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Rosenfeld �Phys. Rev. A 15, 2545 �1977�� originally noticed that casting the transport coefficients of simple
monatomic equilibrium fluids in a specific dimensionless form makes them approximately single-valued func-
tions of excess entropy. This observation has predictive value because, while the transport coefficients of dense
fluids can be difficult to estimate from first principles, the excess entropy can often be accurately predicted
from liquid-state theory. In this work, we use molecular simulations to investigate whether Rosenfeld’s obser-
vation is a special case of a more general scaling law relating the tracer diffusivities of particles in mixtures to
the excess entropy. Specifically, we study the tracer diffusivities, static structure, and thermodynamic properties
of a variety of one- and two-component model fluid systems with either additive or nonadditive interactions of
the hard-sphere or Gaussian-core form. The results of the simulations demonstrate that the effects of mixture
concentration and composition, particle-size asymmetry and additivity, and strength of the interparticle inter-
actions in these fluids are consistent with an empirical scaling law relating the excess entropy to a dimension-
less �generalized Rosenfeld� form of tracer diffusivity, which we introduce here. The dimensionless form of the
tracer diffusivity follows from knowledge of the intermolecular potential and the transport/thermodynamic
behavior of fluids in the dilute limit. The generalized Rosenfeld scaling requires less information and provides
more accurate predictions than either Enskog theory or scalings based on the pair-correlation contribution to
the excess entropy. As we show, however, it also suffers from some limitations especially for systems that
exhibit significant decoupling of individual component tracer diffusivities.
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I. INTRODUCTION

Many computational and experimental studies have now
provided empirical evidence of a strong correlation between
transport coefficients and the excess entropy of equilibrium
fluids �see, e.g., �1–7��. The transport coefficients �e.g., dif-
fusivity, viscosity, and thermal conductivity� quantify the dy-
namic response of a fluid to a small perturbation in the as-
sociated field variables, while the excess entropy is a
negative quantity that characterizes the number of mi-
crostates rendered inaccessible to the fluid �relative to an
ideal gas� due to static interparticle correlations. Changes to
macrostate variables that strengthen the interparticle correla-
tions and hence make excess entropy more negative, typi-
cally result in slower dynamical processes �2�. This is true
even for confined fluids �4,8–12� and for systems that show
anomalous dependencies of transport coefficients on density,
temperature, or the strength of the interparticle attractions
�13–32�.

The connection between transport coefficients and excess
entropy is of fundamental interest because it provides a clue

in the long-standing puzzle concerning what structural and
thermodynamic properties correlate with the dynamics of
equilibrium fluids. The link also has practical consequences.
For example, if the transport coefficients of a fluid, cast in an
appropriately reduced form, can be approximately repre-
sented as a single-valued function of the excess entropy, then
knowledge of the latter allows indirect “prediction” of the
former �11�. The value of this approach lies in the fact that,
while it is difficult to directly estimate transport coefficients
from first principles, the excess entropy can often be accu-
rately predicted from liquid-state theories.

At present, a rigorous and general statistical mechanical
justification for the empirically observed relationship be-
tween transport coefficients and excess entropy is lacking.
However, even in the absence of a formal justification, there
are a number of practical questions that deserve further in-
vestigation. Here, we present calculations that address key
aspects of two such questions.

�i� For what types of fluid systems is tracer diffusivity,
when cast in an appropriately reduced form, approximately a
single-valued function of excess entropy?

�ii� Can we develop a strategy for determining the afore-
mentioned “appropriately reduced form” for tracer diffusiv-
ity of a given system from knowledge of the intermolecular
potential, temperature, and composition?

To understand the context of these questions, it is helpful
to first consider some background. It has long been appreci-
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ated that the following reduced form of self-diffusivity, DR

�D�1/3�m /kBT�1/2, can be formally represented as a single-
valued function of excess entropy, sex, for any model fluid of
identical particles which interact via an inverse-power-law
�IPL� pair potential of the form v�r�=��� /r�n �see, e.g.,
�33��. Here, D is self-diffusivity, � is number density, T is
temperature, kB is the Boltzmann constant, m is the particle
mass, and the combination ��n is the single parameter of the
IPL potential. The function relating DR and sex strictly de-
pends on the exponent n, but the dependence is weak. In fact,
Rosenfeld �2� first pointed out that the relationship is “qua-
siuniversal” in the sense that, for a given value of excess
entropy, there is less than 30% variation in the predicted
self-diffusivities for different equilibrium IPL fluids with 4
�n��. Because of this observation, we refer to DR in this
work as the Rosenfeld form of reduced diffusivity. Recently,
Mittal et al. �4� demonstrated that the same quasiuniversal
relationship also adequately describes the correlation be-
tween DR and sex for both bulk �isotropic� and confined �in-
homogeneous� equilibrium Lennard-Jones fluids. An impor-
tant point of the Rosenfeld �2� and Mittal et al. �4�
investigations discussed from a different angle in a more
recent study by Dyre and co-workers �34� is that since both
the static and dynamic properties of many dense simple liq-
uids are dominated by their repulsive interactions, they
closely mimic the behaviors of “equivalent” IPL fluids. Thus,
one can expect DR of these monatomic simple-liquid systems
to scale with sex in a way that is consistent with the trend
originally identified by Rosenfeld.

Yet there are many fluids that cannot be expected to
mimic the behavior of monatomic IPL systems. Will excess
entropy also prove useful for predicting the dynamics of
these more complex fluids? For example, can excess entropy
be used to reliably predict the effects of temperature and
density on the self-diffusivity of model fluids with soft �or
even bounded� pair potentials, such as those that characterize
the effective interactions between macromolecules or mi-
celles in solution �35–37�? At present the answer is unclear.
A recent molecular-dynamics simulation study by �30� dem-
onstrated that DR of the Gaussian-core fluid is not �even
approximately� a single-valued function of sex, and the same
is true for the Rosenfeld-scaled thermal conductivity and vis-
cosity �38�. Is there a systematic way to construct, based on
knowledge of the pair potentials and temperature of a sys-
tem, an alternative reduced form, i.e., a generalized Rosen-
feld diffusivity DGR, that �to within acceptable tolerances�
is a function of excess entropy alone? One of the goals of
this paper is to address this question for different types of
model systems with a variety of interactions, �e.g., continu-
ous or discontinuous, steeply repulsive �diverging� or soft
�bounded��.

A related question is whether excess entropy can be used
to predict the effects of temperature, density, and composi-
tion on the tracer diffusivities of the components of a fluid
mixture? This question has been recently studied in a limited
context. Specifically, following initial work on monatomic
systems by �3�, a scaling for the tracer diffusivities of mix-
tures based on two-body contributions to the excess entropy
has been introduced �39�. Although it appears that this mix-
ture version of the Dzugutov scaling can capture some of the

behaviors exhibited by simple fluid systems, it also has some
significant limitations. For example, the reduced diffusivity
for the Dzugutov scaling, DZ, relies on defining an effective
“hard-core diameter” for each interparticle potential, which
is not convenient for the study of soft or penetrable particles
with bounded interactions. Moreover, the Dzugutov scaling
fails to describe the behavior of systems in the limit of van-
ishing number density. Finally, computing the two-body ex-
cess entropy requires knowledge of the radial distribution
functions between all components in the mixture for each
thermodynamic state of interest, which is particularly cum-
bersome when studying inhomogeneous fluids. This should
be contrasted with the excess entropy used in the Rosenfeld
scaling, which can be readily calculated from knowledge of
the fluid’s equation of state. For all of these reasons, we
examine in this paper whether one can, based on knowledge
of mixture composition, temperature, and pair potentials,
construct a generalized Rosenfeld form for the reduced tracer
diffusivity for component i, Di

GR, that is approximately a
single-valued function of the excess entropy of the fluid mix-
ture.

The organization of the paper is as follows. In Sec. II, we
introduce the simple idea that underlies the generalized
Rosenfeld scaling for predicting tracer diffusivity from ex-
cess entropy. Section III provides details on the model fluid
systems and the simulation techniques that we use here to
put the predictions of this scaling to quantitative tests. In
Sec. IV, we analyze the generalized Rosenfeld scaling for a
wide variety of binary mixtures of hard spheres, Widom-
Rowlinson particles, and Gaussian-core particles. In Sec. V,
we discuss how this data helps to understand the strengths
and limitations of using excess entropy for predicting the
effects that macroscopic parameters �temperature, density,
and composition� and microscopic details �particle diameter,
particle mass, and softness of the interparticle potential� have
on single-particle dynamics.

II. GENERALIZED ROSENFELD FORM FOR REDUCED
TRACER DIFFUSIVITY

In order to ensure that Di
GR, the generalized Rosenfeld

form of the reduced tracer diffusivity of component i, is de-
fined in a way that is useful for making excess-entropy based
predictions, we aim to have it satisfy the following three
criteria for a given system. �i� It should be proportional to the
bare tracer diffusivity, i.e., Di

GR=�Di. �ii� The prefactor �,
which has units of reciprocal diffusivity, should be readily
calculable based on knowledge of the parameters that define
the fluid system, i.e., macroscopic variables such as tempera-
ture T, density �, and the mole fractions of the species, as
well as microscopic parameters such as particle masses and
the pair potentials Vij�r� describing the effective interactions.
�iii� The dimensionless quantity Di

GR should be approxi-
mately a single-valued function of sex.

For the case of a monatomic IPL fluid, the aforementioned
criteria are rigorously satisfied at all state points if one
adopts the Rosenfeld form of the reduced self-diffusivity DR

discussed in the introduction. In fact, Rosenfeld �2� previ-
ously illustrated that, at low number density, an analytical
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relationship between DR and sex can be obtained for an IPL
fluid by using two equations: an Enskog theory expression
for D and a truncated second-virial expansion for sex.

Our approach here is to similarly examine the low-density
limit of more complex model fluids and mixtures, taking
advantage of known theoretical results for the tracer diffu-
sivity and excess entropy to seek out a potentially useful
definition for Di

GR. As we show below, these low-density
theoretical results do suggest a simple expression for Di

GR

that, in the dilute limit, satisfies the three criteria mentioned
above. Of course, unlike for an IPL fluid, choosing Di

GR of a
complex fluid so that it is a single-valued function of sex at
low density does not guarantee that it will also behave that
way at high particle density. In fact, one can view the extent
to which the Di

GR versus sex scaling holds at higher particle
density as a measure of the utility of excess entropy for pre-
dicting tracer diffusivity of a given fluid system. Section IV
focuses on quantitatively examining this point for a variety
of model fluids.

To make the above discussion more concrete, first con-
sider that kinetic theory indicates that Di is inversely propor-
tional to number density � in a fluid mixture at low density
�40�

Di =
��Di�0

�
, �1�

where the quantity ��Di�0� lim�→0 �Di generally depends on
temperature, mixture composition, as well as the masses of
the species and their the interparticle interactions. We discuss
simple theoretical methods for estimating ��Di�0 for model
systems below. The relationship between � and sex, to lead-
ing order in �, can be expressed as

sex/kB = − ��B + T
dB

dT
� , �2�

where B is the second virial coefficient given by

B = �
i

Nc

�
j

Nc

xixjBij . �3a�

Here, the sums are over the Nc components of the mixture, xi
is the mole fraction of component i, and Bij can be expressed
in terms of the pair potentials Vij�r� as

Bij = 2�	
0

�

�1 − e−�Vij�r��r2dr , �3b�

where �−1=kBT. Using Eq. �2� to eliminate � from Eq. �1�
and rearranging leads to

Di


B + T
dB

dT
���Di�0

=
1

− sex/kB
, �4�

which again is valid only in the �→0 limit. We identify the
dimensionless quantity on the left-hand side, which is clearly
a function of sex only at low density, as the generalized
Rosenfeld reduced form of the tracer diffusivity, Di

GR,

Di
GR �

Di


B + T
dB

dT
���Di�0

. �5�

Note that the expression for DGR, the generalized Rosenfeld
self-diffusion coefficient for a monatomic fluid, is obtained
by replacing Di with D in Eq. �5�.

Although the definition for Di
GR given in Eq. �5� is com-

pact, it is more convenient for making predictions for model
systems if ��Di�0 is further expressed in terms of the mole
fractions of the species, the associated pair potentials, the
particle masses, and the temperature. Below, we present
simple theoretical expressions for carrying this out for par-
ticles with hard-sphere �HS� and soft �continuous� interac-
tions, respectively.

A. Hard-particle interactions

For models with hard-sphere interactions, an expression
for ��Di�0 is easily obtained within Enskog kinetic theory
�41,42� In particular, the product �Di is given by

�Di =
3

8�1/2

�kBT/mi

�
j=1

Nc

xj�ij
2 g��ij

+��1

2

1 +

mi

mj
��−1/2

, �6�

where mi is the mass of component i, �ij is the hard-sphere
contact diameter between particles of type i and j, and
gij��ij

+� is the value of the radial distribution function be-
tween particles of type i and j at contact. The low-density
limit ��Di�0 is obtained by substituting gij��ij

+�=1 into Eq.
�6�, which gives

��Di�0 =
3

8�1/2

�kBT/mi

�
j=1

Nc

xj�ij
2�1

2

1 +

mi

mj
��−1/2

. �7�

When computing Di
GR for the hard-sphere and Widom-

Rowlinson model mixtures discussed in Sec. III, we simply
substitute Eq. �7� into Eq. �5�.

B. Soft-particle interactions

We also study fluids of soft particles in this work, i.e.,
particles with continuous and bounded interactions that can-
not be treated as hard spheres with an effective temperature-
dependent diameter. In order to predict ��Di�0 for these mod-
els, we use an approximate theory due to Tankeshwar and
co-workers �43,44�, which we refer to as the Tankeshwar
diffusion model �TDM�. We have found that this basic theo-
retical approach strikes a reasonable balance between sim-
plicity and accuracy. It has been shown to semiquantitatively
describe how temperature, composition, and density affect
the tracer diffusivity of Lennard-Jones fluids, the one-
component plasma, and Yukawa fluids �45�. We have also
found that it approximately captures how temperature and
density affect the diffusion coefficient of the Gaussian-core
fluid.
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The details of the TDM are discussed extensively else-
where �43–45�. In short, it is based on an approximate ex-
pression for the velocity autocorrelation function and hence
the tracer diffusivity Di via the Green-Kubo relation, for each
component i of the fluid in terms of two parameters: the
Einstein frequency 	i and a “jumping” frequency 
i. The
values of these parameters are obtained by ensuring that the
velocity autocorrelation functions satisfy some exact micro-
scopic sum rules.

Within this model, the product �Di is given by

�Di = �
kBT

mi

�

2

i sec
�

2
	i
i� , �8�

where


i
−2 =

�Ai
�4� − ��Ai

�2��2

4�Ai
�2� ,

	i
2 = −

5��Ai
�2��2 − �Ai

�4�

4�Ai
�2� , �9�

and

Ai
�2� =

4�

3 �
j=1

Nc xj

mj
	

0

�

drr2gij�r�
2

r

dVij

dr
+

d2Vij

dr2 � , �10a�

Ai
�4� =

4�

3 �
j=1

Nc xj

mi

 1

mi
+

1

mj
�	

0

�

drr2gij�r�

� 
 2

r2
dVij

dr
�2

+ 
d2Vij

dr2 �2� . �10b�

In Eq. �9�, Vij is the pair potential between particles of spe-
cies i and j, and terms involving three-body static correla-
tions have been omitted. In order to evaluate ��Di�0, we take
the �→0 limit of Eqs. �8� and �9�, which leads to

��Di�0 =
kBT

mi

 Ai,0

�4�

�Ai,0
�2��3�1/2

. �11�

Here Ai,0
�2�� lim�→0 Ai

�2� and Ai,0
�4�� lim�→0 Ai

�4�, each of which
follow by replacing gij�r� in Eq. �9�, with the Boltzmann
factor of the pair potential,

lim
�→0

gij�r� = exp�− �Vij�r�� . �12�

When computing Di
GR for the Gaussian-core mixtures dis-

cussed in Sec. III, we substitute Eq. �11� into Eq. �5�.

III. MODEL SYSTEMS AND SIMULATION METHODS

As discussed in Sec. I, a key aim of this paper is to in-
vestigate whether it is possible to construct an excess-
entropy-based strategy for predicting tracer diffusivity ge-
neric enough to be successfully applied to fluid mixtures
with either hard �impenetrable� or soft �penetrable� interpar-
ticle interactions. For our model systems, we choose familiar
representations for both: the HS pair potential for the former

and the Gaussian-core pair potential for the latter.
The HS pair potential is discontinuous and athermal, as-

signing infinite energy to configurations that have particle
overlaps and zero energy to all others. It is thus represented
as

Vij
HS�r� = 
� r � �ij

0 r 
 �ij .
� �13�

Here, �ij is the contact diameter between particles of type i
and j. We investigate several binary HS mixtures with addi-
tive diameters, i.e., �ij = ��i+� j� /2. In particular, we first
study compositional effects on tracer diffusivity and excess
entropy using a system composed of equimass �m1 /m2=1�
particles with diameter ratio �1 /�2=1.3. For this system, we
examine mole fractions of component one in the range 0.1
�x1�0.9. We also investigate the effects of diameter ratio
by considering particles with �1 /�2=1.3,2.0,3.0,5.0. These
latter studies are carried out at fixed composition x1=0.1. All
of the above systems are studied across a wide range of
packing fractions �=��x1�1

3+x2�2
3� /6 spanning between

0.05 �dilute gas� and 0.5 �near the single-component �SC� HS
freezing transition�.

We also consider a highly nonadditive version of the bi-
nary HS mixture: the Widom-Rowlinson �WR� model �46�.
In this system, the contact diameter between particles of the
same type is zero ��11=�22=0�, but the cross diameter is
finite �12=�21=� and m1=m2. As might be imagined, this
system exhibits entropically driven phase separation at suffi-
ciently high density, which we avoid here by studying 0
���3�0.7. Since the model is symmetric with respect to
the interactions, we can deduce global behavior by studying
mole fractions in the range 0�x1�0.5.

Finally, we study fluids composed of soft particles that
interact via the bounded Gaussian-core pair potential �47�
given by

Vij
GC�r� = �ij exp�− �r/�ij�2� , �14�

where �ij and �ij are parameters that characterize the energy
and length scale, respectively, of the interaction between par-
ticles of type i and j. For the simulations in this work, we
truncate the interparticle interactions at a separation of
3.2�ij. We examine both single-component and two-
component Gaussian-core fluids. For the latter, we adopt the
same parameters used in a previous investigation of the static
structure and thermodynamics of that system �48�. Specifi-
cally, we assign �22=0.665�11 and �12=���11

2 +�22
2 � /2, �11

=�22 and �12=0.944�11 �which encourages mixing�, and m1
=m2. We investigate the binary Gaussian-core fluid at com-
positions 0.1�x1�0.9, temperatures 0.05�kBT /�11�0.4,
and densities 0.05���11

3 �1.0. At some temperatures, the
maximum density in this range is not an isotropic fluid due to
propensity of the system to phase separate. We excluded
from our analysis any state points that showed thermody-
namic or structural indications of phase separation.

To explore the dynamic properties of the above systems,
we perform molecular-dynamics �MD� simulations. For the
HS and WR mixtures, we use a standard event-driven algo-
rithm �49�. For the binary Gaussian-core fluid, the equations
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of motion are integrated using the velocity-Verlet method
�50� with time step �t=0.05�m1�11

2 /�11. All MD simulations
are carried out in the microcanonical ensemble with N
=3000–5000 particle using a periodically replicated cubic
simulation cell with volume V, chosen in accord with the
desired fluid density. Tracer diffusion coefficients Di are cal-
culated by fitting the long time average mean-squared dis-
placement of the i-type particles ��ri

2� to the Einstein relation
6Dit= ��ri

2�. Note that, for the case of the monatomic fluid,
this definition of the tracer diffusivity reduces to the self-
diffusivity. We perform multiple-independent simulations at
several state points for each model, and we find the relative
standard error in tracer diffusivities to be less than 1%.

Thermodynamic properties of the Gaussian-core fluid
mixtures are computed using grand-canonical transition-
matrix Monte Carlo �GC-TMMC� simulations. These simu-
lations are conceptually equivalent to a series of semigrand
simulations performed over a range of fluid densities stitched
together using ghost insertion or deletion moves. Details of
this method can be found elsewhere �51,52�. These simula-
tions require fixed values of the activity, ��1 ,�2�, volume, V,
and temperature, T, as inputs. The activity is defined as
�i=�i

−3 exp��i /kBT�, where �i and �i are the chemical
potential and the thermal de Broglie wavelength of compo-
nent i, respectively. All GC-TMMC simulations for the
Gaussian-core fluid mixtures reported here use a system vol-
ume of V=343. For the activities, the values of ln �i that we
use span from 32.63 at the lowest temperature to 12.24 at the
highest temperature investigated. Thermodynamic properties
at other values of activity are obtained via the histogram
reweighting technique. The primary quantity obtained from
GC-TMMC is the particle number probability distribution
��N ; ��i� ,V ,T�. From this, excess entropies are trivially cal-
culated �see �10��. System size effects in excess entropy for
the Gaussian-core mixtures are found to be negligible by
comparing results to a series of simulations using a smaller
volume of V=216. We confirmed that the equation of state
�and hence excess entropy� of Gaussian-core fluid mixtures
produced from the GC-TMMC simulations is statistically in-
distinguishable with that produced from molecular-dynamics
simulations.

GC-TMMC calculations for the WR mixtures are per-
formed using a system volume of V=343. For this fluid,
simulations are completed with activity values of �1=�2=1,
and histogram reweighting is applied to obtain thermody-
namic quantities at other values of activity. System size ef-
fects are examined by performing simulations over a limited
density and composition range with a volume of V=1000
and are also found to be negligible.

The excess entropy data we present for the binary HS
mixtures is calculated from the accurate Boublik-Mansoori-
Carnahan-Starling-Leland �BMCSL� equation of state
�53,54�. As a check, we compared the BMCSL values for
compressibility factor and excess entropy against those ob-
tained via molecular-dynamics simulations for selected state
points as a function of particle diameter ratio and packing
fraction, and we found the agreement to be excellent.

Finally, we also compare the results for the binary sys-
tems to corresponding single-component systems. For the
single-component HS system we use the data of �11� and for

the single-component Gaussian-core fluid we use the data of
�30�.

IV. RESULTS AND DISCUSSION

A. Hard-sphere mixtures

1. Compositional effects

We begin by investigating the effects of composition on
mixtures of HS particles with size ratio �1 /�2=1.3. Figure
1�a� displays the tracer diffusion coefficients Di of the two
components as a function of total packing fraction � for
several different compositions, indicated by the mole fraction
of large particles, x1. As must be the case, when one of the
species is present in high concentration, its tracer diffusivity
approaches the value of the self-diffusion coefficient D of the
single-component HS fluid at the same packing fraction �.
However, the tracer diffusivity of the dilute component is
generally different than D. In particular, when component 1
�the larger particles� is dilute, one should expect D1�D.
This logic can be qualitatively rationalized by the fact that,
on average, motion of the larger solute would require larger
local structural rearrangements �i.e., fluctuations� than for the
motion of the smaller solvent particles. Conversely, by an
analogous argument, one expects D2�D if component 2 �the
smaller particles� is dilute. The data in Fig. 1�a� are consis-
tent with these expectations.

It is interesting to note that the compositional variation in
ln Di is fairly insensitive to the value of �. Moreover, the
excess entropy �Fig. 1�n�� exhibits almost no compositional
dependence whatsoever, and its packing fraction dependence
for any particular composition is nearly identical to that of
the single-component HS fluid. All of this suggests that an
appropriate composition-dependent rescaling of the tracer
diffusivity data might �approximately� make it a single-
valued function of excess entropy. Indeed, Figs. 1�c� and 1�d�
show that the generalized Rosenfeld tracer diffusivities Di

GR

of Eq. �5� for both species collapse onto a single curve �that
describing the SC fluid data, DSC

GR� when plotted versus ex-
cess entropy, while no data collapse occurs if the tracer dif-
fusivities are naïvely represented in the original Rosenfeld
reduced form Di

R.
The single-component relationship DSC

GR�sex� can be de-
scribed by a piecewise function. The form of its low-density
�low −sex� scaling is an inverse power law given by Eq. �4�.
From Fig. 1�d�, we infer that when −sex /kB�1, the relation-
ship becomes approximately exponential. A least-squares fit
assuming these generic function forms, i.e.,

DSC
GR�sex� = 
��− sex/kB�−1 − sex/kB � 1

A exp�− Bsex/kB� − sex/kB � 1,
� �15�

yields �=0.95, A=1.85, and �=0.74 and describes the simu-
lation data very well �see red dashed line in Fig. 1�.

The data collapse of Fig. 1�d� suggests that tracer diffu-
sivities, D1 and D2, of this mixture might also be adequately
predicted using Eq. �15� together with knowledge of the pair
potentials, composition, and excess entropy of the mixture.
Specifically, the generalized Rosenfeld scaling prediction for
tracer diffusivity of component i is given by
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Di
predicted�sex� = 
��Di�0�B + T

dB

dT
��DSC

GR�sex� , �16�

with B from Eq. �2�, ��Di�0 from Eq. �7�, and DSC
GR�sex� from

the fit of the single-component data to Eq. �15�.
One way to quantitatively assess the relative predictive

ability of Eq. �16� is to compare it to the results of, e.g., the
basic Enskog theory given by Eq. �6�. Both equations require
as inputs several pieces of information, including the form of
the pair potentials and the mixture composition. While pre-
dictions based on the generalized Rosenfeld scaling also re-
quire knowledge of sex for the mixture and properties of the
single-component system, Enskog theory requires knowl-
edge of the state-dependent contact values of the three partial
radial distribution functions of the mixture.

Figure 2 displays the relative error in the predicted tracer
diffusivity to the simulated diffusivity Di

predicted /Di. Enskog
theory �Fig. 2�a�� provides good predictions at high values of
tracer diffusivity �i.e., low ��. However, as the value of Di
decreases �i.e., � increases� Enskog theory first underpre-
dicts, then ultimately significantly overpredicts Di. When
looking at the entire range of � studied here, 80% of the
Enskog theory predictions lie within 20% of the molecular
simulation data. On the other hand, the excess entropy based
expression of Eq. �16� �Fig. 2�b�� predicts the tracer diffu-
sivities semiquantitatively for all state points investigated
here �100% of predictions within 20% of the simulation
data�.

2. Particle-size asymmetry effects

We also study the effects of particle-size asymmetry on
the relationship between excess entropy and tracer diffusivity

by examining a series of binary HS mixtures at composition
x1=0.1 and packing fractions in the range 0���0.5. Par-
ticles of types 1 and 2 were taken to have identical masses,
but we investigated several systems with different diameter
ratios ��1 /�2=1.3, 2.0, 3.0, and 5.0�. Figure 3�a� displays the
tracer diffusivities, D1 and D2, for these systems. Increasing
the magnitude of the diameter ratio leads to progressively
larger deviation of the tracer diffusivities from the self-
diffusion coefficient D of the HS fluid at the same �. As
expected, larger particles diffuse slower than smaller par-
ticles �D1�D�D2�. How is the excess entropy affected by
increasing the ratio of particle diameters? Figure 3�b� shows
that increasing �1 /�2 at fixed � and x1 systematically de-
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FIG. 1. �Color online� Properties of the binary HS mixture with particle diameter ratio ��1 /�2�=1.3, equal mass, and a variety of
compositions. �a� Tracer diffusion coefficients Di and �b� �negative� excess entropy −sex as a function of packing fraction �. �c� Rosenfeld
Di

R and �d� generalized Rosenfeld Di
GR tracer diffusivities as a function of −sex. Filled and open symbols denote component 1 �large� and 2

�small�, respectively. The color of symbols denotes the mole fraction of component 1, x1, specified in the legend of �a�. The solid line in each
figure is the result for the single-component HS system. The dashed red line in �d� represents a least-squares fit of the data to Eq. �15�, which
results in �=0.95, A=1.85, and �=0.74. In �c� and �d�, the insets are the same as the main plots but on a log-log scale.
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FIG. 2. �Color online� Ratio of tracer diffusivity predicted from
�a� Enskog theory �Eq. �6�� and �b� from excess entropy and the
single-component HS result �generalized Rosenfeld scaling� �Eq.
�16�� for a HS mixture with ��1 /�2�=1.3, equal mass, and a variety
of compositions. Red dashed lines represent 20% relative error of
prediction. Symbols have the same meaning as in Fig. 1.
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creases −sex �i.e., weakens the static interparticle correla-
tions�. This effect is qualitatively connected to the more ef-
ficient packing arrangements that spheres can sample when
significant polydispersity is present �55,56�.

Given that increasing size ratio uniformly reduces struc-
tural correlations but impacts the dynamics of large and
small particles in different ways, it might not be surprising
that tracer diffusivity data represented in the original Rosen-
feld form, Di

R, does not collapse when plotted versus excess
entropy �Fig. 3�c��. The Di

R data for the smallest size ratio
�1 /�2=1.3 are qualitatively similar to the single-component
result. However, there is significant deviation for larger di-
ameter ratios, with excess entropy underpredicting the mo-
bility of smaller particles and overpredicting that of larger
particles. Figure 3�d� shows, however, that tracer diffusivity
reduced in the generalized Rosenfeld form, Di

GR, mostly col-
lapses to the single-component curve when plotted versus
−sex. The most pronounced deviations are for the largest size
ratio ��1 /�2=3 ,5� at the highest packing fractions ��

0.45�.

Figure 4 quantitatively compares the predictions of En-
skog theory �Eq. �6�� with those based on the generalized
Rosenfeld scaling �Eq. �16��. At high values of Di �low ��,
both methods provide accurate predictions. As before, for
decreasing Di �increasing ��, Enskog theory first underpre-
dicts and then ultimately overpredicts the tracer diffusivities.
The excess entropy based predictions never underpredict but
eventually overpredict the mobility at high values of �. As an
overall measure, the Enskog and the excess entropy expres-
sions predict 70% and 80% of the tracer diffusivities within
20% of the simulated values, respectively. Moreover, we
note that while the excess entropy method predicts the tracer

diffusivities of the two components with similar reliability,
the Enskog expression does well for the small particles �90%
within 20%�, but poorly for the large particles �50% within
20%�.

3. Two-body excess entropy scaling

As noted in Sec. I, an alternative excess entropy based
scaling for diffusion was introduced by �3�, who found that
an appropriately reduced form of the self-diffusion coeffi-
cient DZ for atomic fluids at moderate densities is nearly a
universal function of the two-body contribution to the excess
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FIG. 3. �Color online� Properties of the binary HS mixture at composition x1=0.1, equal mass, and several size ratios ��1 /�2� �see legend
in �a��. �a� Tracer diffusion coefficient Di and �b� �negative� excess entropy −sex versus packing fraction �. �c� Tracer diffusivity reduced in
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entropy s�2�. Subsequently, others have suggested a generali-
zation of this scaling �39� to predict tracer diffusivities of
fluid mixtures. In the generalization, the reduced tracer-
diffusion coefficient defined as Di

Z�Di /�i, where

�i � 4��kBT�1/2�
j=1

Nc

xi��ij
4 gij��ij

+�
mi + mj

2mimj
�1/2

�17�

is thought to approximately scale with the i-component con-
tribution to the two-body excess entropy defined as �39�

si
�2�/kB � −

1

2
��

j=1

Nc

xj	 dr�gij�r�ln gij�r� − �gij�r� − 1�� .

�18�

Note that the two-body excess entropy per particle is given
by s�2�=�ixisi

�2� �57�.
In Figs. 5�a� and 5�b� we examine the mixture generali-

zation of the Dzugutov scaling for the HS systems discussed
above. Specifically, we show data with fixed diameter ratio
and varying composition in panel �a� and fixed composition
and varying diameter ratio in panel �b�. Both sets of data
more or less track the scaling. However, deviations from the
single component curve appear systematic. The single-
component relation with si

�2� overpredict the small sphere
mobility and underpredict the large sphere mobility.

Unfortunately, the predictive value of this type of scaling
is inherently limited by the fact that the single-component
data cannot access the large values of −si

�2� realized by the

large spheres in a mixture. The former reach a value of 5.5kB
at �=0.5, while the latter are greater than 10kB for the largest
size ratios examined here. As a result, “predicting” tracer
diffusivities of a mixture would require some systematic way
of extrapolating the single-component curve by a substantial
amount. As discussed in Sec. I, the scaling is also limited to
systems, such as the HS fluid, for which the interparticle
repulsions are steep enough to define an effective hard-core
diameter to each interaction. Thus, it will be of little use for
studying systems with bounded interactions such as the
Gaussian-core potential or a other models that characterize
the soft effective interactions between macromolecular or su-
pramolecular species in solution �37�.

B. Widom-Rowlinson mixtures

Here we examine the behavior of the WR model fluid
introduced in Sec. III. Recall that it is defined as a mixture of
nonadditive hard spheres with �11=�22=0 but �12=�. Figure
6�a� displays the tracer diffusivity Di as a function of density
for a several compositions x1. Note that the Di is always
greater then the self-diffusion of the single-component HS
fluid since the number of collisions per unit time will clearly
be less in the WR fluid than in the HS fluid at the same
density. At x1=0.5, D1=D2, since the fluid is symmetric. At
fixed density, as x1 decreases, D1 decreases while D2 in-
creases. This is because the dilute species will experience
many more collisions per unit time �it has more neighbors of
the opposite type� than the concentrated species. Likewise,
Fig. 6�b� shows −sex for the WR fluids is always less than
that of a single-component HS fluid of the same density. This
is expected since particles of the same type do not directly
exclude volume from one another, which in turn reduces the
entropic driving force for forming strong interparticle corre-
lations. Decreasing x1 from 0.5 toward zero at fixed density
decreases −sex because it increases the number of particles in
the system that do not interact.

As was the case for the HS fluid mixtures, Fig. 6�c� shows
that the tracer diffusivity reduced in the original Rosenfeld
form, Di

R, is not even approximately a single-valued function
of sex. On the other hand, Fig. 6�d� shows that the tracer
diffusivity data cast in the generalized Rosenfeld form, Di

GR,
largely collapses when plotted versus excess entropy. Inter-
estingly, Di

GR of the WR fluid is well described by the math-
ematical form of the single-component HS data. The quality
of the collapse is more easily seen on a log-log scale �inset to
Fig. 6�d��.

Figures 7�a� and 7�b� compare the accuracy of predicting
tracer diffusivity of the components of the WR fluid based on
Enskog theory �Eq. �6�� versus excess entropy of the WR
mixture and the single-component relation for the HS fluid
�Eq. �16��. As for the HS fluid, Enskog theory predicts 80%
of the WR data within 20% of the simulation values. In
contrast, the excess entropy method predicts 97% of the data
within 20% of the simulated tracer diffusivities.

Lastly, since the WR model is composed of �nonadditive�
hard particles, it represents another good test case for the
mixture generalization of the Dzugutov scaling. Figure 8,
however, clearly shows that this two-body scaling does not

10
-4

10
-2

10
0

D
Z i

0.1 1
-si

(2)
/kB

10
-4

10
-2

10
0

D
Z i

0 2 4 6 8 10

-si
(2)

/kB

10
-4

10
-2

10
0

D
Z i

0.1 1 10
-si

(2)
/kB

10
-5

10
-3

10
-1

10
1

D
Z i

(a)

(b)

FIG. 5. �Color online� Tracer diffusivity reduced in generalized
Dzugutov form Di

Z discussed in text versus �negative� i-component
contribution to two-body excess entropy −si

�2� of binary HS mix-
tures. �a� Particle diameter ratio �1 /�2=1.3, equal mass, and a va-
riety of compositions. Symbols have same meaning as Fig. 1. �b�
Composition x1=0.1, equal mass, and a variety of size ratios. Sym-
bols have same meaning as Fig. 3. Insets are the same as the main
plots but with a log-log scale.

KREKELBERG et al. PHYSICAL REVIEW E 80, 061205 �2009�

061205-8



collapse the WR data. In general, particles of type i diffuse
considerably faster than would be predicted based on the
single-component HS fluid behavior and the i component of
the two-body excess entropy in the WR mixture. Moreover,
the magnitude of the under prediction depends sensitively on
composition. This breakdown of the mixture version of the
Dzugutov relation for nonadditive HS fluids indicates that it
is not as widely applicable even within the limited class of
HS model fluids as the generalized Rosenfeld scaling intro-
duced here.

C. Single-component Gaussian-core fluid

As discussed in Sec. I, and much more extensively in
�30,31,58,59�, the properties of the single-component

Gaussian-core fluid are anomalous compared to those of
simple atomic liquids. For example, as shown in Fig. 9�a�,
the self-diffusivity D of the Gaussian-core fluid first de-
creases and then anomalously increases as a function of par-
ticle density along an isotherm. Likewise, −sex at constant
temperature first increases �the fluid becomes more struc-
tured� and then anomalously decreases �the fluid becomes
less structured� as a function of density.

In brief, these unusual trends can be qualitatively rational-
ized based on the Gaussian form of the repulsion. When the
density and temperature are sufficiently low, the distance be-
tween particles is larger than the range of the potential. Un-
der these conditions, the part of the interaction that the par-
ticles sample when they “collide” appears steeply repulsive,
and thus the effects of density on structure and dynamics are
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similar to those of HS fluid. However, at high particle den-
sities, particles in the Gaussian-core fluid effectively overlap
one another due to the bounded form of the interaction. The
effect is that each particle constantly experiences largely can-
celing soft repulsive forces of many neighbors. Increasing
the particle density under these conditions enhances this ef-
fect, paradoxically weakening the structural correlations and
increasing the self-diffusivity of the fluid.

It is clear from Figs. 9�a� and 9�b� that both D and sex are
strongly correlated for the Gaussian-core fluid. In Fig. 9�c�,
we show the self-diffusion coefficient expressed in the origi-
nal Rosenfeld form, DR, as a function of −sex. As noted pre-
viously �30�, this basic scaling is not even approximately a
single-valued function of excess entropy. However, similar to
the behavior of the HS and WR mixtures discussed previ-
ously, Fig. 9�d� shows that the generalized-Rosenfeld-scaled
self-diffusivity Di

GR collapses to a single curve when plotted
versus excess entropy. The quality of the collapse at even
low density is apparent in the log-log plot shown in the inset
to Fig. 9�d�. We also observe that the same functional form
that was used to fit the single-component HS data can also be
applied to the Gaussian-core system. In particular, fitting the
data to Eq. �15� yields �=0.59, A=1.33, and B=0.90. As
shown in Fig. 9�d�, Eq. �15� with these parameters �red
dashed line� describes the simulation data very well.

D. Binary Gaussian-core mixtures

As a final test of the relationship between single-particle
dynamics and excess entropy in soft-particle fluids, we ex-
amine the binary mixture of Gaussian-core particles de-
scribed in Sec. III. In particular, Figs. 10�a� and 10�b� display

the tracer diffusivities of the large and small Gaussian-core
particles as a function of density for a variety of mixture
compositions �x1=0.1, 0.3, 0.5, 0.7, and 0.9� and reduced
temperatures kBT /�=0.05, 0.1, and 0.2. The first point of
interest in the data, evident in Fig. 10�a�, is that the tracer
diffusivity of the larger type 1 particles displays the same
anomalous trend as a function of density as the single com-
ponent Gaussian-core fluid. That is, increasing the density
eventually leads to an anomalous increase in D1. However,
over the density range considered here, the tracer diffusivity
of the small type 2 particles does not show this anomalous
trend �see Fig. 10�b��. From a qualitative perspective, these
different behaviors perhaps might be expected since the
larger particles begin to overlap more �and hence transition
into anomalous mean-field behavior� at lower densities than
the smaller particles. This aspect of binary Gaussian-core
mixtures in discussed in detail elsewhere �31�.

One consequence of the dynamic decoupling of small and
large particles described above is a crossover density for
tracer diffusivity. Specifically, large particles have lower
tracer diffusivity than small particles at low density, but they
attain higher values of tracer diffusivity than small particles
at sufficiently high density �see Fig. 10�c��. Because of this
crossover, the Gaussian-core fluid mixture is an interesting
counterexample to the fluids discussed thus far. It appears
that both components cannot scale in a simple way with a
single static measure like −sex �Fig. 10�d��. This is evident
when one considers how the reduced Rosenfeld �Fig. 10�d��
and generalized Rosenfeld �Fig. 10�e�� forms of tracer diffu-
sivity behave as a function of −sex. As before, the original
Rosenfeld form, Di

R, fails to collapse any of the data. The
generalized Rosenfeld form, Di

GR, does an excellent job of
collapsing the low-density data but necessarily breaks down
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FIG. 9. �Color online� Properties of the single-component Gaussian-core fluid. �a� Self-diffusivity D and �b� �negative� excess entropy
−sex versus density �. �c� Self-diffusivity reduced in the Rosenfeld form DR and �d� the generalized Rosenfeld form DGR as a function of
−sex. In �a� and �b�, arrows indicate increasing temperature T. In �c� and �d�, symbol type corresponds to density, indicated in the legend of
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at higher densities, where the anomalous behavior emerges.
We close our discussion of the binary Gaussian-core mix-

ture with an interesting empirical observation. In the spirit of
�60�, we find that a collective tracer diffusivity of the mix-
ture, which we define here as DGR,C��Di

GR�x1�Di
GR�x2, is still

a single valued of excess entropy over the wide range of
temperature, density, and compositions investigated here �see
Fig. 10�g��. As can be seen, it also quantitatively tracks the
relationship between DR and −sex for the single-component
Gaussian-core fluid. What this implies is that tracer diffusiv-
ity of one component can be predicted based on knowledge
of tracer diffusivity of the other component, the excess en-
tropy of the mixture, and the behavior of the one-component
fluid. Of course, this observation also holds true �trivially�
for the other mixtures we discussed earlier because the gen-
eralized Rosenfeld tracer diffusivities themselves are single-
valued functions of sex of those systems.

V. CONCLUSIONS

In this work, we present a dimensionless form of the
tracer diffusion coefficient of a species which we call the
generalized Rosenfeld tracer diffusivity. We show, via mo-
lecular simulation, that this quantity is approximately a

single-valued function of excess entropy for a range of
model one- and two-component fluid mixtures. The empiri-
cal excess entropy scaling is consistent with the various ef-
fects that composition, temperature, density, and microscopic
interactions have on the equilibrium single-particle dynamics
of these systems. Generalizing an earlier argument of �2�, we
show that the functional form of the reduced tracer diffusiv-
ity can be obtained by examining the theoretical behavior of
excess entropy and tracer diffusivity in the low-particle-
density limit.

We demonstrate that the aforementioned “generalized
Rosenfeld” scaling applies more broadly than other simple
approaches such as Enksog theory or empirical scalings
based on the pair-correlation contribution to the excess en-
tropy. However, we also identify some important limitations
of the approach. For example, the scaling breaks down for
highly asymmetric hard-sphere mixtures �diameter ratios of 5
or larger� for packing fractions near the freezing transition. It
also breaks down for Gaussian-core mixtures, where the soft-
ness of the interactions combined with the size asymmetry
gives rise to significant decoupling of the single-particle dy-
namics of the species. Interestingly, even in this latter case,
we show that a single collective measure of the tracer diffu-
sivities obeys an excess entropy scaling, which provides a
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R, �f� generalized Rosenfeld tracer diffusivity Di
GR, and �g�

collective generalized Rosenfeld tracer diffusivity DGR,C= �Di
GR�x1�Di

GR�x2 versus −sex. Symbol type corresponds to reduced temperature
kBT /�11: 0.05 �circles�, 0.1 �squares�, and 0.2 �diamonds�. For clarity in �a�–�d�, increasing temperature is given by the direction of the arrow.
In �a�–�f�, closed and open symbols denote components 1 and 2, respectively. Panel �c� displays the crossover behavior of the tracer
diffusivities for x1=0.9 and kBT /�11=0.05 and 0.1. In panels �f� and �g�, small black crosses represent the single-component Gaussian-core
data. Inset to �g� is the same as the main plot but on a log-log scale.
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quantitative link between structure and the tracer diffusivities
of the two components.

It may also be fruitful in future work to develop general-
ized Rosenfeld scalings for other transport coefficients, such
as thermal conductivity and shear viscosity. We plan to focus
on extending the ideas of the present paper to systems with
other types of dynamics �e.g., including effects of dissipa-
tion, hydrodynamic interactions, etc.�. We also are studying
what aspects of interparticle interactions can give rise to de-
coupling of species-specific structural and dynamic quanti-
ties.
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APPENDIX: EXTENSION TO BROWNIAN DYNAMICS

Consider a collection of Brownian particles of radius a
and volume fraction �=4�a3� /3 suspended in a continuum
solvent. We wish to identify a generalized Rosenfeld scaling
of D, the long-time self-diffusion coefficient of the particles,
which will be �approximately� a single-valued function of
the excess entropy. In this case, since the solvent can be
being treated as a continuum, the excess entropy of interest is
that associated with the static correlations of the Brownian
particles.

At infinite dilution, the excess entropy of the Brownian
particles is zero, and D is simply equal to the Stokes-Einstein
diffusivity D0=kBT / �S��a�, where S=4 for slip and S=6 for
stick boundary conditions, and � is the solvent viscosity. To

leading order in packing fraction �, the difference between
D0 and D can be expressed �61–64�

�D � D0 − D = − D0D2� , �A1�

where D2 characterizes how static correlations modify the
long-time self-diffusivity of the particles. This quantity can
be expressed as

D2 = 	
0

�

�− 3 + A11 + 2B11�g�r�r2dr

+ 	
0

� �A11 − A12 − B11 + B12

r

+
1

2

dA11

dr
−

dA12

dr
��Q�r�g�r�r2dr . �A2�

Expressions for the functions Q�r�, A11, A12, B11, and B12 are
known in the hydrodynamic limit �62,65�. Also, in the dilute
limit, one may further replace g�r� in Eq. �A2� by the Bolt-
zmann factor �Eq. �12�� of V��r�, the effective pair potential
between the Brownian particles in solution.

Following Eq. �2�, one can similarly express the excess
entropy s�ex associated with the structure of the Brownian
particles �to leading order in particle density� in terms of its
osmotic second virial coefficient, s�ex=−kB��B�
+dB� /d ln T�. As in Eq. �3b�, B� can be readily obtained
from knowledge of V��r�. Using the osmotic virial expres-
sion for the excess entropy to eliminate packing fraction
from Eq. �A1� and rearranging yields a Brownian-
appropriate generalized Rosenfeld self-diffusivity:

�DGR �
�D0 − D��B� + T

dB�

dT
�

− D0D2
4

3
�a3

= − s�ex/kB. �A3�

Although the quantity, �DGR is strictly a single-valued func-
tion of s�ex in the dilute limit, its behavior at higher particle
concentrations needs to be studied further.
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