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Microscopic description of quantum Lorentz gas and extension of the Boltzmann equation
to entire space-time scale
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Irreversible processes of weakly coupled one-dimensional quantum perfect Lorentz gas are studied on the basis
of the fundamental laws of physics in terms of the complex spectral analysis associated with the resonance state
of the Liouville–von Neumann operator. Without any phenomenological operations, such as a coarse-graining
of space-time, or a truncation of the higher order correlation, we obtained irreversible processes in a purely
dynamical basis in all space and time scale including the microscopic atomic interaction range that is much
smaller than the mean-free length. Based on this solution, a limitation of the usual phenomenological Boltzmann
equation, as well as an extension of the Boltzmann equation to entire space-time scale, is discussed.
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I. INTRODUCTION

The world surrounding us is irreversible, and there is
an arrow of time oriented toward our future that breaks
time-symmetry. Nevertheless, the fundamental equations of
motion in a microscopic level are time-symmetric. To resolve
this apparent contradiction is a longstanding problem in
dynamics and statistical mechanics. There are several different
formalisms on this problem, which include the general-
ized master equation [1–6] or the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy [7–9]. Over these formalisms, the
phenomenological approximations, such as the molecular
chaos and the coarse-graining of space-time, are invoked to
derive the irreversible kinetic equations [10–12]. Indeed, many
authors of textbooks on statistical mechanics explain that the
irreversibility is not a fundamental property of dynamics, and
it comes from our approximation of smearing out of detailed
microscopic information that cannot be controlled due to our
limitations as human beings (see, e.g., [13]).

With Ilya Prigogine, one of the authors (T.P.) has formulated
the irreversible dynamics through the reversible microscopic
dynamics without relying upon such phenomenological ar-
guments [14–16]. In this formulation, we consider the spec-
tral representation of the Liouville–von Neumann operator
(Liouvillian) for systems in which irreversibility is expected
such as the case of the thermodynamic limit where intensive
variables and extensive variables exist. This formulation is
an extension of the well-known Brillouin-Wigner-Feshbach
formalism [17–19] of the eigenvalue problem of the Hamil-
tonian in quantum systems to the eigenvalue problem of the
Liouvillian. In this formulation, we start with a complete set
of projection operators that spans the Liouville space. Then,
for each subspace associated to a projection operator, we
construct an effective Liouvillian that shares eigenvalues with
the original Liouvillian, similarly to the case for the effective
Hamiltonian in the Hamiltonian dynamics [19,20].
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In this formulation, we have a self-frequency part of the
effective Liouvillian corresponding to the self-energy part of
the effective Hamiltonian [16]. By the same reason in the
effective Hamiltonian [19,20], the effective Liouvillian may
become a non-Hermitian operator for unstable systems with
resonance singularity in the self-frequency part [14,15], in
spite of the fact that the Liouvillian itself is a Hermitian
operator. As a result, an eigenvalue of the Liouvillian becomes
a complex number which is located at a resonance pole
of the resolvent operator of the Liouvillian in the complex
frequency space. Associated to a complex eigenvalue, we
have a resonance state for the Liouvillian as in the case
of the Hamiltonian. The imaginary part of the complex
eigenvalue gives the decay rate of the resonance state, as
well as the transport coefficients associated to the irreversible
process [16,21]. In other words, the time-symmetry breaking
indicated by the complex eigenvalue of the Liouvillian is an
intrinsic dynamical property.

It is worth remarking that, in our formulation, the resonance
singularity which appears in the self-frequency part introduces
a randomness that ensures the phenomenological assumption
of the molecular chaos [22]. This is because the scattering
process of the particles described by the self-frequency part
gives rise to an isotropic scattering probability independent of
incident direction of a particle due to the resonance singularity.
This is exactly the same reason that the spontaneous emission
by an excited atom is isotropic and is independent of incident
direction of light in contrast to the case of the stimulated
emission [23].

In spite of the parallelism between the Hamiltonian case
and the Liouvillian case, there is a fundamental difference
between them. Indeed, even in the case where the unperturbed
Hamiltonian does not have degeneracy, the unperturbed Liou-
villian has intrinsic degeneracy because the eigenvalue of the
Liouvillian is given by the difference of the eigenvalues of the
Hamiltonian [16]. Therefore, even in the case the self-energy
of the Hamiltonian is just a c-number, the self-frequency part
of the Liouvillian becomes an operator. It is shown that the
self-frequency part operator of the effective Liouvillian is what
is called the collision operator studied in the kinetic theory of
the non-equilibrium statistical mechanics [14–16].
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However, it is extremely complex to show the above-
mentioned scenario of the irreversibility on the mathematical
level, because the infinitely many degrees of freedom are
mutually interacting in systems that show irreversibility.
Moreover, the kinetic equation derived from the eigenvalue
problem of the Liouvillian has a nonlinear structure that
comes from two different origins: (i) one is the well-known
nonlinearity due to the appearance of the product of the
one-body distribution functions due to the many-body effect,
and (ii) a new type of the nonlinearity due to the fact that the
effective Liouvillian itself depends on its eigenvalue as in the
case of the effective Hamiltonian. Due to these complexities,
we have applied this formulation so far only to the case where
drastic approximations are applicable to solve the complex
eigenvalue problem of the Liouvillian, such as the cases,
for example, near an equilibrium state where a linearized
approximation with respect to the product of the distribution
functions is applicable, or the spatial inhomogeneity has a
macroscopic scale at least of the order of the mean-free
length [24–26]. Since one cannot analyze the dynamics in
a microscopic scale much smaller than the mean-free length
by this drastic approximation, we have not yet been able to
demonstrate the advantage of our microscopic approach over
the phenomenological coarse-graining approach.

In this paper, we present a simple model to analyze the
microscopic irreversibility in terms of the complex eigenvalue
problem of the Liouvillian. The model is a weakly coupled one-
dimensional (1D) quantum Lorentz gas [15,27,28]. This model
is simple enough to solve the above-mentioned nonlinear
problem, but still complex enough to analyze a non-trivial
irreversible process such as the diffusion process. The perfect
Lorentz gas consists of one light-mass test particle and
infinitely many heavy particles, where the mass of the test
particle is negligible as compared with the mass of each heavy
particle. Because of a huge difference of the numbers of
degrees of freedom between the test particle and the heavy
particles, one can neglect the time evolution of the distribution
function of the heavy particles in the thermodynamic limit. As
a result, the nonlinearity associated to the origin (i) mentioned
above does not exist in the Lorentz gas. Therefore, our main
problem in this paper is to solve the new type of nonlinear
problem (ii) of the effective Liouvillian mentioned above.

In this paper, we shall solve the nonlinear eigenvalue
problem of the effective Liouvillian by representing the
eigenvalue equation in terms of the complete eigenbasis of the
phenomenological Boltzmann collision operator for the same
system, which was studied in detail in [27]. The nonlinear
eigenvalue problem of the effective Liouvillian is solved for
the entire region of the space, which includes an atomic scale
much smaller than the mean-free length. It is remarkable that
irreversibility is present even in such a microscopic scale of
the atomic level. As a result, the irreversibility associated to
such a small spatial scale depends on a detailed form of the
interaction in space.

The result is in contrast to the well-known phenomeno-
logical Boltzmann equation where the collision term does
not depend on the detailed form of the interaction due to a
spatial coarse-graining operation. Indeed, it is well known that
the phenomenological Boltzmann equation is applicable only
for a much larger length scale as compared with the atomic

scale, where the detailed form of the spatial structure of the
interaction is irrelevant. Here, we see the clear limitation of
the phenomenological Boltzmann equation, and see that our
approach goes much beyond the phenomenological coarse-
graining approach.

The structure of this paper is organized as follows. In
Sec. II, we introduce the model. In Sec. III, we give a brief
summary of the general formalism of the complex spectral
representation of the Liouvillian, and we discuss its application
to the model. The effective Liouvillian for the system is
derived there. In Sec. IV, we summarize the solution of
the eigenvalue problem of the phenomenological Boltzmann
collision operator. In Sec. V, we solve the nonlinear eigenvalue
problem of the effective Liouvillian in terms of the complete
eigenbasis of the Boltzmann collision operator. In Sec. VI, we
discuss the structure of the spectrum of the Liouvillian with
emphasis on its relation to the spectrum of the Boltzmann
collision operator. In Sec. VII, we give concluding remarks.
In Appendix A, we summarize the algebras in the Liouville
space. In Appendix B, we discuss temperature dependence of
the effective Liouvillian. In Appendix C, we summarize the
extended pseudo-eigenstate representation introduced in [28]
for use in Sec. VI.

II. SYSTEM

The Lorentz gas consists of one light-mass particle (the test
particle) with mass m and N heavy particles with mass M .
The Hamiltonian of the system is given by

H = H0 + gV = p2

2m
+

N∑
j=1

p2
j

2M
+ g

N∑
j=1

V (|x − xj |), (1)

where g is a dimensionless coupling constant and the inter-
action V is assumed to be a short-range repulsive potential.
In this paper, we consider a weak-coupling situation (g � 1).
Later we will take the limit m/M → 0 in which the system is
called the perfect Lorentz gas [29] [see Eq. (33)].

We assume that the system is enclosed in a large 1D
box of volume L with the periodic boundary condition. The
interaction potential is expanded in the Fourier series as

V (|x − xj |) = 1

�

∑
n

Vqn
eiqn(x−xj ), (2)

where Vqn
= V|qn|, � ≡ L/2π , the wave number qn is given

by qn ≡ n�q with �q ≡ 1/� and n = 0, ± 1, ± 2, . . .. We
assume Vqn

is a continuous function at qn = 0 in the continuous
limit �q → 0, and satisfies the condition

O(|qn|3/2) <
∣∣Vqn

∣∣ < O(|qn|1/2), (3)

for qn → 0, in order to avoid a singular transport process
characteristic in the 1D system [see Eq. (41) for the decay
rate, and Eq. (60) for the diffusion coefficient].

In this paper, we consider the thermodynamic limit for
the heavy particles L → ∞, N → ∞ with c ≡ N/L = finite,
where c is the concentration of the heavy particles. In this limit,
we have �q → 0 and the wave number and the momentum
become continuous variables. At an appropriate stage, we shall
replace a summation with an integration and a Kronecker
delta δKr with a Dirac δ-function as �−1 ∑

q → ∫
dq and
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��δKr (P − P ′) → δ(P − P ′) with �� ≡ �/�, respectively
(hereafter we use a conventional notation

∑
q for

∑
n and

drop the index n in qn).
Time evolution of the density matrix for the total N + 1

particles system ρ(t) obeys the Liouville–von Neumann
equation

i
∂

∂t
ρ(t) = LHρ(t), (4)

where LH is the Liouvillian that is defined by the commutation
relation with the Hamiltonian as LHρ ≡ [H,ρ]/� = (L0 +
gLV )ρ, where L0 is the unperturbed Liouvillian associated
with H0 and gLV is the interaction Liouvillian associated
with gV .

In this paper, we focus our attention on the time evolution of
the test particle. Hence we will trace out degrees of freedom of
the heavy particles later [see Eq. (28)]. We denote the reduced
density operator for the test particle as f (t) ≡ Trhev[ρ(t)],
where Trhev is the partial trace over the heavy particles.

We assume that the initial condition of the system is given
in the form

ρ(0) = f (0) ⊗ ρ
eq
hev, (5)

where ρ
eq
hev is the Maxwell distribution of the heavy particles

with temperature T ,

ρ
eq
hev ≡

N∏
j=1

exp

(
− p2

j

2MkBT

)/
Tr

[
exp

(
− p2

j

2MkBT

)]
,

(6)

and kB is the Boltzmann constant. In the thermodynamic limit
the time evolution of the density matrix associated with the
heavy particles is negligible since its deviation from ρ

eq
hev is

proportional to 1/L.
In order to discuss the “coordinate” and the “momentum”

dependence of the distribution of the quantum particles in
parallel with classical mechanics, let us introduce the Wigner
distribution function, which is a quantum analog of the phase-
space distribution function in classical mechanics [5,15],
defined by

ρW (X,{Xj },P ,{Pj },t)

≡ 1

�N+1

∑
k,{kj }

ρk,{kj }(P,{Pj },t)ei(kX+k1X1+···+kNXN ) (7)

with the Fourier component

ρk,{kj }(P,{Pj },t)

≡
〈
P + �k

2
,

{
Pj + �kj

2

}∣∣∣∣ρ(t)

∣∣∣∣P − �k

2
,

{
Pj − �kj

2

}〉
. (8)

Here each of the notations {Xj },{Pj } represents a set of
variables for the N heavy particles. The momentum states
of N + 1 particles |p,{pj }〉 is an eigenvector of H0,

H0|p,{pj }〉 = εp,{pj }|p,{pj }〉 (9)

with εp,{pj } ≡ p2/2m + ∑N
j=1 p2

j /2M . The “wave number”
k and the “momentum” P in the Fourier component of the
Wigner representation are given in terms of the momenta in

the matrix elements 〈p,{pj }|ρ(t)|p′,{p′
j }〉 as

�k = p − p′, P = 1
2 (p + p′),

�kj = pj − p′
j , Pj = 1

2 (pj + p′
j ).

(10)

III. COMPLEX SPECTRAL REPRESENTATION
OF THE LIOUVILLIAN

A. General formalism

We briefly summarize the general formalism of the complex
eigenvalue problem of the Liouvillian [14–16]. In the follow-
ing, we use the Liouville space representation to formulate the
eigenvalue problem of the Liouvillian. A brief summary of the
Liouville space representation as well as the definitions of the
notations are presented in Appendix A.

The eigenvalue problem of the Liouvillian is given by

LH

∣∣F (ν)
α

〉〉 = Z(ν)
α

∣∣F (ν)
α

〉〉
, (11a)〈〈

F̃ (ν)
α

∣∣LH = 〈〈
F̃ (ν)

α

∣∣Z(ν)
α , (11b)

where the double bra- and ket-vectors stand for vectors in the
Liouville space (see Appendix A as well as [15]), the indices
α and ν specify an eigenvalue [especially ν is associated to the
spatial correlation (see [15])], and |F (ν)

α 〉〉 and 〈〈F̃ (ν)
α | are right-

and left-eigenstates, respectively.
We apply the Brillouin-Wigner-Feshbach formalism

[15,16] with projection operators P (ν) and Q(ν) satisfying

P (ν)L0 = L0P
(ν), (12)

P (ν)P (μ) = δν,μP (ν), (13)∑
ν

P (ν) = ÎN+1, (14)

and

P (ν) + Q(ν) = ÎN+1, (15)

where ÎN+1 is the unit operator for the N + 1 particles system.
We have

(P (ν))2 = P (ν), (Q(ν))2 = Q(ν), P (ν)Q(ν) = 0. (16)

By applying these projection operators on Eq. (11a), we obtain
a set of equations for P (ν)|F (ν)

α 〉〉 and Q(ν)|F (ν)
α 〉〉. By solving

them for P (ν)|F (ν)
α 〉〉, we obtains the nonlinear eigenvalue

problem, i.e.,

�(ν)(Z(ν)
α

)
P (ν)

∣∣F (ν)
α

〉〉 = Z(ν)
α P (ν)

∣∣F (ν)
α

〉〉
, (17)

where

�(ν)(z) ≡ P (ν)LHP (ν) + P (ν)LHQ(ν)

× 1

z − Q(ν)LHQ(ν)
Q(ν)LHP (ν) (18)

is the effective Liouvillian. Here, the nonlinearity means that
the effective Liouvillian itself depends on its eigenvalue. This
is the nonlinearity of origin (ii) mentioned in the Introduction.
The second term of the effective Liouvillian is the self-
frequency part that corresponds to the well-known self-energy
part in the case of the eigenvalue problem for the Hamiltonian
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(see, e.g., [20]). The effective Liouvillian is also called the
collision operator and is a central object in non-equilibrium
statistical mechanics [16]. The first term in Eq. (18) gives the
flow term and the Vlasov term while the second term gives
the collision term in the collision operator. In this sense, the
eigenvalue equation of the effective Liouvillian is nonlinear.

It is well-known for an unstable quantum system with a
continuous spectrum that the effective Hamiltonian becomes
a non-Hermitian operator due to the resonance singularity in
the self-energy part [20]. Similarly, the effective Liouvillian
becomes a non-Hermitian operator in the Liouville space in the
thermodynamic limit. As a result, the effective Liouvillian has
eigenstates with complex eigenvalues that are called resonance
states.

The eigenstates of the full Liouvillian are given by∣∣F (ν)
α

〉〉 = [
P (ν) + C(ν)

(
Z(ν)

α

)]
P (ν)

∣∣F (ν)
α

〉〉
, (19a)〈〈

F̃ (ν)
α

∣∣ = 〈〈
F̃ (ν)

α

∣∣P (ν)
[
P (ν) + D(ν)

(
Z(ν)

α

)]
(19b)

with the creation-of-correlation operator

C(ν)(z) = 1

z − Q(ν)LHQ(ν)
Q(ν)LHP (ν), (20a)

and the destruction-of-correlation operator

D(ν)(z) = P (ν)LHQ(ν) 1

z − Q(ν)LHQ(ν)
, (20b)

which are off-diagonal transitions between the Q(ν) subspace
and the P (ν) subspace [15].

B. Effective Liouvillian for the 1D quantum Lorentz gas

Let us now apply the general formalism presented above
to the weakly coupled 1D quantum perfect Lorentz gas.
Using the Wigner basis |k,{kj }; P,{Pj }〉〉 in Eq. (A15), the
Fourier component of the Wigner distribution function (8) is
represented by

ρk,{kj }(P,{Pj },t) = 〈〈k,{kj }; P,{Pj }|ρ(t)〉〉. (21)

In order to apply the Brilloun-Wigner-Feshbach formalism,
we define the projection operators as

P (k) ≡
∑

P

|k,{0j }; P〉〉〈〈k,{0j }; P|, (22)

and

Q(k) = 1 − P (k) =
∑

k̃
=(k,{0j })

1

�N+1
�

∑
P̃

|k̃; P̃〉〉〈〈k̃; P̃|, (23)

where the bold characters like P are abbreviated notations
for N + 1 variables P = {P,P1, . . . ,PN }, and the notation
{0j } indicates that all wave numbers associated to the heavy

particles are zero. For the projection operator P (k), we have

P (k)L0P
(k)|k,{0j }; P〉〉 = kP

m
|k,{0j }; P〉〉, (24)

and

gP (k)LV P (k) = 0, (25)

because of V0 = 0 due to the assumption (3).
In the weak coupling situation, we approximate the effective

Liouvillian (18) up to the second order in g as

�
(k)
2 (z) = P (k)L0P

(k) + g2P (k)LV Q(k) 1

z − L0
Q(k)LV P (k).

(26)
By using Eq. (24) and the Wigner representation of gLV given
by Eq. (A18), we have

〈〈k,{0j }; P|�(k)
2 (z)|k,{0j }; P′〉〉

=
⎡
⎣kP

m
− 1

�2

N∑
j=1

∑
q

g2|Vq |2
�2

(
η̂

�

2 q

P η̂
− �

2 q

Pj
− η̂

− �

2 q

P η̂
�

2 q

Pj

)

× 1

z − (k − q)P/m − qPj/M

(
η̂

�

2 q

P η̂
− �

2 q

Pj
− η̂

− �

2 q

P η̂
�

2 q

Pj

)⎤⎦
× δKr (P − P′), (27)

where δKr (P − P′) ≡ δKr (P − P ′)
∏N

j=1 δKr (Pj − P ′
j ), the

displacement operators η̂
p

P ,η̂
p

Pj
are defined by Eq. (A19), and

we have not yet taken the limit of the perfect Lorentz gas
(m/M → 0).

We focus our attention on the test particle. We define the
reduced effective Liouvillian for the test particle as

�̄
(k)
2 (z) ≡ Trhev

[
�

(k)
2 (z)ρeq

hev

]
, (28)

where we put a bar on the notation to distinguish it from
the effective Liouvillian for the whole system (26). We now
present an expression of its matrix element,

〈〈k; P |�̄(k)
2 (z)|k; P ′〉〉

= 〈〈k; P |
⎡
⎣∑

{Pj }

1

�N
�

〈〈{0j }; {Pj }|�(k)
2 (z)

∣∣ρeq
hev

〉〉⎤⎦|k; P ′〉〉,

(29)

where |k; P 〉〉 and |{0j }; {Pj }〉〉 are reduced states for the
test particle and heavy particles, respectively. Because we
are interested in the thermodynamic limit with L → ∞, we
will replace �−1

�

∑
Pj

by
∫∞
−∞ dPj . Nevertheless, keeping

the summation sign for the wave vector q, as a convention,
we obtain the following expression with the aid of Eqs. (6)
and (27):

〈〈k; P |�̄(k)
2 (z)|k; P ′〉〉 =

⎡
⎣kP

m
− g2 1

�2

N∑
j=1

∫ ∞

−∞
dPj

∑
q 
=0

|Vq |2
�2

(
η̂

�

2 q

P η̂
− �

2 q

Pj
− η̂

− �

2 q

P η̂
�

2 q

Pj

)

× 1

z − (k − q)P/m − lPj /M

(
η̂

�

2 q

P η̂
− �

2 q

Pj
− η̂

− �

2 q

P η̂
�

2 q

Pj

)
ρ

eq
hev(Pj )

⎤
⎦δKr (P − P ′), (30)
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where ρ
eq
hev(Pj ) is the Maxwell distribution for the heavy

particle j with temperature T ,

ρ
eq
hev(Pj ) ≡

(
1

2πMkBT

)1/2

exp

(
− P 2

j

2MkBT

)
. (31)

Since the mass of the test particle m is much smaller than
the mass of a heavy particle M , we expand the propagator in
Eq. (30) as a power series of the ratio m/M . Then we have

〈〈k; P |�̄(k)
2 (z)|k; P ′〉〉 = 〈〈k; P |ψ (k)(z)|k; P ′〉〉 + O

(
m

M

)
,

(32)

where

〈〈k; P |ψ (k)(z)|k; P ′〉〉

=
⎡
⎣kP

m
− 2πg2c

�2

1

�

∑
q 
=0

|Vq |2∂�q/2
P

1

z − (k − q)P/m
∂

�q/2
P

⎤
⎦

× δKr (P − P ′) (33)

is the effective Liouvillian for the perfect Lorentz gas
(m/M → 0). Here ∂

�q/2
P is defined by

∂
�q/2
P ≡ η̂

�q/2
P − η̂

−�q/2
P . (34)

Note that there is no temperature dependent term in Eq. (33).
Temperature dependence comes from the correction term
to Eq. (33) starting with the first order in (m/M) (see
Appendix B).

For the reduced effective Liouvillian, we write the eigen-
value problem as

ψ (k)
(
z(k)
α

)∣∣u(k)
α

〉〉 = z(k)
α

∣∣u(k)
α

〉〉
, (35a)

〈〈
ṽ(k)

α

∣∣ψ (k)
(
z(k)
α

) = z(k)
α

〈〈
ṽ(k)

α

∣∣. (35b)

We note that z(k)
α = Z(k)

α for our Lorentz gas, because the
heavy particles are in an eigenstate with zero eigenvalue, i.e.,
they remain in thermal equilibrium.

The effective Liouvillian in Eq. (35) depends on its
eigenvalue. In this sense, the eigenvalue equation is still
nonlinear. Our main goal is to construct the solution of this
nonlinear eigenvalue problem.

IV. THE NONLINEAR EIGENVALUE PROBLEM
OF THE EFFECTIVE LIOUVILLIAN

In this section, we solve the nonlinear eigenvalue problem
of the effective Liouvillian. In order to solve the eigen-
value problem, we need to give a specific representation
to the eigenvalue equations (35). For the convenience of
the following discussion, here we choose the eigenbasis of
the phenomenological Boltzmann collision operator for the
system as a complete basis set to represent them.

The phenomenological Boltzmann collision operator is
defined in the thermodynamic limit by

ψ
(k)
B = P (k)L0P

(k) + g2δψ
(k)
B (36)

with the flow term

〈〈k; P |P (k)L0P
(k)|k; P ′〉〉 = kP

m
δKr (P − P ′), (37)

and the collision term

〈〈k; P |g2δψ
(k)
B |k; P ′〉〉

≡ 〈〈0; P |ψ (0)(+iε)|0; P ′〉〉
= −g2 2πc

�2

1

�

∑
q 
=0

|Vq |2∂�q/2
P

1

+iε + qP/m
∂

�q/2
P

× δKr (P − P ′). (38)

Here ε is a positive infinitesimal satisfying ε � L−1 in the
thermodynamic limit with L → ∞.

We note that in spite of the fact that ψ
(k)
B is in the P (k)

subspace, which is orthogonal to the P (0) subspace, the
collision term is independent of k and its matrix element
has the same form as ψ

(0)
B , which is associated with the

spatially homogeneous component of the distribution function.
In this sense, the Boltzmann collision operator (36) is a
“coarse-grained object” in space. Thus it does not contain
information of microscopic structure of the interaction.

In the article [27], the eigenvalue problem of the collision
operator (38),

ψ
(k)
B

∣∣φ(k)
α

〉〉 = z(k)B
α

∣∣φ(k)
α

〉〉
, (39a)〈〈

φ̃(k)
α |φ(k)

B = z(k)B
α

〈〈
φ̃(k)

α

∣∣, (39b)

has been solved. Here we summarize its solution. The
eigenvalues are give by

z
(k)B
±;P0

= −i
g2γP0

2
± P0

m

(
k2 − k2

P0

)1/2
, (40)

where

g2γP0 ≡ −ig2 8π2mc

�2P0

∣∣V 2P0
�

∣∣2 (41)

is the momentum relaxation rate, and

kP0 ≡ g2γP0

2P0/m
= l−1

P0
(42)

is a wave number equals to the inverse of the mean-free length
of the test particle with a momentum P0, denoted by lP0 .
Corresponding eigenvectors are

∣∣φ(k)
±;P0

〉〉 = ∣∣α(k)
±;P0

〉〉 + ∣∣β(k)
±;P0

〉〉
, (43a)

〈〈
φ̃

(k)
±;P0

∣∣ = 〈〈
α̃

(k)
±;P0

∣∣ + 〈〈
β̃

(k)
±;P0

∣∣, (43b)

where

∣∣α(k)
±;P0

〉〉 ≡ α
(k)
±;P0

|k; P0〉〉, (44a)

∣∣β(k)
±;P0

〉〉 ≡ β
(k)
±;P0

|k; −P0〉〉, (44b)

〈〈
α̃

(k)
±;P0

∣∣ ≡ α
(k)
±;P0

〈〈k; P0|, (44c)

〈〈
β̃

(k)
±;P0

∣∣ ≡ β
(k)
±;P0

〈〈k; −P0| (44d)
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with

α
(k)
±;P0

≡
[

1

2
± k

2
(
k2 − k2

P0

)1/2

]1/2

, (45a)

β
(k)
±;P0

≡
[

1

2
∓ k

2
(
k2 − k2

P0

)1/2

]1/2

. (45b)

Since we use the eigenstates of ψ
(k)
B as the basis set, it

is convenient to rewrite the effective Liouvillian ψ (k)(z(k)
α ) as

follows:

ψ (k)
(
z(k)
α

) = ψ
(k)
B + λ  ψ (k)

(
z(k)
α

)
(46)

with

λ  ψ (k)
(
z(k)
α

) ≡ ψ (k)
(
z(k)
α

) − ψ
(k)
B , (47)

which is the difference of the effective Liouvillian and the
Boltzmann collision operator We introduced a dimensionless
parameter λ for a convenience of the following discussion.
From Eqs. (33) and (36), we have

λ  ψ (k)
(
z(k)
α

) = O(g2). (48)

We see that the first term in the right-hand side of Eq. (46)
is diagonalized in the representation with the eigenbasis of
ψ

(k)
B , and the order of its second term is g2. This motivates us

to solve the eigenvalue problem of Eq. (46) in terms of the
standard stationary perturbation theory (see, e.g., [30]), where
we regard ψ

(k)
B as the unperturbed part and λ  ψ (k)(z(k)

α ) as
the perturbation.

We expand the eigenvalues and the eigenvectors as

z
(k)
±;P0

= z
(k)B
±;P0

+ λz
(k)I
±;P0

+ λ2z
(k)II
±;P0

+ · · · , (49a)

∣∣u(k)
±;P0

〉〉 = ∣∣φ(k)
±;P0

〉〉 + λ
∣∣u(k)I

±;P0

〉〉 + λ2
∣∣u(k)II

±;P0

〉〉 + · · · , (49b)

〈〈
ṽ

(k)
±;P0

∣∣ = 〈〈
φ̃

(k)
±;P0

∣∣ + λ
〈〈
ṽ

(k)I
±;P0

∣∣ + λ2
〈〈
ṽ

(k)II
±;P0

∣∣ + · · · . (49c)

Substituting Eqs. (46), (49a), and (49b) into Eq. (35a), we
have the expression of the first order correction term of the
eigenvalues as

λz
(k)I
±;P0

= 〈〈
φ̃

(k)
±;P0

∣∣λ  ψ (k)
(
z

(k)
±;P0

)∣∣φ(k)
±;P0

〉〉
. (50)

We substitute Eq. (50) to its right-hand side and expand as a
power series of λ. Thus we have

λz
(k)I
±;P0

= 〈〈
φ̃

(k)
±;P0

∣∣λ  ψ (k)(z(k)B
±;P0

)∣∣φ(k)
±;P0

〉〉 + O(g4). (51)

Hence, from Eq. (49a), we have

z
(k)
±;P0

= z
(k)B
±;P0

+ 〈〈
φ̃

(k)
±;P0

∣∣λ  ψ (k)
(
z

(k)B
±;P0

)∣∣φ(k)
±;P0

〉〉 + O(g4).
(52)

By using Eqs. (43) to (52) and taking the thermodynamic
limit, we obtain

z
(k)
±;P0

= z
(k)B
±;P0

+ z
(k)[α,α]
±;P0

+ z
(k)[β,β]
±;P0

+ O(g4) (53)

with

z
(k)[ξ,ξ ′]
±;P0

≡ 〈〈
ξ̃

(k)
±;P0

∣∣λ  ψ (k)(z(k)B
±;P0

)∣∣ξ ′(k)
±;P0

〉〉
, (54)

where ξ, ξ ′ = α or β in Eq. (43). In Eq. (53), cross terms
z

(k)[α,β]
±;P0

and z
(k)[β,α]
±;P0

have vanished in the thermodynamic

limit since they are proportional to �−1 = 2π/L. This is
because the summation over q in the collision terms (33)
and (38) can be taken for the cross terms since they include
Kronecker’s deltas δKr (�q ± 2P0), and thus the volume factor
�−1 in front of the summation is left alone.

Explicit expressions of z
(k)[α,α]
±;P0

and z
(k)[β,β]
±;P0

are

 z
(k)[α,α]
±;P0

= g2 πc

�2

[
1 ± k(

k2 − k2
P0

)1/2

]∫ ∞

−∞
dq|Vq |2

×
{

1[
z

(k)B
±;P0

− (k − q)(P0 + �q/2)/m
]
+

+ 1[
z

(k)B
±;P0

− (k − q)(P0 − �q/2)/m
]
+

}

+ i
g2γP0

4
(55a)

and

 z
(k)[β,β]
±;P0

= g2 πc

�2

[
1 ∓ k(

k2 − k2
P0

)1/2

]∫ ∞

−∞
dq|Vq |2

×
{

1[
z

(k)B
±;P0

+ (k − q)(P0 + �q/2)/m
]
+

+ 1[
z

(k)B
±;P0

+ (k − q)(P0 − �q/2)/m
]
+

}

+ i
g2γP0

4
, (55b)

where we use the integration sign on q since we have taken the
thermodynamic limit with L → ∞, and the notation [· · · ]+
in the denominators means that the integration is evaluated in
the Riemann sheet analytically continued from the upper half
plane of the complex z plane [14,15].

Note that the expressions in Eq. (55) have singularities
at k = ±kP0 . The singularities are coming from the Jordan
block structure of the Boltzmann collision operator for the 1D
quantum perfect Lorentz gas [28]. Therefore, the perturbation
analysis with the eigenvectors performed in this section
breaks down in a domain near the singular points k = ±kP0 .
For this case, we have shown that there is a divergence-
free representation of the collision operator by introducing
extended pseudo-eigenstates in the vicinity of the singular
points [28]. Using this representation, we shall discuss this
domain separately in the next section.

V. STRUCTURE OF THE SPECTRUM IN VARIOUS
SPATIAL SCALES

In this section, we discuss the structure of the spectrum of
the Liouvillian in the wave number k space.

Let us first summarize the results presented in this section.
We show k dependence of the spectrum of the Liouvillian
in Fig. 1. In these figures, we show only the domain k � 0.
The spectrum in the domain k < 0 are symmetric with respect
to the axis with k = 0. Figure 1(a) is the imaginary part of
the spectrum and Fig. 1(b) is the real part, respectively. In
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(i)
(ii)

(iii)

(iv)

Im
[z

(k
)

±
;P

0
]/

g
2
γ

P
0

k/kP0

Boltzmann
approximation Microscopic structure

≈
≈

(v)

(a)

(b)

k/kP0

R
e[

z
(k

)
±

;P
0
]

|k/kP0 1
Hydrodynamics

k = 2P0/

∝ a−1

O(|k/kP0 |) = 1
1<O(|k/kP |)<g−2

g−2 ≤ O(|k/kP |)

FIG. 1. Both imaginary part and real part of the spectrum of the
Liouvillian is presented with respect to the wave number k. The
figure (a) is the imaginary part and (b) is the real part. In each figure,
the dotted lines represent z

(k)
+;P0

and the dot-dashed lines represent

z
(k)
−;P0

, respectively. The black lines represent that these two lines are
overlapping. The gray lines in (b) are eigenvalues for a free test
particle ±kP0/m. The five domains enclosed by the dotted squares
are introduced to discuss the structure of the spectrum. The definitions
of the domains are summarized in Table I.

each figure, the thick dotted lines represent z
(k)
+;P0

and the thick

dot-dashed lines represent z
(k)
−;P0

, respectively. The black lines
represent that these two lines are overlapping. The gray lines
in Fig. 1(b) represent eigenvalues of the Liouvillian for the free
test particle ±kP0/m. Here we chose the following function
as a interaction between particles:

Vk = vk2 exp[−(ak)2], (56)

where the factor k2 in front of the exponential is introduced for
satisfying the condition (3), v is the strength of the interaction
and a is the range of the interaction in X-space.

In Fig. 1(a), we decompose the region into five domains
with respect to the value of k. These are

(i) O(| k
kP0

|) � g,

(ii) O(| k
kP0

|) = 1 with O(|| k
kP0

| − 1|) > g2,

(iii) O(|| k
kP0

| − 1|) � g2,

(iv) 1 < O(| k
kP0

|) < g−2 or O(| k
kP0

|) = g−ζ

with 0 < ζ < 2.
(v) O(| k

kP0

|) � g−2.

TABLE I. Key features of the spectrum.

Domain Key features

z
(k)
±;P0

= z
(k)B
±;P0

+ O(g4).
(i) The Burnett expansion is possible.

Its dominant term gives diffusion coefficient.

(ii) z
(k)
±;P0

= z
(k)B
±;P0

+ O(g4).

(iii) z
(k)
±;P0

= z
(k)B
±;P0

+ O(g4).

z
(k)
±;P0

= z
(k)B
±;P0

+ O(g4−ζ ) with 0 < ζ < 2.

(iv) The Boltzmann approximation is getting bad
as the order of k approachs to |k/kP0 | = O(g−2).

The Boltzmann approximation breaks down.
The spectrum has a structure reflecting

(v) the form of the interaction potential.
The eigenstates still have non-zero decvay rate
even in the spatial scale of interaction range.

The expression of the spectrum of the Liouvillian are given
by Eq. (53) except for the domain (iii). The key features of the
spectrum presented in the following discussion is summarized
in Table I. Now we discuss the features of the spectrum in each
domain: (i), (ii), (iv), (v), and finally (iii).

Domain (i)

In domain (i), the order of the wave number k satisfies
O(k) � gkP0 . Since kP0 is a g2 order quantity, the order of the
wave number k is bounded by g3. Thus we expand z

(k)[α,α]
±;P0

and z
(k)[β,β]
±;P0

as a power series of the g3. Then we see that
the first terms in both Eqs. (55a) and (55b) give −ig2γP0/4 +
O(g5). Thus we have

O
(  z

(k)[α,α]
±;P0

) = O
(  z

(k)[β,β]
±;P0

) = g5. (57)

Combining it with Eq. (53), we see that the eigenvalues in this
domain reduce to the eigenvalues of the Boltzmann collision
operator (40),

z
(k)
±;P0

= z
(k)B
±;P0

+ O(g4)

= −ig2 γP0

2
± (

k2 − k2
P0

)1/2 + O(g4), (58)

where the g4 order leading term of the correction comes from
the fourth term in Eq. (53).

Since k/kP0 is a small quantity, we can expand the second
term of Eq. (58) into a series called as the Burnett expansion
(see, e.g., [31]),

z
(k)
+;P = −i

g2γP

4

(
k

kP

)2

− i
g2γP

16

(
k

kP

)4

+ O

(
k

kP

)6

(59a)

and

z
(k)
−;P = −ig2γP + i

g2γP

4

(
k

kP

)2

+ i
g2γP

16

(
k

kP

)4

+O

(
k

kP

)6

. (59b)
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The first few terms of the expansion (59a) give transport
coefficients of hydrodynamic equations. For instance, the first
term, which is second order in k, gives the diffusion coefficient,

DP ≡ g2γP

4k2
P

= (P/m)2

g2γP

. (60)

We have DP → 0 for P → 0 [see Eq. (3)]. The higher-order
terms of the expansion also give transport coefficients of the
Burnett equation [31].

Domain (ii)

In domain (ii), the wave number k is the same order as
kP0 . Since kP0 is a g2 order quantity [see Eq. (42)], the wave
number k is also a g2 order quantity. Thus we see that the first
term in both Eqs. (55a) and (55b) give −ig2γP0/4 + O(g4).
Hence we have

O
(  z

(k)[α,α]
±;P0

) = O
(  z

(k)[β,β]
±;P0

) = g4. (61)

By combining these results with the expression (53), we
see that the eigenvalues of the Liouvillian reduces to the
eigenvalues of the Boltzmann collision operator,

z
(k)
±;P0

= z
(k)B
±;P0

+ O(g4), (62)

where the g4 order leading term of the correction comes
not only from the fourth term in Eq. (53) but also from
both z

(k)[α,α]
±;P0

and z
(k)[β,β]
±;P0

. Thus we see that the deviation
of the eigenvalues of the Liouvillian from the eigenvalues
of the Boltzmann collision operator is g4 order in this
domain. Therefore, the phenomenological Boltzmann equa-
tion is valid in the domain.

Domain (iv)

We consider the domain∣∣∣∣ k

kP0

∣∣∣∣ = O(g−ζ ) with 0 < ζ < 2. (63)

Since kP0 is a g2 order quantity, order of the wave number k is
evaluated as g2−ζ with 2 − ζ > 0 in this domain. Therefore,
by expanding the first term in the expressions (55) as a power
series of g2−ζ order quantity, we see that the first term in
both Eqs. (55a) and (55b) give −ig2γP0/4 + O(g4−ζ ). Thus
we have

O
(  z

(k)[α,α]
±;P0

) = O
(  z

(k)[β,β]
±;P0

) = g4−ζ . (64)

In this case, the leading term in Eq. (53) is z
(k)B
±;P0

and the
correction starts from the g4−ζ order term, i.e.,

z
(k)
±;P0

= z
(k)B
±;P0

+ O(g4−ζ ). (65)

Here we observe that the precision of the Boltzmann approx-
imation is getting worse continuously as the order of k/kP0

approaches to g−2. As a consequence, we see that the condition

O

(∣∣∣∣ k

kP

∣∣∣∣
)

< g−2 (66)

is the upper limit of the domain where the Boltzmann
approximation is applicable.

Domain (v)

In domain (v), we have O(|kP0/k|) � g2. Thus we can
expand the expressions in Eq. (55) as power series of kP0/k.
Keeping the dominant term, we have

 z
(k)[α,α]
±;P0

=
[
g2 2πn

�2
lim

ε→+0

∫ ∞

−∞
dq|Vq |2 1

+iε ± q(�q + 2P0 − �k)/2m
+ O(g4)

]
+ i

g2γP0

4
, (67a)

z
(k)[β,β]
±;P0

=
[
g2 2πn

�2
lim

ε→+0

∫ ∞

−∞
dq|Vq |2 1

+iε ∓ q(�q − 2P0 − �k)/2m
+ O(g4)

]
+ i

g2γP0

4
. (67b)

Hence we obtain

z
(k)
±;P0

= −ig2 2π2mn

�2

( |Vk−2P0/�|2
|P0 − �k/2| + |Vk+2P0/�|2

|P0 + �k/2|
)

± P0

m
(k2 − k2

P0
)1/2

± g2 2πmn

�2
P
∫ ∞

−∞
dq|Vq |2

[
1

q(�q + 2P0 − �k)/2
− 1

q(�q − 2P0 − �k)/2

]
+ O(g4), (68)

whereP stands for the principal part. We note that each term in
the parenthesis in the first term does not diverge at k = ±2P0/�

due to the condition (3).
From the expression in Eq. (68), one can see that the

structure of the spectrum in the domain reflects the form of
the interaction potential Vk . Indeed, the bumped shape around
k = 2P0/� of the imaginary part of the spectrum presented
in Fig. 1(a) reflects the form of the interaction potential (56).
For instance, the rising of the decay rate, given by |Im[z(k)

±;P0
]|,

from k = 2P0/� is coming from the factor k2 in front of the
exponential in Eq. (56), and the width of the “hill” structure

is proportional to a−1. In this sense, the structure of the
spectrum in the domain strongly depends on explicit form
of interaction potential. This is in contrast to the case of the
Boltzmann collision operator ψ

(k)
B , where the imaginary part of

the spectrum (40) is independent of k for any k � kP0 , which
results from a degradation of microscopic information by the
coarse-graining.

It is remarkable that the dissipation associated with the
imaginary part of the eigenvalue of the Liouvillian does
not vanish in the non-coarse-grained microscopic dynamics
where the microscopic structure of the form of the interaction
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is visible. In other words, the irreversibility is a direct
consequence of the microscopic dynamics, and is not a result
of coarse-graining operation to the equation of motion due
to our limitation of the controllability of the system with a
huge degrees of freedom often stated in the literature (see,
e.g., [13]).

The imaginary part of the eigenvalues asymptotically
vanishes for |k| � kP0 . This property holds for any interaction
potentials satisfying the condition

|Vq | = o(|q|1/2), (69)

for |q| → ∞. Hence, for |k| � kP0 , the eigenvalues asymp-
totically approach to the eigenvalues of the free particle

as

z
(k)
±;P0

→ ±kP0

m
. (70)

Domain (iii)

Let us now consider domain (iii) where the expressions (55)
has singularity. In this domain, we use the extended pseudo-
eigenstates [28], which are free-from divergence at k = ±kP0 ,
as a basis set to represent the correction term. Here we denote
the new basis as {|χ (k)

+;P0
〉〉,|χ ′(k)

−;P0
〉〉,〈〈χ̃ ′(k)

+;P0
|,〈〈χ̃ (k)

−;P0
|}. We give a

brief summary of their definition as well as their expressions
in Appendix C for use in the following discussion.

In terms of the new basis with their expressions in Eqs. (C4)
with (C5), an expression of a matrix element of the correction
λ  ψ (k)(z(k)

+;P0
) is given by

〈〈
χ̃

′(k)
+;P0

|λ  ψ (k)
(
z

(k)B
+;P0

)∣∣χ (k)
+;P0

〉〉 = 1

2

{[
1 + (k2 − k2

P0
)1/2

k

]
〈〈k; P0|λ  ψ (k)

(
z(k)B
α

)|k; P0〉〉

+
[

1 −
(
k2 − k2

P0

)1/2

k

]
〈〈k; −P0|λ  ψ (k)

(
z(k)B
α

)|k; −P0〉〉

− i
kP0

k
〈〈k; P0|λ  ψ (k)

(
z(k)B
α

)|k; −P0〉〉 − i
kP0

k
〈〈k; −P0|λ  ψ (k)

(
z(k)B
α

)|k; P0〉〉
}
. (71)

Here we have four matrix elements of the correction in the Wigner representation. By using Eqs. (33) and (38), we have the
following expressions for the diagonal elements:

〈〈k; ±P0|λ  ψ (k)
(
z

(k)
+;P0

)|k; ±P0〉〉

= g2 2πc

�2

∫ ∞

−∞
dq|Vq |2

{
1[

z
(k)B
±;P0

∓ (k − q)(P0 + �q/2)/m
]
+

+ 1[
z

(k)B
±;P0

∓ (k − q)(P0 − �q/2)/m
]
+

}
+ i

g2γP0

2
. (72)

In domain (iii), the wave number k is a g2 order quantity, since
k is same order with the g2 order quantity kP0 . Thus we see that
the first term in Eq. (72) gives −ig2γP0/2 + O(g4). Hence, we
have

O
(〈〈k; ±P0|λ  ψ (k)

(
z

(k)
+;P0

)|k; ±P0〉〉
) = g4. (73)

On the other hand, for the cross terms 〈〈k; ±P0|λ 
ψ (k)(z(k)

+;P0
)|k; ∓P0〉〉, we see that they are proportional to L−1

by exactly the same reason for z
(k)[α,β]
+;P0

and z
(k)[β,α]
+;P0

in
Eq. (54). As a result, in the thermodynamic limit with L → ∞,
we have

O
(〈〈

χ̃
′(k)
+;P0

∣∣λ  ψ (k)(z(k)B
+;P0

)∣∣χ (k)
+;P0

〉〉) = g4. (74)

Similarly, we have

O
(〈〈

χ̃
′(k)
+;P0

∣∣λ  ψ (k)(z(k)B
−;P0

)∣∣χ ′(k)
−;P0

〉〉) = g4, (75a)

O
(〈〈

χ̃
(k)
−;P0

∣∣λ  ψ (k)
(
z

(k)B
+;P0

)∣∣χ (k)
+;P0

〉〉) = g4, (75b)

and

O
(〈〈

χ̃
(k)
−;P0

∣∣λ  ψ (k)
(
z

(k)B
−;P0

)∣∣χ ′(k)
−;P0

〉〉) = g4. (75c)

Since the difference between the effective Liouvillian and
the Boltzmann collision operator is g4 order in domain (iii),

we can conclude that the correction term of the spectrum starts
from g4 order term, i.e.,

z
(k)
±;P0

= z
(k)B
±;P0

+ O(g4). (76)

VI. CONCLUDING REMARKS

We have solved the eigenvalue problem of the Liouvillian
for the weakly coupled 1D quantum perfect Lorentz gas for
entire space and time scales by the complex spectral analysis.
The result shows that irreversibility is a purely dynamical
property coming from the structure of the Liouvillian outside
the Hilbert space. It is remarkable that irreversibility holds
in a microscopic atomic scale, where if we would perform
non-dynamical operations in the equation of motion, such as
coarse-graining procedure in space and/or time, or statistical
procedure with the assumption of the molecular chaos in
phenomenological approach, we would lose such microscopic
information because of a degradation of the information. As
we have shown in the subsection “Domain (v)” in Sec. V, as
well as in Fig. 1(a), the decay rate of the resonance state in
this domain explicitly depends on the shape of the Fourier
component of the interaction (56) in such small atomic scale.

Moreover, we have shown a precise limitation of the
phenomenological Boltzmann equation for the weakly coupled
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system. As shown in Eq. (65), it is remarkable that the phe-
nomenological Boltzmann equation is valid up to O(|k/kP |) <

g−2, i.e., it is valid in extremely small length scale, much
smaller than the mean-free length. Of course, because the
phenomenological Boltzmann equation does not depends on
a detailed form of the interaction due to the coarse-graining,
this equation is not applicable to a microscopic atomic scale,
which is in contrast to the purely dynamical approach with our
eigenvalue problem of the Liouvillian based on the complex
spectral analysis.

Because we have solved the eigenvalue problem of the
Liouvillian without making any coarse-graining operations,
we can analyze detailed irreversible time evolution of the
system in all domains of the length scale including atomic
scale. We hope to present these details elsewhere.
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APPENDIX A: LIOUVILLE SPACE

In this appendix, we give a brief summary of the Liouville
space representation of the Hilbert space operators (see [15]
for more detail).

The Liouville space is spanned by linear operators A, B,
...in the ordinary wave function space. We represent these
linear operators by double bra-ket notations as |A〉〉, |B〉〉,...
in order to distinguish them from the bra-ket notation in the
wave function space. The inner product in the Liouville space
is defined by

〈〈B|A〉〉 ≡ Tr[B+A], (A1)

where B+ is the Hermitian conjugate of a linear operator B in
the wave function space.

In the Liouville space, we can consider a linear operator
T acting on vectors, which is operators in the wave function
space. We call it a super-operator in case we want to emphasize
the difference between it from the linear operator in the wave
function space. One can define a super-operator T † that is the
Hermitian conjugate to T as

〈〈A|T †|B〉〉 ≡ (〈〈B|T |A〉〉)c.c., (A2)

where the notation c.c. means the complex conjugate. Then,
one can introduce the Hermitian super-operator which satisfies

T † = T , (A3)

and the unitary super-operator which satisfies

U † = U−1. (A4)

The Liouvillian is an example of the Hermitian super-operators
in the Liouville space, i.e.,

L
†
H = LH, (A5)

and the time evolution operator,

U(t) = e−iLH t , (A6)

is an example of the unitary super-operators.
We now introduce a basis set in the Liouville space for

1D quantum Lorentz gas in terms of the eigenstates of H0 in
Eq. (9). Let us introduce an abbreviated notation of the N + 1
variables p = {p, p1, . . . , pN } to avoid heavy notations.
Then, we express the eigenstate and the eigenvalue of H0

in Eq. (9) as |p〉 and εp. The eigenstates of H0 satisfy the
orthonormality relation

〈p|p′〉 = δKr (p − p′) ≡ δKr (p − p′)
N∏

j=1

δKr (pj − p′
j ), (A7)

and the completeness relation∑
p

|p〉〈p| = 1. (A8)

We define vectors in the Liouville space by

|p,p′〉〉 ≡ |p〉〈p′|. (A9)

These vectors are eigenstates of L0,

L0|p,p′〉〉 = 1

�
(εp − εp′)|p,p′〉〉. (A10)

The set of eigenstates {|p,p′〉〉} forms a orthonormal basis in
the Liouville space [see Eq. (A1)]

〈〈p,p′|p′′,p′′′〉〉 = δKr (p − p′′)δKr (p′ − p′′′), (A11)

and the completeness relation∑
p

∑
p′

|p,p′〉〉〈〈p,p′| = 1. (A12)

We note that the eigenvalues of L0 in Eq. (A10) are degen-
erated (e.g., for p′ = p) even though εp are not degenerated.
This is the intrinsic degeneracy of the Liouvillian mentioned
in the Introduction.

In terms of the basis, we have a simple expression for a
matrix element of an operator A in the wave function space as

Ap,p′ ≡ 〈p|A|p′〉 = 〈〈p,p′|A〉〉. (A13)

A matrix element of the interaction Liouvillian is given by

〈〈p,p′|gLV |p′′,p′′′〉〉
= 1

�
[gVp,p′′δKr (p′ − p′′′) − δKr (p − p′′)gVp′′′,p′ ]. (A14)

We define the Wigner basis by

|k; P〉〉 ≡ |p,p′〉〉 (A15)

with the relations in Eq. (10). The set of the Wigner basis also
forms a complete orthonormal basis

〈〈k; P|k′; P′〉〉 = δKr (k − k′)δKr (P − P ′)

×
N∏

j=1

δKr (kj − k′
j )δKr (Pj − P ′

j ), (A16)

022132-10



MICROSCOPIC DESCRIPTION OF QUANTUM LORENTZ . . . PHYSICAL REVIEW E 93, 022132 (2016)

and ∑
k

∑
P

|k; P〉〉〈〈k; P| = 1. (A17)

With the Fourier component of the interaction potential in
Eq. (2), the Wigner representation of the matrix element of the
interaction Liouvillian (A14) is given by

〈〈k; P|gLV |k′; P′〉〉

= 1

�

N∑
j=1

gVk−k′

�
δKr (k − k′ + kj − k′

j )
N−1∏
i(
=j )

δKr (ki − k′
i)

×
[
η̂

�

2 (k−k′)
P η̂

− �

2 (k−k′)
Pj

− η̂
− �

2 (k−k′)
P η̂

�

2 (k−k′)
Pj

]
× δKr (P − P′) (A18)

with �k′ ≡ p′′ − p′′′ and P′ ≡ (p′′ + p′′′)/2, where η̂
p

P and η̂
pj

Pj

are displacement operators acting on the momenta P and Pj ,
respectively, as

η̂
p

P f (P ) = f (P + p), η̂
pj

Pj
f (Pj ) = f (Pj + pj ). (A19)

APPENDIX B: TEMPERATURE DEPENDENCE

In this appendix, we give an expression for the correction
to the effective Liouvillian of the perfect Lorentz gas.

We expand the propagator in Eq. (30) as a power series of
the ratio m/M ,

1

z − (k − l)P/m − lPj /M

=
∞∑

n=0

(lPj /m)n

[z − (k − l)P/m]n+1

(
m

M

)n

. (B1)

For each order term, one can perform the integration over
momentum of N heavy particles using the following formulas
for the Gaussian integrals:

∫ ∞

−∞
dP N

i P 2n
j

(
1

2πMkBT

)N/2 N∏
i ′=1

exp

(
− P 2

i ′

2MkBT

)

= I ×
∫ ∞

−∞
dPjP

2n
j

(
1

2πMkBT

)1/2

exp

(
− P 2

j

2MkBT

)

= (2n − 1)!!

(
MkBT

m

)n

mn, (B2)

where
∫∞
−∞ dP N

i stands for the integration over momenta of N

heavy particles, and

∫ ∞

−∞
dP N

i P 2n+1
j

(
1

2πMkBT

)N/2 N∏
i ′=1

exp

(
− P 2

i ′

2MkBT

)

= I ×
∫ ∞

−∞
dPjP

2n+1
j

(
1

2πMkBT

)1/2

exp

(
− P 2

j

2MkBT

)
= 0 (B3)

with

I ≡
N∏

i(
=j )

∫ ∞

−∞
dPi

(
1

2πMkBT

)1/2

exp

(
− P 2

i

2MkBT

)

= 1, (B4)

which is a result of the normalization. Note that the T

dependence of Eq. (30) comes from even power in the series
expansion with (m/M) in Eq. (B1). Hence, we obtain∫ ∞

−∞
dP N

i

(lPj /m)2n

[z − (k − l)P/m]2n+1

(
m

M

)2n

ρ
eq
hev.

= (2n − 1)!!

[z − (k − l)P/m]2n+1

(
l2kBT

m

)n(
m

M

)n

, (B5)

for the integrals in Eq. (30) over the momenta of the heavy
particles. As a result, T dependence appears already in the
first order correction in m/M in spite that Eq. (30) has a
contribution in its even power. Then, we have Eq. (33).

APPENDIX C: EXTENDED PSEUDO-EIGENSTATES

In this appendix, we give a brief summary of the extended
pseudo-eigenstate representation, which is divergent free near
the singular points k = ±kP0 , introduced in [28].

First we introduce new eigenstates |χ (k)
+;P0

〉〉 and 〈〈χ̃ (k)
−;P0

|,
which differ from |φ(k)

−;P0
〉〉 and 〈〈φ̃(k)

−;P0
| in their normalization,

as

∣∣χ (k)
+;P0

〉〉 ≡
[

2
(
k2 − kP0

)1/2

k

]1/2∣∣φ(k)
+;P0

〉〉
, (C1a)

〈〈
χ̃

(k)
−;P0

∣∣ ≡ i

[
2
(
k2 − kP0

)1/2

k

]1/2〈〈
φ̃

(k)
−;P0

∣∣, (C1b)

where the factor [k/2(k2 − k2
P0

)1/2]1/2 is the divergent factor
in the coefficients of the eigenvectors (45). Since the divergent
factor is removed in the new the eigenstates |χ (k)

+;P0
〉〉 and

〈〈χ̃ (k)
−;P0

|, they do not diverge at the points k = ±kP0 . The
pseudo-eigenstates that form a complete orthonormal basis
set with |χ (k)

+;P0
〉〉 and 〈〈χ̃ (k)

−;P0
|, denoted by |χ ′(k)

−;P0
〉〉 and 〈〈χ̃ ′(k)

+;P0
|,

are defined through the following relations:

[
ψ

(k)
B − z

(k)B
−;P0

Î2
]∣∣χ ′(k)

−;P0

〉〉 = g2γP0

2

∣∣χ (k)
+;P0

〉〉
, (C2a)

〈〈
χ̃

′(k)
+;P0

∣∣[ψ (k)
B − z

(k)
+;P0

ÎN

] = g2γP0

2

〈〈
χ̃

(k)
−;P0

∣∣. (C2b)

We impose the following normalization conditions for the
right- and left-extended pseudo-eigenstates:〈〈

χ̃
′(k)
+;P0

∣∣χ (k)
+;P0

〉〉 = 1,
〈〈
χ̃

(k)
−;P0

∣∣χ ′(k)
−;P0

〉〉 = 1. (C3)

Then, we have right- and left-pseudo-eigenstates,

∣∣χ ′(k)
−;P0

〉〉 = a
′(k)
−;P0

|k; P0〉〉 + b
′(k)
−;P0

|k; −P0〉〉, (C4a)〈〈
χ̃

′(k)
+;P0

∣∣ = a
′(k)
+;P0

〈〈k; P0| + b
′(k)
+;P0

〈〈k; −P0| (C4b)
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with

a
′(k)
±;P0

= 1

2

[
1 ±

(
k2 − k2

P0

)1/2

k

]1/2

, (C5a)

b
′(k)
±;P0

= − i

2

[
1 ∓

(
k2 − k2

P0

)1/2

k

]1/2

. (C5b)

The vectors {|χ (k)
+;P0

〉〉,|χ ′(k)
−;P0

〉〉,〈〈χ̃ ′(k)
+;P0

|,〈〈χ̃ (k)
−;P0

|} satisfy the orthogonality〈〈
χ̃

′(k)
+;P0

∣∣χ ′(k)
−;P0

〉〉 = 0,
〈〈
χ̃

(k)
−;P0

∣∣χ (k)
+;P0

〉〉 = 0, (C6)

and completeness ∑
P0

(∣∣χ (k)
+;P0

〉〉 〈〈
χ̃

′(k)
+;P0

∣∣ + ∣∣χ ′(k)
−;P0

〉〉 〈〈
χ̃

(k)
−;P0

∣∣) = p̂(k), (C7)

with

p̂(k) =
∑
P

|k; P 〉〉〈〈k; P |. (C8)

[1] L. Van Hove, Physica 23, 441 (1957).
[2] S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).
[3] R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
[4] P. Resibois, Physica 27, 541 (1961).
[5] I. Prigogine, Nonequilibrium Statistical Mechanics (John Wiley

& Sons Inc., New York, 1962).
[6] R. Zwanzig, Physica 30, 1109 (1964).
[7] N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical

Physics (Gostekhizdat, Moscow, 1946) (in Russian); in Studies
in Statistical Mechanics, vol. 1, edited by J. de Boer and G. E.
Uhlenbeck (North-Holland Pub., Co., Amsterdam, 1962), p. 5
(English translation).

[8] M. S. Green, J. Chem. Phys. 25, 836 (1956).
[9] E. G. D. Cohen, Physica 28, 1025 (1956).

[10] R. Zwanzig, Phys. Rev. 124, 983 (1961).
[11] H. B. Hollinger, J. Chem. Phys. 36, 3208 (1962).
[12] R. Balescu, Equilibrium and Nonequilibrium Statisti-

cal Mechanics (John Wiley & Sons, Inc., New York,
1975).

[13] L. D. Landau and E. M. Lifshits, Statistical Physics, 3rd ed.,
Part 1 (Butterworth-Heinemann, Oxford, 1980).

[14] T. Petrosky and I. Prigogine, Chaos, Solitons & Fractals 7, 441
(1996).

[15] T. Petrosky and I. Prigogine, in Advances in Chemical
Physics, vol. 99, edited by I. Prigogine and Stuart A. Rice
(John Wiley & Sons Inc., New York, 1997), Chap. 1,
p. 1.

[16] T. Petrosky, Prog. Theor. Phys. 123, 395 (2010).
[17] H. Feshbach, Ann. Phys. (NY) 5, 357 (1958).
[18] H. Feshbach, Ann. Phys. (NY) 19, 287 (1972).

[19] T. Petrosky, I. Prigogine, and S. Tasaki, Physica A 173, 175
(1991).

[20] N. Hatano, Fortschr Phys. 61, 238 (2013).
[21] S. Tanaka, K. Kanki, and T. Petrosky, Phys. Rev. B 80, 094304

(2009).
[22] L. Boltzmann, Further studies on the thermal equilibrium of

gas molecules (Sitzungsberichte der kaiserlichen Akademie der
Wissenschaften, Vienna, 1872) (in German); Stephen G. Brush,
in History of Modern Science 1, The Kinetic Theory of Gases:
An Anthology of Classical Papers with Historical Commentary,
edited by Nancy S. Hall (Imperial College Press, London, 2003),
p. 262 (English translation).

[23] R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford
University Press, Inc., New York, 2001).

[24] T. Petrosky, Foundations Phys. 29, 1417 (1999).
[25] T. Petrosky, Foundations Phys. 29, 1581 (1999).
[26] T. Petrosky, in Advances in Chemical Physics, Vol. 122, edited

by Ioannis Antoniou (John Weily & Sons, Inc., New York, 2002),
Chap. 8, p. 129.

[27] Z. L. Zhang, Irreversibility and extended formulation of clas-
sical and quantum nonintegrable dynamics, Ph.D. thesis, The
University of Texas at Austin, 1995.

[28] K. Hashimoto, K. Kanki, H. Hayakawa, and T. Petrosky, Prog.
Theor. Exp. Phys. 2015, 023A02 (2015).

[29] R. Balescu, Statistical Mechanics of Charged Particles (John
Wiley & Sons Inc., New York, 1963).

[30] A. Messiah, Quantum Mechanics (North-Holland Pub., Co.,
Amsterdam, 1961).

[31] P. Resibois and M. De Leneer, Classical Kinetic Theory of Fluids
(John Wiley & Sons Inc., New York, 1977).

022132-12

http://dx.doi.org/10.1016/S0031-8914(57)92891-4
http://dx.doi.org/10.1016/S0031-8914(57)92891-4
http://dx.doi.org/10.1016/S0031-8914(57)92891-4
http://dx.doi.org/10.1016/S0031-8914(57)92891-4
http://dx.doi.org/10.1143/PTP.20.948
http://dx.doi.org/10.1143/PTP.20.948
http://dx.doi.org/10.1143/PTP.20.948
http://dx.doi.org/10.1143/PTP.20.948
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1016/0031-8914(61)90071-4
http://dx.doi.org/10.1016/0031-8914(61)90071-4
http://dx.doi.org/10.1016/0031-8914(61)90071-4
http://dx.doi.org/10.1016/0031-8914(61)90071-4
http://dx.doi.org/10.1016/0031-8914(64)90102-8
http://dx.doi.org/10.1016/0031-8914(64)90102-8
http://dx.doi.org/10.1016/0031-8914(64)90102-8
http://dx.doi.org/10.1016/0031-8914(64)90102-8
http://dx.doi.org/10.1063/1.1743132
http://dx.doi.org/10.1063/1.1743132
http://dx.doi.org/10.1063/1.1743132
http://dx.doi.org/10.1063/1.1743132
http://dx.doi.org/10.1016/0031-8914(62)90008-3
http://dx.doi.org/10.1016/0031-8914(62)90008-3
http://dx.doi.org/10.1016/0031-8914(62)90008-3
http://dx.doi.org/10.1016/0031-8914(62)90008-3
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1063/1.1732449
http://dx.doi.org/10.1063/1.1732449
http://dx.doi.org/10.1063/1.1732449
http://dx.doi.org/10.1063/1.1732449
http://dx.doi.org/10.1016/0960-0779(95)00042-9
http://dx.doi.org/10.1016/0960-0779(95)00042-9
http://dx.doi.org/10.1016/0960-0779(95)00042-9
http://dx.doi.org/10.1016/0960-0779(95)00042-9
http://dx.doi.org/10.1143/PTP.123.395
http://dx.doi.org/10.1143/PTP.123.395
http://dx.doi.org/10.1143/PTP.123.395
http://dx.doi.org/10.1143/PTP.123.395
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/0003-4916(58)90007-1
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1016/0378-4371(91)90257-D
http://dx.doi.org/10.1016/0378-4371(91)90257-D
http://dx.doi.org/10.1016/0378-4371(91)90257-D
http://dx.doi.org/10.1016/0378-4371(91)90257-D
http://dx.doi.org/10.1002/prop.201200064
http://dx.doi.org/10.1002/prop.201200064
http://dx.doi.org/10.1002/prop.201200064
http://dx.doi.org/10.1002/prop.201200064
http://dx.doi.org/10.1103/PhysRevB.80.094304
http://dx.doi.org/10.1103/PhysRevB.80.094304
http://dx.doi.org/10.1103/PhysRevB.80.094304
http://dx.doi.org/10.1103/PhysRevB.80.094304
http://dx.doi.org/10.1023/A:1018813310677
http://dx.doi.org/10.1023/A:1018813310677
http://dx.doi.org/10.1023/A:1018813310677
http://dx.doi.org/10.1023/A:1018813310677
http://dx.doi.org/10.1023/A:1018810704742
http://dx.doi.org/10.1023/A:1018810704742
http://dx.doi.org/10.1023/A:1018810704742
http://dx.doi.org/10.1023/A:1018810704742
http://dx.doi.org/10.1093/ptep/ptu183
http://dx.doi.org/10.1093/ptep/ptu183
http://dx.doi.org/10.1093/ptep/ptu183
http://dx.doi.org/10.1093/ptep/ptu183



