
Copyright

by

Kathryn Long Genter

2017

The Dissertation Committee for Kathryn Long Genter

certifies that this is the approved version of the following dissertation:

Fly with Me: Algorithms and Methods for Influencing a Flock

Committee:

Peter Stone, Supervisor

Noa Agmon

Risto Miikkulainen

Bruce Porter

Fly with Me: Algorithms and Methods for Influencing a Flock

by

Kathryn Long Genter

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2017

To my parents, Gene and Glenda Long, and my husband, JT Genter,

for their unconditional love, support, and encouragement.

Acknowledgments

My first experience with Peter Stone and his research group was at a RoboCup competition. I was

volunteering at RoboCup 2007 in Atlanta and had started following the progress of Peter’s @Home

team after serving as a test subject in the “Follow Me” task. Little did I know at RoboCup 2007

that Peter would eventually become my PhD advisor. Peter takes his commitment to his PhD

students seriously. Among other things, Peter is responsive, open to discussion and debate, and

helpful at brainstorming. I’ve enjoyed working with Peter and I’ve appreciated his guidance during

my PhD.

Peter tends to attract great researchers — that also tend to be wonderful people — to his

group. My PhD would certainly not have been the same with a different group. I’d like to thank

all of the LARG group, past and present, for their support, conversations, and friendship. Special

thanks go to Patrick MacAlpine for providing especially useful suggestions at multiple points during

my PhD.

I’m thankful for my entire committee. As a post-doc in Peter’s group, Noa Agmon signif-

icantly helped me with my early theoretical thesis work as well as work on another project. Her

strong theoretical abilities and her willingness to mentor and teach me are much appreciated. Bruce

Porter and Risto Miikkulainen both provided valuable time and input on multiple occasions which

I appreciate as well.

I’m also appreciative of my mentors during my undergraduate degree at Georgia Tech. Mon-

ica Sweat provided useful advice and guidance throughout my undergraduate degree. Zsolt Kira

mentored me as part of the SAIC Scholars program for multiple years before I transitioned to work-

ing with Ashwin Ram and his research group on my undergraduate research thesis. Monica, Zsolt,

and Ashwin all played a large role in preparing me for the research described in this dissertation.

I’d like to thank the UT Austin Villa RoboCup Standard Platform League (SPL) team.

v

I’ve enjoyed working in our codebase over the years and realize that the team would not have

been nearly as successful without the contributions from many teammates. I’d also like to thank

everyone who served with me on the SPL technical committees and organizing committees over the

years. I’d especially like to thank Tim Laue for his partnership in organizing, planning, running,

and writing about the SPL drop-in player competition across multiple years.

The UT RecSports Outdoor Adventure Trip program played a large part in the second half

of my PhD. Participating in guide school in Fall 2013 and leading many subsequent trips have both

been incredibly healthy for me.

A big thank you to my bi-weekly racquetball group for giving me a consistent competi-

tive outlet throughout most of my PhD. I’d also like to thank the UT Club Racquetball team

for five years of competitive racquetball and four trips to the intercollegiate racquetball national

championships.

I’d like to thank my parents, Gene and Glenda Long, for always believing in me and sup-

porting me. My parents advocated for me when I was young and ensured that I had the help,

support, and environment necessary to succeed. My childhood tutor, Jane Smith, worked with me

multiple days a week from 1st grade to 6th grade to improve my reading, writing, and spelling skills

— without her teaching in my early years, this dissertation would not have been possible. I’d like

to thank my grandfather, Ken Spiess, for encouraging me to live life to the fullest. Finally, many

thanks to my husband JT Genter, who has been with me through my PhD. From moving to Texas

with me to sticking with me through rough times to financially supporting us through my graduate

school — he’s been a constant throughout that I sincerely and greatly appreciate.

Kathryn Long Genter

The University of Texas at Austin

August 2017

vi

Fly with Me: Algorithms and Methods for Influencing a Flock

Publication No.

Kathryn Long Genter, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Peter Stone

As robots become more affordable, they will begin to exist in the world in greater quantities.

Some of these robots will likely be designed to act as components in specific teams. These teams

could work on tasks that are too large or complex for a single robot — or that are merely more

efficiently accomplished by a team — such as surveillance in a large building or product delivery

to packers in a warehouse. Multiagent systems research studies how these teams are formed and

how they work together.

Ad hoc teamwork, a newer area of multiagent systems research, studies how new robots

can join these pre-existing teams and assist the team in accomplishing its goal. This dissertation

extends and applies research in ad hoc teamwork towards the general area of flocking, which is an

emergent swarm behavior. In particular, the work in this dissertation considers how ad hoc agents

— called influencing agents in this dissertation — can join a flock, be recognized by the rest of

the flock as part of the flock, influence the flock towards particular behaviors through their own

behavior, and then separate from the flock. Specifically, the primary research question addressed

in this dissertation is How can influencing agents be utilized in various types of flocks to

vii

influence the flock towards a particular behavior?

In order to address this research question, this dissertation makes six main types of con-

tributions. First, this dissertation formalizes the problem of using influencing agents to influence

a flock. Second, this dissertation contributes and analyzes algorithms for influencing a flock to a

desired orientation. Third, this dissertation presents methods for determining how to best add in-

fluencing agents to a flock. Fourth, this dissertation provides methods by which influencing agents

can join and then leave a flock in motion. Fifth, this dissertation evaluates some of the influencing

agent algorithms on a robot platform. Sixth, although the majority of this dissertation assumes the

influencing agents will join a flock that behaves similarly to European starlings, this dissertation

also provides insight into when and how its algorithms are generalizable to other types of flocks

as well as to general teamwork and coordination research. All of the methods presented in this

dissertation are empirically evaluated using a simulator that can support large flocks.

viii

Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

1 Introduction 1

1.1 Swarming . 2

1.2 Multiagent Systems . 4

1.3 This Dissertation . 5

2 Problem Definition 9

2.1 Flocking Model . 9

2.1.1 Neighborhood Model . 9

2.1.2 Influence Model . 12

2.2 Performance Representation . 13

2.2.1 Flock Manipulation . 13

2.2.2 Placement . 15

2.2.3 Joining and Leaving . 16

2.3 Simulation Environment . 17

2.3.1 FlockSim . 17

ix

2.3.2 MASON Flockers . 19

3 Leading a Stationary Flock to a Desired Orientation 22

3.1 General Flocking Theorems . 22

3.2 Stationary Agents . 25

3.3 Non-stationary Influencing Agents . 34

3.4 Summary . 40

4 Influencing a Flock to a Desired Orientation 42

4.1 1-Step Lookahead Behavior . 43

4.2 2-Step Lookahead Behavior . 45

4.3 Coordinated Behavior . 48

4.4 Orient Experiments . 51

4.4.1 Baseline Influencing Agent Behaviors . 51

4.4.2 Experimental Setup . 52

4.4.3 Experimental Results . 54

4.4.4 Discussion . 57

4.5 Maneuver Experiments . 57

4.5.1 Experimental Setup . 58

4.5.2 Experimental Results . 60

4.6 Summary . 61

5 Placing Influencing Agents into a Flock 63

5.1 Experimental Setup . 64

5.2 Constant-time Placement Methods . 65

5.2.1 Random Placement Method . 66

5.2.2 Grid Placement Method . 66

5.2.3 Border Placement Method . 66

5.2.4 Experimental Results . 67

5.3 Graph Placement Method . 71

x

5.3.1 Creating the Graph . 71

5.3.2 Calculating Sets of Influencing Agent Positions 72

5.3.3 Evaluating Sets of Influencing Agent Positions 72

5.3.4 Experimental Results . 75

5.4 Hybrid Placement Methods . 76

5.4.1 Experimental Results . 76

5.5 Two-Step Placement Method . 78

5.5.1 Step 1: Selecting Set S of Possible Influencing Agent Positions 79

5.5.2 Step 2: Selecting Set S′ ⊆ S of k Influencing Agent Positions 80

5.5.3 Experimental Results . 86

5.6 Clustering Placement Methods . 88

5.6.1 Farthest First . 89

5.6.2 Expectation Maximization . 90

5.6.3 K-Means . 91

5.6.4 Experimental Results . 91

5.7 Discussion . 93

5.7.1 Average Runtime . 93

5.7.2 Choosing a Method . 94

5.8 Summary . 96

6 Joining and Leaving a Flock 97

6.1 Approaches for Joining a Flock . 98

6.1.1 Hover Approach . 99

6.1.2 Intercept Approach . 101

6.1.3 Decide to Influence . 104

6.2 Approaches for Leaving a Flock . 104

6.2.1 Hover Approach . 105

6.2.2 Nearest Edge Approach . 105

6.2.3 Influence while Leaving Approach . 106

xi

6.3 Experimental Setup . 107

6.4 Experimental Results . 108

6.4.1 Hovering Experiments . 109

6.4.2 Intercept Experiments . 109

6.4.3 Discussion . 114

6.5 Summary . 115

7 Evaluation on Different Flocking Models 117

7.1 Experimental Setup . 118

7.2 Alternate Neighborhood Models . 119

7.2.1 Visibility Sector . 120

7.2.2 N-Nearest Neighbors . 123

7.2.3 Weighted Influence . 123

7.2.4 Experimental Results . 124

7.3 Alternate Influence Models . 131

7.3.1 Experimental Results . 132

7.4 Summary . 138

8 Robot Implementation 141

8.1 Experimental Setup . 142

8.1.1 Environment . 142

8.1.2 NAO Robot . 143

8.1.3 UT Austin Villa Codebase . 144

8.1.4 Videos . 144

8.2 Flocking Agents . 145

8.2.1 Behavior and Implementation . 145

8.2.2 Experiments with Flocking Agents . 146

8.2.3 Experiments Manually Influencing the Flock 147

8.3 Influencing Agent . 149

8.3.1 Behavior and Implementation . 149

xii

8.3.2 Experiments with Influencing Agents . 150

8.4 Summary . 153

9 Related Work 154

9.1 Multiagent Coordination and Teamwork . 154

9.2 Ad Hoc Teamwork . 156

9.3 Flocks, Herds and Swarms . 159

9.3.1 Cluster Formations . 160

9.3.2 Line Formations . 163

9.4 Influencing a Flock . 165

9.4.1 Human-led Influence . 165

9.4.2 Shepherding . 166

9.4.3 Infiltration . 168

9.5 Summary . 172

10 Conclusions and Future Work 173

10.1 Contributions . 174

10.2 Future Work . 175

10.2.1 Extending Theoretical Contributions . 175

10.2.2 Extending Influencing a Flock to a Desired Orientation 177

10.2.3 Extending Placing Influencing Agents into a Flock 180

10.2.4 Extending Joining and Leaving a Flock . 183

10.2.5 Generalizing to Different Flocking Models . 184

10.2.6 Extending Robot Implementation . 187

10.2.7 Extensions to Line Formation Flocking . 189

10.2.8 Sweet Spots for Influence . 190

10.2.9 Extensions to Other Animal Domains . 191

10.2.10Extensions to Human Domains . 192

10.3 Concluding Remarks . 194

xiii

Bibliography 195

xiv

List of Tables

3.1 Variables used in Algorithm 2 . 31

4.1 Variables used in Algorithm 5 . 44

4.2 Variables used in Algorithm 6 that were not used in Algorithm 5 47

4.3 Variables used in Algorithm 7 that were not used in Algorithm 5 or Algorithm 6 . . 49

4.4 Results for the Maneuver case . 60

5.1 Experimental variables for the placement experiments 64

5.2 Average run times for each placement method . 94

6.1 Experimental variables for the joining and leaving experiments 107

7.1 Experimental variables for the alternate model experiments 118

7.2 Notation utilized in Algorithms 11, 12, and 13 . 120

8.1 Notation and variables used in Algorithm 14 . 145

xv

List of Figures

1.1 Reading guide . 8

2.1 Visibility radius neighborhood model . 10

2.2 Visibility sector neighborhood model . 11

2.3 The FlockSim GUI. 18

2.4 MASON Flockers visualization and control panel . 20

2.5 Initial state of different experiments . 21

3.1 Two flocking agents and four influencing agents (all within visibility sector) 23

3.2 Two flocking agents and six influencing agents (four within visibility sector) 25

3.3 Border agent . 26

3.4 Using angle α to define visibility sector . 27

3.5 Possible subsequent flocking agent orientations . 30

3.6 Three steps of a forward search . 32

3.7 Stationary results with default settings . 39

3.8 Stationary results with α = 60 . 40

3.9 Stationary results with v = 25 . 41

4.1 Offset Momentum influencing agent behavior . 53

4.2 Orient case results with default settings . 54

4.3 Orient case results with varied percentage of influencing agents 55

4.4 Orient case results with varied number of agents in the flock 56

4.5 Sample maneuver path . 59

xvi

5.1 Grid placement method . 67

5.2 Border placement method . 67

5.3 Constant-time placement comparison with 10 flocking agents 68

5.4 Constant-time placement comparison with 50 flocking agents 69

5.5 Constant-time placement comparison . 70

5.6 Graph placement method . 74

5.7 Constant-time placement to Graph placement comparison 75

5.8 Hybrid method results . 77

5.9 Selecting set S of possible influencing agent positions 79

5.10 Grid Set results . 87

5.11 Border Set results . 88

5.12 Clustering methods for k = 4 and m = 10 . 89

5.13 Clustering methods for k = 4 and m = 50 . 90

5.14 Clustering placement comparision . 92

5.15 Placement method flowchart . 95

5.16 Placement methods: complexity versus flock-awareness 96

6.1 Joining, influencing, and leaving a flock flowchart . 98

6.2 Hover position selection methods when k = 6 . 100

6.3 Hover arrival behaviors when k = 8 . 101

6.4 Intercept target formations . 103

6.5 Influence while leaving flowchart . 106

6.6 Position selection method results . 110

6.7 Arrival behavior results . 111

6.8 Target formation results using nearest 3-edge for leaving 112

6.9 Target formation results using nearest 2-edge for leaving 113

6.10 Target formation results using influence while leaving for leaving 115

7.1 Selecting agents in a visibility sector . 122

7.2 Different neighborhood models results with Grid placement 125

xvii

7.3 Different neighborhood models results with Border placement 126

7.4 Visibility radius neighborhood as true model results 129

7.5 Visibility sector neighborhood as true model results 130

7.6 N-nearest neighbors neighborhood as true model results 131

7.7 Reynolds’ Boid algorithm for flocking . 132

7.8 Reynolds’ algorithm results . 133

7.9 Alignment as true model . 134

7.10 Separation as true model . 135

7.11 Cohesion as true model . 136

7.12 Alignment + Separation as true model . 137

7.13 Alignment + Cohesion as true model . 138

7.14 Separation + Cohesion as true model . 139

7.15 Alignment + Separation + Cohesion as true model 140

8.1 SPL field . 142

8.2 Degrees of freedom for NAO robot . 143

8.3 Initial positions of robots for experiments . 147

8.4 The path the flock is guided along. 151

9.1 Organized flight . 160

xviii

1. Introduction

Birdstrikes to aircraft cost the United States aviation industry over $625 million in damages an-

nually and have resulted in at least 200 human deaths since 1990 [62]. A birdstrike is a collision

between an airborne animal and a human-made structure — most commonly a bird with an air-

craft. However, birdstrikes also occur between animals and wind farms, as well as animals and

vehicles and animals and buildings. According to the Managing Raptors at Airports talk at the

2014 Bird Strike Committee US Meeting,1 the most common methods used to decrease birdstrikes

include habitat management to reduce prey abundance, non-lethal hazing (scaring the birds away),

live-capture and relocation, and lethal control (actively killing the birds). All of these methods are

highly invasive for the animal — some even result in the animal being purposefully killed — as well

as costly to the organizations carrying out these procedures.

Deadly birdstrikes usually involve a large group of animals — often birds — coming into con-

tact with an aircraft. Groups of agents — living, simulated, or robot — are said to be “swarming”

when they move together in a formation or cluster. When birds form a swarm, they are considered

to be a flock. Flocking is an emergent swarm behavior in which each bird in the flock follows a

simple local behavior rule under which its behavior is determined by the behavior of nearby birds.

When all of the birds in a flock follow this simple behavior rule, the resulting flock behavior appears

well organized.

To the best of our knowledge, there is no way to directly and predictably control the flight

path of birds. Various current methods, such as non-lethal hazing, keep birds away from particular

areas but are unable to control where the birds fly instead. The work in this dissertation considers

how to influence a flock towards a particular behavior — such as avoiding airports — by adding

influencing agents to a flock composed of flocking agents. These influencing agents — which could

be in the form of robot birds or ultralight aircraft — then attempt to influence the flocking agents

merely by being perceived by the rest of the flock as another member of the flock.

1http://events.aaae.org/sites/140804/index.cfm

1

http://events.aaae.org/sites/140804/index.cfm

Although on the surface it may seem quite futuristic, it is not infeasible that influencing

agents in the form of robot birds could be used to influence flocks of birds in real life. The makers

of the Robird2 robot bird mentioned at the 2015 North American Bird Strike Conference that in

making their predator Robird, they first accidentally created prototypes that bird species in the

Netherlands attempted to flock with during test flights. In Operation Migration,3 captive-hatched

whooping cranes were trained to imprint on humans wearing whooping crane costumes. The young

whooping cranes then followed a costumed human as he flew an ultralight plane along a migration

route. Recently, scientists used a microlight plane to show hand-raised northern bald ibises their

ancestral migration route in Europe [67].

Birdstrikes in various forms continue to be a threat. This dissertation is motivated in

large part by the hypothesis that influencing agents could provide a viable, preferable alternative

to reducing birdstrikes. With this motivation in mind, this dissertation presents algorithms that

influencing agents could use in order to influence swarms to avoid dangerous and/or undesirable

areas such as airports, wind farms, city streets, and agricultural areas while swarming. Although

the algorithms presented in this dissertation are designed to influence flocks that behave similarly

to European starlings, we also discuss how our algorithms and ideas could be applicable to other

types of flocks and teams.

The work described in this dissertation falls within two main research areas: swarming

and multiagent systems. In the following sections, we introduce both of these areas and discuss

specifically how using influencing agents to alter the behavior of a flock relates to these areas.

1.1 Swarming

A swarm is a large, dense group of animals. Swarms are usually thought to be composed of flying

animals — such as bees, locusts, or wasps — but they could also be composed of land-based

animals such as sheep, ants, or even humans. Additionally, swarms can be composed of living

animals, simulated animals, robot animals, or a mixture of living, simulated, and robot animals.

Within swarms, each animal is usually rather naive regarding the overall behavior of the swarm.

2http://clearflightsolutions.com/methods/robirds
3http://operationmigration.org/

2

http://clearflightsolutions.com/methods/robirds
http://operationmigration.org/

Additionally, no animal is “in charge” or a “leader” in a swarm. Instead, the animals in the swarm

self-organize by each individual agent following a simple behavior and simple interaction scheme.

The resulting behavior of the entire swarm often ends up being more complex and well organized

than any of the individual animals could have orchestrated.

Swarming can be seen in many different variants. Some common variants include birds flock-

ing, quadrupeds herding, and fish schooling. Although the methods presented in this dissertation

could be applied to various swarm variants, this dissertation focuses on flocking.

Flocking is an emergent swarm behavior found in various species in nature, but most com-

monly in birds. Each animal in a flock follows a simple local behavior rule, but this simple behavior

by each individual agent often results in group behavior that appears well organized and stable.

Following a well-recognized algorithm for flocking [68], in this dissertation we assume that each

bird in the flock dynamically adjusts its behavior based on that of its immediate neighbors.

Flocking is often studied under the assumption that all of the agents are identical or represent

a small set of well-defined behavior types. Indeed, various disciplines such as physics [80], graphics

[68], biology [19], and distributed control theory [42, 50, 75] have studied flocking in order to

characterize its emergent behavior. In this dissertation we instead focus on the problem of leading

a flock to adopt particular behaviors by adding a small number of controllable agents to the flock.

In particular, we assume that we are given a flock whose members follow a known, well-defined rule

characterizing their behavior and we wish to examine to what extent it is possible to influence the

flock.

In this dissertation, we assume that the swarm is designed by other people (in the case of a

swarm composed of robot or simulated animals) or by nature (in the case of a swarm composed of

living animals). Hence, we assume that we are unable to explicitly alter the swarm. As such, the

influencing agents we design must work with the behaviors, sensors, actuators and capabilities that

the animals in the swarm currently possess. Specifically, the influencing agents join and influence

a pre-existing “flock” (team) whose programs cannot be altered. The agents in the pre-existing

team are already following a set flocking behavior. Hence, if we want to modify the team’s behavior

(such as changing its heading), we can add one or more influencing agents to the team and these

influencing agents can influence the team towards the desired behavior by behaving in a particular

3

manner.

As a motivating example, consider a flock of migrating birds. Assume there is an airport on

the flock’s desired path between its current location and its desired location. If left alone, the flock

will travel over the airport and potentially collide with an aircraft. Such a birdstrike is undesirable

because it could kill members of the flock, incur costly damages to the aircraft, cause delays at the

airport, and potentially kill passengers on the aircraft. The birds could be chased away from the

airport with predators or loud noises, but this is not ideal since these are disturbing to the birds

and ineffectively control how the birds will behave instead. Instead, influencing agents — such as

those described in this dissertation — could be utilized to encourage the flock to alter its collective

flight path as desired. These influencing agents follow specified algorithms but are perceived by

the rest of the flock to be one of their own. Hence, the flock still has no explicit leader and does

not know that the influencing agents are attempting to influence the flock to behave in a particular

way.

1.2 Multiagent Systems

Within the context of the broad field of Artificial Intelligence, this dissertation is most related to the

sub-area of multiagent systems. Multiagent systems contain multiple intelligent agents interacting

within an environment. An agent is an autonomous entity that observes its environment and acts

upon its environment and an intelligent agent is an agent that purposefully acts in order to obtain

a set goal. A multirobot system is a type of multiagent system in which the intelligent agents are

robots.

Multiagent systems are often able to solve problems and accomplish tasks that would be

difficult or impossible for a single agent, such as collective box pushing in which multiple agents

are needed in order to move a box and patrolling in which multiple agents are able to patrol an

area more securely and effectively than just one agent. Unlike centrally-controlled systems, the

intelligent agents comprising a multiagent system collectively make all of the decisions for the

multiagent system.

Flocks can be seen as a type of multiagent system. The birds comprising the flock can be

4

considered to be intelligent agents that are all influencing each other towards the flock’s overall

goal. This overall goal might at any point be hunting, migrating, avoiding a predator, or merely

flying towards a tree to rest. The overall flock behavior that results from each agent’s behavior

usually appears to be surprisingly well-coordinated and effective at accomplishing the flock’s goal.

One sub-area of multiagent systems research concerns teamwork. Teamwork in multiagent

systems is distinguished from other types of multiagent systems research in that all of the agents

have the same goals. As discussed in detail in Chapter 9, most previous and ongoing work on

teamwork in multiagent systems has dealt with how to design entire teams of intelligent agents to

work together to accomplish large tasks or goals. However, in this dissertation we consider how to

design one or more intelligent agents to add to a pre-existing team — which falls within the scope

of a recently introduced subfield of multiagent systems called ad hoc teamwork [71].

Ad hoc teamwork is different from most research on teamwork because it focuses on creating

agents that can cooperate with unknown teammates without prior coordination [71]. Agents on an

ad hoc team have shared goals, are not able to pre-coordinate with each other, and have no explicit

communication with each other. Additionally, an ad hoc team is mainly comprised of agents that

are not directly controllable — we are only in control of a small portion of the ad hoc team. Past

work in ad hoc teamwork is described in detail in Chapter 9.

In this dissertation, the influencing agents we design are ad hoc teammates that join pre-

existing flocks and work as members of the flock to assist in accomplishing the flock’s goal.

1.3 This Dissertation

Following the preceding motivation, this dissertation focuses on answering the following question:

How can influencing agents be utilized in various types of flocks in order to influence

these flocks towards a particular behavior?

In order to answer this question, this dissertation provides the following contributions.

• Chapter 2 — Problem definition

5

This dissertation begins by defining the assumptions, parameters, and objectives for the

problem of adding influencing agents to a flock.

• Chapter 3 — Algorithm for leading a stationary flock to a desired orientation

This dissertation sets bounds on the extent of influence the influencing agents can have on the

team when the agents are stationary. Additionally, this dissertation contributes an algorithm

for orienting a stationary flock to a desired orientation using a set of non-stationary influencing

agents. This algorithm is analyzed both theoretically and empirically.

• Chapter 4 — Algorithms for influencing a flock to a desired orientation

Directing a flock away from danger requires being able to influence a flock to alter its orienta-

tion. As such, this dissertation contributes three algorithms, as well as detailed experimental

results for all three algorithms, that can be used by influencing agents to influence a flock

to orient towards a desired orientation. This dissertation also experimentally considers how

to use at least one of these algorithms to maneuver the flock through turns quickly but with

minimal agents being separated from the flock as a result of these turns.

• Chapter 5 — Methods for placing influencing agents into a flock

Influencing agents in different parts of a flock have different influence over the flock. Hence,

determining how to place influencing agents into a flock if given the opportunity is important.

As such, this dissertation considers various methods for placing influencing agents directly

into a flock. Each method is empirically evaluated in this dissertation.

• Chapter 6 — Methods for influencing agents to join and leave a flock

It is not realistic to assume that influencing agents can always be placed directly into a flock —

they may instead need to join the flock from somewhere outside the flock, influence the flock,

and then eventually leave the flock. However, joining and leaving a flock is not trivial because

the influencing agents will influence the flock in unintended and/or unavoidable ways as they

join and leave. Hence, this dissertation contributes various methods by which influencing

agents could join and leave a flock already in motion while decreasing the negative influence

joining and leaving may have on the flock. Specifically, this dissertation addresses the scenario

6

where a flock is currently flying and influencing agents need to intercept the flock, enter the

flock, influence the flock in a particular manner, and then carefully extract themselves from

the flock. Each method is empirically evaluated in this dissertation.

• Chapter 7 — Evaluate influencing agent behavior and placement algorithms on

flocks with different behaviors

The contributions presented in Chapters 3-6 assume the influencing agents will join a flock

that exhibits a particular type of flocking behavior. However, there are many possible variants

of flock-member behavior. As such, we evaluate how well the algorithms presented in this

dissertation perform when the flock members exhibit a different type of flocking behavior.

• Chapter 8 — Implementation on a robot platform

Taking algorithms from simulation to the real world is often difficult, yet it is an important

development step. Implementation on a robot platform often exposes the infeasibility of

some underlying algorithm or model assumptions, and thus can help motivate inclusion of

more realistic assumptions and direct the future development of algorithms. As such we

implemented and evaluated one of the algorithms from Chapter 4 on multiple SoftBank

Robotics NAO robots. The experiments are reported in this dissertation. These experiments

consider how influencing agents can influence a flock of bipedal robots to avoid a particular

area.

Although this dissertation is intended to be read in order from start to finish, it is under-

standable that some readers may want to survey particular chapters in isolation. For readers who

wish to read chapters out of order, Figure 1.1 indicates the relations between the different chapters.

For example, if you want to read Chapter 6, then it is important to read Chapters 2 and 4 first

and we recommend that you also read Chapter 5. However, it is not important to read Chapter 3

before Chapter 6.

7

Figure 1.1: Guide for reading individual chapters: a solid arrow is drawn from a chapter that is
necessary as a background for a following chapter, and a dashed arrow is drawn from a chapter
that is useful as a background for a following chapter.

8

2. Problem Definition

To fully define our problem, in this chapter we specify (1) our flocking model and (2) the perfor-

mance objective. At the end of this chapter, we also introduce the simulation environments under

which we run our experiments.

2.1 Flocking Model

A flocking model defines how members of a flock behave. For the purposes of this dissertation, a

flocking model is composed of (1) a neighborhood model and (2) an influence model.

A neighborhood model defines which agents are able to influence a flocking agent. Two

examples of common neighborhood models for flocks are (1) x nearest neighbors and (2) agents

within y distance. Sometimes closer neighbors are weighted more heavily than farther neighbors.

Section 2.1.1 introduces the neighborhood models utilized in this dissertation.

An influence model defines how the flocking agents update their behavior at each time

step. Influence models often consider environmental factors (such as wind, surrounding agents,

and predators) as well as internal factors (such as current heading and hunger level). Section 2.1.2

introduces the primary influence model utilized in this dissertation.

2.1.1 Neighborhood Model

Most flocking models accept that flocking agents are only influenced by other agents (both influ-

encing and flocking) that are located within their neighborhood. A neighborhood model defines how

an agent’s neighborhood is calculated.

Throughout most of this dissertation we use a visibility radius as our neighborhood model.

Most biologists agree that interaction depends on metric distance, although they often disagree on

the specifics [6, 13]. As such, we use a simple metric distance method — a visibility radius — as our

primary neighborhood model. Specifically we let Ni(t) be the set of ni(t) ≤ n agents (not including

9

agent ai) at time t which are located within the visibility radius r of agent ai. All agents in Ni(t)

are considered to be neighbors of ai and thus influence ai. See Figure 2.1 for a pictorial description

of the visibility radius neighborhood model.

Flocking Agent

Flocking Agent

Agent

Influencing Agent

Figure 2.1: A diagram explaining the visibility radius neighborhood model. The yellow and brown
agents are within the pink agent’s neighborhood, while the clear agents are not within the pink
agent’s neighborhood.

Regardless of the neighborhood model utilized, the number of influencing agents inside

agent ai’s neighborhood is denoted by ki(t) and the number of flocking agents inside agent ai’s

neighborhood is denoted by mi(t), where ki(t) +mi(t) = ni(t).

Alternate Neighborhood Models

Although the visibility radius neighborhood model is utilized throughout most of this dissertation,

we do utilize multiple other neighborhood models. Specifically, the work presented in Chapter

3 utilizes a visibility sector neighborhood model and Chapter 7 explores how the methods and

algorithms in this dissertation perform with visibility sector, N-nearest neighbors, and weighted

influence neighborhood models. Below, we introduce these three alternate neighborhood models.

For each alternate neighborhood model, remember that the neighborhood model defines

which agents are in Ni(t) for agent ai. Regardless of the neighborhood model, all of the agents

within Ni(t) influence ai.

Chapters 3 and 7 utilize a visibility sector neighborhood model. It is generally accepted that

birds have a “blind” angle behind them such that any neighboring birds within this “blind” area

are not considered when performing orientation updates [45]. This “blind” area is the motivation

for our visibility sector neighborhood model. For the visibility sector neighborhood model we let

10

Ni(t) be the set of ni(t) ≤ n agents (including agent ai) at time t which are visible to agent ai. An

agent is visible to agent ai if its position is located within a visibility sector of angle α centered on

orientation θi(t) (see Figure 2.2 for an example). For ease, Chapter 3 assumes that the visibility

sector extends from agent ai for an unlimited distance, while Chapter 7 assumes that the visibility

sector extends from agent ai for a finite distance r. We say that angle α — and radius r in Chapter

7 — defines the visibility sector for each agent, and that this visibility sector defines each agent’s

neighborhood (i.e., the area in which the agent can see other agents).

Figure 2.2: A diagram explaining the visibility sector neighborhood model. The yellow and brown
agents are within the pink agent’s neighborhood, while the clear agents are not within the pink
agent’s neighborhood.

Chapter 7 utilizes two additional neighborhood models: N-nearest neighbors and weighted

influence. The motivation for the N-nearest neighbors neighborhood model is that starlings are

believed to consider the seven nearest birds in their flock as their neighborhood when performing

orientation updates [6, 13]. As such, the N-nearest neighbors neighborhood model fills Ni(t) with

the N agents located physically nearest to agent ai at time t. The weighted influence neighborhood

model is motivated by the idea that animals are most strongly influenced by those physically nearest

to them. Hence, the weighted influence neighborhood model functions similarly to the visibility

radius neighborhood model except that it weights each neighbor such that neighbors physically

closer to agent ai have more influence over ai while agents physically farther from ai have less

influence over ai. Neighbors are weighted linearly, such that a neighbor x distance from ai will

have half the influence of a neighbor x
2 distance from ai. The decision to weight the neighbors

linearly was arbitrary, but — as we discuss in Chapter 7 — results led us to not subsequently

11

consider other functions. The neighbors are weighted such that the total influence is the same

across all neighbors for the visibility radius and weighted influence neighborhood models.

2.1.2 Influence Model

An influence model defines how each flocking agents updates its behavior at each time step as a

function of the agents within its neighborhood. In this subsection, we describe the primary influence

model used in this dissertation.

We assume that there are two types of agents: k influencing agents and m flocking agents.

As such, there are n = k +m total agents in the environment. Every agent ai has a velocity vi(t),

a position pi(t), and an orientation θi(t) at time t. Note that vi(t), pi(t), and θi(t) are dependent

on the time t and can be different for each agent ai. Each agent’s position pi(t) = (xi(t), yi(t)) at

time t is updated after its orientation is updated. Hence, xi(t) = xi(t − 1) + vi(t) cos(θi(t)) and

yi(t) = yi(t− 1)− vi(t) sin(θi(t)).

The k influencing agents {a0, . . . , ak−1} are controlled algorithmically via the algorithms and

behaviors presented in this dissertation while them flocking agents {ak, . . . , aN−1} behave according

to the influence model. Except where specified, the influence model for the flocking agents in this

dissertation is defined by a simplified version of Reynolds’ Boid algorithm for flocking [68].

Reynolds’ Boid algorithm for flocking is comprised of three aspects: separation, alignment,

and cohesion. Vectors representing each aspect are added together to determine the behavior of

each agent. The separation aspect steers each agent away from its neighbors to avoid collisions.

The alignment aspect steers each agent towards the average heading of its neighbors. The cohesion

aspect steers each agent towards the average position of its neighbors. Together, these aspects

allow the flocking agents to behave similarly to real-life flocks.

Although Reynolds’ algorithm for flocking is comprised of three aspects, the influence model

used throughout most of this dissertation utilizes only the alignment aspect. This influence model

was chosen because it is similar to the models used by Jadbabaie et al. [50] and Vicsek et al. [80].

In Chapter 7 we show how the algorithms and behaviors from this dissertation perform when the

flocking agents behave according to the full Reynolds’ algorithm for flocking.

Under the alignment influence model utilized throughout most of this dissertation, the flock-

12

ing agents update their orientations based on the orientations of their neighbors. Hence, the global

orientation of agent ai at time step t+ 1, denoted by θi(t+ 1), is set to be the average orientation

of all agents in Ni(t) at time t. Formally,

θi(t+ 1) = θi(t) +
1

ni(t)

∑

aj∈Ni(t)

calcDiff(θj(t), θi(t)) (2.1)

We use Equation 2.1 instead of taking the average orientation of all agents because of the special

cases handled by Algorithm 1. For example, the mathematical average of 350◦ and 10◦ is 180◦, but

by Algorithm 1 it is 0◦. Throughout this dissertation, we restrict θi(t) to be within [0, 2π).

Algorithm 1 calcDiff(θi(t), θj(t))

1: if ((θi(t)− θj(t) ≥ −π) ∧ (θi(t)− θj(t) ≤ π)) then
2: return θi(t)− θj(t)
3: else if θi(t)− θj(t) < −π then

4: return 2π + (θi(t)− θj(t))
5: else

6: return (θi(t)− θj(t))− 2π

2.2 Performance Representation

Each chapter of this dissertation introduces contributions towards solving different problems. In

this section, we describe the performance metrics suited to the different types of problems faced in

this dissertation.

2.2.1 Flock Manipulation

During each time step, the influencing agents first orient to their desired orientations based on

some plan π. Next, the flocking agents update their orientations based on the orientations of all

the agents in their neighborhoods (using Equation 2.1). Finally, the positions of all the agents are

updated.

A plan for x time steps for an agent ai (denoted by πi
x) is a set of x orientations the agent

should execute (one per time step), i.e., πi
x = (θi(0), θi(1), . . . , θi(x− 1)). πx is the set of plans of

x steps for all influencing agent, i.e., πx = (π0
x, π

1
x, . . . , π

k−1
x). The performance error E(πx) of πx

13

is the sum of the differences between each flocking agent’s final orientation after x steps and θ∗,

formally

E(πx) =

n−1
∑

j=k

|calcDiff(θ∗, θj(x))| (2.2)

The cost of πx is defined as

c(πx) = w1x+ w2E(πx) (2.3)

where w1 is a weight that can be set to emphasize the importance of lesser time steps, x is a

scalar representing the length of the plan πx, and w2 is a weight that can be set to emphasize the

importance of lower performance error. At the extremes, setting w1 >> w2 encourages finding

reasonably low performance error in as few steps as possible, while setting w2 >> w1 encourages

minimizing performance error using as many steps as are needed.

An optimal plan π∗ is one with minimal cost c(π∗). For optimal plan π∗, performance error

decreases when more time steps are available such that E(π∗
0) ≥ E(π∗

1) ≥ E(π∗
2) ≥ . . . ≥ E(π∗

∞).

Performance error never increases as more time steps are available for an optimal plan because the

optimal behavior given one additional time step is to either influence the same as with one fewer

time step (and obtain the same performance error) or influence at least one flocking agent to orient

itself closer to θ∗ (and obtain lower performance error). The optimal number of time steps |x| for

a task is the x at which cost c(πx) is minimal. Likewise, the optimal cost |c(π)| is equal to c(π|x|).

In Chapters 3 and 4 of this dissertation, we set w1 to a small positive value (the exact value

does not matter, as long as it is significantly less than ∞) and set w2 to ∞. With these settings

for w1 and w2 we obtain the least-step plan in which all flocking agents orient to θ∗, if such a plan

exists. If such a plan does not exist, then we obtain a plan with low performance error that uses

as few steps as possible.

Chapters 3 and 4 are mainly concerned with the Agent Flock Orientation Manipulation

Problem. We define the Agent Flock Orientation Manipulation Problem as follows:

14

Given a target orientation θ∗ and a team of n homogeneous agents {a0, . . . , an−1}, where

the flocking agents {ak, . . . an−1} calculate their orientation based on Equation 2.1, determine

whether the influencing agents can influence the flocking agents to align to θ∗, and if so, find

the plan π that does so with minimum cost c(π).

2.2.2 Placement

A k-agent placement specifies the positions that each influencing agent {a0, . . . ak−1} will adopt

at time ti, where time ti is the time at which the influencing agents begin attempting to influ-

ence their neighbors. The k-agent placement is denoted by πk(ti) = {p0(ti), . . . , pk−1(ti)} where

{p0(ti), . . . , pk−1(ti)} is the set of positions for influencing agents {a0, . . . ak−1} at time ti.

We denote t∗ as the earliest time step at which flocking agents {ak, . . . , an−1} are oriented

such that, for all t ≥ t∗, {θk(t), . . . , θN−1(t)} are all within ǫ of θ∗. However, in some cases this

cannot occur because some flocking agents may become separated from the flock — we say these

agents are lost. An agent ai is considered lost if two criteria hold. First, there must exist a subset

of flocking agents with cardinality 0 < m′ < m and orientations within ǫ of θ∗ for more than T

time steps — this means that a subset of the flock has converged to θ∗ for more than T time steps.

Second, |θi(t
∗) − θ∗| > ǫ, where t∗ is the time step at which the subset converged to θ∗ — this

means that agent ai did not converge to θ∗ when the subset converged. In our experiments we set

T = 200 because we experimentally found that if a set of agents remained converged to θ∗ for 200

time steps, they were very likely to remain converged.

The entire flock is considered lost and the trial ends if after Tflock time steps no flocking

agents have orientations within ǫ of θ∗. In our experiments we set Tflock = 2, 800 because we have

experimentally observed that influence always occurs within 2,800 time steps in our setting.

The cost c(π(ti)) of a k-agent placement πk(ti) is a weighted function of two terms:

• w1 is a weight that emphasizes the importance of minimizing the number of lost agents

• w2 is a weight that emphasizes the importance of minimizing the chances of losing any agents

(as indicated by the number of simulation experiments in which any agent is lost)

15

c(π(0)) = w1m−m′ + w2p(m−m′ > 0) (2.4)

An optimal placement π∗(ti) is one with minimal cost c(π∗(ti)).

In Chapter 5, we set w1 > w2. With these preferences for w1 and w2 we select influencing

agent placements that generally lose the fewest agents on average but that also minimize the chances

of losing any agents.

Chapter 5 is focused on determining how to place influencing agents into a flock. This

problem — the Agent Placement Problem — is stated as follows:

Given a target orientation θ∗ and a team of n agents {a0, . . . , an−1}, determine the

desired influencing position π(ti) of influencing agents {a0, . . . ak−1} at time ti such that cost

c(π(ti)) is minimized.

2.2.3 Joining and Leaving

In Chapter 6 we consider what would be important for a scenario in which robot birds (acting as

influencing agents) leave one or more charging stations, join a flock in motion, influence the flock to

avoid an airport, leave the flock, and then return to a charging station. With this scenario in mind,

we consider the following metrics calculated across all of the flocking agents Tcalc time steps after

the last influencing agent left the flock (as defined by no longer influencing any flocking agents):

1. NumIntersect: number that intersected the airport ahead of the flock’s original orientation

2. MissionTime: time between the first influencing agent leaving the charging station and the

last influencing agent leaving the flock

3. NumAligned: number oriented within 10◦ of θ∗

4. AvgDiff: average difference from θ∗

In the experimental settings considered in this dissertation, we found that Tcalc = 2, 000

virtually guaranteed that the flocking agents were converged to their long term behaviors when the

16

metrics were calculated. Likewise, in our experimental setting we found that ǫ = 10◦ allowed for

differentiation between NumAligned and AvgDiff.

We consider all four metrics, but we do not define a single cost function for our joining

and leaving work because the importance of each metric varies greatly based on the scenario at

hand. For example, if NumIntersect is all that matters, then the other three metrics have no

importance. However, the other metrics will usually have some importance and in some situations

may be considered more important than NumIntersect.

2.3 Simulation Environment

This dissertation utilizes two different simulation environments: a homegrown FlockSim simulator

as well as the MASON Flockers simulator. We utilized the homegrown FlockSim simulator for our

early theoretical work described in Chapter 3. However, as we advanced to the more empirical and

larger scale work discussed in subsequent chapters, we found that the FlockSim simulator would

require significant improvements. After researching options for pre-existing flocking simulators, we

opted to move forward with the MASON Flockers simulator. In this section, we describe both our

FlockSim simulator as well as the MASON Flockers simulator.

2.3.1 FlockSim

Chapter 3 utilizes a homegrown custom-designed simulator FlockSim. For FlockSim experiments,

the flocking agents are able to change their orientation but not their position. The influencing

agents are able to adopt any orientation, but are only allowed to update their positions in some

experiments. FlockSim’s interface is shown in Figure 2.3.

The user first fills in the parameters along the bottom of the GUI. “Initial Flocking Angle”

defines the initial orientation of any flocking agents, while “Target Angle” defines the target angle

for the flocking agents at the end of the experiment. This target angle is displayed on the right

in black. Both the “Initial Flocking Angle” and “Target Angle” are oriented such that 0◦ is

directly to the east, 90◦ is directly to the north, and so on. “Flocking View Sector” defines the

size in degrees of the flocking agent’s visibility sector. “Number of Steps,” “Velocity,” and “Out

17

Figure 2.3: The FlockSim GUI.

Influencing Behavior” are only utilized for some experiments in which the influencing agents are

able to move at each time step. In these experiments, “Number of Steps” specifies the maximum

number of time steps the experiment may run, “Velocity” defines how far the influencing agent can

move at each time step, and “Out Influencing Behavior” defines the influencing agent’s behavior

when it is able to change positions but is not currently within any flocking agents’ neighborhoods.

After filling in all of the required parameters, the user should place one or more flocking

agents and one or more influencing agents. Once the agents are placed, the user should start the

experiment by clicking the “Start” button. Then the “Step” button should be pressed to increment

though the experiment one time step at a time. During the experiment, the influencing agents will

orient (and in some cases move) and the flocking agent(s) will update their orientation based on

the agents currently within their neighborhood.

18

2.3.2 MASON Flockers

Due to our desire to scale to larger flocks, we decided to switch simulators after completing the work

discussed in Chapter 3. Specifically, we situate the research in Chapters 4 – 7 of this dissertation

within the Flockers domain of the MASON simulator [60]. The MASON simulator was developed

at George Mason University. The creators of MASON describe it as a “fast discrete-event multia-

gent simulation library core in Java, designed to be the foundation for large custom-purpose Java

simulations, and also to provide more than enough functionality for many lightweight simulation

needs.” MASON contains over 30 different domains, has high-quality online manuals, and can be

downloaded for free as a 18.6KB tar.gz.1

One benefit of MASON is that the models are independent from visualization, which allows

for experiments to be easily and quickly executed without visualization. A second benefit we found

was that initial agent positions and orientations are randomly set based upon a seed — this allows

experiments to be completely reproducible as well as comparable. The MASON Flockers domain

shows no significant slow down when running flocks containing hundreds of agents.

When running the visualization, the time steps often execute too quickly for individual agent

behavior to be studied. However, the visualization GUI has a slide bar that can be adjusted to

add delay after each time step (see Figure 2.4(b)). Additionally, the user has the ability to step

through the visualization step-by-step.

In the MASON Flockers domain, each agent points and moves in the direction of its current

velocity vector at each time step. As released, the MASON Flockers domain shows a chaotic

swarm of agents flocking in a toroidal environment. The agents flock using a vector sum of five

vectors: avoidance, cohesion, momentum, coherence, and a random vector. Together, this vector

sum creates a behavior similar to Reynolds’ Boid algorithm for flocking. Sample pictures of the

original Flockers domain and simulator GUI are shown in Figure 2.4.

We altered the MASON Flockers domain in multiple ways for our experiments. We initially

altered the MASON Flockers domain to contain influencing agents that follow different behaviors

than the traditional flocking behaviors followed by the flocking agents. We also modified the flocking

agents to only use Reynolds’ alignment aspect as described in Section 2.1.2. Although the simulator

1http://cs.gmu.edu/~eclab/projects/mason/

19

http://cs.gmu.edu/~eclab/projects/mason/

(a) Flockers visualization (b) Control Panel – Consule (c) Control Panel – Model

Figure 2.4: Images of the original, unaltered MASON Flockers visualization and control panel.

was built to be toroidal — so agents that move off one edge of our domain reappear on the opposite

edge moving in the same direction — we added the functionality to turn the toroidal feature of the

simulator off. Once these alterations were made, we began the work described in this dissertation

regarding influencing agent behavior, placement, and joining and leaving the flock.

Sample images of the MASON Flockers domain after we altered it for our experiments can

be seen in Figure 2.5. Figure 2.5(a) shows gray influencing agents and black flocking agents in a

toroidal domain. In this case, the influencing agents influence the flocking agents to orient towards

θ∗. The environment in Figures 2.5(b–d) is non-toroidal — if an agent leaves the edge of the

environment, it will not reappear on another edge. Figure 2.5(b) shows influencing agents before

they influence a dense flock of flocking agents to maneuver around a dangerous area. Figure 2.5(c)

shows the beginning of an experiment in which the influencing agents were placed into the flock and

they must influence the flock to stay together and travel south. Finally, Figure 2.5(d) shows four

influencing agents in the lower left corner and a flock of 10 flocking agent in the top center. The

influencing agents must intercept the flock and influence the flocking agents to travel east instead

of intersecting the airport.

Figure 2.5 provides a sneak peak of what types of experiments are covered in this dissertation.

Throughout the remainder of this dissertation, we describe our specific experimental setup in more

detail in each chapter before presenting that chapter’s experimental results.

20

(a) Behavior (Section 4.4) (b) Maneuver (Section 4.5)

(c) Placement (Chapters 5 & 7) (d) Join (Chapter 6)

Figure 2.5: Images of the beginning of different types of experiments. The gray agents are influ-
encing agents while the black agents are flocking agents.

21

3. Leading a Stationary Flock to a Desired Orientation

In this chapter, we introduce our research on leading a stationary flock of agents to a desired

orientation using a subset of influencing agents.1 We consider a stationary flock in this chapter

because it allows us to introduce theoretical analysis that would be significantly more difficult —

and in some cases impossible — in the more general case.

Some foundational theoretical results that apply to all flocking scenarios in this chapter are

presented in Section 3.1. In Section 3.2 we set bounds on the extent of influence the influencing

agents can have on the flock when both the flocking agents and the influencing agents are stationary.

Section 3.3 considers the more complicated problem of orienting a stationary flock to a desired

orientation using a set of non-stationary influencing agents. In Section 3.3 we provide empirical

evaluations using our custom-designed simulator FlockSim that was described in Section 2.3.1.2

The work in this chapter assumes that each agent utilizes the visibility sector neighborhood

model described in Section 2.1.1 and the Flock Manipulation performance metric described in

Section 2.2.1. To simplify our theoretical analysis, in this chapter we assume that all flocking

agents are located at a single identical position pi and orientation θi(t) in the environment. Hence,

although the flocking agents’ orientation is dependant on t, their position is not.

3.1 General Flocking Theorems

In this section, we present lemmas that are general in nature and will apply to both the stationary

and non-stationary influencing agent cases examined in the later sections of this chapter. In par-

ticular, following the notation introduced in Section 2.1.1, we consider the case in which there are

ki(t) influencing agents within the neighborhood of mi(t) flocking agents. In this case, all mi(t)

1This chapter is based on a conference paper [31] that I wrote with Noa Agmon and Peter Stone. Author
contributions were as follows: I was a Ph.D. student and did the complete implementation and writing. Peter was my
advisor and Noa was a post-doctorate fellow in Peter’s group. Peter and Noa both collaborated with me on deciding
research directions and interpreting results. Noa also collaborated with me on completing proofs.

2Videos of our FlockSim simulator are available at http://www.cs.utexas.edu/~katie/videos/

22

http://www.cs.utexas.edu/~katie/videos/

flocking agents are located at the same position pi with identical orientations θi(t) (see Figure 3.1

for an example). Recall from Section 2.1.1 that under the visibility sector neighborhood model, the

mi(t) flocking agents are included in their own neighborhoods.

a0

a1

a2

a3

a4, a5

Flocking agents

Position pi

Influencing agents

Figure 3.1: An example with two flocking agents located at the same position with identical initial
orientations and four influencing agents located at different locations within the visibility sector of
the flocking agents.

The first lemma we present in this section relates to the maximal amount the ki(t) influencing

agents can influence the mi(t) flocking agents in a single time step.

Lemma 1 The ki(t) influencing agents can influence the mi(t) flocking agents to turn in a partic-

ular direction by any amount less than or equal to ki(t)π
mi(t)+ki(t)

radians in one time step.

Proof When the difference between θj(t) and θi(t) is less than π (or greater than π, in which case

the difference is less than π in the opposite direction), then by Equation 2.1

θi(t+ 1)− θi(t) =
1

ni(t)

∑

j∈Ni(t)

(θj(t)− θi(t))

≤
ki(t)(π − ǫ)

mi(t) + ki(t)

≤
ki(t)π

mi(t) + ki(t)
−

ki(t)ǫ

mi(t) + ki(t)

<
ki(t)π

mi(t) + ki(t)

23

When the difference between θj(t) and θi(t) is equal to π, by Equation 2.1

θi(t+ 1)− θi(t) =
1

ni(t)

∑

j∈Ni(t)

(θj(t)− θi(t))

=
ki(t)π

mi(t) + ki(t)

However, it is impossible to guarantee that the flocking agents turn in a particular direction

when the difference between θj(t) and θi(t) is equal to π. Hence, in this case the influencing agents

set θj(t) such that the difference between θj(t) and θi(t) is π − ǫ or π + ǫ. When the influencing

agents do this, directionality can be guaranteed and

θi(t+ 1)− θi(t) =
ki(t)(π − ǫ)

mi(t) + ki(t)

<
ki(t)π

mi(t) + ki(t)

�

The second lemma we present in this section states that all ki(t) influencing agents in a

flocking agent’s visibility sector can adopt the exact same orientation and still optimally influence

the flock. Specifically, we show that no extra influence can be obtained by some of the influencing

agents adopting different orientations than the other influencing agents.

Lemma 2 When ki(t) influencing agents work together to influence mi(t) flocking agents to align

the team to some θ, it suffices to consider only algorithms that choose at each time step just one

orientation for all of the influencing agents to adopt.

Proof Assume an algorithm makes the influencing agents adopt orientations θ0(t), . . . , θki(t)−1(t),

where some of these orientations may differ. Then, by Equation 2.1, the orientation of the flocking

agents is

θf (t+ 1) = θf (t) +
1

nf (t)

∑

j∈Ni(t)

calcDiff(θj(t), θf (t))

Now, assume the influencing agents adopt an angle σ that is the average of θ0(t), . . . , θki(t)−1(t).

24

Then by Equation 2.1, the new orientation is

θf (t+ 1) = θf (t) +
ki(t)

nf (t)
(σ)

Since σ is the average of θ0(t), . . . , θki(t)−1(t),

1

nf (t)

∑

j∈Ni(t)

calcDiff(θj(t), θf (t)) =
kt(i)

nt(f)
(σ)

Therefore, for every algorithm assigning different orientations, there is some algorithm assigning

the same orientation, which concludes the proof. �

3.2 Stationary Agents

In this section we consider the case in which there are mi(t) flocking agents located at a single

position pi with identical initial orientations, ki(t) influencing agents located at arbitrary locations

within the flocking agents’ neighborhood at time t, and k − ki(t) influencing agents located at

arbitrary locations outside of the flocking agent’s neighborhood at time t. Each agent ai has

velocity vi = 0. This means that although an agent’s orientation may change, its position will

remain constant. An example is provided in Figure 3.2.

a0

a1

a2

a3

Flocking agents

Position pi a6,a7

a5
a4

Influencing agents

Figure 3.2: An example with two flocking agents (a6 and a7) located at the same position with
identical initial orientations, four influencing agents (a0, a1, a2, and a3) located at different locations
within the visibility sector of the flocking agents, and two influencing agents (a4 and a5) located at
different locations outside the current visibility sector of the flocking agents.

25

As the flocking agents are influenced to turn towards θ∗, different influencing agents become

available to influence the flocking agents. This is because some influencing agents may no longer be

within the flocking agents’ visibility sector, while other influencing agents may enter the visibility

sector. Hence, at each time step the influencing agents must consider the trade-off between moving

the flocking agents maximally towards θ∗ and keeping influencing agents within the flocking agents’

visibility sector for future time steps.

In this section, we introduce some new terminology: border agent, border influence orienta-

tion, and βj(i).

A border agent is an influencing agent that is located within the visibility sector of the

flocking agents, on the edge of the visibility sector that is farther away from the target. A border

influence orientation is a flocking agent orientation at which an influencing agent is a border agent.

Clearly for each influencing agent, there are exactly two possible border influence orientations —

one in which the border agent is located on the left hand side of the flocking agents’ visibility sector

and one in which the border agent is located on the right hand side of the visibility sector. See

Figure 3.3 for an example with a border agent.

Border agent

Border influence orientation

Visibility sector

a2

θ∗

a1

a0

Figure 3.3: An example of a border agent (a0) and the resulting border influence orientation of the
flocking agent (a2).

Recall that α denotes the angle of the flocking agent ai’s visibility sector. Agent aj ’s position

pj(t) = (xj(t), yj(t)) in the environment at time t is located at angle βj(i) with respect to agent

ai’s position pi(t) = (xi(t), yi(t)) and orientation θi(t). Agent aj is in ai’s neighborhood at time t

if angle βj(i) is less than or equal to α
2 . Figure 3.4 demonstrates this concept.

26

ai

aj

βj(i)

θi(t)

α

Figure 3.4: Angle α defines the visibility sector for agent ai. Agent aj is in ai’s neighborhood since
angle βj(i) ≤

α
2 .

The first lemma in this section puts a bound on the maximal amount the flocking agents can

be influenced to turn and still have the same set of influencing agents and flocking agents within

the flocking agents’ visibility sector.

Lemma 3 ki(t) influencing agents within the neighborhood of mi(t) flocking agents can influence

the mi(t) flocking agents to turn min(βj(i)+
α
2 ,

ki(t)π
mi(t)+ki(t)

−ǫ) radians in one time step and still have

the same mi(t) flocking agents and ki(t) influencing agents within the flocking agents’ neighborhood.

Proof In order for all the ki(t) agents to remain in the neighborhood of all mi(t) agents at time

t+1, it is necessary for the amount the mi(t) flocking agents turn by (min(βj(i)+
α
2 ,

ki(t)π
mi(t)+ki(t)

−ǫ))

plus the location of the current edge of the flocking agents’ visibility sector (θi(t) −
α
2) to be less

than or equal to the orientation of the position of the influencing agents with respect to the position

of the flocking agents (βj(i) + θi(t)). Hence,

min(βj(i) +
α

2
,

ki(t)π

mi(t) + ki(t)
− ǫ) + θi(t)−

α

2
≤ βj(i) + θi(t) (3.1)

when mi(t) flocking agents and ki(t) influencing agents are in each flocking agents’ neighborhood

at time t+ 1.

If βj(i) +
α
2 <

ki(t)π
mi(t)+ki(t)

− ǫ, then βj(i) +
α
2 + θi(t) −

α
2 ≤ βj(i) + θi(t). The left side of

Equation 3.1 clearly equals the right side in this case.

27

Otherwise, if βj(i)+
α
2 ≥

ki(t)π
mi(t)+ki(t)

− ǫ, then ki(t)π
mi(t)+ki(t)

− ǫ+ θi(t)−
α
2 ≤ βj(i)+ θi(t). Since,

βj(i)+
α
2 ≥

ki(t)π
mi(t)+ki(t)

− ǫ in this case, the left side of Equation 3.1 is less than or equal to the right

side. �

The second lemma in this section sets a bound on the maximum number of time steps

needed for the influencing agents to influence the flocking agents to reach θ∗ when θ∗ is reachable.

Lemma 4 The ki(t) influencing agents can influence the mi(t) flocking agents to align the team

to θ∗ within

Z = 1 + ⌈
min(π2 , α)
ki(t)π

mi(t)+ki(t)
− ǫ
⌉

time steps when θ∗ is reachable (i.e. the difference between θi(t) and θ∗ is less than or equal to

(Z − 1) ki(t)π
mi(t)+ki(t)

− ǫ+ βj(i) + θi(t)− θi(t+ 1) + α
2 and α > (Z − 2) ki(t)π

mi(t)+ki(t)
− ǫ).

Proof By Lemma 1, ki(t) influencing agents can influencemi(t) flocking agents to turn by ki(t)π
mi(t)+ki(t)

−

ǫ on each of the first Z − 2 time steps. Additionally, by Lemma 3, ki(t) influencing agents can

influence mi(t) flocking agents to turn by βj(i)+θi(t)−θi(t+1)+ α
2 on the Z−1 time step and still

have have mi(t) flocking agents and ki(t) influencing agents in each flocking agents’ neighborhood.

Finally, by Lemma 1 ki(t) influencing agents can influence mi(t) flocking agents to turn by any

amount less than or equal to ki(t)π
mi(t)+ki(t)

− ǫ on the last time step.

Influencing as described above must force the mi(t) flocking agents to align to θ∗; in other

words, we must show that

(Z − 2)
ki(t)π

mi(t) + ki(t)
− ǫ+ βj(i) + θi(t)− θi(t+ 1) +

α

2
+

ki(t)π

mi(t) + ki(t)
− ǫ ≥ π (3.2)

By definition we know that α > (Z − 2) ki(t)π
mi(t)+ki(t)

− ǫ and α ≤ 2π, so the left side of Equation 3.2

simplifies to 3π + βj(i) + θi(t) − θi(t + 1) + 2π
Z−2 such that the left side of Equation 3.2 is greater

than or equal to the right side. �

The following theorem states that it is impossible to influence the flocking agents to orient

themselves to θ∗ (assuming it is reachable) in fewer than Z time steps. Remember that Lemma 4

28

showed that ki(t) influencing agents can influence mi(t) flocking agents to align the team to θ∗ in

Z time steps when θ∗ is reachable.

Theorem 1 If alignment is possible,

Z = 1 + ⌈
min(π2 , α)
ki(t)π

mi(t)+ki(t)
− ǫ
⌉

time steps are needed for the ki(t) influencing agents to influence the mi(t) flocking agents to align

the team to θ∗.

Proof Assume, towards contradiction, that there exists an algorithm in which ki(t) influencing

agents influence mi(t) flocking agents to align the team to θ∗ (when alignment is possible) in

Z ′ < Z time steps.

By Lemmas 1, 3, and 4, ki(t) influencing agents can influence mi(t) flocking agents to turn

ki(t)π
mi(t)+ki(t)

− ǫ on each of the first Z ′ − 2 time steps, by βj(i) + θi(t)− θi(t + 1) + α
2 on the Z ′ − 1

time step, and by at most ki(t)π
mi(t)+ki(t)

− ǫ on time step Z ′. Hence,

(Z ′ − 1)
ki(t)π

mi(t) + ki(t)
− ǫ+ βj(i) + θi(t)− θi(t+ 1) +

α

2
≥ π (3.3)

when alignment of the team to θ∗ can be achieved in Z ′ time steps. By Lemmas 1 and 3, βj(i) +

θi(t)− θi(t+ 1) + α
2 ≤

ki(t)π
mi(t)+ki(t)

− ǫ so the left side of Equation 3.3 becomes Z ′(ki(t)π
mi(t)+ki(t)

− ǫ).

If π
2 > α, then

Z ′ ≤
α

ki(t)π
mi(t)+ki(t)

− ǫ

In this case, the left of Equation 3.3 becomes

(
α

ki(t)π
mi(t)+ki(t)

− ǫ
)(

ki(t)π

mi(t) + ki(t)
− ǫ) = α =

π

2

Otherwise, if π
2 ≤ α, then

Z ′ ≤
π
2

ki(t)π
mi(t)+ki(t)

− ǫ

29

In this case, the left of Equation 3.3 becomes

(
π
2

ki(t)π
mi(t)+ki(t)

− ǫ
)(

ki(t)π

mi(t) + ki(t)
− ǫ) =

π

2
< π

leading to a contradiction. �

When determining how the influencing agents should orient themselves to optimally influence

the flocking agents, we use a forward search approach (see Figure 3.5). Specifically, beginning at

the initial flocking orientation, we consider each possible border influence orientation. If the border

influence orientation is reachable from the initial flocking orientation, then we consider each possible

border influence orientation from this point. If the border influence orientation is not reachable from

the initial flocking orientation, then we turn to the farthest reachable point and then determine if

the border influence orientation is now reachable (and repeat this process until the border influence

orientation is reachable). We repeat this process until the target is within reach, and we select the

plan that reaches the target in the fewest number of steps.

Initial orientation

Option 3: Turn maximally

a0
a1

a2

Option 1: Turn to border agent a0Option 2: Turn to border agent a1

a3

Figure 3.5: An example of the possible subsequent flocking agent orientations for a given initial
orientation. The influencing agents are labelled with a0, a1, and a2, while the flocking agent is
labelled with a3. Note that turning to border agent a2 is not possible in the first time step.

A forward search such as this requires checking 2k possible combinations of the number

of influencing agents influencing the flocking agents at each time step. Consider the case where

30

Variable Definition

bestFSeq the flocking sequence of orientations that uses the least number
of time steps to reach θ∗

bestIAPlan the influencing agent plan that uses the least number of time
steps to reach θ∗

borderTarget the border influence orientation needed to be a border agent
ccw whether the flocking agents are rotating counter-clockwise
current the orientation the flocking agents are currently oriented towards
currentIAPlan the plan containing the orientations for each influencing agent

at each time step so far
currentFSeq the sequence of orientations for the flocking agents at each time

step so far
inflOrient the orientation the influencing agents must adopt at this time

step in order for the flocking agents to reach target from current
initFOrient the initial orientation of the flocking agents
maxSteps the maximum number of steps a plan can be
numF the number of flocking agents
numIA the number of influencing agents within the flocking agents’ vis-

ibility sector
target the orientation the flocking agents should be oriented towards

on the next time step
targetReachable whether target is reachable from current

Table 3.1: Variables used in Algorithm 2.

there are three influencing agents. The following eight combinations of targets covers all possible

combinations: [a0, a1, a2], [a0, a1], [a0, a2], [a0], [a1, a2], [a1], [a2], []. By convention, agent a0 will be

oriented farther from the target than agent a1, which will be oriented farther from the target than

agent a2, and so on. See Figure 3.6 for an example with two influencing agents and one flocking

agent.

Algorithm 2 uses such a forward search approach to calculate and return (1) the number

of steps needed to reach θ∗ and (2) the necessary orientations for each of the influencing agents

for each of these steps. Throughout the algorithm, element.get(x) returns the 0-indexed x item in

element (where element is a list object), element.add(y) adds item y to the end of element, and

element.size() returns the number of items contained in element. The variables used throughout

Algorithm 2 are defined in Table 3.1. Remember that although the influencing agents are located

at many arbitrary locations, the mi(t) flocking agents are located at a single position pi and begin

with identical orientations.

31

Initial Setup After Step 1 After Step 2 After Step 3

a1

a2

a0

a1

a2

a0

a1

a2

a0

a1

a2

a0

Figure 3.6: Example with two influencing agents (a0 and a1) and one flocking agent (a2). On step
1, the flocking agent turns to have a0 as a border agent. Then on step 2, the flocking agent turns
as much as possible towards θ∗. Finally, on step 3 the flocking agent turns to θ∗.

Algorithm 2 plan, steps = calcPlan()

1: for each possible influencing agent combination do

2: currentFSeq, currentIAPlan← ()
3: current← initFOrient
4: for each borderTarget in this influencing agent combination do

5: targetReachable ← false
6: while targetReachable == false and currentFSeq.size() <

maxSteps and bestFSeq.size() > currentFSeq.size() do
7: target← borderTarget
8: if ccw then

9: target← target + α
2

10: else

11: target← target − α
2

12: if |calcDiff(current, target)| > numIAπ
numIA+numF then

13: targetReachable ← false
14: if ccw then

15: target← current + numIAπ
numIA+numF − ǫ

16: else

17: target← current− numIAπ
numIA+numF + ǫ

18: else

19: targetReachable ← true
20: inflOrient← |calcDiff(target, current)|∗(numF+numIA)

numIA + target
21: currentFSeq.add(target)
22: for each influencing agent x in the flocking agents’ visibility sector when facing current

do

23: currentIAPlan.get(x).add(inflOrient)
24: current← target
25: end while

26: if currentFSeq is smaller than bestFSeq then

27: bestFSeq← currentFSeq
28: bestIAPlan← currentIAPlan
29: return bestIAPlan, bestFSeq.size()

32

Now we consider Algorithm 2’s forward search approach in detail. Lines 1–28 consider

each possible combination of influencing agents that could influencing the flocking agents. For each

combination, lines 4–25 consider each borderTarget and build a plan of influencing agent orientations

currentIAPlan. Specifically, lines 6–25 build currentIAPlan while (1) target is not reachable, (2) the

current sequence of orientations for the flocking agents currentFSeq is not too long, or (3) bestFSeq

is longer than currentFSeq. The current plan is built by updating target (lines 7–11), determining

if target is reachable (line 12), and then updating target to be reachable if it was unreachable (lines

13–17). Now that target is reachable, line 20 calculates the required influencing agent orientation

inflOrient for target to be reached by the flocking agents. At this point, line 21 adds target to

currentFSeq and lines 22 and 23 add inflOrient to currentIAPlan for each influencing agent in the

flocking agents’ neighborhood. Line 24 updates the current flocking agent orientation current to

target. Lines 26–28 update bestFSeq and bestIAPlan when currentFSeq is shorter than bestFSeq.

Finally, line 29 concludes the algorithm by returning bestIAPlan and the size of number of time

steps required to orient the flocking agents towards θ∗.

In the worst case, line 1 will be executed 2numIA times, line 4 will execute numIA+1 times,

and line 6 will execute maxSteps times. Hence, lines 7–24 are executed at most (2numIA)(numIA+

1)(maxSteps) times.

Theorem 2 Given θ∗ and assuming the mi(t) flocking agents are influenced only by the ki(t)

influencing agents and the mi(t) flocking agents at time t, then if θ∗ is reachable, the influencing

agents are guaranteed to lead the flocking agents to θ∗ in the least number of time steps possible

when the influencing agents determine their plan based on Algorithm 2 and the number of steps

required is not larger than maxSteps.

Proof There are exactly 2numIA possible influencing agent combinations. Hence, by line 1, Algo-

rithm 2 is guaranteed to consider each possible influencing agent combination.

Each border influence orientation target is considered until it is reachable or the plan size

becomes larger than maxSteps (line 6), and necessary influencing agent orientations are added to

the currentIAPlan and targets are added to the currentFSeq until it is reachable or the plan size

becomes larger than maxSteps. The currentFSeq and currentIAPlan become the bestFSeq and

33

bestIAPlan (lines 25–27) only if they use less steps to reach θ∗ than the current bestFSeq and

bestIAPlan. Line 25 will not be reached until all border orientation targets for a particular set

of influencing agent combinations have been considered and θ∗ has been reached or the plan size

becomes larger than maxSteps. Hence, since the best possible influencing agent combinations are

guaranteed to be considered and the number of steps required will not be larger than maxSteps, we

are guaranteed that the bestIAPlan that is returned by Algorithm 2 is the least-step plan possible.

�

Algorithm 2 has been implemented and tested in our custom-designed simulator FlockSim.

Results from experiments using FlockSim are given in Section 3.3.

3.3 Non-stationary Influencing Agents

In this section we consider the case in which there are mi(t) flocking agents that are all located at

position pi with identical initial orientations. These flocking agents remain stationary at position

pi, but may change orientation if influenced by at least one influencing agent. k influencing agents

that travel with a constant velocity are initially located at arbitrary locations throughout the

environment. As introduced in Section 2.1.2, each influencing agent’s position pi(t) = (xi(t), yi(t))

is updated during each time step after its orientation is updated. Hence, xi(t) = xi(t − 1) +

vi(t) cos(θi(t)) and yi(t) = yi(t− 1)− vi(t) sin(θi(t)). The flocking agents, on the other hand, have

velocity vi(t) = 0 in this section because they are stationary.

In Section 3.2, the main decision for each influencing agent was whether to influence the

flocking agents to turn maximally towards θ∗ or to influence the flocking agents to turn such that

one of the influencing agents becomes a border agent. However, determining exactly how non-

stationary influencing agents should behave is a more complicated problem. Hence, in this section

we consider some heuristic approaches for how non-stationary influencing agents should behave

when influencing stationary flocking agents.

In the stationary influencing agents case, it did not matter how the influencing agents that

were not within any flocking agent visibility sectors behaved because they had no influence over

any flocking agents. However, non-stationary influencing agents travel in the direction they are

34

facing, so it does matter what orientation they face even when they are not within the visibility

sector of any flocking agents. Hence, in this work we present two heuristic behaviors for influencing

agents that are not within the visibility sector of any flocking agents: Towards Visibility Sector and

Towards Flocking Agent.

We provide algorithms for the Towards Visibility Sector and Towards Flocking Agent in this

section. Each influencing agent uses these algorithms to determine its behavior when it is not within

the neighborhood of any flocking agents. We specify the inputs to the algorithms here for clarity.

flockingLoc refers to the location in the environment of the flocking agents, while influencingLoc

refers to the location of the influencing agent. flockingOrient refers to the current orientation of

the flocking agents, while flockingTarget refers to the expected orientation of the flocking agents at

the next time step. Finally, influencingVelocity is the velocity of the influencing agent.

Towards Visibility Sector orients each influencing agent towards the closest point on the

flocking agents’ visibility sector based on each influencing agent’s current position. Algorithm 3

describes how this orientation towards the visibility sector is calculated. Line 3 calculates the

orientation that points directly towards the flocking agent — this orientation is returned when line

6 calculates that the influencing agent is either very near to the flocking agent or its’ visibility sector.

Otherwise, line 8 determines on which side of the flocking agents’ visibility sector the influencing

agent is positioned. Lines 9 and 11 return orientations on each side of the visibility sector that

allow the influencing agents to orient towards the closest point on the visibility sector. Note that

lines 6, 8, and 9 utilize the calcDiff algorithm detailed in Algorithm 1.

Algorithm 3 angleToAdopt = towardsVisibilitySector(flockingLoc, influencingLoc, flockingOri-
ent, flockingTarget)

1: x1← flockingLoc.x-influencingLoc.x
2: y1← influencingLoc.y-flockingLoc.y
3: relativeAngle ← arctan (y1,x1)
4: x2← influencingLoc.x-flockingLoc.x
5: y2← flockingLoc.y-influencingLoc.y
6: if α < πand calcDiff(arctan (y2,x2), flockingOrient) > π

2 + α
2 then

7: return relativeAngle
8: else if calcDiff(relativeAngle, flockingTarget) > 0 then

9: return calcDiff(flockingTarget, α
2) +

π
2

10: else

11: return flockingTarget + α
2 −

π
2

35

Towards Flocking Agent orients the influencing agent towards the flocking agent’s position.

Algorithm 4 describes how the orientation towards the flocking agent is calculated. In this algo-

rithm, line 3 calculates the orientation that would point directly towards the flocking agent. This

orientation will usually be returned on line 13. However, line 6 calculates the distance between

the influencing agent’s location and the closest intersection point with the flocking agents’ current

visibility sector. Line 8 checks whether the distance calculated on line 6 can be covered in one time

step and whether any other influencing agents are within the flocking agents’ current neighborhood.

If the distance can be covered in one time step and no other influencing agents are influencing the

flocking agents, then line 9 returns an orientation towards the flocking agent’s current visibility

sector. Otherwise, line 7 calculates the distance between the influencing agent’s location and the

closest intersection point with the flocking agents’ expected visibility sector on the next time step.

Line 10 checks whether the distance calculated on line 7 can be covered in one time step and

whether any other influencing agents are within the flocking agents’ current neighborhood. If the

distance can be covered in one time step and other influencing agents are influencing the flocking

agents during the current time step, then line 11 returns an orientation towards the flocking agent’s

expected visibility sector at the next time step.

Algorithm 4 angleToAdopt = towardsFlockingAgent(flockingLoc, influencingLoc, flockingOrient,
flockingTarget, influencingVelocity)

1: x← flockingLoc.x-influencingLoc.x
2: y← influencingLoc.x-flockingLoc.x
3: angleToAdopt← arctan (y, x)
4: x2← influencingLoc.x-flockingLoc.x
5: y2← flockingLoc.y-influencingLoc.y
6: distToViewsector ← sin (flockingOrient− α

2 − arctan (y2,x2)) ∗
√

x22 + y22

7: distToNewViewsector ← sin (flockingTarget − α
2 − arctan (y2,x2)) ∗

√

x22 + y22

8: if distToViewsector < influencingVelocity and numAdHoc == 0 then

9: return towardsVisibilitySector(flockingLoc, influencingLoc, flockingOrient, flockingOrient)
10: else if distToNewViewsector < influencingVelocity and numAdHoc > 0 then

11: return towardsVisibilitySector(flockingLoc, influencingLoc, flockingOrient, flockingTarget)
12: else

13: return angleToAdopt

The performance of each of these behaviors is studied empirically later in this section and

reported on in Figure 3.7. Analysis of these behaviors is empirical instead of theoretical because

36

it becomes very difficult to prove optimality once the influencing agents have non-zero velocity.

Throughout the remainder of this chapter, remember that these behaviors are not provably optimal,

but instead heuristics.

Although one of these behaviors must currently be chosen by the user for each trial, the

optimal behavior likely consists of some combination of these behaviors and perhaps other behaviors.

The exact situations in which each behavior should be utilized have not been determined, but there

are some situations where each behavior may be best. Moving towards the visibility sector may be

ideal when no influencing agents are currently in the visibility sector to influence the flocking agent,

as the flocking agent will not be able to be influenced until at least one influencing agent moves

within its’ visibility sector. On the other hand, moving towards the flocking agent may be ideal

when there are influencing agents currently within the flocking agents’ visibility sector, as moving

closer to the flocking agent now will decrease the number of time steps required for the influencing

agent to enter the flocking agents’ visibility sector in future time steps.

The general behavior for non-stationary influencing agents that are inside a flocking agent’s

visibility sector is similar to the behavior of stationary influencing agents. Specifically, the non-

stationary influencing agents will either influence the flocking agents to turn maximally or they will

influence the flocking agents to turn such that an influencing agent is at the edge of the visibility

sector (and hence a border agent). The main difference between the stationary influencing agents

behavior and the non-stationary influencing agents behavior is that now the border agent must be

on the edge of the visibility sector after updating its location. There are exactly two orientations at

which a non-stationary influencing agent can orient and be a border agent. One of these orientations

results in the influencing agent becoming a border agent on the left hand side of the visibility sector,

while the other orientation results in the influencing agent becoming a border agent on the right

hand side of the visibility sector. There must be exactly two orientations at which a non-stationary

influencing agent can orient and be a border agent because any other orientations will result in

either the flocking agents being influenced to turn farther and the influencing agent no longer

moving enough to move into the visibility sector or in the flocking agents not being influenced to

turn as much and the influencing agent being too far inside the visibility sector to be a border agent.

We could find the exact orientation at which a non-stationary influencing agent can orient and be

37

a border agent by performing a binary search for the exact orientation. However, we instead use

a simpler, more efficient heuristic approach that finds an orientation close to the exact orientation

that would be found by the binary search such that the influencing agent is still within the flocking

agents’ visibility sector after moving.

Non-stationary influencing agents clearly have more influence than stationary influencing

agents. In some situations, convergence of the flocking agents to θ∗ is able to occur quicker. In

other situations, non-stationary influencing agents are able to lead the flocking agents to converge

to θ∗ in cases where stationary influencing agents would be unable to. There are situations in

which an influencing agent can travel into the flocking agent’s visibility sector and influence when

it would have been unable to influence if it were stationary.

Empirical Evaluation

All of the heuristic behaviors described in this section have been implemented and tested in

FlockSim. Earlier in this section we presented two heuristic behaviors for influencing agents that

are located outside of the flocking agents’ visibility sector. Now we examine each of these behaviors

in FlockSim, and study (1) is there a significant difference in the number of steps required for the

flocking agents to orient to θ∗ with each heuristic behavior and (2) how well do our influencing

agents perform when compared with the naive method used by others (e.g. [50, 75]) in which the

controllable agents orient towards θ∗ such that the flock slowly converges to θ∗?

The results of our experiments are presented in Figure 3.7. For these experiment, v = 50

for the influencing agents, α = 90◦, θ∗ = 270◦, the initial flocking orientation was 90◦, and the

influencing agents and flocking agents were placed randomly in a 950 by 500 environment. Each of

the runs within the three possible team configurations used the same randomization seed. maxSteps

was set to 100, such that no trials stopped due to the plan size exceeding maxSteps. When run with

teams composed of one to four non-stationary influencing agents and one to four stationary flocking

agents on a Dell Precision-360 desktop computer, an optimal plan is found in 0.0037 seconds on

average.

As seen in Figure 3.7, Towards Visibility Sector performs significantly better than To-

wards Flocking Agent in all the configurations utilizing influencing agents. Towards Visibility

38

1-2 Flocking w/
 1-4 Influencing

1-4 Flocking w/
 1-2 Influencing

1-4 Flocking w/
 1-4 Influencing

0

5

10

15

20

25

Av
er
ag
e
St
ep
s
Re
qu
ire

d

7

11

8

7

11

8

14

22

18

15

23

18

Influencing, Towards Flocking Agent
Influencing, Towards Visibility Sector
Naive, Towards Flocking Agent
Naive, Towards Visibility Sector

Figure 3.7: Results obtained using FlockSim on three different team configurations over 1000 trials
with default settings. The error bars depict the standard error of the mean.

Sector likely performed better because getting into the visibility sector faster allows the influencing

agent to influence the flocking agent sooner.

Figure 3.7 also shows that our influencing agent algorithms perform significantly better

than the naive method in which the controllable agents orient towards θ∗. Our influencing agent

algorithms performed better because we purposely orient the influencing agents past θ∗ in order to

orient the flocking agents exactly to θ∗ quickly. It is important to note that in this experiment we

relaxed the definition of “reaching” θ∗ for the naive method. Due to the way in which the naive

method slowly converges, under our strict definition of “reaching,” the naive methods would very

rarely converge.

As evidence that the results discussed in this section hold across different experimental

settings, we considered a different value of α as well as a different velocity v. Specifically, Figure

3.8 shows experimental results with α = 60 and Figure 3.9 shows results with v = 25. In both cases,

Towards Visibility Sector continues to perform significantly better than Towards Flocking

39

Agent in all the configurations utilizing influencing agents and the influencing agent algorithms

continue to perform significantly better than the naive method.

Figure 3.9 shows that Towards Flocking Agent performs significantly better than To-

wards Visibility Sector for the configurations utilizing the naive method. Towards Flocking

Agent likely performs better because the slower velocity (v = 25 instead of v = 50), which means

more time steps will often be required, makes moving closer to the flocking agent important for

the naive method. This is because moving towards the flocking agent can decrease the number of

time steps required for the influencing agent to enter the flocking agents’ visibility sector later in

the trial.

1-2 Flocking w/
 1-4 Influencing

1-4 Flocking w/
 1-2 Influencing

1-4 Flocking w/
 1-4 Influencing

0

5

10

15

20

25

30

Av
er
ag

e
St
ep

s
Re

qu
ire

d

9

14

10

8

13

10

16

24

20

16

24

19

Influencing, Towards Flocking Agent
Influencing, Towards Visibility Sector
Naive, Towards Flocking Agent
Naive, Towards Visibility Sector

Figure 3.8: Results obtained using FlockSim on three different team configurations over 1000 trials
with default settings except that α = 60. The error bars depict the standard error of the mean.

3.4 Summary

In this chapter, we considered the problem of leading one or more stationary flocking agents to a

desired orientation using influencing agents. This chapter’s main contributions were (1) an initial

40

1-2 Flocking w/
 1-4 Influencing

1-4 Flocking w/
 1-2 Influencing

1-4 Flocking w/
 1-4 Influencing

0

5

10

15

20

25

30

35

Av
er
ag
e
St
ep
s
Re
qu
ire

d

12

18

13

11

17

12

21

30

24

22

32

25

Influencing, Towards Flocking Agent
Influencing, Towards Visibility Sector
Naive, Towards Flocking Agent
Naive, Towards Visibility Sector

Figure 3.9: Results obtained using FlockSim on three different team configurations over 1000 trials
with default settings except that v = 25. The error bars depict the standard error of the mean.

theoretical analysis and (2) an empirical analysis of three algorithms for influencing agent behavior.

Specifically, in this chapter we set bounds on the extent of influence the ad hoc agents can have

on the team when all the agents are stationary and then we subsequently examined the more

complicated problem of orienting a stationary team using a set of non-stationary ad hoc agents.

Three algorithms for influencing agent behavior were also presented in this chapter. Algorithm 2 —

an algorithm for orienting a stationary flock to a desired orientation using a set of non-stationary

influencing agents — was analyzed both theoretically and empirically. Algorithms 3 and 4 — which

present behaviors for influencing agents that are not within the neighborhoods of any flocking agents

— were analyzed empirically due to the complexity of theoretical analysis in this case.

41

4. Influencing a Flock to a Desired Orientation

In this chapter,1 we introduce three algorithms that influencing agents can use to influence a flock of

agents to adopt a desired orientation θ∗. The previous chapter considered influencing a stationary

flock from theoretical and empirical standpoints. This chapter advances past the previous chapter

by considering the more general case, where the flocking agents have non-zero velocity and different

initial positions.

This chapter addresses two questions: how to orient the flock to a target heading and how

to maneuver a flock through turns. Hence, throughout this chapter we consider two specific cases.

In the Orient case, the influencing agents attempt to influence the flock to travel towards θ∗. In

the Maneuver case, the influencing agents attempt to influence the flock to travel as a cohesive

unit through multiple turns — this can be thought of as influencing the flock towards a frequently

changing θ∗.

Sections 4.1, 4.2, and 4.3 introduce algorithms for determining the heading of each influ-

encing agent at each time step. Specifically, Section 4.1 introduces 1-Step Lookahead, a 1-step

lookahead algorithm. Section 4.2 introduces 2-Step Lookahead, a 2-step lookahead algorithm. Fi-

nally, Section 4.3 introduces Coordinated, a 1-step lookahead algorithm where the influencing agents

coordinate their behavior. Experimental results for using these three algorithms to determine influ-

encing agent behavior in the Orient case are presented in Section 4.4. Section 4.5 considers how the

1-Step Lookahead behavior can be applied to influence a flock to avoid an obstacle in the Maneuver

case. Videos showing the main contributions from this chapter are available on our web page.2

The work in this chapter assumes that each agent utilizes the visibility radius neighborhood

model described in Section 2.1.1. The Orient case utilizes the Flock Manipulation performance

metric described in Section 2.2.1, while the Maneuver case utilizes a hybrid performance metric

1This chapter is based on a conference paper [34] and journal article [35] that I wrote with Peter Stone. Author
contributions were as follows: I was a Ph.D. student and did the complete implementation and writing. Peter was
my advisor — he collaborated with me on deciding research directions and interpreting results.

2http://www.cs.utexas.edu/~katie/videos/

42

http://www.cs.utexas.edu/~katie/videos/

that borrows elements from both the Flock Manipulation performance metric described in Section

2.2.1 and the Placement performance metric described in Section 2.2.2. This hybrid performance

metric will be described in Section 4.5.1. The challenge of designing influencing agent behaviors

in a dynamic flocking system is difficult because the action space is continuous. Hence, in this

dissertation we make the simplifying assumption of only considering a limited number (numAngles)

of discrete angle choices for each influencing agent.

4.1 1-Step Lookahead Behavior

In this section we present the 1-Step Lookahead influencing agent behavior in Algorithm 5. Algo-

rithm 5 is a greedy, myopic 1-step lookahead algorithm for determining the best individual behavior

for each influencing agent, where “best” is defined as the behavior that will exert the most influence

on the next time step. This algorithm considers all of the influences on neighbors of the influenc-

ing agent at a particular point in time, such that the influencing agent can determine the best

orientation to adopt based on this information.

Due to the successful evaluation of the 1-Step Lookahead behavior later in this chapter

(Section 4.4), the 1-Step Lookahead behavior will be utilized as the primary influencing agent

behavior from Chapter 5 onward.

The variables used throughout Algorithm 5 are defined in Table 4.1. Two functions are used

in Algorithm 5: neighbor.vel returns the velocity vector of neighbor and neighbor.neighbors returns

a set containing the neighbors of neighbor.

Note that Algorithm 5 is called on each influencing agent at each time step, and that the

neighbors of the influencing agent at that time step are provided as parameter neighOfIA to the

algorithm. The output from the algorithm is the orientation that, if adopted by this influencing

agent, is predicted to influence its neighbors to face closer to θ∗ than any of the other numAngles

discrete influencing orientations considered.

Conceptually, Algorithm 5 is concerned with how the neighbors of the influencing agent are

influenced if the influencing agent adopts a particular orientation at this time step. Algorithm 5

considers each of the numAngles discrete influencing agent orientation vectors. For each orientation

43

Variable Definition

bestDiff the smallest difference found so far between the average orientation
vectors of neighOfIA and θ∗

bestOrient the vector representing the orientation adopted by the influencing
agent to obtain bestDiff

iaOrient the influencing agent orientation vector (one of the (numAngles) dis-
crete angle choices)

neighOfIA the neighbors of the influencing agent
nOrient the predicted next step orientation vector of neighbor n of the influ-

encing agent if the influencing agent adopts iaOrient
nOrients a set of the predicted next step orientation vectors of all of the neigh-

bors of the influencing agent, assuming the influencing agent adopts
iaOrient

Table 4.1: Variables used in Algorithm 5.

vector, the algorithm considers how each of the neighbors of the influencing agent will be influenced

if the influencing agent adopts that orientation vector (lines 3–13). Hence, Algorithm 5 considers

all of the neighbors of each neighbor of the influencing agent (lines 7–11) — if the neighbor of the

neighbor of the influencing agent is an influencing agent, the algorithm assumes that it has the

same orientation as the influencing agent (even though, in fact, each influencing agent orients itself

based on a different set of neighbors, line 9). On the other hand, if it is not an influencing agent,

the algorithm calculates its orientation vector based on its current velocity (line 11). Using this

information, the algorithm calculates how each neighbor of the influencing agent will be influenced

by averaging the orientation vectors of the each neighbor’s neighbors (lines 12–13). The algorithm

then picks the influencing agent orientation vector that results in the least difference between θ∗

and the neighbors’ current orientation vectors (lines 14–18).

If there are numAgents agents in the flock, the worst-case complexity of Algorithm 5 is

calculated as follows. Line 3 executes numAngles times, line 5 executes at most numAgents times,

and line 7 executes at most numAgents. Hence, the complexity for Algorithm 5 is O(numAngles ∗

numAgents2).

Results regarding how Algorithm 5 performs in terms of the number of time steps needed

for the flock to converge to θ∗ can be found in Section 4.4.

44

Algorithm 5 bestOrient = 1StepLookahead(neighOfIA)

1: bestOrient← (0, 0)
2: bestDiff←∞
3: for each influencing agent orient vector iaOrient do
4: nOrients← ∅
5: for n ∈ neighOfIA do

6: nOrient← (0, 0)
7: for n’ ∈ n.neighbors do
8: if n’ is an influencing agent then
9: nOrient← nOrient + iaOrient

10: else

11: nOrient← nOrient + n’.vel
12: nOrient← nOrient

|n.neighbors|

13: nOrients← {nOrient} ∪ nOrients
14: diff← avg diff between vects nOrients and θ∗

15: if diff < bestDiff then

16: bestDiff← diff
17: bestOrient← iaOrient
18: return bestOrient

4.2 2-Step Lookahead Behavior

Whereas the 1-Step Lookahead behavior presented in the previous section optimizes each influencing

agent’s orientation to best influence its neighbors on the next step, it fails to consider more long-

term effects. Hence, in this section we present the 2-Step Lookahead influencing agent behavior in

Algorithm 6. Algorithm 6 considers influences on the neighbors of the neighbors of the influencing

agent, such that the influencing agent can make a more informed decision when determining the

best orientation to adopt.

The variables used in Algorithm 6 that were not used in Algorithm 5 are defined in Table

4.2. Like Algorithm 5, Algorithm 6 is called on each influencing agent at each time step, takes

in the neighbors of the influencing agent at each time step, and returns the orientation that, if

adopted by this influencing agent, will influence the flock to face closer to θ∗ than any of the other

numAngles influencing orientations considered.

Conceptually, Algorithm 6 is concerned with (1) how the neighbors of each neighbor of the

influencing agent are influenced if the influencing agent adopts a particular orientation at this time

step (lines 5–13 in Algorithm 6) and (2) how the neighbors of the neighbors of each neighbor of

45

Algorithm 6 bestOrient = 2StepLookahead(neighOfIA)

1: bestOrient← (0, 0)
2: bestDiff←∞
3: for each influencing agent orientation iaOrient do
4: nOrients← ∅
5: for n ∈ neighOfIA do

6: nOrient← (0, 0)
7: for n’ ∈ n.neighbors do
8: if n’ is an influencing agent then
9: nOrient← nOrient + iaOrient

10: else

11: nOrient← nOrient + n’.vel
12: nOrient← nOrient

|n.neighbors|

13: nOrients← {nOrient} ∪ nOrients
14: for each influencing agent orientation iaOrient2 do

15: nOrients2← ∅
16: for n ∈ neighOfIA do

17: nOrient2← (0, 0)
18: for n’ ∈ n.neighbors do
19: n’Orient← (0, 0)
20: for n” ∈ n’.neighbors do
21: if n” is an influencing agent then
22: n’Orient← n’Orient + iaOrient
23: else

24: n’Orient← n’Orient + n”.vel
25: n’Orient← n’Orient

|n’.neighbors|
26: if n’ is an influencing agent then
27: nOrient2← nOrient2 + iaOrient2
28: else

29: nOrient2← nOrient2 + n’Orient
30: nOrient2← nOrient2

|n.neighbors|

31: nOrients2← {nOrient2} ∪ nOrients2
32: diff← the avg diff between vects nOrients and θ∗ and between vects nOrients2 and θ∗

33: if diff < bestDiff then

34: bestDiff← diff
35: bestOrient← iaOrient
36: return bestOrient

46

Variable Definition

iaOrient2 the influencing agent orientation vector (one of the (numAngles) dis-
crete angle choices) for the second time step

n’Orient the predicted next step orientation vector of a neighbor n’ of a neigh-
bor of the influencing agent if the influencing agent adopts iaOrient

nOrient2 the predicted “2 steps in the future” orientation vector of neighbor
n of the influencing agent if the influencing agent adopts iaOrient on
the first time step and iaOrient2 on the second time step

nOrients2 a set containing the predicted “2 steps in the future” orientation vec-
tors of all of the neighbors of the influencing agent, assuming the
influencing agent adopts iaOrient on the first time step and iaOri-
ent2 on the second time step

Table 4.2: Variables used in Algorithm 6 that were not used in Algorithm 5.

the influencing agent are influenced if the influencing agent adopts a particular orientation at this

time step (lines 19–25 in Algorithm 6), since they will influence the neighbors of each neighbor of

the influencing agent on the next time step (lines 16–31 in Algorithm 6).

Algorithm 6 starts by considering each of the numAngles discrete influencing agent orienta-

tion vectors and considering how each of the neighbors of the influencing agent will be influenced if

the influencing agent adopts that particular orientation vector. For each neighbor of the influencing

agent, this requires considering all of its neighbors and calculating how each neighbor of the influ-

encing agent will be influenced on the first time step (lines 5–13). Next, Algorithm 6 considers the

effect of the influencing agent adopting each of the numAngles influencing agent orientation vectors

on a second time step (lines 14–31). As before, this requires considering all of the neighbors of

each neighbor of the influencing agent, and calculating how each neighbor of the influencing agent

will be influenced (lines 18–31). However, in order to do this the algorithm must first consider how

the neighbors of the neighbors of the influencing agent were influenced by their neighbors on the

first time step (lines 20–25). Finally, Algorithm 6 selects the first step influencing agent orientation

vector that results in the least difference between θ∗ and the neighbors’ orientation vectors after

both the first and second time steps (lines 32–36).

In Algorithm 6 we make the simplifying assumption that agents do not change neighborhoods

within the horizon of our planning. Due to the fact that movements are relatively small with respect

to each agent’s neighborhood size, the effects of this simplification are negligible for the relatively

47

small number of future steps that the 2-step lookahead behavior considers.

The complexity of Algorithm 6 can be calculated as follows. Line 3 executes numAngles

times, line 14 executes at most numAngles times, line 16 executes at most numAgents times, line

18 executes at most numAgents times, and line 20 executes at most numAgents times. Hence, the

complexity for Algorithm 6 is O(numAngles2 ∗ numAgents3).

As with Algorithm 5, results regarding how Algorithm 6 performs in terms of the number

of time steps needed for the flock to converge to θ∗ can be found in Section 4.4.

4.3 Coordinated Behavior

The influencing agent behaviors presented in Sections 4.1 and 4.2 were for individual influencing

agents, where each influencing agent calculated its behavior independent of any other influencing

agents. In this section, we present a Coordinated influencing agent behavior that considers how

influencing agents can coordinate to exert more influence on the flock. In particular, coordination

is potentially useful in cases where a flocking agent is in the neighborhoods of multiple influencing

agents.

Ideally, all of the influencing agents would coordinate their behaviors to influence the flock

to reach θ∗ as quickly as possible. However, due to computational considerations, this type of

coordinated behavior is infeasible in this work due to the complexity of such a calculation. Instead,

we utilize a simplified coordinated behavior. Specifically, we pair influencing agents that share

some neighbors. These pairs then work in a coordinated fashion to influence their neighbors to

orient towards θ∗. We opted to use pairs for simplicity and for computational considerations, but

our approach could also be applied to larger groups of influencing agents that share neighbors.

The Coordinated behavior selects the influencing agents to pair by first finding all pairs of

influencing agents with one or more neighbors in common. Then a brute-force search finds every

possible disjoint combination of these pairs. For each such combination, the sum of the number

of shared neighbors across all the pairs is calculated and the combination with the greatest sum

of shared neighbors is selected. This combination of chosen pairs is called the selectedPairs. Note

that selectedPairs is recalculated at each time step.

48

The behavior of each influencing agent depends on whether it is part of a pair in selectedPairs

or not. If it is part of a pair, it follows Algorithm 7 and coordinates with a partner influencing

agent. If it is not part of a pair, it follows Algorithm 5 and performs a 1-step lookahead search for

the best individual behavior.

The variables used in Algorithm 7 that were not used in Algorithm 5 or Algorithm 6 are

defined in Table 4.3. Only one new function is used in Algorithm 7 that was not used in Algorithm 5

or Algorithm 6. The function is neighbors.get(x), which returns the xth element in the set neighbors.

Variable Definition

iaOrientP the partner’s orientation vector (one of the (numAngles) discrete angle
choices)

nOrientsP a set used to hold the predicted next step orientation vectors of all the
neighbors of the influencing agent’s partner, assuming the influenc-
ing agent adopts iaOrient and the influencing agent’s partner adopts
iaOrientP

Table 4.3: Variables used in Algorithm 7 that were not used in Algorithm 5 or Algorithm 6.

Algorithm 7 is called on one influencing agent in each pair in selectedPairs at each time step.

Algorithm 7 takes in the neighbors of the influencing agent and the neighbors of the partner of

the influencing agent, and returns the orientations that, if adopted by both influencing agents, are

guaranteed to influence the flock to face closer to θ∗ than any other pair of numAngles influencing

agent orientations.

Conceptually, Algorithm 7 considers each of the numAngles influencing agent orientations

for the influencing agent and for the influencing agent’s partner and performs two 1-step lookahead

searches. The main difference between Algorithm 5 and Algorithm 7 is that the coordinated

algorithm takes into account that another influencing agent is also influencing all of the agents

that are in both the influencing agent’s neighborhood and in the influencing agent’s partner’s

neighborhood. Hence, the influencing agent may choose to behave in a way that influences the

other agents in its neighborhood closer to θ∗ while relying on its partner to more strongly influence

the agents that exist in both of the paired influencing agents’ neighborhoods towards θ∗.

Specifically, Algorithm 7 executes as follows. For each potential influencing agent orienta-

tion, the algorithm considers how each of the neighbors of the influencing agent will be influenced if

49

Algorithm 7 bestOrient, bestOrientP = Coordinated(neighOfIA, neighOfP)

1: bestOrient← (0, 0)
2: bestOrientP← (0, 0)
3: bestDiff←∞
4: for each influencing agent orient iaOrient do
5: for each influencing agent orient iaOrientP do

6: nOrients← ∅
7: for n ∈ neighOfIA do

8: nOrient← (0, 0)
9: for n’ ∈ n.neighbors do

10: if n’ is the influencing agent then
11: nOrient← nOrient + iaOrient
12: else if n’ is the influencing agent’s partner then
13: nOrient← nOrient + iaOrientP
14: else

15: nOrient← nOrient + n’.vel
16: nOrient← nOrient

|n.neighbors|

17: nOrients← {nOrient} ∪ nOrients
18: nOrientsP← ∅
19: for n ∈ neighOfP do

20: nOrient← (0, 0)
21: for n’ ∈ n.neighbors do
22: if n’ is the influencing agent then
23: nOrient← nOrient + iaOrient
24: else if n.neighbors.get(n’) is influencing agent’s partner then
25: nOrient← nOrient + iaOrientP
26: else

27: nOrient← nOrient + n’.vel
28: nOrient← nOrient

|n.neighbors|
29: if n 6∈ neighOfIA then

30: nOrientsP← {nOrient} ∪ nOrientsP
31: diff← the avg diff between nOrients and θ∗ and between nOrientsP and θ∗

32: if diff < bestDiff then

33: bestDiff← diff
34: bestOrient← iaOrient
35: bestOrientP← iaOrientP
36: return bestOrient, bestOrientP

50

the influencing agent adopts that orientation (lines 7–17). Then Algorithm 7 considers how each of

the neighbors of the influencing agent’s partner will be influenced if the influencing agent’s partner

adopts each potential influencing agent partner orientation (lines 19–30). Finally, the algorithm

selects the influencing agent orientations that result in the least difference between θ∗ and the cur-

rent orientations of the neighbors of both the influencing agent and the influencing agent’s partner

(lines 31–37). Note that agents that are neighbors of both the influencing agent and its partner are

only counted once (lines 29–30).

The complexity of Algorithm 7 can be calculated as follows. Line 4 executes numAngles

times, line 5 executes numAngles times, line 7 executes at most numAgents times, line 9 executes

at most numAgents, line 19 executes at most numAgents times, and line 21 executes at most

numAgents. Hence, the complexity for Algorithm 7 is O(numAngles2 ∗ numAgents2).

Results for how Algorithm 7, as well as Algorithms 5 and 6, performed in our experiments

can be found in the next section.

4.4 Orient Experiments

In this section we describe ourOrient case experiments. These experiments test the three influencing

agent behaviors presented in Sections 4.1, 4.2, and 4.3 against some baseline methods described

in this section. Our original hypothesis was that the 1-Step Lookahead behavior (Algorithm 5), 2-

Step Lookahead behavior Algorithm 6), and Coordinated behavior (Algorithm 7) would all perform

significantly better with regard to the Flock Manipulation performance metric described in Section

2.2.1 than the baseline methods. We also believed that the 2-Step Lookahead behavior (Algorithm

6) and the Coordinated behavior (Algorithm 7) would perform better than the 1-Step Lookahead

behavior (Algorithm 5).

4.4.1 Baseline Influencing Agent Behaviors

In this subsection we describe two behaviors which we use as comparison baselines for the lookahead

and coordinated influencing agent behaviors presented in Sections 4.1, 4.2 and 4.3.

51

Face Desired Orientation Behavior

When following this behavior, the influencing agents always orient towards θ∗. Note that under this

behavior the influencing agents do not consider their neighbors or anything about their environment

when determining how to behave.

This behavior is modeled after work by Jadbabaie, Lin, and Morse [50]. They show that a

flock with a controllable agent will eventually converge to the controllable agent’s heading. Hence,

the Face Desired Orientation influencing agent behavior is essentially the behavior described in

their work, except that in our experiments we include multiple controllable agents facing θ∗.

Offset Momentum Behavior

Under this behavior, each influencing agent calculates the vector sum V of the velocity vectors of

its neighbors and then adopts an orientation along the vector V ′ such that the vector sum of V and

V ′ points towards θ∗. See Figure 4.1 for an example calculation. In Figure 4.1, the velocity vectors

of each neighbor are summed in the first line of calculations. In the second line of calculations,

the vector sum of the influencing agent’s orientation and the results of the first line must equal

θ∗, which in this example is pointing directly south. From the equation on the second line of

calculations, the new influencing agent orientation vector can be found by vector subtraction. This

vector is displayed and then scaled to maintain constant velocity on the third line of calculations.

This behavior was inspired by Algorithm 2 in Chapter 3. However, this behavior (as well

as Algorithm 2) fails to consider that the influencing agent is not the only agent influencing its

neighbors. In some ways, this behavior could be called a “0-step lookahead” algorithm since it

failed to consider any other influences on the influencing agent’s neighbors.

4.4.2 Experimental Setup

We utilize the MASON simulator for our experiments in this chapter. The MASON simulator

was introduced in Section 2.3.2, but in this section we present the details of the environment that

are important for completely understanding the experimental setup utilized for the Orient case

experiments presented in this section. Figure 2.5(a) shows a sample starting configuration for our

52

Orientation
Influencing

Orientation
Influencing

=+

=+

=

+

≈

Figure 4.1: An example of how the Offset Momentum influencing agent behavior works. The
influencing agent is the black dot, the circle represents the influencing agent’s neighborhood, and
the three arrows inside the circle represent the influencing agent’s neighbors.

Orient case experiments.

We use the default simulator setting of 150 units for the height and width of our experimental

domain. Likewise, we use the default setting in which each agent moves 0.7 units during each time

step. We also maintained the default toroidal nature of the simulator, such that agents that move

off one edge of our domain reappear on the opposite edge moving in the same direction.

The number of agents in our simulation (numAgents) is 200, meaning that there are 200

agents in our flock. 10% of the flock, or 20 agents, are influencing agents. The neighborhood

for each agent is 20 units in diameter. numAgents and the neighborhood size were both default

values for MASON. We chose for 10% of the flock to be influencing agents as a trade-off between

providing enough influencing agents to influence the flock and keeping the influencing agents few

enough to require intelligent behavior in order to influence the flock effectively. Initially, all agents

are randomly placed throughout the environment with random initial headings.

We only consider numAngles discrete angle choices for each influencing agent. In all of our

experiments, numAngles is 50, meaning that the unit circle is equally divided into 50 segments

beginning at 0 radians and each of these orientations is considered as a possible orientation for

each influencing agent. numAngles=50 was chosen after some experimentation using the 1-Step

Lookahead behavior in which numAngles=20 resulted in a higher average number of steps for the

53

flock to converge to θ∗ and numAngles=100 and numAngles=150 did not require significantly fewer

steps for convergence than numAngles=50.

For the Orient case, we run 50 trials for each experimental setting. We use the same 50

random seeds to determine the starting positions and orientations of both the flocking agents and

influencing agents for each set of experiments for the purpose of variance reduction.

We evaluate performance using the Flock Manipulation performance metric described in

Section 2.2.1.

4.4.3 Experimental Results

Figure 4.2 shows the number of time steps needed for the flock to converge to θ∗ for the two

baseline behaviors, the 1-Step Lookahead behavior presented in Algorithm 5, the 2-Step Lookahead

behavior presented in Algorithm 6, and the Coordinated behavior presented in Algorithm 7 using

the experimental setup described in Section 4.4.2.

0

5

10

15

20

25

30

35

40

45

Ti
m

e
St

ep
s

Re
qu

ire
d

fo
r C

on
ve

rg
en

ce 34
36

26 25 25

Face Desired Orientation
Offset Momentum
1-Step Lookahead
2-Step Lookahead
Coordinated

Figure 4.2: Results from Orient case experiments using the experimental setup described in Section
4.4.2. The results are averaged over 50 trials and the error bars represent the 95% confidence
interval.

Figure 4.2 shows that the 1-Step Lookahead behavior, the 2-Step Lookahead behavior, and

the Coordinated behavior all perform significantly better than the two baseline methods. However,

54

these results did not show the 2-Step Lookahead behavior and the Coordinated behavior performing

significantly better than the 1-Step Lookahead behavior as we expected. Hence, we present addi-

tional experimental results below in which we alter the percentage of the flock that are influencing

agents and the number of agents in the flock (numAgents) one by one to further investigate the

dynamics of this domain.

Altering the Composition of the Flock

Now we consider the effect of decreasing the percentage of influencing agents in the flock to 5%

as well as increasing the percentage of influencing agents in the flock to 20%. In both cases, the

remainder of the experimental setup is as described in Section 4.4.2. Altering the percentage of

influencing agents in the flock clearly alters the number of agents we can control, which affects the

how much influence we can exert over the flock. Hence, as can be seen in Figure 4.3, flocks with

higher percentages of influencing agents will, on average, converge to θ∗ in a lesser number of time

steps than flocks with lower percentages of influencing agents.

20% Influencing 5% Influencing0

10

20

30

40

50

60

70

80

Ti
m
e
St
ep

s
Re

qu
ire

d
fo
r C

on
ve

rg
en

ce

16

68

16

70

12

49

12

49

12

50

Time Steps Required - Different Influencing Agent %
Face Desired Orientation
Offset Momentum
1-Step Lookahead
2-Step Lookahead
Coordinated

Figure 4.3: Results from Orient case experiments using the experimental setup described in Section
4.4.2, except that we varied the percentage of influencing agents in the flock. The results are
averaged over 50 trials and the error bars represent the 95% confidence interval.

55

Altering the Size of the Flock

In this section we evaluate the effect of changing the size of the flock while keeping the rest of

the experimental setup as presented in Section 4.4.2. Changing the flock size will alter the num-

ber of influencing agents, but not the ratio of influencing agents to non influencing agents. We

expected that increasing the flock size would lead to the Coordinated behavior performing better

comparatively, as with a larger flock, more agents are likely to be in multiple influencing agents’

neighborhoods at any given time. However, the Coordinated behavior did not perform significantly

differently than the lookahead behaviors, and actually performed slightly worse in the experiment

with a larger flock size. The results of our experiments in altering the flock size can be seen in

Figure 4.4.

300 Agents 100 Agents0

10

20

30

40

50

60

70

80

Ti
m
e
St
ep
s
Re
qu

ire
d
fo
r C

on
ve
rg
en
ce

26

66

27

68

18

58

18

58

18

57

Time Steps Required - Different Flock Sizes
Face Desired Orientation
Offset Momentum
1-Step Lookahead
2-Step Lookahead
Coordinated

Figure 4.4: Results from Orient case experiments using the experimental setup described in Section
4.4.2, except that we varied number of agents in the flock. The results are averaged over 50 trials
and the error bars represent the 95% confidence interval.

The difference between the 1-Step Lookahead behavior, the 2-Step Lookahead behavior, and

the Coordinated behavior versus the baseline behaviors was not significant in the experiment utiliz-

ing a smaller flock. This may have been caused by the agents being more sparse in the environment,

56

and hence having less of an effect on each other.

4.4.4 Discussion

Our hypothesis was that Algorithms 5, 6, and 7 would all perform significantly better than the

baseline methods. This was indeed the case in all of our experiments except when the flock size

was decreased from 200 agents to 100 agents. Apparently having 100 agents in a 150 by 150

unit environment resulted in the agents being too distributed for our lookahead and coordinated

behaviors to be effective.

This chapter’s original research question, which was to determine how influencing agents

should behave so as to orient the rest of the flock towards a target heading as quickly as possible, was

partially answered by this work. Although it is possible that better algorithms could be designed,

given the algorithms and experimental setting presented in this chapter, we found that it is best

for influencing agents to perform the 1-Step Lookahead behavior presented in Algorithm 5. This

behavior is more computationally efficient than the other two algorithms presented, and performed

significantly better than the baseline methods in most cases. As such, unless otherwise noted, the

1-Step Lookahead behavior will be utilized throughout the remainder of this dissertation.

In many cases, the Coordinated behavior and the 1-Step Lookahead behavior led the flock to

converge to θ∗ in the same number of time steps. This is because the behaviors were identical when

no agents were in the neighborhoods of two paired influencing agents at the same time. Additionally,

even when a pair of influencing agents shared one or more neighbors, these influencing agents often

behaved similarly, and hence did not exert vastly different types of influence.

4.5 Maneuver Experiments

So far this chapter has considered the Orient case, which studied how influencing agents should

orient in order to influence a flock to orient towards a target heading θ∗ as quickly as possible. In

this section, we consider the Maneuver case. Specifically, in this section we consider how the 1-Step

Lookahead behavior can be applied to influence a flock to avoid an obstacle by maneuvering through

a set of turns. We opted to use the 1-Step Lookahead behavior in this section because Section 4.4.4

57

concluded that — out of the algorithms considered in this chapter — the 1-Step Lookahead behavior

is the best trade-off between computational efficiency and performance.

4.5.1 Experimental Setup

The Orient case and Maneuver case utilize similar experimental setups. Hence, in this section we

only note experimental settings that differ from the Orient case experimental setup described in

Section 4.4.2. See Figure 2.5 to compare images of sample starting configurations for both the

Orient case (Figure 2.5(a)) and the Maneuver case (Figure 2.5(b)).

In our Maneuver case experiments, all of the agents begin within a square in the top left of

the domain, where this square occupies 4% of the domain. The agents are initialized within this

square with random positions and random headings that are within 90 degrees of the initial θ∗. The

influencing agents then influence the flock to travel downward for 300 time steps, then rightward

for 300 time steps, then downward for 300 time steps, then leftward for 300 time steps, and finally

downward — this path represents the path a flock might need to take to avoid an obstacle in its

path.

Different quantities of time steps can be used by the influencing agents to influence the flock

to turn during these four turns. The influencing agents alway influence the flock to orient towards

θ∗, so during the turns the value of θ∗ is interpolated linearly between the values of θ∗ on the

surrounding straightaways according to the number of time steps allowed for the turn. Hence, θ∗

changes more rapidly when fewer time steps are allowed.

Figure 4.5 depicts the approximate path along which the flock is influenced to travel, includ-

ing a depiction of how turns of different lengths affect this path. Videos of a flock being maneuvered

along a similar path are available on our website.3 We maintain approximately the same time to

complete all four turns by shortening the straightaway times depending on the amount of time

allocated to turning. Flocks that are influenced by the influencing agents to turn quicker will

inherently have the opportunity to finish their last turn quicker (as can be seen in Figure 4.5).

Hence, steps-optimal represents the minimal number of time steps that could be spent by an agent

to complete the four required straightaways and turns.

3http://www.cs.utexas.edu/~katie/videos/

58

http://www.cs.utexas.edu/~katie/videos/

Start

DANGER

Figure 4.5: The approximate path along which the flock is influenced to travel. The dashed line
shows the path if turns were instantaneous and the two arcs show the path when 100 or 200 time
steps are used to turn. The flock starts in the square.

For the Maneuver case, we increased both the simulator height and width from 150 units

to 300 units. We also decreased the units moved by each agent per time step from 0.7 units to 0.2

units. Finally, we altered the simulator to be non-toroidal. Non-toroidal means that agents that

move off one edge of our domain become “lost” forever. All of these changes were made to allow

the influencing agents additional time and space to “maneuver” the flock.

For the Maneuver case, we run 100 trials for each experimental setting. We use the same

100 random seeds to determine the starting positions and orientations of both the flocking agents

and influencing agents for each set of experiments.

Our Maneuver case experiments utilize a hybrid performance metric that borrows elements

from the Flock Manipulation performance metric described in Section 2.2.1 and the Placement

performance metric described in Section 2.2.2. Specifically, for the Maneuver case experiments we

consider three metrics when determining how much controllability the influencing agents are able

to exert on the flock:

1. The average total number of time steps required for the flock to converge to facing downward

at the end of the path (steps-converge)

59

2. The difference between steps-converge and steps-optimal (diff)

3. The average number of agents that become separated from the 200-agent flock and do not

return to the flock before the flock converges to facing downward at the end of the path (lost)

In addition to the three metrics described above, we also report the number of trials in

which at least one agent was separated from the flock and did not return before the flock converged

to facing downward at the end of the path, as this makes lost easier to interpret.

4.5.2 Experimental Results

Table 4.4 shows results of a baseline behavior (Face Desired Orientation Behavior from Section

4.4.1) and the 1-Step Lookahead behavior (from Section 4.1) using the experimental setup described

above for the Maneuver case. As can be seen in the table, usage of the 1-Step Lookahead behavior

results in significantly better steps-converge and diff than the baseline algorithm for each of the

turn times tested in the experiment. On average, flocks that are influenced to turn quicker are

more likely to have a greater average diff. Additionally, note that given this experimental setup,

the influencing agents would do best to use around 30 time steps to influence the flock through

each turn, as steps-converge is least when 30 time steps are used for each turn.

Steps–

Converge

Steps–

Optimal
Diff Lost

Times

Lost
10 Steps to Turn – Baseline 1243.0 (4.6) 1205 38.0 17.0 1
30 Steps to Turn – Baseline 1242.3 (2.6) 1215 27.3 17.0 1
50 Steps to Turn – Baseline 1245.8 (2.2) 1225 20.8 0 0
100 Steps to Turn – Baseline 1261.0 (1.6) 1250 11.0 17.0 1
200 Steps to Turn – Baseline 1301.9 (1.0) 1300 1.9 17.0 1

10 Steps to Turn – 1-Step Lookahead 1237.0 (5.4) 1205 32.0 13.5 2
30 Steps to Turn – 1-Step Lookahead 1236.5 (4.6) 1215 21.5 17.0 1
50 Steps to Turn – 1-Step Lookahead 1238.6 (3.0) 1225 13.6 17.0 1
100 Steps to Turn – 1-Step Lookahead 1254.5 (1.3) 1250 4.5 0 0
200 Steps to Turn – 1-Step Lookahead 1300.6 (0.6) 1300 0.6 17.0 1

Table 4.4: Results when using the experimental setup described for the Maneuver case. The
numbers in parentheses show the 95% confidence interval. These results are averaged across 100
trials.

Experiments were run in which the percentage of influencing agents in the flock was altered

60

to 5% of the flock and 20% of the flock. Results were comparable to those presented in Table 4.4,

but did differ in two notable ways. Specifically, when 20% of the flock consisted of influencing

agents, no agents were lost during our experiments and turns lasting 10 steps had the least steps-

converge but were still able to maintain the consistency of the flock. When only 5% of the flock

consisted of influencing agents, more influencing agents were lost on quicker turns and turns lasting

50 steps were best in terms of steps-converge.

Experiments were also run in which the neighborhood size was decreased. As would be ex-

pected, we found that as the neighborhood size becomes smaller, times lost increases, lost increases,

and steps-converge increases. Finally, we ran an experiment in which only one of the 200 agents

was an influencing agent. Hence, one influencing agent was attempting to influence the entire flock

through the series of four turns. In these experiments, we found that a neighborhood of 2000 in

diameter was sufficient to not lose any agents on any of our 100 runs.

4.6 Summary

In this chapter, we set out to determine how influencing agents should behave in order to (1) orient

a flock towards a target heading as quickly as possible and (2) maneuver a flock around turns

quickly while still maintaining the flock. Towards determining how to orient a flock towards a

target heading quickly, this chapter introduced three algorithms that the influencing agents can

use to influence the flock. Specifically, this chapter introduced a greedy lookahead behavior (1-Step

Lookahead, Algorithm 5), a deeper lookahead behavior (2-Step Lookahead, Algorithm 6), and a

coordinated greedy lookahead behavior (Coordinated, Algorithm 7). We ran extensive experiments

using these algorithms in a simulated flocking domain, where we observed that in such a setting, a

greedy lookahead behavior (such as the 1-Step Lookahead behavior) is an effective behavior for the

influencing agents to adopt. This chapter also showed that influencing agents can influence a flock

through turns by using the 1-Step Lookahead behavior and slowly updating the target heading as

the flock reaches desired turns. However, we found that the ideal number of time steps for turning

depends on the specifics of the domain.

Throughout this chapter, we assumed that influencing agents were initially placed ran-

61

domly within the flock. Although the 1-Step Lookahead behavior allowed the influencing agents

to effectively influence the flock, we began to wonder if the influencing agents could wield addi-

tional influence if they were initially positioned more intentionally. Chapter 5 considers this exact

question.

62

5. Placing Influencing Agents into a Flock

The main contribution of this chapter1 is a consideration of where to place influencing agents

{a0, . . . , ak−1} into a flock, assuming that once there, they will follow the 1-Step Lookahead behavior

described in Section 4.1’s Algorithm 5. In the previous chapter we assumed the influencing agents

were added at randomly selected positions to the flock, but in this chapter we assume that we are

able to place each influencing agent ai ∈ {a0, . . . , ak−1} into the flock at whatever location pi(0) we

desire at time t = 0.

Section 7.1 introduces our experimental settings for this chapter. We introduce these exper-

imental settings before any of our placement methods so that we can present experimental results

alongside the methods in each section as well as at the end of the chapter. Section 5.2 introduces

three constant-time placement methods and Section 5.3 presents our more effective, but also more

computationally expensive, Graph placement method. Section 5.4 describes a hybrid method for

placing influencing agents into a flock. Specifically, this hybrid method combines the Graph place-

ment method from Section 5.3 and the constant-time placement methods from Section 5.2. Section

5.5 introduces a two-step placement method that first identifies many possible influencing agent

placement positions and then chooses k of these positions using one of four methods described in

this section. Section 5.6 introduces three clustering methods for placing influencing agents into a

flock. Finally, Section 5.7 compares the placement methods described in this chapter before Section

5.8 concludes the chapter.

The work in this chapter assumes that each agent utilizes the visibility radius neighborhood

model described in Section 2.1.1 and the Placement performance metric described in Section 2.2.2.

Videos showing the placement methods described in this chapter are available on our web page.2

1This chapter is based on two conference papers [36, 38]. I wrote both with Peter Stone. Shun Zhang also
contributed to one of the papers. Author contributions were as follows: I was a Ph.D. student and did the complete
implementation and writing. Peter was my advisor — he collaborated with me on deciding research directions and
interpreting results. Shun was an undergraduate researcher who contributed work to one paper, but this work was
not included in this dissertation.

2http://www.cs.utexas.edu/~katie/videos/

63

http://www.cs.utexas.edu/~katie/videos/

5.1 Experimental Setup

As in Chapter 4, we use the MASON simulator for our experiments in this chapter. The MASON

simulator was introduced in Section 2.3.2, but in this section we present the details of the envi-

ronment that are important for completely understanding the experimental setup utilized for our

placement experiments in this chapter. We discuss our experimental setup at the beginning of this

chapter so that experiments can be introduced and discussed throughout the chapter. Figure 2.5(c)

shows a sample starting configuration for our placement experiments.

The relevant experimental variables for our placement experiments are given in Table 5.1 .

Variable Value

toroidal domain no
domain height 300
domain width 300
units moved by each agent per time step (vi) 0.2
neighborhood for each agent (radius r) 10

Table 5.1: Experimental variables for our placement experiments. Italicized values are default
settings for the simulator.

Most of our experimental variables in Table 5.1, such as toroidal domain, domain height,

domain width, and the units each agent moves per time step, are not set to the default settings

for the MASON simulator. We removed the toroidal nature of the domain in order to make the

domain more realistic. Hence, if an agent moves off of an edge of our domain, it will not reappear.

This is particularly important for lost agents remaining lost. We also increased the domain height

and width, and decreased the units each agent moves per time step, in order to give agents a chance

to converge with the flock before leaving the visible area. However, we have no reason to believe

the exact experimental settings we chose for our experiments are of particular importance.

All of the experiments reported in this chapter use m = 10 or m = 50 flocking agents and

k = 2 to k = 10 influencing agents. However, during our initial research, we ran smaller scale

experiments with as many as m = 1000 flocking agents and k = 25 influencing agents. We did not

run full scale experiments using all of the methods presented in this chapter for flocks with more

than m = 10 flocking agents mainly due to the high computation time required for some of the

64

placement methods. However, our limited experiments did indicate that results from smaller flocks

generally do scale to larger flocks.

Figure 2.5(c) shows an example starting configuration for the experiments in this chapter.

For the experiments in this chapter, the flocking agents are initially randomly placed within FApreset,

which is a small square at the top left of the environment. All of the flocking agents are initially

assigned random headings that are within 90 degrees of θ∗.

Experimental results will be presented throughout the following sections and then discussed

in Section 5.7. In all of our experiments, we run 100 trials for each experimental setting and we

use the same set of 100 random seeds for each set of experiments. The random seeds are used

to determine the exact placement and orientation of all of the flocking agents at the start of a

simulation experiment. The error bars in all of our graphs depict the standard error of the mean.

5.2 Constant-time Placement Methods

In this section, we consider three simple, constant-time placement methods: Random placement in

Section 5.2.1, Grid placement in Section 5.2.2, and Border placement in Section 5.2.3. For each of

these placement methods, we consider a scaled variant and a preset variant.

For the preset variant, we assume that the m flocking agents are initially placed within a

pre-set area that is formed by the area in which the flocking agents could initially be placed at

time t = 0 — we refer to this pre-set area as FApreset. Under the preset variant, the influencing

agent positions are dependent on the space potentially covered by the flocking agents. However,

especially for sparse flocks, FApreset is sometimes much larger than the area actually covered by the

flocking agents. As such, we also consider a scaled variant.

For the scaled variant, we scale the area in which the influencing agents are placed based on

the area actually occupied by the flocking agents. Specifically, we search all of the locations of the

flocking agents and save the highest and lowest x and y values at which flocking agents are located

(xlow, xhigh, ylow, and yhigh). We then extend these x and y values by r (the neighborhood radii)

and then use the rectangular box formed by xlow − r, xhigh + r, ylow − r, and yhigh + r as the area

in which influencing agents can be placed. We call this area FAscaled. Under the scaled variant, the

65

influencing agent positions are dependent on the space actually covered by the flocking agents.

In this section, we discuss both variants for three constant-time placement methods. Sec-

tion 5.2.1 introduces the Random placement method, Section 5.2.2 introduces the Grid placement

method, and Section 5.2.3 introduces the Border placement method. In Section 5.2.4, we compare

the three constant-time placement methods and evaluate the variants to determine which should

be used with the constant-time placement methods throughout the remainder of this chapter and

dissertation.

5.2.1 Random Placement Method

In Chapter 4 we randomly placed k influencing agents within FApreset. Hence, we also use random

placement as a baseline method in this chapter. Specifically, the Random placement method ran-

domly places the k influencing agents within FApreset under the preset variant and within FAscaled

under the scaled variant.

5.2.2 Grid Placement Method

TheGrid placement method places k influencing agents at predefined, well-spaced, gridded positions

within FApreset under the preset variant and within FAscaled under the scaled variant. Grids are

available that can fit at most x influencing agents, where the smallest grid in which k ≤ x is used.

Grids are available in which x ∈ {1, 2, 4, 9, 16, 25, 36, . . .}. For each grid size, agents are allocated

to the possible positions randomly. Examples of the Grid placement method for various values of

k can be seen in Figure 5.1.

5.2.3 Border Placement Method

The Border placement method places k influencing agents as evenly as possible along the borders

of FApreset under the preset variant and along the borders of FAscaled under the scaled variant.

The Border placement method places influencing agents on all four sides of the flock until all k

influencing agents are placed. At most ⌈k4⌉ influencing agents are placed on any particular side

of the flock. If more than one influencing agent is placed on a particular side of the flock, the

66

(a) Grid Preset (b) Grid Scaled

Figure 5.1: Images of influencing agent placement using the Grid placement method with preset
variant (a) and scaled variant (b). The dark border shows FApreset in (a) and FAscaled in (b). m = 10
and k = 6 in both examples. The orange agents are influencing agents while the black agents are
flocking agents.

influencing agents spread out as much as possible on that side of the flock. Examples of the Border

placement method for various values of k can be seen in Figure 5.2.

(a) Border Preset (b) Border Scaled

Figure 5.2: Images of influencing agent placement using the Border placement method with preset
variant (a) and scaled variant (b). The dark border shows FApreset in (a) and FAscaled in (b). m = 10
and k = 6 in both examples. The orange agents are influencing agents while the black agents are
flocking agents.

5.2.4 Experimental Results

In this section we present experiments that compare the performance of the three constant-time

placement methods as well as the preset and scaled variants for these constant-time placement

67

methods. The variant that performs best will be utilized with the constant-time placement methods

throughout the remainder of this chapter and dissertation.

Comparing Preset and Scaled Variants

In this section, we compare the two variants in Figures 5.3 and 5.4. Specifically, we compare

Random Preset to Random Scaled, Grid Preset to Grid Scaled, and Border Preset to Border Scaled.

Figure 5.3 shows data for a flock with m = 10 flocking agents while Figure 5.4 shows data

for a flock with m = 50 flocking agents. Figures 5.3(a,c,e) and 5.4(a,c,e) show the average number

of flocking agents lost and Figures 5.3(b,d,f) and 5.4(b,d,f) shows the total number of trials in

which at least one flocking agent is lost. k = 2 to k = 10 influencing agents are added to the flock

in both figures.

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Random Preset
Random Scaled

(a) Average Lost – Random

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch
 a
 F
lo
ck
in
g
Ag

en
t i
s
Lo
st

Random Preset
Random Scaled

(b) Number Lost – Random

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Grid Preset
Grid Scaled

(c) Average Lost – Grid

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch
 a
 F
lo
ck
in
g
Ag

en
t i
s
Lo
st

Grid Preset
Grid Scaled

(d) Number Lost – Grid

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Border Preset
Border Scaled

(e) Average Lost – Border

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch
 a
 F
lo
ck
in
g
Ag

en
t i
s
Lo
st

Border Preset
Border Scaled

(f) Number Lost – Border

Figure 5.3: Comparison of preset and scaled variants for the constant-time placement methods when
the flock is comprised of 10 flocking agents (m = 10). Graphs (a,c,e) compare the average number
of flocking agents lost while graphs (b,d,f) compare the number of trials in which any flocking
agents are lost. These graphs show results averaged over 100 trials, where the error bars depict the
standard error of the mean.

A few interesting trends arise in Figures 5.3 and 5.4. First, across the constant-time place-

68

ment methods the difference between the scaled and preset variants is generally not significant —

and when the difference is significant, the scaled variant almost always loses fewer flocking agents

on average than the preset variant. One notable outlier is shown in Figures 5.3(e) and 5.4(e). In

these figures, Border Scaled lost more flocking agents on average than its preset counterpart for

multiple values of k — but the difference was only significant for k = 2 in the m = 50 experiments.

Second, in terms of the number of trials in which no flocking agents are lost, Figures 5.3(b,d,f) and

5.4(b,d,f) show that the scaled variants generally have more trials in which no flocking agents are

lost than the preset variants. However, there are a few outliers such as k = 8 in the m = 10 border

case and k = 2 in the m = 50 border case.

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Random Preset
Random Scaled

(a) Average Lost – Random

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch
 a
 F
lo
ck
in
g
Ag

en
t i
s
Lo
st

Random Preset
Random Scaled

(b) Number Lost – Random

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Grid Preset
Grid Scaled

(c) Average Lost – Grid

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch
 a
 F
lo
ck
in
g
Ag

en
t i
s
Lo
st

Grid Preset
Grid Scaled

(d) Number Lost – Grid

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

12

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Border Preset
Border Scaled

(e) Average Lost – Border

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch
 a
 F
lo
ck
in
g
Ag

en
t i
s
Lo
st

Border Preset
Border Scaled

(f) Number Lost – Border

Figure 5.4: Comparison of preset and scaled variants for the constant-time placement methods when
the flock is comprised of 50 flocking agents (m = 50). Graphs (a,c,e) compare the average number
of flocking agents lost while graphs (b,d,f) compare the number of trials in which any flocking
agents are lost. These graphs show results averaged over 100 trials, where the error bars depict the
standard error of the mean.

Although the difference between the scaled and preset variants is not significant in most

cases — in the cases where the difference is significant, the scaled variant almost always performs

better. As such, we will utilize the scaled variant of each of these constant-time placement methods

69

throughout the remainder of this chapter and dissertation. From here forward, each of these

methods will be referred to by their shortened names. For example, “Grid placement method” will

be written instead of “Grid Scaled placement method.”

Comparing the Constant-time Placement Methods

In this section, we compare the three constant-time placement methods in Figure 5.5. Before

conducting any experiments, we expected that the Grid and Border placement methods would

perform significantly better than the Random placement method. Figures 5.5(a,c) show the average

number of flocking agents lost and Figures 5.5(b,d) show the total number of trials in which at

least one flocking agent is lost.

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Random
Grid
Border

(a) Average Lost (m = 10)

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch
 a
 F
lo
ck
in
g
Ag

en
t i
s
Lo
st

Random
Grid
Border

(b) Number Lost (m = 10)

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

12

14

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Random
Grid
Border

(c) Average Lost (m = 50)

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

10

20

30

40

50

60

70

80

Tr
ia

ls
 in

 w
hi

ch
 a

 F
lo

ck
in

g
Ag

en
t i

s
Lo

st

Random
Grid
Border

(d) Number Lost (m = 50)

Figure 5.5: Comparison of the three constant-time placement methods when k ranges from 2 to 10.
These graphs show results averaged over 100 trials, where the error bars depict the standard error
of the mean.

70

As can be seen in Figure 5.5(a), the three methods all lose about the same number of flocking

agents on average when k = 2 andm = 10. In Figure 5.5(c), the Border placement method performs

worse than the Random placement method — likely because a “border” cannot be effectively

constructed when k = 2. However, when k > 2, the Grid placement method and Border placement

method both perform significantly better than the Random placement method for m = 10 and

m = 50. Additionally, when k = 10 the Border placement method performs significantly better

than the Grid placement method. The Border placement method likely performs best when k = 10

because the two or three influencing agents spread along each border are effectively able to corral

any “escaping” flocking agents. Finally, note that the Grid placement method performs better

when k = 8 than when k = 10. Generally, we would expect additional influencing agents to

improve performance. However, the jump from a 9-agent grid when k = 8 to a 16-agent grid when

k = 10 leads to the influencing agents being unevenly spaced under the Grid placement approach

when k = 10.

5.3 Graph Placement Method

The previous section described various constant-time placement methods. These methods, however,

did not consider the positions of each flocking agent when deciding where to place the influencing

agents. In this section, we introduce the Graph placement method which places influencing agents

where they can influence as many flocking agents as possible.

Specifically, the Graph placement method considers many possible k-sized sets of positions

in which the k influencing agents could be placed, and then evaluates how well each of these sets

connects the m flocking agents with the k influencing agents. The set that best connects the m

flocking agents with the k influencing agents is chosen. In this section, we describe the Graph

placement method in detail.

5.3.1 Creating the Graph

All {ak, . . . , aN−1} flocking agents are added to an initially empty graph G as nodes. Then, for each

agent ai ∈ {ak, . . . , aN−1}, an undirected edge is added to G between ai and each of its neighbors

71

ab ∈ ni(t) if such an edge does not already exist.

5.3.2 Calculating Sets of Influencing Agent Positions

Next the Graph placement method considers the positions at which it might add influencing agents.

Recall from Section 2.1.1 that r denotes the visibility radius of each agent ai’s neighborhood. As

indicated in Table 5.1, we assume r = 10 in this chapter. For ai, aj ∈ {ak, . . . , aN−1}, the graph

placement method considers adding an influencing agent at the mid-point (
xi(t)+xj (t)

2 ,
yi(t)+yj(t)

2)

between pi(t) and pj(t) only if pi(t) and pj(t) are within 2r of each other. This midpoint would

allow the agent to influence both ai and aj . The graph placement method also considers adding an

influencing agent at (xi(t) + 0.1, yi(t) + 0.1) for ai ∈ {ak, . . . , aN−1}. Note that 0.1 was arbitrarily

chosen, but any offset substantially smaller than r would work. This point would allow the agent

to at least influence ai. Our intention was to place the influencing agent exactly in the same place

as ai, but because our environment does not allow two agents to be initially placed in the exact

same positions, we instead offset the influencing agent slightly. In cases where no or few flocking

agents are within 2r of each other, placing influencing agents close to a flocking agent guaranteed

that at least one flocking agent would be influenced by each influencing agent.

Once the graph placement method has gathered all of the positions at which it might add

influencing agents, it forms all possible k-sized sets of these positions.

5.3.3 Evaluating Sets of Influencing Agent Positions

Finally, the graph placement method takes all of the possible k-sized sets and individually considers

each set S of k influencing agent positions. In order to do this, it does the following for each S:

• Add each influencing agent ai ∈ S to G

• For each agent ai ∈ S, an edge is added to G between ai and each of its neighbors ab ∈ ni(t)

• Run the Floyd Warshall shortest paths algorithm on G to obtain the following:

– numNoConn: the number of flocking agents not connected to an influencing agent

(directly or indirectly)

72

– numConn: the number of connections between flocking agents and influencing agents

(directly or indirectly)

– numDirectConn: the number of direct connections between flocking agents and influ-

encing agents

– numNoDirectConn: the number of flocking agents not directly connected to an influ-

encing agent

• Remove each influencing agent ai ∈ S from G

Once all possible k-sized sets T have been individually considered, the graph placement

method selects a set based on the information it obtained. Specifically, it compares in order

(lexicographically): (1) minimal numNoConn, (2) maximal numConn, (3) maximal numDi-

rectConn, and (4) minimal numNoDirectConn. If only one set matches the description at a

level, then it is selected. Otherwise, all of the sets that matched the description at that level are

considered at the next level. If multiple sets remain after the final level, one of the remaining sets

is chosen randomly.

In practice, we find that a set is usually selected using the first criterion. We have witnessed

a few cases in which the fourth criterion has been used, but we have never witnessed a case in

which the final criterion of selecting a remaining set randomly has been utilized. Nonetheless, we

include it for completeness.

The entire process of selecting placements for k influencing agents, given current placements

of m flocking agents, has an algorithmic complexity of O(n3
(

m2+m
k

)

).

The Graph Placement Approach can be considered as an instance of the geometric set cover

problem. The geometric set cover problem is a special case of the set cover problem in geometric

settings. The geometric set cover problem takes in a range space σ = (X,R) where X is a universe

of points and R is a family of subsets of X called ranges. Ranges are defined by the intersection of

X and geometric shapes. The goal is to select a minimum-size subset C ⊆ R of ranges such that

every point in the universe X is covered by some range in C. The geometric set cover problem is

NP-complete.

73

Under the Graph Placement Approach, we first define possible influencing agent positions

and then we choose k positions at which to place an influencing agent. Using the geometric set

cover terminology from the previous paragraph, we describe concretely how the Graph Placement

Approach is an instance of the geometric set cover problem. X contains all flocking agent positions,

while R is comprised of ranges defined by the indirect influence area of each possible influencing

agent position. Specifically, each range is defined as the neighborhoods of the flocking agents

directly or indirectly influenced by a possible influencing agent position. We choose at most k

ranges in R that best cover the set X of flocking agent positions and then place influencing agents

at the influencing agent positions associated with the chosen ranges. This process of choosing at

most k influencing agent positions is NP-hard.

There are approximation algorithms for geometric set cover that are polynomial and even

near linear time [1, 16]. Approximation is best when R is defined by simple geometric shapes,

whereas the geometric shapes defined for the Graph Placement Approach are more complex.

As can be seen in Figure 5.6, our graph placement method places influencing agents such

that minimal flocking agents remain uninfluenced. By minimizing the number of flocking agents

that are not connected to an influencing agent, our hypothesis was that the Graph placement

method will be effective at decreasing both the number of lost of flocking agents as well as the

number of trials in which any flocking agents are lost.

(a) k = 2, m = 8 (b) k = 4, m = 6 (c) k = 2, m = 18 (d) k = 4, m = 16

Figure 5.6: Images of influencing agent placement using the Graph placement method. The orange
agents are influencing agents while the black agents are flocking agents.

74

5.3.4 Experimental Results

In this section, we compare the Graph placement method to the three constant-time placement

methods from Section 5.2 in Figure 5.7. Our hypothesis before running any experiments was that

the Graph placement method would perform significantly better than the constant-time placement

methods for all values of k tested. Figure 5.7(a) shows the average number of flocking agents lost

and Figure 5.7(b) shows the total number of trials in which at least one flocking agent is lost.

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Random
Grid
Border
Graph

(a) Average Lost

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch
 a
 F
lo
ck
in
g
Ag

en
t i
s
Lo
st

Random
Grid
Border
Graph

(b) Number Lost

Figure 5.7: Comparison of the three constant-time placement methods to the Graph placement
method when m = 10 and k ranges from 2 to 10. These graphs show results averaged over 100
trials, where the error bars depict the standard error of the mean.

As can be seen in Figure 5.7, the Graph placement method performs significantly better

than all three constant-time placement methods for all values of k shown. For k = 10, where there

are as many influencing agents as flocking agents, the Graph placement method does not lose any

flocking agents across the 100 trials. This is as expected, since the Graph placement method assigns

at least one influencing agent to be located within the neighborhood of each flocking agent when

k >= m.

Note that we were only able to feasibly run complete experiments using m = 10 flocking

agents due to the O(n3
(

m2+m
k

)

) computational complexity of the Graph placement method. As

the O(n3
(

m2+m
k

)

) computational complexity implies, the computation time grows substantially as

both the flock size (n = k +m) and the number of flocking agents (m) increases. As discussed in

75

Section 5.3.3, the Graph Placement Approach can be considered as an instance of the NP-complete

geometric set cover problem. As such, in the remaining sections of this chapter we consider quicker

heuristic placement methods.

5.4 Hybrid Placement Methods

The Graph placement method described in Section 5.3 performed significantly better than the

constant-time placement methods described in Section 5.2. However, the Graph placement method

is not widely and generally useful because the O(n3
(

m2+m
k

)

) computational complexity limits the

sizes of the flocks in which it can be applied.

With this computational complexity issue in mind, in this section we consider hybrid meth-

ods that utilize the Graph placement method to pick the first kg influencing agent positions and

then assign the remaining k − kg positions based on more computationally efficient methods. The

remaining k − kg positions are randomly chosen from the possible k placements of the more com-

putationally efficient method. In this section, we use the three constant-time placement methods

described in Section 5.2 as the computationally efficient methods.

5.4.1 Experimental Results

In this section’s experiments, we compare multiple values of kg as well as multiple placement meth-

ods to assign the k−kg placements not assigned by the Graph placement method. Throughout our

experiments, the constant-time placement method is either the Random placement method from

Section 5.2.1, the Grid placement method from Section 5.2.2, or the Border placement method

from Section 5.2.3. The Constant-time/Graph (2 Graph) hybrid placement method places two

influencing agents according to the Graph placement method and then places any remaining influ-

encing agents based on the constant-time placement method. Likewise, the Constant-time/Graph (4

Graph) hybrid placement method places four influencing agents according to the Graph placement

method and then places any remaining influencing agents based on the constant-time placement

method. Results from these experiments are shown in Figure 5.8.

Figures 5.8(a,c,e) show the average number of flocking agents lost when initially placing

76

influencing agents according to the constant-time, Graph, and hybrid placement methods. Likewise,

Figures 5.8(b,d,f) show the number of trials in which at least one flocking agent was lost. Before

running any experiments, we expected that the Graph placement approach would perform best,

the Constant-time/Graph (4 Graph) hybrid placement method would perform second best, the

Constant-time/Graph (2 Graph) hybrid placement method would perform third best, and the

constant-time placement method would perform worst.

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

0

1

2

3

4

5

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Random
Random/Graph (2 Graph)
Random/Graph (4 Graph)
Graph

(a) Average Lost – Random

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

0

20

40

60

80

100

Tr
ia

ls
 in

 w
hi

ch
 a

 F
lo

ck
in

g
Ag

en
t i

s
Lo

st

Random
Random/Graph (2 Graph)
Random/Graph (4 Graph)
Graph

(b) Number Lost – Random

2 4 6 8
Num Robots

0

1

2

3

4

5

Av
g
Nu

m
 B
ird

s
Lo
st

Grid
Grid/Graph (2 Graph)
Grid/Graph (4 Graph)
Graph

(c) Average Lost – Grid

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

0

20

40

60

80

100

Tr
ia
ls
 in
 w
hi
ch
 a
 F
lo
ck
in
g
Ag
en
t i
s
Lo
st

Grid
Grid/Graph (2 Graph)
Grid/Graph (4 Graph)
Graph

(d) Number Lost – Grid

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

0

1

2

3

4

5

6

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Border
Border/Graph (2 Graph)
Border/Graph (4 Graph)
Graph

(e) Average Lost – Border

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

0

20

40

60

80

100

Tr
ia

ls
 in

 w
hi

ch
 a

 F
lo

ck
in

g
Ag

en
t i

s
Lo

st

Border
Border/Graph (2 Graph)
Border/Graph (4 Graph)
Graph

(f) Number Lost – Border

Figure 5.8: Results for the hybrid method experiments when m = 10. These graphs compare (a,c,e)
the average number of flocking agents lost and (b,d,f) the number of trials in which any flocking
agents are lost. These graphs show results averaged over 100 trials, where the error bars depict the
standard error of the mean.

We strive to minimize both the average number of flocking agents lost and the number of

trials in which any flocking agents are lost. The results in Figure 5.8 generally appear as we would

expect, but there are a few surprising results. Specifically, Figures 5.8(c,d,e,f) show that for k = 8

and = 10 both the Grid and Border placement methods lose fewer influencing agents on average

— and have fewer trials in which a flocking agent is lost — than the hybrid method that places

two influencing agents based upon the Graph placement method. This unexpected performance

77

could be because the hybrid placement method may cover some areas twice while leaving other

areas open that would be covered by the Grid and Border placement methods. This hypothesis

is supported by the fact that the Random placement graph in Figure 5.8(b) shows that for all k

values, the Random placement method loses at least one flocking agent in more trials than the

hybrid placement methods.

For all of the graphs in Figure 5.8, for k = 2 the results for all of the placement methods

except the Random placement method are the same — this is expected because both hybrid place-

ment methods use the Graph placement method for both influencing agent placements. Likewise,

for k = 4, the results of the Graph placement method and the Constant-time/Graph (4 Graph)

method should be the same since both methods use the Graph placement method for all four

influencing agent placements.

Finally, although the computation complexity is better for the hybrid placement method

(O(n3
(

m2+m
kg

)

)) than for the Graph placement method (O(n3
(

m2+m
k

)

)), the complexity is still dom-

inated by the general flock size. We present run-time comparisons across the various placement

methods in Section 5.7.

5.5 Two-Step Placement Method

The Graph placement method described in Section 5.3 is too computationally intensive to scale to

larger flocks and the constant-time placement methods from Section 5.2 are ineffective because the

placements were not strongly correlated with the flock’s current configuration (henceforth referred

to as “flock-aware”). Section 5.4 described a hybrid method for placing influencing agents in a

manner that is partially flock-aware and more computationally efficient — but this method was

still too computationally intensive. In this section, we present a different method that is partially

flock-aware but more computationally efficient.

Specifically, in this section we introduce a two-step method for determining where to initially

place influencing agents in a flock. Section 5.5.1 describes Step 1, which is to define a set S of

potential influencing agent positions. Section 5.5.2 presents Step 2, which is to select S′ ⊆ S,

where S′ contains the k positions at which the influencing agents will be initially placed.

78

5.5.1 Step 1: Selecting Set S of Possible Influencing Agent Positions

In principle, influencing agents could be placed anywhere. In order to reduce the search space,

in this section we define two low complexity methods for defining a set S with many possible

influencing agent positions. An example set S for each of these two methods is shown in Figure

5.9.

(a) Grid Set (b) Border Set

Figure 5.9: Example sets of S, where the orange agents are positions in S that could be occupied
by the influencing agents. The black agents are flocking agents.

Grid Set

The Grid Set method defines a set of gridded positions. Using a small grid reduces the number

of positions that Step 2 must consider, while using a larger grid increases the likelihood that each

flocking agent will have a potential influencing agent position within its neighborhood. In our

experiments, the area in which the flocking agents begin is at most 60 by 60 and the neighborhood

radius r is 10 for each agent — due to this, we use a 6 by 6 grid to define 36 potential influencing

agent positions. See Figure 5.9(a) for a set of positions defined by the Grid Set method.

Border Set

The Border Set method defines positions along the boundaries of the area in which the flocking

agents begin. The number of positions is a trade-off between the better runtime obtained by limiting

the number of positions and the better performance obtained when the influencing agents can be

79

placed in more effective positions. To maintain consistently with the 36 positions used by the Grid

Set method, we also use 36 positions for the Border Set method. As such, nine potential influencing

agent positions are spread evenly along each border. See Figure 5.9(b) for a set of positions defined

by the Border Set method.

5.5.2 Step 2: Selecting Set S ′ ⊆ S of k Influencing Agent Positions

Section 5.5.1 described Step 1 of our two-step method for determining how to initially place influ-

encing agents into a flock. In this section, we introduce Step 2. Step 2 selects S′ ⊆ S, where S′

contains the k positions at which the k influencing agents will be initially placed. We introduce

four methods for selecting S′ ⊆ S.

Random

Random randomly selects k positions from S to be in S′. Random is included as a baseline since the

influencing agents were randomly placed into the Grid placement positions and Border placement

positions in Section 5.2. It is not a completely fair comparison though, since the potential positions

in Section 5.2 were closely matched to the number of influencing agents that were being placed

whereas in this section we utilize larger sets of Grid Set and Border Set potential positions.

OneNeighbor

Influencing agents are able to influence flocking agents within their neighborhood. Hence, the

simplest flock-aware method for selecting S′ given S would be to select influencing agent positions

at which the influencing agent has at least one flocking agent as a neighbor. In this section we

explain the OneNeighbor position selection method that does just this.

Algorithm 8 presents the OneNeighbor method. OneNeighbor takes in S, a list of current

flocking agent positions (flock), and the desired number of influencing agent placements (k’). The

algorithm returns a list containing the k’ selected initial influencing agent positions.

In all of the algorithms introduced in this chapter, we use consistent notation and termi-

nology. Throughout the following explanation of notation, assume list is a list, item is an object,

and list2 is another list. list.add(item) adds item to the end of list. list.size() returns the number

80

of objects stored in list. list.removeRandom() removes a randomly chosen item from list while

list.addRandom(list2) adds a randomly chosen item from list2 to list. The function areNeigh-

bors(x,y) takes in two positions, calculates whether agents located at these positions would be

neighbors, and returns true or false.

Algorithm 8 OneNeighbor(S,flock,k’)

1: positionsNoNeighbors ← {}
2: positionsWithNeighbors ← {}
3: for influencingPosition ∈ S do

4: numNeighbors ← 0
5: for flockingPosition ∈ flock do

6: if areNeighbors(influencingPosition, flockingPosition) then
7: numNeighbors++
8: if numNeighbors > 0 then

9: positionsWithNeighbors.add(influencingPosition)
10: else

11: positionsNoNeighbors.add(influencingPosition)
12: if k’ == positionsWithNeighbors.size() then
13: return positionsWithNeighbors
14: else if positionsWithNeighbors.size > k’ then
15: while positionsWithNeighbors.size > k’ do
16: positionsWithNeighbors.removeRandom()
17: end while

18: return positionsWithNeighbors
19: else

20: while positionsWithNeighbors.size < k’ do
21: positionsWithNeighbors.addRandom(positionsNoNeighbors)
22: end while

23: return positionsWithNeighbors

At a high level, OneNeighbor begins by calculating the number of flocking agent neighbors

each influencing agent would have if placed at each position in S (lines 5–7). Then, k randomly

chosen positions that have at least one neighbor are added to S′ (lines 12–18). If there are not

k positions with at least one neighbor, then some positions with no neighbors are also chosen

randomly to be added to S′ (lines 19–23). Once S′ has k positions, S′ is returned.

With this high-level overview in mind, let us walk through Algorithm 8. Lines 3–11 consider

each potential initial influencing agent position one by one. For each position, numNeighbors counts

the number of flocking agents that could be influenced by an influencing agent at this position.

If numNeighbors is 0 — meaning an influencing agent placed at this position would influence no

81

flocking agents — then this possible position is added to the positionsWithNoNeighbors list (line

11). Otherwise, if numNeighbors is greater than 0 — meaning an influencing agent placed at this

position would influence at least one flocking agent — then this possible position is added to the

positionsWithNeighbors list (line 9). Lines 12–13 consider the case where the number of desired

placements (k’) is equal to the number of influencing agent positions that would influence at least

one flocking agent. In this case, positionsWithNeighbors is returned. Lines 14–17 consider the case

where there are more influencing agent positions that would influence at least one flocking agent

than desired placements. In this case, potential placements are randomly removed and discarded

from positionsWithNeighbors until positionsWithNeighbors.size() is equal to the number of desired

placements (k’). At this point, positionsWithNeighbors is returned. Lines 18–21 consider the final

case in which the number of desired placements is less than the number of influencing agent posi-

tions that would influence at least one flocking agent. In this case, placements are randomly drawn

from positionsWithNoNeighbors and added to positionsWithNeighbors until positionsWithNeigh-

bors.size() is equal to the number of desired placements (k’). At this point, positionsWithNeighbors

is returned.

Line 3 executes |S| times (in our experiments, 36 times since S has 36 potential influencing

agent positions) and line 5 executes m times. Hence, the algorithmic complexity of Algorithm 8 is

O(|S|m).

MaxNeighbors

The OneNeighbor algorithm presented in the previous section calculated the number of flocking

agents an influencing agent at each potential influencing position could influence, but only consid-

ered whether these values were 0 or greater than zero. The MaxNeighbors method presented in this

section considers the number of flocking agents each influencing agent could influence and chooses

the k’ influencing agent positions that have the most flocking agents as neighbors.

Algorithm 9 introduces the MaxNeighbors method. MaxNeighbors takes in the same param-

eters and returns the same type of information as Algorithm 8.

Most of the notation used in Algorithm 9 was introduced for Algorithm 8. However, we do

need to introduce a few new notations for Algorithm 9. Throughout the following explanation of

82

notation, assume list is a list, item is an object, index is an integer, and index2 is a different integer

great than or equal to index. list.get(index) returns the item at the position in the list represented

by index, assuming 0-indexing. random(index,index2) returns a random integer greater than or

equal to index but less than index2. list.remove(index) removes the item at the position in the list

represented by index, assuming 0-indexing.

Algorithm 9 MaxNeighbors(S,flock,k’)

1: chosenPositions ← {}
2: numbers ← ()
3: for influencingPosition ∈ S do

4: numNeighbors ← 0
5: for flockingPosition ∈ flock do

6: if areNeighbors(influencingPosition, flockingPosition) then
7: numNeighbors++
8: numbers.add(numNeighbors)
9: for all k’ do

10: maxNeighbors ← 0
11: maxIndex ← 0
12: for index = 0 to index = numbers.size() do
13: if numbers.get(index) ≥ maxNeighbors then
14: maxNeighbors ← numbers.get(index)
15: maxIndex ← index
16: if maxNeighbors == 0 then

17: maxNeighIndex ← random(0,S.size())
18: chosenPositions.add(S.get(maxIndex));
19: numbers.remove(maxIndex);
20: S.remove(maxIndex);
21: return chosenPositions

At a high level, MaxNeighbors first calculates the number of flocking agent neighbors an

influencing agent would have if placed at each position in S. Then, the k positions in S with

the most neighbors are added to S′ and S′ is returned. With this in mind, let us walk through

Algorithm 9. Lines 3–8 consider each potential initial influencing agent position one by one. For

each position, numNeighbors counts the number of flocking agents that could be influenced by

an influencing agent at this position. numNeighbors is saved for each potential influencing agent

position in numbers. Lines 9–20 pick the k’ influencing agent positions that have the most flocking

agent neighbors. On each iteration, lines 10–15 find the maximum value in numbers as well as the

index in numbers for this value. Lines 16–17 consider that case where no remaining positions in

83

S have any neighbors — in this unlikely case, an index for numbers is chosen randomly. Finally,

lines 18–20 add the chosen position to chosenPositions, remove the chosen index from numbers,

and remove the chosen position from S. Removing the chosen index from numbers and the chosen

position from S allows for the influencing agent position with the next most neighbors to be chosen

on the next iteration.

Line 3 executes |S| times (in our experiments, 36 times since S has 36 potential influencing

agent positions) and line 5 executes m times. Hence, the algorithmic complexity of Algorithm 9 is

O(|S|m).

MinUninfluenced

OneNeighbor and MaxNeighbors do not consider whether a flocking agent near a potential influenc-

ing position is already being influenced by another influencing agent. MinUninfluenced addresses

this shortcoming by selecting potential influencing agent positions that minimize the number of

flocking agents that are “uninfluenced” — or in other words, the number of flocking agents that do

not have at least one influencing agent as a neighbor.

Algorithm 10 presents the MinUninfluenced method. MinUninfluenced takes in the same

parameters as Algorithms 8 and 9. It returns a list containing the k′ initial influencing agent

positions selected by the MinUninfluenced method.

Most of the notation used in Algorithm 10 was introduced for Algorithm 8 or 9. However, we

do need to introduce a few new notations for Algorithm 10. list.clone() returns a deep-copy of list.

The function calculateUninf(flock,positions) takes in flock and a set of possible influencing agent

positions, and then returns the number of uninfluenced flocking agents given the input positions.

Likewise, the function calculateNeigh(flock,positions) takes in flock and a set of possible influencing

agent positions, and then returns the total number of flocking agent neighbors across all influencing

agents given the input positions.

MinUninfluenced is a hill climbing algorithm with random restarts. MinUninfluenced begins

by randomly choosing a set S′ of k positions from S (line 5). Then, the algorithm continues as

long as an “improvement” is found (lines 15–41). An “improvement” is when substituting any

one position in S′ with a position from S that is not currently in S′ will result in either (1) fewer

84

Algorithm 10 MinUninfluenced(S,flock,k’)

1: noImprovement, uninf, neigh ← 0
2: chosenPositions ← ()
3: init ← true
4: while noImprovement < 2 do

5: chosen ← k’ randomly chosen positions from S

6: unchosen ← all positions in S not in chosen
7: chosenUninf ← calculateUninf(flock,chosen)
8: chosenNeigh ← calculateNeigh(flock,chosen)
9: if init then

10: init ← false
11: chosenPositions ← chosen
12: uninf ← chosenUninf
13: neigh ← chosenNeigh
14: improve ← true
15: while improve do

16: improve ← false
17: chosenCount ← 0
18: while chosenCount < chosen.size() and not improve do

19: chosenToRemove ← chosen.get(chosenCount)
20: chosenClone ← chosen.clone()
21: chosenClone.remove(chosenToRemove)
22: unchosenCount ← 0
23: while unchosenCount < unchosen.size() and not improve do

24: unchosenToAdd ← unchosen.get(unchosenCount)
25: chosenClone.add(unchosenToAdd)
26: posUninf ← calculateUninf(flock,chosenClone)
27: posNeigh ← calculateNeigh(flock,chosenClone)
28: if posUninf < chosenUninf or (posUninf == chosenUninf and posNeigh > chosenNeigh) then
29: improve ← true
30: unchosen.remove(unchosenToAdd)
31: unchosen.add(chosenToRemove)
32: chosen ← chosenClone
33: chosenUninf ← posUninf
34: chosenNeigh ← posNeigh
35: else

36: chosenClone.remove(unchosenToAdd)
37: unchosenCount++
38: end while

39: chosenCount++
40: end while

41: end while

42: if chosenUninf < uninf or (chosenUninf == uninf and chosenNeigh > neigh) then
43: noImprovement ← 0
44: uninf ← chosenUninf
45: neigh ← chosenNeigh
46: chosenPositions ← chosen
47: else

48: noImprovement++
49: end while

50: return chosenPositions

85

uninfluenced flocking agents or (2) the same number of uninfluenced flocking agents but a greater

sum of flocking agent neighbors across all influencing agents (line 28). If an improvement is found,

then we substitute this influencing agent position (lines 29–34). Once no additional “improvements”

can be made, S′ is compared to the previous best S′ (line 42). If S′ has either (1) fewer uninfluenced

flocking agents or (2) the same number of uninfluenced flocking agents but a greater sum of flocking

agent neighbors across all influencing agents, then S′ is saved as the new best S′ (lines 42–46). This

entire process is repeated until two sequential random restarts have failed to produce a better S′.

At this point, the best S′ is returned (line 50).

MinUninfluenced finds a locally optimal solution. In principle, it is possible to compute

the global optimum by evaluating all subsets of cardinality k. However, evaluating all subsets of

cardinality k becomes too computationally complex for greater values of k. As such, we instead

utilize the locally optimal hill climbing method with random restarts presented in this section.

5.5.3 Experimental Results

Sections 5.5.1 and 5.5.2 define a two-step method for determining where to initially place influencing

agents into a flock. Figures 5.10 and 5.11 show the average number of flocking agents lost (a,b) and

the total number of trials in which any flocking agents are lost (c,d) when Grid Set (Figure 5.10)

and Border Set (Figure 5.11) are used to select S and various methods from Section 5.5.2 are used

to select S′.

Figure 5.10 shows results for using Grid Set to select S. For both m = 10 and m = 50, using

MinUninfluenced to select S′ loses fewer flocking agents than any other method. For all values of

k in Figure 5.10(a) and for k = 4 and k = 10 in Figure 5.10(b), using MinUninfluenced to select S′

loses significantly fewer flocking agents than the other methods shown. MinUninfluenced performs

significantly better because it places a priority on selecting positions that influence flocking agents

that are otherwise uninfluenced. Using OneNeighbor to select S′ does significantly better than

Random and MaxNeighbors for k > 4 when m = 10 and for k > 6 when m = 50. OneNeighbor

performs significantly better because it spreads out influencing agents while MaxNeighbors gathers

influencing agents in areas with multiple flocking agents.

Figure 5.11 presents results for using Border Set to select S. Using MinUninfluenced to

86

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Random
OneNeighbor
MaxNeighbors
MinUninfluenced

(a) Average Lost (m = 10)

k=2
m=50

k=4
m=50

k=6
m=50

k=8
m=50

k=10
m=50

0

2

4

6

8

10

Av
g
Nu

m
 F
lo
ck

in
g
Ag

en
ts
 L
os

t

Random
OneNeighbor
MaxNeighbors
MinUninfluenced

(b) Average Lost (m = 50)

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch

 a
 F
lo
ck

in
g
Ag

en
t i
s
Lo

st

Random
OneNeighbor
MaxNeighbors
MinUninfluenced

(c) Number Lost (m = 10)

k=2
m=50

k=4
m=50

k=6
m=50

k=8
m=50

k=10
m=50

0

20

40

60

80

100

Tr
ia

ls
 in

 w
hi

ch
 a

 F
lo

ck
in

g
Ag

en
t i

s
Lo

st

Random
OneNeighbor
MaxNeighbors
MinUninfluenced

(d) Number Lost (m = 50)

Figure 5.10: Results for when Grid Set is used to select S and four methods are used to select S′.
These graphs compare (a,b) the average number of flocking agents lost and (c,d) the number of
trials in which any flocking agents are lost. These graphs show results averaged over 100 trials,
where the error bars depict the standard error of the mean.

select S′ loses significantly fewer flocking agents on average than the other methods in most cases

— specifically for k < 10 when m = 10 and for k > 4 when m = 50. MinUninfluenced generally

performs well because it places influencing agents along the flock border in positions where the

flocking agents would not be otherwise influenced. Placing influencing agents along the flock border

near flocking agents allows these influencing agents to “save” these flocking agents from leaving the

flock and becoming “lost.” Figure 5.11(a) shows that using MaxNeighbors to select S′ performs

significantly worse than OneNeighbor and MinUninfluenced. MaxNeighbors performs significantly

worse because it clusters influencing agents near groups of flocking agents, while the other methods

87

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Random
OneNeighbor
MaxNeighbors
MinUninfluenced

(a) Average Lost (m = 10)

k=2
m=50

k=4
m=50

k=6
m=50

k=8
m=50

k=10
m=50

0

2

4

6

8

10

12

Av
g
Nu

m
 F
lo
ck

in
g
Ag

en
ts
 L
os

t

Random
OneNeighbor
MaxNeighbors
MinUninfluenced

(b) Average Lost (m = 50)

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Tr
ia
ls
 in

 w
hi
ch

 a
 F
lo
ck

in
g
Ag

en
t i
s
Lo

st

Random
OneNeighbor
MaxNeighbors
MinUninfluenced

(c) Number Lost (m = 10)

k=2
m=50

k=4
m=50

k=6
m=50

k=8
m=50

k=10
m=50

0

20

40

60

80

100

Tr
ia

ls
 in

 w
hi

ch
 a

 F
lo

ck
in

g
Ag

en
t i

s
Lo

st

Random
OneNeighbor
MaxNeighbors
MinUninfluenced

(d) Number Lost (m = 50)

Figure 5.11: Results for when Border Set is used to select S and four methods are used to select
S′. These graphs compare (a,b) the average number of flocking agents lost and (c,d) the number
of trials in which any flocking agents are lost. These graphs show results averaged over 100 trials,
where the error bars depict the standard error of the mean.

result in more balanced placements.

5.6 Clustering Placement Methods

The methods presented in Section 5.5 define sets of possible influencing agent positions and then

use flock-aware methods to select k positions from these sets. In this section, we use a completely

different approach to select initial influencing agent positions from which influencing agents can

effectively influence the flock. Specifically, we use three well-recognized clustering methods to iden-

tify k clusters of flocking agent positions — Farthest First is described in Section 5.6.1, Expectation

88

Maximization (EM) is described in Section 5.6.2, and K-Means is described in Section 5.6.3. Once

the clusters are identified, we place an influencing agent within each of the k clusters.

Our hypothesis was that using well-recognized clustering methods to identify clusters of

flocking agents could be flock-aware yet computationally feasible way to determine effective influ-

encing agent placements. For each clustering method, we use the open-source Weka implementation

[41] with default parameters unless otherwise noted. Small-scale experiments indicated that outside

of one instance noted below, none of the methods performed significantly better with non-default

parameters.

Figure 5.12 shows examples of the various clustering methods presented in this section for

k = 4 and m = 10. Likewise, Figure 5.13 shows examples of the clustering methods for k = 4 and

m = 50.

(a) Farthest First (b) Expectation Maximiza-
tion

(c) K-Means

Figure 5.12: Examples of the clustering methods for k = 4 and m = 10. The orange agents are
influencing agents while the black agents are flocking agents.

5.6.1 Farthest First

Farthest First randomly picks a flocking agent at which to place the first influencing agent. Then,

for each subsequent influencing agent placement, the algorithm places an influencing agent at the

flocking agent that is farthest from the previously placed influencing agents.

Farthest First guarantees that all of the influencing agents are at least dist apart, where

dist is the distance between the last influencing agent to be placed and the set of the previously

placed influencing agents.

The open-source Weka implementation of Farthest First clustering is based upon work by

89

(a) Farthest First (b) Expectation Maximiza-
tion

(c) K-Means

Figure 5.13: Examples of the clustering methods for k = 4 and m = 50. The orange agents are
influencing agents while the black agents are flocking agents.

Hochbaum and Shmoys [48] as well as by Dasgupta [23]. The specific Weka implementation we use

is described in detail on Weka’s SourceForge page for the Farthest First class.3

5.6.2 Expectation Maximization

Expectation Maximization (EM) is an optimization method that is frequently used for data clus-

tering. EM alternates between performing an expectation (E) step and a maximization (M) step.

The Expectation step estimates the probability that each flocking agent position belongs to each

cluster. The Maximization step then estimates the parameters of the probability distribution of

each cluster. These parameter estimates are then used in the next E step.

Once EM is done iterating between the E and M steps, it assigns a probability distribution to

each flocking agent position. This probability distribution indicates the probability of each flocking

agent position belonging to each of the k clusters. Although EM could decide how many clusters

to create by cross validation, we specified that the algorithm should generate k clusters. We then

place an influencing agent at the mean of the normal distribution of each cluster.

The open-source Weka implementation of EM clustering is based upon work by Hartley [44]

and Dempster et al. [25]. The specific Weka implementation we use is described in detail on Weka’s

SourceForge page for the EM class.4

3http://weka.sourceforge.net/doc.dev/weka/clusterers/FarthestFirst.html
4http://weka.sourceforge.net/doc.dev/weka/clusterers/EM.html

90

http://weka.sourceforge.net/doc.dev/weka/clusterers/FarthestFirst.html
http://weka.sourceforge.net/doc.dev/weka/clusterers/EM.html

5.6.3 K-Means

K-Means chooses k flocking agents as cluster centers. Then, all m flocking agents are assigned to

their nearest cluster center and the centroid is calculated for each cluster. These centroids are then

set as the new cluster centers. Then, all flocking agents are assigned to their nearest cluster center.

This process repeats until convergence. K-Means minimizes the total squared distance between the

flocking agent positions and the cluster centers, where the minimum is local.

Small-scale experiments showed that using Farthest First to choose the k flocking agents to

be the initial cluster centers did significantly better for most k than choosing the k flocking agents

randomly. Hence, we used Farthest First to chose the initial cluster centers.

The open-source Weka implementation of K-Means clustering is based upon work by Arthur

and Vassilvitskii [4]. The specific Weka implementation we use is described in detail on Weka’s

SourceForge page for the K-Means class.5

5.6.4 Experimental Results

In this section, we evaluate the clustering methods presented in Sections 5.6.1, 5.6.2, and 5.6.3.

We compare these clustering methods to the Graph placement method from Section 5.3, since the

Graph placement method performed best out of the methods discussed in this chapter so far.

Figure 5.14 shows the average number of flocking agents lost when using clustering methods

(and the Graph placement method for m = 10) to select the k initial influencing agent positions.

Due to the high complexity and memory usage of the Graph placement method, results for the

Graph placement method are not shown for the m = 50 case.

Figures 5.14(a,c) show results for the clustering methods and the Graph placement method

when m = 10. The Graph placement method does significantly best for k = 2. This is because

the Graph placement method considers how influence will spread from influencing agents placed

at particular positions, which is critical when there are very limited influencing agents. EM and

K-Means do significantly best when k = 6 and k = 8. All four methods perform equally well when

k = m, as all methods simply assign at least one influencing agent to be in each flocking agent’s

neighborhood.

5http://weka.sourceforge.net/doc.dev/weka/clusterers/SimpleKMeans.html

91

http://weka.sourceforge.net/doc.dev/weka/clusterers/SimpleKMeans.html

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Farthest First
EM
K-Means
Graph

(a) Average Lost (m = 10)

k=2
m=50

k=4
m=50

k=6
m=50

k=8
m=50

k=10
m=50

0

1

2

3

4

5

6

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Farthest First
EM
K-Means

(b) Average Lost (m = 50)

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

20

40

60

80

100

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Farthest First
EM
K-Means
Graph

(c) Number Lost (m = 10)

k=2
m=50

k=4
m=50

k=6
m=50

k=8
m=50

k=10
m=50

0

20

40

60

80

100

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Farthest First
EM
K-Means

(d) Number Lost (m = 50)

Figure 5.14: Comparison of the clustering placement methods (as well as the Graph placement
method when m = 10). These graphs show results averaged over 100 trials, where the error bars
depict the standard error of the mean.

Figures 5.14(b,d) show results for the clustering methods when m = 50. Farthest First and

K-Means do significantly better than EM for k > 4. However, only for k = 10 does Farthest First

perform better than K-Means (although not significantly). Farthest First performs particularly

well in the m = 50 case because maximizing the distance between the cluster centroids is especially

beneficial in a dense flock.

92

5.7 Discussion

Many different methods for placing influencing agents into a flock were presented in this chapter.

Some methods — such as the constant-complexity methods in Section 5.2 — are not flock-aware

but scale to large flocks efficiently. Other methods — such as the Graph placement method in

Section 5.3 — are flock-aware but have computational complexities that do not scale well to larger

flocks. In fact, as discussed in Section 5.3.3, the Graph Placement Approach can be considered as

an instance of the NP-complete geometric set cover problem. The “sweet spot” lies in methods

that are both flock-aware and efficient. In this section, we compare the methods presented in this

chapter by considering both their average runtime as well as how to decide which method to use.

5.7.1 Average Runtime

In each section of this chapter, we discussed the computational complexity of each influencing

agent placement method. We hypothesized that certain methods would have difficulty scaling to

larger flock sizes, so in this section we present runtimes for many of the methods in this chapter.

Although we consider runtimes on flocks of various sizes, we use k = 4 influencing agents throughout

for consistency.

We collected average runtime data for using a variety of methods to select initial influencing

agent positions. Experiments were ran on a Dell Latitude E6430 laptop with a 2.9 Ghz CPU. We

only report runtimes for the Border method because the other constant-time methods have similar

runtimes. Likewise, since selecting S using the Border and Grid methods required approximately

the same runtime, we report results for using the Border method to select S.

In Table 5.2, Border (Preset) and Border (Scaled) are baselines — as constant-time place-

ment methods, they represent the minimal feasible runtimes. As would be expected, the scaled

variant has a slightly greater runtime than the preset variant, due to the time required to scale the

boundaries. 2-Step (Random) is generally slightly quicker than 2-Step (OneNeighbor) and 2-Step

(MaxNeighbors). 2-Step (MinUninfluenced) executes slower than the other two-step methods due

to multiple random restarts — but it still executes faster than the clustering methods. For the

clustering methods, Farthest First and K-Means scale to larger flock sizes better than EM.

93

Algorithm m = 10 m = 50 m = 100

Border (Preset) 8.43 (0.12) 31.72 (0.36) 44.88 (0.49)
Border (Scaled) 8.60 (0.12) 31.99 (0.41) 45.76 (0.45)
Graph 1,076.89 (54.06) – –
Hybrid (2 Graph) 185.65 (3.72) 131,865.21 (4,367.33) –
2-Step (Random) 8.60 (0.12) 31.75 (0.42) 45.30 (0.55)
2-Step (OneNeighbor) 8.97 (0.14) 33.00 (0.34) 45.58 (0.48)
2-Step (MaxNeighbors) 9.59 (0.13) 32.39 (0.36) 45.61 (0.54)
2-Step (MinUninfluenced) 20.77 (0.27) 43.07 (0.44) 55.46 (0.64)
Farthest First 80.10 (2.59) 100.23 (0.64) 121.32 (4.27)
EM 103.28 (1.06) 195.56 (1.38) 266.79 (2.02)
K-Means 108.40 (1.25) 135.01 (0.95) 156.98 (1.68)

Table 5.2: Average run times in milliseconds for each method over 100 trials when k = 4. - denotes
a configuration for which runtimes could not be obtained due to memory issues related to high
computational complexity. Numbers in parenthesis show the standard error of the mean.

As expected, the Graph placement method and the hybrid placement method using two

graph placements remained too computationally complex to scale. The m = 50 experiments for the

Graph placement method were too computationally intensive, while the hybrid placement method

was able to run the m = 50 experiments but unable to run the m = 100 experiments.

5.7.2 Choosing a Method

Experimental results were presented for each placement method throughout this chapter. In this

section we consider when particular methods are preferable. Figure 5.15 provides a flowchart that

summarizes the suggestions from this section.

The two-step methods from Section 5.5 usually perform worse — but have better runtimes

— than the clustering methods from Section 5.6. Generally, using the Grid variant to select S

loses fewer flocking agents than using the Border variant. However, using the Border variant to

select S can be better when m = 50 and k > 6 because then there are enough influencing agents

to contain a dense flock within a “border.” Using MinUninfluenced to select S′ usually loses the

fewest flocking agents. However, if runtime is a major concern, using OneNeighbor to select S′ may

be preferable.

When k ≤ 4 and m = 10, the Graph placement method from Section 5.3 loses the fewest

94

Figure 5.15: A flow chart showing how to select a placement method. Note that different placement
methods are preferable in different situations — this flowchart merely makes general suggestions.

flocking agents and has a manageable runtime. Hence, the Graph placement method could be

used for small flocks with few influencing agents when runtime is not a concern. When k > 4

and m = 10, clustering methods EM and K-Means from Section 5.6 lose the fewest flocking agents

and have similar run times — as such, EM or K-Means should be used for small flocks with many

influencing agents. Farthest First has the best runtime and performance for m = 50, so Farthest

First should be used for large, dense flocks.

The hybrid placement methods described in Section 5.4 serve as a compromise between the

high complexity yet solid performance of the Graph placement method from Section 5.3 and the

low complexity but weak performance of the constant-time placement methods from Section 5.2.

Despite this, using the clustering methods from Section 5.6 is a better choice when the flock is

larger. When the flock is smaller, a hybrid placement method would only be preferable over the

Graph placement method when runtime is more important than performance.

95

5.8 Summary

In this chapter, we considered how to place influencing agents into a flock such that the influencing

agents are able to effectively influence the flock to converge to θ∗ while minimizing the number of

“lost” flocking agents. In particular, this chapter introduced five types of placement methods for

placing influencing agents into a flock. Some of these methods were ineffective because they lost

too many flocking agents (i.e. constant-time placement methods from Section 5.2), while others

were ineffective because their high computational complexity made them unable to scale to even

moderately-sized flocks (i.e. Graph placement method from Section 5.3). Other methods fell more

moderately along the spectrum of flock-aware yet computationally efficient as can be seen in Figure

5.16.

Figure 5.16: Approximate complexity versus flock-awareness of the placement methods discussed
in this chapter.

Throughout this chapter, we assumed that influencing agents could be initially placed within

a flock. However, this would not be possible if our methods were to be applied to realistic, moving

flocks. Chapter 6 considers the more realistic question of how influencing agents could join — and

then eventually leave — a flock in motion.

96

6. Joining and Leaving a Flock

Chapter 4 considered how influencing agents should behave in order to influence a flock to alter its

flight path. Chapter 5 followed up on the work of Chapter 4 by considering where influencing agents

should be initially placed into a flock in order to influence the flock. However, both of these chapters

assumed that the influencing agents could start within the flock. Consider the motivating scenario

given in Chapter 1 of using influencing agents to reduce birdstrikes at airports. The assumption

that the influencing agents can begin within the flock would not hold if robot birds (acting as

influencing agents) were deployed to influence flocks of birds to avoid an airport. In this real-world

situation, the robot birds would instead need to leave a charging station near the airport, intercept

and join a flock flying towards the airport, influence the flock to alter its current heading, leave

the flock without influencing the flock to resume its path towards the airport, and then return to

a charging station. While Chapter 4 addresses how the influencing agents can influence the flock

to alter its current direction, this chapter addresses the joining and leaving behaviors that would

also be necessary.

In this chapter,1 Section 6.1 presents approaches for joining a flock in motion and Section 6.2

presents approaches for leaving a flock in motion. Section 6.3 describes this chapter’s experimental

set-up, while Section 6.4 discusses this chapter’s experimental results. Section 6.5 concludes the

chapter. As such, the research questions addressed by this chapter are: How should influencing

agents join a flock in order to influence it towards a particular behavior? How should influencing

agents leave a flock without negatively influencing it?

The work in this chapter assumes that each agent utilizes the visibility radius neighborhood

model described in Section 2.1.1 and the Joining and Leaving performance metric described in

Section 2.2.3.

The flow chart in Figure 6.1 illustrates the process described in this chapter of joining a

1Portions of this chapter appear in an extended abstract[37] that I wrote with Peter Stone. Author contributions
were as follows: I was a Ph.D. student and did the complete implementation and writing. Peter was my advisor —
he collaborated with me on deciding research directions and interpreting results.

97

flock, influencing the flock, and then leaving the flock. Videos of this process in the MASON

simulator are available on our website.2

Figure 6.1: This flowchart depicts the procedure described in this chapter of joining a flock, influ-
encing the flock, and then leaving the flock. The numbers in parentheses indicate in which section
each part of the procedure is defined. Terminal nodes are represented as ovals, process nodes are
represented as rectangles, and decision nodes are represented as diamonds.

6.1 Approaches for Joining a Flock

Chapters 4 and 5, as well as some of the work that will be outlined in Chapter 9, assume that

influencing agents can either (1) start within the flock or (2) teleport into the flock. Neither of

these assumptions would hold though if robot birds (acting as influencing agents) were deployed to

influence flocks in nature. Hence, in this section we consider how influencing agents could join a

flock in motion. In particular, we consider two different scenarios for joining — hover in which the

2http://www.cs.utexas.edu/~katie/videos/

98

http://www.cs.utexas.edu/~katie/videos/

influencing agents are able to hover with a particular orientation at a set position (Section 6.1.1)

and intercept in which the influencing agents leave the charging station at the same velocity as the

flocking agents and then maintain this velocity until they return to the charging station (Section

6.1.2).

6.1.1 Hover Approach

The hover approach for joining a flock features the influencing agents reaching their desired positions

along the flock’s flight path ahead of the flock. Once at their desired positions, the influencing agents

adopt a particular heading and hover at their desired position. Once the flock is determined to

have reached the correct spot with regard to the influencing agents, the influencing agents begin

influencing the flock using the 1-Step Lookahead algorithm from Section 4.1.

In this section we present multiple methods for (1) selecting desired positions for the in-

fluencing agents and (2) determining how the influencing agents should orient before the flock

arrives.

Desired Positions

Selecting positions for influencing agents is often a trade-off between effective high computation cost

methods and less effective low computation cost methods. Since selection of desired positions needs

to occur in real-time and be scalable to large flocks, we consider three successful computationally

efficient placement methods — the Grid placement method from Section 5.2.2, Border placement

method from Section 5.2.3, and the K-Means method from Section 5.6.3 — and use these methods

as position selection methods. These three methods select k positions within the dimensions that

will be occupied by the flocking agents once they have reached the correct spot with regard to the

influencing agents. We also consider a new funnel position selection method, which we describe

below. All four position selection methods are depicted in Figure 6.2.

The funnel position selection method selects positions in a funnel shape, where the funnel

is based on the dimensions that will be occupied by the flocking agents. The base of the funnel

is on the side of the flock opposite from where the flocking agents are approaching. There is one

influencing agents at the center of the base when k is odd, two influencing agents evenly placed

99

at the base when k is even, and no influencing agents at the base when k ≤ 2. The remaining

influencing agents are placed evenly along the two sides of the funnel.

(a) Grid (b) Border (c) Funnel (d) K-Means

Figure 6.2: The four hover position selection methods for the influencing agents when k = 6. Only
the exact positions of the influencing agents in (d) are determined by the positions of the flocking
agents in the approaching flock.

Arrival Behavior

Once the influencing agents are positioned at their desired positions ahead of the approaching flock,

their orientation becomes important because the orientation of the influencing agents will influence

the flock as it arrives. In this chapter we consider four different arrival behaviors for the influencing

agents to adopt while the flock arrives. Examples of each of these arrival behaviors are shown in

Figure 6.3.

The face initial and face goal arrival behaviors behave as would be expected from their

names. Influencing agents employing the face initial behavior have no influence over an arriving

flock, as the flock is already facing the same direction as the influencing agents. On the other hand,

the face goal behavior begins influencing the flocking agents to orient towards θ∗ before the flock

has even finished arriving.

The influence arrival behavior influences flocking agents towards θ∗ using the 1-Step Looka-

head algorithm from Section 4.1. We expected this approach would perform similarly to the face

goal behavior, since both approaches influence the flocking agents towards θ∗ before they finish

arriving.

Finally, the condense arrival behavior orients each influencing agent at a 45◦ angle towards

the mean axis parallel to the flock’s initial heading. Although this behavior influences the flocking

100

agents before they finish arriving, it also condenses the flocking agents. This approach centers

around the assumption that a more condensed flock will be easier to influence.

(a) Face Initial (b) Face Goal (c) Influence (d) Condense

Figure 6.3: The four hover arrival behaviors when k = 8, the grid position selection method is used,
the flock is approaching from the north, and we want to turn the flock to the east. The orange
dots are influencing agents — while the influencing agents in (a), (b), and (d) will not change
their orientation as the flock approaches, (c) will actively influence the approaching flock once the
influencing agents are within the neighborhood of any flocking agents. Each agent is facing in the
direction of its narrow triangular tip — hence, in (a) all of the influencing agents are facing south.

6.1.2 Intercept Approach

The hover approach for joining a flock presented in Section 6.1.1 makes one potentially troublesome

assumption: that influencing agents that would be seen by the flock as “one of their own” can hover.

The makers of the Robird3 robot bird stated at the 2015 North American Bird Strike Conference

that birds believe another bird is “one of its own” if its wing movement and silhouette are the same.

This means that winged robot birds may need to be utilized instead of quadcopters or ultralight

aircraft. With this in mind, in this section we consider how influencing agents can join a flock

without hovering.

Intercept considers the process of joining a flock in motion without hovering. In this section,

we present five target formations before discussing our method for calculating when the influencing

agents should join the flock. Intercept assumes that influencing agents leave from a charging station

with the goal of all influencing agents joining and starting to influence the flock at the same time.

The influencing agents have the same constant velocity as the flock they are joining. This means

that the influencing agents will need to leave the charging station one-by-one, as they will require

different amounts of time to reach their target formation desired positions.

3http://clearflightsolutions.com/methods/robirds

101

http://clearflightsolutions.com/methods/robirds

Target Formations

The hover approach was able to utilize some placement methods from Chapter 5. The intercept

approach does not have the same luxury because the placement methods from Chapter 5 did not

consider the issue of getting the influencing agents to their desired positions within the flock without

influencing the flock while reaching these positions. In fact, using the Grid or K-Means position

selection methods when the influencing agents must travel into the flock to reach their positions

results in the flocking agents being influenced to move away from the positioning influencing agents.

Hence, in this section we present various target formations that can be used to effectively join a

flock.

When determining appropriate target formations, it is important to consider (1) what di-

rection the flock is currently traveling and (2) what direction we instead wish for the flock to travel.

As such, we consider five different target formations that are illustrated in Figure 6.4:

1. Push to Goal Line: form a line on the side of the flock that is further from the goal initially

2. Forward Line: form a line on the side of the flock that reaches areas first as the flock flies

initially

3. Push to Goal Funnel: form a funnel on the side of the flock that is further from the goal

initially

4. Forward Funnel: form a funnel on the side of the flock that reaches areas first as the flock

flies initially

5. L corral: combines the Push to Goal Line formation and the Forward Line formation

We found that it was generally ineffective to use target formations with target positions

on the side of the flock’s current location or intended direction. These target formations were

ineffective because it was difficult — and sometimes impossible — to get influencing agents in

these target formations to be close enough to influence the flock without influencing the flock while

reaching their target formation positions.

102

(a) Push to Goal Line (b) Forward Line (c) Push to Goal Funnel

(d) Forward Funnel (e) L Corral (f) Desired Orientation of Flock (θ∗)

Figure 6.4: (a)–(e) show the five intercept target formations when k = 6, the flock is flocking south,
and we want to influence the flock to instead travel east. The orange dots are influencing agents
while the black dots are flocking agents. In (a)–(e), the flock is shown to be approaching at the
exact same time step — this allows the spacial differences between the target formations to be
apparent. (f) shows a sample flock facing the desired orientation (θ∗). Each agent is facing in the
direction of its narrow triangular tip.

Calculate Interception Points

The target formations described above define where the influencing agents should be with regard

to the flock when they intercept the flock. Since the flock is in motion, each influencing agent’s

desired position according to the target formation moves with the flock at each time step.

For each influencing agent’s desired position, there is an exact interception point that can

be reached by the flock flocking for x time steps and the influencing agent flying directly towards

this interception point for x time steps. For each influencing agent, we find this interception point

and the x time steps required to reach it using a binary search algorithm. The greatest x is saved

as joinSteps, and the point at which the influencing agents will join the flock is set to occur after

exactly joinSteps time steps.

Each influencing agent then has joinSteps to reach its desired position. The exact position

103

of the flock, and hence of the desired position for each influencing agent, after joinSteps can easily

be calculated. The influencing agents could all leave at time step 0 if some travelled along curved

paths — but for simplicity, we assume that all influencing agents take straight line paths to their

desired positions. We calculate how many time steps each influencing agent requires to reach its

desired position and schedule it to leave the charging station such that it reaches its desired position

after exactly joinSteps time steps.

Note that we do not have to assume that the influencing agents take straight line paths.

Indeed, curved paths can be used as long as (1) all influencing agents still reach their desired

positions at the same time step and (2) no influencing agents prematurely influence the flock on

their way to their desired positions.

6.1.3 Decide to Influence

When the flock has arrived, it is time to stop orienting and begin influencing using the 1-Step

Lookahead algorithm from Section 4.1. Under the hover approach, the flock has arrived when it

has reached the point at which the desired positions for the influencing agents were designed. When

face initial is utilized as the arrival behavior, the desired positions of the influencing agents will

align perfectly to the flock. However, other arrival behaviors will result in the actual positions

of the influencing agents not aligning exactly to the desired positions of the influencing agents.

Inexact alignment is not problematic for our definition of arrival though, as the flock is still said to

arrive when it is centered over the area in which the flock was anticipated to intersect the desired

positions of the influencing agents. Under the intercept approach, the flock has arrived after exactly

joinSteps time steps.

6.2 Approaches for Leaving a Flock

Once the influencing agents have joined the flock and influenced the flock to face a new orientation

using the 1-Step Lookahead algorithm from Section 4.1, they should then leave the flock. To the

best of our knowledge, our work is the first to consider how influencing agents should leave a

flock after influencing it. Given short battery life on most robots, exiting a flock quickly without

104

negatively influencing the flock will be important if joining and influencing approaches are to be

used with real flocks of birds.

In our work, the influencing agents decide that it is time to transition from influencing the

flock to leaving the flock once all of the flocking agents are facing within 5◦ of θ∗. In this section,

we present three approaches for leaving a flock: the hover approach in Section 6.2.1, the nearest

edge approach in Section 6.2.2, and the influence while leaving approach in Section 6.2.3.

6.2.1 Hover Approach

The hover approach for leaving a flock is similar to the hover approach for joining a flock. In this

case, all of the influencing agents hover in place facing θ∗ when it is time to leave.

The main drawback of the hover approach for leaving is that it requires the influencing

agents to hover in place. As discussed in Section 6.1, hovering in place could be problematic if

robot birds (acting as influencing agents) that would be recognized by birds as “one of their own”

are mechanically unable to hover due to their design. For this reason, in the next two sections we

consider leaving approaches that do not require the influencing agents to hover.

6.2.2 Nearest Edge Approach

The nearest edge approach for leaving a flock requires each influencing agent to know its approximate

position within the flock. When it is time to leave, each influencing agent orients towards the nearest

edge of the flock that is not the edge facing θ∗. The influencing agents do not try to exit the flock

towards θ∗ because this would mean they would remain in the flock as the flock continues traveling

towards θ∗.

This chapter uses the Joining and Leaving performance metric described in Section 2.2.3.

The Joining and Leaving metric considers the number of birds that intersected an airport in the

original direction of travel. Hence, in our experiments we consider two types of the nearest edge

approach for leaving. The first type is the nearest 3-edge approach, which functions exactly as

described above. The second type is the nearest 2-edge approach, which does not allow influencing

agents to exit the flock towards the airport.

105

6.2.3 Influence while Leaving Approach

One problem with the nearest edge approach is that sometimes flocking agents will follow the

influencing agents when they leave the flock. In this section, we present the influence while leaving

approach which leaves the flock more intentionally. A flowchart describing this approach is provided

in Figure 6.5; a description is given below.

Figure 6.5: This flowchart depicts the decision process at each time steps for the influence while
leaving approach. Terminal nodes are represented as ovals, process nodes are represented as rect-
angles, and decision nodes are represented as diamonds.

The influence while leaving approach for leaving a flock constantly trades off between in-

fluencing the flock towards θ∗ and leaving the flock. Specifically, influencing agents utilizing the

influence while leaving approach behave according to the 1-Step Lookahead algorithm from Section

4.1 to influence the flock towards θ∗ unless particular criteria are met. Specifically, an influencing

agent behaves to influence its neighbors while it has at least one bird as a neighbor and either the

influencing agent has tried to leave the flock for two consecutive time steps or the neighbors of

106

the influencing agent have been aligned towards θ∗ for less than five time steps. Otherwise, the

influencing agent can attempt to leave the flock for at most two consecutive time steps. When

determining how to exit the flock, each influencing agent considers whether any non-goal direction

has no flocking agents further along its axis. If multiple directions have no flocking agents, prefer-

ence is given to leaving in the direction opposite the airport, followed by the direction opposite the

goal — and towards the airport as a last resort. If all directions have some flocking agents, then

the influencing agent leaves along the axis not intersecting the airport in the direction away from

the flocking agents’ mean location.

6.3 Experimental Setup

As in Chapters 4 and 5, we use the MASON simulator for our experiments in this chapter. The

MASON simulator was introduced in Section 2.3.2, but in this section we present the details of

the environment that are important for completely understanding the experimental setup utilized

for our joining and leaving experiments in this chapter. Figure 2.5(d) shows a sample starting

configuration for our placement experiments.

The relevant experimental variables for our joining and leaving experiments are given in

Table 6.1 .

Variable Value

toroidal domain no
domain height 600
domain width 600
units moved by each agent per time step (vi) 0.2
neighborhood for each agent (radius) 10

Table 6.1: Experimental variables for our joining and leaving experiments. Italicized values are
default settings for the simulator.

As in Chapter 5, most of our experimental variables in Table 6.1 are not set to the default

settings for the MASON simulator. We used the same non-toroidal domain, neighborhood, and

the units each agent moves per time step as in Chapter 5. However, for the experiments in this

chapter we doubled both the domain height and the domain width — increasing the domain size

107

by a factor of four. This larger domain gives the influencing agents enough space to join the flock,

influence the flock, and then leave the flock before the flock leaves the domain.

All of the experiments reported in this chapter use m = 10 flocking agents and k = 2

to k = 10 influencing agents. We did run smaller scale experiments during our initial research

with m = 100 flocking agents and k = 25 influencing agents. However, we decided to use smaller

flocks because we found that larger flocks were easier to influence. The larger flocks were easier

to influence because the flocking agents were closer to each other and hence had more neighbors.

Similarly, we decided to use fewer influencing agents because our limited experiments showed that

leaving the flock was more time consuming and had a higher likelihood of negatively influencing

the flock as more influencing agents joined the flock.

Figure 2.5(d) shows an example starting configuration for the experiments in this chapter.

For the experiments in this chapter, the flocking agents begin within a small 60 by 60 square in

the top middle of the environment. All flocking agents begin facing directly south towards the

120 by 60 airport located in the bottom middle of the environment. These flocking agents behave

according to the flocking model described in Section 2.1.2. The influencing agents join the flock

using approaches presented in Section 6.1 and leave the flock using approaches presented in Section

6.2. In between joining and leaving, the influencing agents influence the flock to orient towards θ∗

using the 1-Step Lookahead algorithm from Section 4.1.

Experimental results are presented in Section 6.4. In all of our experiments, we run 100

trials for each experimental setting and we use the same set of 100 random seeds for each set of

experiments. The random seeds are used to determine the exact placement of all of the flocking

agents at the start of a simulation experiment. The error bars in all of our graphs depict the

standard error of the mean.

6.4 Experimental Results

In Sections 6.1 and 6.2 we presented various approaches by which influencing agents can join and

then leave a flock. In this section, we evaluate these approaches.

In Section 6.4.1 we present results for the case where the influencing agents can hover in

108

place. Although this may be feasible for some types of influencing agents, there may also be types

of influencing agents (such as fixed-wing robots) that may not be able to hover. Hence, in Section

6.4.2 we also consider the case in which hovering is not possible and instead the influencing agents

travel at a constant velocity.

6.4.1 Hovering Experiments

In the case where the influencing agents are able to hover in place while maintaining a particular

heading, the influencing agents will use the hover approach for both joining and leaving the flock.

Following Section 6.1.1, the two main questions that can be asked are: Which position selection

methods perform best? When are various arrival behaviors best?

First, consider the various position selection methods discussed in Section 6.1.1. Figure 6.6

shows results for the position selection methods using the face initial arrival behavior. Across all

four metrics, the K-Means approach followed by the Grid approach performed best. The K-Means

approach performed best because it selected positions based on the formation of the oncoming

flock. Likewise, the Grid approach performed well because it ensured that the influencing agents

were well-spaced throughout the flock.

Next, consider the four arrival behaviors presented in Section 6.1.1. Figure 6.7(a) shows that

face goal and influence consistently intersect less flocking agents with the airport than face initial.

As shown in Figure 6.3, this is because face goal and influence direct the flocking agents towards θ∗

as the flock is arriving. This early influence away from the airport leads to these approaches having

significantly less flocking agents intersect with the airport. However, this early influence also leads

these approaches to have significantly fewer flocking agents orienting within 10◦ of θ∗ (as seen in

Figure 6.7(d)).

6.4.2 Intercept Experiments

In Section 6.4.1 we considered the situation in which the influencing agents can hover while joining

and leaving the flock. Since some influencing agents — such as fixed wing robots — may be

unable to hover, in this section we consider the situation in which the influencing agents maintain

a constant velocity. Specifically, there are two main questions that should be asked: Which target

109

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

Nu
m
 In

te
rs
ec

t A
irp

or
t

Grid
Border
K-Means
Funnel

(a) Num Intersect Airport

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.2

0.4

0.6

0.8

1.0

Av
g
An

gu
la
r D

iff
er
en

ce
 fr
om

 G
oa

l

Grid
Border
K-Means
Funnel

(b) Avg Diff from θ∗

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

500

1000

1500

2000

2500

3000

St
ep

s
fro

m
 S
ta
tio

n
to
 L
ea

vi
ng

 F
lo
ck

Grid
Border
K-Means
Funnel

(c) Time Steps

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Nu
m
 w
ith

in
 1
0
De

g

Grid
Border
K-Means
Funnel

(d) Num within 10◦ of θ∗

Figure 6.6: Results for different position selection method experiments using hover with face initial
arrival behavior for joining and hover for leaving. These graphs show results averaged over 100
trials, where the error bars depict the standard error of the mean.

formations perform best in various situations? When should each leaving approach be used?

Let us start by considering the differences between the two nearest edge leaving approaches

in Figures 6.8 and 6.9. As would be expected, the graphs showing time steps for both leaving

approaches look identical — this is because the differences between the nearest edge approaches

only impact the direction in which the influencing agents leave the flock, which has relatively little

impact on the number of time steps required.

We can also compare the difference in the number of flocking agents intersecting the airport

in Figures 6.8(a) and 6.9(a). Both leaving approaches result in approximately the same number

110

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m
 In
te
rs
ec
t A

irp
or
t

Face Initial
Face Goal
Influence
Condense

(a) Num Intersect Airport

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
g

An
gu

la
r D

iff
er

en
ce

 fr
om

 G
oa

l

Face Initial
Face Goal
Influence
Condense

(b) Avg Diff from θ∗

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

500

1000

1500

2000

2500

St
ep

s
fro

m
 S
ta
tio

n
to
 L
ea

vi
ng

 F
lo
ck

Face Initial
Face Goal
Influence
Condense

(c) Time Steps

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Nu
m
 w
ith

in
 1
0
De

g

Face Initial
Face Goal
Influence
Condense

(d) Num within 10◦ of θ∗

Figure 6.7: Results for arrival behavior experiments using hover with Grid positions for joining and
hover for leaving. These graphs show results averaged over 100 trials, where the error bars depict
the standard error of the mean.

of flocking agents intersecting the airport when k = 2. However, the number of flocking agents

intersecting the airport increases from k = 2 to k = 6, k = 8, and k = 10 in Figure 6.8(a) for

the forward line, forward funnel and L corral target formations. This is because the nearest 3-edge

approach allows influencing agents to leave the flock towards the airport wheres the nearest 2-edge

approach does not. The influencing agents leaving the flock towards the airport unintentionally

influence flocking agents to intersect the airport.

Next we can view Figures 6.8(b) and 6.9(b) to compare the average flocking agent orientation

difference from θ∗ resulting from using each nearest edge leaving approach. Push to goal line and

111

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

Nu
m
 In

te
rs
ec
t A

irp
or
t

(a) Num Intersect Airport

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
g
An

gu
la
r D

iff
er
en

ce
 fr
om

 G
oa

l

(b) Avg Diff from θ∗

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

500

1000

1500

2000

2500

St
ep
s
fro

m
 S
ta
tio

n
to
 L
ea
vi
ng

 F
lo
ck

Push to Goal Line
Forward Line
Push to Goal Funnel
Forward Funnel
L Corral

(c) Time Steps

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

9

Nu
m
 F
lo
ck
in
g
Ag

en
ts
 w
ith

in
 1
0
De

g

(d) Num within 10◦ of θ∗

Figure 6.8: Results for different target formations using intercept for joining and nearest 3-edge for
leaving. The legend for all four figures is as depicted in (c). These graphs show results averaged
over 100 trials, where the error bars depict the standard error of the mean.

push to goal funnel perform similarly for both nearest edge approaches across all k values shown.

Forward line, forward funnel, and L corral all perform worse for nearest 3-edge. This is because

these approaches put influencing agents on the edge of the flock near the airport. Influencing

agents that leave towards the airport under the nearest 3-edge approach must leave towards the

direction from which the flock originally came or away from θ∗ under the nearest 2-edge approach.

Travelling across the flock towards these directions affects more flocking agents than just leaving

the flock towards the airport. By affecting more flocking agents, the resulting orientation effect on

the flocking agents is dampened.

112

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

Nu
m
 In

te
rs
ec
t A

irp
or
t

(a) Num Intersect Airport

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.5

1.0

1.5

2.0

2.5

Av
g
An

gu
la
r D

iff
er
en

ce
 fr
om

 G
oa

l

(b) Avg Diff from θ∗

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

500

1000

1500

2000

2500

St
ep
s
fro

m
 S
ta
tio

n
to
 L
ea
vi
ng

 F
lo
ck

Push to Goal Line
Forward Line
Push to Goal Funnel
Forward Funnel
L Corral

(c) Time Steps

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Nu
m
 F
lo
ck
in
g
Ag

en
ts
 w
ith

in
 1
0
De

g

(d) Num within 10◦ of θ∗

Figure 6.9: Results for different target formations using intercept for joining and nearest 2-edge for
leaving. The legend for all four figures is as depicted in (c). These graphs show results averaged
over 100 trials, where the error bars depict the standard error of the mean.

Finally, by looking at Figures 6.8(d) and 6.9(d) we can compare the number of flocking

agents oriented within 10◦ of θ∗ for each of the nearest edge leaving approaches. Forward line,

forward funnel, and L corral have more flocking agents within 10◦ of θ∗ when nearest 2-edge is

utilized — especially for lower values of k. More flocking agents converge within 10◦ of θ∗ for

these methods when nearest 2-edge is utilized due to the same reasoning expressed in the previous

paragraph for Figures 6.8(b) and 6.9(b). Specifically, instead of leaving towards the airport under

the nearest 3-edge approach, influencing agents on the edge of the flock near the airport must fly

across the flock while leaving under the nearest 2-edge approach. The influencing agents travelling

113

across the flock pull more flocking agents away from facing θ∗ than when the influencing agents

exit towards the airport under the nearest 3-edge leaving approach.

Let us now consider the results in Figure 6.10 for the influence while leaving approach.

When compared to the nearest edge approaches (Figures 6.8 and 6.9), the influence while leaving

approach performs similarly to the nearest 2-edge approach in terms of the number of flocking

agents intersecting the airport. The average flocking agent orientation difference from θ∗ is less

when using the influence while leaving approach. To a lesser extent, the number of flocking agents

oriented within 10◦ of θ∗ is greater when using the influence while leaving approach. Both of these

cases in which the influence while leaving approach fares better than the nearest edge approaches

are due to the intentional method of leaving by the influence while leaving approach that decreases

the impact each leaving influencing agent has on the surrounding flocking agents. One metric in

which the more intentional influence while leaving approach performs worse is the number of time

steps from leaving the charging station to leaving the flock. Since it takes longer for the influencing

agents to leave the flock under the influence while leaving approach, the time steps are significantly

greater in Figure 6.10(c) than in Figures 6.8(c) and 6.9(c).

6.4.3 Discussion

Multiple approaches for joining and leaving a flock in motion were presented in this chapter and

analyzed earlier in Section 6.4. In this section, we summarize the main take-away points from this

chapter’s experiments.

If the influencing agents are not able to hover, it is generally best to use the push to goal

line target formation (Section 6.1.2) and the influence while leaving approach for leaving (Section

6.2.3) if all metrics are equally important. However, if it it critical to minimize the number of

flocking agents that intersect with the airport, then it is best to use the L corral target formation

(Section 6.1.2) and the influence while leaving approach for leaving (Section 6.2.3). Similarly, if

minimizing the number of time steps between the influencing agents deploying from the charging

stations and leaving the flock is critical, then the push to goal line target formation (Section 6.1.2)

with the nearest 2-edge approach for leaving (Section 6.2.2) would be best.

If the influencing agents are able to hover, then hover approaches for joining (Section 6.1.1)

114

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

Nu
m
 In

te
rs
ec
t A

irp
or
t

(a) Num Intersect Airport

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.2

0.4

0.6

0.8

1.0

Av
g
An

gu
la
r D

iff
er
en

ce
 fr
om

 G
oa

l

(b) Avg Diff from θ∗

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

500

1000

1500

2000

2500

3000

3500

St
ep

s
fro

m
 S

ta
tio

n
to

 L
ea

vi
ng

 F
lo

ck

Push to Goal Line
Forward Line
Push to Goal Funnel
Forward Funnel
L Corral

(c) Time Steps

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

9

Nu
m
 F
lo
ck
in
g
Ag

en
ts
 w
ith

in
 1
0
De

g

(d) Num within 10◦ of θ∗

Figure 6.10: Results for different target formations using intercept for joining and influence while
leaving for leaving. The legend for all four figures is as depicted in (c). These graphs show results
averaged over 100 trials, where the error bars depict the standard error of the mean.

and leaving (Section 6.2.1) should be utilized. In general, the K-Means position selection method

and either the face goal or influence arrival behavior methods should be used. However, if it is most

important to maximize the number of flocking agents oriented within 10◦ of θ∗, then the funnel or

Grid position selection methods and the face initial arrival behavior method should be used.

6.5 Summary

In this chapter, we set out to determine how influencing agents could (1) intercept and join a flock

flying towards an airport and (2) leave the flock without influencing the flock to resume its path

115

towards the airport. This chapter introduced multiple methods for joining a flock in Section 6.1

and multiple methods for leaving a flock in Section 6.2. Since some influencing agents — such as

fixed wing robots — might not be able to hover in place, we consider joining and leaving methods

that rely on being able to hover in place as well as methods that assume the influencing agents

must maintain a non-zero constant velocity. We ran extensive experiments using these joining and

leaving methods in a simulated flocking domain. As discussed in Section 6.4.3, our experiments

showed that if the influencing agents are able to hover, then hover approaches for joining (Section

6.1.1) and leaving (Section 6.2.1) should be utilized. Specifically, the K-Means position selection

method and either the face goal or influence arrival behavior methods should be used. If the

influencing agents are unable to hover, then the push to goal line target formation (Section 6.1.2)

and the influence while leaving approach for leaving (Section 6.2.3) are likely to be best.

This chapter considered how the influencing agent behaviors described in Chapter 4 could

be applied to realistic flocks in which the influencing agents are required to join the flock, influence

the flock, and then leave the flock. Chapter 7 will consider how well the algorithms and methods

in this dissertation generalize to different neighborhood models and influence models.

116

7. Evaluation on Different Flocking Models

So far, this dissertation has considered one specific type of flocking behavior. Specifically, most of

this dissertation assumes that flocks behave according to a limited version of Reynolds’ algorithm

for flocking — described in Section 2.1.2 — in which each agent in the flock updates its orientation

based on the orientations of its neighbors. Additionally, outside of Chapter 3, this dissertation has

also only considered the visibility radius neighborhood model described in Section 2.1.1.

However, there are many different types of flocking models that could be utilized. Through-

out the work in this dissertation, we wondered how well the methods and algorithms described in

this dissertation would generalize to other flocking models — specifically the full Reynolds algo-

rithm for flocking and different neighborhood models. Although in principle the methods described

thus far in this dissertation should generalize to the full Reynolds flocking algorithm and to some

alternate neighborhood models, whether or not they work in practice is an empirical question. This

chapter explores that question.

In this chapter, Section 7.2 describes the alternate neighborhood models that we consider

in detail, presents algorithms for determining which agents are within each type of neighborhood,

and evaluates how each neighborhood model performs when the true neighborhood model — the

neighborhood model actually used by the flocking agents — is known or unknown by the influencing

agents. Section 7.3 describes Reynolds’ algorithm for flocking in detail and then evaluates how using

each aspect of Reynolds’ algorithm for flocking — both alone and combined with other aspects —

performs when the true influence model is known or unknown by the influencing agents. As such,

the research question addressed in this chapter is: How well do the algorithms and methods presented

so far in the dissertation generalize to alternate influence and neighborhood models when the true

model is known or unknown by the influencing agents?

The work in this chapter assumes that we use the Placement performance metric described

in Section 2.2.2 to evaluate performance.

117

7.1 Experimental Setup

As in Chapters 4, 5, and 6, we use the MASON simulator for our experiments in this chapter. The

MASON simulator was introduced in Section 2.3.2, but in this section we review the details of the

environment that are important for completely understanding the experimental setup utilized in

this chapter. We discuss our experimental setup at the beginning of this chapter so that experiments

can be introduced and discussed throughout the chapter. Figure 2.5(c) shows a sample starting

configuration for our alternate model experiments. Since we are using the Placement performance

metric in this chapter, we use an experimental setup that is very similar to the experimental setup

utilized for our placement experiments in Chapter 5.

The relevant experimental variables for our alternate model experiments are given in Table

7.1.

Variable Value

toroidal domain no
domain height 300
domain width 300
units moved by each agent per time step (vi) 0.2

Table 7.1: Experimental variables for our alternate model experiments.

None of the experimental variables in Table 7.1 are set to the default settings for the MASON

simulator. We removed the toroidal nature of the domain in order to make the domain more

realistic. Hence, if an agent moves off of an edge of our domain, it will not reappear. This is

particularly important for lost agents remaining lost. We also increased the domain height and

width, and decreased the units each agent moves per time step, in order to give agents a chance to

converge with the flock before leaving the visible area. However, we have no reason to believe the

exact experimental settings we chose for our experiments are of particular importance.

All of the experiments reported in this chapter use m = 10 flocking agents and k = 2

to k = 10 influencing agents. During our initial research, we ran a small number of larger scale

experiments with m = 50 flocking agents and k = 10 influencing agents. In these experiments, we

found that most results were similar for our m = 10 experiments — as such, we only present results

for experiments with m = 10 flocking agents.

118

Figure 2.5(c) shows an example starting configuration for the experiments in this chapter.

For the experiments in this chapter, the flocking agents are initially randomly placed within FApreset,

which is a small square at the top left of the environment. All of the flocking agents are initially

assigned random headings that are within 90 degrees of θ∗.

Experimental results and discussion will be presented throughout the following sections. In

all of our experiments, we run 100 trials for each experimental setting and we use the same set of

100 random seeds for each set of experiments. The random seeds are used to determine the exact

placement and orientation of all of the flocking agents at the start of a simulation experiment. The

error bars in all of our graphs depict the standard error of the mean. Based upon the Placement

performance metric described in Section 2.2.2, throughout this chapter we only present results for

the average number of flocking agents lost.

7.2 Alternate Neighborhood Models

As discussed in Section 2.1.1, most flocking models state that flocking agents are only influenced

by other agents that are located within their neighborhood. Throughout much of this dissertation,

we utilized the visibility radius neighborhood model described in Section 2.1.1. This visibility

radius neighborhood model served as a simple approximation of the neighborhood model generally

believed to be utilized by real-life birds. However, some biologists claim that most birds are actually

influenced by the six or seven nearest neighbors [6, 13]. Additionally, there are other neighborhood

models that are technologically feasible to implement for robot birds. In this section, we consider

multiple alternate neighborhood models. Each alternate neighborhood model we consider is either

biologically plausible for real birds or technologically feasible to implement for robot birds. In

Section 7.2.4 we present results from experiments using all of these neighborhood models.

Although all of the alternate neighborhood models we consider in this section were intro-

duced in Section 2.1.1, in this section we present algorithms for determining which agents lie within

an agent’s neighborhood under these neighborhood models. Special notation is utilized in these

algorithms — this notation is depicted in Table 7.2. When referencing Table 7.2, keep in mind

the following definitions: list is a collection of elements, x is a number, l1 and l2 are locations, and

119

element is an object in the environment.

Notation Meaning

element.loc Returns the x,y location of element
calcDist(l1, l2) Returns the distance between locations l1 and l2
list.append(element) Appends element to the end of list
list.get(x) Returns the xth element in 0-indexed list
list.remove(element) Removes all instances of element from list
list.remove(x) Removes the xth element in a 0-indexed list
list.size() Returns the number of elements in list
MAXVALUE Returns the max value representable within the programming environment
random.nextDouble() Returns a random decimal number greater than or equal to 0.0 and less than 1.0

Table 7.2: Notation utilized in Algorithms 11, 12, and 13.

7.2.1 Visibility Sector

In Chapter 3, a visibility sector was used to define each agent’s neighborhood. However, a visibility

radius neighborhood model was used throughout the other chapters in this dissertation. Hence,

in this section we re-introduce the concept of a visibility sector neighborhood model and show in

Algorithm 11 how we calculate which agents lie within a visibility sector of less than π radians.

Most robots have a limited number of cameras, each with a limited field of view. This field of view

usually does not cover 360◦ (2π radians), so a visibility sector is an especially realistic neighborhood

model. This is especially true for the types of robot birds that could be used to influence flocks, as

these robots would likely only have one camera with a field of view that is less than 180◦.

Algorithm 11 considers all of the agents within a particular radius r of agent ai. The

algorithm takes in the visibility sector angle visAngle and the current orientation θi(t) of agent ai

at time t. Both inputs are in radians. The algorithm calculates whether each agent within r also

falls within visAngle and returns a list agents containing these agents. Specifically, the algorithm

computes the points of an isosceles triangle that covers the area of overlap between radius r and

the visibility sector angle visAngle — see Figure 7.1 for a visual depiction of the coverage area.

This coverage is guaranteed because the triangle has a perpendicular bisector of length r and hence

actually also covers some area outside of r. The three points of the isosceles triangle are referred

to as p1, p2, and p3 in Algorithm 11.

Now we walk through Algorithm 11. The side length sidelength of the isosceles triangle is

120

Algorithm 11 agents = getVisibilitySectorNeighbors(visAngle, θi(t))

1: radNeigh← getRadiusNeighbors(), counter← 0
2: while counter < radNeigh.size() do

3: curAgent← radNeigh.get(counter), remove← true
4: p← currentAgent.loc, p1← ai.loc, p2← (0.0,0.0), p3← (0.0,0.0)

5: sidelength←
√

r2 + (
r∗

visAngle
2

sin(π

2
−

visAngle
2

)
)2

6: lowOrient← (θi(t)− visAngle
2

)%2π, lowSlope← tan(lowOrient)
7: lowX1← sidelength ∗ 1√

1+(lowSlope2)
+ ai.loc.x, lowX2← ai.loc.x − sidelength ∗ 1√

1+(lowSlope2)

8: lowY1← sidelength ∗ lowSlope√
1+(lowSlope2)

+ ai.loc.y, lowY2← ai.loc.y − sidelength ∗ lowSlope√
1+(lowSlope2)

9: greaterX← 0.0, lesserX← 0.0, greaterY← 0.0, lesserY← 0.0
10: if lowX1 < lowX2 then

11: greaterX← lowX2, lesserX ← lowX1
12: else

13: greaterX← lowX1, lesserX ← lowX2
14: if lowY1 < lowY2 then

15: greaterY← lowY2, lesserY ← lowY1
16: else

17: greaterY← lowY1, lesserY ← lowY2
18: if lowOrient ≤ π

2
then

19: p2.x← greaterX, p2.y← greaterY
20: else if lowOrient ≤ π then

21: p2.x← lesserX, p2.y← greaterY
22: else if lowOrient ≤ 3π

2
then

23: p2.x← lesserX, p2.y← lesserY
24: else

25: p2.x← greaterX, p2.y← lesserY
26: highOrient← (θi(t) +

visAngle
2

)%2π, highSlope← tan(highOrient)
27: highX1← sidelength ∗ 1√

1+(highSlope2)
+ ai.loc.x, highX2← ai.loc.x − sidelength ∗ 1√

1+(highSlope2)

28: highY1← sidelength ∗ highSlope√
1+(lowSlope2)

+ ai.loc.y, highY2← ai.loc.y − sidelength ∗ lowSlope√
1+(highSlope2)

29: if highX1 < highX2 then

30: greaterX← highX2, lesserX ← highX1
31: else

32: greaterX← highX1, lesserX ← highX2
33: if highY1 < highY2 then

34: greaterY← highY2, lesserY ← highY1
35: else

36: greaterY← highY1, lesserY ← highY2
37: if highOrient ≤ π

2
then

38: p3.x← greaterX, p3.y← greaterY
39: else if highOrient ≤ π then

40: p3.x← lesserX, p3.y← greaterY
41: else if highOrient ≤ 3π

2
then

42: p3.x← lesserX, p3.y← lesserY
43: else

44: p3.x← greaterX, p3.y← lesserY
45: α← (p2.y−p3.y)∗(p.x−p3.x)+(p3.x−p2.x)∗(p.y−p3.y)

(p2.y−p3.y)∗(p1.x−p3.x)+(p3.x−p2.x)∗(p1.y−p3.y)

46: β ← (p3.y−p1.y)∗(p.x−p3.x)+(p1.x−p3.x)∗(p.y−p3.y)
(p2.y−p3.y)∗(p1.x−p3.x)+(p3.x−p2.x)∗(p1.y−p3.y)

47: γ ← 1.0− α− β

48: if α ≥ 0 && α ≤ 1.0 && β ≥ 0 && β ≤ 1.0 && γ ≥ 0 && γ ≤ 1.0 then

49: remove← false
50: else

51: remove← true
52: if remove || (p.x == p1.x && p.y == p1.y) then
53: radNeigh.remove(curAgent)
54: else

55: i++
56: end while

57: return radNeigh

121

Figure 7.1: A figure depicting how Algorithm 11 selects agents in a visibility sector (darkest shade)
from the agents in a visibility radius (moderate shade) using an isosceles triangle (lightest shade).
Note that (highX1,highY1) and (highX2,highY2) (as well as (lowX1,lowY1) and (lowX2,lowY2))
may be swapped depending on the dynamics of the environment.

calculated on line 5. Lines 6–25 find point p2. Specifically, line 6 calculates the heading lowOrient

and slope lowSlope of one of the sides of the triangle. These calculations on line 6 then allow the

two possible points for p2 to be calculated on lines 7 and 8. As shown in Figure 7.1, there are

two points because there are two points that lie along slope lowSlope that are sidelength away from

agent ai. Lines 10–25 then determine which of these two x values and two y values make up p2.

In particular, lines 10–17 order the x and y values based upon their magnitude and lines 18–25 set

point p2 based upon the quadrant that lowOrient falls within. In a similar manner, lines 26–44

find point p3. Note that point p3 could also be found by reflection over the radial line — but for

simplicity we used the same method that we used to find point p2. Lines 45–51 use points p1, p2,

and p3 to determine whether point p lies within the triangle made up of points p1, p2, and p3. In

particular, on lines 45–47 we calculate the barycentric coordinates (α, β, and γ) of point p with

respect to the triangle formed from points p1, p2, and p3. If each of the barycentric coordinates is

greater than or equal to zero and less than or equal to one, then point p is known to lie within the

sector formed by points p1, p2, and p3.

Note that although the visAngle input to Algorithm 11 should be less than π radians, we

can handle larger visAngle inputs in a pre-processing step. Specifically, we can input 2π− visAngle

and remove the returned agents output from getRadiusNeighbors(). In the case where visAngle is

122

exactly π, we make the simple approximation that visAngle is π − 0.01 in order to avoid handling

this special case in a more complicated manner.

7.2.2 N-Nearest Neighbors

Although the visibility sector model is the most technologically feasible neighborhood model for

robot birds, biologists claim that birds are actually influenced by their six or seven nearest neighbors

[6, 13]. With this in mind, in this section we introduce a N-nearest neighbors neighborhood model

in Algorithm 12.1 This algorithm identifies the N neighbors that are currently closest to agent ai.

Algorithm 12 agents = getNNearestNeighbors(N, allAgents, includeSelf)

1: agents← {}
2: for numAdded=0; numAdded < N; ++numAdded do

3: minDist← MAXVALUE
4: minIndex← −1
5: for currentNeighbor=0; currentNeighbor < allAgents.size(); ++currentNeighbor do
6: distToCurrSq← calcDist(ai.loc, allAgents.get(currentNeighbor).loc)
7: if distToCurrSq < minDist then
8: if distToCurrSq > 0 || includeSelf then
9: minDist← distToCurrSq

10: minIndex← currentNeighbor
11: agents.append(allAgents.get(minIndex))
12: allAgents.remove(minIndex)

13: return agents

Algorithm 12 takes in the number of neighbors to return (N), all of the agents to consider

as potential neighbors (allAgents), and a boolean that indicates whether agent ai should include

itself as a neighbor (includeSelf). Lines 2–12 consider each potential neighbor N times. On each

iteration, line 11 adds the closest neighbor that is not already in agents to agents. After N neighbors

have been added to agents, agents is returned on line 13.

7.2.3 Weighted Influence

The weighted influence neighborhood model considers the idea that closer neighbors should have

more influence than farther neighbors. Under the weighted influence neighborhood model, the

overall influence exerted is the same as in the visibility radius model but closer neighbors have more

influence while farther neighbors have less influence.

1This algorithm was implemented by Basil Hariri, an undergraduate student whom I mentored for two semesters.

123

The neighbors obtained for an agent ai that uses the weighted influence neighborhood model

are the same as the neighbors obtained by Algorithm 11 for an agent that uses the visibility radius

neighborhood model. However, all of the neighbors are weighted equally under the visibility radius

neighborhood model, while each neighbor is weighted differently under the weighted influencemodel.

The methodology of assigning weights to neighbors is presented in Algorithm 13.

Algorithm 13 agents = getDecayingInfluenceNeighbors(neighbors)

1: weights← ()
2: totalInfluence← neighbors.size()
3: totalDistance← 0
4: for counter=0; counter < neighbors.size(); counter++ do

5: neighborLoc← neighbors.get(counter).loc
6: if |ai.loc.x − neighborLoc.x| > 0.0001 && |ai.loc.y − neighborLoc.y| > 0.0001 then

7: totalDistance← totalDistance + neighborhood −
√

(ai.loc.x-neighborLoc.x)
2 + (ai.loc.y-neighborLoc.y)

2

8: else

9: totalInfluence ← totalInfluence - 1
10: for counter=0; counter < neighbors.size(); counter++ do

11: neighborLoc← neighbors.get(counter).loc
12: if |ai.loc.x − neighborLoc.x| > 0.0001 && |ai.loc.y − neighborLoc.y| > 0.0001 then

13: weights.add(totalInfluence ∗ neighborhood−
√

(ai.loc.x−neighborLoc.x)2+(ai.loc.y−neighborLoc.y)2

totalDistance
)

14: else

15: weights.append(1.0)

16: return weights

Algorithm 13 takes in an ordered list of neighbors neighbors and the neighborhood size

neighborhood. Lines 4–9 add up the total distance of all of the neighbors from agent ai (totalDis-

tance) and calculate the total influence to be distributed. Then lines 10–15 set the weight for each

neighbor based on its distance from ai, the neighborhood size neighborhood, and the total distance

totalDistance. The algorithm returns an ordered list of weights weights. Since both neighbors and

weights are ordered, weights.get(x) returns the weight associated with neighbors.get(x), where x is

an integer within (0,...,neighbors.size()-1).

7.2.4 Experimental Results

In this section, we present experiments that compare the performance of the four neighborhood

models: visibility radius, visibility sector, N-nearest neighbors, and weighted influence.

Figure 7.2 shows results for different neighborhood models when influencing agents are

originally positioned using the Grid placement method from Section 5.2.2, while Figure 7.3 shows

124

results for different neighborhood models when influencing agents are originally positioned using

the Border placement method from Section 5.2.3.

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

9
Av

g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

90degrees
180degrees
270degrees
360degrees

(a) Visibility Sector

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Radius 5
Radius 10
Radius 15
Radius 5 (WI)
Radius 10 (WI)
Radius 15 (WI)

(b) Visibility Radius and Weighted Influence

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

2-Nearest
3-Nearest
4-Nearest

(c) N-Nearest

Figure 7.2: Results for different neighborhood models when influencing agents are originally posi-
tioned using the Grid placement method from Section 5.2.2. These graphs show results averaged
over 100 trials, where the error bars depict the standard error of the mean. WI stands for weighted
influence.

Figures 7.2 and 7.3 show similar trends. As we would expect, in (a) we see larger visibility

sectors losing fewer flocking agents on average than smaller visibility sectors, in (b) we see larger

visibility radii losing fewer flocking agents on average than smaller visibility radii, and in (c) we see

that using a greater N for N-nearest neighbors loses fewer flocking agents on average.

There are a few interesting trends to note in Figures 7.2 and 7.3. First, in (a) the difference

between the results of a visibility sector of 90 degrees and 180 degrees is much smaller than the

difference between visibility sectors of 180 degrees and 270 degrees. This is likely due to how the

125

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

9

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

90degrees
180degrees
270degrees
360degrees

(a) Visibility Sector

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Radius 5
Radius 10
Radius 15
Radius 5 (WI)
Radius 10 (WI)
Radius 15 (WI)

(b) Visibility Radius and Weighted Influence

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

2-Nearest
3-Nearest
4-Nearest

(c) N-Nearest

Figure 7.3: Results for different neighborhood models when influencing agents are originally posi-
tioned using the Border placement method from Section 5.2.3. These graphs show results averaged
over 100 trials, where the error bars depict the standard error of the mean. WI stands for weighted
influence.

influencing agents are spread across the environment under the Grid and Border placement meth-

ods. Second, in (c), using the 3-Nearest neighbors instead of the 2-Nearest neighbors significantly

decreases the average number of flocking agents lost. This is due to the substantially quicker spread

of influence when using 3-Nearest neighbors instead of 2-Nearest neighbors.

The most unexpected result from Figures 7.2 and 7.3 is certainly in (b). We had expected

to see a noticeable difference between the visibility radius neighborhood and the weighted influ-

ence neighborhood. Although both the visibility radius neighborhood and the weighted influence

neighborhood contain exactly the same neighbors, we expected that giving closer neighbors more

influence would result in fewer flocking agents becoming lost. However, there is no noticeable dif-

126

ference between the visibility radius and weighted influence results in Figures 7.2(b) and 7.3(b) —

although the exact average number of flocking agents lost is slightly different. After considering

the results more carefully and observing some trials, the visibility radius neighborhood and the

weighted influence neighborhood end up performing similarly because (1) both neighborhood mod-

els have the exact same neighbors and (2) in our domain there is no inherent reason to “trust”

closer neighbors more than farther neighbors.

Performance with Incorrect Neighborhood Models

Although we found in the previous section that some neighborhood models result in fewer flocking

agents becoming lost, we cannot control which neighborhood model the flocking agents utilize.

In fact, the influencing agents may not know which neighborhood model the flocking agents are

utilizing. If we consider our motivating example of adding robot birds to a flock of real birds,

it is likely that the robot birds will not know the exact neighborhood model utilized by the real

birds. With this in mind, in this section we consider the performance of various models when the

influencing agents do not know the true neighborhood model currently being utilized by the flocking

agents.

For our experiments, we gathered results in which the influencing agents are originally

positioned using both the Grid placement method from Section 5.2.2 and the Border placement

method from Section 5.2.3 — but since both sets of results are similar, we only present results for

experiments using the Grid placement method. Additionally, since the previous section found that

the visibility radius and weighted influence neighborhood models performed almost identically, we

do not present results for the weighted influence neighborhood model in this section.

Figures 7.4, 7.5, and 7.6 show results when the flocking agents are utilizing a variety of

neighborhood models. In each figure, we show the true neighborhood model — i.e., the neighbor-

hood model being utilized by the flocking agents — as well as (1) variants of the true neighborhood

model and (2) the best performing variant of the other neighborhood models. The remainder of

this section considers each of these figures separately.

Figure 7.4 considers different visibility radius neighborhood models as the true neighborhood

model. In Figure 7.4(a) — when the flocking agents are behaving according to the visibility radius

127

neighborhood model where r = 5— there is little harm in the influencing agents behaving according

to any of the other neighborhood models tested. However, Figure 7.4(b) shows that when the

flocking agents behave according to the visibility radius neighborhood model where r = 10, there

are some cases where more flocking agents will become lost on average if the influencing agents do

not assume the correct neighborhood model. Finally, Figure 7.4(c) shows that when the flocking

agents behave according to the visibility radius neighborhood model where r = 15, it is important

that the influencing agents assume the true neighborhood model when k > 6.

As seen in Figures 7.4(b) and 7.4(c), poor performance occurs — especially for larger values

of k — when the influencing agents assume a smaller r than is actually utilized by the flocking

agents. This is because in these cases some of the influencing agents are within the neighborhood of

the flocking agents without realizing it and hence influence the flocking agents unintentionally. It is

harmful for the influencing agents to not realize they are influencing the flocking agents because then

the influencing agents are not acting to influence nearby agents (and may instead be attempting

to leave the flock or reposition). It is much less harmful for the influencing agents to believe they

are influencing flocking agents when they are not, as then the influencing agents simply have no

influence.

Figure 7.5 considers different visibility sector neighborhood models as the true neighborhood

model. In Figure 7.5(a) — when the flocking agents are behaving according to the visibility sector

neighborhood model where α = 90◦ — significantly fewer flocking agents are lost on average when

the influencing agents assume the true neighborhood model. For most k, if the influencing agents

incorrectly believe the flocking agents are utilizing the visibility sector neighborhood model where

α = 180◦, they perform significantly worse than if they had used the true neighborhood model

but significantly better than if they had assumed the flocking agents were utilizing any other

neighborhood model.

In Figures 7.5(b) and 7.5(c) — when the flocking agents are behaving according to the

visibility sector neighborhood model where α = 180◦ and α = 270◦ — most of the neighborhood

models perform approximately the same. However, in both figures performance is significantly

worse if the influencing agents incorrectly assume the flocking agents are utilizing a α = 90◦

visibility sector. This is because in these cases — much like in Figures 7.4(b) and 7.4(c) — the

128

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

Av
g
Nu

m
 F
lo
ck

in
g
Ag

en
ts
 L
os

t

True Model
Radius 10
Radius 15
4 Nearest
270 View Sector

(a) True model: r = 5

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

Av
g
Nu

m
 F
lo
ck

in
g
Ag

en
ts
 L
os

t

True Model
Radius 5
Radius 15
4 Nearest
270 View Sector

(b) True model: r = 10

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.5

1.0

1.5

2.0

2.5
Av

g
Nu

m
 F
lo
ck

in
g
Ag

en
ts
 L
os

t

True Model
Radius 5
Radius 10
4 Nearest
270 View Sector

(c) True model: r = 15

Figure 7.4: Results for using different visibility radius neighborhood models as the true neighbor-
hood model when influencing agents are originally positioned using the Grid placement method
from Section 5.2.2. These graphs show results averaged over 100 trials, where the error bars depict
the standard error of the mean.

influencing agents will unintentionally influence the flocking agents.

Figure 7.6 considers different N-nearest neighbors neighborhood models as the true neigh-

borhood model. In Figures 7.6(a), 7.6(b), and 7.6(c) we see that using an incorrect neighborhood

model never performs significantly worse than using the correct model. This is because when the

flocking agents are behaving according to the N-nearest neighbors neighborhood models, almost any

other model assumed by the influencing agents will result in the influencing agents believing they

are neighbors of a flocking agent when the flocking agent does not see them as neighbors. More

importantly, the influencing agents will very rarely incorrectly believe they are not influencing the

flocking agents — meaning the influencing agents will rarely unintentionally influence the flocking

agents due to an incorrect model.

In Figure 7.6(c) the average number of flocking agents lost was zero for all models when

129

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

True Model
180 View Sector
270 View Sector
Radius 15
4 Nearest

(a) True model: α = 90◦

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

9

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

True Model
90 View Sector
270 View Sector
Radius 15
4 Nearest

(b) True model: α = 180◦

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

6

7

8

9
Av

g
Nu

m
 F

lo
ck

in
g

Ag
en

ts
 L

os
t

True Model
90 View Sector
180 View Sector
Radius 15
4 Nearest

(c) True model: α = 270◦

Figure 7.5: Results for using different visibility sector neighborhood models as the true neighborhood
model when influencing agents are originally positioned using the Grid placement method from
Section 5.2.2. These graphs show results averaged over 100 trials, where the error bars depict the
standard error of the mean.

k > 2. This is because when N = 4 each flocking agent considered the four nearest agents to be

neighbors — and this caused influence from the influencing agents to spread throughout the flock

quickly even if the flock became dispersed.

There are a few take-away points for this section. First, we found that the algorithms

and methods presented in previous chapters of this dissertation generalize to the neighborhood

models discussed in Section 2.1.1. Second, we found that — especially with the N-nearest neighbors

neighborhood models — it is not necessarily important that the influencing agents know the exact

neighborhood model of the flocking agents. In the next section, we consider whether the algorithms

and methods presented earlier in the dissertation also generalize to alternate influence models.

130

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

1

2

3

4

5

Av
g
Nu

m
 F
lo
ck

in
g
Ag

en
ts
 L
os

t

True Model
3 Nearest
4 Nearest
15 Radius
270 View Sector

(a) True model: N = 2

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.2

0.4

0.6

0.8

1.0

Av
g
Nu

m
 F
lo
ck

in
g
Ag

en
ts
 L
os

t

True Model
2 Nearest
4 Nearest
15 Radius
270 View Sector

(b) True model: N = 3

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0.0

0.2

0.4

0.6

0.8

1.0
Av

g
Nu

m
 F

lo
ck

in
g

Ag
en

ts
 L

os
t

True Model
2 Nearest
3 Nearest
15 Radius
270 View Sector

(c) True model: N = 4

Figure 7.6: Results for using different N-nearest neighbors neighborhood models as the true neigh-
borhood model when influencing agents are originally positioned using the Grid placement method
from Section 5.2.2. These graphs show results averaged over 100 trials, where the error bars depict
the standard error of the mean.

7.3 Alternate Influence Models

The complete Reynolds’ Boid algorithm for flocking is described in Section 2.1.2. As noted in

Section 2.1.2, the work presented so far in this dissertation only utilized the alignment aspect of

Reynolds’ algorithm for flocking. Remember from Section 2.1.2 that the alignment aspect steers

each agent towards the average heading of its neighbors. Additionally, the separation aspect steers

each agent away from its neighbors to avoid collisions and the cohesion aspect steers each agent

towards the average position of its neighbors. See Figure 7.7 for pictorial descriptions of each aspect

of Reynolds’ Boid algorithm for flocking.

Our decision to utilize only the alignment aspect throughout most of this dissertation was

mainly for the purpose of simplicity. The alignment aspect alone resulted in stable flocking, so

we used the simplest global orientation update possible for the flocking agents (see Equation 1)

131

(a) Alignment (b) Separation (c) Cohesion

Figure 7.7: Pictorial descriptions of each aspect of Reynolds’ Boid algorithm for flocking.2

by utilizing only the alignment aspect. Although we believed that the algorithms and methods in

this dissertation would apply to the complete Reynolds’ algorithm for flocking, in this section we

determine whether our intuition was correct.

7.3.1 Experimental Results

In this section, we present experiments that compare the performance of seven influence models.

Each of the influence models corresponds to one of the seven possible combinations of the three

aspects of Reynolds’ algorithm for flocking: Alignment, Separation, Cohesion, Alignment + Sepa-

ration, Alignment + Cohesion, Separation + Cohesion, and Alignment + Separation + Cohesion.

Figure 7.8 compares the performance of all seven influence models. In Figure 7.8, the flocking

agents are using the influence model noted in the legend and the influencing agents are also aware

that the flocking agents are using this influence model. In other words, in Figure 7.8 the influencing

agents know the true influence model.

The most important and noticeable trend in Figure 7.8 is that for all k, Alignment loses the

fewest flocking agents on average, followed by Alignment + Cohesion and Alignment + Separation

+ Cohesion. Notice that all of the combinations that are not at least partially comprised of the

Alignment aspect do rather poorly. These results show that the Alignment aspect is critical for

minimizing the number of lost flocking agents, since the Alignment aspect generally keeps the flock

together and moving with the same orientation. Note that the Alignment + Separation combination

performs poorly, likely due to the Separation component breaking the flock apart.

Since the Alignment aspect performs well given our primary Placement performance metric

2By Craig Reynolds, http://www.red3d.com/cwr/boids/

132

http://www.red3d.com/cwr/boids/

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g
Nu

m
 F
lo
ck
in
g
Ag

en
ts
 L
os
t

Alignment
Separation
Cohesion
Alignment+Separation
Alignment+Cohesion
Separation+Cohesion
Alignment+Separation+Cohesion

Figure 7.8: Results using all seven combinations of the three aspects of Reynolds’ algorithm for
flocking as the true influence model. For these experiments, the influencing agents are originally
positioned using the Grid placement method from Section 5.2.2. These graphs show results averaged
over 100 trials, where the error bars depict the standard error of the mean.

(Section 2.2.2) of minimizing the number of lost flocking agents, we can conclude that using only the

Alignment aspect was a reasonable choice for the majority of this dissertation. With this conclusion

made, in the next section we consider how important it is for the influencing agents to know the

true influence model being utilized by the flocking agents.

Performance with Incorrect Influence Models

Section 7.2.4 considered how performance was affected when the influencing agents did not know

the true neighborhood model of the flocking agents. In this section, we present results for a similar

experiment. In particular, we consider how performance is affected when the influencing agents do

not know the true influence model of the flocking agents.

For each figure in this section, a particular combination of the aspects of Reynolds’ algorithm

for flocking will be the true influence model — or in other words, the influence model that is utilized

by the flocking agents — and we will consider how performance differs based on what influence

model the influencing agents believe the flocking agents are utilizing.

Figure 7.9 shows results when the flocking agents are using the Alignment influence model.

133

Each of the different colors in the legend corresponds to the influence model that the influencing

agents believe is being used by the flocking agents. As might be expected, the best performance

is obtained when the influencing agents believe the flocking agents are utilizing the Alignment

influence model. In other words, the influencing agents know the true influence model. The

other combinations that include the Alignment aspect perform better than combinations without

the Alignment aspect, which is expected since the Alignment aspect keeps the flocking agents’

orientations and locations together.

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Alignment (True)
Separation
Cohesion
Alignment+Separation
Alignment+Cohesion
Separation+Cohesion
Alignment+Separation+Cohesion

Figure 7.9: Results when Alignment is the true influence model used by the flocking agents. For
these experiments, the influencing agents are originally positioned using the Grid placement method
from Section 5.2.2. These graphs show results averaged over 100 trials, where the error bars depict
the standard error of the mean.

Figure 7.10 shows results when the flocking agents are using the Separation influence model.

Separation causes each flocking agent to avoid collisions with nearby neighbors — this type of

behavior generally causes the flock to splinter which inherently results in many flocking agents

becoming lost. As can be seen in Figure 7.10, performance is best when k ≥ 6 and the influencing

agents incorrectly believe the flocking agents are using the Alignment influence model. This is

because the behavior of a significant number (greater than or equal to six, in this case) of influencing

agents that behave as if the flocking agents are using the Alignment influence model can influence

134

a couple of flocking agents on average to stay together and orient towards the goal.

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Alignment
Separation (True)
Cohesion
Alignment+Separation
Alignment+Cohesion
Separation+Cohesion
Alignment+Separation+Cohesion

Figure 7.10: Results when Separation is the true influence model used by the flocking agents. For
these experiments, the influencing agents are originally positioned using the Grid placement method
from Section 5.2.2. These graphs show results averaged over 100 trials, where the error bars depict
the standard error of the mean.

Figure 7.11 shows results when the flocking agents are using the Cohesion influence model.

Cohesion causes each flocking agent to steer towards the center location of its neighbors. This type

of behavior tends to keep the flock together. In Figure 7.11 we notice that the best performance

is obtained when the influencing agents believe the flocking agents are using the Alignment or

Alignment + Cohesion influence models. This is because in both cases, the influencing agents

behave to keep the flock together and oriented towards the goal — hence, losing fewer flocking

agents.

Figure 7.12 shows results when the flocking agents are using the Alignment + Separation

influence model. Alignment keeps the flocking agents orienting together while Separation pushes

the flock apart. However, Alignment + Separation together sends the flock slowly moving apart

but towards similar orientations. In Figure 7.12, we see that performance is generally bad for all

influencing models — but is slightly better for k ≥ 6. Similarly to Figure 7.10 in which the flocking

agents behaved according to just the Separation influence model, in this case it takes multiple

135

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Alignment
Separation
Cohesion (True)
Alignment+Separation
Alignment+Cohesion
Separation+Cohesion
Alignment+Separation+Cohesion

Figure 7.11: Results when Cohesion is the true influence model used by the flocking agents. For
these experiments, the influencing agents are originally positioned using the Grid placement method
from Section 5.2.2. These graphs show results averaged over 100 trials, where the error bars depict
the standard error of the mean.

influencing agents behaving as if the flocking agents utilized the Alignment influence model to even

save a few flocking agents from becoming lost.

Figure 7.13 shows results when the flocking agents are using the Alignment + Cohesion

influence model. Alignment and Cohesion work well together to keep the flocking agents close to

each other and oriented in the same direction. In Figure 7.13 we see that if the influencing agents

assume the flocking agents are following either the Alignment influence model or the true Alignment

+ Cohesion influence model, then fewer flocking agents become lost. Performance is slightly better

when the influencing agents assume the flocking agents are using the Alignment influence model

because then the influencing agents are better able to orient the flocking agents towards the goal

orientation θ∗.

Figure 7.14 shows results when the flocking agents are using the Separation + Cohesion

influence model. Separation + Cohesion are conflicting forces, since Separation steers flocking

agents away from neighbors while Cohesion steers flocking agents towards neighbors — but they

are not exactly offsetting. In Figure 7.14, we see that performance is best for k ≥ 4 when the

136

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Alignment
Separation
Cohesion
Alignment+Separation (True)
Alignment+Cohesion
Separation+Cohesion
Alignment+Separation+Cohesion

Figure 7.12: Results when Alignment + Separation is the true influence model used by the flocking
agents. For these experiments, the influencing agents are originally positioned using the Grid
placement method from Section 5.2.2. These graphs show results averaged over 100 trials, where
the error bars depict the standard error of the mean.

influencing agents believe the flocking agents are utilizing the Alignment influence model. However,

performance is second best when the influencing agents believe the flocking agents are utilizing the

Alignment + Separation influence model. This is because influencing agents attempting to influence

flocking agents using the Alignment + Separation influence model will influence the flock away from

neighbors but in one direction.

Figure 7.15 shows results when the flocking agents are using the Alignment + Separation

+ Cohesion influence model. The Alignment + Separation + Cohesion influence model provides

balanced flocking that avoids collisions while keeping the flock together both orientation-wise and

location-wise. In Figure 7.15, we see that performance is best when the influencing agents believe

the flocking agents are using the Alignment model. This is because the Alignment influence model

helps the flocking agents stay together and orient towards the target orientation θ∗. The second

best performance is obtained when the influencing agents believe the flocking agents are using the

true Alignment + Separation + Cohesion influence model. This is not unexpected, since this model

is (1) the model actually being used by the flocking agents and (2) a well balanced flocking model

137

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Alignment
Separation
Cohesion
Alignment+Separation
Alignment+Cohesion (True)
Separation+Cohesion
Alignment+Separation+Cohesion

Figure 7.13: Results when Alignment + Cohesion is the true influence model used by the flocking
agents. For these experiments, the influencing agents are originally positioned using the Grid
placement method from Section 5.2.2. These graphs show results averaged over 100 trials, where
the error bars depict the standard error of the mean.

that keeps the flock together in terms of orientation and location.

Throughout the figures in this section, we consistently found that it was best for the influ-

encing agents to believe that the flocking agents are behaving according to the Alignment influence

model. While this is partially an artifact of the Alignment influence model tending to result in

fewer flocking agents becoming lost, it is also encouraging as it means that it may not be important

for the influencing agents to know the exact influence model being utilized by flocking agents. In

terms of our motivating example, this could mean that the robot birds that join a flock might not

need to know the influence model of the flock they are joining in order to effectively influence the

flock.

7.4 Summary

In this chapter, we set out to determine how well the algorithms and methods presented so far

in this dissertation generalized to alternate neighborhood models and influence models. We also

conducted experiments to determine whether it was critical for the influencing agents to know the

138

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Alignment
Separation
Cohesion
Alignment+Separation
Alignment+Cohesion
Separation+Cohesion (True)
Alignment+Separation+Cohesion

Figure 7.14: Results when Separation + Cohesion is the true influence model used by the flocking
agents. For these experiments, the influencing agents are originally positioned using the Grid
placement method from Section 5.2.2. These graphs show results averaged over 100 trials, where
the error bars depict the standard error of the mean.

correct neighborhood model and influence model of the flocking agents.

In Section 7.2, we more deeply considered the alternate neighborhood models originally

introduced in Section 2.1.1. In Sections 7.2.1, 7.2.2, and 7.2.3, algorithms were provided for de-

termining which agents lie within an agent’s neighborhood for each neighborhood model. Section

7.2.4 presented and analyzed results for these alternate neighborhood models. In these experi-

ments we found that (1) the algorithms and methods in this dissertation generalize to the alternate

neighborhood methods we considered and (2) it is not necessarily important that the influencing

agents know the exact neighborhood model of the flocking agents. Section 7.3 discussed the seven

combinations of the three aspects of Reynolds’ algorithm for flocking. Section 7.3.1 experimentally

evaluated the performance of each combination as well as how each combination faired when the

influencing agents did and did not know the true influence model being utilized by the flocking

agents. These experiments showed us that it is usually best for the influencing agents to believe

that the flocking agents are behaving according to the Alignment influence model. This means that

influencing agents may not need to determine the influence model of the flocking agents.

139

k=2
m=10

k=4
m=10

k=6
m=10

k=8
m=10

k=10
m=10

0

2

4

6

8

10

Av
g

Nu
m

 F
lo

ck
in

g
Ag

en
ts

 L
os

t

Alignment
Separation
Cohesion
Alignment+Separation
Alignment+Cohesion
Separation+Cohesion
Alignment+Separation+Cohesion (True)

Figure 7.15: Results when Alignment + Separation + Cohesion is the true influence model used by
the flocking agents. For these experiments, the influencing agents are originally positioned using
the Grid placement method from Section 5.2.2. These graphs show results averaged over 100 trials,
where the error bars depict the standard error of the mean.

This chapter considered questions regarding generalizability that represent a core component

of this dissertation. The answers to these questions were generally positive, showing that it was

not important for the influencing agents to know the exact neighborhood model or influence model

that the flocking agents were utilizing. Chapter 8 will describe our work implementing parts of this

dissertation — influencing agent behaviors from Chapter 4 and joining behaviors from Chapter 6

— on a real robot platform.

140

8. Robot Implementation

All of the algorithms and methods presented so far in this dissertation were designed and evaluated

in simulation. Although simulation represents the real world, simulation is not the real world.

In particular, simulation experiments are not fully reflective of the real world because the real

world involves robots that (1) sense and act noisily and (2) have limited capabilities. Throughout

this dissertation, we have considered the motivating scenario of using influencing agents to reduce

birdstrikes at airports by guiding flocks of birds around the airports. Previous chapters of this

dissertation showed that our algorithms for behavior, placement, joining, and leaving can effectively

influence flocks of birds in simulation. In this chapter, we show that the primary algorithm for

behavior described in this dissertation can guide a flock of SoftBank Robotics NAO robots around a

dangerous area. As such, this chapter is a proof-of-concept that the algorithms in this dissertation

could be implemented on robot birds to guide a flock of birds around a dangerous area.

In this chapter, we consider how the 1-Step Lookahead algorithm from Section 4.1 performs

when being used by a NAO robot to influence a flock of NAO robots.1 Section 8.1 introduces the

experimental set-up including the environment, NAO robot specifications, and an overview of the

codebase we utilize for these experiments. Section 8.2 discusses how the flocking agent behavior

was implemented on the NAO robots and the experiments run with flocking agents. Section 8.3

describes how the 1-Step Lookahead algorithm from Section 4.1 was implemented on the NAO

robots and the experiments we ran using influencing agents to influence flocking agents. Finally,

Section 8.4 concludes the chapter.

The research question addressed in this chapter is: How can influencing agents influence

a flock of bipedal robots to avoid a particular area? Although the experiments in this chapter

were performed using bipedal robots, many of the lessons learned in these experiments would be

applicable if extending the work in this dissertation to robot birds as discussed in Section 10.2.6.

1Videos of our experiments on NAO robots are available at http://www.cs.utexas.edu/~katie/videos/

141

http://www.cs.utexas.edu/~katie/videos/

8.1 Experimental Setup

Our lab has numerous NAO robots and an active RoboCup Standard Platform League (SPL) team,

so we use the NAO platform and the UT Austin Villa2 SPL codebase for our flocking experiments.

In these experiments, our goal is to influence the flock to avoid a particular area of the environment.

8.1.1 Environment

The flocking experiments described in this chapter are held on the slightly-smaller-than-regulation

8 by 6 meter SPL field at the University of Texas at Austin. Our field is shown in Figure 8.1. The

field has white lines and white goals that the robots use for localization.

Figure 8.1: Our flocking experiments are held on a SPL soccer field.

For the experiments in this chapter, our goal is to (1) influence the flock to avoid walking

across the center spot at the center of the field by avoiding the field’s center circle and (2) influence

the flock to walk towards the soccer goal after walking around the center circle. We assume that each

robot uses the visibility radius neighborhood model described in Section 2.1.1. In our experiments,

we assume a visibility radius r of three meters.

2https://www.cs.utexas.edu/~AustinVilla/

142

https://www.cs.utexas.edu/~AustinVilla/

8.1.2 NAO Robot

The SoftBank Robotics NAO robot is a 11.9 pound robot that stands 22.6 inches tall. NAO

robots have 25 degrees of freedom (see Figure 8.2), two 1.22 megapixel cameras, left and right

sonar sensors, an inertial unit with a 3-axis gyroscope and a 3-axis accelerometer, bump and force

sensitive resistors on the feet, and three touch sensors on the head. A wireless network card and

Intel Atom Z530 processor are built into the head. Each NAO uses a lithium-ion battery that

allows for up to 60 minutes of active use.

Figure 8.2: NAO robots have 25 degrees of freedom. Each joint is labelled with Joint Name[Motor
Type][Reductor Type].3

NAO robots are designed for educational, entertainment, and customer-facing tasks. NAO

is a rather affordable robot platform with a retail price in the United States of $9500/robot.

NAO robots come with an entire software library that allows users to quickly create anima-

tions and programs for the NAO. Among other things, this library allows users to easily get their

NAO to move, recognize speech, recognize items, and track sound, faces, and colored items. How-

ever, this library is not well-suited for robot soccer research because the walking and behaviors are

too slow. Although speed is not an issue for the flocking experiments described in this dissertation,

3By Aldebaran Robotics, http://doc.aldebaran.com/2-1/family/nao_h25/motors_h25.html

143

http://doc.aldebaran.com/2-1/family/nao_h25/motors_h25.html

we use the UT Austin Villa codebase for our experiments because it is familiar to us and handles

our vision, localization, and communication needs. The UT Austin Villa codebase is described in

Section 8.1.3.

8.1.3 UT Austin Villa Codebase

The UT Austin Villa SPL codebase was used for the experiments in this chapter. A code release

of the UT Austin Villa SPL codebase used at RoboCup 2016 is available on GitHub.4

The UT Austin Villa codebase is designed to support a team of five NAO robots playing

soccer autonomously. As such, the codebase contains a vision module to allow the robots to make

sense of the videos obtained by their cameras. Specifically, the vision module reports detections of

field landmarks (such as goals, the center circle), other robots, and the ball. The localization module

allows the robots to determine their position and orientation on the field based on both observed

landmarks and their own motion. The motion module contains a kicking engine and walking engine.

The walking engine feeds information regarding turning and walking to the localization module.

Finally, the communication module handles inter-team communication such as location sharing,

ball sharing, and role bidding. The most recent information received from each teammate is held

in the team packet memory block.

Within our codebase, motion and high level strategy processes run 100 times per second.

Vision processes run in a different thread 30 times per second.

8.1.4 Videos

Videos of our experiments on NAO robots are available on our website5 but we also provide direct

links to videos throughout this chapter as appropriate.

For each episode, we include a video of robot behavior. When available,6 we also provide a

video depicting each robot’s real-time localization beliefs. Observing this localization information

can explain some decisions by the robots that otherwise seem strange when watching behavior on

the field. Do not assume that there is a significance to the color of each robot in the localization

4https://github.com/LARG/spl-release
5http://www.cs.utexas.edu/~katie/videos/
6Localization videos are not available for some episodes because the camera failed to record properly.

144

https://github.com/LARG/spl-release
http://www.cs.utexas.edu/~katie/videos/

videos. There is significance in some cases though — in these cases, the significance is noted on

our website as well as on the individual video pages.

8.2 Flocking Agents

Flocking agents comprise the flock that we wish to influence. In our experiments, the flocking

agents always wear white jerseys while agents acting as influencing agents wear orange jerseys. In

Section 8.2.1 we describe the behavior and implementation details of the flocking agents. In Section

8.2.2 we discuss experiments using flocking agents, while in Section 8.2.3 we discuss experiments in

which a manually controlled flocking agent acts as an influencing agent.

8.2.1 Behavior and Implementation

For our robot experiments, we implemented the simplified version of Reynolds’ flocking algorithm

[68] that we utilized throughout most of this dissertation. As described in Section 2.1.2, this

simplified version only considers the alignment aspect of Reynolds’ flocking algorithm. Algorithm

14 shows pseudocode for flocking according to the alignment aspect of Reynolds’ flocking algorithm.

Table 8.1 introduces notation and variables that are utilized in Algorithm 14.

Variable Definition

team packets A memory block containing the most recently communi-
cated data from each teammate

team packets.get(x) Returns the data last received from teammate x
self The robot’s own teammate index
team packets.get(x).locData A localization memory block containing robot x’s self-

reported orientation (orientation())
getTrueAngleDiff(neighOrient,
selfOrient)

Returns the true angular difference between neighOrient
and selfOrient

Table 8.1: Notation and variables used in Algorithm 14.

Algorithm 14 calculates the difference in orientation between a robot and the average ori-

entation of its neighbors on lines 4–8. If the robot has no neighbors (line 9) or the difference in

orientation is small (line 13), the robot walks forward (lines 10 and 14). Otherwise, the robot turns

towards the average orientation of its neighbors (line 16). turnThreshold on line 12 can be tuned to

145

Algorithm 14 SimplifiedReynolds()

1: diffFromSelfTheta← 0.0
2: numNeighbors← 0
3: selfOrient← team packets.get(self).locData.orientation()
4: for each neighbor i index including self do
5: neighOrient← team packets.get(i).locData.orientation()
6: diffFromSelfTheta← diffFromSelfTheta + getTrueAngleDiff(neighOrient, selfOrient)
7: numNeighbors← numNeighbors + 1
8: diffFromSelfTheta← diffFromSelfTheta

numNeighbors
9: if numNeighbors == 0 then

10: walk straight forward
11: else

12: turnThreshold← π
10

13: if |diffFromSelfTheta| < turnThreshold then

14: walk straight forward
15: else

16: turn in place to decrease diffFromSelfTheta

determine how different a robot’s orientation must be from it’s neighbors before it realigns. Smaller

values of turnThreshold result in sensitive flocking agents that realign when their orientation differs

slightly from that of their neighbors. On the other hand, larger values of turnTheshold result in

flocks that can drift apart because the flocking agents do not realign until their orientation greatly

differs from that of their neighbors.

8.2.2 Experiments with Flocking Agents

Although the work in this dissertation considered how to influence flocks from within, our initial

robot experiments consider only flocking agents in order to ensure that the flocking behavior is

correct. In this chapter, our goal is to prevent flocking agents from crossing over the center spot

in the center of the field by influencing the flock to instead travel around the center circle. In this

section we consider flocks of flocking agents moving downfield from the initial positions shown in

Figure 8.3.

First, we considered two episodes in which robots flocked downfield. In the first episode,

two robots flocked downfield but drifted slightly to the right while flocking.7 In the second episode,

three robots flocked downfield but drifted more significantly to the right while flocking.8 While

7Robot video: https://youtu.be/1G0iBRnSq00 , Localization video: https://youtu.be/IObaV4Myx6o
8Robot video: https://youtu.be/z67dlB9O7Xs

146

https://youtu.be/1G0iBRnSq00
https://youtu.be/IObaV4Myx6o
https://youtu.be/z67dlB9O7Xs

5

4

3
2

1

Figure 8.3: Initial positions of robots for experiments. Five possible positions are shown, although
in some experiments not all five robots are utilized. Each position is labeled by the robot number,
which corresponds to the numbers on the robot jerseys.

working on the NAO robots, we noticed that the robots sometimes do not walk completely straight

when trying to walk “straight” — so the periodic, unpredictable drift observed in these episodes is

likely a result of use patterns on the robots and not an issue with the flocking behavior.

Next, we considered an episode in which three robots flocked downfield while a fourth robots

walked in to join the flock.9 In this episode, the three robots turned slightly towards the right side

of the field once the fourth robot entered their neighborhood. Likewise, the fourth robot began

walking mainly towards the goal once the three robots entered its neighborhood. These behaviors

by all four flocking agents were expected as a result of averaging their headings when they become

neighbors.

8.2.3 Experiments Manually Influencing the Flock

The episodes described in Section 8.2.2 show that the flocking agents behave as expected. In this

section we continue to run Algorithm 14’s flocking agent behavior on all robots — but now we

9Robot video: https://youtu.be/JZvahghiwEY

147

https://youtu.be/JZvahghiwEY

physically control one robot in each episode to determine whether changes in one flocking agent’s

behavior can influence the flock to avoid a particular area of the environment. In other words,

we manually re-orient one robot periodically to make it behave as we would expect an influencing

agent would behave. For the remainder of this section, we will refer to the manually operated robot

as an influencing agent.

In this section, we consider three episodes. There were multiple flocking agents and one

influencing agent in each episode. During each episode, I manually turned the influencing agent

when I believed doing so would influence the flock to travel around the center circle but not leave

the field. Experience taught me that large, infrequent turns were most effective.

The first episode considered two flocking agents and one influencing agent.10 In this episode,

the flocking agents generally followed the influencing agent. There was some oscillation in orienta-

tions shortly after the influencing agent was turned, but the agents always converged to a general

orientation. The flock became disoriented after the two-minute mark, but the flock eventually

converged to continue towards the soccer goal.

The second episode considered three flocking agents and one influencing agent.11 This

episode progressed smoothly as the individual robots re-oriented when their orientation differed

too much from the flock’s orientation. Player 4 became lost at 1:45 in the robot video when the

influencing agent was turned. Although player 4 recovered after making a complete turn, this

behavior caused the flocking agents to converge to a different heading than the influencing agent

at the end of the episode. Interestingly, the localization video showed that the flock believed it was

converged to a single heading at the end of the episode.

The third episode considered four flocking agents and one influencing agent.12 The influenc-

ing agent incrementally influenced the flock in this episode. However, after the flock made its way

around the center circle, the influencing agent turned itself to the right at 1:26 in the robot video

(although the localization video showed the influencing agent still flocking with the flock). This

difference between the influencing agent’s localization belief and reality caused subsequent turns

of the influencing agent to behave unexpectedly. Despite these issues with the influencing agent,

10Robot video: https://youtu.be/i_BaN4wesQ8 , Localization video: https://youtu.be/Q0cmIYsJPJI
11Robot video: https://youtu.be/eIbRfM-8_QE, Localization video: https://youtu.be/FbdW0pqfCMk
12Robot video: https://youtu.be/KkvomKijJA4 , Localization video: https://youtu.be/DJMXiDh5Ug4

148

https://youtu.be/i_BaN4wesQ8
https://youtu.be/Q0cmIYsJPJI
https://youtu.be/eIbRfM-8_QE
https://youtu.be/FbdW0pqfCMk
https://youtu.be/KkvomKijJA4
https://youtu.be/DJMXiDh5Ug4

all of the robots except player 3 eventually converged to one heading. Although player 3 did not

converge, the localization video showed that player 3 believed it converged with the flock.

There are some interesting trends in these episodes. First, the influencing agent usually

turned back to its original orientation after being turned — and sometimes overshot it’s original

orientation — in flocks with fewer flocking agents. However, in the flock with four flocking agents,

we never saw the influencing agent overshoot. The influencing agent likely did not overshoot when

there were more flocking agents because the “pull” to the flock’s new orientation was too strong.

Second, turning the robot by large angles worked better than smaller angles, likely as a result of

the overshooting just discussed. Third, turning the robot deliberately and placing it carefully was

important — swinging the robot or turning it too quickly tended to result in the robot becoming

lost. The robot likely became lost because the visual observations can become blurred if the

robot is turned quickly. All of these observations helped guide our influencing agent behavior and

implementation in Section 8.3.1.

8.3 Influencing Agent

This dissertation is about using influencing agents to influence flocks towards a particular behavior.

Although the experiments in Section 8.2.3 considered how a flocking agent could be manually

controlled to influence a flock, in this section we consider how influencing agents can influence a

flock autonomously.

As in previous experiments, the flocking agents wear white jerseys while the influencing

agents wear orange jerseys. In Section 8.3.1 we describe the behavior and implementation details

for influencing agents. In Section 8.3.2 we discuss our experiments utilizing one influencing agent

to influence a flock.

8.3.1 Behavior and Implementation

We implemented the 1-Step Lookahead behavior from Section 4.1’s Algorithm 5 as the influencing

agent behavior for the experiments in this chapter. Since simulation is often different than reality,

we made a few changes to Algorithm 5 as described below.

149

Algorithm 5 returns an orientation for the influencing agent to immediately adopt — yet

robots cannot immediately adopt an orientation. As such, we altered Algorithm 5 such that it only

considers — and hence can only return — orientations that the influencing agent can adopt within

a few steps.

Additionally, we updated the 1-Step Lookahead behavior for the influencing agents to either

walk straight or walk forward while turning. The influencing agents walk straight while they have

no neighbors. If the true angular difference between an influencing agent’s current goal for the flock

and the average heading of the flock is greater than π
6 , then the influencing agent turns according

to the 1-Step Lookahead behavior to influence the flock towards the influencing agent’s current goal

for the flock. Otherwise, the influencing agent flocks with its neighbors by following Algorithm 14.

Finally, similarly to the maneuver experiments in Section 4.5, we assume each influencing

agent always has a goal for the flock. In particular, the influencing agent’s goal for the flock is always

based upon the position on the field of the influencing agent’s neighbors. For the experiments in this

chapter, the influencing agents generally led the flock along the path shown in Figure 8.4. However,

regardless of this path, the influencing agents would influence the flock downfield but towards the

center of the field if any neighbors were close to leaving the left sideline of the field. Likewise, the

influencing agents would also influence the flock towards the left sideline if any neighbors were close

to entering the center circle.

8.3.2 Experiments with Influencing Agents

In this section we describe three episodes in which an influencing agent influenced flocking agents

to avoid crossing over the center spot on a soccer field by influencing them to travel around the

soccer field’s center circle. In each of these episodes, the agents moved downfield from the initial

positions shown in Figure 8.3.

In the first episode, the influencing agent successfully influenced two flocking agents to avoid

the center circle.13 The influencing agent first influenced the flock to turn and walk towards the

sideline. Once player 5 was close enough to the sideline, the influencing agent influenced the flock

to walk downfield between the sideline and the center circle. Once the influencing agent was near

13Robot video: https://youtu.be/iuQdcsfWsfs , Localization video: https://youtu.be/P3lBLZlWLDA

150

https://youtu.be/iuQdcsfWsfs
https://youtu.be/P3lBLZlWLDA

2

Figure 8.4: The influencing agent attempts to guide the flock along the dotted path shown in this
figure.

the field’s centerline, it slightly influenced the flock towards center field to keep player 3 from

leaving the field. Once the flock walked past the center circle, the influencing agent influenced the

flock to walk away from the left sideline. Once the flock neared the penalty cross, the influencing

agent influenced the flock to turn towards the soccer goal. Note that throughout this episode, the

localization video generally mirrored the robot video. Since the two videos depict similar behavior,

we know that the robots remained well localized — or in other words, generally had accurate models

of their current location and orientation.

As in the first episode, in the second episode the influencing agent influenced two flocking

agents to avoid the center circle.14 Although the robots remained well localized in the first episode,

in this second episode the influencing agent became and then remained lost. At 2:18 in the robot

video the influencing agent turned to the right, which influenced the flock to turn right towards

the center circle. The influencing agent started to correct its behavior around 2:26 in the robot

video, but continued to turn away from the soccer goal from 2:33 onward in the robot video. The

robot video ended as the influencing agent walked off the field — yet surprisingly this did not

14Robot video: https://youtu.be/3hLD1jL75z4 , Localization video: https://youtu.be/Tkc4Kntr9J8

151

https://youtu.be/3hLD1jL75z4
https://youtu.be/Tkc4Kntr9J8

influence the flocking agents negatively. This strange behavior in the robot video is explained by

the localization video though. The influencing agent became lost after getting an unexpected line

detection at 2:20 in the localization video. Then, although the influencing agent believed it was

facing the goal from 2:32 onward in the localization video, a goal observation was not obtained

until 2:55 in the localization video. The UT Austin Villa codebase does not use false negative

data though, so the lack of a goal observation when expected did not affect the influencing agent’s

location and orientation beliefs. Unfortunately, the goal observations obtained from 2:55 onward

in the localization video did not help the influencing agent though, since they were false detections

of a goal near the field’s sideline. These false detections led to the influencing agent walking off the

right sideline while it believed it was walking off the endline.

In the third episode, the influencing agent influenced four flocking agents to avoid the center

circle.15 The influencing agent initially turned to influence the flock towards the left sideline. The

influencing agent continued attempting to influence the flock to turn further away from the center

circle until 0:40 in the robot video when it converged with the flock towards the left sideline. Note

that players 1 and 4 became lost at 0:52 in the robot video, but corrected their behavior by 1:00 in

the robot video. At 1:05 in the robot video, player 2 began influencing the flock upfield. At 1:53 in

the robot video, the influencing agent turned to leave the left side of the field in order to influence

the flock away from the center circle because player 1 had walked too close to the center circle.

Although the influencing agent fell, the influence was effective enough to keep player 1 from entering

the center circle. The influencing agent tried at 2:14 in the robot video and 2:34 in the localization

video to influence the flock to turn left towards the soccer goal. However, the influencing agent

had no room to walk due to the edge of the field and obstacles lying just off the field. Meanwhile,

the flock walked farther from the influencing agent — which now had multiple localization models

as shown in the localization video at 2:41 —and no longer considered the influencing agent as a

neighbor. Note that player 4 broke near the end of the episode and was removed from the field.

When comparing this third episode to the first and second episodes, the influencing agent needed

to turn much more to influence a flock of four robots than a flock of two robots. These substantial

turns required the influencing agent to behave differently than the flock for long periods of time.

15Robot video: https://youtu.be/g8iIKV1YrCk , Localization video: https://youtu.be/EWuWIEAn2X0

152

https://youtu.be/g8iIKV1YrCk
https://youtu.be/EWuWIEAn2X0

As happened in the third episode, behaving different for long periods of time can result in the flock

leaving the influencing agent’s influence.

These three episodes show that using an autonomous influencing agent to influence a flock to

travel around a dangerous area is possible. Influence over the flock could be improved in a few ways

though. First, it would be beneficial if the influencing agent was able to keep the flock more cohesive

and hence maintain influence over all of the flocking agents throughout the experiment. Second,

improving localization information would result in more accurate influence by the influencing agents.

Finally, designing algorithms that allow the influencing agents to trade-off between influencing and

staying within the neighborhoods of flocking agents may be beneficial.

8.4 Summary

In this chapter, we considered how the alignment aspect of Reynolds flocking algorithm and the

1-Step Lookahead algorithm from Section 4.1 perform when being used in flocking experiments on

NAO robots.

In particular, Section 8.1 introduced the environment, NAO robot platform, and codebase

that we used in our robot flocking experiments. Section 8.2 discussed how the alignment aspect

of Reynolds flocking algorithm performed on NAO robots. Section 8.2 also presented results for

manually operating one flocking agent to behave as an influencing agent. Finally, Section 8.3

described how the 1-Step Lookahead behavior was altered to be used to influence a flock of NAO

robots along a path. Three episodes using the 1-Step Lookahead algorithm on one influencing agent

to influence a flock were discussed.

This chapter shows that the primary influencing agent behavior presented in this dissertation

— the 1-Step Lookahead algorithm from Section 4.1 — could be utilized successfully in a robotic

domain with minimal alterations to account for the difference between simulation and reality. The

success of the 1-Step Lookahead algorithm in this chapter’s experiments provides evidence that the

algorithms in this dissertation could be used on robot birds to influence flocks of birds to travel

around dangerous areas, such as windfarms and airports.

153

9. Related Work

Our work towards influencing the behavior of flocks is inherently motivated and influenced by a

variety of cross-disciplinary fields. As such, this chapter overviews some of the related and relevant

work in these cross-disciplinary areas.

In this chapter, we review related work in the multiagent coordination and teamwork sector

in Section 9.1. In Section 9.2 we consider related work on ad hoc teamwork, or teamwork that is

not pre-coordinated. In Section 9.3 we consider relevant and motivational flocking, herding, and

swarm research. We include subsections detailing related work on the two most common flocking

formations: cluster formations (Section 9.3.1) and line formations (Section 9.3.2). Finally, we

consider work by others that is most similar to our own — work on influencing a flock — in Section

9.4. In particular, we consider three main methods for influencing a flock in Section 9.4: human-led

influence (Section 9.4.1), shepherding (Section 9.4.2), and infiltration (Section 9.4.3).

Throughout this chapter, for each piece of related work we describe how the work in this

dissertation is either (1) different or (2) addresses a related but distinctly different problem.

9.1 Multiagent Coordination and Teamwork

Multiagent teams, both in industry and in academia, are almost always explicitly designed to

coordinate. Agents on these teams are usually designed specifically to work with other agents on

these teams such that their behaviors are tightly coupled.

Most multiagent teams require explicit coordination protocols or communication proto-

cols. Three popular protocols for communication and coordination — SharedPlans [40], Shell for

TEAMwork (STEAM) [76], and Generalized Partial Global Planning (GPGP) [24] — all provide

collaborative planning or teamwork models to each team member. Each of these protocols work

well when all agents know and follow the protocol. However, in this dissertation we do not assume

that any protocol is known by all agents and hence we cannot successfully use such protocols in

154

our work.

Some multiagent teams are designed to work specifically with their teammates in pre-defined

ways. Stone and Veloso introduce the idea of periodic team synchronization domains [72]. In these

domains, a “locker-room agreement” is formed and the team uses periodic team synchronization

periods to coordinate their teamwork structure and communication protocols. The work discussed

in this dissertation differs from this work in that we do not assume the availability of a team

synchronization (pre-coordination) period.

Yu et al. propose an implicit leadership algorithm that allows all agents to follow a sin-

gle simple rule and effectively reach a common group decision without any complex coordination

methods [82]. Specifically, implicit leadership allows all agents to agree on a decision that can be

determined by one or a few informed agents. Their approach can also handle cases where informed

agents have different confidence levels regarding their information. Under their model, each agent

is able to control particular state variables and determine the state of neighbors within a particular

radius. Each informed agent has a goal state and a confidence in that goal. According to their

model, each agent attempts to align its state with those of its neighbors and informed agents also

attempt to achieve their goal state. The work by Yu et al. uses different methods to address

the same problem that is considered by Chapter 4. However, since their control law incorporates

both alignment with neighbors and alignment to a goal state, the group as a whole will reach the

goal state slower using Yu et al. ’s algorithm than using our 1-Step Lookahead behavior shown in

Algorithm 5.

One instance of large-scale multirobot coordination is Amazon Robotics’ Kiva system [22,

27]. The Kiva system involves hundreds of mobile robots working together in large warehouses to

deliver inventory pods to a variety of locations. Some of these deliveries are time sensitive, such as

delivering the pods to and from packers. Other deliveries can be done at any time, such as moving

out-of-season pods to more remote sections of the warehouse. Although most of the details of the

Kiva system are unknown by those outside the company, it is clear that this is a real-life large-scale

multi-agent resource allocation problem.

In addition to the work described in this dissertation, I have also worked extensively on

the UT Austin Villa RoboCup Standard Platform League (SPL) team [9, 10, 11, 33, 63]. For our

155

SPL team, we program five SoftBank Robotics NAO robots to play soccer together. Our robots

communicate using a specific communication protocol that allows them to explicitly coordinate

the position of each teammate, the assignment of roles to each teammate, and the current play

selection. Even if a robot designed outside our team were able to use our communication protocol,

our behaviors are written in such a way that we assume particular characteristics, such as walk

speed and what it means to play a particular role, that it would be difficult for a robot designed

outside of our team to naturally fit into our team. Interestingly, we will get to test out this

exact situation at RoboCup 2017 when we compete in the new mixed team tournament.1 In this

new competition, we will compete on a joint team with the UPennalizers2 from the University of

Pennsylvania, where the goal is for both teams to use a shared communication protocol to play

together as a pre-coordinated team despite utilizing independent code bases.

9.2 Ad Hoc Teamwork

Although coordinated teamwork is a well-studied area, most research addresses the problem of

coordinating and communicating among pre-coordinated teams that are designed to work together.

Ad hoc teamwork, on the other hand, addresses multiagent teamwork in which the coordinating

agents do not all share a common coordination framework. The work in this dissertation is mo-

tivated by ad hoc teamwork — hence in this section, we overview recent work under the ad hoc

teamwork umbrella. Each of these projects is related to this dissertation in that they each consider

coordination without pre-coordination when one or more agents join a team. However, each project

differs in (1) how the ad hoc agents attempt to work with the team they are joining and (2) the

dynamics of the team they are joining.

In a 2010 AAAI challenge paper, Stone et al. challenged the artificial intelligence community

to develop agents that are able to join previously unfamiliar teammates to complete cooperative

activities [71]. Although they were not the first to consider this problem — two earlier works

[15, 51] are discussed below — they did draw attention to this under-researched part of multiagent

1Mixed team tournament rules (Appendix B):
http://spl.robocup.org/wp-content/uploads/downloads/Rules2017.pdf

2https://fling.seas.upenn.edu/~robocup/wiki/

156

http://spl.robocup.org/wp-content/uploads/downloads/Rules2017.pdf
https://fling.seas.upenn.edu/~robocup/wiki/

systems and they coined the terminology “ad hoc teamwork” and “ad hoc agents” to describe work

in this area. Their paper provided a definition of ad hoc teamwork, a methodology for evaluating

performance of various ad hoc agents when paired with various teammates in a particular domain,

and an initial assessment of the potential technical challenges that should be addressed when

creating an ad hoc agent.

In the robot soccer domain, Bowling and McCracken [15] propose methods for coordinating

an agent that joins an unknown, pre-existing team. In their work, each ad hoc agent is given a

playbook that differs from the playbook of its teammates. The teammates assign the ad hoc agent

a role, and then react to it as they would any other teammate. The ad hoc agent analyzes which

plays work best over hundreds of simulated games, predicts the roles its teammates will adopt in

new plays, and assigns itself a complementary role in these new plays. Similarly to the work in

this dissertation, they propose coordination techniques for an agent that wants to join a previously

unknown team of existing agents. However, they take a different approach to the problem in that

they provide the single agent with a play book from which it selects the play most similar to the

current behaviors of its teammates.

Jones et al. perform an empirical study of dynamically formed teams of heterogeneous

robots in a multirobot treasure hunt domain [51]. In their work, they adapted the Traderbots

system [26] to dynamically form heterogeneous teams. They assumed that all of the robots know

they are working as a team and that all of the robots can communicate with one another, whereas

we do not assume that the teammates realize they are working on a team with the ad hoc agents

nor do all of the agents share a communication protocol.

In 2013, Liemhetcharat defended a dissertation in which he considered (1) how to model

how well teammates work together on an ad hoc team, (2) how to learn such models, and (3) how

to use this knowledge to form more effective ad hoc teams [57]. Liemhetcharat formally defined a

weighted synergy graph that models the capabilities of robots in different roles and how different

role assignments affect the overall team value. He presented a team formation algorithm that can

approximate the optimal role assignment policy given a set of teammates to choose from and a task.

He also used observations of a team’s performance and attempted to fit models to this data, where

the data could either be provided all at once (if previous observations are available) or online (to

157

update the model as observations are acquired). Liemhetcharat’s work is similar to the work in this

dissertation in that both consider adding ad hoc agents to teams. However, in this dissertation we

consider how ad hoc agents should behave, whereas Liemhetcharat considers which ad hoc agents

should be added to a team (given multiple possible options).

In 2014, Barrett defended a dissertation in which he considered how to use limited knowledge

about teammates to plan how to best act [8]. Barrett focused on algorithms that allowed ad hoc

agents to learn about their environment and teammates, as well as reason about teamwork and

choose appropriate actions. He created ad hoc agents that were (1) robust to a variety of teammates

by being able to learn about teammates and adapt to their behaviors online, (2) robust to a variety

of tasks by being able to adapt to new tasks and decide when to take actions to learn about

the behaviors of teammates, and (3) able to adapt quickly to new teammates and tasks without

extensive observations of either. As such, Barrett created ad hoc agents that could work well, but

not necessarily optimally, with a variety of unknown teammates on a variety of tasks. Our work

differs from the work of Barrett in that we specifically focus on all aspects of creating ad hoc agents

that can work well with teammates exhibiting a reactive swarm behavior.

In 2015, Albrecht defended a dissertation that considered how to design an agent that is

able to achieve optimal flexibility and efficiency within a team despite having no prior coordination

[2]. One of his main contributions is the Harsanyi-Bellman Ad Hoc Coordination algorithm which

uses concepts from game theory to facilitate ad hoc agents coordination with previously unknown

agents. As with Barrett’s dissertation [8], our work tackles an inherently different problem than

Albrecht’s work. Specifically, we focus on creating a complete ad hoc agent that can work well with

teammates in a reactive swarm.

Various ad hoc teamwork experiments have occurred at recent RoboCup competitions. A

Drop-in Player Competition has been held in the 3D simulation league and Standard Platform

League (SPL) since 2013 [32, 61]. We have been involved in organizing and running the SPL

Drop-in Player Competition since it began in 2013. This competition pulls one player from five

different teams, and puts these players on a team to play with no pre-coordination and limited

communication. The RoboCup Small Size League has also held a “Mixed-team Tournament” [69]

at some RoboCup competitions in which two teams are randomly combined to play as one. The

158

winner of their tournament is the team who wins the most games.

9.3 Flocks, Herds and Swarms

Many researchers in various fields, including biology, physics, graphics, and computer science, have

considered the emergent behavior of flocks, herds, and swarms. In this section, we discuss some of

the work that is most related and relevant to the work of this dissertation.

Barca formulated a template for an anti-swarming strategy that could be utilized against

adversary robot swarms [7]. His stance is that since swarm robots will be widely available in the

near future, it is critical to develop technologies to impede destructive swarms before they become

problematic. The techniques described in his paper try to bring destructive swarms into a calm

state, called recession. It is possible that the methods presented in this dissertation could be

extended to influence dangerous swarms into a safe area (such as a large metal box). Towards this

idea, Section 10.2.9 considers this exact application.

Cristiani and Piccoli introduce an agent-based model for simulation that takes into account

only long-range cohesion, short-range repulsion, and visual field [20]. Using this simple model, they

are able to generate many different self-organized patterns that cover the behaviors observed in

nature for most animal groups by simply setting the parameters of their model. Although their

work does not consider the effect influencing agents can have on these animal groups, it does imply

that the algorithms and methods created for one model may be applicable to other models with

simple parameter tuning.

Berger et al. present a general method for swarm classification from partial data using

subspace learning [12]. They are able to use this method to classify swarm behavior as well as

recognize emerging swarm behavior. Their results show that their method performs better than

the state-of-the-art in swarm classification across a variety of swarm models and agent sampling

schemes. Although Chapter 7 showed that knowing the exact flocking model is not crucial in most

cases, the work by Berger et al. is relevant in the cases where being able to accurately classify swarm

behavior — such as the flocking model being employed by a flock — could improve performance.

Bajec and Heppner organized a through review of organized flight in birds [5]. They noted

159

that the fraction of active investigators of organized flight in birds with a biology background had

steadily decreased since the 1970s. Their claim was that continued progress in the area would de-

pend on cross-disciplinary collaborations instead of specialists working alone. Their review focuses

on two types of organized flight — cluster formations and line formations — and pays specific

attention to the types of questions usually asked by researchers for both types of organized flight.

For the remainder of this section, we will consider the research related to cluster formations

(Section 9.3.1) and line formations (Section 9.3.2) that is most relevant to the work presented in

this dissertation. For clarity, Figure 9.1 shows an example of each type of formation.

(a) Cluster Formation (b) Line Formation

Figure 9.1: Pictorial descriptions of the two main types of organized flight.3

9.3.1 Cluster Formations

The flocking model that we introduced in Section 2.1 and assumed throughout this dissertation

results in agents flocking in a cluster formation such as seen in Figure 9.1(a). Some biologists

believe that a cluster formation is utilized by many types of small birds because the tight cluster

offers protection against aerial predators by increasing the risk of collision to the predator [77].

Bajec and Heppner provide a complete review of flocking cluster formations [5]. In this section, we

consider related work that concerns flocks utilizing a cluster formation.

Reynolds introduced the original algorithm for flocking that we use in this dissertation [68].

His work focused on creating a realistic computer model of flocking. As described in Sections

2.1.2 and 7.3, Reynolds’ algorithm for flocking consists of three simple steering behaviors that

determine how each agent maneuvers based on the behavior of the agents around it (henceforth

3(a) By John Holmes, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=9240013
(b) By Andreas Trepte - CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=337516

160

https://commons.wikimedia.org/w/index.php?curid=9240013
https://commons.wikimedia.org/w/index.php?curid=337516

called neighbors): Separation steers the agent such that it avoids crowding its neighbors, Alignment

steers the agent towards the average heading of its neighbors, and Cohesion steers the agent towards

the average position of its neighbors. Vicsek et al. considered just the Alignment aspect of Reynolds’

algorithm for flocking [80]. Hence, like in all of this dissertation except Section 7.3, Vicsek et al. use

a model where all of the particles move at a constant velocity and adopt the average direction of the

particles in their neighborhood. However, like Reynolds’ work, Vicsek et al. were only concerned

with simulating flock behavior and not with adding controllable agents to the flock.

Of course, Reynolds’ algorithm for flocking is just an approximation of how actual flocking

occurs. In reality, it is difficult or impossible to determine how individual birds in flocks decide

how to behave. Herbert-Read et al. show that some of the commonly-held approximations and

beliefs about how flocking in cluster formations occurs — such as Reynolds’ flocking algorithm [68]

— may not be consistent across different species [47]. Specifically, Herbert-Read et al. presented

three key rules for the social interactions of mosquitofish (Gambusia affinis): (1) attraction forces

are important in maintaining group cohesion, but there is only weak evidence that fish align with

their neighbor’s orientation, (2) repulsion is mediated principally by changes in speed, and (3)

although the positions and directions of all flock members are highly correlated, individuals only

respond to their single nearest neighbor. Some of these findings directly conflict with Reynolds’

flocking algorithm [68] and our flocking model assumptions in Section 2.1. This difference could

be a result of mosquitofish not following conventional flocking behavior — or this could be a sign

that one flocking model cannot accurately describe flocking across different species. In either case,

even if flocking models are inconsistent within a species, we found in Chapter 7 that many of our

algorithms and methods can apply across different flocking models.

It is often difficult to identify the precise interaction rules used by different species. However,

recent advancements in tracking technology now allow large amounts of data to be collected on

the movements and positions of individuals in groups. Students and professors at Georgia Tech

released the Biotrack software for tracking and analyzing multiple agents.4 Biotrack has been used

successfully to track ants, bees, and termites. The Biotrack software uses a tracking approach

that is based on work by Feldman et al. [28]. Feldman et al. contribute a greedy detection-based

4http://www.bio-tracking.org/category/software/

161

http://www.bio-tracking.org/category/software/

algorithm for tracking dynamic targets in an online fashion. In experiments, Feldman et al. show

that they can use four to eight laser range finders to track humans in sports and social settings with

over 98% correct detections. In other animal tracking work, Herbert-Read discussed how trajectory

data can be used to model how animals act in groups [46]. The work by both Feldman et al. and

Herbert-Read is relevant to the work in this dissertation because creation of more accurate animal

behavior models will be helpful in determining how to best influence these animals.

Some related research has also considered how different information provided to the flocking

agents affects their behavior. Turgut et al. consider how noise in heading measurements, the

number of neighbors, and the range of communication affect the self-organization of flocking robots

[79]. Their experiments show that the range of communication is the primary factor that determines

how many robots can flock together. They found that the flocking agents are highly robust to noise

in heading measurements and neighbors. Moeslinger et al. present a flocking algorithm for low-end

flocking robots that have no ability to communicate but do have four distance sensors with limited

range [64]. However, neither of these research lines consider how to influence the flock to adopt a

particular behavior by introducing additional agents into the flock.

Strandburg-Peshkin et al. consider the accuracy of commonly used neighborhood models

in fish [73]. They present a novel approach that considers individual movement decisions to be

based explicitly on the available sensory information. Specifically, their visual model claims that

all individuals that occupy an angular area on the retina of the focal fish that is greater than a

threshold value are considered to be neighbors. Explicitly considering visual sensing allows them to

accurately predict the propagation of behavior changes in groups due to leadership. They claim that

the structural properties of visual interaction networks differ markedly from commonly used metric

and topological models, meaning that these models likely do not reflect the visual information

employed when making movement decisions. In their experiments, they use some informed agents

that are trained to move towards a stimulus. They note that influence can be seen to propagate

through the flock like a wave and that informed individuals respond first and tend to occupy frontal

positions in the group. Like Strandburg-Peshkin et al., we have noticed that influence does tend

to propagate through the flock like a wave. Although the similarities between this dissertation

and their work do not extend past this observation, their work is relevant to our work in that it

162

considers the reality of various neighborhood models.

Zavlanos et al. present a theoretical framework for controlling graph connectivity in mobile

robot networks and consider flocking as an application of connectivity control [83]. In their multi-

robot system, they were able to guarantee flocking behavior while preserving network connectivity.

Their work did not consider adding influencing agents to the flock, but it is notable because they

consider network connectivity in flocking and this inspired the graph algorithm for influencing agent

placement that is described in Section 5.3.

Rosenthal et al. show that the connectivity between schooling fish by which behavior prop-

agates is complex, weighted, directed, and heterogeneous [70]. Specifically, they show that individ-

uals with relatively few strongly connected neighbors are both most socially influential and most

susceptible to social influence. This finding is contrary to the assumption made in our work that

the agents respond to each other in a homogeneous way. Examining the impact of changing this

assumption in our work is discussed as part of our suggested future work in Section 10.2.5.

9.3.2 Line Formations

Line formations — often exhibited as V-like formations, as seen in Figure 9.1(b) — behave very

differently than the Reynolds’ flocking algorithm we considered throughout this dissertation. As

such, most of the algorithms and methods in this dissertation will not directly apply to influencing

V-like formations. With this in mind, one of the areas of future work suggested in Section 10.2.7

is to consider how to influence a V-like flock formation. In this section, we consider related work

that concerns flocks using a line formation.

Nathan and Barbosa describe a V-flocking model via a small set of positioning rules. These

positioning rules allow the flock to stabilize into several well-known V-like formations that have

been observed in nature [65]. These positioning rules are composed of (1) seek the proximity of

the nearest bird (coalescing), (2) if coalescing does not apply, seek the nearest position that affords

an unobstructed longitudinal view (gap-seeking), and (3) apply gap-seeking while the view that is

sought is not obtained or the effort to keep up with the group decreases due to increased upwash

(stationing). Wilkerson-Jerde et al. implemented these rules in NetLogo [81].

The V-flocking model described by Nathan and Barbosa [65] depends heavily on the concepts

163

of upwash and downwash. Portugal et al. examine upwash exploitation and downwash avoidance

using real-life data of a free-flying flock of ibises [67]. In their experiments, back-mounted integrated

Global Positioning System and inertial measurement units recored the position and every wing flap

of 14 birds during 43 minutes of migratory flight. Their experiments show that the ibises were able

to (1) either sense or predict the spatial wake structure of neighbors and (2) use strategies to cope

with the dynamic wakes produced by the flapping wings of neighbors. Effectively, the birds would

flap in sync if they were a full wavelength behind another bird and exactly out of sync if they were

a half wavelength behind another bird. These abilities to sense, predict, and cope were previously

not thought possible for birds due to the required flight dynamics and sensory feedback.

Klotsman and Tal introduce an alternate V-flocking model that combined a data-driven

approach with an energy-savings model [55]. In their work, they consider both a “flock initiation”

phase where the flock converges to a target shape as well as a “steady flight” phase during which

energy-savings models are calculated and used. Specifically, during the “steady flight” phase they

use learning from examples to determine the most energy-efficient parameters for “steady flight”

flocking.

Andersson and Wallander consider why some flocks use line formations [3]. They discuss

the energy saving aspects of line formations, but also consider the effect of kin selection and

reciprocity. They believe that the bird leading an acute V formation saves less energy than the

trailing birds, while the disadvantage of leading is reduced in more obtuse formations. Andersson

and Wallander found that acute V formations occur mainly in circumstances conducive to kin

selection or reciprocity, such as in small flocks of adults with offspring or small groups of unrelated

individuals that take turns leaving the V formation. Likewise, obtuse V formations occur mainly

among unrelated individuals, such as those migrating long distances.

Unlike our work, all of the work in this section studies flocking models — the dynamics of

these V-flocking models or why these models are biologically feasible. None of the work in this

section considers how influencing agents added to a V-like flock can influence the flock towards a

particular behavior.

164

9.4 Influencing a Flock

Other researchers have considered how flocks can be influenced. The work most closely related to

our work is discussed below, as well as how each piece of related work differs from the work in this

dissertation.

We first consider work on human-led influence in Section 9.4.1. Then, in Section 9.4.2 we

discuss work on shepherding, where shepherding is a flocking behavior in which outside agents

attempt to control a flock via herding them. Finally, in Section 9.4.3 we discuss work that — like

the work in this dissertation — utilizes one or more influencing agents. The work covered in Section

9.4.3 is the most related to the work in this dissertation as in this work, the agents that attempt

to control the flock are seen by the rest of the flock as friendly, homogeneous flock mates.

9.4.1 Human-led Influence

Some related work considers how humans can influence flocks. This influence could take the form

of controlling some subset of the flock, providing limited instructions to the flock as a whole, etc.

In this section, we discuss the work on human-influenced flocks that is most relevant to the work

described in this dissertation.

Tiwari et al. consider the problem of effectively steering a large robot swarm [78]. They

assume that each individual robot can either be controlled by a human or behave according to

a zonal self-propelled particle swarm model. Although we did not consider this zonal model in

Section 2.1, we do suggest it as future work in Section 10.2.5. Tiwari et al. consider which robots

should be controlled by a limited number of humans. Specifically, they consider whether the robots

controlled by humans should be located at the (1) front, (2) middle, or (3) periphery of the flock.

Although Tiwari et al. consider which locations are best for influencing a swarm, their work differs

from the work of this dissertation in that they do not consider how the controlled agents should

behave (because they are controlled by humans) nor do they consider how the controlled agents

should join or leave the swarm (since the controlled agents are already part of the swarm).

Kerman et al. propose a bio-inspired swarm model and show that the model has two

fundamental attractors: a torus attractor and a flock attractor [53]. Two metrics of group behavior

165

are used to define the two attractors: group angular momentum and group polarization. Their work

studies the stability of both of these attractors and shows that a control input can be used to force

the swarm to change from one attractor to the other. Additionally, their work shows how a human

operator can encourage the swarm to change from one attractor to another by partially controlling

some subset of the swarm. Brown et al. build upon the work of Kerman et al. [53] by considering

how human interaction with robot swarms can be handled at a high level of abstraction [17]. This

allows the human to abstract the details of individual agents and instead focus on managing the

swarm as a whole. Their work shows that only limited human influence is needed to cause the

swarm to switch between a flock and a torus. In their work, switching between a flock and a torus

is easier for the human to encourage than in [53] because they found a set of parameter values at

which both behaviors could be observed if a subset of the swarm was perturbed enough. Although

[53] and [17] focus on a different problem than the work in this dissertation, it is encouraging

that partial control over a subset of the swarm is able to influence the swarm to switch between

attractors.

Jung et al. present a new shared control method for human-swarm influence that uses

mediators that operate from within the spacial center of the swarm [52]. Two types of mediators

are considered: a repulsion mediator that repels neighbors similar to a predator and a repulsion

and attraction mediator that attracts neighbors but also includes a repulsion region within the

attraction region. A human operator can use these mediators to transform and move a dynamic

torus formation while sustaining influence over the torus, avoiding fragmentation, and maintaining

the torus’ connectivity. Although this work focuses on human-controlled agents, the work in this

dissertation could be extended to consider how similar mediators could infiltrate a flock in order to

influence the flock to behave in a particular manner.

9.4.2 Shepherding

Groups of agents can be influenced by shepherding behaviors. Shepherding behaviors are a type

of flocking behavior in which outside agents (shepherds) attempt to control the motion of another

group of agents by exerting repulsive forces on them. Shepherding is often also referred to as “herd-

ing.” All of the shepherding work discussed in this section differs from the work in this dissertation

166

because it considers behaviors for shepherds that repel the flock while our work considers behaviors

for influencing agents that are seen by the flock as friendly, homogeneous flock mates.

From 2008 to 2010, the ProMAS workshop at AAMAS held a competition5 in which teams

competed against each other in a grid-like world in which simulated cows are moving collectively in

multiple groups showing swarm-like behavior. Each team’s goal was to herd as many cows into its

corral as possible. However, herding a flock into a corral is concerned with short-term behavior of

the flock whereas attempting to influence a flock to adopt a particular flocking behavior is concerned

with more long-term flock behavior.

King et al. use global positioning system data to study the response of a group of sheep to

an approaching sheepdog [54]. Analysis of movement trajectories shows that the sheep exhibited

a strong attraction towards the center of the flock while being threatened by the sheepdog. This

data supports the common belief that individuals respond to threat by moving towards the center

of the threatened group. With regards to our work, the experimental data from King et al. pro-

vides evidence that guiding flocks away from dangerous areas using the methods described in this

dissertation may be more effective and predictable than attempting to scare the flocks away using

real or robot predators.

Lien et al. present a variety of shepherding behaviors that use one or more shepherds

to control the flock [58, 59]. In [58], three different approaching methods and three different

steering behaviors are considered for four types of shepherding behaviors. Only one shepherd is

considered in [58], but Lien et al. extend their work in [59] to consider multiple shepherds. In

[59], two shepherd formations and three methods for matching shepherds with steering points are

considered. The approaching and steering methods in [58], as well as the shepherd formations in

[59], are relatively simple. Specifically, the “Using a Straight Line” approaching behavior in [58]

and the “Line Formation” and “Arc Formation” shepherd formation in [59] are similar to the target

formations considered in Section 6.1.2 of this dissertation.

Pierson and Schwager introduce a control strategy for non-cooperative herding in which

dog-like robots attempt to herd sheep-like agents to a specific point [66]. Strombom et al. present

a general algorithm for shepherding that is based on adaptive switching between collecting dis-

5https://multiagentcontest.org/

167

https://multiagentcontest.org/

persed agents and driving aggregated agents [74]. Extensive experimental results show that (1)

this algorithm can herd the flock towards a target destination and (2) the resulting behavior is

consistent with real shepherding events involving sheep and sheep dog. However, like in Lien et

al. [58, 59], the work in both Pierson and Schwager and Strombom et al. differs from our own in

that our influencing agents are seen by the flock as homogeneous flock mates while in this work the

shepherds repel the sheep.

Harrison et al. present a motion planning strategy for shepherding in environments with

obstacles [43]. Their strategy allows shepherds to view the flock as a discretized deformable shape.

Viewing the flock as a deformable shape makes the strategy applicable to robotics scenarios as it

does not require prior knowledge of the workspace geometry. Like much of the other work in this

section, this work differs from our own because it assumes the flock mates will be repelled by the

shepherd.

9.4.3 Infiltration

The approach presented in this dissertation of using influencing agents that appear to the flock

as friendly, homogeneous flock mates is a form of infiltration. In this section, we consider the

related work that addresses problems that are most closely related to the problems addressed in

this dissertation.

Han et al. study how one agent can influence the direction in which an entire flock of agents

is moving [42]. Similarly to the work in this dissertation, in their work each flocking agent follows

a simple control rule based on its neighbors. They present a simple model that works well in

cases where the flocking agents reflexively determine their behaviors in response to a larger team.

However, unlike in our work, they only consider one influencing agent with unlimited, non-constant

velocity. By having unlimited, non-constant velocity their influencing agent is able to move to any

position in the environment within one time step. Unlimited velocity is an unrealistic assumption

though, so in our work we assume the agents have bounded velocity.

Jadbabaie et al. build on Vicsek et al.’s work [80] but use a simpler direction update [50].

They show that a flock with a controllable agent will eventually converge to the controllable agent’s

heading. Like us, they show that a controllable agent can be used to influence the behavior of the

168

other agents in a flock. Su et al. also present work that is concerned with using a controllable

agent to make the flock converge eventually [75]. In Su et al., some flocking agents are specifically

informed about which agent is the “controllable agent,” whereas in our work we assume the flock

will see the influencing agents as normal members of the flock. Our work is different from the work

of Jadbabaie et al. and Su et al. in that while they influence the flock to converge to a target

heading eventually, we influence the flock to converge to a target heading quickly by using the

1-Step Lookahead influencing agent behavior in Algorithm 5.

Celikkanat and Sahin use the same model as Turgut et al. [79] and extend it to include

informed agents that guide the flock by their preference for a particular direction [18]. In particu-

lar, Celikkanat and Sahin study the control of a flock towards a desired direction by the external

guidance of informed individuals that have a preferred direction. They conduct various experi-

ments in simulation and on Kobots in which they analyze the controllability of the flock while

varying (1) the weight of the direction preference vector of the informed individuals, (2) the ratio

of informed individuals in the flock, and (3) the size of the flock. Their flocking model uses a

weighted vector sum of three terms: a heading alignment vector (average heading of neighbors),

a proximal control vector (maintain cohesion while avoiding collisions), and a preferred direction

vector (go in preferred direction, only for informed individuals). They present three metrics for

quantifying the steering performance of a flock: (1) mutual information - considers how similar a

randomly selected non-informed agents heading is to a randomly selected informed agents heading,

(2) accuracy - angular deviation of the direction of the flock from the desired direction, and (3)

largest aggregate - combination of the ratio of the largest cluster of agents to the entire flock and

the ratio of informed agents in this cluster. As far as we know, Celikkanat and Sahin’s work is

the only work in this area that mentions the importance of where the informed agents are placed

in the flock (which we consider in Chapters 5 and 6) — but this consideration was just an aside

in their work. Their work is distinct from our work in that we consider how to control agents

from the perspective of knowing how other agents will react, whereas their work simulated flocks

and informed agents with predefined behaviors (via the preferred direction vector of the informed

agents).

Ioannou et al. show that in golden shiner fish, an informed agent must trade off between

169

trying to get to food as quickly as possible and attempting to guide the rest of the school to the

food in order to not leave fish that are not aware of the food source behind [49]. Their real-world

experiments on fish show that exhibiting only goal oriented behavior (get food) did increase the

accuracy and speed at which uninformed individuals can be led to the food, but that this type

of behavior often resulted in the uninformed individuals not being led to the food. These results

agree with the results we have seen in our Maneuver case experiments in Section 4.5.2, where we

lost some of the flock if the influencing agents attempted to influence the flock to turn too quickly.

Their work is similar to the work in this dissertation, but unlike the work in this dissertation, their

research does not consider how to control some agents and instead utilizes fish that have been

trained to find food in specific locations.

Couzin et al. considers how groups of animals make informed unanimous decisions [19].

They show in simulation that only a very small proportion of informed agents is required, and that

the larger the group the smaller the proportion of informed individuals needed to orient the group.

Similar to our work in Section 6.2.3, Couzin et al. also considers the trade off between the desire to

travel in a particular direction and the desire to influence other agents. They found that when the

proportion of informed agents is not small or large, the weighting of the informed agents’ preferred

direction vector was strongly positively correlated with group cohesiveness and orientation success.

Our work is different from the work of Couzin et al. in that we consider how to control agents

from the perspective of knowing how the other agents will react, whereas they simulate groups with

pre-defined behaviors.

Cucker and Huepe propose two Laplacian-based models for balancing the trade off between

an informed individual’s preference to go in a particular direction and the desire for social interaction

[21]. They consider whether the system will converge or break, as well as how effective the system

is in heading as a group towards the preferred direction of the informed individuals. The work

in this dissertation is different from their work in that we consider how to control agents from

the perspective of knowing how other agents will react, whereas their work simulated groups with

pre-defined behaviors. Additionally, their work ran many experiments considering various agent

velocities, whereas our work assumes that all agents use one constant velocity.

Ferrante et al. utilized “information-aware communication” for coordinating movement of

170

a flock towards a common goal [29]. Specifically, “information-aware communication” means that

informed robots communicate the goal direction while uniformed robots communicate the average

of messages received from their neighbors. They showed that their “information-aware communi-

cation” outperformed the heading communication baseline (in which each agent communicated its

own heading) in all simulated cases — including in a case where only one informed agent was used.

Their work mainly differs from the work in this dissertation in that we actively consider how to

control agents from the perspective of knowing how the other agents will react, whereas in their

work each agent communicates in a fixed way based on its type.

In other work, Ferrante et al. propose a self-adaptive communication strategy for controlling

the heading of a flock using a small set of informed agents [30]. Their work differs from ours in

that our informed agents indirectly communicate their actual current headings based on their

behaviors, whereas in Ferrante et al. the agents do not truthfully report their current headings in

some situations in order to game the system. Specifically, they update the degree of confidence

a robot has about its possessed information via the use of a local consensus vector. The local

consensus vector measures how close the information received by the other robots is to each other

and to the information sent by the robot itself. If local consensus was low, it means that there is

a conflicting goal direction in the swarm (and hence the robot should have less confidence in its

possessed information even if it previously believed it was an informed agent). In their experiments

they show that their proposed communication strategy performs better than [29] and [79]. However,

unlike the work in this dissertation, Ferrante et al. did not consider how to control some agents

from the perspective of knowing and planning for how the other agents will react. Instead, the

agents behave in a fixed way that is pre-decided or based on type.

Landgraf et al. built a wheeled robot that moves a guppy on a pole inside a fish tank [56].

They designed various set behaviors for this robot and showed that after the guppy on a stick has

been in the environment for a long time, the robot was able to integrate itself into guppy shoals

as well as encourage guppy groups to traverse exposed areas that they would normally avoid. This

work is different from the work in this dissertation in that although some of the behaviors involved

the robot guppy attempting to “join” the school, it did not join the school with the intention of

influencing the behavior of the school through its actions within the school.

171

9.5 Summary

In this chapter, we described the related work that is most relevant to the work presented in this

dissertation. For each related piece of research, we explicitly noted how the work in this dissertation

is different or addresses a distinctly different problem.

In Section 9.1 we discussed related work from the broad research area of multiagent coor-

dination and teamwork. Then, in Section 9.2 we considered the most related research on ad hoc

teamwork, or teamwork without prior coordination. In Section 9.3 we described research in the

flocks, herds, and swarms communities that is most relevant to the work in this dissertation. In

particular, we considered work on the two main types of flock formations: cluster formations (Sec-

tion 9.3.1) and line formations (Section 9.3.2). Finally, in Section 9.4 we described related work on

influencing flocks. Within this section, we considered three types of influence: human-led (Section

9.4.1, shepherding (Section 9.4.2), and infiltrating (Section 9.4.3). Section 9.4.3 considered related

work on problems that are most similar to this ones addressed in this dissertation — however,

none of this work fully addressed the problem considered in this dissertation of utilizing influencing

agents to influence a flock towards a particular behavior.

This chapter provided a review of the work most related to the research described throughout

this dissertation. Chapter 10 will conclude this dissertation by (1) summarizing the work presented

in this dissertation and (2) describing fruitful directions for research that could extend upon the

work presented in this dissertation.

172

10. Conclusions and Future Work

Exciting news emerged from Edmonton International Airport in early May 2017: the airport started

a three-month test utilizing a robot bird to encourage native birds to stay away from the airport.1

The test is using a pilot-operated Clear Flight Solutions Robird2 during the weekdays and a live

falcon during the weekends. The Robird is being tested in conjunction with other bird-deterrents,

including baffles to prevent roosting and noise machines to disturb the birds.

The three-month test at Edmonton International Airport is extremely promising as it is the

first instance of a robot bird being integrated into daily airport operations. However, a human pilot

should not be necessary as algorithms can govern robot behavior and geo-fencing technology can

guarantee that the robot bird stays out of active flight paths. Additionally, attempting to scare

native birds away from the airport is not optimal because (1) it is impossible to predict where the

birds will flock instead and (2) it is stressful to the native birds. The methods presented in this

dissertation introduce a more environmentally-friendly way in which flocks could be diverted away

from airports. Specifically, this dissertation presents algorithms and methods for using influencing

agents to influence flocks towards a particular behavior such as flying around an airport. Although

most of this dissertation evaluated these algorithms in simulation, we implemented some of our

algorithms on bipedal robots (Chapter 8). Additionally, one of the areas of future work proposed

in this chapter is to extend the work in this dissertation for use on robot birds (Section 10.2.6).

In Section 10.1, we review this dissertation’s scientific contributions to the areas of multi-

agent systems, swarming, and ad hoc teamwork. In Section 10.2 we discuss promising directions

for future work that are motivated by the scientific contributions of this dissertation. Finally, in

Section 10.3 we provide some concluding remarks.

1https://www.utwente.nl/en/news/!/2017/5/121321/robird-to-be-deployed-at-canadian-airport
2https://clearflightsolutions.com/methods/robirds

173

https://www.utwente.nl/en/news/!/2017/5/121321/robird-to-be-deployed-at-canadian-airport
https://clearflightsolutions.com/methods/robirds

10.1 Contributions

This dissertation presents a complete set of algorithms and methods for using influencing agents to

influence a flock towards a particular behavior. Specifically, this dissertation provides the following

contributions:

• Our problem definition for influencing a flock is presented in Chapter 2. In Chapter 2

we define the assumptions, parameters, and objectives for the problem of adding influencing

agents to a flock.

• An algorithm for leading a stationary flock to a desired orientation is described in

Chapter 3. In Chapter 3 we set bounds on the extent of influence the influencing agents can

have on the flock when all of the agents are stationary. We also contribute an algorithm for

orienting a stationary flock to a desired orientation using a set of non-stationary influencing

agents and analyze this algorithm both theoretically and empirically.

• Directing a flock away from danger requires being able to influence the flock to alter its

orientation. As such, three algorithms for influencing a flock to a desired orientation

are presented in Chapter 4. For each algorithm, we present detailed experimental results.

Additionally, we also experimentally consider how to use one of these algorithms to maneuver

the flock through turns quickly but with minimal agents being separated from the flock as a

result of these turns. Such a behavior could be used to guide a flock around an airport.

• Influencing agents in different parts of a flock have different influence over the flock. Hence,

determining how to place influencing agents into a flock if given the opportunity is important.

As such, methods for placing influencing agents into a flock are considered in Chapter

5. We empirically evaluate each method to determine which placement methods give the

influencing agents the most influence over the flock.

• It is not realistic to assume that influencing agents can always be placed directly into a

flock. Instead, the influencing agents may need to join the flock from somewhere outside the

flock, influence the flock, and then leave the flock. With this need in mind, this dissertation

174

contributes methods for influencing agents to join and leave a flock in Chapter 6.

Influencing agents continue to influence their neighbors while joining and leaving though, so

these methods must try to decrease the negative influence joining and leaving may have on

the flock. We empirically evaluate all of the methods to determine their effectiveness.

• The contributions in Chapters 3-6 assume the influencing agents join a flock that exhibits

a particular type of flocking behavior. However, there are many possible variants of flock-

member behavior. As such, in Chapter 7 we evaluate the influencing agent behavior

and placement algorithms on flocks with different behaviors.

• The contributions in Chapters 3-7 are all evaluated in a simulation environment. However,

since we believe the work in this dissertation could help reduce bird strikes, we test our im-

plementation on a robot platform. Specifically, in Chapter 8 we describe our experiences

implementing and evaluating one of the algorithms from Chapter 4 on multiple SoftBank

Robotics NAO robots. We report the experimental setup and discuss the experiments in

Chapter 8.

10.2 Future Work

Although this dissertation presented effective methods for influencing a flock using influencing

agents — including where to place the influencing agents when placement is possible and how the

influencing agents can join and leave the flock when placement is not possible — there are still

plenty of extensions that could be undertaken. The problem of influencing a group is very rich. In

this section, we introduce some of the many extensions that we believe could be fruitful.

We first consider how Chapters 3 through 8 could be extended in Sections 10.2.1 to 10.2.6.

Then we consider potential future work related to V-shaped flocks in Section 10.2.7 , to animals

and general swarms in Section 10.2.9, and to humans in Section 10.2.10.

10.2.1 Extending Theoretical Contributions

Work in Chapter 3 of this dissertation set bounds on the extent of influence the influencing agents

can have on the flock when all of the agents are stationary — but the other chapters of this

175

dissertation primarily made empirical contributions. In this section, we describe a few possible

extensions to theoretical work.

Minimal Bound on Influencing Agents

In Chapter 5 we considered where to place influencing agents in a flock. An interesting theory-based

extension to this placement work would be to place a minimal bound on the number of influencing

agents required to initially directly influence every flocking agent.

This problem of finding the minimal number of influencing agents to influence all of the

flocking agents is equivalent to the set cover problem.3 Specifically, given a set of flocking agents

we can determine (1) whether a particular set of influencing agents’ positions and orientations covers

all flocking agents and (2) whether there are any influencing agents that could be removed while

still maintaining full coverage of the flocking agents. However, determining the optimal coverage is

hard, as optimizing the set cover problem is hard. Although finding the optimal coverage is hard,

there may be greedy approximation algorithms that could find an approximate answer.

The set cover representation would likely work best for flocking models that use a visibility

sector neighborhood model — but it would be interesting to consider how the type of neighborhood

model used affects the guarantees that can be made.

Performance Guarantee

Another interesting theoretical extension of the work in this dissertation would be to consider when

guarantees can be made regarding the flock’s performance. In particular, can guarantees can made

regarding the flock’s convergence to θ∗ or the minimum/maximum number of flocking agents that

could become lost? When guarantees can be made, can we bound how far these guarantees are

from the average case?

As with considering the guarantees on the minimum number of required influencing agents,

it would also be interesting to consider how different flocking models affect the guarantees we can

make regarding performance guarantees.

3Thanks to Noa Agmon for this insight.

176

10.2.2 Extending Influencing a Flock to a Desired Orientation

Chapter 4 considered the problem of influencing a flock with a known flocking model to orient

towards a particular orientation. Specifically, in Chapter 4 we considered how to orient a flock to a

target heading and how to maneuver a flock through turns. In this section, we consider how work

on influencing a flock towards a desired orientation could be extended when the flocking model

is known. Later in this chapter, Section 10.2.5 considers extensions when the flocking model is

unknown.

Additional Comparisons to Other Influencing Agent Behaviors

In Section 4.4.1 we discussed two baseline influencing behaviors. One of these baseline behaviors was

modeled after work by Jadbabaie, Lin, and Morse [50] while the other was inspired by Algorithm 2

in Chapter 3. Although these two baselines provided a representative sample of existing methods,

there are many other influencing agent behaviors discussed in Chapter 9.

Yu et al. ’s implicit leadership algorithm [82] will certainly influence a flock to reach a desired

orientation slower than the algorithms presented in Chapter 4. Likewise, there are other methods

for influencing a flock described in Section 9.4 that would also be good comparison methods. It

would be interesting to compare the performance of these methods to those presented in Chapter

4.

Efficient, Deeper Lookahead Searches

In Chapter 4 we presented a 1-Step lookahead algorithm (1-Step Lookahead) in Algorithm 5 of

Section 4.1 and a 2-step lookahead algorithm (2-Step Lookahead) in Algorithm 6 of Section 4.2. We

found the complexity of 1-Step Lookahead to be O(numAngles∗numAgents2) and the complexity of

2-Step Lookahead to be O(numAngles2 ∗ numAgents3). As reported in Section 4.4.3 and discussed

in Section 4.4.4, we found that while 2-Step Lookahead had a much worse complexity than 1-Step

Lookahead, the two methods performed approximately the same. We expected that deeper searches

would (1) be computationally infeasible and (2) would perform no better than 1-Step Lookahead.

It was based on this result and analysis that we decided to utilize 1-Step Lookahead throughout the

177

remainder of the dissertation to govern behavior of the influencing agents.

However, especially under different environments or in different domains, a deeper lookahead

search could be fruitful. Towards this idea, we believe it would be worthwhile to (1) consider how

to make the lookahead searches more efficient and (2) implement deeper lookahead searches. The

first step towards this type of work would be to design an environment or domain in which deeper

searches would be useful. The second step would be to consider how the algorithms can be made

more efficient, perhaps through approximation.

Influence to Not Lose Neighbors

All of the influencing agent algorithms in Chapter 4 considered how to influence the flocking agents

towards θ∗ quickly. However, it could be interesting to instead consider how to influence the flocking

agents towards θ∗ while not losing influence over any flocking agents that are not already oriented

towards θ∗.

One initial idea for managing the trade-off between orienting towards θ∗ and maintaining

influence over flocking agents that still need to be influenced might be to:

• Influence maximally towards θ∗ if doing so would not lose any flocking agents that are not

oriented towards θ∗

• Otherwise, influence the neighbors towards θ∗ as much as possible without losing influence

over any influencing agents that are not oriented towards θ∗

Avoid Obstacles Automatically

Section 4.5 described using the 1-Step Lookahead behavior to maneuver a flock around an obstacle.

In our experiments, this was done by maneuvering through a set of turns along a flexible but pre-

defined path. However, it would be better if the influencing agents could determine autonomously

the approximate path and when to influence the flock to turn.

At a high level, the flock would need to detect or know based on prior knowledge where obsta-

cles exist in the environment. The location of stationary obstacles could be provided to the robots,

whereas dynamic obstacles would need to be detected. Once the obstacles are detected/known, the

178

influencing agents would need to determine how long it will take to turn the flock. The time needed

to turn the flock would depend on the size and density of the flock, the flocking model utilized by

the flock, the number of influencing agents available, and potentially other factors. Once the flock’s

turning ability is known, then the influencing agents must determine the path to take around the

obstacle(s). If the obstacles are all known ahead of time, this path could be optimized — but if

obstacles are detected locally in real-time, then the path around each obstacle must be determined

as the obstacles are detected.

Other Coordinated Behaviors

Although Section 4.3 presented a Coordinated influencing agent behavior, other coordinated behav-

iors may be superior. The behavior presented in Algorithm 7 of Section 4.3 pairs influencing agents

with shared neighbors and determines the behavior of both influencing agents together, such that

their joint influence on shared neighbors is considered.

Surprisingly, results in Section 4.4.3 showed that the Coordinated behavior did not perform

significantly better than the 1-Step Lookahead behavior. As we discuss in Section 4.4.4, performance

was likely similar since the behavior of influencing agents under the Coordinated behavior is often

similar to under the 1-Step Lookahead behavior. The observed similarity in performance between

the Coordinated behavior and the 1-Step Lookahead behavior could mean that the 1-Step Lookahead

behavior really is best — but it could also mean that coordinated behavior can be improved.

There are many potential ways to coordinate influencing agent behavior. One place to start

would be to globally coordinate behavior of all of the influencing agents. Determining how well

global coordination can perform would set an upper bound on how well coordinated behaviors can

perform.

Influencing Multiple Flocks

Although the work in this dissertation only considered influencing a single flock, it is possible that

multiple flocks may need to be influenced within the same space. Although these flocks could be

influenced separately, there may be benefits to coordinating the influence. Likewise, it could be

beneficial to influence multiple flocks to join. It would be interesting to consider when joining would

179

be beneficial, as well as the required behavior by the influencing agents to facilitate this joining.

Flocks may also naturally cross paths while flocking. These flocks may join naturally as their

flight paths intersect. Even if the flocks do not join naturally, it would likely be easy to encourage

the flocks to meld into one flock when their flight paths cross. In the case where two flocks naturally

cross flight paths, it could be interesting to study (1) the influencing behavior required to meld two

flocks into one flock as well as (2) the influencing behavior required to keep the two flocks separate.

10.2.3 Extending Placing Influencing Agents into a Flock

Chapter 5 considered various methods for placing influencing agents into a flock. Although these

methods —especially the cluster placement methods — performed well, it is possible that other

methods could perform better or be more computationally efficient. In this section, we describe

multiple potentially fruitful extensions to our influencing agent placement work.

Scaling up the Graph Placement Method

The Graph placement method described in Section 5.3 was one of the best performing placement

methods considered in Chapter 5. Unfortunately, the O(n3
(

m2+m
k

)

) computational complexity

meant that we were unable to run it for large tests on flocks with more than k = 10 influencing

agents. Remember from Section 2.1.2 that m refers to the number of flocking agents, k refers to

the number of influencing agents, and n refers to the total flock size (i.e. n = m+ k).

Due to the computational complexity of the Graph placement method discussed in Section

5.3, a significant extension to this dissertation would be to scale up the Graph placement method

such that it can be quickly executed by flocks with both more influencing agents and more flocking

agents. One initial idea for scaling up the Graph placement method is to prune the number of

possible influencing agent positions. Specifically, positions that are (1) within the neighborhood of

other positions, (2) not influential enough (i.e., only have limited neighbors), or (3) have neighbors

with an average current orientation near θ∗ could be removed. Reducing the number of possible

influencing agent positions will significantly reduce the number of sets of k influencing agents that

must be considered.

180

Improving Hybrid Placement Methods

The hybrid placement methods described in Section 5.4 utilized the Graph placement method to

place the first kg influencing agents and then used a more computationally efficient method to place

the remaining k − kg influencing agents.

It would be interesting, and potentially fruitful, to consider whether there are situations in

which it would be better to place k−kg influencing agents using a constant-time placement method

first. Specifically, the constant time method could select k− kg well-spaced positions and then the

Graph method could select kg placements that cover the most critical areas not already covered by

the influencing agents placed using the constant-time placement method.

Placement Selection based on Agent Heading

All of the influencing agent placement methods in Chapter 5 were based on placing influencing

agents in areas where they could influence flocking agents. However, none of the methods in

Chapter 5 considered flocking agent heading when determining placement.

Considering the heading of flocking agents while determining where to place influencing

agents could significantly improve performance. Intuitively, we would strongly prefer to only place

influencing agents within the neighborhoods of flocking agents that need to be influenced. An initial

step could be to not place influencing agents within the neighborhoods of flocking agents that are

already oriented close to θ∗. One potential issue is that the flocking agents initially oriented close

to θ∗ could be pulled away from θ∗ by other flocking agents — but being pulled away might not be

problematic as these flocking agents would hopefully be influenced by influencing agents.

Placement Methods for Different Neighborhood Models

Although many of the placement methods described in Chapter 5 would perform well across a vari-

ety of neighborhood models, particular placement methods inherently perform better for particular

neighborhood models. As such, it would be interesting to design particular placement methods

that perform especially well with particular neighborhood models. One initial idea would be to try

placing influencing agents (1) on the borders or (2) in front of the flock when the flocking agents

181

use a visibility sector neighborhood model.

Learning Placements

None of the algorithms or methods in this dissertation utilize learning — doing so is certainly a

potentially fruitful extension. Although we discuss potential extensions towards learning the correct

flocking model in Section 10.2.5, in this section consider the idea of learning effective influencing

agents placements when interacting with the same species (for which we have an accurate model)

repeatedly. Repeated interaction could first allow the influencing agents to determine what type

of placement method performs best in particular scenarios. Given time for more interactions, the

influencing agents could then optimize positioning parameters within the best performing placement

method.

Wait for Convergence before Determining Placements

The experiments in Chapter 5 placed influencing agents into a flock in which all of the flocking

agents had random headings within 90 degrees of θ∗. However, it is possible that performance would

be improved if we waited for the flock to converge to a heading before determining influencing agent

placements.

In particular, we expect that the flock would converge into one or more flocks, where each

flock would be flocking towards a particular orientation. Once these flocks are stable, at least one

influencing agent could be added into each flock. The influencing agent(s) could then influence the

flock to change course and flock towards θ∗.

Local Position Selection

All of the placement methods described in Chapter 5 assume that the influencing agents have perfect

global information regarding the placement of all of the flocking agents and that the placements

of the influencing agents can be determined centrally. Although neither of these assumptions are

unrealistic considering the availability of avian radar and wireless networks, there will likely be

situations in which only local sensing is available. As such, it is important to consider placement

methods that do not assume perfect global information.

182

If global information via avian radar is not available, then the influencing agents would need

to use other sensors and communicated information to create a local understanding of where flocking

agents are currently located. Assuming the influencing agents are able to pre-coordinate, set regions

of the flock could be allocated to each influencing agent. The influencing agents would then have

to determine where to place themselves within their allocated region using local information.

10.2.4 Extending Joining and Leaving a Flock

The approaches presented in Chapter 6 for joining and leaving a flock considered how to join

and leave a flock while minimizing the negative influence on the flock during joining and leaving.

Although the approaches in Chapter 6 performed reasonably well in experiments, there may be

other approaches that perform better. Hence, in this section we consider a few potentially fruitful

extensions.

Picking a Path by which to Enter a Flock

All of the intercept approaches for joining a flock presented in Section 6.1.2 call for the influencing

agents to join exterior areas of the flock. The intercept approaches had the influencing agents join

exterior areas of the flock because we found that travelling to positions inside the flock usually

caused the flock to disperse before the influencing agents reached their desired positions. However,

it would be beneficial to find a way for influencing agents to reach positions inside the flock.

Influencing agents could alternate behaviors while joining, similarly to the influence while

leaving approach from Section 6.2.3. This could be accomplished by having the influencing agents

alternate between mitigating their behavior and trying to enter along a particular path. The

following metrics could be considered while determining the path for each influencing agent: (1)

influences the fewest flocking agents, (2) influences the fewest flocking agents incorrectly / away

from θ∗, (3) minimizes dispersion of the flock. Along the path, the influencing agents could alternate

between influencing, moving along the path, and condensing the flock.

183

Leaving in Pairs

In Section 6.2 we presented three approaches for influencing agents to utilize when attempting

to leave a flock while minimizing the negative effect on the flock of leaving. Although all three

approaches worked well in particular situations, there may be other leaving approaches that would

work better in some situations.

In particular, it could be fruitful to determine whether there are situations where having

influencing agents leave in pairs could be beneficial. For example, consider a dense flock with

influencing agents positioned along the flock’s borders. In such a situation, the influencing agents

may be able to minimize their negative influence on the flock by leaving in opposite directions at

the same time.

Morphing Agents

Finally, a slightly different situation could be investigated: one in which the influencing agents

are able to go from being recognized as self to other. If the influencing agents are able to morph

into predators, they could potentially “leave” the flock easily by scaring the flock away while at

a border of the flock. Likewise, if the influencing agents were able to morph between sensed and

undetected, then the placement methods from Chapter 5 could be used with the influencing agents

only being recognizable while influencing. Although morphing may seem infeasible, it is possible

that robot birds could be designed to morph between friend and foe. As mentioned in Section

6.1.2, the makers of the Clear Flight Solutions Robird4 stated at the 2015 North American Bird

Strike Conference that birds believe another bird is “one of its own” if its wing movement and

silhouette are the same. Hence, a robot bird could potentially morph between friend and foe by

simply changing its silhouette and wing movement.

10.2.5 Generalizing to Different Flocking Models

Chapter 7 evaluated how well the algorithms and methods in this dissertation performed when

different flocking models were utilized. In this section we consider how the work in Chapter 7 could

be extended.

4http://clearflightsolutions.com/methods/robirds

184

http://clearflightsolutions.com/methods/robirds

Alternate Neighborhood Models

In Section 7.2.4 we considered how well the methods and algorithms in this dissertation performed

using four different neighborhood models. However, there are still many other neighborhood models

that could be considered.

In particular, it would be interesting to consider the following neighborhood models:

• A weighted influence neighborhood model in which the orientation, speed, and position of

farther agents is less accurate.

• The zonal neighborhood model used in Tiwari et al. assumes an agent ai is influenced by

neighbors within three spherical zones [78]. Within the zone nearest ai, ai and its neighbors

are repelled by each other. Within the second zone, ai and its neighbors orient in the same

direction of motion. Within the zone farthest from ai, ai and its neighbors attract each other.

• A neighborhood model that represents the idea by Rosenthal et al. that connectivity is

weighted, directed, and heterogeneous [70]. Rosenthal et al. showed that individuals with

relatively few strongly connected neighbors are both most socially influential and most sus-

ceptible to social influence.

For each of these neighborhood models, as well as any additional models, it would be in-

teresting to (1) consider how the algorithms and methods in this dissertation perform when using

these models and (2) as needed, extend the algorithms and methods in this dissertation to perform

well with these models.

Handling Flocking Model Noise and Instability

In this dissertation, we assume that we know the flocking model being utilized by the flocking

agents and that there is no noise or instability in this flocking model nor the environment. Both of

these assumptions are substantial, so it would be interesting to consider how well the algorithms

and methods described in this dissertation handle noise and instability — as well as how these

algorithms and methods can be extended to better handle noise and instability.

185

Adding noise to the influencing agents’ estimation of the flocking agents’ locations and ori-

entations would be an ideal starting point as this type of noise should merely decrease performance

based on the amount of noise. Noise in orientation and position for all agents during flocking could

potentially be caused by wind currents. This type of noise could require a flock that was previously

converged to θ∗ to need to be influenced again if they stray too far from θ∗.

There could also be noise in the detection of surrounding agents. As such, it would be

interesting to consider how much temporarily undetected agents affect the behavior of both the

flocking agents and the influencing agents.

Goal-oriented Flocks

Throughout this dissertation we assumed that the flocking agents would use a set flocking model,

but that they had no set goal direction — instead their heading was a factor of the current ori-

entations of their neighbors. Although assuming that flocks have no set goal direction may not

seem realistic, we have found no work that attributes any external goal behavior or direction to a

flock. That being said, many flocking models do consider how a flock will act in the presence of

a predator — so one way to attribute a goal to the flock would be to consider its behavior when

being chased by a predator.

It would be particularly interesting to (1) analyze how well the methods in this dissertation

work when a flock is being chased by a predator and (2) consider how these methods can be

extended to perform better both while a flock is being chased by a predator as well as after the

chase has ended.

Inferring and Generalizing Flocking Models

Although we assume throughout this dissertation that the flocking model of the flocking agents is

known by the influencing agents, this assumption may not always be reasonable. As such, it would

be useful to consider (1) how to infer what flocking model a flock is employing and (2) how best

to influence a flock utilizing this model. If the influencing agents know how to influence flocking

agents utilizing a variety of flocking models, then a simple solution is to classify the flock’s behavior

to one of the known models and behave accordingly.

186

Performance would be better, though, if the influencing agents were able to generalize their

behavior to new, unknown flocking models. One such method of doing so is described in the next

section.

Learning Flocking Models and How to Influence

One potentially fruitful extension to the work presented in this dissertation is to approach the

problem of influencing a flock from a machine learning perspective. This type of extension could

potentially be the basis for another entire dissertation. Most flocking models are parametrizable,

which makes them well suited for learning.

The influencing agents could be designed to first learn the flock’s flocking model and then

learn how to best influence the flock based upon this flocking model. If the flocking agents are

given the ability to exhibit various real-life flocking models, the influencing agents could potentially

even learn in simulation how to best influence a variety of real-life species. Additionally, if the

flocking agents can behave according to real-life flocking models, then various assumptions — such

as whether a particular species uses a 7-nearest neighbors neighborhood model or a distance-based

neighborhood model — could be tested in simulation by comparing simulated behavior to behavior

observed in nature. In this way, learned flocking models could be used to validate flocking models

proposed by biologists. We discuss extensions towards validating theories of biologists in Section

10.2.9.

10.2.6 Extending Robot Implementation

This dissertation focused on using influencing agents to influence flocks towards particular behav-

iors. The research in this dissertation could be extended to autonomously influence birds away

from airports using robot birds. In this section, we discuss some of the extensions that would first

need to be undertaken.

Robot Birds

As mentioned in Chapter 1, resident birds in the Netherlands attempted to flock with early proto-

types of Clear Flight Solutions’ Robird. However, as far as we know, only one project has captured

187

video5 of natural birds flocking with a robot bird: the Zapdos project by Hithesh Vurjana, Amritam

Das, and Apurva Bhattad of SRM University in Chennai, India. Unfortunately, this project seems

to have concluded in 2014 with no publications resulting. Although the robot bird was remote

controlled in the video, the video shows that flocks of birds will flock with a robot bird if the

circumstances are right.

The designers of the Clear Flight Solutions Robird stated at the 2015 North American Bird

Strike Conference that flocks will react to a robot bird as one of their own if the robot bird has a

silhouette and wing flap motion similar to their own. However, it would be critical to validate that

the species of bird that needs to be influenced will flock with the particular robot bird(s) that will

be utilized. The design may need to be modified multiple times before acceptance by the native

birds is obtained.

The Clear Flight Solutions Robird — which has minimal sensors on-board — currently

has a battery life of just 12 minutes. Robot birds that would be used to influence flocks would

need additional sensors and communications hardware, so the maximum flight time would likely

be less. Hence keeping weight down and maximizing battery capacity will likely be critical aspects

in designing robot birds that can influence flocks.

Supporting Technology

The algorithms in this dissertation assume (1) perfect global location and orientation information,

(2) knowledge of the flocking agents’ flocking model and (3) communication between influencing

agents.

Global positioning system data could provide location and orientation information for all

influencing agents. Meanwhile, avian radar could be used to get high-accuracy location and orien-

tation information for all natural birds. However, as of March 2015, avian radar was only installed

at two commercial airports in the United States: DFW in Dallas, TX and SEA in Seattle, WA.

Most airports do not have avian radar, so it would be important to extend the algorithms in this

dissertation to handle imperfect information. The algorithms could be further updated to handle

local information, although it would likely be better to use communicated information from all of

5https://www.youtube.com/watch?v=iTsi9F7kEjE

188

https://www.youtube.com/watch?v=iTsi9F7kEjE

the influencing agents to create a shared world model.

Throughout this dissertation we assume that we know the flocking model being utilized by

the flocking agents. If we know the type of species the influencing agents need to influence ahead of

time, this assumption is not problematic. However, this requires that either the influencing agents,

other systems, or humans determine what type of species the influencing agents need to influence.

As such, it would be helpful for the influencing agents to be able to detect and recognize specific

species automatically.

Policy

Finally, once the robot and software technologies are ready for deployment, it would be necessary

to find an airport or air force base that is willing to allow tests to be conducted. At the very least,

this airport or air force base would need assurances that the system is safe and will not negatively

affect their daily operations. It would be best to monitor the number of bird-related incidents

for a significant period before influencing agents are introduced to establish a baseline. Once the

baseline is established, it would be best to alternate days or weeks in which the influencing agents

are utilized so that seasonal differences in bird activity do not inaccurately affect the results.

10.2.7 Extensions to Line Formation Flocking

As explained in Section 9.3, there are two main types of flocking formations: cluster formations

and line formations. This dissertation considered how to influence flocks behaving according to

Reynolds’ flocking algorithm, which assumes cluster formations. In this section we consider how

influencing agents could influence V-shaped flocks and describe some future directions that we

believe could be fruitful.

Understanding Line Formation Flocking

Section 9.3.2 discusses multiple line flocking models — based on our understanding of biologists’

current knowledge of line formations, the V-flocking model by Nathan and Barbosa seems to be

biologically realistic [65].

189

The V-flocking formation is a direct result of aerodynamics. Specifically, as a bird flaps its

wings, a rotating vortex of air rolls off each of its wingtips. These vortices constantly push the air

immediately behind the bird downward (downwash) and the air off to the sides upwards (upwash).

When another bird is able to fly with its wingtip in either of the upwash zones, it gets free lift and

hence does not need to expend as much energy. Alternatively, if its wingtip is in the downwash

zone, it must extend extra energy to avoid being pushed down. In order to save energy, every bird

attempts to place its wingtip in an upwash zone created by the bird ahead of it.

V-flocks are usually made up of a family group, or in the case of large flocks, multiple family

groups. Within these flocks, strong, experienced family members take turns leading the flock at the

tip of the V-formation. When the bird at the tip of the V-formation becomes tired, it will rotate

back into the formation and another capable family member will take the helm. Interestingly, if a

bird in a V-flock becomes sick or injured, another bird from the flock will always stay behind with

it. These birds — or just one bird if the sick or injured bird dies — will join other flocks while

catching up with their own family’s flock.

10.2.8 Sweet Spots for Influence

Unlike cluster formations, the heading of a V-flock is entirely controlled by the bird at the tip of

the V-formation. Since only experienced family members take turns leading the flock, non-family

members will not be given the opportunity to advance to the lead position. Hence, it will be

difficult to influence a V-flock by becoming lead bird — but there may be other ways in which an

influencing agent could join and influence a V-flock.

Nathan and Barbosa [65] list three basic rules for V-flocking. Within these rules, there may

be sweet spots for influencing a subset of the flock. For example, it might be possible to gain control

of the flock behind an influencing agent if another influencing agent blocks the view of the updraft

bird. Another example would be to have an influencing agent slowly diverge from the flock. This

influencing agent might be able to take the flocking agents that are behind it as it diverges, and

then act as leader of the new sub-flock. It is unclear whether either of these strategies would work

in simulation or in real life though.

190

10.2.9 Extensions to Other Animal Domains

The algorithms and methods described in this dissertation were designed for influencing agents to

influence a flock of birds towards a particular behavior. However, there are common elements in

many types of group behavior. As such, in this section we consider future directions that could

apply the work in this dissertation towards other types of animals.

Influencing Endangered Species towards Safety

Reynolds’ model represents general flocking, herding, and schooling behaviors. Hence, many of the

methods and algorithms from the dissertation could apply to other species with minimal changes

given the behavior models of a new species. One particular application that could be interesting

would be to consider which types of endanger species can be influenced using influencing agents.

There are many endangered animals that live in national parks and other protected areas,

but occasionally roam outside of the protected boundaries. Yellowstone National Park’s gray wolves

are protected on park land, but many of the states surrounding Yellowstone allow hunting of the

gray wolves once they leave park land. Wolves are pack animals, but it is unclear whether a robot

wolf could integrate into a pack and influence the behavior of the pack as a whole. Nonetheless,

considering whether species of interest could be influenced by robot influencing agents integrating

into their pack/herd/family would certainly be an interesting and potentially high impact extension

to the work in this dissertation.

Validating Theories of Biologists

When reading papers on how a particular species flocks, it quickly becomes apparent that oftentimes

the biologists do not agree — one example is disagreement regarding neighborhood models as

described by Ballerini et al. and Bialeka et al. [6, 13]. The work in this dissertation could be

extended to validate some of the theories from the biologists. Specifically, if biologists say that the

seven nearest agents are seen as neighbors by a specific species, this could be tested in simulation.

If the simulation dynamics and behavior matches flocking behavior observed in nature, then the

theory of seven nearest neighbors would be validated.

191

Additionally, if there are multiple flocking models that biologists claim are most realistic

for a specific species, simulation tests could be run to determine which flocking model most closely

matches real-life behavior for the species.

Managing a Destructive Swarm

Section 9.3 described work by Barca to create an anti-swarming strategy that could be utilized

against adversary robot swarms [7]. The work in this dissertation could be extended to influence

dangerous swarms into a safe area or to a safer behavior, assuming that the robot swarm saw our

influencing agents as other swarm members.

Behaviors such as were shown in the maneuver experiments in Section 4.5 could be used

to guide a destructive swarm around a sensitive area or perhaps into a safe area where they could

be disabled. Additionally, the influencing agents could potentially disperse the destructive swarm.

Throughout most of this dissertation we focused on keeping the flock together, but as we saw in

the leaving experiments in Section 6.4 it should be relatively easy to purposefully disperse the flock.

One simple method would be to merely have the influencing agents simultaneously “leave” the flock

in opposite directions.

10.2.10 Extensions to Human Domains

In 2012 Grosz wrote an article in AI Magazine entitled “What question would Turing pose today?”

[39]. In this article, her answer to the question posed in the title was

Is it imaginable that a computer (agent) team member could behave, over the long term

and in uncertain, dynamic environments, in such a way that people on the team will

not notice it is not human.

In many ways, being able to “pass” this test would be creating an influencing agent to influence

the human team without the human team realizing the agent was anything other than an average

teammate.

However, there are many other ways in which the algorithms and methods in this dissertation

could be used to influence humans towards a desired behavior. In this section, we consider a few

192

possible extensions.

Pedestrian Behavior

Bonneaud and Warren present a model for realistic pedestrian behavior [14]. Their model is vali-

dated by comparing real-life pedestrian behavior against the behavior observed using their model.

Bonneaud and Warren’s model could be used to design behaviors for trained humans or re-

alistic robots such that these humans or robots could influence pedestrians to behave in a particular

manner. If an agent passes Grosz’s proposed Turing test, then that agent could influence humans

just as well (if not better) than a trained human. In particular, it would be interesting to first show

that a few trained humans can influence pedestrians to behave in a particular manner consistently.

Then the task would be to design a robot agent — both its physical form and its behavior — that

encourages the pedestrians to behave in a manner similar to how they behaved when the trained

humans influenced them.

Crowd Behavior

When humans are in groups, panic spreads quickly and information is often falsely construed.

Evacuating a building during a fire, a plane after a crash, or a festival after gunshots are heard can

be chaotic and dangerous.

It is difficult to reenact true crowd panic — the closest evacuation testing is likely the 90-

second aircraft evacuation tests that must be passed for each new plane type. In these tests, the

aircraft manufacturer must show that a plane filled with crew and passengers can be evacuated in

less then 90 seconds. Even in these tests — where nothing is actually on fire and there is minimal

incentive for the passengers to exit quickly — up to 5% of the passengers often sustain injuries.

As can be imagined, the injury rate during a real crash with fire, smoke, fuel leaks, and darkness

would be significantly higher because the level of panic would be significantly higher.

With this in mind, extensions of the work in this dissertation could consider how influenc-

ing agents could influence human crowds to act calmly during an evacuation — or perhaps even

influence evacuees to take an alternate route to safety. Likewise, the placement methods discussed

in Chapter 5 of this dissertation could potentially be extended to determine where to place robots

193

with sensors and loudspeakers throughout crowds that have the potential to stampede. All of these

approaches could be tested in a realistic crowd simulation, or perhaps even in an aircraft or building

evacuation test setting.

10.3 Concluding Remarks

This dissertation describes how influencing agents can be utilized in order to influence a flock with

a known flocking model toward a particular behavior. In particular, this dissertation makes novel

contributions to the field of artificial intelligence — especially the multiagent systems and ad hoc

teamwork communities — by contributing influencing agent behaviors for efficiently influencing a

flock, placement methods for placing influencing agents into a flock, and methods for joining and

leaving a flock in motion without negatively influencing the flock.

By considering how the influencing agents should behave and where the influencing agents

should be placed — as well as how the influencing agents should join and leave a flock if placement

is not possible — we show that groups can be effectively influenced from within. We hope that the

influencing agent algorithms and methods presented in this dissertation will be extended to influence

flocks of birds, or other animal species, towards safer behavior than they would naturally achieve.

Throughout this dissertation, we have considered the motivating example of using influencing agents

to influence flocks of birds away from airports. We hope that the algorithms and methods described

in this dissertation will help this motivating example become a reality.

194

Bibliography

[1] P. K. Agarwal and J. Pan. Near-linear algorithms for geometric hitting sets and set covers. In

Proceedings of the Thirtieth Annual Symposium on Computational Geometry, page 271. ACM,

2014.

[2] S. V. Albrecht. Utilising Policy Types for Effective Ad Hoc Coordination in Multiagent Systems.

PhD thesis, The University of Edinburgh, Edinburgh, UK, November 2015.

[3] M. Andersson and J. Wallander. Kin selection and reciprocity in flight formation? Behavioral

Ecology, 15(1):158–162, 2004.

[4] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In Proceedings

of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035.

Society for Industrial and Applied Mathematics, 2007.

[5] I. L. Bajec and F. H. Heppner. Organized flight in birds. Animal Behaviour, 78(4):777–789,

2009.

[6] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte,

A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal

collective behavior depends on topological rather than metric distance: Evidence from a field

study. Proceedings of the National Academy of Sciences, 105(4):1232–1237, 2008.

[7] J. C. Barca. Anti-swarming from the swarm robotics perspective. October 2016.

[8] S. Barrett. Making Friends on the Fly: Advances in Ad Hoc Teamwork. PhD thesis, The

University of Texas at Austin, Austin, Texas, USA, December 2014.

[9] S. Barrett, K. Genter, M. Hausknecht, T. Hester, P. Khandelwal, J. Lee, M. Quinlan, A. Tian,

P. Stone, and M. Sridharan. Austin Villa 2010 Standard Platform team report. Technical Re-

195

port UT-AI-TR-11-01, The University of Texas at Austin, Department of Computer Sciences,

AI Laboratory, January 2011.

[10] S. Barrett, K. Genter, Y. He, T. Hester, P. Khandelwal, J. Menashe, and P. Stone. UT Austin

Villa 2012: Standard Platform League world champions. In RoboCup 2012: Robot Soccer

World Cup XVI, pages 36–47. Springer, 2013.

[11] S. Barrett, K. Genter, T. Hester, P. Khandelwal, M. Quinlan, P. Stone, and M. Sridharan.

Austin Villa 2011: Sharing is caring: Better awareness through information sharing. Tech-

nical Report UT-AI-TR-12-01, The University of Texas at Austin, Department of Computer

Sciences, AI Laboratory, January 2012.

[12] M. Berger, L. M. Seversky, and D. S. Brown. Classifying swarm behavior via compressive sub-

space learning. In 2016 IEEE International Conference on Robotics and Automation (ICRA),

pages 5328–5335. IEEE, 2016.

[13] W. Bialeka, A. Cavagna, I. Giardinab, T. Morad, E. Silvestrib, M. Vialeb, and A. Walczak.

Statistical mechanics for natural flocks of birds. Proceedings of the National Academy of

Sciences, 109(11):4786–4791, 2012.

[14] S. Bonneaud and W. H. Warren. A behavioral dynamics approach to modeling realistic pedes-

trian behavior. In Proceedings of the 6th International Conference on Pedestrian and Evacu-

ation Dynamics, 2012.

[15] M. Bowling and P. McCracken. Coordination and adaptation in impromptu teams. In Pro-

ceedings of the Twentieth AAAI Conference on Artificial Intelligence (AAAI’05), pages 53–58.

AAAI Press, 2005.

[16] H. Bronnimann and M. T. Goodrich. Almost optimal set covers in finite vc-dimension. Discrete

& Computational Geometry, 14(4):463–479, 1995.

[17] D. S. Brown, S. C. Kerman, and M. A. Goodrich. Human-swarm interactions based on man-

aging attractors. In Proceedings of the 2014 ACM/IEEE International Conference on Human-

Robot Interaction, pages 90–97. ACM, 2014.

196

[18] H. Celikkanat and E. Sahin. Steering self-organized robot flocks through externally guided

individuals. Neural Computing and Applications, 19(6):849–865, September 2010.

[19] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and decision-

making in animal groups on the move. Nature, 433(7025):513–516, 2005.

[20] E. Cristiani and B. Piccoli. A unifying model for the structure of animal groups on the move.

2009.

[21] F. Cucker and C. Huepe. Flocking with informed agents. Mathematics in Action, 1(1):1–25,

2008.

[22] R. D’Andrea and P. Wurman. Future challenges of coordinating hundreds of autonomous ve-

hicles in distribution facilities. In Technologies for Practical Robot Applications, 2008. TePRA

2008. IEEE International Conference on, pages 80–83. IEEE, 2008.

[23] S. Dasgupta. Performance guarantees for hierarchical clustering. In 15th Annual Conference

on Computational Learning Theory, pages 351–363. Springer, 2002.

[24] K. S. Decker and V. R. Lesser. Readings in agents: Designing a family of coordination algo-

rithms. pages 450–457. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[25] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em

algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

[26] B. Dias. Traderbots: A New Paradigm for Robust and Efficient Multirobot Coordination in

Dynamic Environments. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2004.

[27] J. Enright and P. R. Wurman. Optimization and coordinated autonomy in mobile fulfillment

systems. In Automated action planning for autonomous mobile robots, pages 33–38, 2011.

[28] A. Feldman, M. Hybinette, and T. Balch. The multi-iterative closest point tracker: An online

algorithm for tracking multiple interacting targets. Journal of Field Robotics, 29(2):258–276,

2012.

197

[29] E. Ferrante, A. E. Turgut, N. Mathews, M. Birattari, and M. Dorigo. Flocking in stationary

and non-stationary environments: A novel communication strategy for heading alignment.

In Proceedings of the 11th International Conference on Parallel Problem Solving from Nature

(PPSN’10), pages 331–340. Springer-Verlag, 2010.

[30] E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, M. Birattari, and M. Dorigo. A self-

adaptive communication strategy for flocking in stationary and non-stationary environments.

Natural Computing, 13(2):225–245, 2014.

[31] K. Genter, N. Agmon, and P. Stone. Ad hoc teamwork for leading a flock. In Proceedings of the

2013 International Conference on Autonomous Agents and Multi-agent Systems (AAMAS’13),

pages 531–538. International Foundation for Autonomous Agents and Multiagent Systems,

May 2013.

[32] K. Genter, T. Laue, and P. Stone. Three years of the RoboCup Standard Platform League

Drop-in Player Competition: Creating and maintaining a large scale ad hoc teamwork robotics

competition. Autonomous Agents and Multi-Agent Systems (JAAMAS), pages 1–31, 2016.

[33] K. Genter, P. MacAlpine, J. Menashe, J. Hannah, E. Liebman, S. Narvekar, R. Zhang, and

P. Stone. UT Austin Villa: Project-driven research in ai and robotics. IEEE Intelligent

Systems, 31(2):94–101, 2016.

[34] K. Genter and P. Stone. Influencing a flock via ad hoc teamwork. In Proceedings of the

Ninth International Conference on Swarm Intelligence (ANTS’14), pages 110–121. Springer,

September 2014.

[35] K. Genter and P. Stone. Ad hoc teamwork behaviors for influencing a flock. Acta Polytechnica,

2016.

[36] K. Genter and P. Stone. Adding influencing agents to a flock. In Proceedings of the 2016

International Conference on Autonomous Agents and Multiagent Systems (AAMAS’16), pages

615–623. International Foundation for Autonomous Agents and Multiagent Systems, May 2016.

198

[37] K. Genter and P. Stone. Agent behaviors for joining and leaving a flock (Extended abstract).

In Proceedings of the 2017 International Conference on Autonomous Agents and Multiagent

Systems (AAMAS’17). International Foundation for Autonomous Agents and Multiagent Sys-

tems, May 2017.

[38] K. Genter, S. Zhang, and P. Stone. Determining placements of influencing agents in a flock.

In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent

Systems (AAMAS’15), pages 247–255. International Foundation for Autonomous Agents and

Multiagent Systems, May 2015.

[39] B. Grosz. What question would Turing pose today? AI Magazine, 33(4):73, 2012.

[40] B. J. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial Intelligence,

86(2):269–357, 1996.

[41] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA

data mining software: An update. SIGKDD Explorations, 11(1), 2009.

[42] J. Han, M. Li, and L. Guo. Soft control on collective behavior of a group of autonomous agents

by a shill agent. Journal of Systems Science and Complexity, 19(1):54–62, 2006.

[43] J. F. Harrison, C. Vo, and J.-M. Lien. Scalable and robust shepherding via deformable shapes.

In International Conference on Motion in Games, pages 218–229. Springer, 2010.

[44] H. O. Hartley. Maximum likelihood estimation from incomplete data. Biometrics, 14(2):174–

194, 1958.

[45] C. K. Hemelrijk and H. Hildenbrandt. Some causes of the variable shape of flocks of birds.

PLoS ONE, 6(8), 2011.

[46] J. E. Herbert-Read. Understanding how animal groups achieve coordinated movement. Journal

of Experimental Biology, 219(19):2971–2983, 2016.

[47] J. E. Herbert-Read, A. Perna, R. P. Mann, T. M. Schaerf, D. J. T. Sumpter, and A. J. W.

Ward. Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy

of Sciences, 108(46):18726–18731, 2011.

199

[48] D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem.

Mathematics of Operations Research, 10(2):180–184, 1985.

[49] C. C. Ioannou, M. Singh, and I. D. Couzin. Potential leaders trade off goal-oriented and

socially oriented behavior in mobile animal groups. The American Naturalist, 186(2):284–293,

2015.

[50] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents

using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6):988–1001, 2003.

[51] E. G. Jones, B. Browning, M. B. Dias, B. Argall, M. Veloso, and A. Stentz. Dynamically

formed heterogeneous robot teams performing tightly-coordinated tasks. In Proceedings 2006

IEEE International Conference on Robotics and Automation (ICRA’06), pages 570–575. IEEE,

2006.

[52] S.-Y. Jung, D. S. Brown, and M. A. Goodrich. Shaping couzin-like torus swarms through coor-

dinated mediation. In 2013 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pages 1834–1839. IEEE, 2013.

[53] S. Kerman, D. Brown, and M. A. Goodrich. Supporting human interaction with robust robot

swarms. In 2012 5th International Symposium on Resilient Control Systems (ISRCS), pages

197–202. IEEE, 2012.

[54] A. J. King, A. M. Wilson, S. D. Wilshin, J. Lowe, H. Haddadi, S. Hailes, and A. J. Morton.

Selfish-herd behaviour of sheep under threat. Current Biology, 22(14):R561–R562, 2012.

[55] M. Klotsman and A. Tal. Animation of flocks flying in line formations. Artificial life, 18(1):91–

105, 2012.

[56] T. Landgraf, H. Nguyen, J. Schroer, A. Szengel, R. Clement, D. Bierbach, and J. Krause.

Blending in with the shoal: Robotic fish swarms for investigating strategies of group formation

in guppies. In Conference on Biomimetic and Biohybrid Systems, pages 178–189. 2014.

[57] S. Liemhetcharat. Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams.

PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, August 2013.

200

[58] J.-M. Lien, O. B. Bayazit, R. T. Sowell, S. Rodriguez, and N. M. Amato. Shepherding behav-

iors. In 2004 IEEE International Conference on Robotics and Automation (ICRA’04), pages

4159–4164. IEEE, April 2004.

[59] J.-M. Lien, S. Rodriguez, J.-P. Malric, and N. M. Amato. Shepherding behaviors with multiple

shepherds. In 2005 IEEE International Conference on Robotics and Automation (ICRA’05),

pages 3402–3407. IEEE, April 2005.

[60] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. MASON: A multi-agent

simulation environment. Simulation: Transactions of the Society for Modeling and Simulation

International, 81(7):517–527, 2005.

[61] P. MacAlpine, K. Genter, S. Barrett, and P. Stone. The RoboCup 2013 Drop-in Player Chal-

lenges: Experiments in ad hoc teamwork. In Proceedings of the 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS’14), pages 382–387, Chicago, IL, USA,

September 2014. IEEE.

[62] J. Martin, J. Belant, T. DeVault, B. Blackwell, L. B. Jr., S. Riffell, and G. Wang. Wildlife risk

to aviation: A multi-scale issue requires a multi-scale solution. Human-Wildlife Interactions,

5(2):198–203, 2011.

[63] J. Menashe, S. Barrett, K. Genter, and P. Stone. UT Austin Villa 2013: Advances in vision,

kinematics, and strategy. In The Eighth Workshop on Humanoid Soccer Robots at Humanoids

2013, 2013.

[64] C. Moeslinger, T. Schmickl, and K. Crailsheim. Emergent flocking with low-end swarm robots.

In Proceedings of the Seventh International Conference on Swarm Intelligence (ANTS’10),

pages 424–431. Springer, 2010.

[65] A. Nathan and V. C. Barbosa. V-like formations in flocks of artificial birds. Artificial life,

14(2):179–188, 2008.

[66] A. Pierson and M. Schwager. Bio-inspired non-cooperative multi-robot herding. In 2015 IEEE

201

International Conference on Robotics and Automation (ICRA’15), pages 1843–1849. IEEE,

May 2015.

[67] S. J. Portugal, T. Y. Hubel, J. Fritz, S. Heese, D. Trobe, B. Voelkl, S. Hailes, A. M. Wilson,

and J. R. Usherwood. Upwash exploitation and downwash avoidance by flap phasing in ibis

formation flight. Nature, 505(7483):399–402, 2014.

[68] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM SIG-

GRAPH, 21:25–34, August 1987.

[69] RoboCup Small Size Robot League. Mixed Team Tournament, 2013. Online:

http://robocupssl.cpe.ku.ac.th/robocup2013:mixed_team_tournament.

[70] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. Couzin. Revealing the

hidden networks of interaction in mobile animal groups allows prediction of complex behavioral

contagion. Proceedings of the National Academy of Sciences, 112(15):4690–4695, 2015.

[71] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad hoc autonomous agent teams: Col-

laboration without pre-coordination. In Proceedings of the Twenty-Fourth AAAI Conference

on Artificial Intelligence (AAAI’10), pages 1504–1509. AAAI Press, 2010.

[72] P. Stone and M. Veloso. Task decomposition, dynamic role assignment, and low-bandwidth

communication for real-time strategic teamwork. Artificial Intelligence, 110(2):241–273, 1999.

[73] A. Strandburg-Peshkin, C. R. Twomey, N. W. F. Bode, A. B. Kao, Y. Katz, C. C. Ioannou,

S. B. Rosenthal, C. J. Torney, H. S. Wu, S. A. Levin, and I. D. Couzin. Visual sensory networks

and effective information transfer in animal groups. Current Biology, 23(17):R709–R711, 2013.

[74] D. Strombom, R. P. Mann, A. M. Wilson, S. Hailes, A. J. Morton, D. J. Sumpter, and A. J.

King. Solving the shepherding problem: Heuristics for herding autonomous, interacting agents.

Journal of The Royal Society Interface, 11(100), 2014.

[75] H. Su, X. Wang, and Z. Lin. Flocking of multi-agents with a virtual leader. IEEE Transactions

on Automatic Control, 54(2):293–307, 2009.

202

http://robocupssl.cpe.ku.ac.th/robocup2013:mixed_team_tournament

[76] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 7(1):83–124,

1997.

[77] N. Tinbergen. Social behaviour in animals: With special reference to vertebrates. 1953.

[78] R. Tiwari, P. Jain, S. Butail, S. P. Baliyarasimhuni, and M. A. Goodrich. Effect of leader

placement on robotic swarm control. In Proceedings of the 2017 International Conference on

Autonomous Agents and Multiagent Systems (AAMAS’17), pages 1387–1394. International

Foundation for Autonomous Agents and Multiagent Systems, 2017.

[79] A. Turgut, H. Celikkanat, F. Gokce, and E. Sahin. Self-organized flocking in mobile robot

swarms. Swarm Intelligence, 2(2):97–120, 2008.

[80] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition

in a system of self-driven particles. Physical Review Letters, 75(6):1226–1229, 1995.

[81] M. Wilkerson-Jerde, F. Stonedahl, and U. Wilensky. NetLogo flocking vee formations model,

2009. Online: http://ccl.northwestern.edu/netlogo/models/FlockingVeeFormations.

[82] C.-H. Yu, J. Werfel, and R. Nagpal. Collective decision-making in multi-agent systems by im-

plicit leadership. In Proceedings of the 2010 International Conference on Autonomous Agents

and Multi-agent Systems (AAMAS’10), pages 1189–1196. International Foundation for Au-

tonomous Agents and Multiagent Systems, 2010.

[83] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas. Graph-theoretic connectivity control of

mobile robot networks. Proceedings of the IEEE, 99(9):1525–1540, 2011.

203

http://ccl.northwestern.edu/netlogo/models/FlockingVeeFormations

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Swarming
	Multiagent Systems
	This Dissertation

	Problem Definition
	Flocking Model
	Neighborhood Model
	Influence Model

	Performance Representation
	Flock Manipulation
	Placement
	Joining and Leaving

	Simulation Environment
	FlockSim
	MASON Flockers

	Leading a Stationary Flock to a Desired Orientation
	General Flocking Theorems
	Stationary Agents
	Non-stationary Influencing Agents
	Summary

	Influencing a Flock to a Desired Orientation
	1-Step Lookahead Behavior
	2-Step Lookahead Behavior
	Coordinated Behavior
	Orient Experiments
	Baseline Influencing Agent Behaviors
	Experimental Setup
	Experimental Results
	Discussion

	Maneuver Experiments
	Experimental Setup
	Experimental Results

	Summary

	Placing Influencing Agents into a Flock
	Experimental Setup
	Constant-time Placement Methods
	Random Placement Method
	Grid Placement Method
	Border Placement Method
	Experimental Results

	Graph Placement Method
	Creating the Graph
	Calculating Sets of Influencing Agent Positions
	Evaluating Sets of Influencing Agent Positions
	Experimental Results

	Hybrid Placement Methods
	Experimental Results

	Two-Step Placement Method
	Step 1: Selecting Set S of Possible Influencing Agent Positions
	Step 2: Selecting Set S' S of k Influencing Agent Positions
	Experimental Results

	Clustering Placement Methods
	Farthest First
	Expectation Maximization
	K-Means
	Experimental Results

	Discussion
	Average Runtime
	Choosing a Method

	Summary

	Joining and Leaving a Flock
	Approaches for Joining a Flock
	Hover Approach
	Intercept Approach
	Decide to Influence

	Approaches for Leaving a Flock
	Hover Approach
	Nearest Edge Approach
	Influence while Leaving Approach

	Experimental Setup
	Experimental Results
	Hovering Experiments
	Intercept Experiments
	Discussion

	Summary

	Evaluation on Different Flocking Models
	Experimental Setup
	Alternate Neighborhood Models
	Visibility Sector
	N-Nearest Neighbors
	Weighted Influence
	Experimental Results

	Alternate Influence Models
	Experimental Results

	Summary

	Robot Implementation
	Experimental Setup
	Environment
	NAO Robot
	UT Austin Villa Codebase
	Videos

	Flocking Agents
	Behavior and Implementation
	Experiments with Flocking Agents
	Experiments Manually Influencing the Flock

	Influencing Agent
	Behavior and Implementation
	Experiments with Influencing Agents

	Summary

	Related Work
	Multiagent Coordination and Teamwork
	Ad Hoc Teamwork
	Flocks, Herds and Swarms
	Cluster Formations
	Line Formations

	Influencing a Flock
	Human-led Influence
	Shepherding
	Infiltration

	Summary

	Conclusions and Future Work
	Contributions
	Future Work
	Extending Theoretical Contributions
	Extending Influencing a Flock to a Desired Orientation
	Extending Placing Influencing Agents into a Flock
	Extending Joining and Leaving a Flock
	Generalizing to Different Flocking Models
	Extending Robot Implementation
	Extensions to Line Formation Flocking
	Sweet Spots for Influence
	Extensions to Other Animal Domains
	Extensions to Human Domains

	Concluding Remarks

	Bibliography

