the 2013 RoboCup competition using both SCRAM and the

following alternative assignment functions with all else being the same.

Static Role assignments fixed based on player’s uniform number.

Greedy Assign agents to targets in order of shortest distances.

20Descriptions of RoboCup 2013 teams at
http://chaosscripting.net/files/competitions/RoboCup/WorldCup/2013/3DSim/tdps
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Greedy Offense Similar to previously reported work in the RoboCup 3D simu-

lation domain [30], assign closest agents to roles in order of most offensive

positions.

Table 7.1: Average goal difference (standard error shown in parentheses) over 1000
games when playing against the top three teams at RoboCup 2013. A positive goal
difference means a team is winning. CM valid role assignment functions are shown
in bold.

Function 1. Apollo3D 2. UTAustinVilla 3. FCPortugal

MMDR 0.710 (0.027) 0.007 (0.013) 0.469 (0.024)

MMD+MSD2 0.698 (0.027) 0 (self)a 0.499 (0.024)

Static 0.604 (0.027) -0.012 (0.016) 0.356 (0.024)

Greedy 0.530 (0.028) -0.044 (0.016) 0.315 (0.024)

Greedy Offense 0.670 (0.027) -0.039 (0.016) 0.435 (0.024)

aGames were not played, but assumed to be an average goal difference of 0 in expectation with
self play.

The CM valid role assignment functions are superior to the other functions

as they perform better against all opponents. In an earlier study [102] MMDR was

also compared to and did better than Static role assignment when playing against

the best three 2011 RoboCup teams.

7.3 Marking using Prioritized Role Assignment

As an extension and improvement to the team’s positioning system, UT Austin Villa

developed and employed a marking system [113]21 for the 2016 RoboCup compe-

tition to cover and defend against opponents in dangerous offensive positions from

receiving passes. The marking system first identifies target positions that agents

need to move to in order to cover opponents. Then, after labeling these positions

21Videos of SCRAM prioritized role assignment and the marking system in action can be found
at http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/marking.html
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needed for marking as high priority so that they will be reached as soon as possible,

the marking system assigns agents to target positions using SCRAM prioritized role

assignment introduced in Chapter 6.

The marking system implemented by the UT Austin Villa team is a sequential

process encompassing the following steps:

1. Decide which players to mark

2. Select which roles to use for marking purposes

3. Use prioritized role assignment to assign players to positions

Each of these steps, as well as additional details of the marking system, are

described in the following subsections.

7.3.1 Deciding Whom to Mark

The first step in the marking system is to decide which if any opponents should be

marked (those opponents considered to be in dangerous offensive positions). The

decision on whether or not to mark an opponent is heuristic-based and uses the

following rules all of which must be true for an opponent to be marked:

1. Opponent is close enough to take a shot on goal

2. Opponent is not the closest opponent to the ball

3. Opponent is not too close to the ball

4. Opponent is not too far behind the ball

The first rule suggests that an opponent is in a dangerous scoring position.

As the team always sends one player to the ball (the onBall role in Figure 7.1), the
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second and third rules prevent marking of opponents when the team should already

have a player moving toward their positions. The fourth rule is due to very few

teams passing the ball backwards. Figure 7.2 shows opponent agents selected to be

marked.

Figure 7.2: Deciding Whom to Mark: Opponent agents selected to be marked are
circled in yellow. The white dot is the ball.

7.3.2 Selecting Roles for Marking

Once it is determined which opponents should be marked, the next step is to select

which formation role positions should be given up in favor of having agents who

would otherwise be assigned to those roles instead move to marking role positions.

Marking role positions are calculated as the position 1.5 meters from a marked oppo-

nent along the line from that opponent to the center of our goal (shown in orange in

Figure 7.3). The selection of formation positions to replace with marking positions
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is determined by using the Hungarian algorithm [86] to compute the minimum sum

of distances matching between all formation and marking positions in a bipartite

graph. This matching results in the closest formation positions to marking positions

being replaced by the marking positions that they are nearest. If there are more

marking positions than available formation positions then some marking positions

will be matched to dummy nodes in the bipartite graph and not be assigned to an

agent.

Figure 7.3 shows the result after selecting formation positions to be used as

marking role positions with the formation positions selected drawn in purple, and

those not selected and still being used drawn in green.

Figure 7.3: Selecting Roles for Marking: Green dots represent target formation
positions with purple dots representing target formation positions that have been
selected to be replaced by the orange dot marking positions.
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7.3.3 Assigning Roles

For the third and final step of the marking system, agents are assigned to marking

positions and formation positions (Figure 7.4 shows these assignments in orange

and light blue respectively) using prioritized SCRAM role assignment discussed

in Section 6.1. Marking positions are considered higher priority than formation

positions, and use a priority value Pm = 100 and a priority distance Dm = 3.

Additionally, when a teammate is kicking the ball, a couple of players are assigned

to high priority “kick anticipation” position roles near the location where the ball is

being kicked to [105]. Kick anticipation roles are given the same priority value and

distance as marking roles.

Figure 7.4: Assigning Roles: Orange lines represent agents assigned to marking
positions, light blue lines represent agents assigned to target formation positions,
and the red line shows the agent assigned to go to the ball.

There are several roles in Figure 7.1 that are never reassigned to be marking
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roles. The goalie role is always assigned to a single agent designated as the goalie

who is allowed to dive and block a ball when an opponent takes a shot on goal. The

onBall role is always assigned to the agent closest to the ball as it is that agent’s

job to gain possession of the ball. The supporter role is also very important as

the supporter is in a critical position right behind the ball should the onBall role

agent lose possession of the ball. The supporter is considered a higher priority role

than marking roles, and thus uses a priority value Ps = 10000 along with a priority

distance Ds = 1.5. All P and D values were chosen experimentally by sampling

several different priority values and then selecting those which produced the most

desired behavior based on visual inspection.

7.3.4 Coordination

The marking system uses the same voting coordination system described in Sec-

tion 7.1 to synchronize the mapping of agents to roles used by the team. Coordi-

nation can become more difficult, however, if an opponent is standing in a position

right on the borderline of whether or not the opponent should be marked. To pre-

vent thrashing between different role assignments in such a situation, opponents

who are currently being marked must move at least .25 meters outside a mark-able

position on the field before they will stop being marked. Also, to prevent thrashing

between different selections of formation positions to use for marking, a selection is

never changed—assuming the cardinality of matchings are the same—unless the new

selection’s matching’s sum of distances is at least one meter less than the previous

selection’s matching’s sum of distances.
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7.4 Marking System Analysis

After the 2015 RoboCup competition was over, we played 1000 games of our team’s

released binary against all teams’ released binaries (this includes playing against

ourselves) and found that only the UTAustinVilla and FCPortugal teams’ bina-

ries were able to score over 100 goals against our released binary [108]. Both

the UTAustinVilla and FCPortugal teams created set plays allowing them to score

quickly off kickoffs which empirically we found to be the source of the majority of the

goals that they scored against our released binary (74.5% of goals for UTAustinVilla

and 78.2% of goals for FCPortugal)

To test the effectiveness of our marking system using prioritized role as-

signment we played 1000 games against both the UTAustinVilla and FCPortugal

teams’ released binaries using the marking system (Prioritized Marking). We

also played 1000 games against both teams without using marking (No Marking)

as well as with marking but using normal non-prioritized SCRAM role assignment

(Marking No Prioritization). Results of the number of goals against scored by

opponents can be seen in Table 7.2, and an analysis of the scoring percentage of

opponents’ set plays is shown in Table 7.3.

Table 7.2 shows a dramatic drop in the number of goals scored by opponents

when using marking. There is also a small decrease in the number of goals against

when using prioritized SCRAM instead of non-prioritized SCRAM for marking.

Table 7.2: Number of goals against when playing 1000 games against the released
binaries of UTAustinVilla and FCPortugal from RoboCup 2015.

Opponent No Marking Marking No Prioritization Prioritized Marking

UTAustinVilla 1525 336 319
FCPortugal 230 40 37
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Table 7.3: Scoring percentage of opponents’ set plays when playing 1000 games
against the released binaries of UTAustinVilla and FCPortugal from RoboCup 2015.

Set Play No Marking Marking No Prior. Prior. Marking

UTAustinVilla Kickoff 48.31 0.16 0.16
FCPortugal Kickoff 6.22 0.06 0.06

UTAustinVilla Corner Kick 15.97 12.31 7.59

Table 7.3 reveals the source of the reduction in goals against as using marking

almost completely eliminates the opponents’ abilities to score on kickoff set plays.

FCPortugal’s kickoff (shown in Figures 7.5, 7.6, and 7.7) consists of a player first

passing the ball backwards on the kickoff to a waiting player who then passes the ball

forward to a teammate running forward to a dangerous offensive position on the side

of the field. UTAustinVilla’s kickoff and corner kick set plays are described in [108].

Although the numbers in Table 7.3 do not show an advantage in using prioritized

SCRAM over non-prioritized SCRAM against kickoffs, we have seen some instances

such as in Figure 7.6 where not using prioritization is harmful. Prioritized SCRAM

does however show an advantage against UTAustinVilla’s corner kick set plays.

Videos of set plays and marking are available online.22

Overall using marking, and to a greater extent using marking with prioritized

SCRAM role assignment, provides a considerable defensive advantage when playing

soccer against opponents who use set plays. The average goal difference across 1000

games when playing against UTAustinVilla with prioritized marking improved to

0.657 (+/-0.028) from ∼0 without marking, and this same number against FCPor-

tugal improved to 2.530 (+/-0.040) with prioritized marking from 2.476 (+/-0.043)

without marking. We also played 1000 games against the other ten teams’ released

binaries from RoboCup 2015, none of which we knew to use passing for set plays,

22http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/

2016/html/marking.html
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Figure 7.5: Not marking against FCPortugal kickoff. Dashed white line shows
trajectory of ball during pass. Not marking allows for an opponent to run forward
and receive a pass in an open position to score a goal (blue 10 is not marked).

and found no measurable difference in goals against or game performance when

using marking versus those teams.

To further test our marking system using prioritized role assignment against

set plays, we evaluated it against the top three teams from the 2016 RoboCup

competition. A new rule change for the 2016 competition made free kicks indi-

rect—another player other than the player who took the kick must touch the ball

before a goal can be scored—thus encouraging teams to develop set plays for free

kicks.

Table 7.4 displays the average number of goals scored against our team—both

with and without the use of prioritized role assignment during marking, as well

as without any marking—when playing 1000 games against each of the top three

teams23 at the 2016 RoboCup competition. Table 7.4 also provides the percentage

23Descriptions of RoboCup 2016 teams are at
http://chaosscripting.net/files/competitions/RoboCup/WorldCup/2016/3DSim/tdps
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Figure 7.6: Marking, but not prioritized, against FCPortugal kickoff. Dashed white
line shows trajectory of ball during pass. Not using prioritization with marking
results in a player assigned to mark an opponent being too far away from that
assigned opponent to prevent the opponent from scoring a goal (red 10 instead of
red 3 assigned to mark blue 10).

Figure 7.7: Prioritized marking against FCPortugal kickoff. Dashed white line shows
trajectory of ball during pass. Prioritized marking prevents opponents from receiv-
ing a pass in an open position to score a goal (red 3 marking blue 10).
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of goals against that occurred during set play situations24 when defending against

open opponents receiving passes is especially important.

Table 7.4: Average goals against (standard error in parentheses), and percentage
of goals against scored off set plays, achieved by versions of the UT Austin Villa
team without marking, and with and without the use of prioritized role assignment
during marking, when playing 1000 games against the top three teams at RoboCup
2016.

Goals Against; Set Play %

Opponent No Marking Marking No
Prioritized Role
Assignment

Marking
Prioritized Role
Assignment

1. UTAustinVilla 0.667 (0.024);
61.67%

0.307 (0.017);
19.87%

0.290 (0.016);
18.62%

2. FUT-K 0.288 (0.016);
66.67%

0.085 (0.009);
34.12%

0.063 (0.008);
25.40%

3. FCPortugal 0.160 (0.012);
81.88%

0.033 (0.006);
48.48%

0.021 (0.005);
23.81%

The data in Table 7.4 shows a large drop in both the average goals against

and percentage of goals from set plays when using marking. Additionally, as prior-

itized role assignment results in an assignment of agents to targets such that high

priority marking positions are reached as soon as possible, both the total number

and percentage of goals against from set plays are lowest against all opponents when

using prioritized role assignment with marking.

24Set play goals are recorded as goals scored within a certain time window of kicks awarded to a
team. Times were chosen after measuring how long it took for a team to score a goal without an
opponent on the field. When playing against the FUT-K and FCPortugal opponents, time windows
for counting goals as being scored off set plays were the following: 20 seconds after corner kicks, 25
seconds after kick-ins and indirect free kicks, and 35 seconds from the start of kickoffs. These time
windows were reduced by 5 seconds when playing against the UTAustinVilla opponent.
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7.5 RoboCup 2D Simulation

As one of the oldest RoboCup leagues, 2D simulation soccer has been well explored,

both in competition and in research. The domain consists of two teams of eleven

autonomous agents playing soccer on a simulated 2D soccer field shown in Fig-

ure 7.8. Agents receive sensory information, including the position of the ball and

other agents, from a central game server. After processing this information, agents

then tell the server what actions they want to take such as dashing, kicking, and

turning. 2D soccer abstracts away many of the low-level behaviors required for

humanoid robot soccer in the 3D simulation league, including walking, and thus af-

fords the chance to focus on higher-level aspects of playing soccer such as multiagent

coordination and strategic play.

Figure 7.8: A screenshot of a 2D soccer simulation league game.

To test SCRAM in the RoboCup 2D simulation league we used the Agent2D [13]

base code release which provides a fully functional soccer playing agent team.

Agent2D includes default formation files using Delaunay triangulation [14] to spec-
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ify agent role positions. In the Agent2D base code, agents are statically assigned

to roles based on their uniform numbers. Agent2D teams only modified to use the

MMDR and MMD+MSD2 role assignment functions beat the default Agent2D team

by an average goal difference of 0.118 (+/- 0.025) and 0.105 (+/- 0.024) respectively

across 10,000 games.

New at RoboCup 2013 was the addition of a drop-in player challenge [107]25

where agent teams consisting of different players randomly chosen from participants

in the competition play against each other. This event is also known as an ad

hoc teamwork challenge in which agents must work together as a team without

pre-coordination [156]. Performance in the challenge was measured by an agent’s

average goal difference across all games played. An important aspect of the challenge

is for an agent to be able to adapt to the behaviors of its teammates: for instance if

most of an agent’s teammates are assuming offensive roles, that agent might better

serve the team by taking on a defensive role. SCRAM implicitly allows for this

adaptation to occur as it naturally chooses roles for an agent that do not currently

have another agent nearby.

Using agents from the drop-in player challenge, we played 2800 drop-in player

matches with both the default version of Agent2D and a version of Agent2D with

SCRAM (MMD+MSD2). Empirically we found most agents used static role assign-

ment, thus underscoring the need for adapting to teammates’ fixed roles, as it was

unlikely that teammates would adapt to roles assumed by you. Adding SCRAM

to Agent2D improved performance in the challenge from an average goal difference

of 1.473 (+/-0.157) with static role assignments to 1.659 (+/-0.153) with SCRAM.

This result shows promise for SCRAM not only a way to coordinate motion among

25Full rules of the challenge can be found at
http://www.cs.utexas.edu/~AustinVilla/sim/2dsimulation/2013_dropin_challenge/

2D_DropInPlayerChallenge.pdf
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one’s own teammates, but also as as a way to adapt to unknown teammates’ behav-

iors in an ad hoc teamwork setting.

7.6 Summary

This chapter provided a detailed description and experimental analysis of SCRAM

role assignment applied to positioning and marking systems in the RoboCup 3D

simulation league. These applications of SCRAM role assignment have been a key

component of the UT Austin Villa team winning the RoboCup 3D simulation league

six out of the past seven years. Additionally the chapter presented an application of

SCRAM to the RoboCup 2D simulation league showing SCRAM’s versatility and

potential use for ad hoc teamwork.
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Chapter 8

UT Austin Villa RoboCup 3D

Simulation Agent and Code

Release

This chapter26 presents the University of Texas at Austin’s RoboCup 3D simulation

team UT Austin Villa—a successful state of the art agent having won the RoboCup

3D simulation competition six out of the past seven years—and in doing so addresses

thesis contribution 4 in Section 1.2. The UT Austin Villa agent incorporates the

ideas and algorithms presented in this thesis, thus serving as a proof of concept of

them as detailed in Chapters 4 and 7. Furthermore, a public base code release of the

UT Austin Villa agent provides a testbed for future research in multirobot systems.

The remainder of this chapter is organized as follows. Section 8.1 gives a

high level overview of the UT Austin Villa agent while Section 8.2 details different

components of the agent. Section 8.3 presents a base code release of the UT Austin

26This chapter contains material from previously published work in [116, 104, 105, 103, 115].
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Villa agent, and Section 8.4 summarizes.

Further details about the UT Austin Villa agent pertaining to the team’s

strategy are provided in Appendix D, with details of how the team’s strategy incor-

porates formations and role assignment discussed in Chapter 7. The optimization

process used to develop the agent’s skills is detailed in Chapter 4.

8.1 Agent Overview and Architecture

The RoboCup 3D simulation environment—described in Section 2.2—is a 3-dimensional

world that models realistic physical forces such as friction and gravity, in which

teams of autonomous soccer playing humanoid robot agents compete with each

other. The UT Austin Villa team, from the University of Texas at Austin, first

began competing in the RoboCup 3D simulation league in 2007. Over the course of

nearly a decade the team has built up a strong state of the art code base enabling

the team to win the RoboCup 3D simulation league six out of the past seven years

(2011 [117], 2012 [104], 2014 [105], 2015 [108], 2016 [114]), and 2017 while finishing

second in 2013. During those six years of competitions the UT Austin Villa team

scored a total of 469 goals while only conceding 7.27

The UT Austin Villa agent works as follows. At intervals of 0.02 seconds,

the agent receives sensory information from the environment. Every third cycle a

visual sensor provides distances and angles to different objects on the field from

the agent’s camera, which is located in its head. It is relatively straightforward to

build a world model by converting this information about the objects into Cartesian

coordinates. Building a world model also requires the robot to be able to localize

itself for which the agent uses a particle filter incorporating both landmark and field

27RoboCup competition results are provided in Appendix E.
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line observations as described in Section 8.2.2. In addition to the vision perceptor,

the agent also uses its accelerometer readings to determine if it has fallen as explained

in Section 8.2.4, and employs its auditory channels for communication which is

discussed in Section 8.2.3.

Once a world model is built the agent’s control module is invoked. Figure 8.1

provides a schematic view of the UT Austin Villa agent’s control architecture.

Figure 8.1: Schematic view of UT Austin Villa agent control architecture.

At the lowest level, the humanoid is controlled by specifying torques to each

of its joints. The amount of torque to apply is determined by PID controllers for each

joint, which take as input the desired angle of the joint and compute the appropriate

torque. Further, the agent uses routines describing inverse kinematics for the arms

and legs. Given a target position and pose for the hand or the foot, the inverse

kinematics routine uses trigonometry to calculate the angles for the different joints
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along the arm or the leg to achieve the specified target, if at all possible.

The PID control and inverse kinematics routines are used as primitives to

describe the agent’s skills. In order to determine the appropriate joint angle se-

quences for walking and turning, the agent utilizes an omnidirectional walk engine

which is described in Section 8.2.5. Other provided useful skills for the robot are

kicking discussed in Section 8.2.7, and getting up from a fallen position described

in Section 8.2.4. These skills are accomplished through a programmed sequence of

poses and specified joint angles as discussed in Section 8.2.6.

Section 8.2 goes into more detail about different components of the UT

Austin Villa agent.

8.2 Agent Components

The following subsections detail different components of the UT Austin Villa agent.

These components include a perception system in Section 8.2.1, localization in Sec-

tion 8.2.2, a communication system in Section 8.2.3, fall recovery in Section 8.2.4,

walk engine in Section 8.2.5, skill description language in Section 8.2.6, and kicking

in Section 8.2.7.

8.2.1 Perception System

The agent receives noisy vision percepts from the server every 0.06 seconds. Vision

percepts in polar coordinates are received for all objects that are within a 120◦ view

cone with the view cone’s origin at the robot’s head. In this section we describe

how the agent moves its head to monitor objects, how the agent maintains objects’

positions in memory in a WorldObjects array, and how the agent uses visual memory

to enhance its perception system to handle unseen objects whenever possible.

99



Head Movement

The agent continually pans its head from side to side in order to monitor all objects

on the field. This panning consists of a repeating cycle, eight seconds in duration,

during which the agent adjusts the pan of its head every two seconds by starting

out looking straight ahead, turning its head 120◦ to the left, returning to looking

straight ahead, turning its head 120◦ to the right, and then returning back to looking

straight ahead again. As the agent has a 120◦ view cone this movement allows for

a full 360◦ vision sweep of the field. The only time the agent does not spin its

head around for 360◦ coverage of the field is when it is focusing on the ball. When

focusing on the ball the agent still pans its head left and right, but centers its view

on the ball while moving its view 30◦ to the left and right of the ball. The goalie,

described in Appendix D.3, always stays focused on the ball in order to accurately

track it. Field player agents focus on the ball when they are within a meter of it as

it is necessary to do so for dribbling (Appendix D.1.6) and kicking (Section 8.2.7).

The agent also keeps its head tilted at a 45◦ angle downward providing continual

vision both 15◦ above the agent’s camera and 15◦ behind the agent’s feet.

World Objects

The basic structure for holding an object is:

struct WorldObject

id; // unique id for all objects that can ever be seen

visionInformation; // polar coordinates from robot to object

position; // global, Cartesian position

isCurrentlySeen; // is the object seen in the current cycle

isValid; // false if looking at position but do not see object
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;

In the RoboCup 3D simulation domain the set of objects is fixed: teammates,

opponents, ball, goal posts, and field corners. Therefore, objects are maintained

in an array of WorldObjects, indexed by the object id. Whenever vision percepts

are sent, the polar coordinates are stored in the visionInformation field, and are

translated to global position after the agent updates its localization. In addition,

the vision information of fixed objects, like goal posts and field corners, is used by

the localization system to update the agent’s belief about its location as is described

in Section 8.2.2.

One point that is noteworthy is that the vision percepts arrive in polar co-

ordinates with respect to the robot’s head, which continually pans left and right, to

increase the robot’s field of view. This head movement has the potential to create

a problem: it is likely that at the times of recording vision information of two dif-

ferent objects, the head is in two different positions with respect to the torso. In

addition, the robot’s head is slightly bent downwards, so that even if the head is

looking straight ahead, the recorded angles to objects are still different than their

angles with respect to the torso. Therefore, as a preprocessing step, vision data is

transformed using several matrix multiplications to be with respect to the robot’s

torso. This transformation is done to create a common frame of reference during

the translation of vision information to global field coordinates.

Visual Memory

When an object, such as another agent or ball, is no longer in the field of view of

the robot it is assumed that the object remains at the same position it was last

seen—as moving objects frequently change direction potential velocity of an object
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outside the robot’s field of view is not used to estimate the location of the unseen

object. The location of the object is updated once it is seen again or if another agent

communicates the location of the object (see Section 8.2.3). If the stored position

of the object is in the agent’s current field of vision, but the agent no longer sees

the object there, the location of the object is marked as being no longer valid—the

isValid field of WorldObject struct is set to false.

8.2.2 Localization

Localization is performed using a particle filter also known as Monte Carlo localiza-

tion [48]. In the agent’s particle filter, 500 particles are updated every cycle, where

a particle is an (x, y, θ) estimate of an agent’s pose, and a probability assigned to

this estimate. The agent estimates its (x, y) position and θ orientation as weighted

averages of the particles’ positions and orientations, respectively, weighted by the

particles’ weights. Each time the agent receives a set of vision percepts, the par-

ticle filter performs the following three steps: (1) update particles from odometry,

(2) update particles from landmark and field line observations, and (3) resample

particles. Agents also use communication to help localize each other.

Update Particles from Odometry

In this step, odometry information in the form of (δx, δy, δθ) is extracted from the

walk engine described in Section 8.2.5. Then, for each particle, the following update

is performed:

(x, y, θ) := (x, y, θ) + (a ·∆x, b ·∆y, c ·∆θ)

where a, b, and c are factors we tuned by hand, using manual measurements.
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Update Particles from Landmark and Line Observations

In this step, particles’ weights are updated from landmark—four corner flags and

two goal posts at each end of the field—and field line observations. Figure 2.8 shows

the locations of landmarks and lines on the field.

While in general at least two landmarks are needed for position estimation,

when the agent is roughly localized, it is possible to decrease its estimation error

even with one landmark or line. The particle filter is able to take advantage of this

estimation ability by performing this step to update its particles whenever at least

one landmark or line is seen. At the beginning of this step all particles are initialized

to have the same weights, and then these weights are multiplied by the particles’

probabilities they assign to the currently seen landmarks and field lines: the differ-

ence between the expected measurement and the actual measurement is input to a

Gaussian distribution, which in turn determines the probability of this difference.

The particle filter has two such Gaussian distributions, one for the distance error,

and one for the orientation error. Both of the Gaussians’ standard deviations were

hand tuned using a trial and error process. Note that as the multiplied probabilities

can get small, log-probabilities are used in the numerical calculations.

Line information is processed by the particle filter based on previous work by

Hester and Stone [60]. In particular, the longest K observed lines are each compared

to known positions of all the lines that exist on the field. Metrics such as the distance

between endpoints, acute angle between the lines, and line length ratio are used to

determine the similarity of an observed line with each actual line. For each observed

line, the highest similarity value is expressed as a probability and used to update

particles. Figure 8.2 shows how line information improves localization accuracy for

various values of K.
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Figure 8.2: CDF of localization error (left) and yaw error (right) for using K =
1, 2, 3 lines when incorporating line information. For comparison, not using line
information (purple line) is shown as well.

Resample Particles

In this step the new weights computed in the previous step are used as a new

distribution over the particles, and then 500 new particles are resampled from this

distribution. More accurately, 5% of the particles are sampled completely randomly

in the field’s area, to handle a “kidnapped” agent scenario—a scenario where the

agent is moved to a new location by a third party without the agent being informed

of the move. This step is done only when at least one landmark or line is seen, such

that particles’ weights were updated in the previous step. If no landmarks or lines

are seen, the agent just uses its odometry updates and no resampling is done, to

avoid inserting additional noise. After particles are resampled, a small amount of

noise to each one of them is added by slightly moving their position and orientation

according to a random walk.
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Localization from Teammates’ Observations

Additionally, if a robot does not see any landmarks or lines, it broadcasts to its

teammates that it is not localized using the communication system described in

Section 8.2.3. If any teammates see a robot that reports itself as not being local-

ized they will broadcast the current (x,y) position and angle of orientation of the

unlocalized robot so that the unlocalized robot may use other robots’ observations

to localize itself.

8.2.3 Communication System

As described in Section 2.2, soccer agents only receive noisy and restricted perceptual

information. Consequently none of the agents possesses complete and perfect state

information about the world. In such a scenario, inter-agent communication can

significantly add to each agent’s knowledge about the world and improve decision

making.

The 3D simulator provides an “audio” channel for agents to communicate.

An agent may broadcast a SAY message once every two simulation cycles (40 mil-

liseconds); agents receive HEAR messages corresponding to SAY messages sent in

the previous cycle, and only one HEAR message may be heard from a teammate

every two simulation cycles with additional messages not being transmitted. As

agents can only communicate one at a time, each agent is given a rotating time slice

to communicate information, as in [158], which is based on the uniform number of

an agent. The HEAR messages do not come tagged with information identifying

the sender, and so we find it necessary to have agents send identifying information

within their messages.

The 3D simulation server allows for communication messages of size 20 ASCII
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characters with only a set of 94 different ASCII characters allowed to be transmit-

ted (ASCII 0x21 to 0x7E excluding 0x28 and 0x29). The UT Austin Villa agent

conservatively uses an alphabet of only 85 ASCII characters, and a Base85 encoding

allowing for 128 out of 160 bits of a message to be used. Below we describe the

rationing of the 128 bits at the agent’s disposal for communicating different types

of information. Table 8.1 breaks down the number of bits allocated to each piece of

information communicated.

Every message sent by an agent includes the agent’s uniform number—to

identify the agent—as well as the agent’s current location, if the agent sees the ball,

and if the agent is reporting a vote for a role assignment as described in Section 7.1.

If necessary agents will also report the location of the ball assuming they currently

see the ball, if they have fallen over or are not localized, a role assignment vector

mapping players to role positions—only reported if an agent does not agree with the

most recent vote heard, and if they are kicking the ball their intended target location

of the kick. If there are enough remaining unused bits in a message, agents may

additionally communicate the locations of teammates and opponents they currently

see as well as their own robot body type.

8.2.4 Fall Detection and Recovery

Factors such as slippage on the ground and collision with objects on the field could

precipitate the fall of a humanoid robot, and indeed the success of a soccer-playing

robot depends crucially on the robustness of its fall management strategy.

Despite our best efforts in having robots avoid falls, falling is an inevitable

eventuality that needs to be dealt with efficiently. To detect that a fall has oc-

curred—or that it is impending—a simple rule that thresholds the X and Y compo-
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Table 8.1: Number of bits allocated to each piece of information communicated.

Field Number of Bits

Always Transmitted

Sender’s uniform number 4
Is sender seeing ball? 1
Is sender reporting role assignment? 1
Sender’s perceived self X coordinate 10
Sender’s perceived self Y coordinate 10
Sender’s perceived orientation angle 6

Always Transmitted if Necessary

Is the sender fallen flag? 5

Is the sender not localized flag? 5

Sender’s perceived ball X coordinate 10
Sender’s perceived ball Y coordinate 10

Role assignment vector 50 (10 * 5)

Is the sender planning to kick the ball flag? 5
Kick target location X 8
Kick target location Y 7
Is the sender already behind the ball before kicking? 1

Optional (from higher to lower priority)

Reporting teammate location flag 5
Reported teammate X coordinate 10 or 8
Reported teammate Y coordinate 10 or 8
Reported teammate orientation angle 6 or 4

Reporting opponent location flag 5
Reported opponent X coordinate 10 or 8
Reported opponent Y coordinate 10 or 8
Reported opponent orientation angle 6 or 4
Reported opponent is fallen? 1

Sender’s agent type flag 5
Sender’s agent type 3

End of message flag 5
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nents of the robot’s accelerometer reading is used. If indeed a fall is detected based

on this thresholding rule, the robot proceeds to execute a sequence of commands as

part of a “getup” routine. We observe that if the robot’s arms are stretched out at

90◦ to the torso, along the frontal plane, the robot necessarily falls to the ground

either face-up or face-down (that is, not sideways). Using the accelerometer again

to detect whether it has fallen face-up or face-down, the robot proceeds through an

appropriate sequence of keyframes—described by the skill description language in

Section 8.2.6—in each case to return to an upright position.

The robot’s getup routines were manually designed and are divided into

stages. If fallen face down, the robot bends at the hips and stretches out its arms

until it transfers weight to its feet, at which point it can stand up by straightening

the hip angle. If fallen face up, the robot uses its arms to push its torso up, and

then rocks its weight back to its feet before straightening its legs to stand. The

getup routine used by a robot lying on its back iterates through the series of poses

shown in Figure 8.3.

(a) (b) (c) (d) (e)

Figure 8.3: Routine for getting up after falling backwards. The robot begins lying
on its back (a) and then propels itself up with its arms (b). Next the robot throws
its arms forward and contracts its legs to get its center of mass in front of its feet (c).
Using momentum from the initial push the robot manages to roll into a squatting
position (d) after which the robot can get up by extending its knees and hips (e).

108



These getup sequences are executed entirely in an open-loop fashion. There

is a small probability the getup routine is not successful—for example, if the robot is

in contact with some other object while getting up—and if so the routine is repeated.

Parameters controlling the poses the robot assumes during the getup motions were

optimized as described in Chapter 4.

8.2.5 Walk Engine

The UT Austin Villa team uses an omnidirectional walk engine28 based on one that

was originally designed for the real Nao robot [51]. The omnidirectional walk is cru-

cial for allowing the robot to request continuous velocities in the forward, side, and

turn directions, permitting it to approach continually changing destinations (often

the ball) more smoothly and quickly than the team’s previous set of unidirectional

walks [172].

The walk engine, though based closely on that of Graf et al. [51], differs in

some of the details. Specifically, unlike Graf et al., the walk engine uses a sigmoid

function for the forward component and uses proportional control to adjust the

desired step sizes. The walk engine uses a simple set of sinusoidal functions to

create the motions of the limbs with limited feedback control. The work flow of how

joint commands are generated for the walk is shown in Figure 8.4. The walk engine

processes desired walk velocities chosen by the behavior, chooses destinations for

the feet and torso, and then uses inverse kinematics to determine the joint positions

required. Finally, PID controllers for each joint convert these positions into torque

commands that are sent to the simulator.

The walk engine selects a trajectory for the torso to follow, and then deter-

mines where the feet should be with respect to the torso location. The walk uses x

28Thanks to Samuel Barrett for originally writing the team’s omnidirectional walk engine.
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Figure 8.4: Workflow for generating joint commands from the walk engine.

as the forwards dimension, y as the sideways dimension, z as the vertical dimension,

and θ as rotating about the z axis. The trajectory is chosen using a double linear

inverted pendulum, where the center of mass is swinging over the stance foot. In

addition, as in Graf et al.’s work [51], the walk engine uses the simplifying assump-

tion that there is no double support phase, so that the velocities and positions of the

center of mass must match when switching between the inverted pendulums formed

by the respective stance feet.

We now describe the mathematical formulas that calculate the positions of

the feet with respect to the torso. More than 40 walk engine parameters were used,

but only the ones we optimize—as described in Chapter 4—are listed in Table 8.2.

To smooth changes in the velocities, the walk engine uses a simple propor-

tional controller to filter the requested velocities coming from the behavior mod-
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Notation Description

maxStep{x,y,θ} Maximum step sizes allowed for x, y, and θ

yshift Side to side shift amount with no side velocity

ztorso Height of the torso from the ground

zstep Maximum height of the foot from the ground

fg Fraction of phase swing foot spends on the ground before lifting

fa Fraction that the swing foot spends in the air

fs Fraction before the swing foot starts moving

fm Fraction that the swing foot spends moving

φlength Duration of a single step

δstep{x,y,θ} Factor of how fast the step sizes change for x, y, and θ

xoffset Constant offset between the torso and feet

xfactor Factor of the step size applied to the forwards position of the torso

δtarget{tilt,roll} Factors of how fast tilt and roll adjusts occur for balance control

ankleoffset Angle offset of the swing leg foot to prevent landing on toe

errnorm Maximum COM error before the steps are slowed

errmax Maximum COM error before all velocity reach 0

COMoffset Default COM forward offset

δCOM{x,y,θ} Factors of how fast COM changes x, y, θ values for balance control

δarm{x,y} Factors of how fast arm x and y offsets change for balance control

Table 8.2: Optimized parameters of the walk engine.

ule. Specifically, the walk engine calculates stepi,t+1 = stepi,t + δstep(desiredi,t+1 −

stepi,t)∀i ∈ {x, y, θ}. In addition, the value is cropped within the maximum step

sizes so that −maxStepi ≤ stepi,t+1 ≤ maxStepi.

The phase is given by φstart ≤ φ ≤ φend, and t =
φ− φstart

φend − φstart
is the current

fraction through the phase. At each time step, φ is incremented by ∆seconds/φlength,

until φ ≥ φend. At this point, the stance and swing feet change and φ is reset to

φstart. Initially, φstart = −0.5 and φend = 0.5. However, the start and end times will

change to match the previous pendulum, as given by the equations
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k =
√

9806.65/ztorso

α = 6− cosh(k − 0.5φ)

φstart =











cosh−1(α)

0.5k
if α ≥ 1.0

−0.5 otherwise

φend = 0.5(φend − φstart)

The stance foot remains fixed on the ground, and the swing foot is smoothly

lifted and placed down, based on a cosine function. The current distance of the feet

from the torso is given by

zfrac =











0.5(1− cos(2π
t− fg
fa

)) if fg ≤ t ≤ fa

0 otherwise

zstance = ztorso

zswing = ztorso − zstep ∗ zfrac

It is desirable for the robot’s center of mass to steadily shift side to side, allowing it

to stably lift its feet. The side to side component when no side velocity is requested

is given by

ystance = 0.5ysep + yshift(−1.5 + 0.5 cosh(0.5kφ))

yswing = ysep − ystance

where ysep is the distance between the feet. If a side velocity is requested, ystance is
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augmented by

yfrac =























0 if t < fs

0.5(1 + cos(π t−fs
fm

)) if fs ≤ t < fs + fm

1 otherwise

∆ystance = stepy ∗ yfrac

These equations allow the y component of the feet to smoothly incorporate the

desired sideways velocity while still shifting enough to remain dynamically stable

over the stance foot.

Next, the forwards component is given by

s = sigmoid(10(−0.5 + t− fs
fm

))

xfrac =























(−0.5− t+ fs) if t < fs

(−0.5 + s) if fs ≤ t < fs + fm

(0.5− t+ fs + fm) otherwise

xstance = 0.5− t+ fs

xswing = stepx ∗ xfrac

These functions are designed to keep the robot’s center of mass moving forwards

steadily, while the feet quickly, but smoothly approach their destinations. Further-

more, to keep the robot’s center of mass centered between the feet, there is an

additional offset to the forward component of both the stance and swing feet, given

by

∆x = xoffset − stepxxfactor

After these calculations, all of the x and y targets are corrected for the current
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position of the center of mass. Finally, the requested rotation is handled by opening

and closing the groin joints of the robot, rotating the foot targets. The desired angle

of the groin joint is calculated by

groin =























0 if t < fs

1
2stepθ(1− cos(π

t− fs
fm

)) if fs ≤ t < fs + fm

stepθ otherwise

After these targets are calculated for both the swing and stance feet with

respect to the robot’s torso, the inverse kinematics module calculates the joint an-

gles necessary to place the feet at these targets. Further description of the inverse

kinematic calculations is given in [51].

To improve the stability of the walk, the walk engine tracks the desired

center of mass as calculated from the expected commands. Then, the walk engine

compares this value to the sensed center of mass after handling the delay between

sending commands and sensing center of mass changes of approximately 20ms. If

this error is too large, it is expected that the robot is unstable, and action must

be taken to prevent falling. As the robot is more stable when walking in place,

the walk engine immediately reduces the step sizes by a factor of the error. In the

extreme case, the robot will attempt to walk in place until it is stable. The exact

calculations are given by

err = max
i

(abs(comexpected,i − comsensed,i))

stepFactor = max(0,min(1,
err− errnorm

errmax − errnorm
))

stepi = stepFactor ∗ stepi ∀i ∈ {x, y, θ}

114



This solution is less than ideal, but performs effectively enough to stabilize the robot

in many situations.

There is one robot body type—type 4 as described in Section 2.2—that has

as added toe joint on each foot. The only modification made to the walk engine to

take advantage of this toe joint is to add an offset to both the ankle pitch and toe

joint—the ankle pitch is altered in addition to the toe joint as the ankle pitch can

counteract the toe joint’s effect on the robot’s center of mass. This correction allows

the remainder of the walk engine to perform as designed, resulting in a well-tuned

walk. The offset to both joints takes the form of

offset = a cos(tπ + p) + c

where a is the amplitude of the movement, p controls the phase, and c is a constant

offset. A sinusoidal curve was chosen to maintain smooth movement that repeats

once per step. The parameters for the ankle pitch and toe joint are not linked,

resulting in an additional six parameters in the walk engine (three for each foot).

Walk Engine Inputs

Once an agent has decided what direction it wants to walk in (walk direction)

and what direction it wants to face (relative to its current orientation), it must give

the correct inputs to the walk engine, which accepts as inputs three real numbers

in the range [-1, 1]. These numbers are the desired speed—as a percentage of

the engine’s maximum speed—to walk in the X and Y directions and to rotate.

The sign of the number determines the direction of the movement (e.g. positive

X for forward and negative X for backward). Converting the desired orientation

into rotation speed is simple: divide by the (admittedly arbitrary) number 180.
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Converting walk direction into the X/Y speeds is more tricky. An agent cannot

simply use sin(walk direction) and cos(walk direction) as the Y and X speed,

respectively. There are two reasons for why an agent cannot directly use these values:

1. An agent generally wants to walk in walk direction as fast as possible. Walk-

ing in a direction as fast as possible means that either the X speed or the Y

speed should equal 1.

2. The maximum X and Y speeds do not have to be the same, so an agent must

scale the X and Y speeds accordingly.

The following formula addresses both concerns:

if tan(walk_direction) < (max_y_speed / max_x_speed), then

x_speed = 1

y_speed = tan(walk_direction) * max_x_speed / max_y_speed

otherwise,

x_speed = tan(walk_direction) * max_y_speed / max_x_speed

y_speed = 1

Under certain conditions, an agent may also want to change the walk engine param-

eter set it is using. An agent can change the walk parameter set by simply specifying

the name of the desired parameter set along with the X/Y/Rotational speeds. If the

walk engine is not already using the specified parameter set, it will switch its pa-

rameters values accordingly to that of the new set. This capability allows the agent

to switch between different walks, optimized for different purposes as described in

Chapter 4, as it sees fit, instead of relying on some type of one-size-fits-all walk.
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Stopping and Jogging In Place

An important decision on how a robot should move occurs when a robot wants to

stop after reaching a desired target position on the field. We found that if a robot

immediately stops and stands still after moving quickly, then stability becomes a

concern with the robot often falling over due to the sudden change in motion. One

way to preserve stability is to request the walk engine to have the robot jog in place

instead of standing still so that the change in motion is more gradual. The drawback

of jogging in place is that the added movement adds noise to the robot’s localization

and perception of objects around it. This added noise is of particular concern for the

goalie (discussed in Appendix D.3) who needs very accurate measurements of the

position of the ball relative to itself so that it can determine when to dive to stop the

ball if an opponent attempts a shot on goal. The walk engine compromises between

standing and jogging in place by having the robot jog in place when stopping for

half a second, after which the robot enters a motionless standing pose.

8.2.6 Skill Description Language

The UT Austin Villa agent has skills for getting up after falling and kicking, each of

which is implemented as a periodic state machine with multiple key frames, where

a key frame is a static pose of fixed joint positions. Key frames are separated by a

waiting time that lets the joints reach their target angles. To provide flexibility in

designing and parameterizing skills, we designed an intuitive skill description lan-

guage that facilitates the specification of key frames and the waiting times between

them. Below is an illustrative example describing a kick skill.

SKILL KICK_LEFT_LEG

KEYFRAME 1
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setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2 ...

setTarget JOINT3 4.3 JOINT4 52.5

wait 0.08

KEYFRAME 2

increaseTarget JOINT1 -2 JOINT2 7 ...

setTarget JOINT3 $jointvalue3 JOINT4 (2 * $jointvalue3)

wait 0.08

.

.

.

As seen above, joint angle values can either be numbers or be parameterized

as $<varname>, where <varname> is a variable value that can be loaded after being

learned (how parameters are learned is described in Chapter 4). Values for skills

and other configurable variables are read in and loaded at runtime from parameter

files.

8.2.7 Kicking

The UT Austin Villa agent’s kick engine works as follows. First, a kick and target

to kick the ball toward is selected, and the agent approaches the ball. Once close

enough to the ball, the agent shifts its weight onto the support foot and executes

one of two types of kicks: fixed posed keyframe based or inverse kinematics based.

The following subsections provide further details of the kick engine’s components.
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Ball Approach

When approaching the ball before a kick, the agent uses the Walk ApproachToKick

walk parameter set (mentioned in Section 4.1.2) of the walk engine (discussed in

Section 8.2.5) to stop within a small bounding box of a target point while guaran-

teeing that the agent does not overshoot that target. With this walk approach, the

agent is able to successfully approach and kick a ball without thrashing around or

running into the ball.

As the agent approaches the ball target walk velocities in the X and Y di-

rections are updated based on the following equation:

desired[X,Y]Vel =

sqrt(2 ∗maxDecel[X,Y]

∗(distToBall[X,Y] > 2 ∗ buffer ?

distToBall[X,Y] : distToBall[X,Y]− buffer))

The values for maxDecel[X,Y] and buffer are optimized using the CMA-

ES [57] algorithm over a task where the robot walks up to the ball to a position

from which it can kick the ball as described in Appendix A.

Kick Choice

As the agent approaches the ball, it must decide which type of kick to attempt—usually

a function of whether or not the agent thinks it has time to execute the kick based

on the positions of opponents as described in Appendix D.2.1, where to kick the

ball (discussed in Appendix D.2.2), and whether to use the left or right foot. For

each kick there is a target offset position relative to the ball that the agent wants

to execute the kick from, and choosing between kicking with the left or right foot

reduces to choosing the kick with the target offset position that has the lowest cost
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for the agent to move to. The walk engine calculates the cost of moving to each

target offset position from the ball through the following variables and formula:

distCost = |agentPosition− targetOffsetPosition| /m

turnCost =
|agentOrientation− targetOrientation|

360◦

ballPenalty =











.5 if ball is in path to target offset

0 otherwise

kickCost = distCost + turnCost + ballPenalty

Kick Skills

Kicking motions for each kick are specified by the the skill description language

presented in Section 8.2.6. There are two different types of kick skills: fixed pose

keyframe based and inverse kinematics based.

Fixed pose keyframe kicks consist of a sequence of body positions, defined

by different joint angle positions, which the agent proceeds through in order to kick

the ball. For each of these the agent first places its support (non-kicking) leg near

the ball and shift its weight to the support leg. Next it lifts its kicking leg, and pulls

it backward, before finally swinging its kicking leg forward to strike the ball.

A weakness of the fixed pose keyframe kicks is that they require very precise

positioning relative to the ball in order for them to be executed. An alternative to

fixed pose keyframes is to define a path relative to the ball that the robot’s foot

should follow during a kick, and then use inverse kinematics to move the foot along

this path. The main advantage gained through such an approach is that a kick

is able to adapt to the position of the ball and thus does not require as precise

positioning by an agent to line up the kick.
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For inverse kinematics based kicks29 the skill description language is extended

to allow the specification of Cartesian coordinate waypoints for the kicking foot rel-

ative to the ball. These control points are used to compute a smooth 3D curve for

the foot to move through. A Cubic Hermite Spline formulation is used to interpolate

the control points because Hermite Splines yield curves with C1 continuity which

pass through all control points [17]. The time offset from the start of the kick is

normalized to the range [0 − 1] (0 is the start of the kick; 1 is the end), and the

normalized offset is used to sample the Hermite Spline. Inverse kinematics calcula-

tions—computed through OpenRAVE’s [42] analytic inverse kinematics solver—are

used to compute the necessary joint angles for the foot to follow the trajectory of

the curve. The skill description language also defines the Euler angles (roll, pitch,

and yaw) of the foot at each control point. These angles are linearly interpolated.

Figure 8.5 shows the relative waypoints for an example inverse kinematics

based kick, while Figure 8.6 provides a flow diagram of the necessary steps taken

by an agent during the process of approaching the ball and executing an inverse

kinematics based kick.

In addition to forward kicks, the UT Austin Villa team has developed inverse

kinematics based kicks that allow for kicking the ball at 45◦ and 90◦ angles either

outward or inward, depending on which leg is used. The team has also created

directional kicks which assume that the ball is to the side of or behind one of the

legs. See Figure 8.7 for a diagram of these kicks.

29Thanks to Adrian Lopez-Mobilia and Nicolae Ştiurcă for originally implementing inverse kine-
matics based kicks.
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Figure 8.5: Waypoints relative to the ball that define the path of the foot for an
inverse kinematics based kick. (1) Lift leg to center behind ball. (2) Pull leg back
from ball. (3) Bring leg back to position of ball. (4) Kick through ball.

Figure 8.6: Flow diagram of the agent deciding when to kick the ball and how to
interpolate the curve created relative to the ball when executing an inverse kine-
matics based kick. At each time step during the kick, the kick engine interpolates
the control (way-) points defined in skill description language to produce a target
pose for the foot in Cartesian space. Finally, an IK solver computes the necessary
joint angles of the kicking leg, and these angles are fed to the joint PID controllers.
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Figure 8.7: Using different directional inverse kinematics based kicks, the agent can
dynamically kick the ball in varied directions with respect to the placement of the
ball at a, b, and c.

8.3 Code Release

It is difficult for new RoboCup 3D simulation teams to be competitive with veteran

teams as the complexity of the the RoboCup 3D simulation environment results in

an often higher than expected barrier of entry for new teams wishing to join the

league. With the desire of providing new teams to the league a good starting point,

as well as offering a foundational platform for conducting research in the RoboCup

3D simulation domain, UT Austin Villa has released the base code for its agent

team.

The remainder of this section is organized as follows. Section 8.3.1 provides

an overview of the code release and what it includes. Section 8.3.2 highlights the

optimization task infrastructure included with the code release, and Section 8.3.3
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references other code releases.

8.3.1 Code Release Overview

The UT Austin Villa base code release, written in C++ and hosted on GitHub,30

is based off of the 2015 UT Austin Villa agent. A key consideration when releasing

the team’s code is what components should and should not be released. A complete

full release of the team’s code could be detrimental to the RoboCup 3D simulation

community if it performs too strongly. In the RoboCup 2D soccer simulation domain

the former champion Helios team released the Agent2D code base [13] that allowed

for teams to be competitive by just typing make and running the code as is. Close

to 90% of the teams in the 2D league now use Agent2D as their base effectively

killing off their original code bases and resulting in many similar teams. In order to

avoid a similar scenario in the 3D league certain parts of the team’s code have been

stripped out. Specifically all high level strategy, some optimized long kicks [41], and

optimized fast walk parameters for the walk engine [103] have been removed from

the code release. Despite the removal of these items, which are described in detail in

this document as well as other research publications [116, 117, 103, 102, 41, 111, 106],

we believe it should not be too difficult for someone to still use the code release as

a base, and develop their own optimized skills—we provide an example of how to

optimize skills with the release—and strategy, to produce a competitive team.

The following features are included in the release:

• Omnidirectional walk engine based on a double inverted pendulum model (Sec-

tion 8.2.5)

• A skill description language for specifying parameterized skills/behaviors (Sec-

30UT Austin Villa code release: https://github.com/LARG/utaustinvilla3d
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tion 8.2.6)

• Getup (recovering after having fallen over) behaviors for all agent types (Sec-

tion 8.2.4)

• A couple basic skills for kicking one of which uses inverse kinematics (Sec-

tion 8.2.7)

• Sample demo dribble and kick behaviors for scoring a goal

• World model (Section 8.2.1) and particle filter for localization (Section 8.2.2)

• Kalman filter for tracking objects (Appendix D.3.2)

• All necessary parsing code for sending/receiving messages from/to the server

• Code for drawing objects in the RoboViz [154] monitor

• Communication system previously provided for drop-in player challenges31

• Example behaviors/tasks for optimizing a kick and forward walk (Section 8.3.2)

• Support for Gazebo RoboCup 3D simulation plugin

What is not included in the release:

• The team’s complete set of skills such as long kicks [41] and goalie dives (Ap-

pendix D.3.3)

• Optimized parameters for behaviors such as the team’s fastest walks (slow and

stable walk engine parameters are included, as well as optimized parameters

for positioning/dribbling [103] and approaching the ball to kick [105])

• High level strategy including formations and role assignment (Chapter 7 and

Appendix D)

31http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/2015_dropin_challenge/
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Figure 8.8 shows an image of the default demo behavior included with the

code release in which agents kick the ball back and forth in a circle.

Figure 8.8: Default demo code release behavior where agents kick the ball back and
forth in a circle.

8.3.2 Optimization Task Infrastructure

A considerable amount of the UT Austin Villa team’s efforts in preparing for

RoboCup competitions has been in the area of skill optimization and optimizing

parameters for walks and kicks. Example agents for optimizing both a kick and

forward walk are provided with the code release. Optimization agents perform some

task (such as kicking a ball) and then determine how well they did at the task (such

as how far they kicked the ball) which is known as the agent’s fitness for the task.

Optimization agents are able to adjust the values of parameterized skills at runtime

by loading in different parameter files as mentioned in Section 8.2.6, thus allowing
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the agents to easily try out and evaluate different sets of parameter values for a skill.

After evaluating itself on how well it did at a task, an optimization agent writes its

fitness for the task to an output file.

Optimization agents can be combined with machine learning algorithms to

optimize and tune skill parameters for maximum fitness on a task. During op-

timization, agents try out different parameter values from loaded parameter files

written by a machine learning algorithm, and then the agents write out their fitness

values indicating how well they performed with those parameters so that the ma-

chine learning algorithm can attempt to adjust the parameters to produce higher

fitness values. When performing an optimization task, agents are able to change the

world as needed—such as move themselves and the ball around—by sending special

training command parser commands32 to the server.

8.3.3 Other Code Releases

There have been several previous agent code releases by members of the RoboCup 3D

simulation community. These include releases by magmaOffenburg33 (Java 2014),

libbats34 (C++ 2013), Nexus35 (C++ 2011), and TinMan36 (.NET 2010). The UT

Austin Villa code release (C++ 2016) expands on these previous code releases in a

number of ways. First the UT Austin Villa code release offers a proven base having

won the RoboCup 3D simulation competition six out of the past seven years. Second

the release provides an infrastructure for carrying out optimization and machine

learning tasks, and third the code is up to date to work with the most recent version

32http://simspark.sourceforge.net/wiki/index.php/Network_Protocol#

Command_Messages_from_Coach.2FTrainer
33http://robocup.hs-offenburg.de/uploads/media/magmaOffenburg3D-2014Release.tar.gz
34https://github.com/sgvandijk/libbats
35http://nexus.um.ac.ir/index.php/downloads/base-code
36https://github.com/drewnoakes/tin-man
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of the RoboCup 3D simulator (rcssserver3d 0.7.1).

8.4 Summary and Discussion

This chapter presented the University of Texas at Austin’s RoboCup 3D simulation

team UT Austin Villa—a successful state of the art agent having won the RoboCup

3D simulation competition six out of the past seven years. The UT Austin Villa

RoboCup 3D simulation team’s base code release, which was awarded second place

for the HARTING Open Source Prize at the 2016 RoboCup competition, provides

a fully functioning agent and good starting point for new teams to the RoboCup

3D simulation league. At the 2016 RoboCup competition one team used the code

release as the base of their team (KgpKubs), and at the 2017 RoboCup competition

six teams used the code release as the base of their teams (AIUT3D, HfutEngine,

KgpKubs, Miracle3D, Nexus3D, RIC-AASTMT). Additionally the code release of-

fers a foundational platform for conducting research in multiple areas including

robotics, multiagent systems, and machine learning. We hope that the code base

may both inspire other researchers to join the RoboCup community, as well as facili-

tate non-RoboCup competition research activities akin to the reinforcement learning

benchmark keepaway task in the RoboCup 2D simulation domain [157].

Recent and ongoing work within the RoboCup community is the development

of a plugin37 for the Gazebo38 [84] robotics simulator to support agents created for

the current RoboCup 3D simulation league simulator (SimSpark). The UT Austin

Villa code release has been tested with this plugin and provides an agent that can

walk in the Gazebo environment.

A link to the UT Austin Villa 3D simulation code release, as well as additional

37https://bitbucket.org/osrf/robocup3d
38http://gazebosim.org/

128

https://bitbucket.org/osrf/robocup3d
http://gazebosim.org/


information about the UT Austin Villa agent, can be found on the UT Austin Villa

3D simulation team’s homepage.39

39http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/
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Chapter 9

Related Work

This chapter discusses related work in different research areas relevant to the work

presented in this document. As there is far too much related work to be compre-

hensive, and much work has already been cited throughout this dissertation, we

primarily focus on additional work that is most closely related to our own.

Related work is organized into different sections as follows. Section 9.1 dis-

cusses work related to robot skill learning, Section 9.2 examines other work using

and related to layered learning, and Section 9.3 focuses on related work in the area

of movement coordination. Section 9.4 summarizes.

9.1 Robot Skill Learning

Skill learning for robots is an active area of research [139]. As described in Sec-

tion 2.1, our approach to skill learning uses the CMA-ES [57] derivative-free stochas-

tic optimization algorithm algorithm to perform direct policy search (finding good

parameters for a parameterized policy) within the context of model-free reinforce-

ment learning.
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There are a multitude of other model-free (not modeling the environment)

policy search algorithms used within robotics. One class of model-free algorithms is

gradient descent methods. Some examples of model-free gradient descent methods

include both REINFORCE [177] algorithms that estimate the gradient of a policy

to follow, and algorithms that follow the natural gradient such as episodic Natural

Actor Critic (eNAC) [141]). Another class of model-free algorithms is expectation

maximization based algorithms including the Policy Learning by Weighting Explo-

ration with the Returns (PoWER) [83] algorithm. Other model-free algorithms use

information-theoretic approaches when learning such as Relative Entropy Policy

Search (REPS) [140]. REPS seeks to bound the loss of policy information between

policy updates by limiting the KullbackLeibler (KL) divergence between observed

data and the next policy. There are also model-free policy search algorithms, such

as Path Policy Improvements with Path Integral (PI2) [166]), that use statistical

inference and a path integral approach to learning.

In addition to model-free policy search algorithms, model-based policy search

algorithms that model the environment are also used for robot skill learning. One

example of a model-based algorithm is Probabilistic Inference for Learning Control

(PILCO) [39] which uses Bayesian inference to evaluate policies. Model-based policy

search algorithms are generally more sample efficient than model-free approaches as

they can use their learned models to simulate the results of taking actions. Model-

based approaches may require much more computation than model-free approaches,

however, and model-based approaches can also suffer from model bias.

Within the context of other policy search algorithms CMA-ES can be thought

of as a form of natural gradient descent [10, 135]. Additionally, recent work by

Abdolmaleki et al. has shown a promising information-theoretic extension to CMA-
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ES called Trust-Region Covariance Matrix Adaptation Evolution Strategy (TR-

CMA-ES) [4]. For good surveys on the use of reinforcement learning and policy

search within robotics see [82] and [40] respectively.

We choose to use CMA-ES over other policy search algorithms as it has

provided good results in the RoboCup 3D simulation domain when compared to

other learning algorithms [172], and also because CMA-ES allows us to leverage

our computing cluster’s extensive computational resources by utilizing data from

running hundreds of simulations in parallel. Our use of CMA-ES as the optimization

algorithm allows for a high degree of parallelization during learning, and recent work

by Salimans et al. has corroborated the success and scalability of evolution strategies

when applied to reinforcement learning tasks [147].

An important consideration when learning parameterized skills for robots is

how to parameterize the policies controlling their movements. A popular represen-

tation for learning motions is Dynamic Movement Primitives [148] which represents

motion primitives as nonlinear dynamical systems. Kimura et al. have modeled

walking motions for quadruped robots with central pattern generators (CPGs) [80].

Johnson and Ballard have explored efficient and sparse codes for representing the

inverse dynamics of walking motion [72, 73]. Another policy representation that ne-

cessitates mentioning is deep neural networks as deep learning [22] has shown to be

very successful in robot skill learning tasks. Some examples of deep learning include

Levine et al. using deep convolutional neural networks to learn robot manipulation

tasks [93], Levine and Koltun using Guided Policy Search [94] to learn controllers

for planar simulated 3D humanoid running, and Schulman et al. using Trust Region

Policy Optimization (TRPO) [149] to learn simulated humanoid walking gaits. In

our work, we use a skill description language described in Section 8.2.6 for defining
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motion that divides movement into a series of fixed poses. Using fixed poses provides

us an intuitive representation for creating initial skills to seed optimizations with.

Another consideration when learning skills for robots is what fitness or scor-

ing function should be used when evaluating different candidate sets of parameters.

Lehman et al. have found that rewarding novelty or diversity in candidate policies

for a bipedal robot locomotion controller can produce better results than directly

optimizing for walking speed [91]. In our own work we have experimented with dy-

namically changing fitness functions to produce walks that can move equally fast in

all directions [112]. We have also explored adaptively changing our fitness function

when performing the goToTarget obstacle course walk optimization task (detailed in

Appendix A.1.3) so as to learn walks that are better for playing soccer [109].

A current focus in the space of skill learning for robots is that of directly

learning on physical robots, and employing techniques such as learning by demon-

stration [18, 134] and real-time online learning algorithms like TEXPLORE [61], for

which sample complexity is an important consideration. While there exist learn-

ing algorithms that are extremely sample efficient, such as PILCO [39], we are not

overly concerned with sample efficiency due to the relatively low cost of samples

while learning in simulation. Although not a focus of this thesis, there is work to

bridge the gap between learning in simulation and on physical robots [46, 54, 36, 85].

Other work in robot learning has focused on learning parametrized skills

that generalize to different tasks presented to a robot [87, 37], and includes work by

Abdolmaleki et al. in the RoboCup 3D simulation domain for learning directional

walks [2, 3] and variable distance kicks [5]. The work in this thesis differs in than it is

concerned with learning multiple skills that can work well together and be combined

to perform complex behaviors.
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9.2 Layered Learning

Within RoboCup soccer domains there has been previous work in using layered

learning approaches to learn complex agent behaviors. Stone used layered learning

to train three behaviors for agents in the RoboCup 2D simulation domain and

specified an additional two that could be learned as well [155]. Gustafson et al.

used two layers of learning when applying genetic programming to the keepaway

subtask within the RoboCup 2D simulation domain [52]. Whiteson and Stone later

introduced concurrent layered learning within the same keepaway domain during

which four layers were learned. Cherubini et al. used layered learning for teaching

AIBO robots soccer skills that included six behaviors [31]. Leottau et al. explored

applying layered learning strategies to learn a ball dribbling task [92]. Layered

learning has also been applied to non-RoboCup domains such as Boolean logic [66],

non-playable characters in video games [127], and concept synthesis in road traffic

simulations [132]. To the best of our knowledge our overlapping layered learning

approach applied to robot soccer, containing 19 learned behaviors as discussed in

Section 4.1, has more than three times the behaviors of any previous layered learning

systems.

Work by Mondesire has discussed the concept of learned layers overlapping,

and focuses on a concern of information needed to perform a subtask being lost or

forgotten as it is replaced during the learning of a task in a subsequent layer [128].

Our work differs in that we are not concerned with the performance of individual

subtasks in isolation, but instead are interested in maximizing the performance of

subtasks when they are combined.

While our implementation of overlapping layered learning uses CMA-ES for

learning the component skills, its hierarchical nature also bears some resemblance to,
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and shares some motivation with, classic approaches to hierarchical reinforcement

learning for learning complex behaviors. Most hierarchical reinforcement learning

approaches use gated behaviors: a gating function decides which among a collection

of behaviors should be executed, with each behavior mapping potential environment

states to low-level actions [76]. In these approaches, the behaviors and gating func-

tion are all control tasks with similar inputs and actions (sometimes abstracted).

Layered learning, on the other hand, allows for conceptually different tasks, such as

a soccer player evaluating the probability of a pass being successful and moving to

get open for a pass [176], at the different layers.

One widely used approach to hierarchical reinforcement learning is the MAXQ

algorithm [43]. The MAXQ algorithm learns at all levels of a hierarchy simultane-

ously. MAXQ converges to a recursively optimal policy in which learned subtasks are

locally optimal as opposed to being hierarchically optimal—the learned subtasks’

policies are not necessarily optimal when taking into account transitions to and

from other subtasks. Also, unlike MAXQ, layered learning allows for the flexibility

of using different machine learning algorithms at each level of the hierarchy.

Another popular approach to hierarchical reinforcement learning is the op-

tions framework [160]. Options, or temporally extended actions, can be thought

of as learned policies with initiation and termination conditions used to complete

subtasks. Layers in our behavior hierarchy can be seen as options in the sense that

they are policies that run for limited periods of time within the overall behavior. In

the context of robot soccer one could learn two separate options for both walking

and kicking a ball, and—after finding out that the robot is unable to transition from

the walk option to the kick option without falling—then learn a third option as a

bridge to transition between walking and kicking that stops and stabilizes the robot
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before it kicks the ball. However, it could be inefficient and slow to need to execute

three option behaviors to walk to and kick the ball. Instead, it may be possible

to learn a better policy through overlapping layered learning and CILB (described

in Section 3.3) that is more efficient and faster to execute: a policy consisting of

a new behavior that combines the previously learned walking and kicking subtask

behaviors without needing to stop and stabilize the robot before kicking the ball.

Progressive neural networks [146] follow some of the concepts of layered learn-

ing. These networks have been successfully used to learn policies for a series of

related reinforcement learning tasks. Progressive neural networks are sequentially

trained on individual tasks, with only the weights for a single column of the network

being learned for the current task the network is being trained on. After each task

is learned the weights of the neural network are frozen, and a new column with open

weights is added to the network before learning the next task. The outputs from

the layers of the previously learned task’s network column is used as inputs to the

layers of the current task’s network column that is being learned. The architecture

of progressive neural networks—where the output of a previously learned task is

used as input to the next task being learned—is similar in spirit to layered learning.

The architecture differs from overlapping layered learning, however, in that learned

weights of the network are never unfrozen and relearned. Furthermore, progressive

neural networks leverage task similarities to learn successive tasks through transfer

learning [163], in which they focus on learning policies for tasks that are performed

in isolation from each other, where as overlapping layered learning is better suited

for developing subtasks that work well together and can smoothly transition between

each other.
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9.3 Movement Coordination

Research within the space of movement coordination spans multiple topics including

role assignment (deciding which agent moves to which position or role) [29, 123, 70],

path planning (paths agents take to assigned positions) [121, 151, 90], and collision

avoidance (how to avoid agents colliding) [64, 144, 173]. Our work has primarily

focused on using graph theoretic methods to tackle the role assignment problem.

For a good review of graph theoretic multiagent coordination methods see [122].

Work very related to ours [169] assigns interchangeable robots to goal po-

sitions where robots have non-point masses and exist in environments containing

obstacles. Additional work by Turpin et al. [171] suggests using the Hungarian

algorithm to minimize the sum of distances raised to large powers as a proxy for

MMDR (discussed in Section 5.3.1), however such an approach is not guaranteed

to return the same result as MMDR and minimize the makespan. We believe the

above work could be augmented with the MMD+MSD2 role assignment algorithm

(discussed in Section 5.3.2) to allow for minimizing the makespan of robots traveling

in cluttered environments in O(n3) time.

As an application of role assignment Chopra and Egerstedt have created

a robot music wall, a spatio-temporal constrained version of the vehicle routing

problem [168], where robots travel around to target positions on a wall and play

musical notes at specific times by plucking strings at the target positions [34]. They

approach this task as an assignment problem, with the objective of finding an as-

signment that minimizes the total distance all robots travel, and also consider robot

connectivity [32] and heterogeneity [33].

Alonso-Mora et al. consider the role assignment problem when using mobile

robots as pixels to create animated images [15]. They minimize the sum of distances
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squared—the MSD2 role assignment function in Section 5.4—when assigning roles

which avoids collisions but does not minimize the makespan.

Macdonald [118] examines a multi-robot assignment and formation control

problem in which robots use a decentralized algorithm to decide on a pose (trans-

lation and rotation) for a given formation, and then assign themselves to unique

positions in the formation. Macdonald also uses the MSD2 role assignment function

when assigning robots to positions which does not minimize the makespan.

Ma and Koenig focus on the TAPF problem, i.e., combined target assign-

ment and path-finding, where there are teams of agents, and only members of spe-

cific teams can be assigned to each target [100]. They too have the goals of both

minimizing the makespan and avoiding collisions. Their approach uses a min-cost

max-flow algorithm [50] on a time-expanded network to assign agents to targets

within specific teams, and then uses conflict-based search [151] to resolve collisions

among agents in different teams.

Akella explores the problem of assigning interchangeable robots to a goal

formation, with the twist that the goal formation can be scaled or translated [9].

He formulates role assignment as a linear bottleneck assignment problem (LBAP)

which minimizes the maximum distance—but not recursively—that any robot must

travel. Such an assignment could be produced by running Algorithm 4 to compute

MMD+MSD2, but first setting all edge weights to the same value before running

the Hungarian algorithm on line 3 of Algorithm 4. While such as assignment mini-

mizes the makespan, it neither avoids collisions or is dynamically consistent. Using

a SCRAM role assignment function, instead of an assignment function that only

minimizes the maximum distance any robot travels, would allow for assignments

that avoid collisions.
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There exists previous work on role assignment in RoboCup soccer domains.

Stone and Veloso define an order of precedence or importance to positions, and a

player is only allowed to switch to a new position if that position is more important

than the player’s current position [158]. Reis et al. allow for two players to switch

their assigned positions when doing so improves a global team utility metric [143].

Lau et al. give a ranked priority to each target position on the field, and then

iteratively assign the closest robot to each position in order from highest to lowest

priority target [88]. Chen and Chen use a similar greedy approach to assigning

robots to different priority target positions, and robots bid on positions based on

their cost or path distance to reach the targets [30]. Abeyruwan et al. attempt to

learn a role assignment function through the use of general value functions [6]. None

of this previous work on role assignment in RoboCup soccer domains has focused

on collision avoidance or formation completion time.

As an extension to SCRAM role assignment, Jaishy et al. have created the

Breakdown Agent Replacement (BAR) algorithm for SCRAM [69, 67, 68]. BAR

focuses on situations where a subset of agents may break down and are no longer

able to move.

9.4 Summary

This chapter discussed related work in different research areas relevant to the work

presented in this document. As there is far too much related work to be compre-

hensive, we primarily focused on work that is most closely related to our own in the

areas of robot skill learning, layered learning, and movement coordination.
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Chapter 10

Conclusion and Future Work

This chapter summarizes the ideas and contributions of this thesis. After summa-

rizing, the chapter provides directions for future work.

Robots are rapidly becoming more prevalent in both industrial and domestic

settings [1]. Such an increase in the number of robots, and the likely subsequent

decrease in the ratio of people currently trained to directly control the robots, will

necessitate more robots to be able to act autonomously. In addition to the height-

ened importance of robot autonomy, larger numbers of robots present together in

the same environment will provide new challenges and opportunities for multirobot

collaboration and coordination. In a step toward addressing these challenges and

opportunities, this thesis focuses on two topics we believe are most pertinent for

the development of autonomous robots and multirobot collaborative behavior: skill

learning and movement coordination. An underlying objective of this research is to

develop techniques and methodologies that allow autonomous robots to robustly in-

teract with their environment (through skill learning) and with each other (though

movement coordination) in order to perform tasks and accomplish goals asked of
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them.

First, robots must acquire the necessary skills to autonomously perform tasks

in their environment. While previous work in robot skill learning has concentrated

on learning individual skills in isolation, we instead focus on developing learning

methodologies and designing optimization tasks to produce skills that work well

together. In our work, multiple lower level skills are incrementally learned and

combined with each other to develop richer higher level skills. Overlapping layered

learning hierarchical machine learning paradigms (introduced in Chapter 3) are

utilized during skill learning. Overlapping layered learning allows for learning certain

skill behaviors independently, and then later stitching them together by learning at

the “seams” where their influences overlap.

After robots have developed higher level skills, and can perform single robot

behaviors, autonomous robots present in the same environment together need to

coordinate their behavior and movement to efficiently complete (possibly multi-

robot) tasks. As such, we develop algorithms to coordinate the movement and

efforts of multiple robots working together to quickly complete tasks. These al-

gorithms, known as Scalable Collision-avoiding Role Assignment with Minimal-

makespan (SCRAM) role assignment algorithms (presented in Chapters 5 and 6),

prioritize minimizing the makespan, or time for all robots to complete a task, while

also attempting to avoid interference and collisions among the robots. Minimizing

the makespan is a decisive factor in performance when robots are moving to target

positions to complete a shared task where all robots must be in place before the

task can be completed and/or started.

The work in this thesis is implemented and evaluated in the RoboCup 3D

simulation soccer domain (applications of overlapping layered learning and SCRAM
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role assignment are evaluated in Chapters 4 and 7 respectively), and has been a

key component of the University of Texas at Austin’s RoboCup 3D simulation team

UT Austin Villa winning the RoboCup 3D simulation league world championship

six out of the past seven years. As a contribution of this thesis, a public base code

release of the UT Austin Villa agent (presented in Chapter 8) provides a testbed for

future research in multirobot systems.

The remainder of this chapter is organized as follows. Section 10.1 reviews

each contribution of the thesis. Possible directions for future work are discussed in

Section 10.2, and Section 10.3 concludes.

10.1 Contributions

This thesis has provided the following contributions first presented in Section 1.2:

1. Methodologies for learning complex robot skills in simulation. This

thesis presented new paradigms for constructing and learning complex robot

behaviors through the introduction and use of overlapping layered learning

hierarchical machine learning paradigms in Chapter 3. Overlapping layered

learning presents ways of combining learning of different behavior layers that

extend the traditional sequential layered learning methodology [155] through

the use of overlapping or shared parameter sets across behavior layers.

2. Development and analysis of multirobot role assignment functions.

This thesis presented and analyzed different role assignment functions for as-

signing robots to role positions in Chapter 5. Properties of role assignment

functions analyzed include total distance traveled by all robots, makespan com-

pletion time, dynamic consistency, collision avoidance, and standard deviation
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of the distances traveled by robots.

3. Novel algorithms for multirobot movement coordination. This the-

sis introduced new robot movement coordination algorithms that focus on

important considerations of formation completion time, collision avoidance,

and scalability. Specifically scalable polynomial time role assignment algo-

rithms known as SCRAM that avoid collisions among robots and minimize

the makespan, or time for robots to complete a formation, were presented in

Chapters 5 and 6.

4. Complete autonomous robot soccer playing agent. The UT Austin

Villa RoboCup 3D simulation league team, a successful state of the art agent

having won the RoboCup 3D simulation competition six out of the past seven

years, was presented in Chapter 8. This agent incorporates the ideas and algo-

rithms presented in this thesis, thus serving as a proof of concept of them, and

a public base code release of the agent provides a testbed for future research

in multirobot systems.

5. Detailed empirical evaluation of presented learning methodologies

and coordination algorithms. This thesis provided detailed empirical

evaluations of the presented overlapping layered learning methodologies in

Chapter 4, and SCRAM role assignment movement coordination algorithms

in Chapter 7. Results from within the RoboCup 3D simulation competition

were analyzed as well as controlled experiments external to the competition.
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10.2 Future Work

This section presents directions for future work. First, future work on skill learning

is discussed in Section 10.2.1. Next, Section 10.2.2 presents possible extensions

to SCRAM role assignment. Ideas for future research using the UT Austin Villa

RoboCup 3D simulation team and code base are provided in Section 10.2.3, and

Section 10.2.4 suggests additional domains outside of robot soccer to which the

work in this dissertation may be applied.

10.2.1 Skill Learning

This section presents four ideas for future work in the area of skill learning. First,

we discuss the idea of reshaping surrogate optimization tasks for target optimization

tasks that are intractable to directly optimize over. This topic is useful for learning

complex skills and behaviors as it is often the case that increased task complexity

decreases the tractability of learning directly on the task. Second, we consider using

layered learning methodologies to learn generalizable skills (skills that automatically

adapt to different variations or contexts of a task). Learning a generalizable skill for

similar tasks is more efficient than learning separate skills for multiple similar tasks.

Third, we discuss the idea of automating overlapping layered learning methodologies

by algorithmically selecting sets of overlapping parameters and layers to optimize.

Finally, we suggest applying layered learning methodologies to additional robot

environments in order to test out and validate the methodologies’ applicability and

effectiveness. Each idea for future work aims to improve on the knowledge and

understanding of how to learn complex multilayered skills.
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Simultaneous Learning and Reshaping of Surrogate Optimization Tasks

In many learning and optimization tasks, the sample cost of performing the task

is prohibitively expensive or time consuming, and attempting to directly employ a

learning algorithm on the task could quickly become intractable. For this reason,

learning is instead often performed on a less expensive task that is believed to be

a reasonable approximation or a surrogate of the actual target task—this approach

to learning is known as surrogate-assisted optimization [71].

One way to perform surrogate-assisted optimization is to learn a mapping

from the value of some surrogate function, that is more tractable computationally,

to the amount of success in the objective task, based on a small empirical sample.

This approach, albeit enticing, is dangerous, because a global mapping may not exist

— the mapping may change as we transition from one part of the parameter space

to another. For example, let us assume we are trying to optimize the parameter set

of an autonomous vehicle based on its performance in several racetracks. We can

estimate how the performance on the racetracks correlates to the performance on a

larger-scale problem, for instance, driving in a small town. However, as parameters

change the behavior of the vehicle changes, and we will inevitably see different map-

pings from racetrack performance to larger-scale performance as the autonomous

vehicle changes its policy. For this reason we propose tackling the challenging open

problem of simultaneously performing learning on an approximation or surrogate of

the true target task, while at the same time shaping the task used for learning to be

a better representation of the true target task.

Our40 early initial work on this problem [109] has targeted learning omnidi-

rectional walks that allow simulated robots to playing soccer well in the RoboCup

40This is joint work with Elad Liebman.
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3D simulation environment. Optimizing the parameter set that governs the walk

has been one of the key challenges in this domain [103]. Ideally, we would want to

evaluate any parameter set directly on full 11 versus 11 gameplay. However, playing

a full game to evaluate each parameter set is not computationally tractable. For

this reason, in the past we have trained an agent directly on an obstacle course

optimization task (discussed in Appendix A.1.3), comprised of 11 different activities

such as walking straight, in curves, and quickly stopping.41 It has been empirically

shown that doing well on the obstacle course is correlated with gameplay success.

However, other approaches, such as learning from infant walk trajectories [8], and

learning to optimize based on trajectories observed in real gameplay, have proven

less successful than the obstacle course.

What is it then about the obstacle course that makes it effective? More

exactly, which of the 11 different walking activities comprising the obstacle course

are most significant in learning a successful walk, and could it be that weighting

the tasks differently would result in a better learned walk? More interestingly, is it

possible that in different stages of the learning, different weighting schemes would

result in a better learning rate, and a better final walk? Finally, is it possible to

adjust or evolve the optimization task (in our case modify the walking trajectories

within the obstacle course) during learning to improve performance? While we have

some promising preliminary work on using a genetic algorithm to evolve different

walking task trajectories during learning [110], these are all still open questions.

One avenue to explore in this line of research is a surrogate-assisted version

of CMA-ES, ACM-ES [97], which uses rank-based Support Vector Machines to learn

the surrogate model. Closely related to the ides of adapting the surrogate task is a

41A video of the optimization task can be found at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/

2011/html/walk.html#goToTarget
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self-adaptive extension to ACM-ES, s∗ACM-ES [98], which adjusts the time between

changing the surrogate model—the number of generations between sampling from

the true target optimization task—and the surrogate model’s hyper-parameters.

Additional work on s∗ACM-ES has focused on using larger population sizes to better

utilize the surrogate model [99].

Another possible approach to changing or adapting optimization tasks during

the course of learning is that of curriculum learning [130, 131, 161] in reinforcement

learning. In curriculum learning the goal is to design a sequence of tasks for an agent

to train on such that final performance or learning speed of the agent is improved.

Generalizable Skills

Often when learning a specific robot skill, such as having a robot throw a ball at

a fixed target, the learning process will overfit to the exact task being learned and

will not be able to generalize well to similar tasks. Rather than training a robot

to handle each new task it encounters, it is more efficient if generalizable skills can

be learned for completing a set of similar tasks. These generalizable skills take in

a context or set of parameters for a task (e.g. a new target position in the ball

throwing robot example) and the robot is able to complete these task variations

without necessarily having been directly trained on them. Recent work in robot

skill learning has focused on learning skills that generalize well to different contexts

or variations in tasks [87, 37, 134].

As layered learning focuses on learning skills that work well together to com-

plete tasks, we hypothesize that it is possible to combine layered learning with

general skill learning to develop generalizable skills which work well together with

a variety of different skills. Specifically, and to validate this idea, we suggest em-
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ploying layered learning methodologies during learning of a generalizable skill for

kicking the ball at different targets in the RoboCup 3D simulation domain.

A first step for this work is to learn a general kick skill for kicking the ball at

different targets. A good starting point for learning such a general kick skill is recent

work by Abdolmaleki et al. who used contextual policy search [87] to develop both

a general skill for walking in different directions at different speeds [2], and a skill

for variable distance kicks [5], within the RoboCup 3D simulation domain. Another

method for learning general skills is the approach of learning parameterized skills [38]

which was successfully used to train a robot to throw a ball at different targets [37].

Assuming one is able to learn a general kicking skill, the final step would be to

utilize overlapping layered learning methodologies to combine this kicking skill with

previously learned walking skills in a similar manner to how we combined walking

skills with different non-general kicking skills as discussed in Section 4.1.2.

Automated Selection of Overlapping Parameters and Layers

Currently the overlapping layered learning methodologies require a person to select

which parameters to freeze and leave open during each successive layer of learning.

Additionally learning of complex skills is manually segmented into different layers

of learning. We propose finding ways of automating the segmentation of layers

and/or the selection of parameters to leave open when using overlapping layered

learning methodologies. If these selection processes can be automated it would

lessen the burden and potential need for someone with expert domain knowledge

when performing optimizations.

A possible starting point for the automated selection of parameters to opti-

mize is to look into techniques from the research area of feature selection [53]. Using
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Beta Process Autoregressive Hidden Markov Models (BP-AR-HMMs) might be a

potential way to segment complex skills into different layers as Niekum et al. suc-

cessfully used BP-AR-HMMs to segment demonstrations of skills while performing

learning from demonstration with robots [134]. Lioutikov et al. have also segmented

robot skills from demonstration using probabilistic inference and the Probabilistic

Segmentation (ProbS) algorithm [95]. Another method for delineating skills is work

by Mankowitz et al. who learn skills and where to apply them in the RoboCup 2D

soccer simulation domain using the Adaptive Skills Adaptive Partitions (ASAP)

framework [119]. Methods used in curriculum learning [130, 131, 161]—where the

goal is to design a sequence of tasks for an agent to train on such that final per-

formance or learning speed of the agent is improved—might also be utilized for

automating the selection of learning layers.

Apply Layered Learning Methodologies to Additional Robot

Environments

Layered learning methodologies have performed well in the RoboCup 3D simulation

domain, and have been shown to generalize to different robot models within this

same domain in Section 4.2.4. We believe that the learning methodologies are very

general, and propose testing them out in robot domains outside of the RoboCup 3D

simulation environment to verify that they work well there too.

For ease of testing we would like to choose a new domain that will allow

us to reuse as much of our current RoboCup 3D simulation code and optimization

framework as possible. The best candidate domain for reusing our current code

infrastructure is the Gazebo [84]42 robot simulation environment. The company that

42http://gazebosim.org/
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maintains Gazebo, the Open Source Robotics Foundation (OSRF),43 is currently

working on a Gazebo plugin to support RoboCup 3D simulation league agents with

the eventual goal of having Gazebo replace the SimSpark simulator used by the

RoboCup 3D simulation league. The Gazebo plugin44 supports the same message

communication protocol as SimSpark so that current RoboCup 3D simulation league

agents will not need to be modified to run within Gazebo. Gazebo’s physics model

is very different from the one used in SimSpark, however, and so all skills such

as walking would need to be re-optimized to work in the Gazebo environment.

Gazebo’s support of the RoboCup 3D simulation communication protocol, coupled

with a different physics model, make it an ideal new testing environment for our

layered learning methodologies.

Other potential robot simulation environments to test out our layered learn-

ing methodologies include simRobot [89],45 Webots [124],46 and MuJoCo [167].47

10.2.2 Extensions to SCRAM

This section presents four possible extensions to SCRAM role assignment. The first

extension considers relaxing SCRAM’s point mass approximation and allowing for

robots to travel in environments containing obstacles. This extension would increase

SCRAM’s versatility allowing for its use in additional environments. The second ex-

tension suggests transforming SCRAM from a centralized algorithm to a distributed

algorithm. Distributed algorithms are often preferable in robotic domains as they

typically require less communication. A third extension looks at ways to improve

the time complexity of SCRAM algorithms which is an important factor in how

43http://www.osrfoundation.org
44https://bitbucket.org/osrf/robocup3d
45http://www.informatik.uni-bremen.de/simrobot/index_e.htm
46https://www.cyberbotics.com/overview
47http://www.mujoco.org/
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well the algorithms scale to larger numbers of agents. Finally, the fourth extension

discusses the Minimum-makespan Multi-vehicle Routing Problem (MMMVRP) in

which there are more target positions than agents, and we want all target positions

to be visited by an agent in as little time as possible. MMMVRP is an extension

of the minimal-makespan role assignment problem that SCRAM solves. Each ex-

tension seeks to improve algorithms for coordinating the movement of robots when

minimizing the makespan is an objective.

Relaxation of SCRAM Point Mass Approximation

Although in its current form, SCRAM role assignment generalizes well to many re-

alistic and real-world multiagent systems, for theoretical analysis purposes SCRAM

approximates agents as being zero width point masses as discussed in Section 5.2.

We would like to remove this approximation from SCRAM and also extend SCRAM

to work in environments containing obstacles. These proposed extensions to SCRAM

would increase its versatility allowing for its use in additional environments.

Our primary starting point for extending SCRAM is work by Turpin et

al. called CAPT [169]. CAPT provides a collision-free assignment of interchange-

able robots to goal positions where robots have non-point masses and exist in envi-

ronments containing obstacles. We believe CAPT’s role assignment algorithm can

be augmented with the MMD+MSD2 SCRAM role assignment algorithm, thereby

maintaining the rest of CAPT’s O(n3) time complexity, to allow for minimizing the

makespan of robots traveling in cluttered environments in polynomial time.

Distributed SCRAM Algorithms

The SCRAM algorithms presented in Section 5.3 are centralized algorithms. In

robotic domains it can be preferable to have distributed algorithms, however, as

151



communication between robots to a centralized controller may not always be a vi-

able option. Borrowing ideas from distributed auction [23] and market-based [96]

algorithms, which have been used to compute a solution to the related assignment

problem—minimizing the sum of distances traveled by agents—in polynomial time,

could be a promising direction for the development of distributed SCRAM algo-

rithms. It may also be possible to minimize the amount of communication needed

to preserve assignments as agents move toward their assigned targets, as Nam et

al. [129] have found ways to reduce the amount of global communication needed to

preserve solutions to the assignment problem in scenarios with dynamically changing

costs.

Better Time Complexity

A bottleneck for the time complexity of the SCRAM algorithms is the O(n3) Hun-

garian algorithm. Algorithms reported to be faster than the Hungarian algorithm

for solving the assignment problem, such as the Jonker-Volgenant algorithm [75],

and the dynamic Hungarian algorithm [125] for the special case when most agents

have reached their targets and few distances are changing, can be explored to further

speed up role assignment algorithms. In the case of the MMDR O(n5) algorithm

(Algorithm 1) in Section 5.3.1, for which all edge weights are integers, scaling algo-

rithms [49, 137] can possibly be used instead of the Hungarian algorithm to reduce

the time complexity.

Minimum-makespan Multi-vehicle Routing Problem

Another possible extension to SCRAM includes role assignment problems where

there are unequal numbers of agents and targets. To extend SCRAM to the case

when there are m agents and n target locations, and m > n, is trivial. All that must
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done is to addm−n dummy target locations with all agents being assigned a distance

of 0 to each of the dummy locations. As the Hungarian algorithm minimizes the

sum of edge weights, the excess m − n agents—those not in a minimum makespan

matching to real targets—are assigned to dummy locations. Conversely, if there

are more target locations than agents (n > m), and we desire agents to travel

from one target to another such that every target location is eventually visited

by an agent, role assignment becomes a vehicle routing problem [168]. What we

are interested in computing are the routes—the series of assignments of agents to

targets—such that all targets are visited by a vehicle in as little time as possible.

Determining what routes to assign agents is an instance of the Minimum-makespan

Multi-vehicle Routing Problem (MMMVRP) which, as it can be reduced to the

traveling salesman problem, is NP-Hard. Recent initial work on MMMVPR by

Turpin et al. can compute a solution in polynomial time that is no more than five

times the optimal completion time [170].

10.2.3 UT Austin Villa RoboCup 3D Simulation Agent

A driving force behind the success of the UT Austin Villa RoboCup 3D simulation

team has been the team’s use of machine learning. In this section we outline three

ways in which the team could potentially further improve its performance using

machine learning. First, the team could use deep learning for skill learning. Second,

team formations could be learned instead of being hand-specified. Third, instead

of using a hand-designed scoring function for deciding where to kick the ball, such

a scoring function could be learned. Lastly, we discuss ongoing work using our

RoboCup 3D simulation code base to apply what is learned in simulation to robots

in the physical world.
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Deep Learning of Skills

Currently the UT Austin Villa team uses a skill description language for specifying

kicking motions as described in Section 8.2.6. The skill description language is

implemented as a periodic state machine with multiple key frames, where a key

frame is a parameterized static pose of fixed joint positions. Ideally we might like

to learn a joint position (parameter value) for each of the agents 22 joints at every

simulation cycle (20ms) so as to learn a policy over the entire range of possible

poses. To optimize values for every joint position at every simulation cycle during a

two second kicking motion would require learning over 2000 parameter values, and

unfortunately CMA-ES does not scale well to thousands of parameters [136].

An alternative to using our skill description language is to represent the policy

of a kicking motion as a deep neural network, and then use deep learning [22] to

learn kicking motions. More concretely, we could pass as input to a neural network

the amount of time since a kicking motion has started, and then have an output for

each of the robot’s joints specifying the target joint angle position to move the joint

to. Before training the neural network, we would seed the network with the policy

of our longest kick using supervised learning and backprop. Then, with the network

initialized with a policy that mimics our longest kick’s motion, we could train the

neural network with the Trust Region Policy Optimization (TRPO) algorithm [149].

Formations

The UT Austin Villa team’s formations are computed using Delaunay triangula-

tion [14] based on set offset positions from the ball as described in Section 7.1.

Currently these formations are just hand-specified and occasionally manually tuned

using a GUI formation editor [12].
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Rather than manually specifying formations, it may be possible to use ma-

chine learning to create and optimize formations. Specifically we could learn and

modify formation position offset values with the CMA-ES algorithm based on the

results of playing games using different formations. If there are too many formation

parameters for CMA-ES to optimize, we could instead represent a formation as a

neural network—with the input to the network being the position of the ball as well

as potentially the positions of opponents, and output of the network being desired

formation positions—and use deep learning to learn formations.

We note that there is existing work in the RoboCup 2D simulation league

for learning formations, as Henn et al. used the firefly algorithm to learn formation

positions for corner kicks [59].

Where to Kick

When deciding where to kick the ball, the UT Austin Villa agent samples kicking the

ball to different target locations as described in Appendix D.2.2, and then assigns

each location a score based on hand-designed Equation D.1. The location with the

highest score is chosen as the location to kick the ball to.

Instead of using a hand-designed function, we postulate that one could learn

a scoring function for kick locations using machine learning. Specifically a scoring

function could be represented as a neural network—with the input to the network

being the positions of the ball and agents on the field, and the output of the network

being the target location to kick the ball to—where the network is trained through

deep learning based on the results of kicking the ball to different field locations

during games.

We note that there is existing work in the RoboCup 2D simulation league
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for learning where to kick the ball, as Xiong et al. used Q-learning to learn where

to pass the ball [179].

Applying What is Learned in Simulation to the Physical World

Learning in simulation has several advantages over learning on robots in the physical

world. These advantages of learning in simulation include the following:

• In simulation thousands of learning trials can be run in parallel on distributed

computing clusters.

• It may be possible to speed up learning trials and run them faster than real-

time in simulation.

• No supervision or manual resetting of robots is required in simulation.

• Unlike in the physical world robots never break or wear out in simulation.

Given the preceding advantages of learning in simulation, it would be nice to leverage

these advantages so as to be able to apply what is learned in simulation to the

physical world. Unfortunately, policies learned in simulation often fail to work in

the physical world due to overfitting to inaccuracies in the simulator’s model of the

physical world.

As a step toward applying what is learned in simulation to the real world,

Farchy et al. developed a framework for robot learning in simulation called Grounded

Simulation Learning (GSL) [46] using the UT Austin Villa RoboCup 3D simulation

code base. GSL works by modifying—or grounding—a simulator with real world

data so that the behavior of policies executed in simulation will closer match to how

they will function in the real world. This grounding is performed by first learning
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a forward kinematics model of a physical robot from state–action (joint position–

joint torque) trajectories recorded while the robot executes a fixed policy in the real

world. Next, a policy is optimized in simulation. During optimization, a grounding

function embedded in the simulator uses the learned forward kinematics model of the

robot to modify actions taken in simulation. The grounding function modifies these

actions in simulation such that the modified actions produce the state outcomes

that are estimated to result from taking the original unmodified actions in the real

world.

With GSL, Farchy et al. were able to use the RoboCup 3D simulator and

UT Austin Villa code base to learn a walk for a physical Nao robot that was 25%

faster than the hand-coded walk used as a seed for learning. Recent work by Hanna

and Stone has extended GSL with Grounded Action Transformation (GAT) [54] in

which a learned inverse kinematics model of the simulator is added to the grounding

function. Learning using GAT applied to GSL produced the fastest known walk on a

physical Nao robot. Bridging the gap between learning in simulation and on physical

robots is an active area of research, and one for which the UT Austin Villa RoboCup

3D simulation code base may continue to help enable.

10.2.4 Other Domain Applications

The learning methodologies and movement coordination algorithms presented in

this dissertation are designed to be general in nature, and as such can be applied

in principle to many domains outside of robot soccer. In this section we suggest

some additional domains for applying overlapping layered learning and SCRAM

role assignment, some of which were touched on when discussing related work in

Chapter 9.
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Overlapping Layered Learning

One potential area that overlapping layered learning can be applied to is that of

video games. Video games often have low level skills or subtasks that can be learned

and then later combined together for more complex behaviors. Such a hierarchy of

skills make layered learning a natural fit for learning policies for video games, and

in turn a good fit for overlapping layered learning as well assuming that skills are

represented as parameterized policies.

One video game environment overlapping layered learning may be applied to

is the Atari Arcade Learning Environment (ALE) [21]48 which has been a popular

testbed for both neuroevolution [58] and deep reinforcement learning [126]. Another

video game environment that is conducive to overlapping layered learning is the real-

time-strategy game Starcraft and associated learning framework TorchCraft [162].49

A third video game environment to apply overlapping layered learning to is Minecraft

and its associated platform for AI research Malmo [74].50 Minecraft has been used as

a testbed for both curriculum learning [120] and lifelong learning [164], and as such

it would be a great fit for layered learning approaches too. One other platform to

test overlapping layered learning with is OpenNERO [78],51 an open-source machine

learning video game and platform for AI research and education. OpenNERO has

been used to develop complex agent behaviors by learning a sequence of gradually

more challenging tasks [79], and thus matches well with both curriculum learning

and layered learning approaches to learning.

Another general area that overlapping layered learning may be applied to is

Genetic Programming (GP) problems. In Section 9.2 we mentioned that Gustafson

48https://github.com/mgbellemare/Arcade-Learning-Environment
49https://github.com/TorchCraft/TorchCraft
50https://github.com/Microsoft/malmo
51https://github.com/nnrg/opennero/wiki
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et al. used layered learning when applying GP to the keepaway subtask within the

RoboCup 2D simulation domain [52]. Others have used layered learning with GP

on tasks outside of robot soccer however, including Nguyen et al. who had success

using layered learning GP (GPLL) to solve symbolic regression problems [62, 133].

SCRAM Role Assignment

SCRAM role assignment is useful for general problems in which agents are tasked

with assuming different formations. Such problems include formation control of

quadrotors [44] and formations for marching bands [63].

Another potential application of SCRAM is that of controlling the positions

of robots acting as pixels to form different images. As we previously mentioned in

Section 9.3, Alonso-Mora et al. consider the role assignment problem when using

mobile robots as pixels to create animated images [15].

SCRAMmay also be used during the process of coordinating multiple droplets

in light-actuated digital microfluidic systems intended for use as lab-on-a-chip sys-

tems [101]. In such systems, droplets of chemicals are actuated on a photosensitive

chip by moving projected light patterns. The goal is to move multiple droplets in

parallel on a microfluidic platform without having the droplets collide with each

other.

Prioritized SCRAM role assignment, presented in Chapter 6, is well suited to

coverage and patrol tasks [45] as it allows for specifying a set of high priority targets

(areas of importance that need to be quickly visited and/or covered) that agents

will minimize the makespan when moving to. Furthermore, an agent will maintain

coverage of a high priority target until another agent is near enough to also cover

that target.
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Vehicle routing is another application where SCRAM role assignment is di-

rectly applicable. Hanna et al. have used SCRAM role assignment in a carsharing

setting to match autonomous cars to people requesting rides [55].

SCRAM role assignment may also have utility in warehouses where robots

retrieve items for orders to be shipped [178]. As SCRAM minimizes the makespan,

or time for all items for an order to be retrieved, it allows for faster processing of

orders.

Finally, given that all experiments in this dissertation using SCRAM role

assignment were carried out in simulation, it would be worthwhile to run some

experiments using SCRAM on physical robots as another reference point for how

the algorithms perform. A good testbed for running SCRAM on physical robots is

the Robotarium [142],52 a remotely accessible swarm robotics research platform at

the Georgia Institute of Technology.

10.3 Concluding Remarks

This thesis introduces the overlapping layered learning paradigm and presents Scal-

able Collision-avoiding Role Assignment with Minimal-makespan (SCRAM) role

assignment algorithms. The thesis also presents the University of Texas at Austin’s

RoboCup 3D simulation team UT Austin Villa—a successful state of the art agent

having won the RoboCup 3D simulation competition six out of the past seven

years—along with a public base code release of the UT Austin Villa agent that

provides a testbed for future research in machine learning and multirobot systems.

While the UT Austin Villa agent incorporates the ideas and algorithms presented

in this thesis, thus serving as a proof of concept of them, the learning methodologies

52https://www.robotarium.gatech.edu/
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and movement coordination algorithms are designed to be general in nature, and

ought to have broad applicability to real-world problems well beyond that of robot

soccer. We hope that the contributions of this thesis may play a role in the AI

community’s ongoing effort to develop robust autonomous robots and multirobot

systems in the real world.
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Appendix A

Learned Behavior Layers

The following is a detailed description of the different behavior layers learned by the

2014 UT Austin Villa RoboCup 3D simulation team as discussed in Chapter 4. The

team used an extensive layered learning approach incorporating overlapping layered

learning—introduced in Chapter 3—to learn skills for the robots such as getting

up, walking, and kicking. The notation used to describe the behavior layers is pre-

sented in Section 3.2. Additional details about the optimization process and training

tasks used during the layered learning approach to develop three walk parameter

sets needed for general walking, sprinting, and dribbling the ball are provided in

Appendix A.1.

For all layers of learned behaviors the CMA-ES [57] algorithm is used as the

ML algorithm (M). All input feature vector (~F ) for learned behavior layers include

the position of each of the robots’ 22 joints, as well as the robots’ three dimensional

(x, y, z) accelerometer and gyroscope measurements. Any behavior in which a kick

is learned also takes in as input the x and y position of the ball relative to the

robots. The output (O) for all behavior layers are current target positions for each
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of the robots’ joints. A diagram of how all the layers connect with each other can

be seen in Figure 4.1 within Section 4.1.

L1,1 : Getup Front Primitive: The robot learns a behavior to stand up when

starting from lying on its front.

T1,1: The robot is forced to fall on its front from a standing position and then

attempts to get up. The robot is then given a negative return value equal

to the time it remains in a fallen over state as measured over 4 seconds.

The objective function used during optimization is the following where

time is in seconds:

fgetup front primitive = −timeNotStanding

See [104] for more details about the training task.

M1,1: Learning was performed across 200 generations of CMA-ES with a

population size of 150.

H1,1: The learned policy consists of 9 parameters specifying a fixed series of

poses for a getup motion defined by our skill description language. Infor-

mation about the skill description language is provided in Section 8.2.6.

Initial parameter values were seeded with those from a hand-coded policy.

L1,2 : Getup Back Primitive: The robot learns a behavior to stand up when

starting from lying on its back.

T1,2: The robot is forced to fall on its back from a standing position and then

attempts to get up. The robot is then given a negative return value equal

to the time it remains in a fallen over state as measured over 4 seconds.
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The objective function used during optimization is the following where

time is in seconds:

fgetup back primitive = −timeNotStanding

See [104] for more details about the training task.

M1,2: Learning was performed across 200 generations of CMA-ES with a

population size of 150.

H1,2: The learned policy consists of 26 parameters specifying a fixed series of

poses for a getup motion defined by our skill description language. Infor-

mation about the skill description language is provided in Section 8.2.6.

Initial parameter values were seeded with those from a hand-coded policy.

L1,3 : KickOff Touch Primitive: Single robot behavior where the robot learns

to lightly touch the ball resulting in little ball motion.

T1,3: The robot attempts to lightly touch the ball and is given lower return

values the more the ball moves. If the robot falls over, fails to touch

the ball, or touches the ball more than once it is given a negative return

value. The objective function used during optimization is the following

where distance is in meters:

ftouch =











−1 : Failure

10− distBallTraveled : Otherwise

See [41] for full details of the training task.

M1,3: Learning was performed across 100 generations of CMA-ES with a

population size of 150.
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H1,3: The learned policy consists of 12 parameters specifying a fixed series

of poses for a ball touch motion defined by our skill description lan-

guage. Information about the skill description language is provided in

Section 8.2.6. Parameters for the x, y, and θ offset standing position of

the robot from the ball are also learned. Initial parameter values were

seeded with those from a hand-coded policy.

L1,4 : KickOff Kick Primitive: Single robot kick behavior where the robot learns

a kick that scores on a kickoff from a motionless ball.

T1,4: The robot attempts to kick the ball on a kickoff directly into the oppo-

nent’s goal. The robot is given higher return values for both kicks that

travel closer to the opponent’s goal, and for kicks that travel farther dis-

tances while remaining above the height of opponent robots. If the robot

fails to kick the ball it is given a negative return value, and if it kicks

the ball out of bounds—misses the goal—it receives a return value of 0.

The objective function used during optimization is the following where

all distances are in meters:

fkick kickoff =























−1 : Failure

0 : Missed goal

100 + distBallForward + 2 ∗ distBallInAir : Otherwise

See [41] for full details of the training task.

M1,4: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H1,4: The learned policy consists of 59 parameters specifying a fixed series of

poses for a kick motion defined by our skill description language. Infor-
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mation about the skill description language is provided in Section 8.2.6.

Parameters for the x, y, and θ offset standing position of the robot from

the ball are also learned. Initial parameter values were seeded with those

sampled from an observed kick as described in [41].

L1,5 Kick Fast Primitive: The robot learns a short but fast to execute kick start-

ing from a standing position behind the ball. The robot is also expected to be

stable and still standing after the kick.

T1,5: The robot attempts to quickly kick the ball as far as possible from a

standing position behind the ball. The robot is given higher return values

for longer kicks, is penalized if the kick takes too long to execute (greater

than 0.25 seconds), and is given a negative return value if it fails to kick

the ball or falls over while doing so. The objective function used during

optimization is the following where distance is in meters and time is in

seconds:

fkick fast primitive =























−1 : Failure

−1 : Robot fell over

distBallForward−max(kickTime− 0.25, 0) : Otherwise

M1,5: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H1,5: The learned policy consists of 33 parameters specifying a fixed series of

poses for a fast kick motion defined by our skill description language. In-

formation about the skill description language is provided in Section 8.2.6.

Parameters for the x and y offset standing position of the robot from the

ball are also learned. Initial parameter values were seeded with those
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from a hand-coded policy.

L2,1 : Walk GoToTarget: The robot learns a walk for moving to general target

positions on the field.

T2,1: The training task consists of an obstacle course in which the robot tries

to navigate to a variety of target positions on the field. Each target

is active, one at a time for a fixed period of time, which varies from

one target to the next, and the robot is rewarded based on its distance

traveled toward the active target. To promote stability, the robot is

given a penalty if it falls over. After falling the robot executes one of

the getup behaviors learned in L1,1 and L1,2—Getup Front Primitive or

Getup Back Primitive respectively—so that it can stand up and continue

the walk training task. Full details of the training task, known as the

goToTarget task, are provided in Appendix A.1.3.

M2,1: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H2,1: The learned policy consists of 27 parameters for a walk engine described

in Section 8.2.5. The maxStepx and maxStepy parameters in Table 8.2

are learned as a single value, however, as we found this advantageous in

ensuring that the learned policy would not overly favor walking in the x

direction over the y direction. Initial walk engine parameter values were

seeded with those from a hand-coded policy used on physical robots as

described in [103].

L2,2 : KickOff Kick Behavior: A two robot behavior is learned for scoring on a

kickoff with one robot lightly touching ball before the other robot kicks the
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ball in the goal.

T2,2: One robot attempts to lightly touch the ball at the beginning of a kick-

off, after which the second robot attempts to kick the ball in the goal.

During the task the touch and kick robots use the previously learned

KickOff Touch Primitive and KickOff Kick Primitive respectively. The

task is evaluated with the same objective function as is used in the train-

ing task T1,4, except that a negative return value is also given if the first

robot fails to touch the ball before the second robot kicks the ball. The

objective function used during optimization is the following where all

distances are in meters:

fkickoff =



































−1 : First robot failed touch

−1 : Second robot failed kick

0 : Missed goal

100 + distBallForward + 2 ∗ distBallInAir : Otherwise

See [41] for full details of the training task.

M2,2: Learning was performed across 100 generations of CMA-ES with a

population size of 150.

H2,2: The learned policy consists of the x, y, and θ offset standing position

parameters of both the robots from the ball that are part of H1,3 and

H1,4. This learning is an example of CILB as H1,3 ∈ L2,2, H1,4 ∈ L2,2,

and {H ′
1,3∪H ′

1,4} ⊂ H2,2 where H ′
1,3 and H ′

1,4 are the subsets of standing

position parameters of H1,3 and H1,4 respectively. An additional synchro-

nized timing parameter for how long the first robot should wait before

touching the ball is also learned so that the second robot does not acci-
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dentally try and kick the ball before the first robot has touched it. This

new added parameter makes this learned behavior also an example of

PCLL as {H ′
1,3 ∪H ′

1,4} ⊂ H2,2 instead of just {H ′
1,3 ∪H ′

1,4} = H2,2.

L2,3 : Kick Long Primitive: The robot learns a kicking motion to kick the ball

a long distance starting from a standing position behind the ball.

T2,3: The robot attempts to kick the ball as far as possible from a standing

position behind the ball. The robot is given higher return values for

longer kicks, is penalized if the kick takes too long to execute (greater

than 2 seconds), and is given a negative return value if it fails to kick

the ball. The objective function used during optimization is the following

where distance is in meters and time is in seconds:

fkick long primitive =











−1 : Failure

distBallForward−max(kickTime− 2, 0) : Otherwise

M2,3: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H2,3: The learned policy consists of 70 parameters specifying a fixed series of

poses for a long kick motion defined by our skill description language. In-

formation about the skill description language is provided in Section 8.2.6.

Parameters learned in h1,4 for the KickOff Kick Primitive are used as

seed values for an initial policy (h1,4 99K H2,3), and added parameters

for speeding up the kick are also learned. Parameters for the x, y, and θ

offset standing position of the robot from the ball are learned as well.

L3,1 : Walk Sprint: The robot learns a walk for quickly walking in the forward
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direction.

T3,1: The same goToTarget training task is performed as in L2,1, however the

robot only uses the walk it is learning when its orientation is within 15◦ of

its target. During the remainder of the training task the robot is using the

learned behavior from L2,1 thus ensuring that the walk being learned can

transition from/to the previously learned Walk GoToTarget behavior’s

walk. Full details of the training task are provided in Appendix A.1.4.

M3,1: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H3,1: The learned policy consists of 27 parameters for a walk engine described

in Section 8.2.5. Initial values for the policy are seeded with those from

h2,1 (h2,1 99K H3,1) that were optimized for walking to general target

positions on the field.

L3,2 : Kick High Primitive: The robot learns a kicking motion to kick the ball

over opponents starting from a standing position behind the ball.

T3,2: The robot attempts to kick the ball as far as possible in the air from

a standing position behind the ball. The robot is given higher return

values for kicks that travel longer distances at a height above that of

opponents, is penalized if the kick takes too long to execute (greater

than 2 seconds), and is given a negative return value if it fails to kick

the ball. The objective function used during optimization is the following

where distance is in meters and time is in seconds:

fkick high primitive =











−1 : Failure

distBallInAir−max(kickTime− 2, 0) : Otherwise
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M3,2: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H3,2: The learned policy consists of 70 parameters specifying a fixed series

of poses for a high kick motion defined by our skill description lan-

guage. Information about the skill description language is provided in

Section 8.2.6. Parameters for the x, y, and θ offset standing position

of the robot from the ball are also learned. Parameters learned in h2,3

for the Kick Long Primitive are used as seed values for an initial policy

(h2,3 99K H3,2).

L3,3 : Kick Low Primitive: The robot learns a kicking motion to kick the ball

such that it stays below the height of the goal when starting from a standing

position behind the ball.

T3,3: The robot attempts to kick the ball as far as possible on the ground

from a standing position behind the ball. The robot is given higher

return values for kicks that travel longer distances, is penalized if the

kick takes too long to execute (greater than 2 seconds), and is given a

negative return value if it fails to kick the ball or the ball travels above

the height of the goal. The objective function used during optimization

is the following where all distance is in meters and time is in seconds:

fkick low primitive =























−1 : Failure

−1 : Kick above goal height

distBallForward−max(kickTime− 2, 0) : Otherwise

M3,3: Learning was performed across 300 generations of CMA-ES with a

population size of 150.
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H3,3: The learned policy consists of 70 parameters specifying a fixed se-

ries of poses for a low kick motion defined by our skill description lan-

guage. Information about the skill description language is provided in

Section 8.2.6. Parameters for the x, y, and θ offset standing position

of the robot from the ball are also learned. Parameters learned in h2,3

for the Kick Long Primitive are used as seed values for an initial policy

(h2,3 99K H3,3).

L4,1 : Getup Front Behavior: The robot learns to stand up when starting from

lying on its front and then walks around.

T4,1: The training task is the same as T1,1 except that after standing up

the robot is asked to walk in different directions, and its return value is

penalized if it falls over while trying to do so. The objective function

used during optimization is the following where time is in seconds:

fgetup front =











−timeNotStanding− 5 : Fell over after standing

−timeNotStanding : Otherwise

M4,1: Learning was performed across 200 generations of CMA-ES with a

population size of 150.

H4,1: The learned policy consists of the same 9 Getup Front Primitive pa-

rameters in H1,1 which are now unfrozen and relearned. As parameters

are unfrozen and relearned this learned behavior is an example of PLLR.

L4,2 : Getup Back Behavior: The robot learns to stand up when starting from

lying on its back and then walks around.

T4,2: The training task is the same as T1,2 except that after standing up
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the robot is asked to walk in different directions, and its return value is

penalized if it falls over while trying to do so. The objective function

used during optimization is the following where time is in seconds:

fgetup back =











−timeNotStanding− 5 : Fell over after standing

−timeNotStanding : Otherwise

M4,2: Learning was performed across 200 generations of CMA-ES with a

population size of 150.

H4,2: The learned policy consists of the same 26 Getup Back Primitive pa-

rameters in H1,2 which are now unfrozen and relearned. As parameters

are unfrozen and relearned this learned behavior is an example of PLLR.

L4,3 : Walk PositionToDribble: The robot learns a walk for dribbling the ball.

T4,3: The robot starts from different positions relative to the ball and is asked

to dribble the ball toward the opponent’s goal for 15 seconds. The robot

only uses the walk it is learning when positioning around the ball to

dribble it. During the remainder of the training task the robot is using

the learned behaviors from L2,1 and L3,1 thus ensuring that the walk being

learned can transition from/to the previously learned walk behaviors for

walking and sprinting. The robot is given a return value equal to the

distance it is able to dribble the ball toward the opponent’s goal while

being penalized if it falls over. Full details of the training task, known as

the driveBallToGoal2 task, are given in Appendix A.1.5.

M4,3: Learning was performed across 300 generations of CMA-ES with a

population size of 150.
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H4,3: The learned policy consists of 27 parameters for a walk engine described

in Section 8.2.5. Initial values for the policy are seeded with those from

h2,1 (h2,1 99K H4,3) that were optimized for walking to general target

positions on the field.

L5,1 : Walk ApproachToKick: The robot learns a walk for stopping at a precise

position behind the ball in preparation to kick the ball.

T5,1: The robot is asked to walk to a target position near the ball from which a

kick might be executed. The robot is rewarded for stopping at this target

position in as little time as possible while being penalized if it runs into

the ball or falls over. The robot only uses the walk it is learning when

close to the ball. During the remainder of the training task the robot

is using the learned behaviors from L2,1 and L3,1 thus ensuring that the

walk being learned can transition from/to the previously learned walk

behaviors for walking and sprinting. The objective function used during

optimization is the following where distance is in meters and time is in

seconds:

fwalk approach to kick =

−timeTaken

+fFellOver ? − 1 : 0

+timeTaken > 12 ? − 0.7 : 0

+fRanIntoBall ? − 0.5 : 0

+velocityWhenInPositionToKick > 0.005 ? − 0.5 : 0

See [105] for full details of the training task.

M5,1: Learning was performed across 300 generations of CMA-ES with a

population size of 150.
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H5,1: The learned policy consists of 27 parameters for a walk engine described

in Section 8.2.5. Initial values for the policy are seeded with those from

h4,3 (h4,3 99K H5,1) that were optimized for positioning around the ball

when dribbling. Additional parameters described in [105] for determining

how quickly the robot should accelerate and decelerate to reach its target

without running into the ball are also learned.

L6,1 : Kick Fast Behavior: The robot learns to walk to the ball and perform a

short but fast to execute kick. The robot is also expected to be stable and

still standing after the kick.

T6,1: The same T1,5 optimization task for kicking a ball quickly is used, ex-

cept instead of starting from a standing position behind the ball the

robot walks up to the ball and attempts to kick it from different starting

positions. Walk parameter sets optimized in previously learned layers

are used when approaching to kick the ball thus ensuring the robot can

smoothly transition between walking and kicking. The objective function

used during optimization is the following where distance is in meters and

time is in seconds:

fkick fast =























−1 : Failure

−1 : Robot fell

distBallForward−max(approachAndKickTime ∗ 2− 10, 0) : Otherwise

M6,1: Learning was performed across 100 generations of CMA-ES with a

population size of 150.

H6,1: The learned policy consists of the same two Kick Fast Primitive x and

y offset position parameters from the ball in H1,5—the target position
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for the walk to reach for the kick to be executed—which are now re-

optimized. This learned behavior is an example of CILB as the two inde-

pendently learned behaviorsKick Fast Behavior andWalk ApproachToKick

(L1,5 and L5,1) are combined (H1,5 ∈ L6,1, H5,1 ∈ L6,1) by re-learning a

subset of their parameters (H6,1 ⊂ {H1,5 ∪H5,1}).

L6,2 : Kick High Behavior: The robot learns to walk to the ball and perform a

high kick to kick the ball over opponents.

T6,2: The same T3,2 optimization task for kicking a ball high is used, except in-

stead of starting from a standing position behind the ball the robot walks

up to the ball and attempts to kick it from different starting positions.

Walk parameter sets optimized in previously learned layers are used when

approaching to kick the ball thus ensuring the robot can smoothly tran-

sition between walking and kicking. The objective function used during

optimization is the following where distance is in meters and time is in

seconds:

fkick high =











−1 : Failure

distBallInAir−max(approachAndKickTime ∗ 2− 10, 0) : Otherwise

M6,2: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H6,2: The learned policy consists of the same 73 Kick High Primitive param-

eters in H3,2 which are now re-optimized. This learned behavior is an ex-

ample of CILB as the two independently learned behaviorsKick High Behavior

and Walk ApproachToKick (L3,2 and L5,1) are combined (H3,2 ∈ L6,2,

H5,1 ∈ L6,2) by re-learning a subset of their parameters (H6,2 ⊂ {H3,2 ∪

177



H5,1}).

L6,3 : Kick Low Behavior: The robot learns to walk to the ball and perform a

low kick that stays below the height of the goal.

T6,3: The same T3,3 optimization task for kicking a ball low is used, except in-

stead of starting from a standing position behind the ball the robot walks

up to the ball and attempts to kick it from different starting positions.

Walk parameter sets optimized in previously learned layers are used when

approaching to kick the ball thus ensuring the robot can smoothly tran-

sition between walking and kicking. The objective function used during

optimization is the following where distance is in meters and time is in

seconds:

fkick low =























−1 : Failure

−1 : Kick above goal heigh

distBallForward−max(approachAndKickTime ∗ 2− 10, 0) : Otherwise

M6,3: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H6,3: The learned policy consists of the same 73 Kick Low Primitive parame-

ters in h3,3 which are now re-optimized. This learned behavior is an exam-

ple of CILB as the two independently learned behaviorsKick Low Behavior

and Walk ApproachToKick (L3,3 and L5,1) are combined (H3,3 ∈ L6,3,

H5,1 ∈ L6,3) by re-learning a subset of their parameters (H6,3 ⊂ {H3,3 ∪

H5,1}).

L6,4 : Kick Long Behavior: The robot learns to walk to the ball and perform a

178



long kick.

T6,4: The same T2,3 optimization task for kicking a ball a long distance is used,

except instead of starting from a standing position behind the ball the

robot walks up to the ball and attempts to kick it from different starting

positions. Walk parameter sets optimized in previously learned layers

are used when approaching to kick the ball thus ensuring the robot can

smoothly transition between walking and kicking. The objective function

used during optimization is the following where distance is in meters and

time is in seconds:

fkick long =











−1 : Failure

distBallForward−max(approachAndKickTime ∗ 2− 10, 0) : Otherwise

M6,4: Learning was performed across 300 generations of CMA-ES with a

population size of 150.

H6,4: The learned policy consists of the same 73Kick Long Primitive parame-

ters inH2,3 which are now re-optimized.This learned behavior is an exam-

ple of CILB as the two independently learned behaviorsKick Long Behavior

and Walk ApproachToKick (L2,3 and L5,1) are combined (H2,3 ∈ L6,4,

H5,1 ∈ L6,4) by re-learning a subset of their parameters (H6,4 ⊂ {H2,3 ∪

H5,1}).

179



A.1 Optimization Process and Training Tasks for Learn-

ing Walk Parameter Sets

The following subsections detail the optimization process and training tasks used

during the layered learning approach to develop three walk parameter sets needed for

general walking, sprinting, and dribbling the ball. The Covariance Matrix Adapta-

tion Evolution Strategy (CMA-ES) algorithm [57] was used to learn the walk engine

parameters listed in Table 8.2 for each set of walk parameters. Further details

about the development of the optimization process—first implemented for the 2011

team—are available in [103], however here we only present the details most relevant

to the 2014 team.

A.1.1 Walk Usage Considerations

Before describing the procedure for optimizing the walk parameters, we provide

some brief context for how the agent’s walk is typically used. These details are

important for motivating the optimization procedure’s fitness functions.

During gameplay the agent is usually either moving to a set target position

on the field or dribbling the ball toward the opponent’s goal and away from the

opposing team’s players. Given that an omnidirectional walk engine can move in

any direction as well as turn at the same time, the agent has multiple ways in which

it can move toward a target. We chose the approach of both having the agent move

and turn toward a target at the same time as this allows for both quick reactions (the

agent is immediately moving in the desired direction) and speed (where the bipedal

robot model is faster when walking forward as opposed to strafing sideways). We

validated this design decision by playing our agent against a version of itself which

does not turn to face the target it is moving toward, and found our agent that turns
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won by an average of .7 goals across 100 games. Additionally we played our agent

against a version of itself that turns in place until its orientation is such that it is

able to move toward its target at maximum forward velocity, and found our agent

that immediately starts moving toward its target won by an average of .3 goals

across 100 games. All agents we compared used walks optimized by the process

described in the following subsections.

Dribbling the ball is a little different in that the agent needs to align behind

the ball, without first running into the ball, so that it can walk straight through

the ball, moving it in the desired dribble direction. When the agent circles around

the ball, it always turns to face the ball so that if an opponent approaches, it can

quickly walk forward to move the ball and keep it out of reach of the opponent.

A.1.2 Optimization Task Architecture

To ease the optimization process, we build optimization tasks out of a series of inde-

pendent phases, called OptPhases. Each OptPhase encapsulates a logically distinct

action that the agent must take, the utility function for that action, and any of

the agent’s observations during the execution of that phase that is used as input to

the utility function. To guard against the case where the agent cannot complete the

action, each OptPhase also has a maximum duration. If the agent does not complete

an OptPhase’s associated action within the specified duration, it simply moves on

to the next OptPhase. Should the agent fall down during a phase, the next phase

is not started until the agent gets up again. For optimizing the agent’s walk, we

primarily used the following phase types—all of which punish for falling down:

• A WaypointOptPhase, during which the agent attempts to walk to a certain

coordinate and is rewarded based on how far it can walk before the phase
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ends. If the agent arrives at its destination before the time runs out, we try

to extrapolate how far the agent would have gone if allowed to walk for the

entire phase.

• A StopOptPhase, during which the agent stands still and is punished for mov-

ing. This phase type is useful for making sure that the agent is stable, not

just fast.

• A MoveOptPhase, during which the agent walks in a certain direction and is

rewarded based on the distance it can travel before the phase ends.

At the beginning of an optimization task, the agent is initialized with a list of

OptPhases and it simply needs to execute them all in order. Once it has gone

through all of the OptPhases, it simply adds up all of the utility values for each of

the individual phases and use that as the utility for the entire run. This approach

allows us to quickly and easily create and experiment with different optimization

strategies. For example, we can optimize for stability: by chaining together a series

of short MoveOptPhases sprinkled with a number of StopOptPhases to make the

agent quickly change direction, or for navigation speed: by using WaypointOptPhases

to create a sort of obstacle course as the goToTarget optimization task described in

Appendix A.1.3.

A.1.3 Walk GoToTarget Parameter Set Optimization

To learn walk parameters for moving to general target positions on the field we

created a training task—called the goToTarget optimization task—consisting of an

obstacle course in which the robot tries to navigate to a variety of target posi-

tions on the field. The targets are represented as WaypointOptPhases described in

Appendix A.1.2. Each target is active, one at a time for a fixed period of time,
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which varies from one target to the next, and the robot is rewarded based on its

distance traveled toward the active target. If the robot reaches an active target,

the robot receives an extra reward based on extrapolating the distance it could

have traveled given the remaining time on the target. In addition to the target

positions, the robot has stop targets—represented as StopOptPhases described in

Appendix A.1.2—where it is penalized for any distance it travels. To promote sta-

bility, the robot is given a penalty if it falls over during the optimization run.

In the following equations specifying the agent’s rewards for targets, Fall is

5 if the robot fell and 0 otherwise, dtarget is the distance traveled toward the target,

and dmoved is the total distance moved. Let ttotal be the full duration a target is

active and ttaken be the time taken to reach the target or ttotal if the target is not

reached.

rewardtarget = dtarget
ttotal
ttaken

− Fall

rewardstop = −dmoved − Fall

The goToTarget optimization includes quick changes of target/direction for

focusing on the reaction speed of the agent, as well as targets with longer durations

to improve the straight line speed of the agent. The stop targets ensure that the

agent is able to stop quickly, while remaining stable. The trajectories that the agent

follows during the optimization are described in Figure A.1.

A.1.4 Walk Sprint Parameter Set Optimization

To further improve the forward speed of the agent, we optimized a parameter set

for walking straight forwards for ten seconds starting from a complete stop. Unfortu-

nately, when the robot tried to switch between the forward walk andWalk GoToTarget
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• Long walks forward/backwards/left/right

• Walk in a curve

• Quick direction changes

• Stop and go forward/backwards/left/right

• Switch between moving left-to-right and right-to-left

• Quick changes of target to simulate a noisy target

• Weave back and forth at 45 degree angles

• Extreme changes of direction to check for stability

• Quick movements combined with stopping

• Quick alternating between walking left and right

• Spiral walk both clockwise and counter-clockwise

Figure A.1: GoToTarget Optimization walk trajectories

parameter sets it was unstable and usually fell over. This instability is due to the

parameter sets being learned in isolation, resulting in them being incompatible.

To overcome this incompatibility, we ran the goToTarget subtask optimiza-

tion again, but this time we fixed the Walk GoToTarget parameter set and learned a

new parameter set. We call these parameters theWalk Sprint parameter set, and the

agent uses them when its orientation is within 15◦ of its target. The Walk Sprint

parameter set was seeded with the values from the Walk GoToTarget parameter

set. This approach to optimization is an example of sequential layered learning as

the output of one learned subtask (the Walk GoToTarget parameter set) is fed in

as input to the learning of the next subtask (the learning of the Walk Sprint pa-

rameter set). By learning the Walk Sprint parameter set in conjunction with the
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Walk GoToTarget parameter set, the robot was stable switching between the two

parameter sets.

A.1.5 Walk PositionToDribble Parameter Set Optimization

Although adding theWalk GoToTarget andWalk Sprint walk engine parameter sets

improved the stability, speed, and game performance of the agent, the agent was still

a little slow when positioning to dribble the ball. This slowness is explained by the

fact that the goToTarget subtask optimization emphasizes quick turns and forward

walking speed while positioning around the ball involves more side-stepping to circle

the ball. To account for this discrepancy, the agent learned a third parameter set

which we call the Walk PositionToDribble parameter set. To learn this parameter

set, we created a new driveBallToGoal253 optimization in which the agent is evaluated

on how far it is able to dribble the ball over 15 seconds when starting from a variety of

positions and orientations from the ball. TheWalk PositionToDribble parameter set

is used when the agent is .8 meters from the ball and is seeded with the values from

the Walk GoToTarget parameter set. Both the Walk GoToTarget and Walk Sprint

parameter sets are fixed and the optimization naturally includes transitions between

all three parameter sets, which constrained them to be compatible with each other.

As learning of the Walk PositionToDribble parameter set takes the two previously

learned parameter sets as input, it is a third layer of sequential layered learning.

53The ’2’ at the end of the name driveBallToGoal2 is used to differentiate it from the driveBallTo-

Goal optimization that was used in [103].
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Appendix B

Additional SCRAM Proof

Sketches

This appendix provides proof sketches for properties of role assignment functions

discussed in Chapter 5: minimizing the makespan, avoiding collisions, and dynamic

consistency.

B.1 Role Assignment Function CM Validity

The following54 is a more in depth analysis of the CM validity of the role assignment

functions MMDR and MMD+MSD2 described in Section 5.3.

B.1.1 Minimizing Longest Distance

It is trivial to determine that both MMDR and MMD+MSD2 select a mapping

of agents to role positions that minimizes the time for all agents to have reached

their target destinations. The total time it takes for all agents to move to their

54This appendix contains material from previously published work in [111].
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desired positions is determined by the time it takes for the last agent to reach

its target position. As the first comparison between mapping costs for both role

assignment functions is the maximum distance that any single agent must travel,

and it is assumed that all agents move toward their targets at the same constant

rate, the property of minimizing the longest distance holds for both MMDR and

MMD+MSD2.

B.1.2 Avoiding Collisions

Given the assumptions that no two agents and no two role positions occupy the

same position on the field, and that all agents move toward role positions along a

straight line at the same constant speed, if two agents collide it means that they both

started moving from positions that are the same distance away from the collision

point. Furthermore if either agent were to move to the collision point, and then

move to the target of the other agent, its total path distance to reach that target

would be the same as the path distance of the other agent to that same target.

Considering that we are working in a Euclidean space, by the triangle inequality we

know that the straight path from the first agent to the second agent’s target will

be less than the path distance of the first agent moving to the collision point and

then moving on to the second agent’s target. The path distance of the first agent

moving to the collision point, and then moving on to the second agent’s target,

is in fact equal to the distance of the second agent moving on a straight line to

its target. Thus if the two colliding agents were to switch targets the maximum

distance either is traveling will be reduced—along with the sum of the squared

distances traveled—thereby reducing the cost of the mapping for both MMDR and

MMD+MSD2, and the collision will be avoided. Figure B.1 illustrates an example
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of this scenario.

Figure B.1: Example collision scenario. If the mapping (A1→P2,A2→P1) is chosen
the agents will follow the dotted paths and collide at the point marked with a C.
Instead both MMDR and MMD+MSD2 will choose the mapping (A1→P1,A2→P2),
as this minimizes both maximum path distance and sum of distances squared, and
the agents will follow the paths denoted by the solid arrows thereby avoiding the
collision.

The following is a proof sketch related to Figure B.1 that no collisions will

occur.

Assumption. Agents A1 and A2 move at constant velocity v on straight line paths

to static positions P2 and P1 respectively. A1 6= A2 and P1 6= P2. Agents collide

at point C at time t.

Claim. A1→P2 and A2→P1 is an optimal mapping returned by MMDR.

Case 1. P1 and P2 6= C.

By assumption:

A1C = A2C = vt

A1P2 = A1C + CP2 = A2C + CP2
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A2P1 = A2C + CP1 = A1C + CP1

By triangle inequality:

A1P1 < A1C + CP1 = A2P1

A2P2 < A2C + CP2 = A1P2

max(A1P1, A2P2) < max(A1P2, A2P1)

A1P1
2
+A2P2

2
< A1P2

2
+A2P1

2

∴ cost(A1→ P1, A2→ P2) < cost(A1→ P2, A2→ P1) and claim is False.

Case 2. P1 = C, P2 6= C.

By assumption:

CP2 > CP1 = 0

A2C ≤ A1C = vt

A1P1 = A1C < A1C + CP2 = A1P2

By triangle inequality:

if A1C = A2C

A2P2 < A2C + CP2 = A1C + CP2 = A1P2

otherwise A2C < A1C

A2P2 ≤ A2C + CP2 < A1C + CP2 = A1P2

max(A1P1, A2P2) < max(A1P2, A2P1)

A1P1
2
+A2P2

2
< A1P2

2
+A2P1

2

∴ cost(A1→ P1, A2→ P2) < cost(A1→ P2, A2→ P1) and claim is False

Case 3. P2 = C, P1 6= C.
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Claim False by corollary to Case 2.

Case 4. P1, P2 = C.

Claim False by assumption.

As claim is False for all cases MMDR does not return mappings with collisions.

B.2 Dynamic Consistency

The following is a more in depth analysis of the dynamic consistency of the role

assignment functions MMDR and MMD+MSD2 described in Section 5.3.

Dynamic consistency is important such that as agents move toward fixed

target role positions they do not continually switch or thrash between roles thus

impeding their progress in reaching target positions. Given the assumption that

all agents move toward target positions at the same constant rate, all distances

to targets in a MMDR mapping of agents to role positions will decrease at the

same constant rate as the agents move until becoming 0 when an agent reaches its

destination. Considering that agents move toward their target positions on straight

line paths, it is not possible for the distance between any agent and any role position

to decrease faster than the distance between an agent and the role position it is

assigned to move toward. Given this fact, the cost of any MMDR mapping can not

improve over time any faster than the lowest cost MMDR mapping being followed,

and thus dynamic consistency is preserved. Note that it is possible for two mappings

of agents to role positions to have the same MMDR cost as the case of two agents

being equidistant to two role positions. In this case one of the mappings may be

arbitrarily selected and followed by the agents. As soon as the agents start moving

the selected mapping will acquire and maintain a lower cost than the unselected
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mapping. The only way that the mappings could continue to have the same MMDR

cost would be if the two role positions occupy the same place on the field, however,

as stated in the given assumptions, this is not allowed.

MMD+MSD2 is not dynamically consistent as minimizing the sum of dis-

tances squared (MSD2) is not dynamically consistent. MSD2 is shown to be not

dynamically consistent in Appendix B.3.

B.3 Other Role Assignment Functions

The following is an analysis of both the CM validity and dynamic consistency of

the role assignment functions other than MMDR and MMD+MSD2 evaluated in

Section 5.4.

Other potential ordering heuristics for mappings of agents to target posi-

tions include minimizing the sum of all distances traveled (MSD), minimizing the

sum of all path distances squared (MSD2), and assigning agents to targets in or-

der of shortest distances (Greedy). None of these heuristics preserve both required

properties listed in Section 5.2 for CM validity which are true for both MMDR and

MMD+MSD2. Also none of them are dynamically consistent.

As can be seen in the example given in Figure B.2, none of the properties

necessarily hold for MSD.

The first property of all agents having reached their target destinations in as

little time as possible is not always true for MSD2 as shown in the example in Fig-

ure B.3. MSD2 does avoid collisions as explained in Appendix B.1.2. The following

is an example in which MSD2 is not dynamically consistent:

At time t = 0:
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Figure B.2: Example where minimizing the sum of path distances fails to hold de-
sired properties. Both mappings of (A1→P1,A2→P2) and (A1→P2,A2→P1) have
a sum of distances value of 8. The mapping (A1→P2,A2→P1) will result in a colli-
sion and has a longer maximum distance of 6 than the mapping (A1→P1,A2→P2)
whose maximum distance is 4. Once a mapping is chosen and the agents start mov-
ing the sum of distances of the two mappings will remain equal which could result
in thrashing between the two.

A1 = (3, 0)

A2 = (2, 999)

P1 = (0, 0)

P2 = (1, 0)

A1→ P1, A2→ P2

A1P1 = 3, A2P2 =
√
998002; A1P1

2
+A2P2

2
= 998011

A1→ P2, A2→ P1

A1P2 = 2, A2P1 =
√
998005; A1P2

2
+A2P1

2
= 998009

MSD2 mapping (A1→ P2, A2→ P1) ∵ 998009 < 998011

At time t = 2:
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Figure B.3: Example where minimizing the sum of path distances squared fails to
hold desired property of minimizing the time for all agents to have reached their
target destinations. The mapping (A1→P1,A2→P2) has a path distance squared
sum of 19 which is less than the mapping (A1→P2,A2→P1) for which this sum
is 27. Both MMDR and MMD+MSD2 will choose the mapping with the greater
sum as its maximum path distance (proportional to the time for all agents to have
reached their targets) is

√
17 which is less than the other mapping’s maximum path

distance of
√
18.

A1 = (1, 0)

A2 = (∼ 2,∼ 997)

P1 = (0, 0)

P2 = (1, 0)

A1→ P1, A2→ P2

A1P1 = 1, A2P2 =
√
994010; A1P1

2
+A2P2

2
= 994011

A1→ P2, A2→ P1

A1P2 = 0, A2P1 =
√
994013; A1P2

2
+A2P1

2
= 994013

MSD2 mapping (A1→ P1, A2→ P2) ∵ 994011 < 994013
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As the mapping switched MSD2 is not dynamically consistent.

Figure B.4: Example where greedily choosing shortest paths fails to hold de-
sired properties. The shortest distance is from A2→P1 resulting in a mapping of
(A2→P1,A1→P2) to be chosen. The mapping (A2→P1,A1→P2) will result in a col-
lision and has a longer maximum distance of 6 than the mapping (A1→P1,A2→P2)
whose maximum distance is 4. Once the agents collide it is possible that A1 will
move on top of P1 thus pushing A2 off of P1 and towards P2. This displacement of
A2 may result in a switch between mappings and potential thrashing.

As can be seen in the example given in Figure B.4, none of the properties

necessarily hold for Greedy.
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Appendix C

Dynamic Programming

Algorithm for MMDR

The following55 is a description of the dynamic programming algorithm for comput-

ing the Minimum Maximal Distance Recursive (MMDR) role assignment function

that is compared against SCRAM role assignment algorithms in Section 5.4.

A key recursive property of MMDR that allows us to exploit dynamic pro-

gramming is expressed in Theorem 3. This property stems from the fact that if

within any subset of a mapping a lower cost mapping is found, then the cost of the

complete mapping can be reduced by augmenting the complete mapping with that

of the subset’s lower cost mapping.

Theorem 3. Let A and P be sets of n agents and positions respectively. Denote the

mapping m := MMDR(A,P ). Let m0 be a subset of m that maps a subset of agents

A0 ⊂ A to a subset of positions P0 ⊂ P . Then m0 is also the mapping returned by

MMDR(A0, P0).

55This appendix contains material from previously published work in [102].
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The savings from using dynamic programming comes from only evaluating

mappings whose subset mappings are returned by MMDR. This savings is accom-

plished in Algorithm 5 by iteratively building up optimal mappings for position sets

from {p1} to {p1, ..., pn}, and using optimal mappings of k − 1 agents to positions

{p1, ..., pk−1} (line 8) as a base when constructing each new mapping of k agents to

positions {p1, ..., pk} (line 9), before saving the lowest cost mapping for the current

set of k agents to positions {p1, ..., pk} (line 10).

Algorithm 5 Dynamic programming implementation of MMDR

1: HashMap bestRoleMap = ∅

2: Agents = {a1, ..., an}
3: Positions = {p1, ..., pn}
4: for k = 1 to n do
5: for each a in Agents do
6: S =

(

n−1
k−1

)

sets of k − 1 agents from Agents− {a}
7: for each s in S do
8: Mapping m0 = bestRoleMap[s]
9: Mapping m = (a→ pk) ∪mo

10: bestRoleMap[{a} ∪ s] = mincost(m, bestRoleMap[{a} ∪ s])

11: return bestRoleMap[Agents]

An example of the mapping combinations evaluated in finding the optimal

mapping for three agents through the dynamic programming approach of Algo-

rithm 5 can be seen in Table C.1. In this example the algorithm begins by computing

the distance of each agent to the first role position. Next the algorithm computes

the cost of all possible mappings of agents to both the first and second role positions

and saves off the lowest cost mapping of every pair of agents to the the first two

positions. The algorithm then proceed by sequentially assigning every agent to the

third position and computes the lowest cost mapping of all agents mapped to all

three positions. As all subsets of an optimal (lowest cost) mapping will themselves

be optimal, the algorithm only needs to evaluate mappings to all three positions

196



which include the previously calculated optimal mapping agent combinations for

the first two positions.

Table C.1: All mappings evaluated during dynamic programming using Algorithm 5
when computing an optimal mapping of agents A1, A2, and A3 to positions P1, P2,
and P3. Each column contains the mappings evaluated for the set of positions listed
at the top of the column.

{P1} {P2,P1} {P3,P2,P1}
A1→P1 A1→P2, MMDR(A2→P1) A1→P3, MMDR({A2,A3}→{P1,P2})
A2→P1 A1→P2, MMDR(A3→P1) A2→P3, MMDR({A1,A3}→{P1,P2})
A3→P1 A2→P2, MMDR(A1→P1) A3→P3, MMDR({A1,A2}→{P1,P2})

A2→P2, MMDR(A3→P1)
A3→P2, MMDR(A1→P1)
A3→P2, MMDR(A2→P1)

Recall that during the kth iteration of the dynamic programming process to

find a mapping for n agents, where k is the current number of positions that agents

are being mapped to, each agent is sequentially assigned to the kth position and

then all possible subsets of the other n−1 agents are assigned to positions 1 to k−1

based on computed optimal mappings to the first k− 1 positions from the previous

iteration of the algorithm. These assignments result in a total of
(

n−1
k−1

)

agent subset

mapping combinations to be evaluated for mappings of each agent assigned to the

kth position. The total number of mappings computed for each of the n agents

across all n iterations of dynamic programming is thus equivalent to the sum of the

n− 1 binomial coefficients. That is,

n
∑

k=1

(

n− 1

k − 1

)

=
n−1
∑

k=0

(

n− 1

k

)

= 2n−1

Therefore the total number of mappings that must be evaluated using our dynamic

programming approach is n2n−1.
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Appendix D

UT Austin Villa RoboCup 3D

Simulation Team Strategy

This appendix provides details of some of the strategy components used by the UT

Austin Villa agent team presented in Chapter 8. This includes general strategy for

movement in Appendix D.1, strategy for kicking in Appendix D.2, and the team’s

goalie in Appendix D.3. Details of how the team’s strategy incorporates formations

and role assignment are discussed in Chapter 7.

D.1 General Locomotion in the Field

This section covers details regarding how agents behave on the field. Section D.1.1

explains how which agent should go to the ball is determined. A system used to avoid

collisions is given in Section D.1.2. Movement and actions around the ball including

facing the ball (Section D.1.3), how the ball is approached (Section D.1.4), where

to move the ball (Section D.1.5), and how to dribble (Section D.1.6) follow.
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D.1.1 Closest to Ball Heuristic

In Section 7.1 we mention that the closest player to the ball is assigned the onBall

role and is instructed to go to the ball. In order to measure “closeness” we do not

purely use Euclidean distance, however, as certain positions such as being behind

the ball instead of in front of it are more advantageous. An agent is considered to be

in front of the ball if its X coordinate is greater than that of the ball’s X coordinate.

If an agent is in front of the ball it will typically have to take time to circle and walk

around behind the ball in order to dribble the ball forward toward the opponent’s

goal. For this reason we add 1 meter to the distances of agents in front of the ball

when determining the agent closest to the ball.

When the ball is close to either end of the field we modify the definition of

being in front of the ball to take into consideration that agents near the opponent’s

goal want to move the ball toward the center of the field (toward the opponent’s

goal) and agents near their own goal want to push the ball out to the sides (away

from their goal). For this reason whenever the ball is to either side of the goal (its

Y coordinate is outside the closest goal post’s Y coordinate), and the ball’s distance

to the nearest endline is less than the distance between a goal post and the closest

corner of the field to the goal post (approximately 6 meters), we declare an agent

to be in front of the ball if on offense the agent is closer than the ball to the goal

post nearest the ball, or on defense if the agent is farther than the ball from the

goal post nearest to the ball.

Another situation in which we adjust the measure of the distance an agent is

considered to be from the ball is when an agent has fallen. As it takes time after a

fall for an agent to get back up, we add an extra 1.5 meters to the distance a fallen

agent is considered to be from the ball. The only time we do not add in this extra
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distance measure for a fallen agent is when the agent has fallen very near (within

.65 meters) of the ball. In this case, when the fallen agent is almost on top of the

ball, having another agent assume the onBall role will likely force that agent to have

to navigate around and possibly trip over the fallen agent when moving toward the

ball.

// Function for computing the adjusted distance (in meters)

// an agent is to the ball.

function getClosenessToBallMeasure(agent) {

// Adjustment value to add to distance agent is from ball

adjust = 0.0;

// Agent has fallen but not right on top of ball

if agentIsFallen and agentDistToBall > .65

adjust += 1.5; // Added distance for having fallen

// Ball is to the sides of the goals

if abs(ball_Y) > HALF_GOAL_Y {

// Ball close to own goal

if ball_X < -HALF_FIELD_X + (HALF_FIELD_Y-HALF_GOAL_Y) {

if ball_Y > 0

nearestPost = Position(-HALF_FIELD_X, HALF_GOAL_Y);

else

nearestPost = Position(-HALF_FIELD_X, -HALF_GOAL_Y);

// Agent is in front of ball

200



if agentDistToNearestPost > ballDistToNearestPost

adjust += 1.0; // Added distance to walk around ball

}

// Ball close to opponent’s goal

else if ball_X > HALF_FIELD_X - (HALF_FIELD_Y-HALF_GOAL_Y) {

if ball_Y > 0

nearestPost = Position(HALF_FIELD_X, HALF_GOAL_Y);

else

nearestPost = Position(HALF_FIELD_X, -HALF_GOAL_Y);

// Agent is in front of ball

if agentDistToNearestPost < ballDistToNearestPost

adjust += 1.0; // Added distance to walk around ball

}

}

// Agent is in front of ball

else if agent_X >= ball_X

adjust += 1.0; // Added distance to walk around ball

return agentDistToBall + adjust;

}

D.1.2 Collision Avoidance

Although the positioning system discussed in Section 7.1 is designed to avoid assign-

ing agents to positions that might cause them to collide, external factors outside of
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the system’s control, such as falls and the movement of the opposing team’s agents,

still result in occasional collisions. To minimize the potential for these collisions

the agents employ an active collision avoidance system. When an obstacle, such

as a teammate, is detected in an agent’s path the agent will attempt to adjust its

path to its target in order to maneuver around the obstacle. This adjustment is

accomplished by defining two thresholds around obstacles: a proximity threshold

at 1.25 meters and a collision threshold at .5 meters from an obstacle. If an agent

enters the proximity threshold of an obstacle it will adjust its course to be tangent

to the obstacle thereby choosing to circle around to the right or left of said obstacle

depending on which direction will move the agent closer to its desired target. Should

the agent get so close as to enter the collision proximity of an obstacle it must take

decisive action to prevent an otherwise imminent collision from occurring. In this

case the agent combines the corrective movement brought about by being in the

proximity threshold with an additional movement vector directly away from the ob-

stacle. Figure D.1 illustrates the adjusted movement of an agent when attempting

to avoid a collision with an obstacle.

D.1.3 Ball Facing

When an agent is assigned to move to a new role position on the field, as described

in Section 7.1, the agent both turns toward and moves to the new target position

as described in Appendix A.1.1. Once the agent gets within .5 meters of its target

role position it no longer attempts to face in the direction of its target position,

however, and instead turns to face the ball as it finishes moving toward its target.

This change in the position the agent is facing is done so that slight adjustments to

an agent’s target, brought about by small movement or noise in the position of the
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Figure D.1: Collision avoidance examples where agent A is traveling to target T but
wants to avoid colliding with obstacle O. The top diagram shows how the agent’s
path is adjusted if it enters the proximity threshold of the obstacle while the bottom
diagram depicts the agent’s movement when entering the collision threshold. The
dotted arrow is the agent’s desired path while the solid arrow is the agent’s corrected
path to avoid a collision.
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ball, do not result in sudden quick turns in place that might destabilize the agent

as it adjusts its position to the revised target. Facing the ball when stopped also

allows for agents to quickly move to the ball, without needing to turn, should they

become the closest agent to the ball as determined in Appendix D.1.1.

D.1.4 Ball Approach

When the agent approaches the ball to dribble or kick the ball it moves toward a

target position a little behind the ball that is in line with the direction the agent

wants to move the ball. Should the agent be in front of the ball, meaning that if it

were to walk straight to its desired target behind the ball it would end up walking

through the ball, the agent instead picks a target to move to that is .5 meters either

left or right from the ball along a line perpendicular to the direction from the agent

to the ball. This target provides a waypoint for the agent to move through, along

an efficient path around the ball, as opposed to directly walking up to the ball and

then having to walk all the way around it.

If an opponent agent is within a meter of the ball, and the ball is between the

opponent agent and our goal, it is likely that the opposing agent is going to move

the ball toward our goal. If our agent were to walk straight toward the ball, and

the opponent agent does start dribbling, chances are that the opponent agent will

move the ball past our agent and need to be chased after. Our agent recognizes this

situation when going to the ball and adjusts its target position to be further behind

the ball, and along the anticipated path that the opponent agent is projected to

dribble the ball, so as to be position to intercept the ball should the opponent agent

move it. This target adjustment can be thought of as approaching the ball with a

good angle for pursuit.
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D.1.5 Reflex-based Strategy for Navigation with the Ball

By default our agents attempt to drive (move) the ball toward the opponent’s goal

with the target destination being the center of the opponent’s goal. However, in

many cases, the fastest way to drive a ball to this target point is different than just

dribbling/kicking it directly to the target. For instance, when the agent is approxi-

mately aligned behind the ball facing the target direction, frequently it is faster to

start dribbling the ball and slightly adjust the path of the ball while dribbling, then

trying to align exactly in the target direction before starting to dribble. Other times

when it is better to start dribbling the ball immediately, instead of waiting to align

in the target direction, include when an opponent is close by, and there is no time

to turn to face the exact target direction, and when an opponent is blocking the

path to the target. This section describes a simple, reflex-based navigation strategy

used when driving the ball.

The general idea behind this strategy is that given a desired target direction

for the ball to move in, and given the agent’s current direction facing the ball, a

decision is made as to whether the agent should just move the ball in the direction of

its current heading based on the current state of the game. This strategy is encapsu-

lated in a function named shouldMoveBallInCurrentDirection() which returns true

when the agent should move the ball forward along its current direction relative to

the ball. This function is roughly implemented as follows:

function shouldMoveBallInCurrentDirection(agentDirection,

desiredDirection, ...)

if ballWouldGoInsideGoal

return true;

else if ballGoingOutsideFieldBounds
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return false;

else if agentDirection is too backwards

return false; // allow to dribble only mildly backwards

else if opponentsAreFar

return false; // we have time to better align

else if opponentGetsClose

and opponentDoesNotBlockAgentPath

and goingForwardGetsBallCloserToOpponentGoal

return true;

else if opponentIsNearBall

return true; // do not let opponent reach the ball

else

return false; // on all other cases, try to align better

Using this method, the agent is able to quickly navigate between obstacles,

without the need for a complex path planning algorithm. Note that at each moment,

the agent ignores all but the closest obstacle, making this a reflex-based strategy

rather than a planning with lookahead strategy.

D.1.6 Dribbling

Dribbling the ball amounts to walking through the center of the ball in the desired

direction that the agent wants to move the ball. When the agent is close to the

ball, and is attempting to position itself behind the ball, it always faces the ball,

as mentioned in Appendix A.1.1, so that it can quickly walk forward and move the

ball should an opposing agent approach. When circling the ball to dribble the agent
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uses collision avoidance (Appendix D.1.2) with a proximity threshold of .5 meters

and a collision threshold of .35 meters to avoid running into the ball.

D.2 Kicking Strategy

The following subsections describe the UT Austin Villa team’s strategy for kicking

the ball using the team’s walk engine discussed in Section 8.2.7. These strategy

considerations include when to kick the ball in Appendix D.2.1, where to kick the

ball and passing in Appendix D.2.2, and set plays in Appendix D.2.3.

D.2.1 When to Kick

Before deciding where to kick the ball, first a decision must be made as to whether

to kick or dribble the ball. The 2014 UT Austin Villa team chose to always dribble

if an opponent is within two meters of the ball—it was assumed that an agent might

not have enough time to complete a kick if an opponent is less than two meters from

the ball.

Rather than using a hand-picked value to determine if there is enough time

to kick the ball, the 2015 UT Austin Villa trained a logistic regression classifier

to predict the probability of a kick being successful given the current state of the

world.56 To do so, the team played many games against a common opponent in

which agents were instructed to always try and kick the ball. During the course of

kick attempts the following state features were recorded and then labeled as positive

or negative kick examples based on whether kick attempts were successful.

1. Difference between angle of ball and the orientation of agent

2. Difference between angle of kick target and orientation of agent

56Thanks to Jason Liang for training the logistic regression classifier.
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3. Angle difference between closest opponent to ball (OPP*) and ball from agent’s

point of view

4. Difference between angle of ball (from OPP*’s point of view) and the orientation

of OPP*

5. Is OPP* fallen or not

6. Magnitude of OPP* velocity

7. Angle between OPP* velocity and ball velocity

8. Distance from agent to ball / OPP* distance to ball

9. Distance from agent to ball / OPP* distance to agent

10. OPP* distance to ball / OPP* distance to agent

11. Distance from agent to ball - OPP* distance to ball

12. Distance from agent to ball - OPP* distance to agent

13. OPP* distance to ball - OPP* distance to agent

14-24. Same features as 3-13 except OPP* is the second closest opponent to ball

25-35. Same features as 3-13 except OPP* is the third closest opponent to ball

The output from a trained classifier is a probability of a kick attempt being

successful. A threshold value for this probability, for which kicks are attempted

when the probability of a successful kick exceeds this value, was chosen after ex-

perimenting with different threshold values while playing 100s of games against

multiple opponents. Metrics monitored during these games were average goal differ-

ential, number of kicks performed, goals against, and the probability of a tie or loss.
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Figure D.2 shows example data for these metrics when playing against a common

opponent using different classifier thresholds for deciding when to kick.

Figure D.2: Data for average goal differential (green), number of kicks performed
(yellow), goals against (light blue), and the probability of a tie or loss (dark blue)
when playing against the apollo3d team using different classifier thresholds for de-
ciding when to kick.

D.2.2 Where to Kick the Ball and Passing

For the 2015 competition the UT Austin Villa team added a set of 13 new kicks to its

agents with each of the kicks optimized to travel a fixed distance of 3 to 15 meters in 1

meter increments. This series of new variable distance kicks allow a robot to kick the

ball within half a meter of any target 2.5 to 15.5 meters away. The kicks, represented

as a series of parameterized joint angle poses as discussed in Section 8.2.6, were

optimized using the CMA-ES algorithm [57] and the team’s optimization framework

incorporating overlapping layered learning presented in Chapters 3 and 4. During

learning of a d meter kick the robot attempts to kick the ball to a target position d

meters directly in front of the robot, and a kick attempt is awarded a negative fitness

value equal to the euclidean distance of the ball relative to the target position. Each

kick was optimized for 400 generations of CMA-ES with a population size of 150.
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After optimization of each kick the top 300 highest fitness kick parameter sets were

evaluated again over 300 kick attempts each to check for consistency. Finally, a

parameter set with both high accuracy and low variance for the target distance was

identified from collected data and chosen as the kick to use. This learning process

was performed for each kick distance, and run across all five heterogeneous agent

types, resulting in a total of 13 X 5 = 65 kicks learned.

Variable distance kicks allow for a richer set of passing options as robots can

select from many potential targets to kick the ball to as shown in Figure D.3. When

deciding where to kick the ball, the UT Austin Villa agent first checks to see if it

can kick the ball and score from the ball’s current location. If the agent thinks it

can score then it tries to do so. If not, the agent then samples kicking the ball at

targets in 10 degree direction increments and, for all viable kicking direction targets

(those which don’t kick the ball out of bounds or too far backwards), the agent

assigns each a score based on Equation D.1. The location with the highest score is

chosen as the location to kick the ball to. Equation D.1 rewards kicks for moving

the ball toward the opponent’s goal, penalizes kicks that have the ball end up near

opponents, and also rewards kicks for landing near a teammate. All distances in

Equation D.1 are measured in meters.

score(target) =

−‖opponentGoal− target‖

∀opp ∈ Opponents,−max(25− ‖opp− target‖2, 0)

+max(10− ‖closestTeammateToTarget− target‖, 0)

(D.1)

Once an agent has decided on a target to kick the ball at it then broadcasts

this target to its teammates. A couple agents then use “kick anticipation” where

they run toward locations on the field that are good for receiving the ball based on
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Figure D.3: Potential kick target locations with lighter circles having a higher score.
The highest score location is highlighted in red.

the ball’s anticipated location after it is kicked.57 The agents assigned to run to these

anticipated positions are chosen by a dynamic role assignment system described in

Chapter 7. Also, agents avoid getting in the way of the projected trajectory of the

ball before it is kicked to prevent them from accidentally blocking the kick.

D.2.3 Set Plays

During the 2014 RoboCup competition the UT Austin Villa team used a multi-

robot behavior to score goals immediately off an indirect kickoff as discussed in

Section 4.1.3. This behavior consisted of having one robot lightly touch the ball be-

fore a second robot kicked the ball into the opponent’s goal. As rules were changed

57Videos of kick anticipation being used for passing can be found at
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/

2014/html/kickanticipation.html
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for the 2015 competition, and now a teammate is required to touch the ball outside

of the center circle before a goal can be scored, this kickoff tactic is no longer allowed.

Instead the team created legal set plays for kickoffs to try and quickly score.

The first kickoff set play, shown in Figure D.4, has the player taking the

kickoff kick the ball slightly forward and to the left or right side of the field to a

waiting teammate ready to run forward and take a shot. The player taking the

kickoff chooses which side target to kick the ball to based on which target is furthest

from any opponent. If there are opponents near both side targets then the player

taking the kickoff instead chooses the kickoff set play shown in Figure D.5. In this

set play the ball is first kicked backwards and to the side to a waiting teammate.

The player who receives this backwards pass then kicks the ball forward and across

to the other side of the field where a teammate is waiting for a pass. It is expected

that the player who receives the second pass will be in a good position to take a

shot on goal as opponent agents will have been drawn to the other side of the field

after the initial backwards pass off the kickoff.

In addition to kickoff set plays, the UT Austin Villa team also created set

plays for offensive corner kicks. These set plays, shown in Figure D.6, consist of

having three teammates move to positions on the midline at the center and both

sides of the field. The player taking the corner kick chooses to kick the ball to

whichever of these three players is most open. If none of these players are open then

the player taking the corner kick just chooses the default option of kicking the ball

to a position in front of the goal where several teammates are waiting.
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Figure D.4: Kickoff set play to the sides. Yellow lines represent passes and orange
lines represent shots. Dashed red lines represent agent movement.

Figure D.5: Kickoff set play for passing backwards. Yellow lines represent passes
and orange lines represent shots. Dashed lines represent agent movement (red for
teammates and blue for opponents).
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Figure D.6: Corner kick set plays. Yellow lines represent passes and orange lines
represent shots. Dashed red lines represent teammate movement. In the example
shown the ball would be passed to the teammate waiting for the ball near the bottom
of the image as that teammate is most open.

All set plays require passing the ball to specific locations on the field though

the use of learned variable distance kicks discussed in Appendix D.2.2. Approaching

and kicking the ball must be quick as a team has only 15 seconds to kick the ball

once a set play starts.

D.3 Goalie

The goalie is the last line of defense and is the only agent allowed to purposely

dive to try and stop a ball when the opposing team shoots on goal. The following

sections describe the behavior of the goalie.
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D.3.1 Positioning

The goalie agent is designed to stay on a line .5 meters above its own goal line

and always position itself between the ball and the goal so as to minimize the

maximum angle between either goal post, ball, and the goalie. As the goalie moves

it is instructed to always face the ball so that it can both keep track of the current

position of the ball and also be in position to dive left or right at angles perpendicular

to the direction of the ball for maximum angular coverage. Should the ball enter the

goal box, and the goalie is determined to be the closest agent to the ball, the goalie

will assume the onBall role (discussed in Section 7.1) and go to the ball. Otherwise

the goalie is instructed to always stay within its goal box and position itself to best

be ready to block shots.

D.3.2 Kalman Filter

The goalie needs to quickly and accurately respond to balls traveling in toward the

goal. Because accuracy is paramount in the estimation of the ball’s position, and

the goalie needs a way of smoothing out noise present in observations of the ball’s

location, the goalie uses a Kalman filter to track the ball’s position and velocity.

D.3.3 Dives

The goalie is equipped with a special set of diving skills in order to effectively use its

body to stop a ball that is headed toward the goal. Since the goalie tracks the ball

velocity with a Kalman filter (Appendix D.3.2), these dives are invoked only when

the goalie evaluates that the ball is indeed headed with a certain threshold velocity

toward the goal; otherwise, the goalie merely intercepts the ball by running toward

it.
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The key desiderata of a dive are that the goalie lower its body to the ground

as quickly as possible, and that the angular range the goalie is able to “cut off”

with its dive be as large as possible. We achieve these two objectives by designing

three separate types of dives for the goalie; screenshots of these dives are depicted

in Figure D.7. Figure D.7(a) shows a “central split”, which results in the goalie

reaching the ground with its legs split. This dive is programmed as a sequence of

keyframes mainly manipulating joints in the robot’s legs. Since the keyframes have

left-right symmetry, the robot remains more-or-less centered at its original position

when its legs split and touch the ground. Figure D.7(b) shows a slight variation, a

“side-wards split” that is essentially the same as a central split, but by introducing

slight asymmetry in the keyframes of the skill, results in a net displacement of

the robot either to the left or the right. Both the central and the side-ward splits

typically take less than 1.5 seconds to complete. The third diving skill, shown in

Figure D.7(c), is a more human-like lateral lunge, which accomplishes significantly

larger lateral coverage than the side-wards dive.

(a) Central split (b) Side-wards split (c) Lateral lunge

Figure D.7: Screenshots of the goalie diving.

The strategy controlling the goalie’s dives is dependent on the Kalman filter’s

prediction of the ball’s trajectory. Depending on the line predicted to be taken by the
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ball, as well as the ball’s speed, a manually designed set of rules determines whether

a dive is to be undertaken, and if so, which of the five available dives (central split,

left-wards split, right-wards split, left lunge, right lunge) is to be deployed.
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Appendix E

RoboCup Competition Results

This appendix provides RoboCup competition results of the UT Austin Villa RoboCup

3D simulation team from 2011–2017. During those seven years the team won the

competition six times while finishing second in 2013. Across those competitions the

team accrued a record of 124 wins, 3 losses, and 6 ties, and scored a total of 640

goals while only conceding 7. In addition to the main RoboCup competition, the

UT Austin Villa RoboCup 3D simulation team has also participated in and won

the IranOpen RoboCup competition every year from 2012–2017. During those Iran-

Open competitions the team accrued an undefeated record of 70 wins and 3 ties,

and scored a total of 348 goals without conceding any.

The relatively few number of games played at competitions, coupled with the

complex and stochastic environment of the RoboCup 3D simulator, make it difficult

to determine one team being better than another team by a statistically significant

margin. At the end of every competition however, all teams are required to release

their binaries used during the competition.58 Using these released binaries, we are

58Released binaries from competitions are available at
https://chaosscripting.net/files/competitions/RoboCup/WorldCup/
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able to play many games after competitions have ended to further analyze the results

of competitions. In addition to the following sections providing competition results

and analysis, Appendix E.8 lists members of the UT Austin Villa RoboCup 3D

simulation team who have been instrumental in the team’s success.

E.1 2011 RoboCup Competition

The main changes for the 2011 RoboCup competition format from the previous

year’s competition were to add players increasing the size of teams from 6 to 9, and

to increase the size of the field from 18m X 12m to 21m X 14m in length and

width.

UT Austin Villa won all 24 of its games during the RoboCup 2011 3D simu-

lation competition, scoring 136 goals and conceding none [19].59 In order to validate

the results of the competition, in Table E.1 we show the performance of our team

when playing 100 games against each of the other 21 teams’ released binaries from

the competition. UT Austin Villa won by at least an average goal difference of 1.45

against every team. Furthermore, of these 2100 games played to generate the data

for Table E.1, our agent won all but 21 of them which ended in ties (no losses). The

few ties were all against three of the better teams: apollo3d, boldhearts, and robo-

canes. We can therefore conclude that UT Austin Villa was the rightful champion

of the competition.

UT Austin Villa’s performance at the 2011 RoboCup competition was a

massive improvement in the team’s performance at the 2010 competition in which

the team finished with a record of 4 wins, 6 losses, and 1 tie while scoring 11 goals and

conceding 17. The primary reason for the team’s improvement was the development

59Results of every game played by UT Austin Villa at the 2011 RoboCup competition available
at http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup11
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Table E.1: UT Austin Villa’s 2011 released binary’s performance when playing 100
games against the released binaries of all other teams at RoboCup 2011. This data
includes place (the rank—or range of a rank if multiple teams were eliminated from
the competition at the same time—a team achieved at the competition) and average
goal difference (values in parentheses are the standard error).

Opponent Place Avg. Goal Diff.

apollo3 3 1.45 (0.11)

boldhearts 5-8 2.00 (0.11)

robocanes 5-8 2.40 (0.10)

cit3d 2 3.33 (0.12)

fcportugal3d 5-8 3.75 (0.11)

magmaoffenburg 9-12 4.77 (0.12)

oxblue 9-12 4.83 (0.10)

kylinsky 4 5.52 (0.14)

dreamwing3d 9-12 6.22 (0.13)

seuredsun 5-8 6.79 (0.13)

karachikoalas 13-18 6.79 (0.09)

beestanbul 9-12 7.12 (0.11)

nexus3d 13-18 7.35 (0.13)

hfutengine3d 13-18 7.37 (0.13)

futk3d 13-18 7.90 (0.10)

naoteamhumboldt 13-18 8.13 (0.12)

nomofc 19-22 10.14 (0.09)

kaveh/rail 13-18 10.25 (0.10)

bahia3d 19-22 11.01 (0.11)

l3msim 19-22 11.16 (0.11)

farzanegan 19-22 11.23 (0.12)
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and optimization of an omnidirectional walk engine [103] (discussed in Section 8.2.5

and Appendix A.1). The 2011 team was able to beat a team using the 2010 team’s

fixed frame walk [172] by and average goal difference of 6.32 goals across 100 games

with a standard error of 0.13.

E.2 2012 RoboCup Competition

The 2012 competition saw the addition of two more players to each team from 2011

allowing for full 11 vs 11 games, and also an increase in the size of the field from

21m X 14m to 30m X 20m in length and width.

In winning the 2012 RoboCup competition UT Austin Villa finished with a

record of 12 wins, 2 losses, and 3 ties [104].60 During the competition the team

scored 39 goals and only conceded 4. This performance was not nearly as dominant

of a performance as was seen in the 2011 competition when the team won all 24

games it played while scoring 136 goals and conceding none. Several reasons can be

attributed to this dip in performance. There was a general decrease in goals scored

during the tournament due to the larger field and increase in the number of agents

on a team. Additionally early in the tournament there were network problems

causing instability that resulted in many teams’ agents losing their balance and

having trouble walking. This instability was very noticeable during the first round

when UT Austin Villa suffered both of its losses. UT Austin Villa eventually beat

both the teams it lost to (magmaOffenburg and RoboCanes) during the semifinals

and finals rounds. A large amount of credit must also be given to the other teams

in the tournament as they exhibited a substantial improvement in overall play from

the previous year.

60Results of every game played by UT Austin Villa at the 2012 RoboCup competition available
at http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup12
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As seen in Table E.2, the 2012 UT Austin Villa team was only able to beat

the released binary of the 2012 2nd place team (RoboCanes) by an average of 0.88

goals and tied them 32 times across 100 games. Although the data in Table E.2

shows that UT Austin Villa winning the 2012 RoboCup competition was statistically

significant, and that the team didn’t lose any games or concede any goals when

playing 100 games against the other top teams’ released binaries, there was a decent

chance of the tournament being decided by penalty kicks due to UT Austin Villa

tying the 2nd place team almost 1/3 of the time. It is thus not surprising that the

championship game wasn’t decided until the second half of extra time (which UT

Austin Villa won 2-0).

Table E.2: UT Austin Villa’s 2012 released binary’s performance when playing 100
games against the released binaries of the 2nd, 3rd, and 4th places teams at RoboCup
2012. This data includes place (the rank a team achieved at the competition),
average goal difference (values in parentheses are the standard error), win-loss-tie
record, and goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

RoboCanes 2 0.88 (0.08) 68-0-32 88/0

Bold Hearts 3 1.64 (0.09) 89-0-11 164/0

magmaOffenburg 4 1.87 (0.10) 94-0-6 187/0

The main changes to the 2012 UT Austin Villa team from the previous year

were to improve the teams kickoff, formations, and getup behaviors [104]. The 2012

team, when computing the combined average goal difference after playing 100 games

against each of the other three teams in the semifinals listed in Table E.2, had an

average goal difference 0.54 goals greater than that of a version of the 2012 team

without these improvements.
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E.3 2013 RoboCup Competition

At the 2013 RoboCup competition two new robot body types were introduced: one

with longer legs and arms and another with quicker moving feet. Teams were given

the option of using up to three robots each of the new robot body types, however

there was no requirement to do so.

UT Austin Villa took second place at the RoboCup 2013 competition fin-

ishing with a record of 19 wins, 1 loss, and 1 tie.61 The team scored a total of 67

goals without conceding any until the final match which it narrowly lost 0-1. In

order to validate the results of the competition, in Table E.3 we show the results

of the UT Austin Villa team playing at least 100 games against each of the other

participating teams’ released binaries. UT Austin Villa had a positive average goal

difference against all of the other teams, and only had a ≈ 5% chance of losing to

the the first and third place teams.

The main source of improvement from the previous year’s team was the opti-

mization of skills for the new robot body models. The 2013 team, when computing

the combined average goal difference after playing 1000 games against the first and

third place teams’ release binaries listed in Table E.3, had an average goal differ-

ence 0.297 goals greater than that of the 2012 team when playing against the same

binaries.

E.4 2014 RoboCup Competition

The 2014 RoboCup competition brought about the introduction of two additional

robot body types: one with even longer arms and legs and another with a toe on

61Results of every game played by UT Austin Villa at the 2013 RoboCup competition available
at http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup13
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Table E.3: UT Austin Villa’s 2013 released binary’s performance when playing
at least 100 games against the released binaries of all other teams at RoboCup
2013. This data includes place (the rank—or range of a rank if multiple teams
were eliminated from the competition at the same time—a team achieved at the
competition), average goal difference (values in parentheses are the standard error),
win-loss-tie record, and goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

FCPortugal 3 0.465 (0.023) 459-52-489 633/168

Apollo3D 1 0.698 (0.027) 568-50-382 858/160

SEUJolly 4 1.133 (0.027) 772-13-215 1185/52

magmaOffenburg 5-8 1.447 (0.026) 887-0-113 1457/10

Bold Hearts 5-8 1.607 (0.029) 908-0-92 1607/0

RoboCanes 5-8 1.828 (0.031) 974-0-26 1830/2

Karachi Koalas 5-8 2.507 (0.031) 994-0-6 2509/2

ITAndroids 9-12 4.200 (0.080) 100-0-0 420/0

HfutEngine3D 9-12 4.530 (0.086) 100-0-0 453/0

Photon 9-12 4.590 (0.081) 100-0-0 459/0

ODENS 13-16 4.820 (0.092) 100-0-0 482/0

FUT-K 13-16 5.440 (0.084) 100-0-0 544/0

Paydar3D 9-12 5.990 (0.099) 100-0-0 599/0

L3MSIM 13-16 6.050 (0.098) 100-0-0 605/0

Mithras3D 13-16 8.330 (0.098) 100-0-0 833/0

Bahia3D 17 9.800 (0.110) 100-0-0 980/0

each foot. Unlike in the previous year’s competition, teams were required to use

different robot body types as described in Section 2.2.

In winning the 2014 RoboCup competition UT Austin Villa finished with

an undefeated record of 13 wins and 2 ties [105].62 During the competition the

team scored 52 goals without conceding any. In order to validate the results of the

competition, in Table E.4 we show results of UT Austin Villa playing 1000 games

against each of the other 11 teams’ released binaries from the competition.

UT Austin Villa finished with at least an average goal difference greater than

62Results of every game played by UT Austin Villa at the 2014 RoboCup competition available
at http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup14
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Table E.4: UT Austin Villa’s 2014 released binary’s performance when playing 1000
games against the released binaries of all other teams at RoboCup 2014. This data
includes place (the rank—or range of a rank if multiple teams were eliminated from
the competition at the same time—a team achieved at the competition), average
goal difference (values in parentheses are the standard error), win-loss-tie record,
goals for/against, and the percentage of own kickoffs which the team scored from.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A) KO Score %

BahiaRT 5-8 2.075 (0.030) 990-0-10 2092/17 96.2

FCPortugal 4 2.642 (0.034) 986-0-14 2748/106 83.4

magmaOffenburg 3 2.855 (0.035) 990-0-10 2864/9 88.3

RoboCanes 2 3.081 (0.046) 974-0-26 3155/74 69.4

FUT-K 5-8 3.236 (0.039) 998-0-2 3240/4 96.3

SEU Jolly 5-8 4.031 (0.062) 995-0-5 4034/3 87.6

KarachiKoalas 9-12 5.681 (0.046) 1000-0-0 5682/1 87.5

ODENS 9-12 7.933 (0.041) 1000-0-0 7933/0 92.1

HfutEngine 5-8 8.510 (0.050) 1000-0-0 8510/0 94.7

Mithras3D 9-12 8.897 (0.041) 1000-0-0 8897/0 90.4

L3M-SIM 9-12 9.304 (0.043) 1000-0-0 9304/0 93.7

two goals against every opponent. Additionally UT Austin Villa did not lose a single

game out of the 11,000 that were played in Table E.4. These game results show that

UT Austin Villa winning the 2014 competition was far from a chance occurrence.

UT Austin Villa also won the league technical challenge—introduced for the first

time—consisting of three separate challenges: running robot challenge (first place),

drop-in player challenge (first place), and free challenge (second place) [105].

A key to the team winning the competition was the use of overlapping layered

learning as described in Chapter 4, and in particular new longer kicks with kick

anticipation for passing (described in Appendix D.2.2), the ability to score on kickoffs

(discussed in Section 4.1.3), and use of the robot body model with toes increased the

team’s performance [105]. The 2014 UT Austin Villa team improved substantially

from the previous year as it was able to beat the team’s 2013 second place binary

by an average of 1.525 goals (with a standard error of 0.034) over 1000 games, and
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also beat the 2013 first place team (Apollo3D) by an average of 2.726 goals (with a

standard error of 0.041) across 1000 games.

E.5 2015 RoboCup Competition

The primary change for the 2015 RoboCup competition was to require that an

opponent first touches the ball, or a teammate touches the ball outside the center

circle, before a goal can be scored on a kickoff. This rule was added to prevent

the ability to use multiagent behaviors to score directly off kickoffs as described in

Section 4.1.3.

In winning the 2015 RoboCup competition UT Austin Villa finished with a

perfect record of 19 wins and no losses.63 During the competition the team scored

87 goals while only conceding 1. In order to validate the results of the competition,

in Table E.5 we show results of UT Austin Villa playing 1000 games against each

of the other 11 teams’ released binaries from the competition.

UT Austin Villa finished with at least an average goal difference greater

than two goals against every opponent. Additionally UT Austin Villa only lost 7

games out of the 11,000 that were played in Table E.5 with a win percentage greater

than 92% against all teams. These results show that UT Austin Villa winning the

2015 competition was far from a chance occurrence. UT Austin Villa also won the

league technical challenge consisting of three separate challenges (the team took first

place in each of them): free challenge, kick accuracy challenge, and drop-in player

challenge [108].

A large factor in UT Austin Villa’s success in 2015 was improvements in

kicking and the coordination of set plays described in Appendix D.2.3 [108]. The

63Results of every game played by UT Austin Villa at the 2015 RoboCup competition available
at http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup15
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Table E.5: UT Austin Villa’s 2015 released binary’s performance when playing 1000
games against the released binaries of all other teams at RoboCup 2015. This
data includes place (the rank a team achieved at the competition), average goal
difference (values in parentheses are the standard error), win-loss-tie record, and
goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

FUT-K 2 2.082 (0.036) 927-2-71 2178/96

FCPortugal 3 2.399 (0.040) 945-4-51 2624/225

BahiaRT 4 2.496 (0.044) 944-1-55 2501/5

Apollo3D 5 3.803 (0.046) 995-0-5 3805/2

magmaOffenburg 6 4.167 (0.051) 999-0-1 4171/4

RoboCanes 7 4.187 (0.049) 998-0-2 4235/48

Nexus3D 8 5.571 (0.044) 1000-0-0 5573/2

CIT3D 9 6.321 (0.050) 1000-0-0 6321/0

ITAndroids 11 10.125 (0.041) 1000-0-0 10125/0

Miracle3D 12 10.521 (0.056) 1000-0-0 10521/0

HfutEngine3D 10 11.897 (0.068) 1000-0-0 11897/0

2015 UT Austin Villa team improved dramatically from 2014 as it was able to beat

a version of the team’s 2014 champion binary that does not attempt the now illegal

behavior of scoring on a kickoff by an average of 1.838 goals (with a standard error

of 0.047) across 1000 games.

E.6 2016 RoboCup Competition

The main changes for the 2016 RoboCup competition were to penalize robots for

charging into each other through the use of an automated referee foul model, and also

to make free kicks indirect—a goal can not be scored until a second player touches

the ball after it is kicked. These changes promoted better play by discouraging

players from running into each other and encouraging more passing respectively.

In winning the 2016 RoboCup competition UT Austin Villa finished with a
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perfect record of 14 wins and no losses.64 During the competition the team scored

88 goals while only conceding 1. In order to validate the results of the competition,

in Table E.6 we show results of UT Austin Villa playing 1000 games against each

of the other eight teams’ released binaries from the competition.

Table E.6: UT Austin Villa’s 2016 released binary’s performance when playing 1000
games against the released binaries of all other teams at RoboCup 2016. This data
includes place (the rank a team achieved at the 2016 competition), average goal
difference (values in parentheses are the standard error), win-loss-tie record, and
goals for/against.

Opponent Place Avg. Goal Diff. Record (W-L-T) Goals (F/A)

FUT-K 2 1.809 (0.036) 888-3-109 1872/63

FCPortugal 3 2.431 (0.040) 954-1-45 2452/21

BahiaRT 4 3.123 (0.040) 985-0-15 3123/0

magmaOffenburg 5 3.921 (0.049) 996-0-4 3926/5

KgpKubs 8 7.728 (0.046) 1000-0-0 7729/1

ITAndroids 6 9.022 (0.053) 1000-0-0 9024/2

HfutEngine3D 9 10.192 (0.056) 1000-0-0 10192/0

Miracle3D 7 11.126 (0.059) 1000-0-0 11126/0

UT Austin Villa finished with at least an average goal difference greater than

1.8 goals against every opponent. Additionally UT Austin Villa only lost 4 games

out of the 8000 that were played in Table E.6 with a win percentage greater than

88% against all teams. These results show that UT Austin Villa winning the 2016

competition was far from a chance occurrence. UT Austin Villa also won the league

technical challenge consisting of three separate challenges (the team took first place

in each of them): free challenge, keepaway challenge, and Gazebo running robot

challenge [114].

A critical component in UT Austin Villa’s success in 2016 was the incor-

poration of a marking system using prioritized role assignment [113] detailed in

64Results of every game played by UT Austin Villa at the 2016 RoboCup competition available
at http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup16

228

http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup16


Section 7.3. The 2016 UT Austin Villa team also improved dramatically from 2015

as it was able to beat the team’s 2015 champion binary by an average of 0.561 goals

(with a standard error of 0.029) across 1000 games.

E.7 2017 RoboCup Competition

Outside of a few bug fixes to the server, the removal of crowding rules (previously too

many players crowded around the ball caused a player to be penalized and beamed

to the sideline), and a couple small changes to the charging foul model, the 2017

RoboCup competition environment was unchanged from the previous year.

In winning the 2017 RoboCup competition UT Austin Villa finished with a

perfect record of 23 wins and no losses.65 During the competition the team scored

171 goals while conceding none. UT Austin Villa also won the league technical

challenge consisting of three separate challenges (the team took first place in each

of them): free challenge, Gazebo running robot challenge, and passing and scoring

challenge. As of the time of writing this dissertation the binaries of the other teams

participating in the 2017 competition have yet to be released, and thus we are not

yet able to compare the performance of our team when playing thousands of games

against the other teams’ released binaries.

An important factor in UT Austin Villa’s success in 2017 was the introduction

of a fast walking kick that does not require the robot to assume a standing position

before kicking, takes less than 0.25 seconds to execute, and can kick the ball over 18

meters. The 2017 UT Austin Villa team improved dramatically from 2016 as it was

able to beat the team’s 2016 champion binary by an average of 1.339 goals (with a

standard error of 0.039) across 1000 games.

65Results of every game played by UT Austin Villa at the 2017 RoboCup competition available
at http://www.cs.utexas.edu/~AustinVilla/?p=competitions/RoboCup17
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E.8 UT Austin Villa RoboCup 3D Simulation Team

Members

The following is a list of former and past members of the UT Austin Villa RoboCup

3D simulation team—their combined contributions have been instrumental to the

success of the team:

• Patrick MacAlpine - Graduate Student (2010-present)

• Peter Stone - Professor (2007-present)

• Min Bi - Undergraduate Student (2016)

• Mahmut Tarik Ozkaya - Undergraduate Student (2016)

• Jordan Torres - Undergraduate Student (2016)

• Matt Union - Undergraduate Student (2016)

• Xinyi Wang - Undergraduate Student (2016)

• Josiah Hanna - Graduate Student (2015)

• Jason Liang - Graduate Student (2014-2015)

• Samuel Barrett - Graduate Student (2011-2014)

• Mike Depinet - Undergraduate Student (2013-2014)

• Andrew Sharp - Undergraduate Student (2013)

• Nick Collins - Undergraduate Student (2011-2012)

• Adrian Lopez-Mobilia - Undergraduate Student (2011-2012)
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• Michael Quinlan - Research Scientist (2011)

• Shivaram Kalyanakrishnan - Graduate Student (2007-2011)

• Daniel Urieli - Graduate Student (2010-2011)

• Frank Barrera - Undergraduate Student (2011)

• Art Richards - Undergraduate Student (2011)

• Nicu Stiurca - Undergraduate Student (2011)

• Victor Vu - Undergraduate Student (2011)

• Yinon Bentor - Graduate Student (2009-2010)
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Appendix F

Acronyms

Acronym Definition

CILB Combining Independently Learned Behaviors (Section 3.3)

CLL Concurrent Layered Learning (Section 3.3)

CMA-ES Covariance Matrix Adaptation Evolution Strategy (Section 2.1.2)

MMDR Minimum Maximal Distance Recursive (Section 5.3.1)

MMD+MSD2 Minimum Maximal Distance + Minimum Sum Distance2

(Section 5.3.2)

MSD Minimize Sum of Distances (Section 5.4)

MSD2 Minimize Sum of Distances2 (Section 5.4)

PCLL Partial Concurrent Layered Learning (Section 3.3)

PLLR Previous Learned Layer Refinement (Section 3.3)

RL Reinforcement Learning (Section 2.1)

SCRAM Scalable Collision-avoiding Role Assignment with
Minimal-makespan (Chapter 5)

SLL Sequential Layered Learning (Section 3.3)
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Appendix G

Online Materials

UT Austin Villa RoboCup 3D simulation team homepage:

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

Information and videos on overlapping layered learning:

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/overlappingLayeredLearning.

html

Information and videos of SCRAM role assignment in action, as well as C++ im-

plementations of the role assignment algorithms:

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/scram.html

Information and videos of SCRAM prioritized role assignment and the marking

system in action:

http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/marking.html

UT Austin Villa RoboCup 3D simulation base code release:

https://github.com/LARG/utaustinvilla3d
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