
TACC Technical Report TR-17-01

Benchmarking the Intel®Xeon®Platinum 8160 Processor

Document Revision 1.0
August 10, 2017

Antonio Gómez-Iglesias, Feng Chen, Lei Huang, Hang Liu, Si Liu, Carlos Rosales
{agomez, chenk, huang, hliu, sliu, carlos}@tacc.utexas.edu

Texas Advanced Computing Center
The University of Texas at Austin

www.tacc.utexas.edu



HPC Team Benchmarking SKX

Copyright 2017 The University of Texas at Austin.

Permission to copy this report is granted for electronic viewing and single-copy printing.
Permissible uses are research and browsing. Specifically prohibited are sales of any copy, whether
electronic or hardcopy, for any purpose. Also prohibited is copying, excerpting or extensive
quoting of any report in another work without the written permission of one of the report’s
authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no warranty,
express or implied, nor assume any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed.

TR-17-01 2



HPC Team Benchmarking SKX

Contents

1 Introduction 3

1.1 Hardware Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Software Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Memory Bandwidth 6

3 Floating Point Performance 8

4 OpenMP 10

5 MPI 13

5.1 Internode Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Intranode Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Internode Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Applications 16

6.1 WRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.3 NAMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.4 GROMACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.5 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.6 tblastx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

TR-17-01 1



HPC Team Benchmarking SKX

List of Figures

1 Dual socket SKX. Turbo frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Hardware description for compute node from HWLOC . . . . . . . . . . . . . . . . . . 5

3 Dual socket SKX node. STREAM Triad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Dual socket SKX node. STREAM Triad. Local Memory. . . . . . . . . . . . . . . . . . . 7

5 Dual socket SKX node. TFLOPS for different matrix sizes. . . . . . . . . . . . . . . . . 8

6 Dual socket SKX node. TFLOPS for different threads. . . . . . . . . . . . . . . . . . . . 9

7 Dual socket SKX node. OpenMP synchronization overhead (spread). . . . . . . . . . 10

8 Dual socket SKX node. OpenMP synchronization overhead (compact). . . . . . . . . 11

9 Dual socket SKX node. OpenMP constructs overhead (spread). . . . . . . . . . . . . . 11

10 Dual socket SKX node. OpenMP constructs overhead (compact). . . . . . . . . . . . . 12

11 Effective inter-node latency for a single pair of MPI tasks . . . . . . . . . . . . . . . . . 13

12 Effective intra-node bandwidth for a single pair of MPI tasks . . . . . . . . . . . . . . 14

13 Effective inter-node bandwidth for a single pair of MPI tasks . . . . . . . . . . . . . . 15

14 Internode bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

15 WRF: Speedup Relative to SNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

16 WRF: ISA impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

17 FLASH: Speedup Relative to SNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

18 FLASH: ISA impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

19 NAMD: Speedup Relative to SNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

20 NAMD: ISA impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

21 GROMACS: Speedup Relative to SNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

22 GROMACS: ISA impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

23 Julia: Speedup Relative to SNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

24 Pairwise: Speedup Relative to SNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

25 tblastx: Speedup Relative to SNB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

TR-17-01 2



HPC Team Benchmarking SKX

1 INTRODUCTION

This report presents a set of results for different microbenchmarks and applications on the Intel
Xeon Platinum 8160 Processor, formerly known as Skylake. For simplicity, we will use both Skylake
and SKX to refer to this processor. We use the Skylake nodes that will be available in Stampede2.
This system will provide Intel Knights Landing and Skylake chips interconnected by a 100 Gb/sec
Intel Omni-Path (OPA) network with a fat tree topology. The peak performance of the system will
be 18 PF.

1.1 Hardware Characteristics

Table 1 shows the main characteristics of the processor.

Component Value

Number of Cores 24

Clock Speed 2.10 GHz

Turbo Speed 3.70 GHz

L3 Cache Shared, 33 MB, 11-way set associative

L2 Cache Unified 24 MB (1 MB/core), 16-way set associative

L1 Cache Private, 32 KB (per core), 8-way set associative

Memory Type DDR4-2666

Memory Channels 6

PCI Express Gen 3, x48 lanes

Number of UPI Link 3

UPI Link Speed 10.4 GT/s

Lithography 14 nm

TDP 150 W

Instruction Set Extensions SSE4.2, AVX, AVX2, AVX-512

AVX-512 FMA Units 2

Table 1: Intel Xeon Platinum 8160 Characteristics

Effective CPU frequency depends on the instructions that are executed and the number of active
cores on the chip. The most effective instruction set for a given code will depend on implemen-
tation details. Fig. 1 shows the CPU turbo frequency depending on the instruction set and the
number of active cores on the chip.

In the system used, each compute node consists of two sockets of Xeon Platinum 8160 and 192
GB of main memory. As shown in Figure 2 the local disk (sda), the Omni-Path link, and the
management GE network interfaces are connected to socket 0.

TR-17-01 3



HPC Team Benchmarking SKX

0 2 4 6 8 10 12 14 16 18 20 22 24
0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

Number of Active Cores

Fr
eq

u
en

cy
(M

H
z)

AVX
AVX2

AVX512

Turbo frequency/Active cores

Figure 1: Dual socket SKX. Turbo frequency.

1.2 Software Stack

At the time our running our tests, the software stack was as shown in Table 2.

Element Version

Kernel 3.10.0-514.26.2.el7.x86_64

Compiler Intel version 17.0.4

BLAS Intel MKL 2017 update 3

MPI Intel MPI version 17.0.3

Omni-Path 10.4.1.0

Table 2: Software Stack as of August 10th , 2017

TR-17-01 4



HPC Team Benchmarking SKX

Figure 2: Hardware description for compute node from HWLOC

TR-17-01 5



HPC Team Benchmarking SKX

2 MEMORY BANDWIDTH

Memory bandwidth is critical for many scientific codes. While floating point processing
power has increased tremendously over the years, memory bandwidth has grown at a much
slower rate. As a consequence of this disparity in growth, modern systems tend to be fairly
imbalanced when comparing the number of words that can be retrieved from memory per
cycle with the number of floating point operations that can be executed per cycle. While
certain codes make excellent use of the cache hierarchy (reusing cached data, ensuring
contiguous memory access, etc, ...) other can’t because of algorithmic limitations or because
they have been written in a manner that does not use the memory subsystem optimally.
Thus, having a measure of the sustained memory bandwidth of a system is an important
step in the process to understand the performance one may expect for a broad range of
applications.

The system memory bandwidth was measured using the STREAM benchmark revision 5.10 [9].
This benchmark is the industry standard for measuring sustained memory bandwidth. It consists
of four tests, described in Table 3. For our results, we consider the output of the Triad test.

Function Operation

Copy c[i] = a[i]

Scale b[i] = scalar*c[i]

Add c[i] = a[i]+b[i]

Triad a[i] = b[i]+scalar*c[i]

Table 3: STREAM benchmark operation definitions

We used the OpenMP implementation of STREAM. We increased the number of threads from 1 to
96 to explore the memory bandwidth on a single socket, on two sockets, and with hyperthreading.
The results can be seen in Fig. 3. Once the number of threads reached 33, the bandwidth was
saturated and did not improve. The peak in this case was 194 GB/s. Once the number of threads
exceeded the number of physical cores available, the achieved bandwidth decreased.

Fig. 4 shows the memory bandwidth when using only the local or remote memory to each socket.

TR-17-01 6



HPC Team Benchmarking SKX

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

200

Threads

G
B

/s

STREAM

Figure 3: Dual socket SKX node. STREAM Triad

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

Threads

G
B

/s

Local Memory
Remote Memory

STREAM

Figure 4: Dual socket SKX node. STREAM Triad. Local Memory.

TR-17-01 7



HPC Team Benchmarking SKX

3 FLOATING POINT PERFORMANCE

Floating point performance is the traditional measure of machine performance for High Per-
formance Computing systems, and represents the overall system capability for performing
mathematical operations. Typical benchmarks for overall floating point capability are the
Linpack benchmark (HPL, used for the TOP500 list, see references [5] and [1]) and matrix
matrix multiplication tests. These algebraic tests have highly optimized implementation
with high data reuse and fairly limited memory bandwidth requirements, which are capable
of achieving floating point performances very close to the theoretical peak performance of
the hardware. Floating point performance is critical for scientific workloads, since they very
often rely on solving an algebraic system of equations. Even if a scientific workload is not
directly solving a system of linear equations it is likely that it will make extensive use of the
floating point capability of the system during tasks like post-processing and data analysis.
This makes the determination of the floating point capability of a compute system another
essential element in an overall understanding of the system performance.

The tests performed in this section are limited to single node executions, since the purpose is to
evaluate the processor floating point performance in isolation form network communication and
other factors present in distributed execution. The DGEMM benchmark developed by NERSC1

was used to measure the multithreaded performance of the BLAS call DGEMM. The code was
compiled to directly call Intel MKL at runtime.

Fig. 5 shows the TFLOPS achieved by a dual socket SKX node for different matrix sizes. The com-
mand used for these results was MKL_ENABLE_INSTRUCTIONS=AVX512 OMP_NUM_THREADS=48
./mt-dgemm $size, where $si ze is the x-axis value in the figure.

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000 11 000
0

0.5

1

1.5

2

2.5

3

Matrix Size

T
F

LO
P

S

DGEMM

Figure 5: Dual socket SKX node. TFLOPS for different matrix sizes.

1http://www.nersc.gov/research-and-development/apex/apex-benchmarks/dgemm/

TR-17-01 8



HPC Team Benchmarking SKX

Fig. 6 shows the TFLOPS achieved by a dual socket SKX node when using a fixed matrix size of
10000 and increasing the number of threads from 1 to 48 (total number of cores in the the node).
We did not use hyperthreading since it did not help in our preliminary tests.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

Threads

T
F

LO
P

S
DGEMM

Figure 6: Dual socket SKX node. TFLOPS for different threads.

TR-17-01 9



HPC Team Benchmarking SKX

4 OPENMP

OpenMP is one of the most commonly used shared memory parallel programming models.
The continuous trend of increasing core count per socket to improve system performance
makes threading performance critical for many codes, both shared memory and hybrid. In
this section we investigate the synchronization overhead of a wide variety of OpenMP (OMP)
language constructs.

OpenMP overhead was measured using the EPCC OpenMP benchmark v3.1. For implementation
details see [4]. The benchmark was executed using two different affinity settings: scatter, using
OMP_PROC_BIND=spread and compact, using OMP_PROC_BIND=close.

Fig. 7 and 8 show the overhead of the most common synchronization constructs in OpenMP when
using scatter and compact affinity.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Threads

T
im

e
(m

ic
ro

se
co

n
d

s)

critical
lock/unlock

atomic
ordered

OpenMP Overheads (spread)

Figure 7: Dual socket SKX node. OpenMP synchronization overhead (spread).

Fig. 9 and 10 depict the overheads of the most typical OpenMP constructs for the two affinity
settings studied.

TR-17-01 10



HPC Team Benchmarking SKX

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Threads

T
im

e
(m

ic
ro

se
co

n
d

s)
critical

lock/unlock
atomic
ordered

OpenMP Overheads (compact)

Figure 8: Dual socket SKX node. OpenMP synchronization overhead (compact).

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

Threads

T
im

e
(m

ic
ro

se
co

n
d

s)

for
parallel

parallel for
barrier
single

reduction

OpenMP Overheads (spread)

Figure 9: Dual socket SKX node. OpenMP constructs overhead (spread).

TR-17-01 11



HPC Team Benchmarking SKX

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

Threads

T
im

e
(m

ic
ro

se
co

n
d

s)

for
parallel

parallel for
barrier
single

reduction

OpenMP Overheads (compact)

Figure 10: Dual socket SKX node. OpenMP constructs overhead (compact).

TR-17-01 12



HPC Team Benchmarking SKX

5 MPI

5.1 Internode Latency

MPI latency is of importance to codes that exchange small messages, where latency plays a
more significant role than bandwidth. Codes with irregular communication patters typically
benefit from short latencies. When looking a latency values off node the limiting factors
will be the network interconnect and adapter, while on node the limiting factor will be the
memory subsystem, including the socket to socket communication pathways.

Fig. 11 shows the latency between 2 nodes on the same rack. On both nodes, the MPI task is
pinned to core 0. The latency in this case is 1.06 usec. For the case of socket 1 to socket 1 (pinning
to core 24 on each node), the latency is 1.19 usec.

100 101 102 103 104 105 106
0

50

100

150

200

250

300

350

Message Size (Bytes)

La
te

n
cy

(u
s)

MPI Latency

Figure 11: Effective inter-node latency for a single pair of MPI tasks

5.2 Intranode Bandwidth

On node exchanges do not go through the Omni-Path network and thus are not limited by its
characteristics. The effective bandwidth achieved within a node is limited, instead, by the memory
subsystem properties for the node and the memory contention when multiple tasks exchange
data simultaneously.

Fig. 12 shows the effective bandwidth for a single pair of MPI tasks. Three cases are presented. In
the first case the two tasks are bound to the first socket, to cores 0 and 1. In the second case the
tasks are bound one to each socket and, in particular, to cores 0 and 24. In the last case the tasks

TR-17-01 13



HPC Team Benchmarking SKX

are bound to the second socket, to cores 24 and 25. The achieved bandwidth is very similar in all
three cases. For these experiments, to allocate memory on the closest NUMA node to the core
where the MPI task is running.

100 101 102 103 104 105 106
0

2 000

4 000

6 000

8 000

10 000

Message Size (Bytes)

B
an

d
w

id
th

(M
B

/s
)

0+1
0+24

24+25

MPI Intranode Bandwidth

Figure 12: Effective intra-node bandwidth for a single pair of MPI tasks

5.3 Internode Bandwidth

Many scientific codes require some type of distributed memory model because of their scale
and complexity. The Message Passing Interface (MPI) framework allows for communication
in distributed systems, and is the de facto standard for codes working in distributed memory
systems. Codes that have large messages to exchange depend heavily on the MPI bandwidth
supported by the system for their performance, especially if they execute mainly blocking
calls or collective operations. Understanding the achievable MPI bandwidth in a system is
critical for estimating scalability of distributed codes.

Figure 13 shows the inter-node bandwidth achievable for different message size. For these tests
one MPI task was bound to the first socket on each node.

Fig. 14 shows the internode bandwidth achieved running OSU benchmark 5.3.2. For these results,
one MPI task is pinned to a specific core on one node and the other process is pinned to another
core on the other node. A double for loop allows to explore all the combinations of sender and
receiver for all the cores in both nodes.

TR-17-01 14



HPC Team Benchmarking SKX

100 101 102 103 104 105 106
0

2 000

4 000

6 000

8 000

10 000

12 000

Message Size (Bytes)

B
an

d
w

id
th

(M
B

/s
)

MPI Bandwidth

Figure 13: Effective inter-node bandwidth for a single pair of MPI tasks

Figure 14: Internode bandwidth

TR-17-01 15



HPC Team Benchmarking SKX

6 APPLICATIONS

We chose a set of representative HPC applications. Several of these codes are among the ten most
used applications in Stampede, while other are good representations of common workloads. For
these results, SKX is a dual socket node where each socket presents the characteristics described
on Table 1. SNB is a dual socket Sandy Bridge node as shown in Table 4. HSW is dual socket Intel
Haswell node that follows the specifications in Table 5. Finally, KNL is an Intel Knights Landing
chip as shown in Table 6.

Component Value

CPU Sockets 2 × Intel Xeon E5-2680 (Sandy Bridge EP)

Memory 32 GB DDR3-1600 RAM (8x4 GB, 4 channel on-chip)

Total Number of Cores 16

Clock Speed 2.7 GHz

Turbo Speed 3.5 GHz

L3 Cache Shared, 20 MB

L2 Cache Unified 256 KB

L1 Cache Private, 32 KB (per core)

Memory Type DDR3

Memory Channels 4

PCI Express Gen 3, x40 lanes

Number of QPI Link 2

QPI Link Speed 8 GT/s

Lithography 32 nm

TDP (socket) 130 W

Instruction Set Extensions SSE4.2, AVX

Table 4: Intel Xeon Sandy Bridge Node Characteristics

TR-17-01 16



HPC Team Benchmarking SKX

Component Value

CPU Sockets 2 × Intel Xeon E5-2690 v3 (Haswell EP)

Memory 64 GB DDR4-2133 RAM (8 x 8GB dual rank x8 DIMMS)

Total Number of Cores 24

Clock Speed 2.6 GHz

Turbo Speed 3.5 GHz

L3 Cache Shared, 30 MB

L2 Cache Unified 256 KB

L1 Cache Private, 32 KB (per core)

Memory Type DDR4

Memory Channels 4

PCI Express Gen 3, x40 lanes

Number of QPI Link 2

UPI Link Speed 9.6 GT/s

Lithography 22 nm

TDP (socket) 135 W

Instruction Set Extensions SSE4.2, AVX, AVX2

Table 5: Intel Xeon Haswell Node Characteristics

Component Value

CPU Sockets 1

Memory 16 GB MCDRAM, 92 GB DDR4-2400

Total Number of Cores 68

Clock Speed 1.4 GHz

Turbo Speed 1.6 GHz

L2 Cache Unified 1 MB

L1 Cache Private, 32 KB (per core) Data and Instruction caches

Memory Channels 6

PCI Express Gen 3, x36 lanes

Lithography 14 nm

TDP 215 W

Instruction Set Extensions SSE4.2, AVX, AVX2, AVX-512

Table 6: Intel Knights Landing 7250 Node Characteristics

TR-17-01 17



HPC Team Benchmarking SKX

6.1 WRF

The Weather Research and Forecasting (WRF) Model [6] is a widely used numerical weather
prediction system used for both research and operational forecasts. WRF is primarily a Fortran
code implemented using MPI and OpenMP for distributed computing. The problem space on each
process is divided into tiles that are processed by OpenMP threads. Ideally, the best performance
is achieved when the size of the tile fits into the smallest cache. Having multiple application tiles
allows WRF to obtain high levels of memory bandwidth utilization. For this investigation we use
the Continental US (CONUS) 12km input benchmark.

Fig. 15 shows the performance relative to Sandy Bridge for all the chips previously introduced.
The results used for this figure are achieved by the best configuration for each chip in terms of
processes and threads.

0

0.5

1

1.5

2

2.5

3

SNB HSW KNL SKX
Processor

R
el

at
iv

e
Sp

ee
d

u
p

WRF (MPI)

Figure 15: WRF: Speedup Relative to SNB

We also studied the impact of the different ISA (Instruction Set Architecture) in the performance of
the code. The results can be seen in Fig. 16. In the figure, higher is better. It can be seen how the
best performance is achieved by using the -no-vec -xCORE-AVX512 compilation flags, with the
case of -no-vec -xSSE4.2 being very close.

TR-17-01 18



HPC Team Benchmarking SKX

0

10

20

30

40

50

60

CORE-A
VX512

CORE-A
VX512 novec

AVX2

AVX2 novec
SSE4

SSE4 novec

st
ep

s/
se

co
n

d

WRF

Figure 16: WRF: ISA impact

TR-17-01 19



HPC Team Benchmarking SKX

6.2 FLASH

FLASH [11] is a multi-physics framework often used for the simulation of turbulent fluid flow and
transport in plasmas, including exploding stars, laser energy deposition, and nuclear burning. The
benchmark case computes a driven turbulence simulation on a fixed, 643-point mesh per node.
Version 4.2.2 of the code was used in the tests with minor modifications to improve threading and
vectorization added to a single file in the Stir subdirectory.

As for the WRF case, we compared the performance of the different chips. The results are depicted
in Fig. 17. The difference in performance is not as large as in the WRF case, even though SKX offers
a much better performance than all the other chips.

0

0.5

1

1.5

2

2.5

SNB HSW KNL SKX
Processor

R
el

at
iv

e
Sp

ee
d

u
p

FLASH 4.2.2 StirTurb 643, no-IO, hybrid, 28 steps

Figure 17: FLASH: Speedup Relative to SNB

Fig. 18 shows the different compilation flags used and how they affect the performance of the code.
The best result was achieved when using -O3 -no-vec -xCORE-AVX512. It is worth noticing the
difference between using or not using -no-vec in this case and, also, how when not -no-vec is
specified, -xCORE-AVX2 clearly outperforms -xCORE-AVX512.

TR-17-01 20



HPC Team Benchmarking SKX

0

2

4

6

8

-O
3 -n

o-v
ec

-O
3 -x

CORE-A
VX512

-O
3 -x

CORE-A
VX2

-O
3 -n

o-v
ec -x

CORE-A
VX2

-O
3 -n

o-v
ec -x

CORE-A
VX512

st
ep

s/
se

co
n

d

FLASH 4.2.2 StirTurb 643, no-IO, hybrid, 28 steps

Figure 18: FLASH: ISA impact

TR-17-01 21



HPC Team Benchmarking SKX

6.3 NAMD

NAMD [10] is a parallel molecular dynamics code for high-performance simulation of large molec-
ular systems used by many research teams around the world and the 2002 Gordon Bell Prize
winner. NAMD is also the most used application on Stampede. This study uses the APOA1 and
STMV20 NAMD benchmarks with modified input for the single and multi node studies respectively.
The APOA1 benchmark is a 92-thousand atom molecular dynamics simulation of Apolipoprotein
A-1 which is the primary component of the high-density lipoprotein cholesterol molecule. The
STMV20 benchmarks is a 20 million atom simulation of the satellite tobacco mosaic virus, which
is a small icosahedral plant virus which worsens the symptoms of infection by tobacco mosaic
virus (TMV). A multicore version of NAMD CVS 2016-11-01 was built for the single node test, and
a hybrid memory-optimized version was built for the large STMV20 case.

Fig. 19 shows the speedup relative to Sandy Bridge. For Sandy Bridge, 16 MPI tasks were used on a
single node. In the case of KNL, we used 4 MPI tasks and 32 threads per MPI task (options +ppn 32
+pemap 0-63+68 +commap 64-67). For Skylake, we used 2 MPI tasks per node (options +ppn 23
+pemap 0-45+48 +commap 46-47). Overall, Skylake is 3.25 times faster than Sandy Bridge for
this case.

0

1

2

3

4

5

SNB KNL SKX
Processor

R
el

at
iv

e
Sp

ee
d

u
p

NAMD

Figure 19: NAMD: Speedup Relative to SNB

Fig. 20 shows the impact of the different compilation flags in the performance. In this case, the
-O3 -xCORE-AVX512 provides the best result.

TR-17-01 22



HPC Team Benchmarking SKX

0

2

4

6

8

10

12

14

16

18

-O
3 -n

o-v
ec

-O
3 -x

CORE-A
VX512

-O
3 -x

CORE-A
VX512 -n

o-v
ec

-O
3 -x

CORE-A
VX2

-O
3 -x

CORE-A
VX2 -n

o-v
ec

n
s/

d
ay

NAMD ISA Sensitivity

Figure 20: NAMD: ISA impact

TR-17-01 23



HPC Team Benchmarking SKX

6.4 GROMACS

GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the Newtonian
equations of motion for systems with hundreds to millions of particles [3]. It is primarily designed
for biochemical molecules like proteins, lipids and nucleic acids that have a lot of complicated
bonded interactions. In this study, Hen egg white lysozyme (PDB code 1AKI) and water (SPC
model) solutions were simulated using version 2016.3. The simulated systems consist a total of
140124 atoms for the single node test, and 1.8 million atoms for the scalability tests. All simulations
were performed in the isothermal isobaric (NpT) ensemble at 300 K and 1 atm.

Fig. 21 shows the relative performance of GROMACS on a dual socket SKX node, a dual socket
Sandy Bridge node, and a KNL. Overall, Skylake is 2.68 times faster than Sandy Bridge.

0

0.5

1

1.5

2

2.5

3

SNB KNL SKX
Processor

R
el

at
iv

e
Sp

ee
d

u
p

GROMACS

Figure 21: GROMACS: Speedup Relative to SNB

Fig. 22 depicts the performance of GROMACS for different compilation flags and ISA. It is worth
noticing that GROMACS uses intrinsics for vectorization and that, at the time of running these
tests, there was not an SKX optimized version of the code.

TR-17-01 24



HPC Team Benchmarking SKX

0

5

10

15

20

25

30

-O3 -xCORE-AVX512 -O3 -xAVX2 -O3 -no-vec

T
im

e
(s

)

GROMACS ISA Sensitivity

Figure 22: GROMACS: ISA impact

TR-17-01 25



HPC Team Benchmarking SKX

6.5 Python

We evaluated the performance of Python following the existing benchmarks at TACC [7] that can be
found at [8]. These tests are sequential codes representative of the type of applications that many
users of HPC systems run. Fig. 23 and 24 show the results of the Julia and Pairwise benchmarks
with their different implementations in the Sandy Bridge, KNL and Skylake nodes. Since these are
sequential codes, KNL provides the worst results. And even though the CPU frequency of a SKX
core is lower than Sandy Bridge, the optimizations introduced in the hardware by Intel allow the
codes to run faster than on SNB.

0

1

2

SNB KNL SKX
Processor

R
el

at
iv

e
Sp

ee
d

u
p

Python
NumPy

Julia

Figure 23: Julia: Speedup Relative to SNB

0

1

2

SNB KNL SKX
Processor

R
el

at
iv

e
Sp

ee
d

u
p

Python
NumPy

bcast
dot

Pairwise

Figure 24: Pairwise: Speedup Relative to SNB

TR-17-01 26



HPC Team Benchmarking SKX

6.6 tblastx

One of the most popular tools for sequence similarity searches is the Basic Local Alignment Search
Tool (BLAST) by NCBI [2]. We consider a threaded implementation of NCBI BLAST since the MPI
version has not been actively maintained in several years. The results reported only consider the
tblastx tool. Fig. 25 shows the relative performance to Sandy Bridge on the chips of interest.
Because of the characteristics of the code, KNL performs poorly. And, at the same time, SKX runs
2.8 times faster than SNB.

0

0.5

1

1.5

2

2.5

3

SNB HSW KNL SKX
Processor

R
el

at
iv

e
Sp

ee
d

u
p

tblastx

Figure 25: tblastx: Speedup Relative to SNB

REFERENCES

[1] TOP500 list. www.top500.org, 2017.

[2] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403 – 410, 1990.

[3] H.J.C. Berendsen, D. van der Spoel, and R. van Drunen. GROMACS: A message-passing
parallel molecular dynamics implementation. Computer Physics Communications, 91(1):43 –
56, 1995.

[4] J. Mark Bull and Darragh O’Neill. A microbenchmark suite for openmp 2.0. SIGARCH Comput.
Archit. News, 29(5):41–48, December 2001.

[5] J. J. Dongarra. The linpack benchmark: An explanation. In Proceedings of the 1st International
Conference on Supercomputing, pages 456–474, New York, NY, USA, 1988. Springer-Verlag
New York, Inc.

[6] W. C. Skamarock et al. A description of the advanced research WRF version 3. Technical
report, National Center for Atmospheric Research, 2008.

TR-17-01 27

www.top500.org


HPC Team Benchmarking SKX

[7] Todd Evans, Antonio Gómez-Iglesias, and Cyrus Proctor. PyTACC: HPC Python at the Texas
Advanced Computing Center. In Proceedings of the 5th Workshop on Python for High-
Performance and Scientific Computing, PyHPC 2015, Austin, Texas, USA, November 15, 2015,
pages 4:1–4:7. ACM, 2015.

[8] Antonio Gómez-Iglesias. Python benchmarks. https://bitbucket.org/agomezig/
python-benchmarks, June 2015.

[9] John D. McCalpin. STREAM: Sustainable memory bandwidth in high performance computers.
Technical report, University of Virginia, 1991-2017. A continually updated technical report
http://www.cs.virginia.edu/stream/.

[10] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Elizabeth
Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kalé, and Klaus Schulten. Scalable
molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16):1781–1802,
2005.

[11] David Radice, Sean M. Couch, and Christian D. Ott. Implicit large eddy simulations of
anisotropic weakly compressible turbulence with application to core-collapse supernovae.
Computational Astrophysics and Cosmology, 2(1):1–17, 2015.

TR-17-01 28

https://bitbucket.org/agomezig/python-benchmarks
https://bitbucket.org/agomezig/python-benchmarks
http://www.cs.virginia.edu/stream/

	Introduction
	Hardware Characteristics
	Software Stack

	Memory Bandwidth
	Floating Point Performance
	OpenMP
	MPI
	Internode Latency
	Intranode Bandwidth
	Internode Bandwidth

	Applications
	WRF
	FLASH
	NAMD
	GROMACS
	Python
	tblastx


