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Analytic height correlation function of rough surfaces derived from light scattering
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We derive an analytic expression for the height correlation function of a homogeneous, isotropic rough surface
based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height
correlation function to diffuse scattered intensity along a linear path at fixed polar angle. We test the solution by
measuring the angular distribution of light scattered from rough silicon surfaces and comparing extracted height
correlation functions to those derived from atomic force microscopy (AFM). The results agree closely with AFM
over a wider range of roughness parameters than previous formulations of the inverse scattering problem, while
relying less on large-angle scatter data. Our expression thus provides an accurate analytical equation for the
height correlation function of a wide range of surfaces based on measurements using a simple, fast experimental
procedure.
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I. INTRODUCTION

Rough surfaces play an essential role in many physical phe-
nomena, including wave scattering [1–3], friction [4], adhesion
[5], electrical conductivity [6,7], capacitance [8], and heat
transport [9,10], and in applications ranging from thin films to
sensors [11,12]. The most direct way to measure morphology
of rough surfaces is by scanning probe microscopy (SPM)
[13,14]. However, probe size sometimes limits scanning
resolution, in which case SPM images represent a convolution
of probe tip and intrinsic sample geometry [15–18]. Light
and acoustic scatter, which are faster and less invasive than
SPM, can also measure surface roughness via the inverse
wave scattering method [19–21]. The spatial resolution of the
scattering technique can easily be adjusted to a desired level
by tuning the incident wavelength λ.

One of the most important parameters for describing rough
surfaces is the height correlation function C(R) = 〈h(x +
R)h(x)〉/σ 2, where h(x) and h(x + R) denote height above
a mean surface height 〈h〉 = 0 at horizontal positions x and
x + R, respectively, and σ is the variance of h. The average is
performed over x for fixed R. Other roughness parameters such
as correlation length and roughness exponent can be derived
from C(R) [22].

Chandley [23] first showed that C(R) could be obtained
from a 2D Fourier transform of far-field scattered light inten-
sity. However, a time-consuming series of measurements of
scattered intensity profiles for a wide range of incident angles
was required. In Chandley’s method, the height autocovariance
function of the scattered wavefront is considered to be the same
as the height autocovariance function of the rough surface.
This assumption, however, is only valid when wave vectors
of incident and scattered light are close to the surface normal.
Moreover, Chandley’s method was only practical for λ � σ .
Zhao et al. [24] modified Chandley’s method based on Kirch-
hoff’s approximation and showed that C(R) could be estimated
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rapidly from a single measurement of scattered intensity along
a linear detector array, for a single, arbitrary, fixed incident
angle θ1 (see Fig. 1) and an arbitrary wavelength λ without
the restriction of λ � σ . Zamani et al. [25,26] developed a
rigorous mathematical foundation within Kirchhoff theory,
using a saddle point approximation for calculating C(R) of
very rough surfaces from scattered light intensity measured
along a special (in general curved) path along which both
polar (θ2) and azimuthal (φ2) scattering angles (defined in
Fig. 1) varied. However, Zamani’s expression for C(R) was
not compared directly with that derived in Ref. [24], nor with
experimental results. Chakrabarti et al. [27] developed an ap-
proach for obtaining C(R) from the angular dependence of the
mean differential reflection coefficient of a one-dimensional
randomly rough dielectric surface, also in the Kirchhoff
approximation.

In this paper, we derive a simple analytic relation between
C(R) and diffuse scattered intensity 〈Idiff〉 using a different
mathematical approach than Ref. [24], although still in the
framework of inverse scattering theory in the Kirchhoff
approximation. Our expression relates C(R) straightforwardly
to 〈Idiff〉 in a simple experimental geometry: fixed polar
scattering angle θ2, measured as a function of azimuthal
scattering angle φ2 between specular (φ2 = 0) and an arbitrary
angle far from specular direction. However, the derived relation
between C(R) and 〈Idiff〉 differs from that of Ref. [24]. We
demonstrate the accuracy of our expression by obtaining
C(R) from measured scattered intensity for surfaces whose
correlation functions were obtained independently by atomic
force microscopy (AFM), and comparing the results with
C(R) obtained from the expression in Ref. [24]. The com-
parison shows that the present expression is less reliant on
accurate, large-φ2, low-level scatter data, and thus avoids
unphysical fluctuations at R > 10 μm that can arise with
the C(R) expression of Ref. [24] when the φ2 measurement
range is restricted. Moreover, our optically extracted C(R)
agrees significantly better with AFM measurements than
the Ref. [24] expression for surfaces with high roughness
(σ � λ).
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FIG. 1. Geometry for wave scattering from a rough surface.

II. HEIGHT CORRELATION FUNCTION

A. Derivation

In the following derivation, for simplicity, we restrict our
attention to self-affine fractal rough surfaces—i.e., surfaces
for which the height difference � = 〈|h(x1) − h(x2)|〉 between
two points x1 and x2 is related to their separation R = |x1 − x2|
by a power-law � ∼ Rα , where α is the roughness exponent
[28]. However, the general method is applicable to any
homogeneous and isotropic rough surface. The correlation
function for self-affine surfaces can be written in the form
C(R) = exp[−(R/ξ )2α], where ξ is the correlation length
(C(R = ξ ) = e−1) [22]—i.e., the lateral length (R) at which
the correlation function drops to e−1 of its maximum at R = 0.
The value of α can be extracted from the structure function,
which for a homogeneous isotropic rough surface is H (R) =
〈[h(r) − h(r + R)]2〉 and is related to the correlation function
by H (R) = 2σ 2[1 − C(R)] [22]. For self-affine fractal rough
surfaces the slope of the structure function on a log-log scale
is equal to 2α for r < ξ .

For a monochromatic incident wave ψ inc(r) = e−ikinc·r of
wave vector kinc, where r represents position, the scattered
wave in the Kirchhoff approximation is [2]

ψ sc(r) = ikeikr

4πr

∫
AM

(
a

∂h

∂x0
+ b

∂h

∂y0
− c

)

× eik[Ax0+By0+Ch(x0,y0)]dx0dy0, (1)

where

A = sin θ1 − sin θ2 cos φ2,

B = − sin θ2 sin φ2,

C = −(cos θ1 + cos θ2),

a = sin θ1(1 − R0) + sin θ2 cos φ2(1 + R0),

b = sin θ2 sin φ2(1 + R0),

c = cos θ2(1 + R0) − cos θ1(1 − R0). (2)

In Eq. (1), R0 is the reflection coefficient and the integral is
over the mean reference plane AM of the rough surface.

The total scattered intensity includes coherent and diffuse
parts. If the spot size is much larger than the incident
wavelength, the coherent intensity Icoh appears in the specular

direction. The height variance (or equivalently, root-mean
square surface height) can be calculated from [2]

σ = 1

kC

[
ln

I0

Icoh

] 1
2

, (3)

where Icoh and I0 are the scattered intensity from a rough
and smooth surface, respectively, in the specular direction.
For a surface with a Gaussian height probability distribution
function, the width of the distribution is just the height variance
σ . The mean diffuse intensity 〈Idiff〉 is then related to C(R) by
[2]

〈Idiff〉 = 〈ψ scψ̄ sc〉 − 〈ψ sc〉〈ψ̄ sc〉

= k2F 2

2πr2
AM exp(−g)

∫ ∞

0
[exp(gC(R)) − 1]

× J0(kR
√

A2 + B2)RdR. (4)

Here the overbar denotes the complex conjugate of the
scattered field ψ sc, F = 1

2 (Aa
C

+ Bb
C

+ c) depends on incident
and scattered angles,

g = k2σ 2(cosθ1 + cosθ2)2 = k2σ 2C2 (5)

is the roughness criterion, and J0(kR
√

A2 + B2) is a zero-
order Bessel function of the first kind, which obeys the
orthogonality relation [29],∫ ∞

0
J0(UR)J0(UR′)UdU = 1

R
δ(R − R′), (6)

for an arbitrary function U , where

U = k
√

A2 + B2, (7)

for the scattering problem. To eliminate the prefactor
in Eq. (4), we define normalized diffuse intensity Id ≡
〈Idiff〉/( k2F 2

2πr2 )e−gAM . Multiplying Id by UJ0(UR) and inte-
grating yields∫ ∞

0
Id (U,g)J0(UR)UdU

=
∫ ∞

0

∫ ∞

0
J0(UR′){exp[gC(R′)] − 1}

× J0(UR)R′dR′UdU = exp[gC(R)] − 1, (8)

where we assumed constant g and used orthogonality relation
Eq. (6) to obtain the last expression. Equation (8) yields the
desired analytic relation,

C(R) = 1

g
ln

[ ∫ ∞

0
Id (U )J0(UR)UdU + 1

]
, (9)

between C(R) and scattered intensity.

B. Discussion

In Eq. (9), C(R) is most accurately determined when Id (U )
is known over the entire range of U values from zero to infinity.
However, in order to derive the analytic relation Eq. (9), it was
necessary to restrict the parameter g to a constant value. This
in turn implies, for fixed θ1, a simple experimental setup with
constant θ2. Since U and g are functions of three common
parameters (k,θ1,θ2), and U also a function of φ2, fixing g
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imposes some limitations on U . Fixing k (or equivalently
λ) additionally limits the range of U .

√
A2 + B2 varies in

magnitude from a minimum of zero to a maximum of 2. Thus,
U is restricted to the range 0 → 2k. The scattering material,
and available light sources and detectors, can further restrict
the range of k, and thus U . For example, metallic scatterers are
highly reflective only for k < ωp/c, where ωp is the plasma
frequency. Given such limitations, the question arises how
accurately C(R) can be determined in a given experimental
scattering configuration.

Here we answer this question for an experimentally con-
venient scattering geometry with fixed k, σ, θ1, and θ2. Then
g is fixed as required, and U varies solely as a function of
φ2. Id (U ) can then be measured for selected fixed θ2 using a
conventional rectangular charge-coupled device (CCD) array
with its axes oriented along the θ2 and φ2 directions. Along
the φ2 direction, U then varies from k | sin θ1 − sin θ2 | to
k[sin2 θ1 − 2 sin θ1θ2 cos φ

(max)
2 + sin2 θ2]1/2 as φ2 varies from

0 to φ
(max)
2 . Choosing θ1 = θ2 ensures that values of U down to

zero are included. Varying φ2 up to φ
(max)
2 = π includes values

of U up to k | sin θ1 + sin θ2 |. From Eq. (9), measuring the
scattered light intensity versus φ2 then yields C(R).

The correlation function formula in Ref. [23] and its
modification in Ref. [24] is derived from inverse Fourier
transform of scattered intensity and given by

C(R) = 1 + 1

k⊥σ
ln

[
A

∫
Id (k⊥,k||)eik||Rdk||

]
, (10)

where k|| = k sin(φ2) and k⊥ = k cos(θ2) and A =
1/

∫
Id (k⊥,k||)dk||. Here the wave vector changed to k||

parallel to the surface plays the role of U in our equation,
and exp(ik||r) is substituted by J0(UR) in our equation. The
main difference between these two equations arises at large
R, where Eq. (10) often generates unphysical oscillations in
C(R), as discussed below.

C. Numerical test

To test our model numerically, we examine surfaces with
two types of correlation functions (Gaussian and exponential)
and various roughness (ξ, σ ) and scattering (θ1, θ2, λ, g)
parameters. Substituting these parameters in Eq. (4) and insert-
ing Gaussian exp(−R2

ξ 2 ) or exponential exp(−R
ξ

) correlation
functions for C(R) [22], we calculate Id (U ) in the Kirchhoff
approximation. We then substitute this Id (U ) in Eq. (9).
Figures 2(a) and 2(b) shows two calculated C(R) curves,
compared with the initially assumed one (red curves). The
blue triangles show C(R) calculated for a mildly rough surface
ξ = 1000 nm, σ = 100 nm probed with scatter parameters g =
1.8, θ1 = θ2 = 50◦, λ = 600 nm. In this case the calculated
C(R) agrees very closely with the initially assumed one:
coefficient of determination r2 is 0.99 for both correlation
functions, and the fit standard deviation error = 0.004 and 0.02
for Gaussian and exponential functions, respectively. Since
the tail of the exponential correlation function is heavier than
the Gaussian one, its fit standard deviation error is larger. To
compensate this effect, larger scattering area or wider beam
size is needed. As σ increases relative to λ, the calculated C(R)
increasingly deviates from the initial assumption [Fig. 2(c)].
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FIG. 2. Gaussian (a) and exponential (b) height correlation
functions of surfaces with correlation length ξ = 1000 nm, root-mean
square roughness σ = 100 nm, g = 1.8 calculated numerically from
scattering of light of wavelength λ = 600 nm, incident at θ1 = 50◦

(triangles) using the model described in the text, compared to the
original height correlation functions (solid red curves). (c) Deviation
of correlation function from original one with increasing σ and its
compensation by increasing θ1, θ2(d).

Reducing g by increasing θ1, θ2 compensates for large kσ ,
and recovers good agreement [Fig. 2(d)]. Generally, keeping
g < 8 yields good agreement, as expected for the Kirchhoff
approximation, which is not accurate for g � 1.

III. EXPERIMENTS

A. Procedure

To test the model experimentally, we used the light
scattering set up shown in Fig. 3. A lens (f = 5 cm)
focused a He-Ne laser beam (λ = 633 nm, power ∼1 mW,
p-polarization) at 45◦ incidence angle to spot size wo ≈ 20 μm
onto unpolished back sides of commercial silicon wafers that
were mounted on a translation stage, to enable convenient

FIG. 3. Experimental setup for measuring intensity profile of
light scattered from a rough surface. Light source is a HeNe laser;
steering mirrors enable adjustment of incident angle θ1; ND filter
ensures detector remains unsaturated; CCD camera is centered on
the specular reflection angle, and located in the focal plane of a
microscope objective collecting lens.
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FIG. 4. Roughness data for Si surface with σ = 175 nm ∼ λ/4.
(a) 2D scattered intensity profile recorded with CCD camera centered
in the specular direction θ2 = θ1 = 45◦ and φ2 = 0. (b) Line-out of the
profile in panel (a) along the azimuthal (φ2) direction, passing through
the specular polar angle θ2 = 45◦, showing coherent specular peak
centered at φ2 = 0, and diffuse scattered profile at larger φ2. (c) AFM
image of the silicon surface. (d) Correlation function for the silicon
sample obtained from present method (red-triangle), AFM (black),
and the method of Ref. [24] (blue-circle).

probing of multiple spots on each surface. A microscope
objective of numerical aperture 0.42 collected scattered light
without polarization discrimination in a cone of 25◦ half-angle
around the specular direction. An 8-bit charge-coupled device
(CCD) camera (Mightex CGE-C013) with a 1280 × 960 array
of 3.75 × 3.75 μm pixels placed in its focal plane, centered at
θ2 = 45◦, φ2 = 0◦, recorded the intensity profile of scattered
light over angular ranges 20◦ < θ2 < 70◦, − 25◦ < φ2 < 25◦.
However, only the data at fixed θ2 = 45 was used to extract
C(R) All light detectable above noise was scattered within this
cone angle, so there was no need to change the position of the
CCD to collect light over a wider range.

B. Results and analysis

Figure 4(a) shows a typical measured 2D scattered intensity
profile obtained in this configuration with 0.3-ms exposure.
However, exposures as long as 30 ms were used to record
low-level scatter at large φ2. Figure 4(b) shows a line-out
along the azimuthal direction passing through the profile at
the specular polar angle θ2 = 45◦. The coherent specular peak
and diffuse scattered light are both evident in this line-out. For

data used in quantitative analysis of surface roughness, it was
important to ensure that the detector remained unsaturated over
the entire dynamic range of scattered light intensity. To this
end, we recorded each scattered intensity profile several times
with different neutral density filters inserted in the path of the
incident beam, so that the intense coherent peak and the weak
tails of the diffuse profile were both recorded within the CCD’s
linear response range. We then assembled the composite profile
from the separate recordings. This procedure increased the
effective dynamic range by approximately a factor of 20,
equivalent to using a 12-bit CCD camera The shape of the
scattered intensity profile, and extracted roughness parameters,
did not depend significantly on polarization of the incident
beam. From the measured linearized total scattered intensity
profile I (φ2), we separately fitted the coherent central peak
Icoh(φ2) and diffuse profile Id (φ2), the latter from the edge of
the central coherent peak out to the largest angle φ2 at which
scattered light was detectable above noise. Since samples
were mounted on a translation stage, we measured scattered
profiles at many different spots on the surface to determine
the statistical variance of key roughness parameters. We then
calculated σ from Eq. (3), and C(R) from Eq. (9) or (10) using
measured scattering intensity at fixed θ2 = 45 from azimuthal
angle φ = 0 to φ = +25. Finally, we determined σ and C(R)
independently from AFM images, such as the one shown in
Fig. 4(c), from the same regions of the surface from which
light was scattered.

Table I shows extracted σ, ξ , and α values from AFM, and
from light scattering using the present method and the method
of Ref. [24], for Si surfaces with σ ∼ λ/4. The uncertainties
represent standard deviations of measurements acquired from
a large number of spots on different, but nominally identical, Si
samples. Roughness parameters obtained from the two light-
scattering methods agree within the stated uncertainties. The
light-scatter value of σ is ∼5% smaller, and of α ∼ 10%
larger, than the corresponding AFM values, while all ξ values
agree within measurement uncertainty.

Figure 4(d) compares C(R) functions obtained from AFM
(black curve), and from light scatter analysis using Eq. (9) (red)
and Eq. (10) (blue), for the same surfaces used for the data in
Table I. Three significant differences between the two light
scatter analyses now emerge. First, the red curve, extracted
from scatter profiles with maximum exposure 0.3 ms, did
not change perceptibly when high-φ2 data from profiles with
30-ms exposure were included. In contrast, the blue curve,
extracted from profiles with exposure up to 30 ms, changed
substantially when limited to data acquired with only 0.3-ms
exposure. Thus, evidently, our Eq. (9) relies much less on
accurate, large-angle, low-level scatter data than Eq. (10).
Second, the red curve agrees somewhat better with the AFM

TABLE I. Statistical surface roughness parameters obtained from AFM, and from light scattering using the present method and the method
of Ref. [24].

AFM Scattering (present method) Scattering (Ref. [24] method)

σ (μm) 0.175 ± 0.002 0.167 ± 0.002 0.167 ± 0.002
ξ (μm) 6.9 ± 0.2 7.1 ± 0.2 6.8 ± 0.5
α 0.73 ± 0.02 0.81 ± 0.02 0.83 ± 0.03
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FIG. 5. C(R) for Si surface with σ = 657 nm ≈ λ, derived with
present method (red-triangle), AFM (black), and the method of
Ref. [24] (blue-circle).

(black) curve (r2 = 0.97, standard deviation = 0.03) than
the blue curve (r2 = 0.89, standard deviation = 0.11). Third,
large fluctuations appear in the blue curve at large R that
are not present in the other C(R) curves. We attribute these
fluctuations to truncation of large k||, and thus large φ2, values
when evaluating the integral in Eq. (10). In principle, these
fluctuations could be reduced by using a wider CCD camera,
or by translating the CCD in the azimuthal direction and using
long exposures to acquire data over a wider φ2 range. For a
given φ2 range, Eq. (9) yields a smoother correlation function
than Eq. (10) because the Bessel function J0 of variable U

in Eq. (9) is more localized than the corresponding function
exp(ik||r) of variable k|| that appears in Eq. (10), and thus
weights Eq. (9) toward smaller R values. Consequently, the
integral in Eq. (9) is less reliant on large-angle, low-level scat-
tering and less sensitive to truncation of the large-angle data at
the edge of the detector, a major source of oscillations of C(R)

at large R. A smaller step size dU of the integration variable
U in Eq. (9), compared to the step size dk|| of the integration
variable k|| in Eq. (10), also helps to suppress these oscillations.
Specifically, for our detector’s pixel size and azimuthal range
(−25◦ < φ2 < 25◦), dU = 0.0048 μm−1, whereas as dk|| =
0.0066 μm−1. Taken together, these differences demonstrate
that Eq. (9) can yield a more accurate C(R) than Eq. (10) when
only low-exposure, low-azimuthal-angle data is available.

Further differences between Eqs. (9) and (10) emerge when
analyzing light scatter data from very rough (σ � λ) surfaces.
As an example, Fig. 5 shows C(R) functions extracted from
a Si surface with σ = 657 nm ≈ λ. The two light scatter
analyses now diverge significantly from each other, the curve
based on Eq. (9) (red) agreeing much more closely (r2 =
0.98 and standard deviation = 0.03) with C(R) obtained from
AFM (black curve) than the curve based on Eq. (10) (blue).
The integration in Eq. (10) is over k|| while in Eq. (9) is over
U , which depends on both k|| and k⊥. Thus, Eq. (9) contains
more information of surface roughness and appears to yield
more accurate C(R) than Eq. (10) for very rough surfaces.

IV. CONCLUSION

In summary, we introduce a method for calculating the
height correlation function C(R) of a homogeneous rough
surface in the framework of Kirchhoff theory that yields
better agreement with AFM measurements over a wider range
of roughness parameters than previous formulations. Test
measurements use a simple experimental geometry with a
single CCD camera at a fixed polar scattering angle that is
amenable to time-resolved measurements. Fluctuations in the
extracted C(R) at large R that arise with previous analysis
methods of comparable simplicity are greatly reduced with
the method presented here.
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