
Copyright

by

Hector Emilio Barrios Molano

2017

The Thesis Committee for Hector Emilio Barrios Molano

Certifies that this is the approved version of the following thesis:

Development of a Framework for Parallel Reservoir Simulation

APPROVED BY

SUPERVISING COMMITTEE:

Kamy Sepehrnoori, Supervisor

Lee Chin

Development of a Framework for Parallel Reservoir Simulation

by

Hector Emilio Barrios Molano

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University Of Texas At Austin

August 2017

To my beloved parents and brother

Acknowledgments

I would like to expressmy deepest appreciation and gratitude tomy supervisor,

Dr. Kamy Sepehrnoori for his continuous guidance, support and encouragement

through this research.

I am indebted to Dr. Lee Chin, my second reader, for providing valuable

comments and feedback on my thesis.

I would like to specially thank Dr. Francisco Marcondes for his valuable com-

ments and advice through my thesis. Also, I would like to thank Mojtaba Ghasemi

Doroh for his help and knowledge sharing on UTCOMPP.

I would like to thank Dr. Chowdhury Mamun for his careful review and

comments of my thesis.

I sincerely appreciate the help and support provided by the TACC staff.

Furthermore, I would like to thank PGE staff for their administrative and tech-

nical support; specially to Tim Guinn, John Cassibry and Amy Stewart.

I appreciate the financial support provided by the members of the Reservoir

Simulation Joint Industry Project (RSJIP) at the Center for Petroleum and Geosystems

Engineering at The University of Texas at Austin.

I am very grateful to all my friends and officemates for the great time that has

been grad school.

v

Development of a Framework for Parallel Reservoir Simulation

Hector Emilio Barrios Molano, M.S.E.

The University of Texas at Austin, 2017

Supervisor: Kamy Sepehrnoori

Parallel reservoir simulation is a topic of special interest to reservoir engineers

and reservoir simulator developers. Parallel reservoir simulators provides several

advantages over non-parallel reservoir simulators, such as

• Capability to run bigger models.

• Capability to have simulation results faster by using several processing units at

once.

• Not limited to single computer memory. Memory available increases as more

computers are used.

All these are compelling reasons for reservoir engineers. However, for reservoir

simulator developers, the creation of a parallel reservoir simulator is a more complex

task than non-parallel simulators. Problems related to parallel implementation such

as parallel communication, model division among processors, and the management

of data distributed among processors, among others should be addressed and solved

on top of the already complex task of simulator development. Hence, development

time for parallel reservoir simulators is more time intensive than the traditional devel-

opment on single processor computers.

The objective of this work is to separate the development focus of parallel reser-

voir simulators in two: parallel development and reservoir simulator development. To

achieve such separation, a parallel framework was developed. The framework devel-

oped in this work implements and handles the parallel complexity and provides easy

vi

to use programming interfaces to accelerate the development of new parallel reservoir

simulators or the parallelization of existing ones.

The University of Texas Compositional Simulator (UTCOMP) was used with

the framework to create a new parallel reservoir simulator. Several cases were used to

verify accuracy, to assert usability and to test parallel performance on our new parallel

reservoir simulator. The parallel reservoir simulator developed in this work has all of

UTCOMP’s features and is able to run models with up to 102.4 million cells using up

to 1024 processors.

vii

Table of Contents

Acknowledgments v

Abstract vi

Table of Contents viii

List of Tables xi

List of Figures xiii

List of Listings xvi

Chapter 1. Introduction 1
1.1 Brief Description of Chapters . 2

Chapter 2. Background and Literature Review 3
2.1 Parallel Computing . 3

2.1.1 Why Parallel Computing? . 3

2.2 Performance of Parallel Applications . 4

2.2.1 Performance Measurements for Parallel Performance 4

2.2.1.1 Time measurements . 4

2.2.1.2 Speedup . 5

2.2.1.3 Efficiency . 5

2.2.2 Theoretical Limits on performance 5

2.2.2.1 Amdahl’s Law . 5

2.2.2.2 Gustafson’s Law . 6

2.2.3 Scalability . 6

2.3 Parallel Architectures . 7

2.3.1 General Parallel Computer Terminology 7

2.3.2 Flynn’s Taxonomy . 8

2.3.3 Shared Memory . 9

2.3.4 Distributed Memory . 9

2.3.5 Hybrid Systems . 12

2.3.5.1 Multicore Systems . 12

2.3.5.2 Accelerated Systems . 12

2.4 Parallel Programming . 13

2.4.1 Shared Memory . 13

2.4.2 Distributed Memory . 14

2.4.3 Multicore Systems . 14

2.4.4 Accelerated Systems . 15

2.5 Parallel Reservoir Simulation . 15

viii

Chapter 3. Proposed Framework 20
3.1 Parallel Development Problems . 21

3.1.1 Parallel Communication . 21

3.1.2 Reservoir Model Division . 21

3.1.3 Spatially Distributed Properties . 23

3.1.4 Input Processing . 23

3.1.5 Output Processing . 23

3.2 Solutions to the Parallel Development Problems 23

3.2.1 Parallel Communications . 24

3.2.2 Reservoir Model Division . 24

3.2.3 Spatially Distributed Properties . 31

3.2.4 Input Processing . 34

3.2.5 Visualization Output . 38

3.3 Framework Design . 41

3.3.1 Core Module . 41

3.3.2 Framework Module . 41

3.3.3 Simulator Module . 42

3.4 Framework Capabilities . 45

Chapter 4. Application of Framework to UTCOMP 46
4.1 Overview of UTCOMP simulator . 46

4.1.1 The Mass Conservation Equation 47

4.1.2 The Pressure Equation . 50

4.2 Overview of UTCOMPP simulator . 51

4.3 Modifications Made to UTCOMPP’s Simulation Subroutines in Order to

Work with Our New Framework . 52

Chapter 5. Case Studies 53
5.1 Verification Cases . 53

5.1.1 Case 1 - CO2 Flooding . 53

5.1.1.1 Base Model . 56

5.1.1.2 Flash Calculation Options 61

5.1.1.3 Higher-Order Finite Differences 65

5.1.1.4 Peaceman Well Model . 69

5.1.2 Case 2 - Gas Injection . 71

5.1.3 Case 3 - CO2 and Gas Injection . 79

5.1.4 Case 4 - Asphalthene Precipitation 86

5.2 Performance Cases . 93

5.2.1 Case 5 - WAG Heterogeneous . 93

5.2.2 Case 6 - WAG Homogeneous . 108

5.2.2.1 Effect of Hardware on Speedup 120

5.2.3 Case 7 - Simultaneous Water-Gas Injection 123

5.2.4 Case 8 - Waterflooding . 136

5.2.5 Case 9 - Water and Gas Injection Weak Scalability Test 148

5.2.6 Case 10 - Effect of Number of Cores per Node used 155

5.2.7 Case 11 - Waterflooding Weak Scalability Test 159

5.2.8 Case 12 - Waterflooding Strong Scalability Test 164

Chapter 6. Summary, Conclusions and Recommendations 168
6.1 Summary . 168

6.2 Conclusions . 169

6.3 Recommendations for Future Work . 171

ix

Bibliography 172

x

List of Tables

3.1 list of export cells and ghost cells for each processor in example 30

3.2 General information for export cells and ghost cells for each processor

in example . 30

3.3 Files generated for visualization in S3graf 40

3.4 Files generated for visualization in VTK format 40

5.1 Lonestar 5 compute node specifications 53

5.2 Model description for case 1 . 54

5.3 Component properties and compositions for case 1 54

5.4 Relative permeability data for case 1 . 55

5.5 UTCOMP features tested in Case 1 . 56

5.6 Results for case 1 . 57

5.7 CPU times for case 1 . 60

5.8 Model description for case 2 . 71

5.9 Component properties and compositions for case 2 72

5.10 Relative permeability data for case 2 . 72

5.11 Results for case 2 . 73

5.12 CPU times for case 2 . 76

5.13 Sections timed in new simulator . 77

5.14 Detailed CPU times in seconds for case 2 77

5.15 Model description for case 3 . 79

5.16 Component properties and compositions for case 3 80

5.17 Relative permeability data for case 3 . 80

5.18 Results for case 3 . 81

5.19 CPU times for case 3 . 84

5.20 Detailed CPU times in seconds for case 3 84

5.21 Model description for case 4 . 86

5.22 Component properties and compositions for case 4 87

5.23 Relative permeability data for case 4 . 87

5.24 Results for case 4. Domain decomposition and pressure distribution . . 88

5.25 Results for case 4. Saturation distribution 89

5.26 CPU times for case 4 . 92

5.27 Model description for case 5 . 93

5.28 Component properties and compositions for case 5 95

5.29 Relative permeability data for case 5 . 95

5.30 Well schedule for case 5 . 96

5.31 Results for case 5. Domain decomposition and pressure distribution . . 97

5.32 Results for case 5. Saturation distribution 98

5.33 CPU times for case 5 . 102

5.34 Speedup for case 5 . 103

5.35 Detailed CPU times in seconds for case 5 104

5.36 Detailed CPU times in seconds for UTCOMPP, case 5 104

5.37 Model description for case 6 . 108

5.38 Component properties and compositions for case 6 109

5.39 Relative permeability data for case 6 . 109

xi

5.40 Well schedule for case 6 . 110

5.41 Results for case 6. Domain decomposition and pressure distribution . . 112

5.42 Results for case 6. Saturation distribution 113

5.43 CPU times for case 6 . 116

5.44 Speedup for case 6 . 116

5.45 Detailed CPU times in seconds for case 6 118

5.46 Lonestar 4 and Lonestar 5 compute node comparison 120

5.47 CPU times, case 6 usingUTCOMPP in Lonestar 4 (Ghasemi Doroh 2012)

and Lonestar 5 . 121

5.48 Speedup, case 6 using UTCOMPP in Lonestar 4 (Ghasemi Doroh 2012)

and Lonestar 5 . 122

5.49 Model description for case 7 . 123

5.50 Component properties and compositions for case 7 125

5.51 Relative permeability data for case 7 . 125

5.52 Well schedule for case 7 . 126

5.53 Results for case 7. Domain decomposition and pressure distribution . . 127

5.54 Results for case 7. Saturation distribution 128

5.55 CPU times for case 7 . 132

5.56 Speedup for case 7 . 133

5.57 Detailed CPU times in seconds for case 7 134

5.58 Model description for case 8 . 136

5.59 Component properties and compositions for case 8 138

5.60 Relative permeability data for case 8 . 139

5.61 Results for case 8 . 141

5.62 CPU times for case 8 . 144

5.63 Speedup for case 8 . 144

5.64 Detailed CPU times in seconds for case 8 146

5.65 Model description for case 9 . 148

5.66 Component properties and compositions for case 9 149

5.67 Relative permeability data for case 9 . 149

5.68 Well schedule for case 9 . 149

5.69 Model size . 150

5.70 CPU times for case 9 . 151

5.71 CPU time ratio case 9 . 152

5.72 Detailed CPU times in seconds for case 9 153

5.73 Lonestar 5 compute node specification . 155

5.74 Number of compute nodes used in each run, case 10 156

5.75 CPU time (seconds) case 10 . 156

5.76 Number of number of channels available per core vs. cores per node used158

5.77 Model size, case 11 . 159

5.78 CPU times for case 11 . 159

5.79 CPU time ratio case 11 . 160

5.80 Detailed CPU times in seconds for case 11 162

5.81 CPU times for case 12 . 164

5.82 Speedup for case 12 . 164

5.83 Detailed CPU times in seconds for case 12 166

xii

List of Figures

2.1 Schematic of parallel computing . 3

2.2 Speedup fromAmdahl’s law for different serial fractions (Gustafson 2011) 6

2.3 Speedup from Gustafson’s law for different serial fractions (Gebali 2011) 7

2.4 Different terms used in parallel computing 8

2.5 Flynn’s taxonomy (Flynn 2011) . 10

2.6 A shared memory system . 11

2.7 A distributed memory system . 11

2.8 A multicore system . 12

2.9 An accelerated system . 13

2.10 Example of fork-join model (Blaise 2015b) 14

3.1 Examples of domain decomposition in 2d 22

3.2 Example of two load distribution . 22

3.3 Example of domain decomposition using RCB algorithmwith andwith-

out taking into account the inactive cells 26

3.4 Example of domains whit ghost layers . 27

3.5 Grid and cells coordinates shown as example of communication setup

between processors, results are shown in Tables 3.1 and 3.2 29

3.6 Packing of export cells into export buffer 33

3.7 Exchange of ghost cells among processors 33

3.8 Unpacking of ghost cells from ghost buffer 34

3.9 Functions developed on top of Aotus and Lua 35

3.10 Framework employs MPI IO to read PArray input files 39

3.11 File structure of VTK output . 40

3.12 Detailed structure of framework . 43

3.13 General framework’s work-flow . 44

4.1 UTCOMP flowchart (Chang 1990) . 48

5.1 Grid and wells for verification case 1 . 55

5.2 Average reservoir pressure, case 1 base . 58

5.3 Surface oil production rate, case 1 base . 58

5.4 Surface gas production rate, case 1 base 59

5.5 Material balance, case 1 base . 59

5.6 CPU time, case 1 base . 60

5.7 Average reservoir pressure, case 1 using modified flash calculations . . . 61

5.8 Surface oil production rate, case 1 using modified flash calculations . . . 62

5.9 Average reservoir pressure, case 1 using reduced flash calculations . . . 63

5.10 Surface oil production rate, case 1 using reduced flash calculations . . . 64

5.11 Average reservoir pressure, case 1 using two point upstream weighted

method . 65

5.12 Surface oil production rate, case 1 using two point upstream weighted

method . 66

5.13 Average reservoir pressure, case 1 using exponential upstreamweighted

third order method . 66

xiii

5.14 Surface oil production rate, case 1 using exponential upstreamweighted

third order method . 67

5.15 Average reservoir pressure, case 1 using total variation diminishing

third order method . 67

5.16 Surface oil production rate, case 1 using total variationdiminishing third

order method . 68

5.17 Average reservoir pressure, case 1 using Peaceman well model 69

5.18 Surface oil production rate, case 1 using Peaceman well model 70

5.19 Grid and wells for verification case 2 . 72

5.20 Average reservoir pressure, case 2 . 74

5.21 Surface oil production rate, case 2 . 74

5.22 Surface gas production rate, case 2 . 75

5.23 Material balance, case 2 . 75

5.24 CPU time, case 2 . 76

5.25 Detailed CPU times for case 2 . 78

5.26 Grid and wells for verification case 3 . 80

5.27 Average reservoir pressure, case 3 . 82

5.28 Surface oil production rate, case 3 . 82

5.29 Surface gas production rate, case 3 . 83

5.30 Material balance, case 3 . 83

5.31 CPU time, case 3 . 84

5.32 Detailed CPU times for case 3 . 85

5.33 Grid and wells for verification case 3 . 87

5.34 Average reservoir pressure, case 4 . 89

5.35 Surface oil production rate, case 4 . 90

5.36 Surface gas production rate, case 4 . 90

5.37 Surface water production rate, case 4 . 91

5.38 Material balance, case 4 . 91

5.39 CPU time, case 4 . 92

5.40 Porosity distribution for case 5 . 94

5.41 Permeability distribution for case 5 (md) 94

5.42 Grid and wells for case 5 . 95

5.43 Average reservoir pressure, case 5 . 99

5.44 Surface oil production rate, case 5 . 99

5.45 Surface gas production rate, case 5 . 100

5.46 Surface water production rate, case 5 . 100

5.47 Material balance, case 5 . 101

5.48 CPU time, case 5 . 102

5.49 Speedup, case 5 . 103

5.50 Detailed CPU times for case 5 . 105

5.51 Detailed CPU times for UTCOMPP, case 5 105

5.52 Percentage of total CPU time for timers for case 5 106

5.53 Percentage of total CPU time for timers for UTCOMPP, case 5 106

5.54 CPU time spent on inter processor communication for case 5 107

5.55 Grid and wells for case 6 . 109

5.56 Average reservoir pressure, case 6 . 111

5.57 Surface oil production rate, case 6 . 114

5.58 Surface gas production rate, case 6 . 114

5.59 Surface water production rate, case 6 . 115

5.60 Material balance, case 6 . 115

5.61 CPU time, case 6 . 117

xiv

5.62 Speedup, case 6 . 117

5.63 Detailed CPU times for case 6 . 119

5.64 Percentage of total CPU time for timers for case 6 119

5.65 CPU time for UTCOMPP on Lonestar 4 and Lonestar 5, case 6 121

5.66 Speedup for UTCOMPP on Lonestar 4 and Lonestar 5, case 6 122

5.67 Porosity distribution for case 7 . 124

5.68 Permeability distribution for case 7 (md) 124

5.69 Grid and wells for case 7 . 125

5.70 Average reservoir pressure, case 7 . 129

5.71 Surface oil production rate, case 7 . 129

5.72 Surface gas production rate, case 7 . 130

5.73 Surface water production rate, case 7 . 130

5.74 Material balance, case 7 . 131

5.75 CPU time, case 7 . 132

5.76 Speedup, case 7 . 133

5.77 Detailed CPU times for case 7 . 135

5.78 Percentage of total CPU time for timers for case 7 135

5.79 Porosity distribution for case 8 . 137

5.80 Permeability distribution for case 8 (md) 137

5.81 Active cells for case 8 . 138

5.82 Grid and wells for case 8 . 139

5.83 Average reservoir pressure, case 8 . 140

5.84 Surface oil production rate, case 8 . 142

5.85 Surface gas production rate, case 8 . 142

5.86 Surface water production rate, case 8 . 143

5.87 Material balance, case 8 . 143

5.88 CPU time, case 8 . 145

5.89 Speedup, case 8 . 145

5.90 Detailed CPU times for case 8 . 147

5.91 Percentage of total CPU time for timers for case 8 147

5.92 CPU time, case 9 . 151

5.93 CPU time ratio, case 9 . 152

5.94 Detailed CPU times for case 9 . 154

5.95 Percentage of total CPU time for timers for case 9 154

5.96 CPU time, case 10 . 157

5.97 CPU time ratio, case 10 . 157

5.98 CPU time, case 11 . 160

5.99 CPU time ratio, case 11 . 161

5.100Detailed CPU times for case 11 . 163

5.101Percentage of total CPU time for timers for case 11 163

5.102CPU time, case 12 . 165

5.103Speedup, case 12 . 165

5.104Detailed CPU times for case 12 . 167

5.105Percentage of total CPU time for timers for case 12 167

xv

List of Listings

3.1 Example use of GridCart_type . 29

3.2 Example use of PArray_type . 32

3.3 Example of input data in Lua . 36

3.4 Example reading data from Listing 3.3 from Fortran 37

xvi

Chapter 1

Introduction

Reservoir simulation is widely used in reservoir development. A reservoir

model serves as a virtual sandbox in which many scenarios can be evaluated. The

results from a reservoir simulation study aid in the selection of the best scenarios to

be applied to the real reservoir. These reservoir studies can require many simulation

runs (hundred or thousands). Each of these simulations is computationally expensive

and requires long time to finish. Additionally, over the years there is an increasing

trend in reservoir model size (could be multi million cells for full field high resolution

cases) and complexity of the processes simulated (for example enhanced oil recovery

processes). Consequently, the time required to finish a single simulation run could be

in the order of days or weeks. Given that a reservoir study could require hundreds

of simulations; if a single simulation takes days to finish, it could make the reservoir

study unpractical. A solution to this problem is to use parallel reservoir simulation.

Parallel reservoir simulation makes use of several computer processors at the same

time. The reservoir model is divided into several pieces and each piece is assigned to a

computer processor. The actual time required to finish the simulation is thus reduced

because the work load is divided into several processors.

From the point of view of reservoir simulator development, generation of a

parallel reservoir simulator requires the following additional points of consideration

during its development:

• Define the best way to divide the reservoir model.

• Allocate memory for each processor.

• Transfer data among processors

• Give and retrieve information from processors.

1

• Display results from scattered data among processors.

These added requirements create an additional level of complexity to the al-

ready daunting task of reservoir simulator development; hence, increases simulator

development time.

The objective of this work is to create a framework that provides the necessary

tools to facilitate removal of the complexity in the development of a parallel reservoir

simulator. The resulting framework needs to include the following capabilities:

• Completely in Fortran language

• Modular

• Extensible

• Use of simulator code already developed

Furthermore, We applied our new framework to UTCOMPP a previously par-

allelized version of the UTCOMP simulator to create a new parallel compositional

reservoir simulator with improved parallel features. Several cases are created to assert

the usability and the parallel performance of the new simulator.

1.1 Brief Description of Chapters
Chapter 2 sets the background information for parallel computing, parallel

reservoir simulation and literature review about parallel reservoir simulation.

Chapter 3 describes in detail the methodology used to develop the framework

of this study.

Chapter 4 gives an overview of UTCOMP simulator and the changes made to

UTCOMP in order to make it work with the framework.

Chapter 5 shows the cases and the results used for verification and parallel

performance testing.

Chapter 6 summarizes and concludes the present work; it also gives recommen-

dations for future works.

2

Chapter 2

Background and Literature Review

2.1 Parallel Computing
Parallel computing in a broad sense is the use of multiple compute resources

simultaneously to solve a computational problem. In computation andmemory inten-

sive applications like engineering problems, parallel computation is focused on the use

of multiple processing units (processors) aiming to decrease wall time. The problem is

divided into smaller parts and each part is assigned to one processor. Each processor

solves its assigned part and communicates the solution to the other processors (Figure

2.1).

Figure 2.1: Schematic of parallel computing

2.1.1 Why Parallel Computing?

If we wanted to build the most powerful single computer computer, sooner or

later our performance will be limited by physical limits such as the speed of light and

the effectiveness of heat dissipation. Additionally, the cost of advanced singleprocessor

3

computers increases more rapidly than their power (Gropp, Lusk, and Skjellum 2014).

Parallel computing provides solutions to this problems; this is one of the reasons

parallel computing has become a mainstream technology found from smartphones up

to the world’s largest supercomputers.

Parallel computing provides the following advantages (Willmore 2013)(Blaise

2015a):

• Decreased time to solve problems. We are using more resources, and hence, we

have more computing power available than using one computer; thus the time

required to solve a problem will shorten.

• Increased capability. Usingmultiple computers increases the amount ofmemory

available. It is possible to solve problems that cannot fit in a single computer’s

memory.

• Low price/performance ratio. Parallel computers can be built from commodity

components; this makes the price/performance ratio lower than a single com-

puter with similar performance.

2.2 Performance of Parallel Applications
2.2.1 Performance Measurements for Parallel Performance

It is necessary to have a set of measurements that can be used as a basis to

quantify the degree of performance of a parallel application. Additionally, these

measurements can be used to identify parallel inefficiencies and optimize the paral-

lel application performance. Furthermore, these measurements are valuable when

comparing two or more parallel applications (Malony 2011).

2.2.1.1 Time measurements

Timing of parallel applications is one of the basic measurements performed.

Time can be reported in different ways, depending on which part of the application is

timed. Total execution time represents the elapsed time from the start of the application

to its end. CPU time is the time when the process is being executed by the CPU; this

excludes times like input/output time or idle time. There are also application specific

4

times that focus on certain parts of the application. These application specific times

help to identify which part of the code could represent bottlenecks.

2.2.1.2 Speedup

Speedup, defined in equation 2.1, expresses the performance improvement as

parallelism increases (Malony 2011). Ts is the serial execution time of the application;

Tp is the execution time taken when p processors are used. If Sp > 1 there is per-

formance improvement; if Sp < 1 there is a performance degradation. If a program

is ideally parallel then Sp � p. In the case Sp > p it is called superlinear speedup.

Superlinear speedup can be obtained if the amount of memory per processor required

to solve the problem can fit in the cache (Gustafson 1990).

S � Sp �
Ts

Tp
(2.1)

2.2.1.3 Efficiency

Efficiency is defined as the ratio of speedup to the number of processors (equa-

tion 2.2). This represents a return on investment on parallelism. For example, it is not

the same to have a speedup of 10 using 16 processors than the same speedup with 64.

Using 64 processors represents a higher investment over 16 processors to obtain the

same speedup; this is reflected on the efficiency E10 � 0.625 and E64 � 0.156.

Ep �
Sp

p
(2.2)

2.2.2 Theoretical Limits on performance
2.2.2.1 Amdahl’s Law

For a given parallel program, there is a serial fraction of the program that

cannot be parallelized fs ; for example, output printing. The rest of the program can

be parallelized fp . Amdahl’s law (Amdahl 1967) gives the speedup for a program run

with p processors as

Sp �
1

f + 1− f
p

(2.3)

5

This gives a limit on the maximum speed up that can be obtained for a fixed

size problem. This limit will be highly dependent on the serial fraction of the program

(see Figure 2.2). It is worth noting that Amdahl’s law treats the cost of communication

between processors as negligible (Gustafson 2011).

10

Number of processors

Serial fraction f = 0.1

Serial fraction f = 0.2

Serial fraction f = 0.3

Serial fraction f = 0.4

S
p

e
e

d
u

p
 (

tim
e

 r
e

d
u

ct
io

n
)

Id
e
a
l (

lin
e
a
r
in

cr
e
a
se

)

20 30 40 50 60

5

10

15

Figure 2.2: Speedup from Amdahl’s law for different serial fractions (Gustafson 2011)

2.2.2.2 Gustafson’s Law

Gustafson’s law (Gustafson 1988) is defined in equation 2.4; where f is the serial

fraction of the program and the program is run in P processors. This gives a limit on

maximum speedup when the computational work increases with increasing number

of processors. This theoretical limit, contrary to Amdahl’s law, is not limited by the

serial faction of the program. Figure 2.3 shows speedups computed using Gustafson’s

law for different serial fractions.

SP � f + P(1 − f) � P − f (P − 1) (2.4)

2.2.3 Scalability

Scalability refers to the capability of the parallel program to achieve good

speedups with increasing number of processors. Strong scalability is associated with

6

100 101 102 103100

101

102

Number of Processors (P)

Sp
ee

du
p

S(
)

f =0.01
f =0.1
f =0.5

P

Figure 2.3: Speedup from Gustafson’s law for different serial fractions (Gebali 2011)

Amdahl’s law. It measure the speedup of a fixed problem with increasing number of

processors. A strong scalability test solves the question of how quickly the results from

a particular input data can be obtained by increasing the number of processors. Weak
scalability is associated with Gustafson’s law. It measures the elapsed time for an input

data that increases proportionally to the number of processors. A weak scalability test

gives an estimate of the biggest model that we could run with our parallel program in

a specific hardware.

2.3 Parallel Architectures
Parallel computers can have different architectures. Before describing the most

commonparallel architectures, wewill talk about the terminology usedwhen referring

to parallel computers.

2.3.1 General Parallel Computer Terminology

There are some terms commonly associated with parallel computing. Some-

times the same term refers to different things. Figure 2.4 shows the terms used in

parallel computing.

7

• Core also referred to as processor is the unique execution unit.

• Multicore processor or CPU or Processor or Socket is the processing unit formed by

multiple cores.

• Computing node or simply node is a complete computer in a box. It usually contains

multiple multicore processors.

• Supercomputer or High performance clusters is the ensemble of several computing

nodes connected through a network.

Core /
Processor

Socket /
CPU /

Processor /
Multicore processor

Compute node Supercomputer /
High performance cluster

Figure 2.4: Different terms used in parallel computing

2.3.2 Flynn’s Taxonomy

Flynn (Flynn 1972) created a widely used classification of parallel computer

architectures based on the concurrency in processing instruction streams and data

streams (Figure 2.5):

• SISD - single instruction, single data stream, only one instruction is executed on

one data stream at a time; for example minicomputers, single processor/core

PCs.

• SIMD - single instruction, multiple data stream, all processing elements execute

the same instruction on a different data element; for example, array processors

and vector processors.

8

• MISD - multiple instruction, single data stream, multiple instructions are exe-

cuted on the same data stream; the output of one processing element is the input

of the next one; for example GPUs and data flow machines.

• MIMD - multiple instruction, multiple data stream, every processing element

may execute a different execution streamover a separate data stream; for example

multicore or multithreaded multiprocessors.

2.3.3 Shared Memory

A shared memory parallel computer is composed by multiple independent

processors that share a common memory address space and communicate with each

other via memory (Ceze 2011). Figure 2.6 shows an shared memory system. In this

kind of systems the communication between processors is done implicitly through

read and write operations to a common memory address. The big advantage of this

architecture is that the data does not need to be divided and all processors have access

to the same data. The main disadvantage is that the communication is done implicitly;

thus it is up to the developer to explicitly ensure adequate access to memory for all

processors. Another problem of this architecture is that the hardware cost increases

abruptly with increased memory capacity.

2.3.4 Distributed Memory

A distributed memory parallel computer is composed of multiple processors,

each with its ownmemory address space. The processors are connected via a network

(Snir 2011). Figure 2.7 shows a distributed memory system. Distributed memory sys-

tems canbe built fromcommodity components, for example, a beowulf cluster (Sterling

et al. 1999); or from specialized hardware like the most powerful supercomputers of

today. The main advantage of this kind of architecture is its low price/performance

ratio compared with shared memory systems. The main disadvantage is that the data

needs to be divided among processors making the development of applications more

complex.

9

Instruction

Processing
Element

Data
memory Inter PE Communication Network

Data
memory[0]

Processing
Element[0]

Instruction

Processing
Element[1]

Processing
Element[n-1]

Data
memory[1]

Data
memory[n-1]

Data
memory

DATA IN[0]

Instruction[0] Instruction[1] Instruction[n-1]

Processing
Element[0]

Processing
Element[1]

Processing
Element[n-1]

Data in[n-1]

Data out[1]

Data out[n-1]
to memory

Data communications network

Instruction[0] Instruction[1] Instruction[n-1]

Processing
Element[0]

Processing
Element[1]

Processing
Element[n-1]

Data
memory[0]

Data
memory[1]

Data
memory[n-1]

SISD SIMD

MISD

MIMD

Figure 2.5: Flynn’s taxonomy (Flynn 2011)

10

Memory

Processors

Figure 2.6: A shared memory system

Processors

Network

Memory

Figure 2.7: A distributed memory system

11

2.3.5 Hybrid Systems

Hybrid systems try to take the best of each architecture. A hybrid system

consists of multiple shared memory systems connected through a network.

2.3.5.1 Multicore Systems

This kind of architecture became commonplacewith the commercial availability

of processors with multiple processing units (cores). This architecture consists of

multiple systems with multiple core processors. Each system has its own memory

address. Communication between cores outside the local system is done via network.

Figure 2.8 shows a multicore system. The main disadvantage is that communication

among cores becomes increasingly complex.

Multicore
Processors

Network

Memory

Figure 2.8: A multicore system

2.3.5.2 Accelerated Systems

This is an extension to the multicore architecture. Each system that com-

poses the parallel system contains an accelerator (Figure 2.9). An accelerator is a

self-contained system with its own memory and many simple processing units opti-

mized towork inparallel thatmay contribute to vector-style parallelism. Anaccelerator

could be a Many Integrated Core (MIC) or a General Purpose Graphical Processing

Unit (GPGPU). The advantage of an accelerated system is that the accelerator boosts

the performance of the system. The problem with this kind of systems is that there is

the additional complexity to load and retrieve data and execution orders to and from

12

the accelerator.

Multicore
Processors

+
Accelerators

Network

Memory

MIC
or
GPU

MIC
or
GPU

MIC
or
GPU

MIC
or
GPU

Figure 2.9: An accelerated system

2.4 Parallel Programming
In order to make use of parallel computers, we need to create programs that

can be executed in those machines. Following there is a description of the available

programming approaches for the architectures described earlier.

2.4.1 Shared Memory

Open Multi-Processing (OpenMP) is an application program interface (API)

used to develop parallel programs in shared memory systems. It can be used with

Fortran, C and C++. It provides several compiler directives, a runtime library, and

environment variables (Chapman and LaGrone 2011). OpenMP uses a multithreading

method called the fork-join model in which the program initially starts as a single

process and whenever a portion of the program can be executed in parallel the process

is "forked" into several processes and once the parallel part is done all processes

"join" into a single process (see Figure 2.10) (Blaise 2015b). This approach to parallel

programming is very convenient, specially when there is already a base code that runs

serially. This is because there is no need to change dramatically the code to parallelize

it. OpenMP Architecture Review Board (2015) describe the complete OpenMP API

and Chapman, Jost, and Van Der Pas (2008) provides a more in depth explanation on

how to use OpenMP.

13

Parallel region Parallel region Parallel region

Fork Join

Figure 2.10: Example of fork-join model (Blaise 2015b)

2.4.2 Distributed Memory

For distributed memory systems, the most used approach is message passing.

In message passing the processors communicate by sending and receiving messages.

When a processor sends data from its local memory to the local memory of another, it

requires operations from both processors (Gropp, Lusk, and Skjellum 2014). Message

Passage Interface (MPI) is an standardizationof themessagepassagemodel anddefines

the application program interface (API) (Gropp 2011). The API defines interfaces for

Fortran and C languages. TheMPI standard has been implemented in several libraries,

such as OpenMPI, MPICH, Intel MPI, and Cray MPI, among others.

Another model used for distributed memory systems is remote memory access

(RMA) or one-sided communication which is a half way between the shared-memory

model and themessagepassagemodel (Gropp,Hoefler, et al. 2014). InRMAoperations

onlyoneprocess specifies source anddestinationof the communicationusuallydefined

as put/get operations. To take fully advantage of this approach the underlyinghardware

needs to support put and get operations. RMA operations were introduced in MPI-2

standard and extended in MPI-3 (Message Passing Interface Forum 2015).

2.4.3 Multicore Systems

Multicore systems can be programmed using solely MPI. For this case even the

cores within the same node will communicate through message passing instead of a

shared memory approach.

Another approach is to use MPI to handle internode communication and

OpenMP for parallelization whitin each node.

14

2.4.4 Accelerated Systems

For accelerated systems there is the need to program the accelerator on top of

the multicore system. There are many platforms for programming accelerators; some

of them are vendor-dependent. Few of this platforms use programming languages

specific to the accelerator hardware; thus, there is the overhead for the developer to

learn the new language and to port existing code to the accelerator platform. Intel’s

MIC can be programmed using MPI or OpenMP. GPUs can be programmed using

CUDA or OpenCL.

2.5 Parallel Reservoir Simulation
Development of parallel reservoir simulators has been advancing in tandem

with the new technological advancements in parallel computing. Since the early

days of parallel vector processor systems, reservoir simulator developers have been

evaluating, porting, developing, and optimizing parallel reservoir simulators to these

parallel machines. These works can be categorized into linear, non-linear solvers and

preconditioners, new simulator development, conversion of non parallel simulators,

and development of parallel frameworks.

Chien, Wasserman, et al. (1987) is the earliest work on parallel reservoir sim-

ulators. They developed a general purpose reservoir simulator in a multiple vector

processor machine. They used microtasking which creates several independent tasks

in a shared memory environment. Killough and M. F. Wheeler (1987) studied domain

decomposition in iterative linear system of equation solver algorithms and performed

tests on multitasking and microtasking based shared memory parallel systems. Scott

et al. (1987) studied matrix creation, sparse matrix solution, and several SOR algo-

rithms in multiple MIMD computers with shared and distributed memory. Kårstad,

Henriquez, and Korsell (1988) converted a previously vectorized reservoir simulator

to be used in a parallel machine that usedmacrotasking sharedmemorymodel. Barua

and Horne (1989) proposed a method for solution of non-linear system of equations

combining an iterative solution of jacobian and a quasi-Newton method. Parallel tests

of themethodwere performed in a 16 processorMIMD sharedmemory system. Mayer

(1989) evaluated the applicability of reservoir simulation runs in a SIMD computer.

The computer consisted of a front end node that stores the code and gives instructions

15

to the other nodes, and of up to 65636 extremely simple 1-bit processor nodes; the

processor nodes performed operations given by the front end node in their local data.

Van Daalen et al. (1989) parallelized Bosim, an IMPEC serial reservoir simulator to run

in a distributed MIMD computer. The communication was performed by the Occam

library, a native message passing library for the parallel system used. This simulator

was further developed by Meĳerink et al. (1991).

Briens et al. (1990) developed the Sequential Staging of Tasks algorithm to solve

large linear systems of equations in parallel. Tests were performed in a parallel com-

puter with 6 vector processors. J. A. Wheeler and Smith (1990) created a 3d, two phase

implicit simulator; they tested it in a 16 vector processors distributed memory parallel

system. Each processor was given a portion of the reservoir model to solve. Killough

and Bhogeswara (1991) adapted a commercial three phase, EOS based compositional

reservoir simulator towork in a 32 processor distributedmemory parallel system. Wal-

lis, Foster, and Kendall (1991) developed a preconditioner based on domain decompo-

sition and nested factorization and a linear solver based on the generalized conjugate

residual method for parallel shared memory computers. Cheshire and Bowen (1992)

developed a parallel solver based on nested factorization and domain decomposition

similar to (Wallis, Foster, and Kendall 1991) with the difference of being simpler and

avoiding the use of complex numbering schemes. Rutledge et al. (1992) developed a

three phase, 3d, IMPES compositional simulator for a SIMD computerwith up to 65536

1-bit processors. They were able to run up to 2 million grid blocks. Sherman (1992)

proposed to use dynamic load balance for the phase behavior calculations and static

load balance for the rest of the simulation for MIMD parallel computers. Chien and

Northrup (1993) developed a vectorized, parallel processed algorithm for local grid

refinements and the adaptive implicit scheme. The algorithm was tested in a shared

memory system. Kremer and Ramé (1994) studied the use of the Fortran D parallel

language to make the process of parallelization of existing code easier. As a test case,

the subroutine DISPER from the UTCOMP simulator was converted from vectorized to

parallel. The test was run in a distributed memory system. Ghori et al. (1995) ported

the UTCOMP simulator to a distributed memory parallel system using message pass-

ing for communication between processors. Additionally, UTCOMP was also ported

to a distributed memory system with a shared memory programming model.

16

Michielse (1995) evaluated a parallel multigrid method using Parallel Virtual

Machine (PVM) software. PVM allows several heterogeneous computers connected to

a network to be treated as a single parallel computer. Rame and Delshad (1995) modi-

fied UTCHEM, a highly vectorized chemical compositional simulator to run in several

distributed memory parallel computers. They performed a domain decomposition of

the reservoir model and each processor was responsible for solving its assigned part.

Communication between processors was done using message passing libraries native

for each parallel machine used.

After this point, the introduction of MPI and later of OpenMP made it possible

to use a standard for distributed and shared memory parallel programming instead of

using native and non-standard libraries. Parashar et al. (1997) and P. Wang, Yotov, et

al. (1997) developed a fully implicit equation of state compositional parallel simulator.

They separated the reservoir simulator development from the parallel development.

P. Wang, Yotov, et al. (1997) showed the mathematical formulation and the numeri-

cal solution techniques used in the simulator. And Parashar et al. (1997) described

the parallel solving environment, called Integrated Parallel Accurate Reservoir Sim-

ulator (IPARS). This environment used different programming languages such as C

and FORTRAN. The communication between processors was done by MPI. They also

integrated Distributed Adaptive GridHierarchy (DAGH), an object oriented dataman-

agement infrastructure into IPARS framework. P. Wang, Balay, et al. (1999) developed

the General Purpose Adaptive Simulator (GPAS), a fully implicit parallel equation

of state compositional simulator. They used Peng-Robinson EOS and PETSc linear

solvers. The simulator was developed under the IPARS framework. Test cases used

up to 4 million cells in a dry gas injection process. Abate, P. Wang, and Sepehrnoori

(2001) used the GPAS simulator to evaluate the suitability of using clusters of PCs for

parallel reservoir simulation. GPAS has been extended for a surfactant phase behavior

chemical model (John et al. 2004), a fully implicit chemical flood model (Han et al.

2007), a multiple-interacting-continua dual porosity model (Naimi-Tajdar et al. 2007),

a coupled finite element method geomechanics model (Pan, Sepehrnoori, and Chin

2007), an asphaltene precipitation model (Fazelipour, G. A. Pope, and Sepehrnoori

2008), and a three phase extended chemical model (Delshad et al. 2009).

W. Liu et al. (2000) developed a preconditioned Krylov subspace method with

17

hybrid preconditioner based on domain decomposition to solve linear systems of

equations. This method was implemented into a fully implicit, 3d, three phase black

oil reservoir simulator. MPI was used for communication. Tests were performed

in shared memory and distributed memory systems. DeBaun et al. (2005) created a

parallel reservoir simulator based on an object-oriented approach. Parallel process-

ing was handled by a framework that uses MPI for communication. The simulator

unifies the treatment of structured and unstructured grids. Atan, Kazemi, and Cald-

well (2006) developed a multiscale, multimesh reservoir simulator that worked with

sharedmemory parallel computers using OpenMP. The tests used up to 32 processors.

Löf, Gerritsen, and Thiele (2008) developed a streamline parallel simulator for shared

memory systems using OpenMP. Tests used up to 16 threads. Khait (2009) adapted

Constrained Pressure Residual algorithms for shared memory multicore machines us-

ing OpenMP. Yuan, Delshad, and M. F. Wheeler (2010) developed a parallel reservoir

simulator with comprehensive polymer property model based on IPARS framework.

Tarman et al. (2011) developed an automatic domain decomposition framework for

parallel reservoir simulation. Such framework applied several domain decomposition

algorithms and selects the best resultant division. The framework was applied to a

commercial reservoir simulator. Ghasemi Doroh (2012) developed a parallel version

of the UTCOMP simulator using IPARS framework. Yu et al. (2012) developed a GPU

based parallel preconditioner and GMRES algorithm coupled with a black oil sim-

ulator. Dogru, Fung, and Sindi (2013) developed a parallel reservoir simulator that

makes use of multi-paradigm parallelization using MPI, OpenMP, and GPU direc-

tives. Maliassov, Beckner, and Dyadechko (2013) developed a three phase black oil

reservoir simulator on unstructured meshes using the Trillinos project as a framework

for parallel development. Y. Wang and Killough (2014) converted aMPI based parallel

compositional reservoir simulator into a Charm++ (an object oriented parallel library

based on MPI) based parallel simulator. They performed dynamic load balance by

overdecomposing the domains into subdomains that can be dynamically migrated

across processors.

Beckner et al. (2015) developed a general parallel reservoir simulator that com-

bines different fluid systems and transport equations. Parallel development was done

by a propietary data layer. Tests used up to 14 million cells and up to 16000 proces-

18

sors. Guan et al. (2015) developed a parallel reservoir simulator with a black oil model

using the Parallel eXtension Framework (PXF). PXF is written in C++ and uses MPI for

communication. Tests used up to 10000 processors and up to 120 million cells. H. Liu

et al. (2015) created a parallel framework written in C, based on MPI and OpenMP

for structured grids. They applied the framework in the development of a black oil

reservoir simulator and tested it in simple cases with up to 140 million cells using up

to 2048 processors. Based on this framework K. Wang et al. (2016) developed a multi

continuummultiphase parallel reservoir simulator, and Zhong et al. (2016) developed

a parallel thermal reservoir simulator. Fung and Du (2016) developed a framework to

simulate unconventional reservoirs using a multiconnected multicontinuum system.

The framework works in parallel computers by dividing an unstructured grid using a

domain decomposition algorithm based on graphs. Shuhong et al. (2016) developed

a black oil fully implicit reservoir simulator with a shared memory parallel algebraic

multigrid preconditioner. Tests used up to 8.9 million cells in a two phase model and

up to 8 threads.

19

Chapter 3

Proposed Framework

Our approach to alleviate the complexity of implementing the parallel aspects

in a parallel reservoir simulator is to divide the development focus in parallel devel-

opment and reservoir simulator development. This approach makes sense since most

of the parallel development is independent of the reservoir simulator development.

The separation in development focus depends on the definition of a parallel

framework. This framework implements and handles the parallel complexity and

provides the reservoir simulator developer with high level access through defined

subroutines. Also, the grouping of all parallel functions in one place makes it easy to

reuse them for future simulator development.

Additionally, some of the characteristics the proposed framework should have

are:

• Modularity; the proposed framework should be constructed in a modularized

fashion. Each module can be modified without requiring to modify the other

modules.

• Maintainability; each of the framework’s modules should be easy to maintain.

• Extensibility; the framework should allow for an easy way to add new function-

ality.

• Code compatibility; many years of experience and effort have been invested in the

development of reservoir simulators. To be able to easily reuse code already

developed in parallel reservoir simulators, few modifications should be needed

in order to make them compatible with the framework.

The next Section discusses the parallel development problems encountered

during development of parallel reservoir simulators. Then, there is the description of

the solution approach used within the framework. Followed by a description of the

20

framework and its organization, the final Section is a summary of current capabilities

of the framework.

3.1 Parallel Development Problems
In this Section, we discuss the most important problems related to parallel

implementation that arise when developing a parallel reservoir simulator. Our main

aim is to have our framework capable of working on distributed memory parallel

systems; thus, the problems are described in that context.

3.1.1 Parallel Communication

One of the main problems in developing parallel applications is defining the

model of communication among processors. This model of communication usually is

dependent on the architecture of the parallel machine; there are several standards for

communication models described in Section 2.4.

3.1.2 Reservoir Model Division

One of the first steps during a simulation performed in parallel is the division

or decomposition of the reservoir (domain) into small pieces. How to perform such

division is a problem that needs to be solved; there are many ways to divide the

domain; see Figure 3.1. The aim of a domain decomposition algorithm is to evenly

distribute each domain so that the memory requirements for each processor are fairly

equal, as well as the amount of computational work required to solve each domain. If

the domain decomposition is not performed correctly, it could lead to load imbalance,

for which the computational work is not evenly distributed and some processors will

finish their assigned part earlier and will need to wait for the processor with a heavier

load. Figure 3.2 shows an example of work load distribution for an unbalanced and for

a balanced case. Load imbalance could bemore severe in reservoirswith lots of inactive

cells in which big parts of the reservoir model are not considered for computation.

Additionally, each processor needs to be aware of how many neighbors it has,

and how the communication pattern among domains is going to be performed. This

needs to be computed once the domain decomposition is done.

21

Figure 3.1: Examples of domain decomposition in 2d

time

Proc 1

Proc 2

Proc 3

Proc 4

time

Proc 1

Proc 2

Proc 3

Proc 4

Working WaitingImbalanced Balanced

Figure 3.2: Example of two load distribution

22

3.1.3 Spatially Distributed Properties

Spatially distributed properties are associated with the reservoir grid, such as

porosity, permeability, pressure, and compositions among others. The definition and

management of these properties is greatly impacted by the parallel division of the

reservoir, specifically these are the problems:

• Memory allocation for each reservoir domain in each processor.

• Association of data to a property.

• Use of data stored in a property during the simulation

• Retrieving a property from scattered to output.

• Data communication for properties.

3.1.4 Input Processing

If not done properly, the processing of input data could become a bottleneck

and cause a negative impact on the performance of the parallel application. This issue

is particularly important when the reservoir model contains millions of cells. Also,

a way to input complex input data that is flexible and that can be adapted to further

needs is required.

3.1.5 Output Processing

Outputprocessing couldbecomeabottleneck, speciallywhengeneratingoutput

of spatially distributed properties for visualization.

3.2 Solutions to the Parallel Development Problems
In this Section, we show the approach taken to solve each of the problems

related to parallel development.

The language used for the development of the framework is Fortran. Fortran

is a programming language that has been used by scientific and engineering com-

munities since its introduction in 1957. Fortran is selected because of the excellent

performance of computationally intensive programs. Standard Fortran has been in

continuous revision (90/95, 2003, 2008, 2015), adding new features to the language,

23

such as memory management, derived types, object oriented programming, among

others; always taking into account compatibility with prior versions (Metcalf, Reid,

and Cohen 2011). We make use of these new capabilities during the development of

the framework. Fortran 77 and older are usually referred to as FORTRAN, whereas the

new Fortran standards (90/95, 2003, 2008, 2015) are referred to as modern Fortran.
Additionally, a lot of reservoir simulators has been written in Fortran, some

in old standards (i.e. Fortran 77). As each new Fortran standard thrives to remain

compatible with prior versions of the standard, there is no need to rewrite or convert

previous written code into a different language. Such conversion would be very

expensive in terms of human labor and time spent. Many programs were developed

and have matured through decades of continuous enhancement and testing, some are

very domain specific requiring specific knowledge just to convert them. Moreover,

usually the process of conversion is not straightforward.

3.2.1 Parallel Communications

For this work, we use the MPI standard to communicate between processors.

Specifically, we use the version of the MPI standard equal to or higher than 3.0 (cur-

rently the newest is 3.1) because there is better Fortran support through the module

mpi_f08. Also there is type and argument number checking for MPI subroutines

(Gropp, Hoefler, et al. 2014).

The advantages of using MPI is that it can be used in distributed and shared

memory systems. It provides point to point (two-sided) and remote memory access

(one-sided) communication models. It is portable across several hardware systems.

Furthermore, there are many libraries that implement the MPI standard, such as

OpenMPI, Intel MPI, and Cray MPI, among others.

MPI provides low level functions to perform the communications. In our frame-

work we built functions easier to use and focused on the specific problem of reservoir

simulation on top of MPI.

3.2.2 Reservoir Model Division

We used Cartesian grids throughout this work because of its simple structure

and because it serves as a first implementation for a grid within the framework that

24

can be later extended or replaced.

We define each grid division (domain) to be a rectangular block, this is because

less information is required to define the dimension of a domain. However, our

approach to domain distribution is irregular; hence, the size and location of each

domain is not fixed and one domain could have many domain neighbors.

In order toperform thedomaindecomposition,weuse theRecursiveCoordinate

Bisection (RCB) algorithm (Berger and Bokhari 1987). RCB divides the domain into

two parts with equal load using a straight cutting plane orthogonal to the axis; the

model’s cells are assigned to each processor based on each cell’s position relative to the

cutting plane. Each domain is divided recursively until the number of subdomains

required is obtained. Advantages of this method are: it maintains geometric locality

of cells within a processor, the resulting domains are regular and easy to describe and

it is a fast algorithm. This method requires the coordinates (i,j,k) of each cell as an

input in order to perform load balancing. Optionally, RCB can use a weight factor;

this factor represents the amount of computational load for each cell. We use this

weight factor to tell the RCB algorithm which cells are inactive and have a low impact

on the load for the domain (equation 3.1). This factor could be modified further to

include more properties like porosity or permeability. Figure 3.3 shows an example of

domain decomposition using RCB in a gridwith inactive cells. The impact on resulting

domains can be observed when inactive cells are taken into account.

Weight �

1.0 Active cell

0.01 Inactive cell

(3.1)

We use the implementation of the RCB algorithm from the Zoltan library.

Zoltan1 is a library that provides a suite of partition algorithms and dynamic load

balancing; besides RCB algorithm also provides space filling curves, graph and hy-

pergraph based partitioning algoritms (Devine et al. 2002). Zoltan has interfaces with

Fortran, C and C++.

The method of communication between domains used during this work is

through ghost layers. Each domain allocates an additional layer on its boundaries.

1http://www.cs.sandia.gov/zoltan/

25

http://www.cs.sandia.gov/zoltan/

2 processors 3 processors 4 processors 5 processors

Active cells
Inactive cells

proc 1 proc 2 proc 3 proc 4 proc 5

Without
inactive

cells

With
inactive

cells

Figure 3.3: Example of domain decomposition using RCB algorithmwith and without

taking into account the inactive cells

These layers represent the neighboring cells owned by other processors required for

local cells during the simulation. Every time the values of a property are updated in

a neighbor processor, their values need to be updated in the ghost cells. Figure 3.4

shows an example of ghost layers.

After using the RCB algorithm for domain decomposition, each processor can

compute the cells it owns. However, there is no information regarding how many

neighbors each processor has, and howmany cells should be sent to and received from

each neighbor. We defined a communication setup process that all processors use to

obtain this information. The process is summarized in the following steps:

• Each processor counts the number of cells that are in the edge of its domainwhich

are not physical reservoir boundaries; hence, the edges that have a neighbor. This

counting is done without repeating cells, num_local_exportable.

• Each processor counts the number of ghost cells that will be required from other

processors, num_local_ghost.

• Distribute the values of num_local_exportable and num_local_ghost to all pro-

cessors. Compute num_global_exportable and num_global_ghost as the sum

26

proc 1 proc 2

proc 3

ghost cells

Figure 3.4: Example of domains whit ghost layers

of all exportable and ghost cells from all processors.

• Each processor creates a list of local cells that can be exported (cell in the

edge of domain) to other processors local_exportable_list. This list con-

tains i, j, k coordinates and the processor owner id; the size of the list is

num_local_exportable.

• All processor gather the local_exportable_list from all processors into a

global list of exportable cells global_exportable_list.

• Each processor creates a local list of ghost cells that will be required by its own

domain. This is done by increasing by 1 the coordinate in the direction of the

domain edge that is not a reservoir boundary (example, i+1 in the domain edge

in i direction), local_ghost_list. This list contains i, j, and k coordinates of the

ghost cell, processor id that needs the ghost cell, local index, and processor owner

of cell. The owner of the cell is taken by looking in global_exportable_list for

a cell with the same i, j, k coordinates.

• All processor gather the local_ghost_list from all processors into a global list

of ghost cells global_ghost_list.

• Each processor creates a local list of cells it needs to export local_export_list.

This list is filledby selecting the cells ownedby theprocessor inglobal_ghost_list.

27

This list could contain several entries for the same cell, because cells in the corners

need to be exported to more than one processor.

• Each processor uses local_ghost_list to count the number of neighbor proces-

sors and the number of ghost cells per neighbor processor.

• Each processor creates a list of general ghost cell information ghost_info. This

list contains the id of the neighbor processor, id of processor needing the cell (its

own id), the number of cells owned by the neighbor (number of cells that will be

received), the start and end index on receiver buffer in which cells from neighbor

will be placed.

• For each entry in ghost_info, send entry to neighbor and receive entry from

neighbor and place it into export_info. export_info contains owner processor

id (own id), processor needing the cell (neighbor id), number of cells that will be

sent, start and end index on the neighbor processor’s buffer where the cells sent

will be placed.

An example of the results of the communication setup process for a two dimen-

sional grid with three domains (Figure 3.5) is shown in Tables 3.1 and 3.2.

We defined a Fortran derived type GridCart_type that contains all information

and type bounded procedures required to define, allocate, divide, and set up commu-

nication pattern for a Cartesian grid. By doing this, the whole process is encapsulated

and there is a simple interface that the developer can use independently of the under-

lying implemented algorithms. Listing 3.1 shows an example using GridCart_type.

28

proc 0 proc 1

proc 2

1,1

1,2

1,3

1,4

1,5

1,6

1,7

2,1

2,2

2,3

2,4

2,5

2,6

2,7

3,1

3,2

3,3

3,4

3,5

3,6

3,7

4,1

4,2

4,3

4,4

4,5

4,6

4,7

5,1

5,2

5,3

5,4

5,5

5,6

5,7

6,1

6,2

6,3

6,4

6,5

6,6

6,7

1,1

1,2

1,3

1,4

1,5

1,6

2,1

2,2

2,3

2,4

2,5

2,6

3,1

3,2

3,3

3,4

3,5

2,1

2,2

2,3

2,4

2,5

3,1

3,2

3,3

3,4

3,5

3,6

4,1

4,2

4,3

4,4

4,5

4,6

5,1

5,2

5,3

5,4

5,5

5,6

6,1

6,2

6,3

6,4

6,5

6,6

1,5

1,6

1,7

2,5

2,6

2,7

3,5

3,6

3,7

4,5

4,6

4,7

5,5

5,6

5,7

6,5

6,6

6,7

i

j

Figure 3.5: Grid and cells coordinates shown as example of communication setup

between processors, results are shown in Tables 3.1 and 3.2

1 use iso_fortran_env
2 use mpi_f08
3 use Core_mod, only : GridCart_type
4 integer(kind=int32) :: nx, ny, nz
5 integer(kind=int32), pointer :: keyout(:,:,:)
6 type(GridCart_type) :: grid
7 nx = 6
8 ny = 7
9 nz = 1

10 !creates a cartesian grid
11 grid = GridCart_type(nx,ny,nz,MPI_COMM_WORLD)
12 !creates a grid property, to use during grid division
13 call grid%CreateProp("keyout",1_int32,keyout)
14 !divide grid
15 call grid%Divide()
16 !deallocate properties used during grid division
17 call grid%DeallocAllProps()
18 !nullify pointer
19 keyout => null()

Listing 3.1: Example use of GridCart_type

29

Table 3.1: list of export cells and ghost cells for each processor in example

local_export_list local_ghost_list

dest owner dest owner

Proc i j k proc indx proc i j k proc indx proc

0

2 1 1 1 1 0 3 1 1 0 1 1

2 2 1 1 2 0 3 2 1 0 2 1

2 3 1 1 3 0 3 3 1 0 3 1

2 4 1 1 4 0 3 4 1 0 4 1

2 5 1 1 5 0 3 5 1 0 5 1

1 5 1 2 1 0 1 6 1 0 6 2

2 5 1 2 2 0 2 6 1 0 7 2

1

3 1 1 0 1 1 2 1 1 1 1 0

3 2 1 0 2 1 2 2 1 1 2 0

3 3 1 0 3 1 2 3 1 1 3 0

3 4 1 0 4 1 2 4 1 1 4 0

3 5 1 0 5 1 2 5 1 1 5 0

3 5 1 2 3 1 3 6 1 1 6 2

4 5 1 2 4 1 4 6 1 1 7 2

5 5 1 2 5 1 5 6 1 1 8 2

6 5 1 2 6 1 6 6 1 1 9 2

2

1 6 1 0 6 2 1 5 1 2 1 0

2 6 1 0 7 2 2 5 1 2 2 0

3 6 1 1 6 2 3 5 1 2 3 1

4 6 1 1 7 2 4 5 1 2 4 1

5 6 1 1 8 2 5 5 1 2 5 1

6 6 1 1 9 2 6 5 1 2 6 1

Table 3.2: General information for export cells and ghost cells for each processor in

example

export_info ghost_info

processor dest buff indx processor recv buff indx

Proc owner dest # cells start end owner dest # cells start end

0

0 1 5 1 5 1 0 5 1 5

0 2 2 1 2 2 0 2 6 7

1

1 0 5 1 5 0 1 5 1 5

1 2 4 3 6 2 1 4 6 9

2

2 0 2 6 7 0 2 2 1 2

2 1 4 6 9 1 2 4 3 6

30

3.2.3 Spatially Distributed Properties

To solve this problem, we defined Parallel Arrays (PArray). Parallel Arrays are
arrays that are distributed among processors. They take the results from the grid divi-

sion and allocate the memory needed in each processor. Access to the data contained

in a Parallel Array is done through Fortran pointers.

Parallel Arrays also provide a function to update ghost cells. This process is

summarized as:

• Pack uses local_export_list to fill the export buffer using the values from the

export cells stored in PArray memory (Figure 3.6).

• Exchange sends parts of the export buffer to neighbors according to export_info.

Additionally, it receives data from neighbors into the ghost buffer according to

ghost_info (Figure 3.7).

• Unpackuses local_ghost_list to copy the values from the ghost buffer to PArray

memory (Figure 3.8).

We defined a Fortran derived type PArray_type that contains all data and

procedures used to allocate, deallocate, access, and update spatially distributed prop-

erties. The advantage of enclosing everything in a derived type is to encapsulate the

information and define a simple interface independent of the underlying implemen-

tation. Listing 3.2 shows an example using PArray_type. Here are the features of

PArray_type:

• A PArray can have up to 6 dimensions (3 spatial + 3 extra).

• One PArray can allocate integer, real or logical values, no need for specific defi-

nition.

• Simple interface to memory management (Alloc, Dealloc).

• Easy way to access and modify values through pointers (Show).

• Easy way to update ghost cells (Exchng).

31

1 use iso_fortran_env
2 use mpi_f08
3 use Core_mod, only : GridCart_type, PArray_type
4 integer(kind=int32) :: nx, ny, nz
5 integer(kind=int32), pointer :: keyout(:,:,:)
6 type(GridCart_type) :: grid
7 type(PArray_type) :: parray3d,parray4d
8 integer(kind=int32), pointer :: ipoint3d(:,:,:)
9 real(kind=real64), pointer :: rpoint4d(:,:,:,:)

10 nx = 6
11 ny = 7
12 nz = 1
13 !creates and divide cartesian grid
14 grid = GridCart_type(nx,ny,nz,MPI_COMM_WORLD)
15 call grid%Divide()
16 call grid%DeallocAllProps()
17 !create PArrays
18 parray3d = PArray_type("Array3D_name",[0,0,0],grid)
19 parray4d = PArray_type("Array4D",[2,0,0],grid)
20 !allocate integer and real PArrays
21 call parray3d%Alloc(1_int32)
22 call parray4d%Alloc(0.123_real64)
23 !associate pointers to PArray values
24 call parray3d%Show(ipoint3d)
25 call parray4d%Show(rpoint4d)
26 !exchange ghost cells among processors
27 call parray3d%Exchng()
28 call parray4d%Exchng()
29 !deallocate PArray and nullify pointers
30 call parray3d%Dealloc()
31 call parray4d%Dealloc()
32 ipoint3d => null()
33 rpoint4d => null()

Listing 3.2: Example use of PArray_type

32

proc 0
proc 1

proc 2

1,1

1,2

1,3

1,4

1,5

1,6

2,1

2,2

2,3

2,4

2,5

2,6

3,1

3,2

3,3

3,4

3,5

2,1

2,2

2,3

2,4

2,5

3,1

3,2

3,3

3,4

3,5

3,6

4,1

4,2

4,3

4,4

4,5

4,6

5,1

5,2

5,3

5,4

5,5

5,6

6,1

6,2

6,3

6,4

6,5

6,6

1,5

1,6

1,7

2,5

2,6

2,7

3,5

3,6

3,7

4,5

4,6

4,7

5,5

5,6

5,7

6,5

6,6

6,7

Export buffer
3,1

3,2

3,3

3,4

3,5

3,5

4,5

5,5

6,5

1,6

2,6

3,6

4,6

5,6

6,6

Ghost buffer
Export buffer Ghost buffer

Export buffer Ghost buffer

2,1

2,2

2,3

2,4

2,5

1,5

2,5

Figure 3.6: Packing of export cells into export buffer

proc 0
proc 1

proc 2

1,1

1,2

1,3

1,4

1,5

1,6

2,1

2,2

2,3

2,4

2,5

2,6

3,1

3,2

3,3

3,4

3,5

2,1

2,2

2,3

2,4

2,5

3,1

3,2

3,3

3,4

3,5

3,6

4,1

4,2

4,3

4,4

4,5

4,6

5,1

5,2

5,3

5,4

5,5

5,6

6,1

6,2

6,3

6,4

6,5

6,6

1,5

1,6

1,7

2,5

2,6

2,7

3,5

3,6

3,7

4,5

4,6

4,7

5,5

5,6

5,7

6,5

6,6

6,7

Export buffer

2,1

2,2

2,3

2,4

2,5

1,5

2,5

3,1

3,2

3,3

3,4

3,5

1,6

2,6

3,1

3,2

3,3

3,4

3,5

3,5

4,5

5,5

6,5

2,1

2,2

2,3

2,4

2,5

3,6

4,6

5,6

6,6

1,6

2,6

3,6

4,6

5,6

6,6

1,5

2,5

3,5

4,5

5,5

6,5

Ghost buffer
Export buffer Ghost buffer

Export buffer Ghost buffer

Figure 3.7: Exchange of ghost cells among processors

33

proc 0
proc 1

proc 2

1,1

1,2

1,3

1,4

1,5

1,6

2,1

2,2

2,3

2,4

2,5

2,6

3,1

3,2

3,3

3,4

3,5

2,1

2,2

2,3

2,4

2,5

3,1

3,2

3,3

3,4

3,5

3,6

4,1

4,2

4,3

4,4

4,5

4,6

5,1

5,2

5,3

5,4

5,5

5,6

6,1

6,2

6,3

6,4

6,5

6,6

1,5

1,6

1,7

2,5

2,6

2,7

3,5

3,6

3,7

4,5

4,6

4,7

5,5

5,6

5,7

6,5

6,6

6,7

Export buffer

2,1

2,2

2,3

2,4

2,5

1,5

2,5

3,1

3,2

3,3

3,4

3,5

1,6

2,6

3,1

3,2

3,3

3,4

3,5

3,5

4,5

5,5

6,5

2,1

2,2

2,3

2,4

2,5

3,6

4,6

5,6

6,6

1,6

2,6

3,6

4,6

5,6

6,6

1,5

2,5

3,5

4,5

5,5

6,5

Ghost buffer
Export buffer Ghost buffer

Export buffer Ghost buffer

Figure 3.8: Unpacking of ghost cells from ghost buffer

3.2.4 Input Processing

The input processing for the framework makes use of Lua1. Lua is a scripting

language designed to be embeddedwithin applications. Lua has been used as a config-

uration or an extension language. It is written in ANSI C; hence, it is highly portable.

Lua provides automatic memory management, dynamic typing, easy string handling,

among others. Lua aims to be simple, fast, efficient and portable (Ierusalimschy, de

Figueiredo, and Filho 1996). Since its first version in 1993, Lua has been in continuous

development (Ierusalimschy, de Figueiredo, and Celes 2007) at PUC-Rio, the latest

version is 5.3. For a more in depth description of the language see Ierusalimschy

(2016).

One big advantage of Lua is its small footprint; the complete Lua library takes

513kB of disk space. Lua provides an Application Programming Interface (API) for

the C language. To be able to use Lua from Fortran we use Aotus2 (Advanced Options

and Tables in Universal Scripting); it is a library that provides a Fortran wrapper for

1www.lua.org
2https://geb.sts.nt.uni-siegen.de/doxy/aotus/

34

www.lua.org
https://geb.sts.nt.uni-siegen.de/doxy/aotus/

the Lua’s C-API using Fortran’s interoperability with C from Fortran 2003 standard.

Aotus is developed by the University of Siegen.

We use Lua library together with Aotus library to process the input data for the

framework. On top of Aotus we developed easy to use high level Fortran subroutines

for the specific input in reservoir simulation. A scheme of these functions can be seen

in Figure 3.9. The biggest advantage of using a scripting language for input processing

is that it is flexible and powerful; it is possible to use conditionals, loops, functions

within the input data. This leaves the door open for future extensibility.

Lua library Lua

Aotus library

ReadInput
InputProc :Start and ends proccesing
 of Lua input
GetVal :Reads values up to 3D
 arrays
GetGridProp:Reads properties for
 grid division
GetPArray :Reads PArray properties
GetWells :Read wells and wells
 properties

Figure 3.9: Functions developed on top of Aotus and Lua

An example of input for several types of data used in the framework in Lua is

shown in Listing 3.3. Listing 3.4 shows how to read the Lua input with Fortran using

the framework subroutines.

The input data processing is done by each processor. Initially processor 0 takes

the input file and places it in a character array; then processor 0 broadcasts the input

array to all processors. Eachprocessor usesLua andAotus libraries and the subroutines

provided by the framework to process the input data. It is important to note that the

Lua input file does not contain explicitly data for PArrays besides when the data is a

constant value (line 17 of Listing 3.3). For this reason, the Lua input file is expected to

be small enough to not create a bottleneck in performance, nor create a big overhead

when each processor processes it.

35

1 -- function creates a constant array
2 function const(n,val)
3 tmp = {}
4 for i = 1, n do
5 tmp[i] = val
6 end
7 return tmp
8 end
9 --

10 INITIAL = {
11 Final_time = 1000.0,
12 COMPOUND = {"C1","C3","C6"},
13 ...
14 NX = 10,
15 DX = const(10,25) -- creates {25,25,25,25,25,25,25,25,25,25}
16 ...
17 keyout = {kind="const",value=1},
18 Porosity = {kind="file",format="formatted",file="poro.inc"},
19 XPerm = {kind="file",format="unformatted",file="xperm.inc",units="md"},
20 ...
21 Wells = {
22 [1]={name = "Injector1",
23 top = {12.5,12.5,0.0},
24 ...},
25 [2]={name = "Producer1",
26 top = {237.5,237.5,0.0},
27 ...}
28 }
29 }

Listing 3.3: Example of input data in Lua

36

1 use iso_fortran_env
2 use mpi_f08
3 use Core_mod, only : IniInputProc,FinInputProc,GetVal,GetGridProp,&
4 GetValLen,GetWellsProp,GridCart_type,PArray_type
5 real(kind=real64) :: time_end
6 character(len=10),allocatable :: comp_name(:)
7 character(len=50),allocatable :: well_name(:)
8 integer(kind=int32) :: ncomp, nx, ny, nz, nwell
9 real(kind=real64),allocatable :: dx(:), well_top(:,:)

10 type(GridCart_type) :: grid
11 type(PArray_type) :: ary_poro, ary_xperm
12 integer(kind=int32) :: err = 0
13 character(len=100) :: msg
14 ...
15 call IniInputProc(err,emsg)
16 call OpenSection("INITIAL",err,msg)
17 call GetVal(vnam="Final_time",var=time_end,err=err,msg=msg,&
18 internal_units="[day]",external_units="[day]")
19 call GetValLen("COMPOUND",ncomp,err,msg)
20 allocate(comp_name(ncomp))
21 call GetVal("COMPOUND",comp_name(1:ncomp),err,msg)
22 ...
23 call GetVal("NX",nx,err,msg)
24 allocate(dx(nx))
25 call GetVal("DX",ddx,err,msg,internal_units="[ft]",external_units="[ft]")
26 ...
27 grid = GridCart_type(nx,ny,nz,comm)
28 call GetGridProp("keyout",grid,"integer",err,msg)
29 call grid%Divide()
30 ...
31 ary_poro = PArray_type("porosity",[0,0,0],grid)
32 ary_xperm = PArray_type("xperm",[0,0,0],grid)
33 call ary_poro%Alloc(1.0_real64)
34 call ary_xperm%Alloc(1.0_real64)
35 call GetPArray(nam="Porosity",parray=ary_poro,err=err,msg=msg)
36 call GetPArray(nam="XPerm",parray=ary_xperm,err=err,msg=msg,&
37 internal_units="[md]",external_units="[md]")
38 ...
39 call GetValLen("Wells",nwell,err,msg)
40 allocate(well_name(nwell),well_top(3,nwell))
41 call GetWellsProp("name",well_name(1:nwell),err,msg)
42 call GetWellsProp(nam="top",var=well_top(1:3,1:nwell),err=err,msg=msg,&
43 internal_units="[ft]",external_units="[ft]")
44 ...
45 call FinInputProc(err,emsg)

Listing 3.4: Example reading data from Listing 3.3 from Fortran

37

Input of PArray data is done by separate files referenced in Lua input. We expect

these files to be considerable big, specially in multi-million cells reservoir models.

Processing this input could potentially represent a bottleneck in performance of the

simulator. To avoid this potential problem, we implemented two solutions. The first

one is to read PArray data in unformatted binary files. This is the default way to

input PArray data in the framework. Binary files use less disk space and are faster

to read. The main problem with binary files is that are not readable by humans and

not easy to create. To alleviate this problem the framework allows including PArray

data as formatted text files. The framework takes the text file, converts it to binary and

generates a newbinary file and then the framework reads the binary file. The converted

binary file could be used for future simulations. Caution needs to be taken on using

text files for PArray data; the process of conversion is done by one processor; if the file

is big enough to not to fit in the processor memory the conversion could fail. Line 18 of

Listing 3.3 tells the simulator to use a formatted text file for the porosity PArray. Line

19 of Listing 3.3 tells the simulator to use a binary file for the X permeability PArray.

The second solution used to avoid performance problems while reading PArray

data is to read the files in parallel. We use the parallel I/O capabilities ofMPI (MPI-IO)

to read the input data for PArrays in parallel. Each processor accesses simultaneously

the file. Each processor reads only the portion of the file that contains the data for its

part of the PArray. To be able to read files with MPI-IO the files must be in binary

format; this is another reason for the framework to use binary format as default for

PArray data. Figure 3.10 shows the process.

3.2.5 Visualization Output

To overcome the potential performance problem while writing PArray data for

visualization, our framework provides two solutions:

• S3graf format: S3graf1 is a post-processing software for reservoir simulation. This

format uses binary files. In order to avoid performance bottlenecks, MPI-IO was

employed whenever PArray data is written into files. Table 3.3 shows the files

generated for visualization in S3graf format.

1http://www.sciencesoft.com/products/s3graf/index.php

38

http://www.sciencesoft.com/products/s3graf/index.php

proc 0 proc 1

proc 2

1,1

1,2

1,3

1,4

1,5

2,1

2,2

2,3

2,4

2,5

3,1

3,2

3,3

3,4

3,5

4,1

4,2

4,3

4,4

4,5

5,1

5,2

5,3

5,4

5,5

6,1

6,2

6,3

6,4

6,5

1,6

1,7

2,6

2,7

3,6

3,7

4,6

4,7

5,6

5,7

6,6

6,7

Unformatted
PArray data file

Figure 3.10: Framework employs MPI IO to read PArray input files

• VTK format: The Visualization toolkit (VTK)1 is an open source system for 3D

visualization. VTK files can be visualized in several visualization applications,

such as VisIt2, ParaView3, and Mayavi4 among others. We used Lib_VTK_IO5, a

Fortran library to write files in VTK format. VTK supports parallel files in which

each processor writes its part of the data in a separate file; hence, there is no

need for centralized output. Table 3.4 shows the files generated for visualiza-

tion in VTK format. Figure 3.11 shows the generated file structure used in our

framework.

1http://www.vtk.org/
2https://wci.llnl.gov/simulation/computer-codes/visit
3http://www.paraview.org/
4http://code.enthought.com/projects/mayavi/
5https://github.com/szaghi/VTKFortran

39

http://www.vtk.org/
https://wci.llnl.gov/simulation/computer-codes/visit
http://www.paraview.org/
http://code.enthought.com/projects/mayavi/
https://github.com/szaghi/VTKFortran

Table 3.3: Files generated for visualization in S3graf

File extension Description

*.S3ECH Grid definition

*.S3PERM Static properties, for example porosity

*.S3TAB Dynamic properties, for example pressure

*.S3HIS Field and well history

Table 3.4: Files generated for visualization in VTK format

File Description

*_ini.pvtr Spatial distribution of static properties, it points to

*_ini_YYYY.vtr files.
*_dyn_XXXX.pvtr Spatial distribution of dynamic properties, XXXX

represents the report number. It points to

*_dyn_YYYY_XXXX.vtr files.
*_ini_YYYY.vtr Static properties, YYYY is the processor id which wrote

the file.

*_dyn_YYYY_XXXX.vtr Dynamic properties for report XXXX , YYYY is the proces-
sor id which wrote the file.

case_vtk

case_ini.pvtr

case_dyn_XXXX.pvtr
...

part

...

case_ini_YYYY.vtr

case_dyn_YYYY_XXXX.vtr

Figure 3.11: File structure of VTK output

40

3.3 Framework Design
The framework was designed as separate modules supported by external li-

braries. Each module can be extended without the need to modify the others. Figure

3.12 shows the framework structure. The external libraries used are.

• MPI to communicate among processors and to provide parallel input/output.

• Zoltan to perform domain decomposition.

• Lua + Aotus to process input data.

• Lib_VTK_IO to write output in VTK format.

• PETSc the Portable Extensible Toolkit for Scientific computation provides data

structures and routines to solve linear and non-linear systems of equations and

parallel environments (Balay et al. 2016). We use PETSc to solve systems of linear

equations.

3.3.1 Core Module

This module contains the solutions discussed in Section 3.2. It encapsulates

the parallel implementation and provides interfaces to the other framework modules

to use the parallel tools. The core module has the parallel development focus. A

developer interested in changing any aspect of the parallel solutions included in the

framework (for example the domain decomposition algorithm) can focus his/herwork

in this module without the need to look at other parts of the framework.

3.3.2 Framework Module

This module defines the simulation work-flow; it controls the execution of the

simulation. This module uses the tools provided by the core module, defines variables

common to any type of simulation model, and provides subroutines for each step of

the simulation process. The subroutines provided by this module serve as links to

similar subroutines in the simulator module that contains model specific processes.

The general framework’s work-flow is shown in Figure 3.13.

41

3.3.3 Simulator Module

Thismodule provides link subroutines that are called by the frameworkmodule.

These subroutines handle the call to the simulator code. The simulator code is where

the reservoir model specific subroutines are defined, for example flash calculation

subroutines. The simulator module has the simulator development focus. A simulator

developer can focus on modifying the simulator code without worrying on the other

modules.

42

Framework

Get initial data
 -Scalar data
 -PArrays
 -Wells

Advance in time
 -Get transient data
 -Advance in time loop
 -Visualization output

Initialization

Definition of variables independent of simulator model
 -variables -timers -PArrays

External Libraries

MPI Zoltan Lua + Aotus Lib_VTK_IO PETSc

Core

Utilities
 -Erroc checking
 -Timers_type
 -MPI wrappers

Read Input
 -InputPRoc
 -GetVal
 -GetGridProp
 -GetPArray
 -GetWells

Grid_type

PArray_type

Output
 - Write PArrays

Simulator

Get initial data
 -Scalar data
 -PArrays
 -Wells

Advance in time
 -Get transient data
 -Advance time step
 -time step results
 output

Initialization

Definition of variables
dependent of simulator model
 -variables
 -timers
 -PArrays

Simulator Code

Figure 3.12: Detailed structure of framework

43

Start

Start processing input

Get initial data

Initialize model

Advance in time loop

Get transient data

Compute time step

Stop processing input

time = end time

Read and distribute input

Time step results output

Results output

End

Figure 3.13: General framework’s work-flow

44

3.4 Framework Capabilities
The framework presented in this work has the following capabilities:

• Input data processing using Lua scripting language provides easy, flexible, and

expressible ways to give data to the framework that goes beyond keyword based

input.

• Parallel reading of properties avoids possible bottlenecks for multi-million cell

models.

• Cartesian grids with Parallel Arrays for distributed property management.

• RCB algorithm for domain decomposition that takes into account inactive cells

creates regular domains distributed in an irregular manner.

• Multiple output formats for visualization (VTK, S3graf) optimized for parallel

output.

• Modular framework allows future modification of existing capabilities or addi-

tion of new ones.

• Easy user interface to the parallel tools provided by the framework accelerates

the development of new parallel reservoir simulators or the parallelization of

existing ones.

• Division of focus in the development of parallel reservoir simulators into parallel

development and reservoir simulator development.

• UTCOMP simulator adapted to the framework creates a new parallel reservoir

simulator with all UTCOMP’s features (see Section 4.1).

45

Chapter 4

Application of Framework to UTCOMP

In order to test the applicability of our framework, we created a new parallel

reservoir simulator. The simulator subroutines were taken from UTCOMPP, a parallel

version of the University of Texas compositional reservoir simulator (UTCOMP). In

this chapter we present an overview of UTCOMP and UTCOMPP. Then we describe

the changes made to the simulator subroutines from UTCOMPP in order to work with

our new framework.

4.1 Overview of UTCOMP simulator
UTCOMPisTheUniversity ofTexas compositional reservoir simulatior. UTCOMP

was initially developed as a three-dimensional, isothermal, compositional simulator

for miscible gas flood modeling (Chang 1990). During the 27 years since its initial

development, UTCOMP has continuously added new capabilities and it has been

evolving to the full featured reservoir simulator that today it is capable of modeling a

variety of reservoir models. The main featrues of UTCOMP are:

• Three phase flash calculation

• Reduced method of flash calculation

• Four phase flow

• Higher order finite difference methods

• Fully physical dispersion tensor

• Vertical and horizontal wells

• Tracer flood

• Polymer flood

46

• Dilute surfactant with equilibrium and non-equilibrium mass transfer

• Gas-foam flood

• Asphaltene precipitation

• Black oil option

• CO2 sequestration

Figure 4.1 shows the overall flowchart of UTCOMP. UTCOMP uses an IMPEC

scheme, in which the pressure equation is solved implicitly using saturations and

physical properties from the previous time step. And then, the material balance equa-

tions are solved explicitly to compute overall compositions. Then, phase compositions

are calculated using pressure and overall composition already computed and flash

calculations. For a detailed description of UTCOMP solution scheme and formulation

see (Chang 1990).

4.1.1 The Mass Conservation Equation

The conservation of mass for component i in a multicomponent, multiphase

mixture in a reservoir can be expressed by equation 4.1. This equation applies to every

point in the reservoir.

∂Wi

∂t
+ ®∇ · ®Fi − Ri � 0 (4.1)

where Wi is mass accumulation of component i, ®Fi is flux of component i, and Ri is

source of component i (Lake et al. 1984).

Equation 4.1 can be expressed in terms of moles per unit bulk volume per

unit time with adsorption neglected. Also, since hydrocarbon is not permitted in the

aqueous phase and water is not permitted in hydrocarbon phases the accumulation

term can be expressed as

Wi � φ

Np∑
j�1

ξ jS jxi j �

φ

Np∑
j�2

ξ jS jxi j for i � 1, . . . ,Nc

φξ1S1 for i � Nc + 1

(4.2)

47

Figure 4.1: UTCOMP flowchart (Chang 1990)

48

where φ is porosity, ξ j is themolar density of phase j, S j is the saturation of phase j, and

xi j is the mole fraction of component i in phase j. There are four phases: 1 aqueous, 2

oleic, 3 gaseous, and 4 second non-aqueous phase. The hydrocarbon components are

numbered from 1 to Nc and the water component is Nc + 1.

Thefluxof component i canbe expressedas the sumof convective anddispersive

fluxes:

®Fi �

Np∑
j�1

(
ξ j xi j ®u j − φS jξ j

®®Ki j · ®∇xi j

)
(4.3)

where ®u j is the velocity of phase j and ®®Ki j is the dispersion tensor. The velocity of

phase j can be expressed using the Dacy’s law for multiphase fluid flow in porous

media:

®u j � −
®®kλr j

(
∇P j − γj∇D

)
(4.4)

where

®®k is the permeability tensor, λr j is the relative mobility of phase j, P j is the

pressure of phase j, and γj is the specific gravity of phase j and D is depth. The

relative mobility of phase j can be expressed as

λr j �
kr j

µ j
(4.5)

where kr j is the relative permeability of phase j and µ j is the viscosity of phase j.

The source terms are determined by the well conditions:

Ri �
qi

Vb
for i � 1, . . . ,Nc + 1 (4.6)

where qi is the molar flow rate of component i (positive for injection) and Vb is the

bulk volume of a grid block.

Substituting equations 4.2, 4.3, 4.4, and 4.6 into equation 4.1 we get:

∂
∂t

©«φ
Np∑
j�1

ξ jS jxi j
ª®¬ − ®∇ ·

Np∑
j�1

[
ξ j xi j
®®kλr j

(
∇P j − γj∇D

)
+ φS jξ j

®®Ki j · ®∇xi j

]
−

qi

Vb
� 0

for i � 1, . . . ,Nc + 1

(4.7)

49

Equation 4.7 is a group of partial differential equations that are solved along

with other independent equations; see (Chang 1990) for further details.

4.1.2 The Pressure Equation

The pressure equation used in UTCOMP is derived based on the assumption

that the pore volume Vp , which is a function of pressure P, is filled completely by the

total fluid volume Vt , which is a function of pressure P and
®N , the vector of the total

number of moles of each component Ni (Chang 1990):

Vt(P, ®N) � Vp(P) (4.8)

Differentiating equation 4.8 with respect to time and using the chain rule:

(
∂Vt

∂P

)
®N

(
∂P
∂t

)
+

Nc+1∑
i�1

(
∂Vt

∂Ni

)
P,Nk(k,i)

(
∂Ni

∂t

)
�

(
dVp

dP

) (
∂P
∂t

)
(4.9)

Assuming the formation is slightly compressible, the pore volume can be ap-

proximated as

Vp � V o
p
[
1 + c f (P − Po)

]
(4.10)

where V o
p is the pore volume at reference pressure Po

and c f is the formation com-

pressibility.

Writing the mass conservation equation (equation 4.7) as the net change of

component i in moles:

∂Ni

∂t
− Vb ®∇ ·

Np∑
j�1

[
ξ jxi j
®®kλr j

(
∇P j − γj∇D

)
+ φS jξ j

®®Ki j · ®∇xi j

]
− qi � 0 (4.11)

Selecting pressure of phase 2 as reference pressure, the pressure of other phases

j are expressed as

P j � P2 + Pc2 j (4.12)

50

where Pc2 j is the capillary pressure between phase 2 and phase j.

Substituting equations 4.10 and 4.11 into equation 4.9 we get the final form for

the pressure equation

[
V o

p c f −
(
∂Vt

∂P

)
®N

] (
∂P
∂t

)
− Vb

Nc+1∑
i�1

V ti ®∇ ·
Np∑
j�1

®®kλr jξ j xi j∇P

� Vb

Nc+1∑
i�1

V ti ®∇ ·
Np∑
j�1

®®kλr jξ jxi j
(
∇Pc2 j − γj∇D

)
+Vb

Nc+1∑
i�1

V ti ®∇ ·
Np∑
j�1

φξ jS j
®®Ki j∇xi j +

Nc+1∑
i�1

V ti qi

(4.13)

where V ti is the partial molar volume of component i.

4.2 Overview of UTCOMPP simulator
Ghasemi Doroh (2012) developed a parallel version of the UTCOMP simulator

using the IPARS framework tohandle theparallel part. UTCOMPPcontains all physical

and numerical features of UTCOMP. In order to make UTCOMP work with the IPARS

framework Ghasemi Doroh (2012) performed the followingmodifications to UTCOMP

subroutines:

• The subroutines can handle spatial variables input in i , j, and k indexes instead

of NB (number of blocks) based indexing.

• The limits for loops through spatial variables can be defined by other subroutines.

• The loops through spatial variables take into account if the cells are active before

performing calculations on those cells.

• The solution of system of linear of equations is handled by PETSc. PETSc can

take advantage of the multiple processors used during a simulation run to solve

the linear system of equations.

UTCOMPP has the following limitations; this limitations are because of the

approach used to handle the parallel part of the simulator:

51

• Mixed programming language (C and Fortran) used in the parallel framework.

This makes difficult to maintain and extend the simulator.

• Domain decomposition is performed only in one dimension (Y direction).

• Reservoir models can be up to 3.2 million cells.

• Keyword based input makes hard to implement complex input data.

4.3 Modifications Made to UTCOMPP’s Simulation Subroutines in
Order to Work with Our New Framework
Our new parallel reservoir simulator uses modified simulator subroutines from

UTCOMPP. The modifications made in order to work with our new framework were:

• Update subroutines to use our framework’s variables andmodules instead of old

Fortran INCLUDE files.

• Modify subroutines to use the approach used by our new framework. Use of

PArrays and Grid types, and the new defined functions.

• Some subroutines were wrapped into Fortran modules.

It is worth noting that some UTCOMPP’s simulation subroutines did not need

any modification to be included in our new simulator.

As a result, by using the framework developed in this work we were able to

take a limited parallel reservoir simulator and create a more versatile parallel reservoir

simulator. This new parallel reservoir simulator inherits all the features of our frame-

work (Section 3.4), and contains all the features of UTCOMP (Section 4.1). With this

new simulator we were able to run reservoir models up to 102.4 million cells with 6

components and use up to 1024 processors (see Chapter 5).

52

Chapter 5

Case Studies

In this chapter we describe the cases used to verify usability and test the parallel

performance of our new parallel reservoir simulator. We compare the results obtained

with our new simulator against the results generated with UTCOMPP. The cases are

divided in two groups. The first group are Verification caseswhich primary objective is

to verify the simulation results andaccuracy of thenew reservoir simulator. The second

group are Performance cases which main focus is to evaluate the parallel performance

of our new simulator.

All cases presented in this chapter were run in Lonestar 5 supercomputer from

the Texas Advanced Computing Center (TACC). Lonestar 5 has 1252 computing nodes

each of them with 24 cores, a total of 30000 cores . Table 5.1 shows Lonestar 5 specifi-

cations for a compute node (Texas Advanced Computing Center 2017).

Table 5.1: Lonestar 5 compute node specifications

Processor socket Xeon E5-2690 v3 @ 2.6 GHz

Cores per socket 12

Socket per node 2

RAM per node 64 GB

5.1 Verification Cases
5.1.1 Case 1 - CO2 Flooding

In this case a gas mixture with 95% CO2 is injected into the reservoir. The

general description of the model is shown on Table 5.2. Component properties and

compositions are shown in Table 5.3. Relative permeability data is shown in Table 5.4.

The production well is controlled at a constant BHP of 1100.0 psi. The injector well is

controlled at a constant BHP of 1250.0 psi. Figure 5.1 shows the gird and wells for the

simulation model.

53

Table 5.2: Model description for case 1

Dimensions (ft)

Length 500

Width 1000

Thickness 20

Number of cells 800 (20x40x1)

Number of components 7

Max. number of phases 4

Porosity 0.25

Permeability (md)

X 250

Y 250

Z 10

Rock compressibility (psi
−1
) 5 × 10

−5

Water compressibility (psi
−1
) 3 × 10

−6

Initial water saturation 0.25

Irreducible water saturation 0.25

Reservoir temperature (°F) 105

Initial reservoir pressure (psi) 1100

Number of wells 2

1 Injector

1 Producer

Simulation time (days) 1000

Table 5.3: Component properties and compositions for case 1

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial Injected

CO2 547.56 1069.87 1.506 44.01 0.2250 0.0337 0.95

C1 343.08 667.20 1.586 16.04 0.0080 0.0861 0.04999

C2-C3 619.57 652.56 2.902 37.20 0.1305 0.1503 0.000002

C4-C6 833.80 493.07 4.914 69.50 0.2404 0.1671 0.000002

C7-C15 1090.35 315.44 9.602 140.96 0.6177 0.3304 0.000002

C16-C27 1351.83 239.90 18.070 280.99 0.9566 0.1611 0.000002

C28 1696.46 238.12 33.514 519.62 1.2683 0.0713 0.000002

54

Table 5.4: Relative permeability data for case 1

Model Corey’s model (Corey 1986; UTCOMP 2003)

Water Gas Oil 2
nd

HC liquid

Residual saturation 0.25 0.05

water-oil 0.20 water-2
nd

HC liq. 0.35

gas-oil 0.20 gas-2
nd

HC liq. 0.35

End point 0.21 0.35 0.7 0.35

Exponent 1.5 2.5

water-oil 2.5 water-2
nd

HC liq. 2.5

gas-oil 2.5 gas-2
nd

HC liq. 2.5

Figure 5.1: Grid and wells for verification case 1

55

We used this model to verify several features of UTCOMP. Table 5.5 shows the

features tested and the keyword and values that activate such features in the simulator.

The results of our new simulator are compared against UTCOMPP. Selected results are

shown next.

Table 5.5: UTCOMP features tested in Case 1

Features Keyword Value

Base

Conventional flash, first

order upwind scheme,

Babu and Odeh well

model

IFLASHTYPE 1
IRFLA 0
IRSA 0
IUPSTW 1
IWM 1

Flash type

Modified flash IFLASHTYPE 2

Reduced flash

IFLASHTYPE 2
IRFLA 1
IRSA 1

Higher order finite

differences

Two point upstreamweighted IUPSTW 2

Exponential upstream

weighted third order

IUPSTW 3

Total variation diminishing

third order

IUPSTW 4

Well model Peaceman well model IWM 2

5.1.1.1 Base Model

For this model conventional flash, with one point upstream weighting method

and the Babu and Odeh well model (Babu and Odeh 1989). The number of processors

usedwere 1, 2, 4, and8. Table 5.6 showsdomaindecomposition, pressure, oil saturation

and gas saturation distribution at the end of the simulation when different number of

processors are used. The results are consistent for any number of processors used.

Figures 5.2, 5.3, 5.4, and 5.5 show average reservoir pressure, surface oil produc-

tion rate, and surface gas production rate and material balance error respectively. The

results are compared with UTCOMPP. It can be observed from the Figures an excel-

lent agreement on the results between UTCOMPP and our new simulator. Maximum

material balance errors obtained were in the order of 7 × 10
−14

.

56

Table 5.6: Results for case 1

Pressure

Prcs Domains (psi) So Sg

1

2

4

8

57

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

1100

1120

1140

1160

1180

1200

1220

1240
A

ve
ra

ge
 R

es
er

vo
ir

Pr
es

su
re

 (p
si

a)

UTCOMPP-1PRC

case1_1

case1_2

case1_4

case1_8

Figure 5.2: Average reservoir pressure, case 1 base

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

10

20

30

40

50

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
)

UTCOMPP-1PRC

case1_1

case1_2

case1_4

case1_8

Figure 5.3: Surface oil production rate, case 1 base

58

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

2000

4000

6000

8000

10000

12000
Su

rf
ac

e
G

as
 P

ro
du

ct
io

n
Ra

te
 (s

cf
/d

ay
)

UTCOMPP-1PRC

case1_1

case1_2

case1_4

case1_8

Figure 5.4: Surface gas production rate, case 1 base

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

-142.0x10

-144.0x10

-146.0x10

-148.0x10

-131.0x10

-131.2x10

M
at

er
ia

l B
al

an
ce

 E
rr

or
 (%

)

UTCOMPP-1PRC case1_1 case1_2
case1_4 case1_8

Figure 5.5: Material balance, case 1 base

59

Table 5.7 and Figure 5.6 show the CPU time taken with different number of

processors used. The model does not scale well with increasing number of processors,

this is because the model is too small. Above 4 processors the simulator takes more

time in communication thandoing calculations, this is expected for such a smallmodel.

Additionally, the small overhead created by the Lua processing (see Section 3.2.4) and

more complex communication between processors than UTCOMPP generates a big

impact in the CPU time in this model due to the small time used for computation. This

explain the larger CPU times in our simulator compared with UTCOMPP in models

of small size.

Table 5.7: CPU times for case 1

CPU time (s)

processors New simulator UTCOMPP

1 20.513 17.775

2 12.188 11.572

4 7.855 7.715

8 6.497 4.932

1.0 2.0 4.0 8.0
Number of Processors

4

6

8

10

12

14

16

18

20

C
PU

Ti
m

e
(s

ec
on

ds
)

New
UTCOMPP

Figure 5.6: CPU time, case 1 base

60

5.1.1.2 Flash Calculation Options

Modified flash was implemented in UTCOMP by Okuno (2009). A comparison

of the results between our new simulator and UTCOMPP is shown in Figures 5.7 and

5.8 for average reservoir pressure and surface oil production rate.

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

1100

1120

1140

1160

1180

1200

1220

1240

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-1PRC

case1b

Figure 5.7: Average reservoir pressure, case 1 using modified flash calculations

61

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

10

20

30

40

50

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
)

UTCOMPP-1PRC

case1b

Figure 5.8: Surface oil production rate, case 1 using modified flash calculations

62

Reduced flash was implemented in UTCOMP by Okuno (2009). A comparison

of the results between our new simulator and UTCOMPP is shown in Figures 5.9 and

5.10 for average reservoir pressure and surface oil production rate.

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

1100

1120

1140

1160

1180

1200

1220

1240

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-1PRC

case1c

Figure 5.9: Average reservoir pressure, case 1 using reduced flash calculations

63

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

10

20

30

40

50

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
)

UTCOMPP-1PRC

case1c

Figure 5.10: Surface oil production rate, case 1 using reduced flash calculations

64

5.1.1.3 Higher-Order Finite Differences

Higher order finite difference methods are implemented in UTCOMP (J. Liu

1993). Table 5.5 shows the options available and the keyword values used to activated

them. These methods require more than one adjacent cell value in each direction, on

the edge of each domain there is only one adjacent cell (ghost cell) provided from the

neighboring domain. To overcome this problem, Ghasemi Doroh (2012) modified the

simulation subroutines so that when a higher order method is used only the inner

cells of a domain perform the calculation with the higher order method and the cells

in the edge of the domain uses a first order approximation. This approximation in the

domain edges causes no noticeable error.

Results using Two point upstream weighted method are shown in Figures 5.11 and

5.12.

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

1100

1120

1140

1160

1180

1200

1220

1240

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-1PRC

case1da

Figure 5.11: Average reservoir pressure, case 1 using two point upstream weighted

method

Results using Exponential upstream weighted third order method are shown in Fig-

ures 5.13 and 5.14.

Results using Total variation diminishing third order method are shown in Figures

5.15 and 5.16.

65

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

10

20

30

40

50

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
)

UTCOMPP-1PRC

case1da

Figure 5.12: Surface oil production rate, case 1 using two point upstream weighted

method

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

1100

1120

1140

1160

1180

1200

1220

1240

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-1PRC

case1db

Figure 5.13: Average reservoir pressure, case 1 using exponential upstream weighted

third order method

66

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

10

20

30

40

50

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
)

UTCOMPP-1PRC

case1db

Figure 5.14: Surface oil production rate, case 1 using exponential upstream weighted

third order method

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

1100

1120

1140

1160

1180

1200

1220

1240

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-1PRC

case1dc

Figure 5.15: Average reservoir pressure, case 1 using total variation diminishing third

order method

67

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

10

20

30

40

50

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
)

UTCOMPP-1PRC

case1dc

Figure 5.16: Surface oil production rate, case 1 using total variation diminishing third

order method

68

5.1.1.4 Peaceman Well Model

Figure 5.17 and 5.18 show the results of case 1 using Peaceman well model.

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

1100

1120

1140

1160

1180

1200

1220

1240

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-1PRC

case1e

Figure 5.17: Average reservoir pressure, case 1 using Peaceman well model

69

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

10

20

30

40

50

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
)

UTCOMPP-1PRC

case1e

Figure 5.18: Surface oil production rate, case 1 using Peaceman well model

70

5.1.2 Case 2 - Gas Injection

This case models the injection of hydrocarbon gas into a reservoir. The general

description of the model is shown in Table 5.8. The model uses 6 hydrocarbon com-

ponents. Component properties and compositions are shown in Table 5.9. Relative

permeability data is shown in Table 5.10. The production well is controlled at constant

BHP of 2500 psi. The injector well is controlled at a constant BHP of 3000 psi. Figure

5.19 shows the grid and wells for the simulation model.

Table 5.8: Model description for case 2

Dimensions (ft)

Length 3000

Width 3000

Thickness 250

Number of cells 8000 (40x40x5)

Number of components 6

Max. number of phases 3

Porosity 0.35

Permeability (md)

X 100

Y 100

Z 100

Rock compressibility (psi
−1
) 5 × 10

−5

Water compressibility (psi
−1
) 3 × 10

−6

Initial water saturation 0.2

Irreducible water saturation 0.2

Reservoir temperature (°F) 90

Initial reservoir pressure (psi) 2510

Number of wells 2

1 Injector

1 Producer

Simulation time (days) 1000

In this model up to 16 processors were used. Table 5.11 shows domains, pres-

sure, oil saturation and gas saturation distribution at the end of the simulation when

different number of processors are used. Figures 5.20, 5.21, and 5.22 show average

reservoir pressure, surface oil production rate and gas production rate compared with

UTCOMPP. All results are the same independently of the number of processors used,

these verify the accuracy of our new reservoir simulator. Figure 5.23 shows the mate-

rial balance error when different number of processors are used. Maximum material

71

Table 5.9: Component properties and compositions for case 2

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial Injected

C1 343.0 667.8 1.599 16.0 0.013 0.3 0.77

C3 665.7 616.3 3.211 44.1 0.152 0.13 0.20

C6 913.4 436.9 5.923 86.2 0.301 0.17 0.01

C10 1111.8 304.0 10.087 142.3 0.488 0.2 0.01

C15 1270.0 200.0 16.696 206.0 0.650 0.15 0.005

C20 1380.0 162.0 21.484 282.0 0.850 0.05 0.005

Table 5.10: Relative permeability data for case 2

Model Corey’s model (Corey 1986; UTCOMP 2003)

Water Gas Oil

Residual saturation 0.20 0.05

water-oil 0.15

gas-oil 0.15

End point 0.40 0.85 0.75

Exponent 2.5 2.0

water-oil 2.0

gas-oil 2.0

Figure 5.19: Grid and wells for verification case 2

72

balance error obtained were in the order of 4 × 10
−13

.

Table 5.11: Results for case 2

Pressure

Prcs Domains (psi) So Sg

1

2

4

8

16

Table 5.12 and Figure 5.24 show the CPU time when different number of pro-

cessors are used. The model scales up well up to two processors. Using more than

two processors in this model is inefficient because with more than two processors the

time required to communicate among processors is considerably higher than the time

required to do the computation. This behavior can be observed in Table 5.14 and Fig-

ure 5.25 in which the time to update ghost cells increases from two to four processors.

73

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

2500

2600

2700

2800

2900
A

ve
ra

ge
 R

es
er

vo
ir

Pr
es

su
re

 (p
si

a)

UTCOMPP-1PRC
case2_1
case2_2
case2_4
case2_8
case2_16

Figure 5.20: Average reservoir pressure, case 2

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

1000

2000

3000

4000

5000

6000

7000

8000

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
)

UTCOMPP-1PRC
case2_1
case2_2
case2_4
case2_8
case2_16

Figure 5.21: Surface oil production rate, case 2

74

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

500M

1MM

1.5MM

2MM

2.5MM

3MM
Su

rf
ac

e
G

as
 P

ro
du

ct
io

n
Ra

te
 (s

cf
/d

ay
)

UTCOMPP-1PRC
case2_1
case2_2
case2_4
case2_8
case2_16

Figure 5.22: Surface gas production rate, case 2

0 100 200 300 400 500 600 700 800 900 1000 1100
Time (days)

0

-131.0x10

-132.0x10

-133.0x10

-134.0x10

-135.0x10

-136.0x10

M
at

er
ia

l B
al

an
ce

 E
rr

or
 (%

)

UTCOMPP-1PRC case2_1
case2_2 case2_4
case2_8 case2_16

Figure 5.23: Material balance, case 2

75

Our new simulator measures the CPU time spent on specific sections of the simulator.

Table 5.13 shows the list of the sections timed. Table 5.14 and Figure 5.25 shows the

CPU time spent on specific sections of the simulator that used at least 5% of the total

CPU time. If an specific section spend less than 5% of the total simulation time it is

grouped in Other section.

Table 5.12: CPU times for case 2

CPU time (s)

processors New simulator UTCOMPP

1 101.532 97.868

2 66.007 64.01

4 49.597 42.788

8 39.825 27.123

16 30.718 16.532

1.0 2.0 4.0 8.0 16.0
Number of Processors

0

20

40

60

80

100

C
PU

Ti
m

e
(s

ec
on

ds
)

New
UTCOMPP

Figure 5.24: CPU time, case 2

76

Table 5.13: Sections timed in new simulator

Timer Description

Total Execution Time Time spent to complete simulation

Total Initialization Time Time spent during initialization

Total Linear Solver Time Time spent on linear solver

Total Well Management Time Time spent managing the wells

Compute Next Time Step Time spent computing the next time step

Matrix Time spend setting up the matrix

Update Ghost Cells Time spent on communication of ghost

cells among processors

Compute Derivatives Time spent computing derivatives

Physical Properties Before Solver Time spent computing fluid properties be-

fore linear solver

Phase Composition Calculation Time spent on flash calculations

Output File and Processors Transfer Time spent on output

Monitor Printing Time spent printing on monitor

Physical Properties After Solver Time spent computing fluid properties af-

ter linear solver

Concentration Computations Time spent computing fluid concentration

Table 5.14: Detailed CPU times in seconds for case 2

Number of processors used

1 2 4 8 16

Update Ghost Cells 0.026 1.163 8.769 17.273 18.941

Physical Properties Before Solver 7.408 3.662 2.009 1.07 0.602

Phase Composition Calculation 70.276 35.18 17.728 9.36 4.745

Physical Properties After Solver 5.951 17.786 16.39 8.223 3.632

Other 17.844 8.301 4.807 3.928 2.763

Total Execution Time 101.532 66.007 49.597 39.825 30.718

77

1 2 4 8 16
Number of Processors

0

20

40

60

80

100

C
PU

Ti
m

e
(s

ec
on

ds
)

Update Ghost Cells
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.25: Detailed CPU times for case 2

78

5.1.3 Case 3 - CO2 and Gas Injection

This case models the injection of a mix of CO2 and hydrocarbon gas into a

reservoir. The model is described in Table 5.15. The model uses 6 hydrocarbon com-

ponents. Component properties and compositions are shown in Table 5.16. Relative

permeability data is shown in Table 5.17. The model contains three horizontal injector

wells and two vertical producer wells. The injector wells are operated at constant BHP

of 4800 psi. The producer wells are operated at constant BHP of 3500 psi. Figure 5.26

shows the grid and wells for the simulation model.

Table 5.15: Model description for case 3

Dimensions (ft)

Length 6200

Width 6400

Thickness 10

Number of cells 992 (31x32x1)

Number of components 6

Max. number of phases 3

Porosity 0.3

Permeability (md)

X 90

Y 90

Z 90

Rock compressibility (psi
−1
) 4 × 10

−6

Water compressibility (psi
−1
) 3.3 × 10

−6

Initial water saturation 0.3

Irreducible water saturation 0.3

Reservoir temperature (°F) 335

Initial reservoir pressure (psi) 4500

Number of wells 5

3 Injector

2 Producer

Simulation time (days) 800

In this model up to 8 processors were used. Table 5.18 shows domains, pres-

sure, oil saturation and gas saturation distribution at the end of the simulation when

different number of processors were used. Results comparison of our new simulator

against UTCOMPP for average reservoir pressure, surface oil production rate and gas

production rate are shown in Figures 5.27, 5.28, and 5.29, respectively. Figure 5.30

shows the material balance error when different number of processors are used. All

79

Table 5.16: Component properties and compositions for case 3

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial Injected

CO2 547.56 1070.16 1.504 44.01 0.225 0.0618 0.5

C1 343.08 667.38 1.589 16.04 0.008 0.1098 0.4998

C2-C3 594.95 672.38 2.717 34.33 0.1191 0.079 0.00005

C4-C6 816.91 513.03 4.783 67.13 0.2257 0.126 0.00005

PS1 1090.84 382.35 7.855 122.63 0.3056 0.319973 0.00005

PS2 1565.39 218.59 16.963 294.67 0.7879 0.303427 0.00005

Table 5.17: Relative permeability data for case 3

Model Corey’s model with trapping (UTCOMP

2003; G. Pope et al. 1998)

Water Gas Oil

Residual saturation 0.30 0.35

water-oil 0.30

gas-oil 0.30

End point 0.50 0.30 0.25

Exponent 1.0 4.0

water-oil 2.00

gas-oil 2.96

Figure 5.26: Grid and wells for verification case 3

80

material balance error values obtained were lower than 6 × 10
−14

.

Table 5.18: Results for case 3

Pressure

Prcs Domains (psi) So Sg

1

2

4

8

Table 5.19 and Figure 5.31 show the CPU time when different number of pro-

cessors are used. Phase composition calculation takes the largest CPU time. This case

is not affected by communication between processors. However, initial processing of

the data in our new simulator is the part that creates an additional overhead in CPU

time and because of this the CPU time of our new simulator is slightly higher than

UTCOMPP. The detailed CPU time can be observed in Table 5.20 and Figure 5.32.

81

0 100 200 300 400 500 600 700 800 900
Time (days)

4500

4550

4600

4650

4700

4750

4800
A

ve
ra

ge
 R

es
er

vo
ir

Pr
es

su
re

 (p
si

a)

UTCOMPP-2PRC
case3-1
case3-2
case3-4
case3-8

Figure 5.27: Average reservoir pressure, case 3

0 100 200 300 400 500 600 700 800 900
Time (days)

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
) UTCOMPP-2PRC

case3-1
case3-2
case3-4
case3-8

Figure 5.28: Surface oil production rate, case 3

82

0 100 200 300 400 500 600 700 800 900
Time (days)

0

500M

1MM

1.5MM

2MM

2.5MM
Su

rf
ac

e
G

as
 P

ro
du

ct
io

n
Ra

te
 (s

cf
/d

ay
) UTCOMPP-2PRC

case3-1
case3-2
case3-4
case3-8

Figure 5.29: Surface gas production rate, case 3

0 100 200 300 400 500 600 700 800 900
Time (days)

0

-142.0x10

-144.0x10

-146.0x10

-148.0x10

M
at

er
ia

l B
al

an
ce

 E
rr

or
 (%

)

UTCOMPP-2PRC
case3_1
case3_2
case3_4
case3_8

Figure 5.30: Material balance, case 3

83

Table 5.19: CPU times for case 3

CPU time (s)

processors New simulator UTCOMPP

1 8.211 8.47

2 5.375 4.148

4 3.02 2.439

8 2.456 1.729

1.0 2.0 4.0 8.0
Number of Processors

1

2

3

4

5

6

7

8

C
PU

Ti
m

e
(s

ec
on

ds
)

New
UTCOMPP

Figure 5.31: CPU time, case 3

Table 5.20: Detailed CPU times in seconds for case 3

Number of processors used

1 2 4 8

Total Initialization Time 0.94 0.953 0.513 0.578

Total Linear Solver Time 0.565 0.529 0.212 0.204

Update Ghost Cells 0.008 0.164 0.241 0.337

Phase Composition Calculation 4.591 2.308 1.161 0.617

Output File and Processors Transfer 0.085 0.147 0.099 0.136

Physical Properties After Solver 0.938 0.61 0.396 0.285

Other 1.037 0.631 0.361 0.263

Total Execution Time 8.211 5.375 3.02 2.456

84

1 2 4 8
Number of Processors

0

1

2

3

4

5

6

7

8

C
PU

Ti
m

e
(s

ec
on

ds
) Total Initialization Time

Total Linear Solver Time
Update Ghost Cells
Phase Composition Calculation
Output File and Processors Transfer
Physical Properties After Solver
Other

Figure 5.32: Detailed CPU times for case 3

85

5.1.4 Case 4 - Asphalthene Precipitation

Asphaltene precipitationwas implemented in UTCOMP byQin (1998) and later

by Darabi (2014). This case verifies the implementation of the asphaltene precipitation

model in our new simulator. This model is Case 5 from Qin (1998). The model is

described in Table 5.21.Component properties and compositions are shown in Table

5.22. Relative permeability data is shown in Table 5.23. The model contains one

water injector well and one producer well. The injector well is shut in the first year of

simulation and then operated at constant injection rate of 300 barrels per day of water.

The producer well is operated at constant BHP of 1500 psi for the first year and then

at a constant BHP of 1000 psi. Figure 5.33 shows the grid and wells for the simulation

model.

Table 5.21: Model description for case 4

Dimensions (ft)

Length 560

Width 560

Thickness 100

Number of cells 147 (7x7x3)

Number of components 6

Max. number of phases 3

Porosity 0.25

Permeability (md)

X 800

Y 800

Z 800

Rock compressibility (psi
−1
) 5 × 10

−6

Water compressibility (psi
−1
) 3.3 × 10

−6

Initial water saturation 0.3

Irreducible water saturation 0.2

Reservoir temperature (°F) 212

Initial reservoir pressure (psi) 5200

Number of wells 2

1 Injector

1 Producer

Simulation time (days) 1460

86

Table 5.22: Component properties and compositions for case 4

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial

CO2 547.56 1070.09 1.5071 44.010 0.22500 0.0246

C1-C2 360.61 668.51 1.6431 17.417 0.015127 0.4041

C3-C5 732.89 573.15 3.8098 53.516 0.179313 0.0755

C6-C19 1135.31 291.41 13.7197 164.423 0.655007 0.2719

C20-C30 1419.29 175.41 29.0330 340.927 1.064023 0.1064

C31+ 1682.93 143.17 56.5486 665.624 1.371778 0.0775

Asphaltene 0.04

Table 5.23: Relative permeability data for case 4

Model Stone’s model II used in the SPE 5
th

com-

parative study (Stone 1973; Killough and

Kossack 1987)

Water Gas Oil

Residual saturation 0.20 0.05

water-oil 0.30

gas-oil 0.15

End point 0.4089 0.39 1.00

Exponent 3.0 3.0

water-oil 2.0000

gas-oil 2.1952

Figure 5.33: Grid and wells for verification case 3

87

In this model up to 4 processors were used. Table 5.24 shows domains and

pressure distribution at the end of the simulationwhen different number of processors

were used. Table 5.25 shows oil , gas andwater saturation distribution at the end of the

simulationwhen different number of processorswere used. Figures 5.34, 5.35, and 5.36

5.37 show average reservoir pressure, surface oil production rate and gas production

rate compared with UTCOMPP. Figure 5.38 shows the material balance error when

different number of processors are used.

Table 5.24: Results for case 4. Domain decomposition and pressure distribution

Pressure

Prcs Domains (psi)

1

2

4

88

Table 5.25: Results for case 4. Saturation distribution

Prcs So Sg Sw

1

2

4

0 200 400 600 800 1000 1200 1400 1600
Time (days)

1000

2000

3000

4000

5000

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-1PRC
case4_1
case4_2
case4_4

Figure 5.34: Average reservoir pressure, case 4

89

0 200 400 600 800 1000 1200 1400 1600
Time (days)

0

200

400

600

800

1000

1200

1400

1600
Su

rf
ac

e
O

il
Pr

od
uc

tio
n

Ra
te

 (S
TB

/d
ay

) UTCOMPP-1PRC
case4_1
case4_2
case4_4

Figure 5.35: Surface oil production rate, case 4

0 200 400 600 800 1000 1200 1400 1600
Time (days)

0

100M

200M

300M

400M

500M

600M

Su
rf

ac
e

G
as

 P
ro

du
ct

io
n

Ra
te

 (s
cf

/d
ay

) UTCOMPP-1PRC
case4_1
case4_2
case4_4

Figure 5.36: Surface gas production rate, case 4

90

0 200 400 600 800 1000 1200 1400 1600
Time (days)

0

100

200

300

400

500

600

700

800

900

1000

1100
Su

rf
ac

e
W

at
er

 P
ro

du
ct

io
n

Ra
te

 (S
TB

/d
ay

) UTCOMPP-1PRC
case4_1
case4_2
case4_4

Figure 5.37: Surface water production rate, case 4

0 200 400 600 800 1000 1200 1400 1600
Time (days)

0

-11.0x10

-12.0x10

-13.0x10

-14.0x10

M
at

er
ia

l B
al

an
ce

 E
rr

or
 (%

)

UTCOMPP-1PRC
case4_1
case4_2
case4_4

Figure 5.38: Material balance, case 4

91

Table 5.26 and Figure 5.39 show the CPU time when different number of pro-

cessors are used. Our new simulator has larger CPU times than UTCOMPP because

of the overhead in initial processing of input data. This overhead is noticeable in this

case because the model is very small and computation and communication times are

very small.

Table 5.26: CPU times for case 4

CPU time (s)

processors New simulator UTCOMPP

1 5.911 5.391

2 3.952 3.333

4 2.793 2.127

1.0 2.0 4.0
Number of Processors

2

3

4

5

6

C
PU

Ti
m

e
(s

ec
on

ds
)

New
UTCOMPP

Figure 5.39: CPU time, case 4

92

5.2 Performance Cases
5.2.1 Case 5 - WAG Heterogeneous

This case simulates a water alternate gas injection process in a heterogeneous

reservoir. Themodel is described inTable 5.27. Figures 5.40 and5.41 showporosity and

permeability distribution. The model uses 6 hydrocarbon components. Component

properties and compositions are shown in Table 5.28. Relative permeability data is

shown in Table 5.29. The model contains one injector and one producer well. Figure

5.42 shows the grid and wells for the simulation model. Table 5.30 shows the well

control schedule through the simulation.

Table 5.27: Model description for case 5

Dimensions (ft)

Length 3500

Width 3500

Thickness 100

Number of cells 200000 (200x200x5)

Number of components 6

Max. number of phases 3

Porosity Figure 5.40

Permeability (md)

X Figure 5.41

Y Figure 5.41

Z 10

Rock compressibility (psi
−1
) 5 × 10

−6

Water compressibility (psi
−1
) 3.3 × 10

−6

Initial water saturation 0.2

Irreducible water saturation 0.2

Reservoir temperature (°F) 160

Initial reservoir pressure (psi) 3000

Number of wells 2

1 Injector

1 Producer

Simulation time (days) 2410

93

Figure 5.40: Porosity distribution for case 5

Figure 5.41: Permeability distribution for case 5 (md)

94

Table 5.28: Component properties and compositions for case 5

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial Injected

C1 343.0 667.784 1.6 16.040 0.013 0.3 0.77

C3 665.7 616.348 3.21 44.100 0.1524 0.13 0.2

C6 913.4 436.911 5.92 86.180 0.3007 0.17 0.01

C10 1111.8 304.059 10.08 142.290 0.4885 0.2 0.01

C15 1270.0 200.012 16.69 206.0 0.6500 0.15 0.005

C20 1380.0 161.949 21.49 282.0 0.8500 0.05 0.005

Table 5.29: Relative permeability data for case 5

Model Corey’s model (Corey 1986; UTCOMP 2003)

Water Gas Oil

Residual saturation 0.20 0.00

water-oil 0.00001

gas-oil 0.15

End point 1.00 1.00 1.00

Exponent 2.0 4.0

water-oil 4.0

gas-oil 3.0

Figure 5.42: Grid and wells for case 5

95

Table 5.30: Well schedule for case 5

Sim. days Producers Control Injectors Control Comments

0 - 200 BHP 2500 psi closed Primary production

200 - 2010 BHP 2500 psi Water Inj. @ BHP 3300psi

1st WAG cycle

2010 - 2110 BHP 2500 psi Gas Inj. @ BHP 3300psi

2110 - 2210 BHP 2500 psi Water Inj. @ BHP 3300psi

2nd WAG cycle

2210 - 2310 BHP 2500 psi Gas Inj. @ BHP 3300psi

2310 - 2410 BHP 2500 psi Water Inj. @ BHP 3300psi 3rd WAG cycle

Up to 128 processors were used in this model. Table 5.31 shows domains and

pressure distribution at the end of the simulationwhen different number of processors

were used. Table 5.32 shows oil , gas and water saturation distribution at the end of

the simulation when different number of processors were used. Results comparison

of our new simulator against UTCOMPP for average reservoir pressure, surface oil

production rate, gas production rate and water production rate are shown in Figures

5.43, 5.44, 5.45, and 5.46, respectively. Figure 5.47 shows the material balance error

when different number of processors are used. Maximum material balance error

values obtained were in the order of 1.0 × 10
−12

.

96

Table 5.31: Results for case 5. Domain decomposition and pressure distribution

Prcs Domains Pressure (psi)

2

4

8

16

32

64

128

97

Table 5.32: Results for case 5. Saturation distribution

Prcs So Sg Sw

2

4

8

16

32

64

128

98

0 500 1000 1500 2000 2500
Time (days)

2500

2600

2700

2800

2900

3000
A

ve
ra

ge
 R

es
er

vo
ir

Pr
es

su
re

 (p
si

a)
UTCOMPP-1PRC
case5_1
case5_2
case5_4
case5_8
case5_16
case5_32
case5_64
case5_128

Figure 5.43: Average reservoir pressure, case 5

0 500 1000 1500 2000 2500
Time (days)

0

5000

10000

15000

20000

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
) UTCOMPP-1PRC

case5_1
case5_2
case5_4
case5_8
case5_16
case5_32
case5_64
case5_128

Figure 5.44: Surface oil production rate, case 5

99

0 500 1000 1500 2000 2500
Time (days)

0

1MM

2MM

3MM

4MM

5MM
Su

rf
ac

e
G

as
 P

ro
du

ct
io

n
Ra

te
 (s

cf
/d

ay
)

UTCOMPP-1PRC
case5_1
case5_2
case5_4
case5_8
case5_16
case5_32
case5_64
case5_128

Figure 5.45: Surface gas production rate, case 5

0 500 1000 1500 2000 2500
Time (days)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Su
rf

ac
e

W
at

er
 P

ro
du

ct
io

n
Ra

te
 (S

TB
/d

ay
) UTCOMPP-1PRC

case5_1
case5_2
case5_4
case5_8
case5_16
case5_32
case5_64
case5_128

Figure 5.46: Surface water production rate, case 5

100

0 500 1000 1500 2000 2500
Time (days)

0

-132.0x10

-134.0x10

-136.0x10

-138.0x10

-121.0x10

-121.2x10
M

at
er

ia
l B

al
an

ce
 E

rr
or

 (%
)

UTCOMPP-1PRC
case5_1
case5_2
case5_4
case5_8
case5_16
case5_32
case5_64
case5_128

Figure 5.47: Material balance, case 5

Table 5.33 and Figure 5.48 show the CPU time when different number of pro-

cessors are used. Above 4 processors our new simulator spends more CPU time than

UTCOMPP, this is also observed in a lower speedup at above 4 processors. Table 5.34

and Figure 5.49 show the speedup obtained with different number of processors used.

The detailed CPU time for our new simulator can be observed in Table 5.35 and Figure

5.50, for comparison, the detailed CPU time for UTCOMPP is shown in Table 5.36 and

Figure 5.51. Figure 5.52 shows the percentage of total CPU time spent for our new

simulator and Figure 5.53 for UTCOMPP. It can be observed from the detailed CPU

time that the source of increase of CPU time in our new simulator comes from the

communication between processors (Figure 5.54).

101

Table 5.33: CPU times for case 5

CPU time (s)

processors New simulator UTCOMPP

1 165563 166743

2 93030.9 92706

4 58040.1 52780.9

8 39698.4 30949.9

16 28214.3 16936.7

32 16597.2 9103.22

64 10083 5362.61

128 5954.42 3224.01

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0
Number of Processors

0

20000

40000

60000

80000

100000

120000

140000

160000

C
PU

Ti
m

e
(s

ec
on

ds
)

New
UTCOMPP

Figure 5.48: CPU time, case 5

102

Table 5.34: Speedup for case 5

Speedup

processors New simulator UTCOMPP

1 1 1

2 1.77965 1.79862

4 2.85256 3.15915

8 4.17051 5.38751

16 5.86803 9.84505

32 9.97534 18.3169

64 16.42 31.0936

128 27.805 51.7191

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0
Number of Processors

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

Sp
ee

dU
p

linear speedup
New
UTCOMPP

Figure 5.49: Speedup, case 5

103

Table 5.35: Detailed CPU times in seconds for case 5

Number of processors used

1 2 4 8 16 32 64 128

Total Linear Solver Time 11355.9 6018.75 3210.39 1795.11 973.91 573.192 445.573 425.532

Update Ghost Cells 2.284 717.839 5962.82 12698.6 13833.7 8965.41 4855.12 1979

Compute Derivatives 9588.75 4090.35 2125.29 1218.4 854.962 353.859 226.034 86.855

Physical Properties Before Solver 13143.7 6419 3299.82 1366.12 1074.76 624.941 288.887 116.114

Phase Composition Calculation 110363 55180.1 27693.2 14250.9 7430.2 3761.93 1927.46 972.516

Physical Properties After Solver 10379.8 15401.7 13064.9 6808.91 3197.58 1403.57 622.936 302.405

Other 10726.7 5182.64 2682.58 1511.91 843.597 414.44 249.948 160.662

Total Execution Time 165563 93030.9 58040.1 39698.4 28214.3 16597.2 10083 5954.42

Table 5.36: Detailed CPU times in seconds for UTCOMPP, case 5

Number of processors used

1 2 4 8 16 32 64 128

Total Linear Solver Time 11554.7 5995.14 3215.97 1770.06 1010.43 613.143 582.858 575.942

Update Ghost Region 0.737 324.011 8378.73 7153.2 4647.88 1888.51 820.052 445.007

Compute Derivatives 9389.74 4077.09 2101.68 1190.96 857.403 387.061 226.682 90.793

Physical Properties Before Solver 13091.5 6379.25 2366.96 1754.77 949.206 483.425 244.558 100.591

Phase Composition Calculation 111594 55368.5 26928.4 14712.3 7277.67 3701.86 1908.66 958.28

Physical Properties After Solver 10352.7 15333.2 7066.89 2873.49 1281.1 535.111 266.956 132.561

Other 10759 5174.99 2692.09 1475.83 832.176 435.623 304.032 292.334

Total Time 166743 92706 52780.9 30949.9 16936.7 9103.22 5362.61 3224.01

1
0
4

1 2 4 8 16 32 64 128
Number of Processors

0

20000

40000

60000

80000

100000

120000

140000

160000

C
PU

Ti
m

e
(s

ec
on

ds
) Total Linear Solver Time

Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.50: Detailed CPU times for case 5

1 2 4 8 16 32 64 128
Number of Processors

0

20000

40000

60000

80000

100000

120000

140000

160000

C
PU

Ti
m

e
(s

ec
on

ds
) Total Linear Solver Time

Update Ghost Region
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.51: Detailed CPU times for UTCOMPP, case 5

105

1 2 4 8 16 32 64 128
Number of Processors

0

20

40

60

80

100
%

of
to

ta
lC

PU
Ti

m
e Total Linear Solver Time

Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.52: Percentage of total CPU time for timers for case 5

1 2 4 8 16 32 64 128
Number of Processors

0

20

40

60

80

100

%
of

to
ta

lC
PU

Ti
m

e Total Linear Solver Time
Update Ghost Region
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.53: Percentage of total CPU time for timers for UTCOMPP, case 5

106

11 22 44 88 1616 3232 6464 128128
Number of Processors

0

2000

4000

6000

8000

10000

12000

14000

C
PU

Ti
m

e
(s

ec
on

ds
)

New
UTCOMPP

Figure 5.54: CPU time spent on inter processor communication for case 5

107

5.2.2 Case 6 - WAG Homogeneous

This case simulates a water alternate gas injection process in a homogeneous

reservoir. The model is described in Table 5.37. The model uses 6 hydrocarbon com-

ponents. Component properties and compositions are shown in Table 5.38. Relative

permeability data is shown in Table 5.39. The model contains one injector and four

producerwells in a inverted 5-spot pattern. Figure 5.55 shows the grid andwells for the

simulator model. Table 5.40 shows the well control schedule through the simulation.

Table 5.37: Model description for case 6

Dimensions (ft)

Length 4500

Width 4800

Thickness 50

Number of cells 240000 (150x160x10)

Number of components 6

Max. number of phases 3

Porosity 0.3

Permeability (md)

X 90

Y 90

Z 90

Rock compressibility (psi
−1
) 4 × 10

−6

Water compressibility (psi
−1
) 3.3 × 10

−6

Initial water saturation 0.3

Irreducible water saturation 0.3

Reservoir temperature (°F) 90

Initial reservoir pressure (psi) 4800

Number of wells 5

1 Injector

4 Producer

Simulation time (days) 4500

108

Table 5.38: Component properties and compositions for case 6

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial Injected

CO2 547.56 1070.16 1.504 44.01 0.225 0.002 0.0018

C1 343.08 667.38 1.589 16.04 0.008 0.4 0.943

C2-C3 594.95 672.38 2.717 34.33 0.1191 0.25 0.039

C4-C6 816.91 513.03 4.783 67.13 0.2257 0.25 0.016

PS1 1090.84 382.35 7.855 122.63 0.3056 0.05 0.0001

PS2 1565.39 218.59 16.963 294.67 0.7879 0.048 0.0001

Table 5.39: Relative permeability data for case 6

Model Corey’s model with trapping (UTCOMP

2003; G. Pope et al. 1998)

Water Gas Oil

Residual saturation 0.30 0.05

water-oil 0.30

gas-oil 0.10

End point 0.50 0.3 0.25

Exponent 1.0 4.0

water-oil 2.00

gas-oil 2.93

Figure 5.55: Grid and wells for case 6

109

Table 5.40: Well schedule for case 6

Sim. days Producers Control Injectors Control Comments

0 - 100 BHP 4700 psi closed

Primary production100 - 200 BHP 4600 psi closed

200 - 365 BHP 4500 psi closed

365 - 1460 BHP 4500 psi

Water rate 1500STB/day

1st WAG cycle

BHP limit 6000psi

1460 - 1825 BHP 4500 psi

Gas rate 5000scf/day

BHP limit 6000psi

1825 - 2200 BHP 4500 psi

Water rate 1500STB/day

2nd WAG cycle

BHP limit 6000psi

2200 - 2400 BHP 4500 psi

Gas rate 5000scf/day

BHP limit 6000psi

2400 - 2800 BHP 4500 psi

Water rate 1500STB/day

3rd WAG cycle

BHP limit 6000psi

2800 - 3000 BHP 4500 psi

Gas rate 5000scf/day

BHP limit 6000psi

3000 - 3350 BHP 4500 psi

Water rate 1500STB/day

4th WAG cycle

BHP limit 6000psi

3350 - 3500 BHP 4500 psi

Gas rate 5000scf/day

BHP limit 6000psi

3500 - 4000 BHP 4500 psi

Water rate 1500STB/day

5th WAG cycle

BHP limit 6000psi

4000 - 4250 BHP 4500 psi

Gas rate 5000scf/day

BHP limit 6000psi

4250 - 4500 BHP 4500 psi

Water rate 1500STB/day

6th WAG cycle

BHP limit 6000psi

110

Up to 64 processors were used in this model. There was not possible to obtain

results for one processors because Lonestar 5 queue system impose an 48 hours limit

for the duration of any simulation job. When using only one processor, case 6 requires

more than 48 hours to finish and hence it was killed before finishing. Table 5.41 shows

domains and pressure distribution at the end of the simulationwhen different number

of processors were used. Table 5.42 shows oil , gas and water saturation distribution at

the end of the simulationwhendifferent number of processorswere used. Figures 5.56,

5.57, 5.58 and 5.59 show average reservoir pressure, surface oil production rate, surface

gas production rate and surface water production rate compared with UTCOMPP.

Figure 5.60 shows the material balance error when different number of processors are

used. All material balance error values obtained were lower than 1.5 × 10
−11

.

0 1000 2000 3000 4000 5000
Time (days)

4500

4550

4600

4650

4700

4750

4800

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-4PRC
case6_2
case6_4
case6_8
case6_16
case6_32
case6_64

Figure 5.56: Average reservoir pressure, case 6

111

Table 5.41: Results for case 6. Domain decomposition and pressure distribution

Pressure

Prcs Domains (psi)

2

4

8

16

32

64

112

Table 5.42: Results for case 6. Saturation distribution

Prcs So Sg Sw

2

4

8

16

32

64

113

0 1000 2000 3000 4000 5000
Time (days)

0

500

1000

1500

2000
Su

rf
ac

e
O

il
Pr

od
uc

tio
n

Ra
te

 (S
TB

/d
ay

) UTCOMPP-4PRC
case6_2
case6_4
case6_8
case6_16
case6_32
case6_64

Figure 5.57: Surface oil production rate, case 6

0 1000 2000 3000 4000 5000
Time (days)

0

1MM

2MM

3MM

4MM

5MM

6MM

7MM

Su
rf

ac
e

G
as

 P
ro

du
ct

io
n

Ra
te

 (s
cf

/d
ay

) UTCOMPP-4PRC
case6_2
case6_4
case6_8
case6_16
case6_32
case6_64

Figure 5.58: Surface gas production rate, case 6

114

0 1000 2000 3000 4000 5000
Time (days)

0

0.5

1.0

1.5

2.0
Su

rf
ac

e
W

at
er

 P
ro

du
ct

io
n

Ra
te

 (S
TB

/d
ay

)

UTCOMPP-4PRC
case6_2
case6_4
case6_8
case6_16
case6_32
case6_64

Figure 5.59: Surface water production rate, case 6

0 1000 2000 3000 4000 5000
Time (days)

0

-125.0x10

-111.0x10

-111.5x10

-112.0x10

M
at

er
ia

l B
al

an
ce

 E
rr

or
 (%

)

UTCOMPP-4PRC case6_2 case6_4
case6_8 case6_16 case6_32
case6_64

Figure 5.60: Material balance, case 6

115

Table 5.43 and Figure 5.61 show the CPU time when different number of pro-

cessors are used. CPU times between our new simulator and UTCOMPP are almost

the same. With 8 processors or less our new simulator is faster. With 16 processors or

more UTCOMPP is slightly faster. Our new simulator is capable of the same parallel

performance as UTCOMPP employing a more complex domain decomposition algo-

rithm and communication pattern. The reference to compute speedup was the time

obtained with two processors because it was not possible to obtain the CPU time for

this model with one processor. Speedup was assumed for two processors as 2. Table

5.44 and Figure 5.62 show the speedup obtained with different number of processors

used. With up to 4 processors the speedup obtained was nearly linear and it gets

deviated from linear speedup with higher number of processors. This is because of

the increase in communication with more processors.

Table 5.43: CPU times for case 6

CPU time (s)

processors New simulator UTCOMPP

2 117036 117242

4 60072.6 63270.3

8 34086.7 35265.4

16 20639.4 19504.7

32 10726.1 10309.6

64 6157.18 5893.73

Table 5.44: Speedup for case 6

Speedup

processors New simulator UTCOMPP

2 2 2

4 3.89648 3.70607

8 6.86695 6.64913

16 11.341 12.0219

32 21.8226 22.7443

64 38.016 39.7853

116

2 4 8 16 32 64
Number of Processors

0

20000

40000

60000

80000

100000

120000

C
PU

Ti
m

e
(s

ec
on

ds
)

New
UTCOMPP

Figure 5.61: CPU time, case 6

2 4 8 16 32 64
Number of Processors

2

4

8

16

32

64

Sp
ee

dU
p

linear speedup
New
UTCOMPP

Figure 5.62: Speedup, case 6

117

Table 5.45: Detailed CPU times in seconds for case 6

Number of processors used

2 4 8 16 32 64

Total Linear Solver Time 4495.24 2377.12 1300.03 746.713 432.628 354.121

Update Ghost Cells 532.443 891.252 993.021 1427.34 955.164 733.912

Compute Derivatives 6335.69 3230.03 1845.85 1388.37 599.75 345.029

Physical Properties Before Solver 6917.49 3543.14 2000.85 1330.92 581.96 318.631

Phase Composition Calculation 77272.1 38809.5 20629 10394.6 5180.88 2610.95

Physical Properties After Solver 13716.5 7199.84 5092.85 3945.72 2276.63 1377.07

Other 7764.81 4022.54 2217.01 1330.74 653.499 388.098

Total Execution Time 117036 60072.6 34086.7 20639.4 10726.1 6157.18

1
1
8

The detailed CPU time can be observed in Table 5.45 and Figure 5.63. Figure

5.64 shows the percentage of total CPU time spent on each simulation section. The

increase of CPU time taken for update of ghost cells with increasing number of pro-

cessors indicates the higher requirement in communication among processors. The

decrease of biggest portion of the simulation used for computation, the phase compo-

sition calculation, with increasing number of processors indicate a good parallel load

balancing between processors.

2 4 8 16 32 64
Number of Processors

0

20000

40000

60000

80000

100000

120000

C
PU

Ti
m

e
(s

ec
on

ds
) Total Linear Solver Time

Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.63: Detailed CPU times for case 6

2 4 8 16 32 64
Number of Processors

0

20

40

60

80

100

%
of

to
ta

lC
PU

Ti
m

e Total Linear Solver Time
Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.64: Percentage of total CPU time for timers for case 6

119

5.2.2.1 Effect of Hardware on Speedup

This case can be used as test of the impact of hardware update on speedup.

This case is the same as Case Study 8 fromGhasemi Doroh (2012). The supercomputer

used by Ghasemi Doroh (2012) to run the simulations was Lonestar 4. A comparison

between Lonestar 5 and Lonestar 4 compute nodes is shown in Table 5.46. There is

a trend towards increase of core number per processor rather than increase on core

speed. Also, the rate at which core count increases is faster than the increase in RAM

memory speed and memory channels.

Table 5.46: Lonestar 4 and Lonestar 5 compute node comparison

Lonestar 4 Lonestar 5

Processor socket Xeon 5680 Xeon E5-2690 v3

Processor speed 3.33 GHz 2.6 GHz

Cores per socket 6 12

Cache 12 MB 30 MB

Memory channels per socket 3 4

Sockets per node 2 2

Cores per node 12 24

Memory channels per node 6 8

Memory channels to core ratio 1:2 1:3

RAM per node 24 GB 64 GB

RAM speed DDR3 @ 1333 MHz DDR4 @ 2133 MHz

Table 5.47 and Figure 5.65 show the CPU time for UTCOMPP reported by

Ghasemi Doroh (2012) and the CPU time obtained in this work using Lonestar 5. In all

runs the CPU times obtained with Lonestar 5 were smaller even when the maximum

CPU speed of Lonestar 4 cores is faster than the cores in Lonestar 5. This is because

in our simulations the processor speed is not used at the maximum and it is bounded

by the speed of RAM. Our simulations are limited by the speed of RAM because

each domain cannot fit in the cache of the processor and the information needs to be

retrieved fromRAM. The increase in RAM speed from Lonestar 4 to Lonestar 5 explain

the decrease in CPU time in our simulations in two processors. When the simulation is

faster in two processors, communication between processors becamemore relevant for

parallel performance. Hence, the computed speedup is decreased. The difference in

CPU time at two processors makes the speedup computed in our work more deviated

120

from ideal than the speedup reported by Ghasemi Doroh (2012) despite the CPU times

being lower in our work. Table 5.48 and Figure 5.66 show the speedup obtained by

Ghasemi Doroh (2012) and the speedup obtained in this work for case 6.

Table 5.47: CPU times, case 6 using UTCOMPP in Lonestar 4 (Ghasemi Doroh 2012)

and Lonestar 5

CPU time (s)

processors Lonestar 4 Lonestar 5

2 159245 117242

4 80557 63270.3

8 40764 35265.4

16 20515 19504.7

32 10895 10309.6

22 44 88 1616 3232
Number of Processors

0

20000

40000

60000

80000

100000

120000

140000

160000

C
PU

Ti
m

e
(s

ec
on

ds
)

Lonestar4
Lonestar5

Figure 5.65: CPU time for UTCOMPP on Lonestar 4 and Lonestar 5, case 6

121

Table 5.48: Speedup, case 6 using UTCOMPP in Lonestar 4 (Ghasemi Doroh 2012) and

Lonestar 5

Speedup

processors Lonestar 4 Lonestar 5

2 2 2

4 3.9536 3.70607

8 7.8130 6.64913

16 15.5247 12.0219

32 29.2326 22.7443

22 44 88 1616 3232
Number of Processors

2

4

8

16

32

Sp
ee

dU
p

linear speedup
Lonestar4
Lonestar5

Figure 5.66: Speedup for UTCOMPP on Lonestar 4 and Lonestar 5, case 6

122

5.2.3 Case 7 - Simultaneous Water-Gas Injection

This case simulates simultaneous injectionofwater andgas into aheterogeneous

reservoir. Themodel is described inTable 5.49. Figures 5.67 and5.68 showporosity and

permeability distribution. The model uses 6 hydrocarbon components. Component

properties and compositions are shown in Table 5.50. Relative permeability data is

shown in Table 5.51. Themodel contains 13 injector and 12 producer wells. Figure 5.69

shows the grid and wells for the simulator model. Table 5.52 shows the well control

schedule through the simulation.

Table 5.49: Model description for case 7

Dimensions (ft)

Length 5600

Width 5600

Thickness 100

Number of cells 800000 (400x400x5)

Number of components 6

Max. number of phases 3

Porosity Figure 5.67

Permeability (md)

X Figure 5.68

Y Figure 5.68

Z 10

Rock compressibility (psi
−1
) 5 × 10

−5

Water compressibility (psi
−1
) 3 × 10

−6

Initial water saturation 0.17

Irreducible water saturation 0.17

Reservoir temperature (°F) 250

Initial reservoir pressure (psi) 4000

Number of wells 25

13 Injector

12 Producer

Simulation time (days) 1095

123

Figure 5.67: Porosity distribution for case 7

Figure 5.68: Permeability distribution for case 7 (md)

124

Table 5.50: Component properties and compositions for case 7

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial Injected

C1 343.0 667.8 1.599 16.0 0.013 0.5 0.85

C3 665.7 616.3 3.211 44.1 0.152 0.03 0.1

C6 913.4 436.9 5.923 86.2 0.301 0.07 0.03

C10 1111.8 304.0 10.087 142.3 0.488 0.2 0.0199

C15 1270.0 200.0 16.696 206.0 0.650 0.15 0.00005

C20 1380.0 162.0 21.484 282.0 0.850 0.05 0.00005

Table 5.51: Relative permeability data for case 7

Model Corey’s model (Corey 1986; UTCOMP 2003)

Water Gas Oil

Residual saturation 0.17 0.05

water-oil 0.17

gas-oil 0.10

End point 0.40 0.85 0.75

Exponent 2.5 2.0

water-oil 2.00

gas-oil 2.00

Figure 5.69: Grid and wells for case 7

125

Table 5.52: Well schedule for case 7

Sim. days Producers Control Injectors Control

0 - 365 BHP 3700 psi

Water rate 7500STB/day

BHP limit 6000psi

365 - 730 BHP 3700 psi

75 mole% water and 25 mole% gas Inj.

BHP 4300psi

730 - 1095 BHP 3700 psi

Water rate 7500STB/day

BHP limit 6000psi

Up to 128 processors were used in this model. There was not possible to obtain

results for one and two processors because Lonestar 5 queue system impose an 48

hours limit for the duration of any simulation job. UTCOMPPwas not able to runwith

128 processors. Table 5.53 shows domains and pressure distribution at the end of the

simulation when different number of processors were used. Table 5.54 shows oil , gas

and water saturation distribution at the end of the simulation when different number

of processors were used. Figures 5.70, 5.71, 5.72 and 5.73 show average reservoir

pressure, surface oil production rate, surface gas production rate and surface water

production rate compared with UTCOMPP. Figure 5.74 shows the material balance

error when different number of processors are used. Maximummaterial balance error

values obtained were in the order of 4.0 × 10
−13

.

126

Table 5.53: Results for case 7. Domain decomposition and pressure distribution

Prcs Domains Pressure (psi)

4

8

16

32

64

128

127

Table 5.54: Results for case 7. Saturation distribution

Prcs So Sg Sw

4

8

16

32

64

128

128

0 200 400 600 800 1000 1200
Time (days)

3700

3750

3800

3850

3900

3950

4000
A

ve
ra

ge
 R

es
er

vo
ir

Pr
es

su
re

 (p
si

a)
UTCOMPP-32PRC
case7_4
case7_8
case7_16
case7_32
case7_64
case7_128

Figure 5.70: Average reservoir pressure, case 7

0 200 400 600 800 1000 1200
Time (days)

0

500M

1MM

1.5MM

Su
rf

ac
e

O
il

Pr
od

uc
tio

n
Ra

te
 (S

TB
/d

ay
) UTCOMPP-32PRC

case7_4
case7_8
case7_16
case7_32
case7_64
case7_128

Figure 5.71: Surface oil production rate, case 7

129

0 200 400 600 800 1000 1200
Time (days)

0

200MM

400MM

600MM

800MM
Su

rf
ac

e
G

as
 P

ro
du

ct
io

n
Ra

te
 (s

cf
/d

ay
) UTCOMPP-32PRC

case7_4
case7_8
case7_16
case7_32
case7_64
case7_128

Figure 5.72: Surface gas production rate, case 7

0 200 400 600 800 1000 1200
Time (days)

0

1000

2000

3000

4000

Su
rf

ac
e

W
at

er
 P

ro
du

ct
io

n
Ra

te
 (S

TB
/d

ay
) UTCOMPP-32PRC

case7_4
case7_8
case7_16
case7_32
case7_64
case7_128

Figure 5.73: Surface water production rate, case 7

130

0 200 400 600 800 1000 1200
Time (days)

0

-132.0x10

-134.0x10

-136.0x10

M
at

er
ia

l B
al

an
ce

 E
rr

or
 (%

)

UTCOMPP-32PRC case7_4 case7_8
case7_16 case7_32 case7_64
case7_128

Figure 5.74: Material balance, case 7

131

Table 5.55 and Figure 5.75 show the CPU time when different number of pro-

cessors are used. Table 5.56 and Figure 5.76 show the speedup obtained with different

number of processors used. Our new simulator is faster for all the number of proces-

sors used than UTCOMPP and our new simulator obtains a speedup closer to linear

speedup than UTCOMPP. Additionally, our new simulator is capable of running on

more processors than UTCOMPP. The detailed CPU time can be observed in Table 5.57

and Figure 5.77. Figure 5.78 shows the percentage of total CPU time spent on each

simulation section.

Table 5.55: CPU times for case 7

CPU time (s)

processors New simulator UTCOMPP

4 121721 153873

8 66919.1 82717.7

16 36960.7 50193.4

32 17993 28324.4

64 11424.4 17957.8

128 6771.28 –

4 8 16 32 64 128
Number of Processors

0

25000

50000

75000

100000

125000

150000

C
PU

Ti
m

e
(s

ec
on

ds
)

New
UTCOMPP

Figure 5.75: CPU time, case 7

132

Table 5.56: Speedup for case 7

Speedup

processors New simulator UTCOMPP

4 4 4

8 7.27568 7.44088

16 13.173 12.2624

32 27.0594 21.7301

64 42.6176 34.2745

128 71.904 –

4 8 16 32 64 128
Number of Processors

4

8

16

32

64

128

Sp
ee

dU
p

linear speedup
New
UTCOMPP

Figure 5.76: Speedup, case 7

133

Table 5.57: Detailed CPU times in seconds for case 7

Number of processors used

4 8 16 32 64 128

Update Ghost Cells 895.868 789.172 1070.36 1064.83 1272.41 1197.53

Compute Derivatives 5548.73 3254.05 2742.87 1083.37 529.966 227.866

Physical Properties Before Solver 5945.31 3053.26 1899.89 720.037 497.955 261.543

Phase Composition Calculation 94481.7 49930.6 25145 12145.8 6196.88 3160.56

Physical Properties After Solver 5482.95 4944.76 2832.07 1492.22 2099.63 1396.23

Other 9104.32 4932.34 3262.46 1471.41 791.713 410.698

Total Execution Time 121721 66919.1 36960.7 17993 11424.4 6771.28

1
3
4

4 8 16 32 64 128
Number of Processors

0

20000

40000

60000

80000

100000

120000

C
PU

Ti
m

e
(s

ec
on

ds
) Update Ghost Cells

Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.77: Detailed CPU times for case 7

4 8 16 32 64 128
Number of Processors

0

20

40

60

80

100

%
of

to
ta

lC
PU

Ti
m

e Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Other

Figure 5.78: Percentage of total CPU time for timers for case 7

135

5.2.4 Case 8 - Waterflooding

This case simulates a waterflooding process in a heterogeneous reservoir. The

model is described in Table 5.58. Figures 5.79 and 5.80 show porosity and permeability

distribution. The model contains 1,697,680 active cells (Figure 5.81). Inactive cells are

not considered for computation. The model uses 6 hydrocarbon components. Com-

ponent properties and compositions are shown in Table 5.59. Relative permeability

data is shown in Table 5.60. The model contains 17 injector and 13 producer wells.

Figure 5.82 shows the grid andwells for the simulatormodel. The productionwells are

controlled at constant BHP of 3050 psi. The injector wells are controlled at a constant

water injection rate of 1000 STB/day with a BHP limit of 5000 psi.

Table 5.58: Model description for case 8

Dimensions (ft)

Length 6000

Width 4800

Thickness 200

Number of cells

Total: 2,560,000

(400x320x20)

Active: 1,697,680

Number of components 6

Max. number of phases 3

Porosity Figure 5.79

Permeability (md)

X Figure 5.80

Y Figure 5.80

Z 10

Rock compressibility (psi
−1
) 5 × 10

−5

Water compressibility (psi
−1
) 3 × 10

−6

Initial water saturation 0.17

Irreducible water saturation 0.17

Reservoir temperature (°F) 90

Initial reservoir pressure (psi) 3100

Number of wells 30

17 Injector

13 Producer

Simulation time (days) 5000

136

Figure 5.79: Porosity distribution for case 8

Figure 5.80: Permeability distribution for case 8 (md)

137

Figure 5.81: Active cells for case 8

Table 5.59: Component properties and compositions for case 8

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial

C1 343.0 667.8 1.599 16.0 0.013 0.5

C3 665.7 616.3 3.211 44.1 0.152 0.03

C6 913.4 436.9 5.923 86.2 0.301 0.07

C10 1111.8 304.0 10.087 142.3 0.488 0.2

C15 1270.0 200.0 16.696 206.0 0.650 0.15

C20 1380.0 162.0 21.484 282.0 0.850 0.05

138

Table 5.60: Relative permeability data for case 8

Model Corey’s model (Corey 1986; UTCOMP 2003)

Water Gas Oil

Residual saturation 0.17 0.17

water-oil 0.17

gas-oil 0.17

End point 0.40 0.85 0.75

Exponent 2.5 2.0

water-oil 2.0

gas-oil 2.0

Figure 5.82: Grid and wells for case 8

139

Up to 256 processors were used in this model. UTCOMPP was not able to run

with 256 processors. Table 5.61 shows domains, pressure distribution and oil and

water saturation distribution at the end of the simulation when different number of

processors were used. It can be observed that the domains created by RCB algorithm

for this case are irregular and balance the computational load giving to few domains

the inactive portions of themodel and performing amore refined division in the active

part of the model.

Figures 5.83, 5.84, 5.85 and 5.86 show average reservoir pressure, surface oil

production rate, gas production rate and water production rate compared with UT-

COMPP. Average reservoir pressure between our new simulator andUTCOMPP is less

than 4 psi and the other results match perfectly. Figure 5.87 shows thematerial balance

error when different number of processors are used. All material balance error values

obtained were lower than 1.5 × 10
−12

.

0 1000 2000 3000 4000 5000 6000
Time (days)

3080

3090

3100

3110

3120

3130

A
ve

ra
ge

 R
es

er
vo

ir
Pr

es
su

re
 (p

si
a)

UTCOMPP-1PRC
case8_1
case8_2
case8_4
case8_8
case8_16
case8_32
case8_64
case8_128
case8_256

Figure 5.83: Average reservoir pressure, case 8

140

Table 5.61: Results for case 8

Prcs Domains Pressure (psi) So Sw

4

8

16

32

64

128

256

141

0 1000 2000 3000 4000 5000 6000
Time (days)

0

5000

10000

15000

20000
Su

rf
ac

e
O

il
Pr

od
uc

tio
n

Ra
te

 (S
TB

/d
ay

)

UTCOMPP-1PRC case8_1 case8_2
case8_4 case8_8 case8_16
case8_32 case8_64 case8_128
case8_256

Figure 5.84: Surface oil production rate, case 8

0 1000 2000 3000 4000 5000 6000
Time (days)

0

4MM

8MM

12MM

16MM

20MM

Su
rf

ac
e

G
as

 P
ro

du
ct

io
n

Ra
te

 (s
cf

/d
ay

) UTCOMPP-1PRC
case8_1
case8_2
case8_4
case8_8
case8_16
case8_32
case8_64
case8_128
case8_256

Figure 5.85: Surface gas production rate, case 8

142

0 1000 2000 3000 4000 5000 6000
Time (days)

0

1000

2000

3000

4000

5000
Su

rf
ac

e
W

at
er

 P
ro

du
ct

io
n

Ra
te

 (S
TB

/d
ay

) UTCOMPP-1PRC
case8_1
case8_2
case8_4
case8_8
case8_16
case8_32
case8_64
case8_128
case8_256

Figure 5.86: Surface water production rate, case 8

0 1000 2000 3000 4000 5000 6000
Time (days)

0

-135.0x10

-121.0x10

-121.5x10

-122.0x10

M
at

er
ia

l B
al

an
ce

 E
rr

or
 (%

)

UTCOMPP-1PRC case8_1 case8_2
case8_4 case8_8 case8_16
case8_32 case8_64 case8_128
case8_256

Figure 5.87: Material balance, case 8

143

Table 5.62 and Figure 5.88 show the CPU time when different number of pro-

cessors are used. Table 5.63 and Figure 5.89 show the speedup obtained with different

number of processors used. Our new simulator had a parallel performance equal or

better than UTCOMPP for all number of processors used. Additionally, our new simu-

lator was able to run in more number of processors than UTCOMPP. The detailed CPU

time can be observed in Table 5.64 and Figure 5.90. Figure 5.91 shows the percentage

of total CPU time spent on each simulation section. An increase in the percentage of

total CPU time spent on communication with more processors used can be observed.

Table 5.62: CPU times for case 8

CPU time (s)

processors New simulator UTCOMPP

1 116184 125166

2 61039.5 60831.2

4 34707.8 37223

8 18576.5 22181.6

16 11483.7 12496.7

32 5604.76 6493.47

64 3532.63 3967.18

128 2073.61 2055.21

256 1399.92 –

Table 5.63: Speedup for case 8

Speedup

processors New simulator UTCOMPP

1 1 1

2 1.90342 2.0576

4 3.34748 3.36261

8 6.25435 5.64279

16 10.1172 10.016

32 20.7294 19.2757

64 32.8887 31.5504

128 56.0297 60.902

256 82.993 –

144

1 2 4 8 16 32 64 128 256
Number of Processors

0

20000

40000

60000

80000

100000

120000
C

PU
Ti

m
e

(s
ec

on
ds

)
New
UTCOMPP

Figure 5.88: CPU time, case 8

1 2 4 8 16 32 64 128 256
Number of Processors

1

2

4

8

16

32

64

128

256

Sp
ee

dU
p

linear speedup
New
UTCOMPP

Figure 5.89: Speedup, case 8

145

Table 5.64: Detailed CPU times in seconds for case 8

Number of processors used

1 2 4 8 16 32 64 128 256

Total Initialization Time 49.869 462.956 124.449 49.816 19.53 8.814 6.955 110.556 112.589

Total Linear Solver Time 11394.3 6372.98 3904.52 2023.71 1633.86 762.047 567.732 321.649 221.481

Matrix 4537.96 2211.73 1284.46 721.889 587.734 196.342 70.232 29.884 14.628

Update Ghost Cells 0.197 350.592 1339.38 955.073 841.047 626.274 571.784 453.35 396.823

Compute Derivatives 5532.45 2751.89 1570.19 951.53 880.223 349.622 250.738 73.824 28.007

Physical Properties Before Solver 10010.3 6008.34 3424.15 1833.65 1053.32 469.798 249.59 117.996 60.215

Phase Composition Calculation 71771.2 36602.7 18856.1 9885.24 4959.71 2430.16 1329.21 653.614 331.769

Physical Properties After Solver 7544.46 3703.09 2398.52 1254.89 719.909 372.427 206.706 105.758 60.045

Concentration Computations 4526.35 2222.85 1337.79 809.39 666.368 339.412 231.93 173.655 141.8

Other 815.819 373.859 209.804 111.578 72.618 36.908 22.627 15.697 11.899

Total Execution Time 116184 61039.5 34707.8 18576.5 11483.7 5604.76 3532.63 2073.61 1399.92

1
4
6

1 2 4 8 16 32 64 128 256
Number of Processors

0

20000

40000

60000

80000

100000

120000

C
PU

Ti
m

e
(s

ec
on

ds
)

Total Initialization Time
Total Linear Solver Time
Matrix
Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Concentration Computations
Other

Figure 5.90: Detailed CPU times for case 8

1 2 4 8 16 32 64 128 256
Number of Processors

0

20

40

60

80

100

%
of

to
ta

lC
PU

Ti
m

e

Total Initialization Time
Total Linear Solver Time
Matrix
Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Concentration Computations
Other

Figure 5.91: Percentage of total CPU time for timers for case 8

147

5.2.5 Case 9 - Water and Gas Injection Weak Scalability Test

This case simulates the injection of water and gas into a homogeneous reser-

voir. Themodel is described in Table 5.65. Themodel uses 6 hydrocarbon components.

Component properties and compositions are shown in Table 5.66. Relative permeabil-

ity data is shown in Table 5.67. The model contains 5 injector and 4 producer wells.

Table 5.68 shows the well control schedule through the simulation.

This is a weak scalability test in which the size of the model increases as the

number of processors increase. Table 5.69 shows the model size for each number of

processors used. The objective of this test is to evaluate the capability of the simulator

to handle very big models and to determine the capacity, or the size of the model that

the simulator is capable to run in a specific hardware.

Table 5.65: Model description for case 9

Dimensions (ft)

Length Table 5.69

Width Table 5.69

Thickness Table 5.69

Number of cells Table 5.69

Number of components 6

Max. number of phases 3

Porosity 0.3

Permeability (md)

X 90

Y 90

Z 10

Rock compressibility (psi
−1
) 5 × 10

−5

Water compressibility (psi
−1
) 3 × 10

−6

Initial water saturation 0.17

Irreducible water saturation 0.17

Reservoir temperature (°F) 250

Initial reservoir pressure (psi) 4000

Number of wells 9

5 Injector

4 Producer

Simulation time (days) 1000

148

Table 5.66: Component properties and compositions for case 9

Composition

Properties (molar fraction)

Tc Pc Vc Acentric

Component (°R) (psia) (
ft

3

Lb-mol
) MW factor Initial Injected

C1 343.0 667.8 1.599 16.0 0.013 0.5 0.85

C3 665.7 616.3 3.211 44.1 0.152 0.03 0.1

C6 913.4 436.9 5.923 86.2 0.301 0.07 0.03

C10 1111.8 304.0 10.087 142.3 0.488 0.2 0.0199

C15 1270.0 200.0 16.696 206.0 0.650 0.15 0.00005

C20 1380.0 162.0 21.484 282.0 0.850 0.05 0.00005

Table 5.67: Relative permeability data for case 9

Model Corey’s model (Corey 1986; UTCOMP 2003)

Water Gas Oil

Residual saturation 0.17 0.05

water-oil 0.17

gas-oil 0.10

End point 0.40 0.85 0.75

Exponent 2.5 2.0

water-oil 2.00

gas-oil 2.00

Table 5.68: Well schedule for case 9

Sim. days Producers Control Injectors Control

0 - 365 BHP 3500 psi

Water rate 10000STB/day

BHP limit 6000psi

365 - 500 BHP 3500 psi Gas Inj. @ BHP 4500psi

500 - 1000 BHP 3500 psi

Water rate 5000STB/day

BHP limit 6000psi

149

Table 5.69: Model size

Grid size Model dimensions (ft)

processors # of cells (Million) (NXxNYxNZ) Length Width Thickness

1 0.2 (200x200x5) 2800 2800 100

2 0.4 (400x200x5) 5600 2800 100

4 0.8 (400x400x5) 5600 5600 100

8 1.6 (800x400x5) 11200 5600 100

16 3.2 (800x800x5) 11200 11200 100

32 6.4 (1600x800x5) 22400 11200 100

64 12.8 (1600x1600x5) 22400 22400 100

128 25.6 (3200x1600x5) 44800 22400 100

256 51.2 (3200x3200x5) 44800 44800 100

Up to 256 processors were used in this model. UTCOMPP was not able to run

models bigger than 3.2 million cells on 16 processors. Table 5.70 and Figure 5.92 show

the CPU time taken with different number of processors used. In a weak scalability

test the computational load for each processor is kept constant. Ideally, the CPU time

taken for any number of processors should be the same as one processor. Table 5.71

and Figure 5.93 show the ratio of CPU time to the CPU time with one processor. Our

new simulator outperforms UTCOMPP in CPU time, CPU time ratio and capacity.

Our new simulator is faster for all number of processors used than UTCOMPP and

it was capable to handle all model sizes up to 51.2 millions on 256 processors. The

detailed CPU time can be observed in Table 5.72 and Figure 5.94. Figure 5.95 shows

the percentage of total CPU time spent on each simulation section.

150

Table 5.70: CPU times for case 9

CPU time (s)

processors New simulator UTCOMPP

1 6477.59 8564.66

2 6757.46 9135.96

4 7527.65 10279.6

8 8451.22 13412.3

16 11580.2 17072.7

32 12610.8 –

64 15080.6 –

128 15935.1 –

256 19002.7 –

1 2 4 8 16 32 64 128 256
Number of Processors

6000

8000

10000

12000

14000

16000

18000

C
PU

Ti
m

e
(s

ec
on

ds
)

New
ideal New
UTCOMPP
ideal UTCOMPP

Figure 5.92: CPU time, case 9

151

Table 5.71: CPU time ratio case 9

CPU time / CPU time @ 1 prc

processors New simulator UTCOMPP

1 1 1

2 1.043 1.066

4 1.162 1.200

8 1.304 1.566

16 1.787 1.993

32 1.946 –

64 2.328 –

128 2.460 –

256 2.933 –

1 2 4 8 16 32 64 128 256
Number of Processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
PU

ti
m

e
/

C
PU

ti
m

e
@

1
pr

oc
es

so
r New

ideal
UTCOMPP

Figure 5.93: CPU time ratio, case 9

152

Table 5.72: Detailed CPU times in seconds for case 9

Number of processors used

1 2 4 8 16 32 64 128 256

Total Initialization Time 5.65 16.193 17.307 21.632 21.812 23.141 24.768 594.169 1993.66

Total Linear Solver Time 574.317 747.751 930.265 1028.49 1729.93 1725.53 2198.11 2123.06 2344.43

Matrix 167.587 170.262 214.569 359.966 697.472 786.781 1067.33 1082.55 1154.05

Update Ghost Cells 0.083 26.469 165.521 92.378 361.352 323.457 392.386 716.286 1406.47

Compute Derivatives 342.665 341.992 447.346 573.528 996.403 1174.91 1677.03 1652.99 1754.84

Physical Properties Before Solver 487.022 490.905 544.029 608.163 938.868 1048.24 1306.67 1199.27 1335.73

Phase Composition Calculation 4282.24 4334.72 4362.59 4878.44 5213.15 5715.33 5898.95 6012.03 5926.42

Physical Properties After Solver 388.3 396.089 495.267 545.485 921.075 1044.97 1368.39 1405.29 1516.8

Concentration Computations 185.428 188.13 229.884 287.358 582.614 666.885 902.752 957.062 1051.49

Other 43.924 44.686 50.353 54.69 76.395 86.819 124.309 130.396 151.433

Total Execution Time 6477.59 6757.46 7527.65 8451.22 11580.2 12610.8 15080.6 15935.1 19002.7

1
5
3

1 2 4 8 16 32 64 128 256
Number of Processors

0

2500

5000

7500

10000

12500

15000

17500

C
PU

Ti
m

e
(s

ec
on

ds
)

Total Initialization Time
Total Linear Solver Time
Matrix
Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Concentration Computations
Other

Figure 5.94: Detailed CPU times for case 9

1 2 4 8 16 32 64 128 256
Number of Processors

0

20

40

60

80

100

%
of

to
ta

lC
PU

Ti
m

e

Total Initialization Time
Total Linear Solver Time
Matrix
Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Concentration Computations
Other

Figure 5.95: Percentage of total CPU time for timers for case 9

154

5.2.6 Case 10 - Effect of Number of Cores per Node used

The objective of this case is to evaluate the impact of multicore architecture

into the parallel performance of our new simulator. Multicore processors impose

additional variables that need to be considered when evaluating parallel performance

on a parallel reservoir simulator. In amulticore architecture, cache, RAMmemory and

channels to access RAMare shared among all cores. The trend to increase performance

in new multicore processors is to increase the number of cores. However, cache, RAM

speed and number of memory channels does not increase at the same rate as number

of cores does. This case evaluates the effect of the number of cores per node used on

the parallel performance of our new simulator. Table 5.73 shows the specifications of

the compute nodes of Lonestar 5. For any node we have up to 24 cores available but

only 8 memory channels. Our models does not fit on the 30 MB cache, hence we need

to access the RAM to store our model during the simulation.

Table 5.73: Lonestar 5 compute node specification

Processor socket Xeon E5-2690 v3

Processor speed 2.6 GHz

Cores per socket 12

Cache 30 MB

Memory channels per socket 4

Sockets per node 2

Cores per node 24

Memory channels per node 8

Memory channels to core ratio 1:3

RAM per node 64 GB

RAM speed DDR4 @ 2133 MHz

The model used in this case is the same model described in Section 5.2.5.

Simulation timewas reduced to 60 days. Productionwells are controlledwith constant

BHPat 3500psi. Injectorwells are controlledwith constantwater rate of 10000 STB/day

and a BHP limit of 6000psi.

The simulation case was run from 1 to 128 processors with different number of

cores per node, from 1 to 16. As shown in Table 5.74, the column All cores available

indicates that for any number of processors, the minimum number of nodes was used.

155

For example, when 64 processors are needed, 3 compute nodes are used. Hence, two

compute nodes will be using 21 processors and one will be using 22.

Table 5.74: Number of compute nodes used in each run, case 10

Cores per node used

1 2 4 8 16 All cores available

processors # Nodes used Cores/Node # Nodes used

1 1 1 1

2 2 1 2 1

4 4 2 1 4 1

8 8 4 2 1 8 1

16 16 8 4 2 1 16 1

32 32 16 8 4 2 16 2

64 64 32 16 8 4 64/3 3

128 128 64 32 16 8 64/3 6

Table 5.75 and Figure 5.96 show the CPU times obtained for each simulation

run. Figure 5.97 Shows each result normalized with the CPU time obtained from 1

processor.

Table 5.75: CPU time (seconds) case 10

Cores per node used

processors 1 2 4 8 16 All available

1 1954.92 1954.92

2 2048.24 1942.88 1942.88

4 2031.58 1913.35 2088.15 2088.15

8 2020.85 2264.4 1975.01 2200.03 2200.03

16 2005.83 1895.18 1962.57 2203.75 2706.24 2706.24

32 1987.66 2274.52 1991.54 2171.26 2694.97 2694.97

64 2030.21 2263.35 2027.55 2194.73 2746.07 3385.5

128 2501.66 2388 2531.42 2732.02 3337.79 3964.78

156

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0
Number of Processors

1500

2000

2500

3000

3500

4000

C
PU

Ti
m

e
(s

ec
on

ds
)

1-core
ideal
2-core
4-core
8-core
16-core
fullcore

Figure 5.96: CPU time, case 10

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0
Number of Processors

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
PU

ti
m

e
/

C
PU

ti
m

e
@

1
pr

oc
es

so
r 1-core

ideal
2-core
4-core
8-core
16-core
fullcore

Figure 5.97: CPU time ratio, case 10

157

Table 5.76 shows the memory channels to core ratio when different cores per

node were used. From the results of this case we can observe that the number of

memory channels available per core has a big impact on the parallel performance of

our new simulator. When there is more than one memory channel available per core,

that is 1, 2, 4, and 8 cores per node, then the CPU time behaves very close to ideal. No

more than 20% of increase in CPU time is obtained. The CPU times with 1 and 4 cores

per node were the closest to ideal behavior.

On the other hand, when there is less than one memory channel available per

core, that is when 16 and 64/3 (two nodes using 21 processors and one using 22

processors) cores per node are used, the parallel performance of our new simulator

is decreased. The memory channels became a performance bottleneck because many

cores are trying to access RAM through it at the same time.

Table 5.76: Number of number of channels available per core vs. cores per node used

Cores per node Memory channels to core ratio

1 8:1

2 4:1

4 2:1

8 1:1

16 1:2

64/3 3:8

158

5.2.7 Case 11 - Waterflooding Weak Scalability Test

The objective of this case is to evaluate the performance of our new simulator

under higher number of processors and bigger models than the previous cases. The

model used in this case is the same model described in Section 5.2.5. Simulation time

was reduced to 30 days. Production wells are controlled with constant BHP at 3500

psi. Injector wells are controlled with constant water rate of 10000 STB/day and a BHP

limit of 6000 psi.

Table 5.77 shows the model size for each number of processors used. Up to 512

processors and up to 102.4 million grid cells were used.

Table 5.77: Model size, case 11

Grid size Model dimensions (ft)

processors # of cells (Million) (NXxNYxNZ) Length Width Thickness

1 0.2 (200x200x5) 2800 2800 100

2 0.4 (400x200x5) 5600 2800 100

4 0.8 (400x400x5) 5600 5600 100

8 1.6 (800x400x5) 11200 5600 100

16 3.2 (800x800x5) 11200 11200 100

32 6.4 (1600x800x5) 22400 11200 100

64 12.8 (1600x1600x5) 22400 22400 100

128 25.6 (3200x1600x5) 44800 22400 100

256 51.2 (3200x3200x5) 44800 44800 100

512 102.4 (6400x3200x5) 89600 44800 100

Table 5.78: CPU times for case 11

processors CPU time (s)

1 1581.56

2 1580.04

4 1620.84

8 1808.72

16 2223.09

32 2297.32

64 2697.2

128 3308.59

256 4919.48

512 10301.3

159

CPU time is shown in Table 5.78 and Figure 5.98. CPU time to CPU time at 1

processor is shown in Table 5.79 and Figure 5.99.

1 2 4 8 16 32 64 128 256 512
Number of Processors

0

2000

4000

6000

8000

10000
C

PU
Ti

m
e

(s
ec

on
ds

)
ideal

Figure 5.98: CPU time, case 11

Table 5.79: CPU time ratio case 11

processors CPU time / CPU time @ 1 prc

1 1

2 0.999

4 1.024

8 1.143

16 1.405

32 1.452

64 1.705

128 2.091

256 3.110

512 6.513

160

1 2 4 8 16 32 64 128 256 512
Number of Processors

0

1

2

3

4

5

6

C
PU

ti
m

e
/

C
PU

ti
m

e
@

1
pr

oc
es

so
r ideal

Figure 5.99: CPU time ratio, case 11

161

Table 5.80: Detailed CPU times in seconds for case 11

Number of processors used

1 2 4 8 16

Total Initialization Time 5.604 16.146 17.049 20.706 21.735

Total Linear Solver Time 99.769 119.77 132.691 143.628 207.891

Matrix 43.074 41.958 49.968 81.624 147.742

Compute Derivatives 88.2 84.591 99.465 130.834 230.418

Physical Properties Before Solver 126.292 121.9 124.66 138.497 194.426

Phase Composition Calculation 1060.65 1031.16 1019.09 1072.09 1072.03

Physical Properties After Solver 98.864 96.59 103.674 120.367 188.753

Concentration Computations 47.574 46.981 50.122 65.237 117.618

Other 11.403 19.881 23.82 35.145 42.047

Total Execution Time 1581.56 1580.04 1620.84 1808.72 2223.09

Number of processors used

32 64 128 256 512

Total Initialization Time 23.49 25.957 595.514 2059.66 7307.56

Total Linear Solver Time 208.155 271.836 256.463 262.452 260.146

Matrix 147.771 195.17 194.631 212.133 210.101

Compute Derivatives 227.414 295.116 294.468 319.63 328.121

Physical Properties Before Solver 190.816 239.751 221.586 248.623 230.974

Phase Composition Calculation 1078.45 1124.67 1142.08 1161.15 1161.53

Physical Properties After Solver 194.582 261.182 266.718 290.428 294.078

Concentration Computations 125.149 165.031 166.546 186.106 189.115

Other 100.702 112.667 160.423 161.507 235.787

Total Execution Time 2297.32 2697.2 3308.59 4919.48 10301.3

The detailed CPU time can be observed in Table 5.80 and Figure 5.100. Figure

5.101 shows the percentage of total CPU time spent on each simulation section. It can

be observed that above 128 processors the initialization time, that is the domain de-

composition algorithm abruptly increases the CPU time required to operate. Domain

decomposition time takes more than 70% of the total CPU time when 512 processors

are used. If we keep increasing the number of processors and the size of the model

then the time required to divide the reservoir becomes prohibitively expensive. The

others part of the simulation are close to constant.

162

1 2 4 8 16 32 64 128 256 512
Number of Processors

0

2000

4000

6000

8000

10000

C
PU

Ti
m

e
(s

ec
on

ds
)

Total Initialization Time
Total Linear Solver Time
Matrix
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Concentration Computations
Other

Figure 5.100: Detailed CPU times for case 11

1 2 4 8 16 32 64 128 256 512
Number of Processors

0

20

40

60

80

100

%
of

to
ta

lC
PU

Ti
m

e

Total Initialization Time
Total Linear Solver Time
Matrix
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Concentration Computations
Other

Figure 5.101: Percentage of total CPU time for timers for case 11

163

5.2.8 Case 12 - Waterflooding Strong Scalability Test

The model used in this case is the same model described in Section 5.2.5.

Grid size is 3.2 million cells (800x800x5). Simulation time was reduced to 60 days.

Production wells are controlled with constant BHP at 3500 psi. Injector wells are

controlled with constant water rate of 10000 STB/day and a BHP limit of 6000psi. Up

to 1024 processors were used. The model was not able to run in one processor. CPU

time is shown in Table 5.81 and Figure 5.102. Speedup is shown in Table 5.82 and

Figure 5.103. The detailed CPU time can be observed in Table 5.83 and Figure 5.104.

The percentage of total CPU time spent on each simulation section is shown in Figure

5.105.

Table 5.81: CPU times for case 12

processors CPU time (s)

2 13142.9

4 6526.77

8 3609.7

16 2293.5

32 1109.9

64 646.022

128 288.561

256 156.569

512 636.239

1024 4267.22

Table 5.82: Speedup for case 12

processors Speedup

2 2

4 4.02737

8 7.28197

16 11.4609

32 23.6829

64 40.6886

128 91.0924

256 167.886

512 41.3142

1024 6.15991

164

2 4 8 16 32 64 128 256 512 1024
Number of Processors

0

2000

4000

6000

8000

10000

12000
C

PU
Ti

m
e

(s
ec

on
ds

)
case12

Figure 5.102: CPU time, case 12

2 4 8 16 32 64 128 256 512 1024
Number of Processors

2

8

32

128

512

Sp
ee

dU
p

linear speedup
case12

Figure 5.103: Speedup, case 12

165

Table 5.83: Detailed CPU times in seconds for case 12

Number of processors used

2 4 8 16 32

Total Initialization Time 721.867 190.809 69.907 21.842 8.138

Total Linear Solver Time 847.874 484.656 288.501 229.319 105.152

Matrix 476.572 250.126 166.884 145.526 69.295

Update Ghost Cells 31.052 29.226 36.567 82.146 48.412

Compute Derivatives 697.314 358.929 233.976 211.925 110.556

Physical Properties Before Solver 995.681 504.196 280.359 197.29 88.765

Phase Composition Calculation 8042.09 4013.15 2125.1 1072.61 535.515

Physical Properties After Solver 771.692 406.329 241.537 187.037 82.832

Concentration Computations 428.044 228.038 138.788 123.589 53.55

Other 128.287 59.212 26.933 16.174 7.217

Total Execution Time 13142.9 6526.77 3609.7 2293.5 1109.9

Number of processors used

64 128 256 512 1024

Total Initialization Time 14.705 11.223 10.093 548.578 4185.51

Total Linear Solver Time 67.031 30.328 15.279 10.381 15.608

Matrix 37.634 7.821 3.616 1.677 0.852

Update Ghost Cells 32.328 15.208 11.175 12.481 17.759

Compute Derivatives 73.758 31.702 11.718 4.763 2.281

Physical Properties Before Solver 50.752 20.211 11.855 6.196 2.818

Phase Composition Calculation 281.403 136.727 72.897 36.835 18.573

Physical Properties After Solver 47.261 22.427 11.158 5.784 3.795

Concentration Computations 29.981 10.189 5.017 2.727 2.62

Other 4.191 2.273 2.185 1.959 3.012

Total Execution Time 646.022 288.561 156.569 636.239 4267.22

The model scales up very well up to 256 processors achieving speedup of

167.88. Above that there is a abrupt drop on performance. The reason for the poor

performance is the Initialization section. As in Section 5.2.7 the domain decomposition

algorithmdoes not scale upwell withmany processors, in this case above 256. Domain

decomposition takes 86.2% of total CPU time for 512 processors and 98.08% of total

CPU time for 1024 processors.

166

2 4 8 16 32 64 128 256 512 1024
Number of Processors

0

2000

4000

6000

8000

10000

12000

C
PU

Ti
m

e
(s

ec
on

ds
)

Total Initialization Time
Total Linear Solver Time
Matrix
Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Concentration Computations
Other

Figure 5.104: Detailed CPU times for case 12

2 4 8 16 32 64 128 256 512 1024
Number of Processors

0

20

40

60

80

100

%
of

to
ta

lC
PU

Ti
m

e

Total Initialization Time
Total Linear Solver Time
Matrix
Update Ghost Cells
Compute Derivatives
Physical Properties Before Solver
Phase Composition Calculation
Physical Properties After Solver
Concentration Computations
Other

Figure 5.105: Percentage of total CPU time for timers for case 12

167

Chapter 6

Summary, Conclusions and Recommendations

6.1 Summary
• A framework was developed to aid the development of parallel reservoir simu-

lators.

• The framework was designed to be modular, maintainable, extensible and com-

patible with code already developed.

• The whole framework was developed in Fortran. Using only one programming

language decreases the complexity at the time of maintenance and extension.

• MPI was used for inter processor communication and input/output of spatial

related data.

• Recursive Coordinate Bisection algorithm was used for domain decomposition.

• Acustomalgorithmbasedon lists of ghost cellswasdeveloped in order to identify

neighbor processors and to define communication patterns.

• Parallel distributed arrays (PArrays) module was developed as an easy to used

solution to the problem of properties distributed among processors.

• Lua scripting language was embedded in the framework to provide input pro-

cessing.

• The framework has the capability to create output for visualization in S3graf and

VTK format.

• The UTCOMP simulator was adapted to the framework to create a new parallel

reservoir simulator. The new parallel reservoir simulator has all the features of

UTCOMP.

168

• Several simulation cases were used to verify the results of our new parallel

reservoir simulator.

• Several simulation cases were used to evaluate the parallel performance of our

new parallel reservoir simulator.

6.2 Conclusions
• Parallel computing applied to reservoir simulation is capable to reduce overall

CPU time. However, the creation of parallel reservoir simulators ismore complex

than non-parallel reservoir simulators.

• The framework developed in this work provides the necessary tools to reduce

the complexity associated with parallel programming during the development

of parallel reservoir simulators.

• MPI is a widespread standard. It has many implementations and it is very

portable. MPI provides with the necessary tools to efficiently communicate data

between processors.

• The use of MPI for parallel input and output of spatial properties avoids the

bottlenecks related with sequential input and output.

• To the extend of our knowledge. This is the first time a reservoir simulator

uses Lua scripting language as input processing. This allows greater flexibility

compared with traditional keyword based input processing.

• The new parallel reservoir simulator developed in this work has a more com-

plex input processing, domain decomposition, and communication pattern than

UTCOMPP. Although, Our new simulator was able to have a very similar par-

allel performance than UTCOMPP in strong scalability tests. Additionally, our

new simulator had a much more better performance that UTCOMPP in weak

scalability tests.

• Our newparallel simulatorwas able to run simulationmodels up to 102.4million

cells and up to 1024 processors. This capacity is far higher than UTCOMPP.

169

• Recursive Coordinate Bisection algorithm does require only cells I J K coordi-

nate information to perform domain decomposition in 2D and possibly in 3D.

This algorithm requires less memory and input data than graph based domain

decomposition algorithms. The resulting domains are regular and they can be

distributed irregularly.

• RCB algorithm does a very well domain distribution when the simulation model

has a lot of inactive grid cells. The resulting distribution of domains assigns few

processors to the parts of the model with many inactive grid cells.

• The performance of the RCB algorithm was greatly reduced when 512 or more

processors were used or when the size of the model is bigger than 51 million

cells. The domain decomposition algorithmused in a parallel reservoir simulator

could impact negatively in the parallel performance of the simulator or limit its

capability.

• Parallel reservoir simulation, under the actual hardware, is limited by the speed

of access of RAM and not by the processor speed. This is because the size

of simulation models commonly used in parallel reservoir simulation are big

enough to not to fit in cachememory and the data needs to be stored in RAM and

accessed through memory channels by the cores. The speed of accessing RAM

is slower than the typical speed of processors, hence, RAM speed is the limiting

factor.

• When hardware is updated, the biggest improvement in CPU time is obtained

with one processor. This is usually because the increase in RAM speed. The

improvement in more than one processor is not as big because there are other

factors involved such as number of cores per socket or number of memory chan-

nels per socket that can decrease the improvement. Additionally, when the

speed of processing is higher, the communication between processors became

more important and have a bigger impact on CPU time in newer hardware than

older hardware. For these reasons. The computed speedup in newer multicore

machines is lower than the speedup obtained with older multicore machines.

170

• In multi core machines, the number of memory channels available to each core

used during simulation has a great impact on parallel performance. In order not

to create a bottleneck in memory access at least one memory channel per used

core is needed.

• During parallel tests. It is advisable to maintain a constant number of cores per

node. By doing this we maintain the number of memory channels available to

each used core constant and avoid the possibility of include a variable bottleneck

at different number of processors.

6.3 Recommendations for Future Work
• Try an hybrid programming approach for parallel communication. The hybrid

approach consists of using OpenMP for shared memory parallelization within a

compute node and MPI for communication between compute nodes.

• Modify the framework to use of accelerators like Many Integrated Cores (MIC)

architecture or General Purpose Graphical Processing Units (GPGPU). Addi-

tional research should be performed on which part of the framework provides

the greatest benefit of being executed by the accelerators.

• Memory optimization of UTCOMP subroutines should be performed. This al-

lows bigger models to be run on serial and parallel machines without the need

of increasing RAM.

• Implement corner point and unstructured grids on the framework.

• Add capability to the framework of handling spatial properties using one in-

dex. This could greatly increase the framework’s applicability because several

reservoir simulators use single index properties.

• Further research is needed to identify efficient and scalable domain decompo-

sition algorithms for parallel reservoir simulation. These algorithms should be

implemented in the framework.

171

Bibliography

Abate, J., Wang, P., and Sepehrnoori, K., “Parallel Compositional Reservoir Simulation

on Clusters of PCs,” in: International Journal of High Performance Computing Applica-
tions 15.1 (2001), pp. 13–21, url: http://hpc.sagepub.com/content/15/1/13.
abstract.

Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities,” in: Proceedings of the April 18-20, 1967, Spring Joint Com-
puter Conference, AFIPS ’67 (Spring), Atlantic City, New Jersey: ACM, 1967, pp. 483–

485, url: http://doi.acm.org/10.1145/1465482.1465560.

Atan, S., Kazemi, H., and Caldwell, D. H., “Efficient Parallel Computing Using Multi-

scaleMultimeshReservoir Simulation,” in:SPE-103101-MS, SPE: SocietyofPetroleum
Engineers, Jan. 1, 2006.

Babu, D. and Odeh, A. S., “Productivity of a Horizontal Well (Includes Associated

Papers 20306, 20307, 20394, 20403, 20799, 21307, 21610, 21611, 21623, 21624, 25295,

25408, 26262, 26281, 31025, and 31035),” in: SPE-18298-PA (Nov. 1, 1989).

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,

Eĳkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K.,

Smith, B. F., Zampini, S., Zhang, H., and Zhang, H., PETSc Web Page, 2016, url:

http://www.mcs.anl.gov/petsc.

Barua, J. and Horne, R., “Improving the Performance of Parallel (and Serial) Reservoir

Simulators,” in: SPE-18408-MS, SPE: Society of Petroleum Engineers, Jan. 1, 1989.

Beckner, B., Haugen, K. B., Maliassov, S., Dyadechko, V., and Wiegand, K. D., “Gen-

eral Parallel Reservoir Simulation,” in: SPE-177532-MS, SPE: Society of Petroleum

Engineers, Nov. 9, 2015.

Berger, M. J. and Bokhari, S. H., “A Partitioning Strategy for Nonuniform Problems on

Multiprocessors,” in: IEEE Transactions on Computers C-36.5 (May 1987), pp. 570–

580.

Blaise, B., “Introduction to Parallel Computing,” in: Lawrence Livermore NationalUCRL-

MI-133316 (EC3500 2015), url: https : / / computing . llnl . gov / tutorials /
parallel_comp/.

— “OpenMP,” in: Lawrence Livermore National UCRL-MI-133316 (EC3507 2015), url:

https://computing.llnl.gov/tutorials/openMP/.

172

http://hpc.sagepub.com/content/15/1/13.abstract
http://hpc.sagepub.com/content/15/1/13.abstract
http://doi.acm.org/10.1145/1465482.1465560
http://www.mcs.anl.gov/petsc
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/openMP/

Briens, F. J., Wu, C. H., Gazdag, J., and Wang, H. H., “Sequential Staging of Tasks:

A New Approach to Parallel Computations,” in: SPE-21088-MS, SPE: Society of

Petroleum Engineers, Jan. 1, 1990.

Ceze, L. H., “Shared-Memory Multiprocessors,” in: Encyclopedia of Parallel Computing,
ed. by D. Padua, Boston, MA: Springer US, 2011, pp. 1810–1812, url: http://dx.
doi.org/10.1007/978-0-387-09766-4.

Chang, Y.-B., “Development and Application of an Equation of State Compositional

Simulator,” Ph.D. Dissertation, 1990, 551 pp., url: http://search.proquest.com/
docview/303893086.

Chapman, B., Jost, G., and Van Der Pas, R., Using OpenMP: Portable Shared Memory
Parallel Programming, vol. 10, MIT press, 2008.

Chapman, B. and LaGrone, J., “OpenMP,” in: Encyclopedia of Parallel Computing, ed. by
D. Padua, Boston, MA: Springer US, 2011, pp. 1365–1371, url: http://dx.doi.
org/10.1007/978-0-387-09766-4.

Cheshire, I. and Bowen, G., “Parallelization in Reservoir Simulation,” in: SPE-23657-
MS, SPE: Society of Petroleum Engineers, Jan. 1, 1992.

Chien, M. and Northrup, E., “Vectorization and Parallel Processing of Local Grid Re-

finement andAdaptive Implicit Schemes in aGeneral PurposeReservoir Simulator,”

in: SPE-25258-MS, SPE: Society of Petroleum Engineers, Jan. 1, 1993.

Chien, M., Wasserman, M., Yardumian, H., Chung, E., Nguyen, T., and Larson, J.,

“The Use of Vectorization and Parallel Processing for Reservoir Simulation,” in:

SPE-16025-MS, SPE: Society of Petroleum Engineers, Jan. 1, 1987.

Corey, A. T., Mechanics of Immiscible Fluids in Porous Media, 2nd, Water Resources Pub-

lications, 1986.

Darabi, H., “Development of a Non-Isothermal Compositional Reservoir Simulator to

Model Asphaltene Precipitation, Flocculation, and Deposition and Remediation,”

Ph.D. Dissertation, The University of Texas at Austin, 2014, url: http://hdl.
handle.net/2152/24810.

DeBaun, D., Byer, T., Childs, P., Chen, J., Saaf, F., Wells, M., Liu, J., Cao, H., Pianelo,

L., Tilakraj, V., Crumpton, P., Walsh, D., Yardumian, H., Zorzynski, R., Lim, K.-T.,

Schrader,M., Zapata, V., Nolen, J., and Tchelepi, H., “An Extensible Architecture for

Next Generation Scalable Parallel Reservoir Simulation,” in: SPE-93274-MS, SPE:
Society of Petroleum Engineers, Jan. 1, 2005.

173

http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4
http://search.proquest.com/docview/303893086
http://search.proquest.com/docview/303893086
http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4
http://hdl.handle.net/2152/24810
http://hdl.handle.net/2152/24810

Delshad, M., Han, C., Sepehrnoori, K., and Najafabadi, N. F., “Development of a Three

Phase, Fully Implicit, Parallel Chemical Flood Simulator,” in: SPE-119002-MS, SPE:
Society of Petroleum Engineers, Jan. 1, 2009.

Devine, K., Boman, E., Heaphy, R., Hendrickson, B., and Vaughan, C., “Zoltan Data

Management Services for Parallel Dynamic Applications,” in: Computing in Science
Engineering 4.2 (Mar. 2002), pp. 90–96.

Dogru, A. H., Fung, L. S. K., and Sindi, M. O., “Multi-Paradigm Parallel Acceleration

for Reservoir Simulation,” in: SPE-163591-MS, SPE: Society of PetroleumEngineers,

Feb. 18, 2013.

Fazelipour,W., Pope, G. A., and Sepehrnoori, K., “Development of a Fully Implicit, Par-

allel, EOSCompositional Simulator toModelAsphaltenePrecipitation inPetroleum

Reservoirs,” in: SPE-120203-STU, SPE: Society of Petroleum Engineers, Jan. 1, 2008.

Flynn, M., “Flynn’s Taxonomy,” in: Encyclopedia of Parallel Computing, ed. by D. Padua,

Boston, MA: Springer US, 2011, pp. 689–697, url: http://dx.doi.org/10.1007/
978-0-387-09766-4.

— “Some Computer Organizations and Their Effectiveness,” in: IEEE Transactions on
Computers C-21.9 (Sept. 1972), pp. 948–960.

Fung, L. S. K. and Du, S., “Parallel-Simulator Framework for Multipermeability Mod-

eling With Discrete Fractures for Unconventional and Tight Gas Reservoirs,” in:

SPE-179728-PA (Aug. 1, 2016).

Gebali, F., Algorithms and Parallel Computing, Hoboken, UNITED STATES: Wiley, 2011.

Ghasemi Doroh, M., “Development and Application of Parallel Compositional Reser-

voir Simulator,” Master’s Thesis, University of Texas at Austin, 2012.

Ghori, S., Wang, C., Lim, M., Pope, G., Sepehrnoori, K., andWheeler, M. F., “Composi-

tional Reservoir Simulation on CM-5 and KSR-1 Parallel Machines,” in: SPE-29140-
MS, SPE: Society of Petroleum Engineers, Jan. 1, 1995.

Gropp, W., “MPI (Message Passing Interface),” in: Encyclopedia of Parallel Computing,
ed. by D. Padua, Boston, MA: Springer US, 2011, pp. 1184–1190, url: http://dx.
doi.org/10.1007/978-0-387-09766-4.

Gropp, W., Hoefler, T., Thakur, R., and Lusk, E., Using Advanced MPI: Modern Features
of the Message-Passing Interface, Scientific and Engineering Computation, MIT Press,

2014.

174

http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4

Gropp, W., Lusk, E., and Skjellum, A.,Using MPI: Portable Parallel Programming with the
Message-Passing Interface, 3rd, Scientific and Engineering Computation, Cambridge,

MA: MIT Press, 2014.

Guan, W., Qiao, C., Zhang, H., Zhang, C.-S., Zhi, M., Zhu, Z., Zheng, Z., Ye, W., Zhang,

Y., Hu, X., Li, Z., Feng, C., Xu, Y., and Xu, J., “On Robust and Efficient Parallel

Reservoir Simulation on Tianhe-2,” in: SPE-175602-MS, SPE: Society of Petroleum

Engineers, Sept. 14, 2015.

Gustafson, J. L., “Amdahl’s Law,” in:Encyclopedia of Parallel Computing, ed. byD. Padua,

Boston,MA: Springer US, 2011, pp. 53–60, url: http://dx.doi.org/10.1007/978-
0-387-09766-4.

— “Fixed Time, Tiered Memory, and Superlinear Speedup,” in: Proceedings of the Fifth
Distributed Memory Computing Conference, 1990. Vol. 2, Apr. 1990, pp. 1255–1260.

— “Reevaluating Amdahl’s Law,” in: Commun. ACM 31.5 (May 1988), pp. 532–533,

url: http://doi.acm.org/10.1145/42411.42415.

Han, C., Delshad, M., Sepehrnoori, K., and Pope, G. A., “A Fully Implicit, Parallel,

Compositional Chemical Flooding Simulator,” in: SPE-97217-PA (Sept. 1, 2007).

Ierusalimschy, R., Programming in Lua, 4th, Rio de Janeiro: Roberto Ierusalimschy, 2016.

Ierusalimschy, R., de Figueiredo, L. H., and Celes, W., “The Evolution of Lua,” in:

Proceedings of the Third ACM SIGPLAN Conference on History of Programming Lan-
guages, HOPL III, San Diego, California: ACM, 2007, pp. 2–1–2–26, url: http:
//doi.acm.org/10.1145/1238844.1238846.

Ierusalimschy,R., deFigueiredo, L.H., andFilho,W.C., “Lua—AnExtensibleExtension

Language,” in: Software: Practice and Experience 26.6 (1996), pp. 635–652, url: http:
//dx.doi.org/10.1002/(SICI)1097-024X(199606)26:6%3C635::AID-SPE26%
3E3.0.CO;2-P.

John, A., Han, C., Delshad, M., Pope, G., and Sepehrnoori, K., “A New Generation

Chemical Flooding Simulator,” in: SPE-89436-MS, SPE: Society of Petroleum Engi-

neers, Jan. 1, 2004.

Kårstad, T., Henriquez, A., and Korsell, K., “Parallelization of a Reservoir Simula-

tor,” in: Supercomputing: 1st International Conference Athens, Greece, June 8–12, 1987
Proceedings, ed. by E. N. Houstis, T. S. Papatheodorou, and C. D. Polychronopou-

los, Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 863–872, url: http:
//dx.doi.org/10.1007/3-540-18991-2.

175

http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4
http://doi.acm.org/10.1145/42411.42415
http://doi.acm.org/10.1145/1238844.1238846
http://doi.acm.org/10.1145/1238844.1238846
http://dx.doi.org/10.1002/(SICI)1097-024X(199606)26:6%3C635::AID-SPE26%3E3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-024X(199606)26:6%3C635::AID-SPE26%3E3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-024X(199606)26:6%3C635::AID-SPE26%3E3.0.CO;2-P
http://dx.doi.org/10.1007/3-540-18991-2
http://dx.doi.org/10.1007/3-540-18991-2

Khait, M. L., “Efficient Parallel Reservoir Simulation Using Multicore Architectures,”

in: SPE-119107-MS, SPE: Society of Petroleum Engineers, Jan. 1, 2009.

Killough, J. E. and Kossack, C. A., “Fifth Comparative Solution Project: Evaluation

of Miscible Flood Simulators,” in: SPE-16000-MS, SPE: Society of Petroleum Engi-

neers, Jan. 1, 1987.

Killough, J. E. and Bhogeswara, R., “Simulation of Compositional Reservoir Phenom-

ena on a Distributed-Memory Parallel Computer,” in: SPE-21208-PA (Nov. 1, 1991).

Killough, J. E. and Wheeler, M. F., “Parallel Iterative Linear Equation Solvers: An

Investigation of Domain Decomposition Algorithms for Reservoir Simulation,” in:

SPE-16021-MS, SPE: Society of Petroleum Engineers, Jan. 1, 1987.

Kremer, U. and Ramé, M., “Compositional Oil Reservoir Simulation in Fortran D: A

Feasibility Study On Intel iPsc/860,” in: The International Journal of Supercomputer
Applications and High Performance Computing 8.2 (1994), pp. 119–128, url: http:
//dx.doi.org/10.1177/109434209400800204.

Lake, L., Carey, G., Pope, G., and Sepehrnoori, K., “Isothermal, Multiphase, Multi-

component Fluid Flow in Permeable Media,” in: In Situ; (United States) 8:1 (Jan.

1984).

Liu, H., Wang, K., Chen, Z., Jordan, K. E., Luo, J., and Deng, H., “A Parallel Frame-

work for Reservoir Simulators on Distributed-Memory Supercomputers,” in: SPE-
176045-MS, SPE: Society of Petroleum Engineers, Oct. 20, 2015.

Liu, J., “High-Resolution Methods for Enhanced Oil Recovery Simulation,” Ph.D. Dis-

sertation, The University of Texas at Austin, 1993.

Liu, W., Cao, J., Mezzatesta, A., and Zhu, P., “Parallel Reservoir Simulation on Shared

and Distributed Memory System,” in: SPE-64797-MS, SPE: Society of Petroleum

Engineers, Jan. 1, 2000.

Löf, H. T., Gerritsen, M. G., and Thiele, M. R., “Parallel Streamline Simulation,” in:

SPE-113543-MS, SPE: Society of Petroleum Engineers, Jan. 1, 2008.

Maliassov, S., Beckner, B., and Dyadechko, V., “Parallel Reservoir Simulation Using

a Specific Software Framework,” in: SPE-163653-MS, SPE: Society of Petroleum

Engineers, Feb. 18, 2013.

Malony, A. D., “Metrics,” in: Encyclopedia of Parallel Computing, ed. by D. Padua, Boston,

MA: Springer US, 2011, pp. 1124–1130, url: http://dx.doi.org/10.1007/978-0-
387-09766-4.

176

http://dx.doi.org/10.1177/109434209400800204
http://dx.doi.org/10.1177/109434209400800204
http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4

Mayer, D., “Application of Reservoir Simulation Models to a New Parallel Computing

System,” in: SPE-19121-MS, SPE: Society of Petroleum Engineers, Jan. 1, 1989.

Meĳerink, J., Van Daalen, D., Hoogerbrugge, P., and Zeestraten, R., “Towards a More

EffectiveParallel Reservoir Simulator,” in:SPE-21212-MS, SPE: Society of Petroleum
Engineers, Jan. 1, 1991.

Message Passing Interface Forum,MPI: AMessage-Passing Interface Standard Version 3.1,
2015, url: http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

Metcalf, M., Reid, J., and Cohen,M.,Modern Fortran Explained, 4th, NewYork, NY, USA:

Oxford University Press, Inc., 2011.

Michielse, P., “Parallel Multigrid Using PVM,” in: Applied Numerical Mathematics 19.1
(1995), pp. 63–69, url: http://www.sciencedirect.com/science/article/pii/
016892749500018P.

Naimi-Tajdar, R., Han, C., Sepehrnoori, K., Arbogast, T. J., and Miller, M. A., “A Fully

Implicit, Compositional, Parallel Simulator for IOR Processes in Fractured Reser-

voirs,” in: SPE-100079-PA (Sept. 1, 2007).

Okuno, R., “Modeling of Multiphase Behavior for Gas Flooding Simulation,” Ph.D.

Dissertation, The University of Texas at Austin, 2009, 370 pp., url: http://hdl.
handle.net/2152/10585.

OpenMPArchitectureReviewBoard,OpenMPApplicationProgramming InterfaceVersion
4.5, 2015, url: http://www.openmp.org.

Pan, F., Sepehrnoori, K., and Chin, L., “Development of a Coupled Geomechanics

Model for a Parallel Compositional Reservoir Simulator,” in: SPE-109867-MS, SPE:
Society of Petroleum Engineers, Jan. 1, 2007.

Parashar, M.,Wheeler, J. A., Pope, G., Wang, K., andWang, P., “ANewGeneration EOS

Compositional Reservoir Simulator: Part II - Framework and Multiprocessing,” in:

SPE-37977-MS, SPE: Society of Petroleum Engineers, Jan. 1, 1997.

Pope, G.,Wu,W.,Narayanaswamy,G., Delshad,M., Sharma,M., andWang, P., “Model-

ingRelative Permeability Effects inGas-Condensate Reservoirs,” in: SPE-49266-MS,
SPE: Society of Petroleum Engineers, Jan. 1, 1998.

Qin, X., “Modeling Asphaltene Precipitation and Implementation of Group Contribu-

tuon Equation of State Into UTCOMP,” Master’s Thesis, The University of Texas at

Austin, 1998.

177

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.sciencedirect.com/science/article/pii/016892749500018P
http://www.sciencedirect.com/science/article/pii/016892749500018P
http://hdl.handle.net/2152/10585
http://hdl.handle.net/2152/10585
http://www.openmp.org

Rame, M. and Delshad, M., “A Compositional Reservoir Simulator on Distributed

Memory Parallel Computers,” in: SPE-29103-MS, SPE: Society of Petroleum Engi-

neers, Jan. 1, 1995.

Rutledge, J., Jones, D., Chen,W., and Chung, E., “The Use of aMassively Parallel SIMD

Computer for Reservoir Simulation,” in: SPE-21213-PA (July 1, 1992).

Scott, S., Wainwright, R., Raghavan, R., and Demuth, H., “Application of Parallel

(MIMD) Computers to Reservoir Simulation,” in: SPE-16020-MS, SPE: Society of

Petroleum Engineers, Jan. 1, 1987.

Sherman, A., “AHybrid Approach to Parallel Compositions Reservoir Simulation,” in:

OTC-6829-MS, OTC: Offshore Technology Conference, Jan. 1, 1992.

Shuhong, W., Baohua, W., Qiaoyun, L., Xu, J., Chensong, Z., and Chunsheng, F., “Cost-

Effective Parallel Reservoir Simulation on Shared Memory,” in: SPE-182367-MS,
SPE: Society of Petroleum Engineers, Oct. 25, 2016.

Snir, M., “Distributed-Memory Multiprocessor,” in: Encyclopedia of Parallel Computing,
ed. by D. Padua, Boston, MA: Springer US, 2011, pp. 574–578, url: http://dx.doi.
org/10.1007/978-0-387-09766-4.

Sterling, T. L., Salmon, J., Becker, D. J., and Savarese, D. F., How to Build a Beowulf: A
Guide to the Implementation and Application of PC Clusters, MIT press, 1999.

Stone, H., “Estimation of Three-Phase Relative Permeability And Residual Oil Data,”

in: PETSOC-73-04-06 (Oct. 1, 1973).

Tarman,M.,Wang, K., Killough, J. E., and Sepehrnoori, K., “Automatic Decomposition

for Parallel Reservoir Simulation,” in: SPE-141716-MS, SPE: Society of Petroleum

Engineers, Jan. 1, 2011.

Texas AdvancedComputing Center, Lonestar 5 User Guide, 2017, url: https://portal.
tacc.utexas.edu/user-guides/lonestar5.

UTCOMP, Technical Documentation for UTCOMP 3.8, The University of Texas at Austin,

2003.

VanDaalen, D., Hoogerbrugge, P., Meĳerink, J., and Zeestraten, R., “The Parallelisation

of Bosim, Shell’s Black/Volatile Oil Reservoir Simulator,” in: ECMOR I-1st European
Conference on the Mathematics of Oil Recovery, 1989.

Wallis, J., Foster, J., and Kendall, R., “A New Parallel Iterative Linear Solution Method

for Large-Scale Reservoir Simulation,” in: SPE-21209-MS, SPE: Society of Petroleum
Engineers, Jan. 1, 1991.

178

http://dx.doi.org/10.1007/978-0-387-09766-4
http://dx.doi.org/10.1007/978-0-387-09766-4
https://portal.tacc.utexas.edu/user-guides/lonestar5
https://portal.tacc.utexas.edu/user-guides/lonestar5

Wang, K., Liu, H., Luo, J., and Chen, Z., “A Multi-Continuum Multi-Phase Parallel

Simulator for Large-Scale Conventional andUnconventional Reservoirs,” in: Journal
of Natural Gas Science and Engineering 33 (2016), pp. 483–496, url: http://www.
sciencedirect.com/science/article/pii/S1875510016303547.

Wang, P., Balay, S., Sepehrnoori, K., Wheeler, J. A., Abate, J., Smith, B., and Pope, G.,

“A Fully Implicit Parallel EOS Compositional Simulator for Large Scale Reservoir

Simulation.,” in: SPE-51885-MS, SPE: Society of Petroleum Engineers, Jan. 1, 1999.

Wang,P., Yotov, I.,Wheeler,M. F.,Arbogast, T.,Dawson,C., Parashar,M., andSepehrnoori,

K., “A New Generation EOS Compositional Reservoir Simulator: Part I - Formula-

tion and Discretization,” in: SPE-37979-MS, SPE: Society of Petroleum Engineers,

Jan. 1, 1997.

Wang,Y. andKillough, J. E., “ANewApproach toLoadBalance forParallel/Compositional

Simulation Based on Reservoir-Model Overdecomposition,” in: SPE-163585-PA
(Apr. 1, 2014).

Wheeler, J. A. and Smith, R. A., “Reservoir Simulation on aHypercube,” in: SPE-19804-
PA (Nov. 1, 1990).

Willmore, F., “Introduction to Parallel Computing,” Texas Advanced Computing Cen-

ter, The University of Texas at Austin, 2013.

Yu, S., Liu, H., Chen, Z. J., Hsieh, B., and Shao, L., “GPU-Based Parallel Reservoir

Simulation for Large-Scale Simulation Problems,” in: SPE-152271-MS, SPE: Society
of Petroleum Engineers, Jan. 1, 2012.

Yuan, C., Delshad, M., and Wheeler, M. F., “Parallel Simulations of Commercial-Scale

Polymer Floods,” in: SPE-132441-MS, SPE: Society of Petroleum Engineers, Jan. 1,

2010.

Zhong, H., Liu, H., Cui, T., Wang, K., Yang, B., Yang, M., and Chen, Z., “A Parallel

Thermal Reservoir Simulator on Distributed-Memory Supercomputers,” in: SPE-
182379-MS, SPE: Society of Petroleum Engineers, Oct. 25, 2016.

179

http://www.sciencedirect.com/science/article/pii/S1875510016303547
http://www.sciencedirect.com/science/article/pii/S1875510016303547

	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Chapter 1. Introduction
	Brief Description of Chapters

	Chapter 2. Background and Literature Review
	Parallel Computing
	Why Parallel Computing?

	Performance of Parallel Applications
	Performance Measurements for Parallel Performance
	Theoretical Limits on performance
	Scalability

	Parallel Architectures
	General Parallel Computer Terminology
	Flynn's Taxonomy
	Shared Memory
	Distributed Memory
	Hybrid Systems

	Parallel Programming
	Shared Memory
	Distributed Memory
	Multicore Systems
	Accelerated Systems

	Parallel Reservoir Simulation

	Chapter 3. Proposed Framework
	Parallel Development Problems
	Parallel Communication
	Reservoir Model Division
	Spatially Distributed Properties
	Input Processing
	Output Processing

	Solutions to the Parallel Development Problems
	Parallel Communications
	Reservoir Model Division
	Spatially Distributed Properties
	Input Processing
	Visualization Output

	Framework Design
	Core Module
	Framework Module
	Simulator Module

	Framework Capabilities

	Chapter 4. Application of Framework to UTCOMP
	Overview of UTCOMP simulator
	The Mass Conservation Equation
	The Pressure Equation

	Overview of UTCOMPP simulator
	Modifications Made to UTCOMPP's Simulation Subroutines in Order to Work with Our New Framework

	Chapter 5. Case Studies
	Verification Cases
	Case 1 - CO2 Flooding
	Case 2 - Gas Injection
	Case 3 - CO2 and Gas Injection
	Case 4 - Asphalthene Precipitation

	Performance Cases
	Case 5 - WAG Heterogeneous
	Case 6 - WAG Homogeneous
	Case 7 - Simultaneous Water-Gas Injection
	Case 8 - Waterflooding
	Case 9 - Water and Gas Injection Weak Scalability Test
	Case 10 - Effect of Number of Cores per Node used
	Case 11 - Waterflooding Weak Scalability Test
	Case 12 - Waterflooding Strong Scalability Test

	Chapter 6. Summary, Conclusions and Recommendations
	Summary
	Conclusions
	Recommendations for Future Work

	Bibliography

