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Managing transportation services efficiently is essential to both public and private 

sectors.  This dissertation addresses three scheduling problems in modern transportation 

systems: the network design problem, the train dispatching problem, and the service route 

design problem.  The transportation network design problem with service requirements 

designs arcs on a directed network and route commodities on the designed arcs so that i) 

commodities satisfy service requirements and ii) the total cost is minimized.  We 

develop three mathematical programming models: a compact but weak arc-flow 

formulation, a large but strong path-flow formulation, and a hybrid formulation that uses 

both the arc-flow and the path-flow representations.  We show that the hybrid 

formulation can significantly strengthen the LP formulation without introducing many 

variables.  To find a good hybrid formulation, we develop columnization and 

decolumnization algorithms that uses the LP relaxation information to identify 

commodities that should use the path-flow representation.  We also develop valid 

inequalities for commodities using the path-flow representation.  The train dispatching 

problem schedules the movements of trains on scarce railroad tracks so as to improve the 

average velocity of trains.  We develop a mathematical programming model and 
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strengthen the model using valid inequalities.  Besides, we present a heuristic to find a 

feasible solution quickly, which can serve as the warm-start solution to the MIP solver.  

For the third problem, we seek to design vehicle routes to deliver and pickup orders for a 

major grocery chain.  We design a GRASP that can incorporate various operational 

requirements, including warehouse loading capacity, loading sequence, time window 

requirements, truck volume and weight capacities, and driver time limits.  Our GRASP 

procedure consists of two phases: the solution construction (Phase I) and the Tabu search 

(Phase II).  We show that the neighborhood structure of solutions is highly degenerate, 

which limits the solution space explored by the Tabu search.  We apply the Tabu search 

with random variable neighborhood to increase the solution space explored. 
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Chapter 1.  Introduction 

The effective and efficient management of transportation services is essential to 

the distribution of goods and services.  With increased complexities of modern business 

operations, a firm with decision support systems for transportation planning can obtain 

significant competitive advantage.  The objective of this research is to examine three 

important problems in transportation planning.  Specifically, we develop mathematical 

models and solution methods for (i) the train dispatching problem in the railroad industry, 

(ii) the transportation network design problem with end-to-end service constraints, and 

(iii) the route design for delivery vehicles with backhauling.   

We first study the train dispatching problem, which is one of the top priorities for 

railway companies.  The train dispatching problem aims to optimize the movement of 

freight trains on railway tracks to reduce train waiting times and increase the average 

train velocity.  To model the problem, we discretize time into periods and model 

movements of trains using arcs in the time space network.  Our model incorporates 

various service requirements, including time window constraints, headways between 

consecutive trains, maintenance of way, and train priorities.  To solve the resulting 

integer program, we explore several model enhancement strategies and propose a 

sequential routing heuristic to generate an initial feasible solution.  We test our solution 

strategies using real-life data from a Class I railroad company. 

Our second problem is the transportation network design problem with service 

constraints (NDSR).  Since infrastructure networks are usually capital-intensive, 

minimizing the cost has been a major concern in transportation network design.  

However, increased global competition has forced firms to take the responsiveness and 

reliability into account.  To address this problem, Balakrishnan et al. (2014) propose the 



 2 

network design problem with service requirement.  On top of the traditional fixed-charge 

multi-commodity network design representation, the NDSR problem incorporates 

additional constraints to ensure that each commodity’s route satisfies various service 

requirements.  We present three formulations for this problem: the weak but compact 

arc-flow formulation, the strong but large path-flow formulation, and a hybrid 

formulation that applies the arc-flow representation to some commodities and the path-

flow representation to others.  To identify a hybrid formulation that achieves the strength 

of path-flow formulation and the compactness of the arc-flow formulation, we propose 

two strategies, both of which decide path-flow commodities by iteratively solving the LP 

relaxation.  To further improve the performance of the hybrid formulation, we develop 

valid inequalities based on the path-flow representation. 

The third problem, the route design for delivery vehicles with backhauling, 

extends the traditional capacitated vehicle routing problem with time window 

(CVRPTW) to capture additional sequencing and warehouse capacity considerations.  

The problem entails routing vehicles to deliver replenishment orders from the warehouse 

to stores and pick up salvage orders from stores back to the warehouse, while considering 

the loading capacity at the warehouse, loading and unloading time at each store, 

sequencing of different types of items on the truck trailer, and volume and weight 

capacities of the trailer.  Since size of the problem is too large to apply exact solution 

method, we use the greedy randomized adaptive search procedure to solve the problem. 

The rest of this proposal is organized as follows.  In Chapter 2, we show the 

modeling and solution strategies for train dispatching.  Chapter 3 discusses the weight-

constraint network design problem.  Chapter 4 presents the store servicing routes design 

problem and our solution strategy.  Chapter 5 concludes this dissertation. 
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Chapter 2.  Network Design with Service Constraints 

2.1.  INTRODUCTION 

Transportation networks play a critical role in both private and public sectors.  

Since building such infrastructure networks is usually capital-intensive, network 

designers have traditionally adopted strategies that emphasize cost minimization.  A 

consequence of an undue focus on cost minimization is that the optimal design ends up 

being sparse—which, in turn, entails long routes for some commodities which may result 

in transportation delays and unresponsive supply chains.  A singular focus on cost can 

thus have adverse consequences along other criteria. 

With increasing global competition, shorter product life-cycles and more 

demanding customers, firms are being forced to take into account additional factors such 

as responsiveness and reliability while making network design decisions.  To address 

this problem, Balakrishnan et al. (2014) proposed an extension of the traditional fixed-

charge, multi-commodity network design problem.  Their model incorporates additional 

constraints to ensure that each commodity’s chosen route satisfies various service 

requirements.  The service requirements are modeled by assigning weights to the arcs 

and ensuring that the sum (or product) of the arc weights for each commodity does not 

exceed the specified limit.  The goal of this paper is to develop a new solution method 

for this important problem, which we refer to as the Network Design with Service 

Requirements (NDSR) problem. 

We can use two opposite approaches for modeling the NDSR problem.  The first 

one defines arc flow variables to represent the commodity flow on arcs and enforces flow 

conservation equations to ensure that flows constitute a path, as desired, from the 

commodity’s origin node to its destination node.  The advantages of such formulation 

are obvious: it is compact (in the sense that the model size is polynomial) and it can 
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easily incorporate additional constraints like the service, or weight—requirements that 

exist in the NDSR problem.  In the NDSR context, such a formulation has a weak linear 

programming relaxation since its solution permits the weight constraint to be satisfied on 

average; in other words, the decomposition of the LP optimal solution may incur origin-

destination flow along paths that do not satisfy one or more weight constraints.   

Alternatively, we can model the NDSR problem using path flows.  In this case, 

we enumerate all feasible paths for each commodity, i.e., all paths from the commodity’s 

origin node to its destination node whose weights for each service metric are within the 

specified limits, and explicitly model the commodity flows on these feasible paths.  By 

excluding the infeasible paths that violate any of the service requirements, this path-flow 

formulation provides a tighter linear programming relaxation; however, since the number 

of feasible paths may be exponential, solving the resulting formulation can be 

computationally difficult.   

To synergistically exploit the compactness of the arc-based formulation and 

tightness of the path-based formulation, we propose a hybrid formulation that uses the 

arc-flow representation for some commodities and the path-flow representation for 

others.  We show that the commodities with stringent service requirements favor the 

path-flow representation, while arc-flow representation is preferred for commodities with 

loose service requirements.  However, instead of deciding a priori as to whether a 

commodity should have the arc-based or the path-based representation, we use the 

information contained in the optimal solutions of linear programming relaxations of 

continuously evolving formulations in the solution process.  Thus, rather than using a 

static codification, we categorize the commodities dynamically, adapting not only to the 

original network structure but also to the information from progressively stronger linear 

programming relaxations.   
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To decide the representation of each commodity based on the information in the 

linear programming relaxation solutions, we use two methods that are respectively 

grounded in estimated bound improvement and in the flow decomposition.  These 

procedures help find a hybrid formulation that has only slightly larger number of 

variables than the pure arc-flow representation but only slightly worse bound than the 

pure path-flow representation.   

For the commodities using the path-flow representation, we develop new valid 

inequalities that help us tighten the hybrid formulation.  The linear programming 

solution of the path-flow representation contains a decomposition of commodity flow 

into paths; this information facilitates taking unions and intersections of the paths to 

develop these new valid inequalities. 

This study advances current state of knowledge in several aspects.  First, it 

provides a novel approach to effectively solve the NSDR problem.  Second, it introduces 

the idea of hybrid formulation, which may be extendable to other problem contexts that 

have a block-diagonal structure.  Third, this paper uses the information contained in the 

path-flow representation of commodity flows to help define new valid inequalities that 

strengthen the hybrid model. Finally, the computations demonstrate that our solution 

approach based on the new hybrid formulation is effective, and that the Pareto principle 

applies in this context as well: using the path-based representation for just a small 

proportion of the commodities results in successfully closing a large proportion of the 

integrality gap. 

The rest of this chapter is organized as follows.  Section 2.2 introduces the 

NDSR problem, reviews the arc-flow formulation discussed in Balakrishnan et al. (2014), 

presents the path-flow formulation, and introduces the hybrid formulation and our 

dynamic reformulation strategies.  In Section 2.3, we develop the new valid inequalities 
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based on path flow representation, as well as reviewing some of the valid inequalities 

discussed in Balakrishnan et al. (2014).  Section 2.4 presents the computational results 

and Section 2.5 provides the concluding remarks. 

2.2.  MODEL FORMULATION 

In the Network Design with Service Requirements (NDSR) problem, we are given 

a directed network with a set of available point-to-point links, and a set of commodities 

with their corresponding origins and destinations and service requirements.  The service 

requirements can model the allowable end-to-end delay, reliability, and number of arcs or 

nodes traversed by the commodity.  We seek to select a subset of arcs of the given 

network and route commodities on origin-destination paths along the selected arcs to 

minimiz the sum of the fixed costs for selecting the arcs and the variable costs for routing 

the commodities while meeting the service requirements.  Specifically, consider a 

directed network G: (N, A) with the node set N = {1, 2, …, n} representing the origin 

nodes, destination nodes or transshipments points for the commodities, and arc set A = 

{(i, j): ,i j N }, with |A| = m, representing facilities or possible interconnections for 

routing flows.  Let K represent the set of commodities, and for each commodity k K , 

let sk denote its origin node and tk its destination node.  We wish to route the 

commodities in K on simple paths from their respective source nodes to their destination 

nodes using the selected arcs.  Since the arcs are uncapacitated, we can normalize the 

demand of each commodity to one.  Let 0ijf   denote the fixed cost of selecting arc (i, 

j), and 0k

ijc   denote the cost to route each unit of commodity k on that arc.  Each 

commodity has up to L service requirements, indexed by l, that any feasible path for the 

commodity must satisfy.  For each service requirement l and arc (i, j), we associate a 

nonnegative weight 
,k l

ijw  corresponding to commodity k.  The sum of the weights of the 
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arcs on the selected path for commodity k and service requirement l must not exceed the 

specified upper limit on the weight ,k lW .  This model also applies in situations where 

the reliabilities of the chosen paths are required not to exceed pre-specified levels.  The 

reliability of a path is the product of the reliabilities of the arcs comprising the path.  

Taking the logarithm of both sides of the reliability requirement results in an additive 

rather than a multiplicative constraint.   

The NDSR problem aims to select the set of arcs and route each commodity from 

its origin to its destination to minimize the total fixed and variable costs, while satisfying 

the weight constraint of each commodity.  The NDSR problem generalizes several well-

known NP-Complete problems, including the fixed-charge network design, weight-

constrained shortest path, and hop-constrained network design problems.  Without the 

weight constraint, the problem reduces to the traditional uncapacitated fixed-charge 

network design problem, which has been extensively studied (e.g., Magnanti and Wong 

1984, Balakrishnan et al. 1997, Randazzo and Luna 2001, Agarwal and Aneja 2012 ).  If 

the design costs are zero and there is only one weight metric, or if there is only one 

commodity and one weight metric, the problem reduces to the weight-constrained 

shortest path problem (Righini and Salani 2008, Carlyle et al. 2008, Dumitrescu and 

Boland 2003); Pugliese and Guerriero (2013) provide an recent survey of exact solution 

approaches for the problem.  When the weights are the same for all arcs, i.e., 
, ,k l k l

ijw w , 

the problem reduces to the hop-constrained network design problem;  Balakrishnan and 

Altinkemer (1992) propose a Lagrangian-based algorithm to solve the problem, and 

Pirkul and Soni (2003) present an alternative formulation that models the number of hops 

explicitly.  When the problem has n – 1 commodities with a common origin node and 

distinct destination nodes, a single service level requirement and same weights for all 
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arcs, the problem reduces to hop constrained minimum spanning tree problem on a 

directed network (Dahl and Gouveia, 2004). 

Recent research has studied the NDSR problem and its variants.  Balakrishnan et 

al. (2014) model the NDSR problem using arc-flow variables and propose various valid 

inequalities to strengthen the model.  Holmberg and Yuan (2003) consider a variant of 

the NDSR problem in which the commodities are not restricted to be routed on one a 

single path; they propose a formulation that models the flow of commodities on paths and 

apply column generation to solve the problem.  Both these approaches have some 

disadvantages, as we discuss below, and prepare us to develop a hybrid approach.   

2.2.1.  Arc-flow formulation 

Balakrishnan et al. (2014) propose an arc-flow formulation by defining two sets 

of variables: arc design variables and arc routing variables.  Design variable zij, equals 

one if the solution selects arc ( , )i j  and is zero otherwise; arc routing variable 
k

ijx  equals 

one if commodity k is routed on arc ( , )i j  and zero otherwise.  Using these variables, 

the NDSR problem has the following integer programming formulation, denoted as 

Model [AF]: 

Model [AF]
( , ) ( , )

Min k k

ij ij ij ij

i j A k K i j A

f z c x
  

     (2.1) 

subject to: 

:( , ) :( , )

  1 if 

1 if 

 0 otherwise

k

k k

jiij k

j i j A j j i A

i s

x x i t k K
 




     



  , i N  (2.2) 

, ,

( , )

k l k k l

ij ij

i j A

w x W k K


   ,l = 1, …, L, (2.3) 

, ( , )k

ij ijx z k K i j A    , and (2.4) 

{0,1} ,( , ),k

ij ijx k j Az K i    . (2.5) 
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The objective function (2.1) minimizes the sum of total fixed costs of installing 

arcs and the routing costs of all commodities.  Constraints (2.2) are the flow 

conservation equations to ensure that each commodity is routed from its origin to its 

destination.  Constraints (2.3), which we refer to as the weight constraints, enforce the 

requirement that the total weight of arcs used by each commodity does not exceed the 

limit W
k,l

 for each metric l.  The forcing constraints (2.4) impose the condition that a 

commodity can only be routed on a path when the underlying arc is selected.  

Constraints (2.5) impose the binary requirement on the flow and design variables.  

2.2.2.  Path-flow formulation 

An alternative way to formulate the problem is to model the routing path of each 

commodity explicitly, instead of using arc flow variables and imposing flow conservation 

equations (2.2) on arc flow variables; we call this new formulation path-flow 

formulation.  Let k  denote the set of feasible paths for commodity k, i.e. paths 

originating at sk and ending at tk whose total weight is within 
,k lW  for every metric l; let 

{ : ( , ) }k k

ij p i j p     denote the set of feasible paths for commodity k that contain 

arc (i, j).  Let 
( , )

k

iji j p

k
p cC


  represent the total variable cost of routing commodity k 

on path p.  As earlier, we let zij equal one if the design selects arc ( , )i j  and zero 

otherwise.  In addition, we define the path routing variable 
k

py , where a value of one for 

k

py  indicates that commodity k flows on path p, and a value of zero indicates that it does 

not.  Using the design and path routing variables, the path flow formulation, denoted by 

Model [PF], is as follows: 

Model [PF]  
( , )

Min 
k

k k

ij ij p p

i j A k K p

f z C y
  

    (2.6) 

subject to: 

1
k

k

p

p

y k K


   , (2.7) 
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, ( , )
k
ij

k

p ij P

p

y z k K i j A


    , (2.8) 

{0,1} ( , ) , ,,k k

p ijy i j A k K pz      . (2.9) 

Constraints (2.7) require that each commodity should be routed on one feasible 

path.  Constraints (2.8) specify that a commodity k is routed on a path p only when 

every arc on p has been selected by the design.  Constraints (2.9) impose the binary 

requirement on the flow and design variables. 

2.2.3.  Comparing Model [AF] and Model [PF] Models 

We discuss the advantages and disadvantages of formulations Model [AF] and 

Model [PF] in this subsection, based on which we propose a new model to overcome the 

disadvantages of both models in Section 2.2.4.  Denote the optimal linear programming 

relaxation value of Model [AF] and Model [PF] as 
AFL  and 

PFL  respectively. 

Proposition 2.1.  For any given problem instance, 
PAF FL L . 

Proof.  Let (y,z) denote an optimal solution to the linear programming relaxation 

of Model [PF].  Define 
:( , )k

k k

ij pp i j p
x y

 
 , then (x,z) satisfies constraints (2.2) and 

(2.4).  In addition, 
, , , , ,

( , ) ( , ) ( , )

( )
k

k kij

k l k k l k k l k k l k k l

ij ij ij p ij p p

i j A i j A p i j p pp

w x w y w y W y W
    

         . 

Hence, (x,z) is feasible to the linear programming relaxation of formulation  

[AF].  Thus, PAF FL L .■ 

Proposition 2.1 shows that Model [AF] has a weaker linear programming 

relaxation than Model [PF].  Intuitively, the linear programming relaxation of Model 

[AF] is weaker since commodities can meet the weight limit constraint on average, i.e., 

by combining flows on paths with large and small weight values.  On the other hand, 

Model [PF] excludes all infeasible paths, and so has a smaller feasible space.   
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A natural question is: How poorly can the linear programming relaxation of 

Model [AF] perform relative to the linear programming relaxation of Model [PF]?  We 

can construct examples to show that the relative gap between the optimal linear 

programming relaxation values, i.e., ( ) /AF PF PFL L L , can be infinity. 

Table 1 compares the size of the two formulations: the size of the arc-flow 

formulation is polynomial in the size of the network, whereas the number of variables in 

the path flow model can be exponential.  As the number of service metrics L increases, 

the difficulty of solving Model [AF] may increase since the number of constraints 

increases, while it is easier to solve Model [PF] due to fewer number of variables.  

Likewise, when the weight limit requirement becomes more stringent, i.e. W
k,l

 is 

decreased, number of variables in Model [PF] decreases and so does the effort to solve 

Model [PF], whereas the size of Model [AF] remains unchanged. 

Table 1.  Comparison of Model [AF] and Model [PF] models 

Criteria Model [AF] Model [PF] 

# of variables | | (| | 1)A K    || | |k

k K
A


   

# of constraints | | ( | |)K n L A   | | (1 | |)K A   

# of service metrics L ↑ 
# of constraints ↑ 

# of variables unchanged 

# of constraints unchanged 

# of variables ↓ 

Weight limits W
k,l

 ↓ # of variables unchanged # of variables ↓ 

Strength of linear 

programming relaxation 
Lower Greater 

 

The pros and cons of Model [AF] and Model [PF] exhibit the classic tradeoff in 

integer programming formulations: compactness versus strength of the model.  The 

stringency of the weight limit can affect the relative effectiveness of the two models.  
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When the weight limit is loose (i.e. when ,k lW  is relatively large), Model [AF] becomes 

more advantageous; in this case, the weight limit constraint is not likely to be binding in 

the linear programming relaxation of Model [AF], which implies the difference between 

AFL  and 
PFL  may not be large.  However, | |k  may be high for every commodity k 

and the higher number of variables may add to the difficulty of solving Model [PF].  If 

the weight limit is stringent, Model [PF] contains fewer path variables making it easier to 

solve.  On the other hand, the weight limit constraint is very likely to be violated by the 

linear programming relaxation of Model [AF], resulting in the solution using infeasible 

paths (and satisfying the weight constraint on average), and hence a larger difference in 

AFL  and PFL  values. 

2.2.4.  Hybrid formulation 

The comparison of Model [AF] and Model [PF] suggests that an approach based 

on path-flow variables is likely to be better for tightly-constrained commodities, and 

using arc-flow variables is likely to perform better otherwise.  Since the weight limits of 

commodities are unlikely to be all stringent or all loose in the same problem instance, we 

are motivated to use the path-flow representation for commodities with tight weight 

constraints, and the arc-flow representation for others.  

We use AK K  to denote the set of commodities for which the model uses the 

arc-flow representation and PK K  to denote the set of commodities for which the 

model uses the path-flow representation.  Note that KA and KP form a partition of K, i.e. 

PAK K   and PAK K K  .  Given the partitions (KA, KP), the hybrid formulation 

Model [HF(KA, KP)] can be represented as follows: 
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Model [HF(KA, KP)] 
( , ) ( , )

Min 
k

A P

k k k k

ij ij ij ij p p

i j A k K i j A k K p

f z c x C y
    

        (2.10) 

subject to:  

:( , ) :( , )

  1 if ( )

1 if ( )

 0 otherwise

k k

ij ji A

j i j A j j i A

i O k

x x i D k k K
 




     



  , i N   (2.11) 

( , )

k k k

ij ij ij A

i j A

w x W k K


   ,l, = 1, …, L, (2.12) 

, ( , )k

ij ij Ax z k K i j A    , (2.13) 

1
k
ij

k

p P

p

y k K


   , (2.14) 

:( , )

, ( , )
k

k

p ij P

p i j p

y z k K i j A
 

    , (2.15) 

{0,1} ,k k

p Py k K p    , (2.16) 

, {0,1} ,( , )ij

k

ij Az x k K i j A    , (2.17) 

If KA = K, the model reduces to the weaker but more compact arc-flow 

formulation; if KP = K, the model reduces to the larger but stronger path flow 

formulation.   

The number of variables in Model [HF(KA, KP)] is | || | | | | |
P

k

KA k
A K A


  , 

larger than the number of variables in Model [AF] and smaller than that in Model [PF].  

We denote the optimal linear programming relaxation value of Model [HF(KA, KP)] as 

( , )A PHF K KL .   

Proposition 2.3.  For any problem instance and any commodity partition (KA, KP), 

( , )A PAF HF K K PFL L L  . 

Proof.  The proof of this proposition is similar to the proof of Proposition 2.1.  ■ 

Proposition 2.3 indicates that the strength of the model is also between Model 

[AF] and Model [PF].  Thus, we can view Model [HF(KA, KP)] as the compromise 

between the arc-flow and the path-flow representation: (i) compared to Model [AF], 

Model [HF(KA, KP)] has a stronger linear programming relaxation but without an undue 
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increase in the model size, but (ii) compared to Model [PF], the hybrid model has fewer 

number of variables but a weaker linear programming relaxation bound. 

While Model [HF(KA, KP)] achieves an advantageous middle ground, we need to 

determine KA and KP before we can use the model.  The partition of K into KA and KP is 

essential to the performance of Model [HF(KA, KP)]; we would like to choose a partition 

that brings about the appropriate mix of compactness of Model [AF] and strength of 

Model [PF].  As discussed earlier, the tightness of the weight limit values can greatly 

affect the effectiveness of the path-flow and the arc-flow representations: if commodity k 

has stringent weight limits, it is more advantageous to include it in the set KP; but hand, if 

commodity k has loose weight limits, it is better to include it in the set KA. 

2.2.5.  Columnization methods 

Since determining the tightness of the weight limits a priori is difficult, we adopt 

an iterative method that exploits linear programming relaxation solutions to guide the 

partitioning of the set of commodities into those for which the arc-based formulation is 

more appropriate and those for which the path-based formulation is more appropriate.  

Starting with KA=K, we refer to the process of moving a commodity k from KA to KP as 

columnizing commodity k.  Given the linear programming solution to the current hybrid 

model, we propose two possible methods to evaluate the choice of commodities to 

columnize: the flow-decomposition method and the estimate-bound method.   

The flow-decomposition method examines the flow decomposition of the arc flow 

commodities to decide which commodities to be columnized.  Given any linear 

programming relaxation solution with arc-flow values for commodity k, we decompose 

the arc-flow into a set of path flows (Ahuja et al. 1993), denoted as P
k
.  If 

, ,

( , )

k l k l

iji j p
w W


  for some path kp P  and metric l, i.e., the solution attempts to use 
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some infeasible path, the weight metric l may be stringent for commodity k.  In the flow 

decomposition method, we columnize a commodity k if , ,

( , )

k l k k l

ij iji j p
xw W


  for any 

path kp P .  We tested several strategies for flow decomposition in a network, and 

based on this testing, used the shortest-weight path first strategy when decomposing the 

arc-flow into path flows.  With such a strategy, the path with shortest-weight are 

considered first during the flow decomposition. 

The estimate-improvement method tires to estimate the potential improvement of 

the linear programming relaxation solution and use this estimated improvement to decide 

which commodities to columnize. For each commodity k and arc (i, j) with 0k

ijx  , we 

must have i

k

ij jx z .  If 
k

ij ijx z , then arc (i, j) is not specially designed to route 

commodity k.  If 
k

ij ijx z , we can divide the design value zij into two parts: the portion of 

value specially designed for commodity k and the portion of value used by other 

commodities.  Given the LP solution ( , , )x y z  to hybrid Model [HF(KA, KP)], the 

portion of value used by commodities other than k is the maximum flow value of those 

commodities, represented by  

\{ }
:( , )

( , ) max max ,(,max , )
PA k

k k

ij A P ij p
k k k

i j

k

A
K K

p p

x y k K iK j AK  

 
 

  
  

 

 



 . 

Accordingly, the portion of the arc designed specifically for commodity k is 

( , )k

ij ij A PKz K .  Thus, we can estimate the contribution of commodity k to the total 

cost as  

 
( , )

}( , ) max{0, ( , )k

ij ij Ai

k k k

A P ij A j ij ij A Px zE K K c f k KK K


    . 

We can solve the following LP problem to estimate the contribution of 

commodity k to the total cost after columnizing commodity k. 

( , )

( , ) min
k

k k

p p

i j Ap

k

A P ij ijD K K C y f u


     (2.18) 

subject to 
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1
k

k

p

p

y


  (2.19) 

( , )
k
ij

k

p A P

k

ij ij

p

uy K aK A


     (2.20) 

0 kk

p py     (2.21) 

0 ( , )ij iu j A    (2.22) 

In the above model, uij is the portion of the arc specially designed for commodity 

k.  The following proposition shows that D
k
(KA, KP) – E

k
(KA, KP) gives an upper bound 

on the improvement in the LP relaxation value after columnizing commodity k.  Thus, 

we can use D
k
(KA, KP) – E

k
(KA, KP) as a criterion to decide if commodity k should be 

columnized.  

Proposition 2.4.  ( \ { } , { } ) ( ,H )H ( , ) ( , )
A AP P

k k

K k K k K K A P A PL L D K K E K K   

Proof: Denote ( , ) ( , )H H ( , )
A AP P

k

K K K K A Pl L E K K  .  Assume the optimal solution to the LP 

relaxation of H(KA, KP) is (x
1
, y

1
, z

1
) and the optimal solution to formulation (2.18)-(2.22) 

is (y
2
, u

2
).  We can define a feasible solution (x

3
, y

3
, z

3
) to formulation 

H( { },\ { })A PK k K k  as follows: 

3 1k k

ij ijx x   for all \{ }Ak K k  and ( , )i j A   

3 1k k

p py x   for all Pk K  and kp   

3 2k k

p py y   for k k   and kp  

23 ( , )ij A P

k

ij ijz K Ku    for all (i, j) ∊ A.
 

The objective function value of solution (x
3
, y

3
, z

3
) is )H( , ( , )

PA

k

K K A Pl D K K . Thus, we 

have  ( , ) ( \{ },H { })H ( , ) 0
AP PA

k

K K A P K k K kl D K K L    , which is equivalent to  

( \{ }, { }) ( ,H )H ( , ) ( , )
A AP P

k k

K k K k K K A P A PL L D K K E K K    .■ 

 

2.2.6.  Decolumnization method 

As we columnize more commodities, some of the commodities columnized earlier 

may no longer need the path-flow representation.  So, we may need a decolumnization 
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algorithm to transform the commodity from the path-flow representation to the arc-flow 

version.  Given the LP relaxation solution of a hybrid formulation, we propose an 

estimate-bound method to decolumnize commodities. 

Given the LP solution ( , , )x y z  to Model [HF(KA, KP)] the portion of value used 

by commodities other than k is the maximum flow value of those commodities, 

represented by  

\{ }
( , ) max max , max

P
i

A k
j

k k

ij A P ij p
k k k

k

K K
p

K K x y  

 


  
  

  
  for k ∊ KP and (i, j) ∊ A. 

Accordingly, the portion of the arc designed specifically for commodity k is 

( , )k

ij ij A PKz K .  Thus, we can estimate the contribution of commodity k to the total 

cost as  

( , )
max{0( , ) , }k

k k k

p p ij

k

A P ij ijp i j A
K K C y f zF 

 
   . 

We can solve the following problem to estimate the contribution of commodity k 

to the total cost after columnizing commodity k.   

( , ) ( , )

( , ) min
i j A

k k k

A P i

i j A

j ij ij ijG K K c x f u
 

    

subject to  

( , ):( , ) ( , ):( , )

1 if  ( )

1 if  ( )

0 otherwise

k k

i j i j A j i j i A

ij ji

i O

x x

k

i D k i N
 




     



    (2.23) 

( , )

k

i

k k

ij

j A

ijx Ww


  (2.24) 

( , ) ( , )k

ij ij ij A Px u K K i j A     (2.25) 

0 ( , )k

ij ix j A    (2.26) 

0 ( , )ij iu j A    (2.27) 

In the formulation, uij denotes the portion of the arc (i, j) designed to incorporate 

the flow of commodity k.  Proposition 2.5 shows that F
k
(KA, KP) – G

k
(KA, KP) gives a 

lower bound on the decrease in the LP relaxation value, after decolumnizing commodity 
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k.  Therefore, the value of F
k
(KA, KP) – G

k
(KA, KP) gives a criterion on whether 

commodity k should be decolumnized:  if the value of D
k
(KA, KP) – E

k
(KA, KP) is high, 

we should not decolumnize k. 

Proposition 2.5.  ( , ) ( { }, \{H )H } ( , ) ( , )
P PA A

k k

K K K k K k A P A PL L F K K G K K   

Proof: Similar to the proof of Proposition 2.4.■ 

2.2.7.  Dynamic columnization and decolumnization 

In this section, we integrate the columnization and decolumnization methods to 

find a good hybrid formulation.  To prevent the size of hybrid formulation from 

becoming too large, we require that commodities that are considered to be candidates for 

columnization have a limited number of feasible paths.  Specifically, commodity k is a 

candidate for assignment to KP only when | |k U  , where U is a parameter. 

Starting with KA = K, we iteratively solve the linear programming relaxation 

problem and use the resulting solution to decide the set of additional commodities to 

columnize.  When no commodities can be columnized (because no commodity satisfied 

our columnization check), we start to decolumnize commodities, and when no 

commodities can be decolumnized, the resulting partition of commodity is returned  

Figure 1 illustrates the procedure. 
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Procedure dynamic_columnization_and_decolumnization 

Input: NDSR problem instance with network G and set of commodities K 

 U, the upper bound for number of feasible paths of any commodity k  KP 

 Method to evaluate the weight tightness 

Output: (KA, KP), a partition of commodity set K 

Step 1: KA = K and KP =  

Step 2: Solve the linear programming relaxation of Model [HF (KA, KP)] 

 Ka =  

 For each commodity k  KA with |П
k
| < U 

If we use the estimate-improvement method and  

D
k
(KA, KP) – E

k
(KA, KP) > 0 for some k 

  Add k to Ka 

  Break 

Else if we use the flow-decomposition method 

  Decompose the solution into path flows, denoted as P
k
 

  If , ,

( , )

k l k l

iji j p
w W


  for some p P

k
 and some l 

  Add k to Ka 

If Ka ==  

Go to step 4 

Else 

Go to Step 3 

Step 3. KA := KA \ Ka and KP := KP  Ka 

 Go to Step 2. 

Step 4. Solve the linear programming relaxation of Model [HF (KA, KP)] 

 Ka =  

 For each commodity k  KP  

If F
k
(KA, KP) – G

k
(KA, KP) ≤ 0 for some k 

Add k to Ka 

If Ka ==  

Stop the procedure and return (KA, KP) 

Else 

Go to Step 5 

Step 5. KA := KA  Ka and KP := KP \ Ka 

 Go to Step 4. 

Figure 1.  Procedure for dynamic columnization 
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2.3.  STRENGTHENING THE HYBRID FORMULATION 

In this section, we discuss how to further strengthen the hybrid formulation by 

applying valid inequalities.  For the arc-flow proportion of the formulation, we apply 

various inequalities proposed in Balakrishnan et al. (2014); we also adapt their   OR-IF 

inequalities for commodities that have a path-flow representation.  In addition, we 

discuss how the path-flow representation enables us to develop valid inequalities which 

we cannot replicate using just the arc flow variables. 

2.3.1.  Arc-flow representation 

Balakrishnan et al. (2014) propose various inequalities to help strengthen Model 

[AF].  By exploiting the weight constraints, they derive several valid inequalities that 

tighten the linear programing relaxation of the model.  For example, the incompatible r-

Arc inequality 

 
( , ) '

1
i j A

k

ij rx


   (2.28) 

states that commodity can flow over at most 1r   of the arcs 'A A  for the selected 

route to avoid violating weight limits.  The contingent routing inequality  

 
( , ) '

k k

gh ij

i j A

x x


   (2.29) 

stipulates that if commodity k flows on arc (g, h), then it must also be routed on at least 

one of the arcs in the set 'A A to satisfy the weight constraints.  While both 

inequalities are effective in closing the integrality gap for Model [AF], they are 

automatically satisfied by any linear programming solution for Model [PF], since all 

infeasible paths are already excluded from the formulation. 

Balakrishnan et al. (2014) also combine the r-arc inequalities and the contingent 

routing inequalities to derive the generalized OR-IF inequality.  Let us consider one 

specialization of this generalized inequality when r = 2 for the r-arc inequalities (OR 
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inequalities) and | ' | 1A   for the contingent routing inequalities (IF inequalities).  Let I 

= {1, 2, …, Q} denote a set of indices, with 
ORI I  denote the set of OR indices and 

\IF ORI I I  denote the set of IF indices.  Each OR index 
ORq I  has a corresponding 

2-arc inequality 
1 1

1q q

q q q q

k k

i j i jx x
 

  , and each IF index 
IFq I  has a corresponding 

contingent routing constraint q q

q q q q

k k

g h i jx x .  Starting from these base inequalities, 

Balakrishnan [2014] derive the following   OR-IF inequality, 

 
1 1

1

( 1) / 2( )q q q

q q q q

O

q q

R

q

IF

k k k

i j i j g

Q

q I q I q

h ax x x z 
 

  

      , (2.30) 

where | |ORI  .  We can use k
ij

k k

ij pp
x y


  for 

Pk K  so that inequality 

(2.30) is applicable in the hybrid model. 

2.3.2.  Union-intersection inequality 

The path-based representation for commodities is more “informative” than the 

arc-based representation: the arc-flow variables provide only local information about the 

flow on each arc, and a flow decomposition method is needed to determine the origin-

destination path flow values (which may not be unique) from the arc-flow values.  On 

the other hand, the path-flow representation explicitly models the flow on feasible paths; 

thus, not only do we know the decomposition of the path flows from sk to tk, but the arc 

flow on each arc (i, j) can be easily determined by using k
ij

k k

ij pp
x y


 .  Knowing the 

path flows permits us to take the unions and intersections of paths and thus derive new 

valid inequalities.  

Proposition 2.6.  For any Q arcs 1 1 2 2( , ), ( , ),..., ( , )Q Qi j i j i j  and Q commodities 

1 2, ,..., Qk k k , the Union-Intersection inequality 

 

1 1 1 1

1

1 1

Q q

q q
k k k kQ Q q q
i j i j i j i jQ Q q q q q

Q Q
k k

p p i j

q qp p

y y z

 



    

      (2.31) 

is valid. 
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Proof.  For any q = 1, …, Q – 1, the forcing constraints require that 

1 1

q
k kq q

q q
i j i jq q q q

k

p i jp
y z

 
 

  and 
1 1

1 1

q
k kq q

q q
i j i jq q q q

k

p i jp
y z

 
 

 
 .  In addition, we have 

1 1

1Q
k kQ Q
i j i jQ Q

k

pp
y

 
   (since the left hand side of this inequality is less than or equal to 

q
kq

k

pp
y

 , which itself does not exceed one), and 
1 1

1 1

Q
k kQ Q

Q Q
i j i jQ Q

k

p i j i jp
y z z

 
   (since 

the left hand side of this inequality is less than or equal to 
1 1

Q Q
k kQ Q
i j i jQ Q

k k

p pp p
y y

 
  , 

which is less than or equal to the right hand side of the inequality).  Summing these four 

sets of inequalities, dividing both sides by two, and rounding down the right hand side 

give inequality (3.4).  ■ 

Note that the Q commodities in inequality (2.31) need not be all distinct.  To 

intuitively understand the inequality, let us look the inequality with Q = 2 for arcs 
1 1( , )i j , 

2 2( , )i j ; enforcing inequalities for all pairs of k1 and k2 is equivalent to enforcing the 

inequality 

 
1 1 2 2

1 1 2 2 1 1 2 2

max maxk k k k
i j i j i j i j

k k

k p k p i j i jp p
y y z z

   
     (2.32) 

Inequality (2.32) strengthens inequality 

1 1 2 2
1 1 2 2 1 1 2 2

k k k k
i j i j i j i j

k k

p p i j i jp p
y y z z

   
     (it is valid since the left hand side is 

equivalent to 
1 1 2 2

k k
i j i j

k k

p pp p
y y

 
  ) for each commodity k by taking maximization 

over all commodities.  Given any pair of arcs, we cannot use arc-flow variables to 

represent the flow of a commodity passing through both arcs, nor can we represent the 

flow passing through at least one of them; thus, it is hard, if not impossible, for us to 

enforce inequality (2.32) using the arc-flow representation. 

To appreciate the effectiveness of the inequality, consider the example in Figure 2.  

In this example, Q = 2, we want to route commodity k1 from node 1 to node 6 and route 

commodity k2 from node 2 to node 5; the weight limit for both commodities is 5. The 

fixed costs and weights for the arcs are shown in Figure 2a; the costs of routing both 
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commodities on all the arcs are zero; note that both commodities have the same weights 

for all arcs.  Figure 2b illustrates the design values in linear programming solution for 

formulation Model [PF]; in the solution, the design value for each arc is ½, the required 

flow of commodity k1 splits equally on paths 1-2-4-6 and 1-3-5-6, and the flow of 

commodity k2 splits equally on paths 2-4-3-5- and 2-5; the objective function value is 

13/2. 

To see the effectiveness of inequality (3.4), denote path 1-2-4-6 as p1 , path 1-3-5-

6 as p2 , path 2-4-3-5 as p3, and path 2-5 as p4; the linear programming solution has 
1 1 2 2

1 2 3 4
1/ 2

k k k k

p p p py y y y    .  Since 1 1 2

1 1 1 2 324 35 24 35

1 2

2 2k k k k

k k k k k

p p p p pp p
y y y y y

   
     , 

inequality (2.31) is simplified into 1 1 2

1 2 3 24 35

k k k

p p py y y z z    ; enforcing this constraint 

would cut off the solution and yield an integer (optimal) solution whose design value is 

shown in Figure 2c.  In the solution, commodity k1 uses path 1-2-4-6 and commodity k2 

uses path 2-4-3-5. 

 
a.  Network with arc fixed cost 

and weight 

 
b. Solution of linear 

programming without 

inequality (2.31) 

 
c. Solution of linear 

programming with inequality 

(2.31) 

Figure 2.  Example for Union-intersection inequality 
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To facilitate the study of the separation procedure, we first discuss the necessary 

conditions that must be met before an linear programming solution (y, z) can violate 

inequality (2.31). 

Corollary 2.7.  A linear programming solution (y,z) can violate inequality (2.31) only if 

1 1
1 1

1 1

(i)     / 2 / 2,  and

(ii)    for all 0   1,2,..., 1.  

Q
k kQ Q

Q Q
i j i jQ Q

q
k kq q
i j i jq q q q

k

p i j i jp

k

pp

y z z

y q Q
 

 

 

 

 




 

Proof: We need to show that if either condition is violated, inequality (2.31) is satisfied.  

First note that any linear programming solution satisfies 

1 1
1 1

/ 2 / 2q
k kq q

q q q q
i j i jq q q q

k

p i j i jp
y z z

 
 

 
   for all i = 1, …, 1Q . Now suppose 

1 1
1 1

/ 2 / 2Q
k kQ Q

Q Q
i j i jQ Q

k

p i j i jp
y z z

 
  . Adding these inequalities gives inequality (2.31).  

Hence, condition (i) is necessary.  Next, suppose 
1 1

0h
k kh h
i j i jh h h h

k

pp
y

 
 

  for some h; 

adding inequalities 
1 1

q
k kq q

q q
i j i jq q q q

k

p i jp
y z

 
 

  for q h , 
1 1

1 1

q
k kq q

q q
i j i jq q q q

k

p i jp
y z

 
 

 
  for 

q h , and 
1 1

1 1

Q
k kQ Q

Q Q
i j i jQ Q

k

p i j i jp
y z z

 
   (implied by forcing constraints) gives inequality 

(2.31).  Therefore, condition (ii) is necessary.■ 

Condition (i) implies that the total flow of kQ on the feasible paths that contain 

either (i1, j1) or (iQ, jQ) must be high enough, and condition (ii) implies 
1 1

q q

q q q q

k k

i j i j 
  is 

non empty for all q = 1, 2, …, Q.  As we will see later, these conditions help to speed up 

the separation procedure for inequality (2.31). 

We create an undirected network ( , )G N A  based on the linear programming 

solution (y,z) as follows: for each arc ( , )i j A  with 0ijz  , we create a node, denoted 

as [i, j], corresponding to it; for each pair of nodes 1 1 2 2[ , ],[ , ]i j i j N , if 

1 1 2
1

2
1 2 2[ , ][ , ] max 0k k

i j i j

k

ppi j i j k yY
 

  , we create an undirected arc, with cost 

1 1 2 2 1 1 2 2 1 1 2 2[ , ][ , ] [ , ][ , ]/ 2 / 2i j i j i j i j i j i jd z z Y   , between nodes [i1, j1] and [i2, j2].  Note that (a) 

Condition (ii) permits us to include only those node pairs [i1, j1] and [i2, j2] for which 
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1 1 2 2[ , ][ , ] 0i j i jY   , and (b) 
1 1 2 2[ , ][ , ] 0i j i jd   since 

1 1 2 2 1 1[ , ][ , ] [ , ]i j i j i jzY   and 
1 1 2 2 2 2[ , ][ , ] [ , ]i j i j i jzY  .  

Besides, any simple path in network G  corresponds to an inequality (2.31).  For 

example, path 
1 1[ , ]i j -

2 2[ , ]i j -…- [ , ]Q Qi j  corresponds to arcs inequality (2.31) defined 

by arcs 
1 1( , )i j , …, ( , )Q Qi j  in network G and commodities 

arg max k k
i j i jq q q q

k

pk pqk y
 

   for q = 1, …, Q – 1 and 
1 1

arg max k k
i j i jQ Q

k

pk pQk y
 

  ; in 

addition, this path has cost 
1 1

1 1

1 1

2 1
/ 2 / 2 q

k kq q
Q Q q

i j i jq q q q

Q Q k

i j i j i pq q p
z z z y

 

 

   
    ,and the 

sum of this cost and 
1 1

1 1

/ 2 / 2 Q
k kQ Q

Q Q
i j i jQ Q

k

i j i j pp
z z y

 
   gives the difference between the 

right hand side and left hand side of inequality (2.31). 

In the separation procedure, for a given pair of arcs 
1 1( , )i j  and 

0 0( , )i j , we seek 

the most violated inequality (2.31), if any, with 0 0( , ) ( , )Q Qi j i j  for some number Q.  

We denote the cost of shortest path from 
1 1[ , ]i j  to 

0 0[ , ]i j  as 
1 1 0 0[ , ][ , ]i j i jD .  To identify 

violated inequalities, condition (i) of Corollary 2.7 allows us to only study origin node [i1, 

j1] and destination node [i0, j0] with 

01 1 0 0 1 1 0 0
1 1 0 0

[ , ][ , ] / 2 / 2 max 0kk
i j i j

k

i j i j i j i j k pp
E z z y

 
    .  If 

1 1 0 0 1 1 0 0[ , ][ , ] [ , ][ , ] 0i j i j i j i jE D  , we 

have identified an violated inequality ; otherwise no such inequality is violated.  Figure 3 

describes the detailed procedure. 
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Procedure separate_union-intersection_inequalities 

Input:  (y, z), linear programming solution of Model [PF] 

 arcs (i1, j1) and (i0, j0) 

Output: the most violated Union-Intersection inequality (2.31) 

Step 1. Calculate 
1 1 0 0

0 0 1 1

/ 2 / 2 max k k
i j i j

k

i j i j k pp
D z z y

 
      

 If 0D   

 Stop the procedure and there is no violated inequality. 

Step 2. Create the intersection network ( , )G N A  

Find the shortest path between nodes [i1, j1] and [i0, j0]; denote the path as 

1 1[ , ]i j -
2 2[ , ]i j -…- 1 1[ , ]Q Qi j  -

0 0[ , ]i j  and its cost as E 

 If D + E < 0 

Return the inequality (2.31) with arcs 1 1( , )i j ,…, 1 1( , )Q Qi j  , 0 0( , )i j  

and commodities 
1 1

arg max k k
i j i jq q q q

k

k

pq pyk
 

 
   for q = 1, 

…, Q – 1, and commodity 
0 0 1 1

0 arg max k k
i j i j

k

pk p
k y

 
  . 

 Else 

 Stop the procedure and there is no violated inequality 

Figure 3.  Procedure to separate union-intersection inequality 

 

2.3.3.  Q-union inequality 

Proposition 2.8  Let Q be an odd integer number.  Given Q arcs 

1 1 2 2( , ), ( , ),..., ( , )Q Qi j i j i j , and Q commodities 1 2, ,..., Qk k k , the Q-union inequality 

 

1 1 1 1

1

1 1

( 1) / 2Q q

q q
k k k kQ Q q q
i j i j i j i jQ Q q q q q

Q Q
k k

p p i j

q qp p

y y z Q

 



    

        (2.33) 

is valid. 

Proof:  Consider the valid inequalities
1 1

1 1

q
k kq q

q q q q
i j i jq q q q

k

p i j i jp
y z z

 
 

 
   and 

1 1

1q
k kq q
i j i jq q q q

k

pp
y

 
 

  for q = 1, …, Q – 1, 
1 1

1 1

Q
k kQ Q

Q Q
i j i jQ Q

k

p i j i jp
y z z

 
  , and 

1 1

1Q
k kQ Q
i j i jQ Q

k

pp
y

 
 ; summing up these inequalities, dividing both sides by two, and 

rounding down the right hand side, we obtain inequality (2.33).■ 

Balakrishnan et al. (2014) considers a specialization of the  OR-IF inequality 

for the arc-flow formulation, called  OR inequality, in Model [AF] model; for an odd 
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number Q, arcs 
1 1( , ),i j  

2 2( , ),i j …, ( , )Q Qi j , and commodities 1 2, ,..., Qk k k , the  OR 

inequality 

 
1 1 1 1

1

1
1

( 1) / 2( )Q Q q q

Q Q q q q q q q

k k k k

i j i j i j i j

Q
Q

q i j

q

x x z Qx x
 






       (2.34) 

is valid if 
1 1

1q q

q q q q

k k

i j i jx x
 

  for q = 1, …, Q – 1 and 
1 1

1Q Q

Q Q

k k

i j i jx x  .  We can view 

inequality (2.34) as a specialization of inequality (2.33) when 
1 1

1q q

q q q q

k k

i j i jx x
 

 (or 

equivalently 
1 1

q q

q q q q

k k

i j i j 
   ) for q = 1, …, Q – 1 and 

1 1
1Q Q

Q Q

k k

i j i jx x  (or equivalently 

1

1 1

Q

Q Q

kk

i j i j   ).  In the arc-flow representation, without knowing decomposition of 

the path flows from sk to tk, we can only enforce the special case, i.e. inequality (2.34), 

but not the general inequality (2.33). 

We demonstrate the effectiveness of the inequality using the example in Figure 4.  

This problem instance has three commodities k1, k2, and k3 with origins s1, s2, and s3  and 

destinations t1, t2, and t3 respectively.  The weight limit for each commodity is 3 and the 

cost to route each commodity on each arc is 0.  The numbers in Figure 4a present the 

fixed cost and weight for each arc.  Figure 4b illustrates the linear programming solution 

to Model [PF].  In the solution, the design value for each arc is ½ and the objective 

function value is 3/2; the flow of commodity k1 splits equally on paths 1-2-6-8, and 1-3-

7-8, the flow of commodity k2 splits equally on paths 2-6 and 2-4-5-6, and the flow of 

commodity k3 splits equally on paths 3-7 and 3-4-5-7.  Denoting paths 1-2-6-8, 1-3-7-8, 

2-6, 2-4-5-6, 3-7, and 3-4-5-7 as p1, p2, p3, p4, p5, and p6, we have 
3 3 31 2 1 1 2 2

3 31 1 2 2 1 2 3 4 5 626 37 26 45 37 45
k kk k k k

k k kk k k k k k

p p p p p p p p pp p p
y y y y y y y y y

     
          , 

and inequality (2.33) is simplified to 3 31 1 2 2

1 2 3 4 5 6 26 45 37 1
k kk k k k

p p p p p py y y y y y z z z         ; 

Adding this constraint cuts off the solution and yields an integer (optimal) solution shown 

in Figure 4c. 
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a.  Network with arc fixed 

cost and weight value 

 
b.  Solution of linear 

programming without 

inequality (2.33) 

 
c. Solution of linear 

programming with valid 

inequality (2.33) 

Figure 4.  Example for Q-union inequality 

 

To separate violated inequality (2.33), we create an undirected arc-union network 

( , )N AG     based on the linear programming solution (y, z) as follows: for each node 

arc ( , )i j A  with 0ijz  , we create a node corresponding to it, denoted as [i, j].  For 

each pair of nodes 1 1 2 2[ , ],[ , ]i j i j N  , if 
1 1 2

1
2

1 2 2[ , ][ , ] max 0k k
i j i j

k

ppi j i j k yY
 

  , we create 

an undirected arc, with cost 
1 1 2 2 1 1 2 2 1 1 2 2[ , ][ , ] [ , ][ , ] / 2 / 2i j i j i j i j i j i jd Y z z   , between them.  Any 

simple cycle 1 1[ , ]i j - 2 2[ , ]i j -…- [ , ]Q Qi j - 1 1[ , ]i j  in G  , with Q being an odd number, 

corresponds to an inequality (2.33) defined by arcs 1 1( , )i j , …, ( , )Q Qi j  and 

commodities arg max k k
i j i jq q q q

k

pk pqk y
 

   for q = 1, …, Q – 1 and 

1 1

arg max k k
i j i jQ Q

k

pk pQk y
 

  ; the cost of the cycle is 

1 1 1 1

1

1 1

max Q q
k k k kQ Q q q

q q
i j i j i j i jQ Q q q q q

Q Q
k k

k p p i jp p
q q

y y z
 



   
 

    , and if this cost is bigger than (Q – 

1)/2, we find a violated inequality (2.33).  Our cutting plane method implements the 

inequality with Q = 3 and applies conditions in Corollary 3.8 to speed up the separation 

by reducing the number of possible arc triplets.  Conditions in Corollary 3.8 indicates 



 29 

that the design values or the total flow on two arcs should be large enough to violate 

inequality (2.33). 

Corollary 3.8.  Inequality (2.33) with Q = 3, i.e. inequality 

 31 2

3 31 1 2 2 1 1 2 2 3 3
1 1 2 2 2 2 3 3 3 3 1 1

1k kk k k k

i j i j i j i j i j i j

kk k

p p p i j i j i jp p p
y y y z z z

     
          

can be violated by the linear programming solution (y, z) only if the following conditions 

are met: 

(i) 
1 1 2 2 3 3

1i j i j i jz z z    

(ii) k k
a b

k

pp ay z
 

  and k k
a b

k

pp by z
 

  for all triplets [a, b, k] = [(i1, j1), (i2, 

j2), k1], [(i2, j2), (i3, j3), k2], [(i3, j3), (i1, j1), k3]. 

(iii) 1k k
a b

k

p cp
y z

 
   for all quadruplets [a, b, c, k] = [(i1, j1), (i2, j2), (i3, j3), 

k1], [(i2, j2), (i3, j3), (i1, j1), k2], [(i3, j3), (i1, j1), (i2, j2), k3]. 

Proof: (i) We have 
3 1 2

3 3 1 1 2 2 1 1 2 2 3 3
3 3 1 1 1 1 2 2 2 2 3 3

2 2 2k k k k k k

i j i j i j i j i j i j

k k k

p p p i j i j i jp p p
y y y z z z

     
       , since 

3

3 3 1 1 3 3
1 1 3 3

k k

i j i j

k

p i j i jp
y z z

 
  , 1

1 1 1 1 2 2
1 1 2 2

k k

i j i j

k

p i j i jp
y z z

 
  , and 2

2 2 2 2 3 3
2 2 3 3

k k

i j i j

k

p i j i jp
y z z

 
 

.  If inequality (2.33) is violated, 
1 1 2 2 3 3 1 1 2 2 3 3

2 2 2 1i j i j i j i j i j i jz z z z z z      , which 

implies inequality 
1 1 2 2 3 3

1i j i j i jz z z   . 

(ii) Since 2

2 2 2 2 3 3
2 2 3 3

k k

i j i j

k

p i j i jp
y z z

 
   and 2

2 2

2 2 3 3

1k k

i j i j

k

pp
y

 
 , we have inequality (2.33) 

violated only if 3

3 3 1 1
3 3 1 1

k k

i j i j

k

p i jp
y z

 
 .  The proof for the other cases of Condition (ii) is 

similar. 

(iii) Since 1 2

1 1 2 2 1 1 2 2 3 3
1 1 2 2 2 2 3 3

2k k k k

i j i j i j i j

k k

p p i j i j i jp p
y y z z z

   
     , inequality (2.33) can 

only be violated if 3

3 3 1 1 2 2 3 3 1 1 2 2 3 3
1 1 3 3

2 1k k

i j i j

k

p i j i j i j i j i j i jp
y z z z z z z

 
       , which implies 

inequality 3

3 3 2 2
1 1 3 3

1k k

i j i j

k

p i jp
y z

 
  .  We can similarly prove the other cases.■ 
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2.4.  COMPUTATIONAL RESULTS 

Our computational testing has several goals.  First, we would like to demonstrate 

that the hybrid formulation can help solve the NDSR problem to optimality and that it is 

robust across a wide range of problems.  Second, we would like to show that the hybrid 

formulation can help increase the lower bound without unduly increasing the model size.  

Third, we would like to evaluate the impact of using dynamic adaptive strategy for 

columnization of some of the commodities.   

To conduct the study, we used the following approach to generate test problems 

with varying sizes, costs, and service requirements.  The method randomly locates each 

node on a rectangular grid, connects all nodes with a spanning tree, and adds arcs to 

ensure that the network is strongly connected.  The fixed cost for each arc is a 

combination of the Euclidean distance between its endpoints and a random component.  

Balakrishnan et al. (1989) suggests that the ratio of variable to fixed costs can influence 

computational performance; we use a parameter γ to represent this ratio: higher values of 

this parameter correspond to higher relative variable costs.  The number of metrics L is 

one.  The weight of each arc is randomly generated between 1    and 1  , where   

is a given parameter.  By varying the value of  , we can generate problems with 

different service requirements.  The weight limit of commodity k is w
k
 + , where (i) 

w
k
 is the length of the shortest weight path for commodity k from its origin to its 

destination, (ii)  and  is are random numbers.  For conciseness, we use notation  ∊ 

[1, 2] to denote that the values of  is randomly generated in the closed interval 

specificed by 1 and 2.   

We compare three solution methods: the arc-based method, the path-based 

method, and the hybrid method.  The arc-based method uses CPLEX to solve Model 

[AF].  The path-based method uses CPLEX to solve Model [PF] with the path-based 
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valid inequalities applied.  The hybrid method first uses dynamic columnization and 

decolumnization to identify commodities that are suited for path flow representations and 

then uses CPLEX to solve the resulting hybrid formulation, applying all the model 

strengthening techniques in Section 2.3.  In the subsequent tables we use “EB” to denote 

the estimate-bound columnization method and “FD” to denote the flow-decomposition 

columnization method.  We set the limit on number of paths U is set to 15000 in the 

dynamic modeling process to keep the problem size manageable.   

We implement all methods in JAVA using CPLEX 12.4 to solve the optimization 

problem and run under Ubuntu Linux on a Dell Poweredge 2950 workstation with two 

hex-core, hyperthreading 3.33 GHz Xeon processors and 24 GB of shared memory.  For 

each problem, the bound-and-bound terminates after 20 minutes or when the integrality 

gap become less than 0.1%. 

We first consider different problem sizes with γ = 0.1,   = 0.2,  ∊ [1, 1.2], and 

 ∊ [1, 7].  The size of the problems are represented by n/m/|K|, where n and m are the 

number of nodes and arcs in the network and K is the set of commodities.  Table 2 

compares the performance of the arc-based, the hybrid, and the path-based methods for 

three scenarios with different number of arcs and number of commodities. The results, 

which are the averages of five instances, show that the hybrid method outperforms the 

arc-based and the path-based methods: it always finds a lower gap.  The final gaps for 

the arc-based and the path-based methods are much larger and increase dramatically as 

the problem size increases.  The hybrid formulation results in the lowest solution time.  

For 40/240/160 and 40/200/200 problems, due to the large number of feasible paths, we 

cannot solve the path-based formulation.  We can also see that two dynamic 

columnization methods perform similarly.   
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Table 3 further establishes the superiority of our hybrid formulation by comparing 

the model size and the linear programming relaxation bounds of three alternative 

formulations.  It shows that our approach usually columnized a small portion of the 

commodities and thus has only slightly more variables than the arc-based formulation.  

On the other hand, the number of feasible paths are so large that it is either infeasible to 

formulate the path-based model (in the allotted memory) or it takes an enormous 

computational effort to solve the resulting path-based formulation.  Although the hybrid 

formulation has much fewer variables, its linear programming relaxation bound is almost 

the same as that of the path-based formulation.  In other words, a little columnization can 

go a long way.  By harnessing the respective strengths of the arc- and path-based 

formulations, our approach of dynamically columnizing commodities results in an 

approach that is methodologically sound and computationally successful.   

A comparison of the two columnization methods shows that their performance are 

quite similar.  Both alternatives columnize nearly the same number of commodities and 

taking almost the same amount of time to perform the columnization. 

For the robustness of our solution method, we fix the problem size to 40/200/160 

and compare the result of problems with different values of , , γ and  in Table 4.  As 

we can see, the hybrid formulations are better than the arc flow and path flow 

formulations in all possible instances.   
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Table 2.  IP comparison for arc-based, hybrid, and path-based methods 

(Averages over five instances) 

Problem 

Size 

n/m/|K| 

Average Final Gap
a
 

(%) 
# Solved to Optimality 

Average CPLEX Time 

if Solved to Optimality 

(secs) 

Arc EB
b
 FD

c 
Path Arc EB

b
 FD

c
 Path Arc EB

b
 FD

c
 Path 

40/200/160 11.1 2.5 2.1 6.1 0 1 1 0 NA 160 135 NA 

40/240/160 13.7 4.4 4.0 NA 0 0 0 NA NA NA NA NA 

40/200/120 10.1 1.6 1.3 5.9 0 3 3 0 NA 396 519 NA 

40/200/200 11.6 2.6 2.7 NA 0 1 1 0 NA 283 346 NA 
a
Final Gap = (Final upper bound – Final lower bound) / Final upper bound × 100% 

b
EB: the hybrid formulation generated using estimate-bound columnization method 

c
FD: the hybrid formulation generated using flow-decomposition columnization method 

 

Table 3.  Model size and linear programming relaxation bounds comparison 

for arc-based, hybrid, and path-based methods 

(Averages over five instances) 

Problem 

Size 

n/m/|K| 

Average of Ratio 

of #Variables
a 

Average of 

Hybrid Bound 

Quality
b
 

Average # of 

Columnized 

Commodities 

Average Time to 

Columnize and 

Decolumnize 
EB

b 
FD

c 
Path EB

b
 FD

c
 EB

b
 FD

c
 EB

b FD
c 

40/200/160 1.99 1.97 57.93 0.9743 0.9742 49.6 49.4 115 100 

40/240/160 2.20 2.21 NA NA NA 50.0 49.8 135 149 

40/200/120 2.53 2.57 64.48 0.9615 0.9608 37.8 37.0 387 358 

40/200/200 1.92 1.91 NA NA NA 57.4 57.6 121 116 
a
Ratio of #Variables = # of variables in the hybrid or the path-based method / # of variables in the arc-based 

method 
b
EB: the hybrid formulation generated using estimate-bound columnization method 

c
FD: the hybrid formulation generated using flow-decomposition columnization method 

d
Hybrid Bound Quality = (LHF – LAF) / (LPF – LAF), where LHF, LAF, and LPF are the linear programming 

relaxation bounds of the hybrid, the arc-based, and the path-based formulations. 
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Table 4.  Comparison of arc-based and hybrid methods with different values of   

and  

  Average Final Gap
a
 (%) 

 Values Arc EBb FDc Path 


[0.1, 1.1] 11.2 1.3 1.6 3.8 

[1.2, 1.4) 8.0 2.5 2.2 NA 


[1, 6] 13.3 0.8 0.6 1.0 

[3, 8] 6.4 1.6 1.3 NA 

 
0.05 20.6 6.4 6.5 14.9 

0.15 4.6 0.0 0.2 1.1 

 
0.1 10.9 2.1 1.7 6.0 

0.3 12.7 2.2 1.8 5.8 
a
Final Gap = (Final upper bound – Final lower bound) / Final upper bound × 100% 

b
EB: the hybrid formulation generated using estimate-bound columnization method 

c
FD: the hybrid formulation generated using flow-decomposition columnization 

method 

 

2.5. CONCLUDING REMARKS 

In this chapter, we examined the arc-flow, path-flow, hybrid formulations for the 

NDSR problem.  The hybrid formulation is powerful since it leverages the advantages of 

both the arc-flow and the path-flow formulation.  Specifically, the arc-flow 

representation results in a compact formulation but a weak relaxation bound, while the 

path-flow representation leads to a tight formulation but with an excessive number of 

variables.  By applying a dynamic columnization and decolumnization strategy, we can 

construct a hybrid formulation that has a strong linear programming bound but is also 

manageable in size.  To further improve the algorithmic effectiveness, we developed and 

implemented valid inequalities that strengthen the path-flow representation.  

To apply the path-flow representation for any commodity, our current approach 

requires enumerating all the possible feasible paths for the commodity.  As an extension, 

it is appealing to apply the column generation technique (Barnhart et al. 1998): start with 

a promising subset of paths and generate other paths when necessary by solving a pricing 
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problem, i.e., the constrained shortest path problem.  The resulting model may be called 

“hybrid column generation” since column generation is only applied to a subset of 

commodities and other commodities use the original representation, i.e., the arc-flow 

representation.  This approach could lead to solving much larger problem instances.  It 

would be also interesting to study how to develop and implement the “hybrid column 

generation” idea in other problem contexts.  Likewise, the idea of the hybrid method can 

be extended to other areas of integer programming, including Benders decomposition and 

Lagrangian relaxation.   

The path-flow variables available in the path-flow representation enable us to 

develop new valid inequalities; we cannot readily formulate equivalent inequalities in the 

arc-flow representation.  Identifying inequalities of this type and using them in other 

situations could lead to solution approach improvements. 

We could also investigate the NDSR model defined on undirected networks.  In 

these networks, a selected arc permits flow of commodities in both directions.  These 

and other promising directions can prove to be a feasible area of research on the NDSR 

and related problems. 
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Chapter 3.  The Train Dispatching Problem 

3.1.  INTRODUCTION 

The freight rail industry is an important segment of the transportation sector.  

According to a study by Association of American Railroads (2013), freight railroads 

move about 40% of the total freight in US (measured in ton-miles), more than any other 

transportation mode.  As a cost-effective and environmentally-friendly transportation 

mode, rail transportation will continue to play important roles as transportation needs 

grow nationwide to interconnect geographically expanding supply chains and to transport 

new commodities such as shale oil.  With rising fuel prices and growing concerns about 

greenhouse effects, rail transport is also gaining popularity due to its energy efficiency.  

To meet the increasing demand for rail freight services, railroad companies are focusing 

on first improving the utilization of their existing resources before investing in expensive 

capacity expansion projects.  Among these resources, capital-intensive railway tracks are 

one of the main bottlenecks that limit the flow of freight traffic.  The utilization of tracks 

depends on how well the train dispatchers orchestrate the movement of trains through 

each territory.  The tracks are shared by trains, with varying speeds and priorities, 

traveling in both directions.  To avoid collisions, dispatchers must decide whether and 

how long to hold a particular train at various sidings to permit other trains to meet (and 

cross) or pass (overtake) it.  These sequencing and scheduling decisions govern the 

effective velocity of trains, defined as the distance traveled divided by the total travel and 

waiting time for each train; in turn, the velocity averaged over all trains determines track 

occupancy and utilization.  According to a recent report (GE Report 2010), every mile-

per-hour increase in average train velocity can yield annual savings of millions of dollars 

in capital and expenses.  Single-track territories, used primarily to reduce construction 

cost, are the greatest capacity bottleneck on the train transit lines (Kittelson and 
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Associates, 2003).  Two tracks usually have around four times more capacity than a 

single track (Abril et al., 2008); however, a four-track line only has 50% more capacity 

than a double line (Kittelson and Associates, 2003).  Optimizing the train movements in 

single-track territories is critical to manage the flow of trains in the whole rail network.  

The goal of this paper is to develop a model and an effective solution method to optimize 

the movement plans for freight trains passing through each dispatching territory so as to 

maximize average velocity in that territory.  We propose several modeling and 

methodological enhancements, and demonstrate using real data on actual train schedules 

and track characteristics for a U.S. freight railroad that these enhancements are very 

effective in reducing solution time. 

Freight trains carry many different goods ranging from commodities such as coal, 

petroleum, and agricultural products to automobiles and intermodal freight.  Unlike 

passenger trains whose itineraries are fixed well in advance, freight trains do not follow a 

fixed schedule.  Rather, their routes and timing vary from week to week depending on 

the volume of traffic between various locations.  Based on the type of freight they carry 

and their schedule requirements, trains have different priorities for movement and hence 

their relative priorities in terms of passing or crossing other trains.  To manage the traffic 

on the freight rail network, the system is partitioned into “territories,” each covering one 

or more parallel tracks between two “terminal” locations.  Dispatchers, one for each 

territory, are responsible for the short-term decisions of planning the movement of trains 

and managing the traffic in their respective territories.  Each dispatcher faces the 

following decision problem: given the set of trains that will traverse the dispatcher’s 

territory over the planning horizon (e.g., next 12 hours), the attributes of each train, 

including its priority, speed, and the time and location at which it enters the territory, and 

the characteristics of the territory in terms of its physical configuration, capacities of 
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track segments, and locations of stations and sidings, the train dispatching problem seeks 

to sequence these trains and plan their meet and pass events so as to maximize average 

train velocity (or minimize the total waiting time) while satisfying various operational 

and safety requirements.  Prior research has discussed mathematical programming 

models for train dispatching, but founds that solving real world problem to near-

optimality is too time-consuming for the models to be useful in practice.  Therefore, 

most papers largely focus on heuristic solution methods and do not emphasize modeling 

or methodological refinements to optimally solve actual problems within reasonable time. 

We propose an integer programming model for the train dispatching problem that 

uses a discrete time representation, and explore techniques to solve real-life problem 

instances to optimality.  Our model maximizes the weighted velocity of trains, taking 

into account various practical requirements for railway operations including operational 

rules regarding trailing of trains, headway requirements between trains, track 

unavailability, and train priorities.  Solving the model using standard solvers (e.g., 

CPLEX) is too time-consuming to be used for real-time planning; the dispatchers expect 

that a useful tool should return a good plan within several minutes.  When we applied 

CPLEX to a base model (without enhancements) for real problem instances, the solver 

cannot find solutions within 4% MIP gap after 5 minutes for most instances(see Section 

3.6).  To improve solution performance, we develop and incorporate several modeling 

enhancements.  We first propose strong non-concurrency constraints that exploit the 

unidirectional movement property on each track segment; these inequalities are not only 

tighter than previous track capacity constraints (e.g., Şahin et al. 2008), but also reduce 

the model size by eliminating the need for separate constraints to avoid train-swap 

conflicts at block transitions (Harrod 2011).  Further, based on the non-concurrency and 

headway requirements, we refine the partition of segments into sections so as to 
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strengthen the non-concurrency constraints while also reducing model size.  We propose 

another set of non-concurrency inequalities based on a train’s movement to further 

tighten the model.  Moreover, we strengthen the pairwise unidirectional inequalities 

discussed in Cacchiani et al. (2010), extend these inequalities to more than one segment, 

and generalize the inequalities to incorporate more than one train.  We also develop 

separation procedures for these inequalities so as to add them dynamically (as user cuts) 

during the branch and cut process.  Finally, we develop a sequential dispatching 

heuristic, with randomization, to find good solutions quickly.  These solutions can serve 

to warm-start and accelerate exact solution procedures.  Computational tests, using real 

problem instances demonstrate that our modeling and methodological enhancements 

vastly improve the performance of exact solution methods. 

Our work can contribute to this area in at least two aspects.   First, the existing 

literature overwhelmingly rely on heuristics to solve the problem, and little effort has 

been devoted to improving the performance of the exact solution process.  Our work 

may be the first to explore ways to solve the problem optimally.  Furthermore, solution 

methods, especially those designed for train dispatching in US, are rarely validated 

through real-life instances.  Usually, the test instances are randomly generated (Şahin et 

al. 2008) or simplified (Harrod, 2011).  In contrast, we demonstrate the validity of our 

methods by testing more than 20 instances from a Class I railroad company in US. 

The rest of this chapter is organized as follows.  Section 3.2 reviews related 

literature.  We describe our model formulation in Section 3.3, and develop techniques to 

tighten and reduce the model in Section 3.4.  Section 3.5 discusses our heuristic solution 

procedure.  We test our model and solution method based on data from a major U.S. 

railroad company, and report computational results in Section 3.6.  Section 3.7 offers 

concluding remarks. 
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3.2.  LITERATURE REVIEW 

As one of the most important operational planning problems for railroads, the 

train dispatching problem or train timetabling problem (typically defined in the context of 

planning movements of trains, particularly passenger trains in Europe) has drawn 

considerable attention from both researchers and practitioners.  Cordeau et al. (1998), 

Törnquist (2006), and Lusby et al. (2011) provide extensive surveys of related models 

and solution methods. 

Caprara et al. (2002) prove that the train timetabling problem is NP-complete by 

polynomially transforming any instance of a maximum independent set problem into a 

simplified version of the problem.  The problem can be viewed as a job-shop problem 

with blocking and no-wait constraints (Corman et al. 2010) or a multicommodity network 

flow problem with additional constraints (Caprara et al. 2002), which are both known to 

be NP-complete. 

To formulate the train dispatching problem as a mathematical program, 

researchers have considered two broad approaches – continuous time models (e.g., Carey 

1994a, Carey 1994b, and Carey and Lockwood 1995, Higgins et al. 1996, Zhou and 

Zhong 2007, and Mu and Dessouky 2011) and discrete time models (e.g. Brännlund et al. 

1998, Caprara et al. 2002, and Cacchiani et al. 2010, Cacchiani and Caprara 2008, Şahin 

et al. 2008,  and Harrod 2011) – to represent train travel and waiting times. 

The key part of the discrete-time mathematical programming approach is how to 

model the headway requirement and track capacity requirement (i.e. prevent overtaking 

and meeting of trains in segments).  Caprara et al. (2002) consider a passenger train 

timetabling problem on uni-directional single-track railroads.  They develop three sets of 

clique constraints to enforce the headway between trains when entering and exiting 

stations and to prevent overtaking of trains inside any track.  By using pre-specified 
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segment traversal time, Caprara et al. (2006) develop a stronger version of the non-

overtaking constraints to reduce computation time.  Cacchiani et al. (2010) generalize 

the model in Caprara et al. (2006) to incorporate the movement of freight trains on bi-

directional tracks.  Şahin et al. (2008) and Harrod (2011) enforce the headway and track 

capacity requirements by dividing each segment into smaller pieces and forbidding 

simultaneous occupancy of each piece by trains. 

Since solving the problem using standard commercial solvers (e.g. CPLEX) is too 

time-consuming, various mathematical-programming-based heuristics are developed to 

solve the problem.  For example, Şahin et al. (2008) propose a LP-greedy construction 

heuristic; Caprara et al. (2002) provide a heuristic based on Largrangian Relaxation; Mu 

and Dessouky (2011) develop various heuristics to reduce the model size.  An alternative 

to optimization-based heuristics is the discrete-event heuristic (e.g. Dorfman and 

Medanic 2004, Cai et al. 1998, and Şahin 1999).  One major advantage of discrete-event 

heuristic models over the optimization model is that they can provide a detailed 

description of the transient behavior of the railway system and incorporate many real-

world concerns that are difficult to formulate mathematically (Cai et al. 1998). 

3.3.  MODEL FORMULATION 

3.3.1.  Problem description 

The operations planning process in freight railroads begins with decisions on 

which trains to run (between which locations and at what times) over the next week or so, 

based on the actual and projected volume of shipments between various origin-

destination pairs.  This train operations plan specifies, for each train, the starting 

location, intermediate stopping locations (e.g., to pick up and drop off freight cars, 

change crews), final destination, and its planned starting time and desired arrival times at 
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the intermediate and final locations.  To effectively manage the traffic and dynamically 

plan the movements of the scheduled trains, railroad companies partition their networks 

into territories, each assigned to a dispatcher.  A dispatching territory typically covers 

100 to 200 miles of single or parallel tracks flanked by “terminal” locations at the two 

ends of the territory, and having intermediate sidings and stations where trains can wait to 

let other trains cross or pass.  Each train typically traverses multiple territories on its 

origin-to-destination route.  Our model seeks to optimize the movements of trains inside 

a specific territory over a short-term planning horizon of, say, 12 hours.   

We refer to any location within a territory that contains one or more sidings where 

trains can wait and/or change tracks as a station.  Trains can meet or pass other trains 

only at the stations.  A “meet” occurs when two trains traveling in opposite directions 

cross each other safely without colliding into each other.  One of the trains uses the 

mainline while the other uses or waits on a siding.  A “pass” event happens when a fast 

or high priority train overtakes another train traveling in the same direction; the latter 

train waits on a siding to permit the former train to pass.  We refer to the mainline 

track(s) between two adjacent stations as segment.  Without loss of generality, we 

assume that stations and segments alternate along the territory, i.e., each intermediate 

station is flanked by two segments on either side, and each station has two adjacent 

segments.  Since segments do not contain intermediate locations where trains can wait, 

trains traveling in opposite directions cannot simultaneously use the same track on a 

segment.  But, to increase the utilization of tracks, trains traveling in the same direction 

are permitted to trail each other, i.e., multiple trains can use a track at the same time as 

long as they are separated by a minimum required distance, called the trailing headway.  

Operationally, dispatchers usually specify this separation requirement in terms of blocks; 

each block typically corresponds to the portion of track between two adjacent signals on a 
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segment.  At most one train can occupy each block at any time, and dispatchers usually 

separate two successive trains by at least one unoccupied block so that the trailing train 

can move safely at its nominal speed with sufficient stopping distance.  To model this 

separation requirement, we treat every two adjacent blocks as a section and permit at 

most one train (traveling in either direction) to occupy a section at any time; specifically, 

if a segment has K blocks, indexed as blocks 1, 2,, K, we define blocks k and k + 1 as 

section k for k = 1, 2, , K  1.  Another safety requirement pertains to the minimum 

required time separation between trains crossing a control point.  A control point, 

located at any junction where a track splits into multiple tracks or vice versa, represents a 

railroad switch to guide trains from one track to another.  In particular, every station has 

one control point at each of its two endpoints (that demarcate the station from its adjacent 

segments).  To ensure safe operation, successive trains passing through a control point 

(in either direction) must be separated by a minimum required time (typically, five to 

seven minutes); we refer to this restriction as the control point headway.  

3.3.2.  Notation 

To formulate the train dispatching problem, we adopt a discrete time modeling 

approach (as in Caprara et al. 2002 and Şahin et al. 2008).  In this approach, we divide 

the planning horizon  into fine-grained time intervals or periods (e.g., each period is one 

or two minutes).  Let H denote the total number of time periods in the planning horizon, 

indexed as t = 1, 2, …, H.  Consider a territory with stations s  S, segments m  M, and 

control points p  P.  Both stations and segments are called edges and let e  S  M 

represent an edge in the territory.  Each track segment m is partitioned into one or more 

sections, denoted as Gm; each section s  Gm can be occupied by no more than one train 

at any time.  As discussed earlier, these sections are defined to ensure that trailing trains 



 44 

(traveling in the same direction) maintain sufficient inter-train headway or distance.  For 

each train q  Q, we know its direction of travel, denoted as + or – (e.g., + is eastbound 

or northbound and – is westbound or southbound), the sequence of stations or segments 

that it must traverse, its priority (used to decide the importance or weight for maximizing 

average velocity), any arrival time windows or hard time window, and the train’s 

traversal (travel) time on each segment or station that is passes through.  Let o
q
 and d

q
 

respectively denote train q’s starting and ending stations in the territory.  Assume, 

without loss of generality, that these starting and ending locations are stations where train 

q can wait (e.g., the terminals for future trains that pass through the territory, or 

intermediate stations for trains that are already in the territory).  We define p as the 

minimum required control point headway (in time periods) between two successive trains 

passing through control point p in either direction.  

For every edge e and train q  Qe, we are given the time q

e  (in number of 

periods) for train q to traverse that edge.  We assume for simplicity that, at every station, 

the train’s traversal time (including any track crossover time) is the same on all the tracks 

at that station.  With this assumption (which largely holds in practice, particularly when 

we take into account the control point headway requirements), we do not need to 

distinguish between assignments and movements of trains along different tracks within 

the station.  So, if st denotes the number of available parallel tracks at station s at time t, 

we can simply impose an aggregate capacity of st on the number of trains that are within 

the station in period t.  We can readily extend the model to permit varying traversal 

times on different tracks, but at the expense of adding more decision variables.  Trains 

can only wait at stations (at most train one per track at any time), and not on segments.  

Based on a train’s entry and traversal times, waiting time restrictions, track availability, 

and any explicit arrival time window requirements at intermediate stations or the end of 
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the territory, we can determine possible time periods at which the train can enter each 

edge e (control point p), permitting us to narrow the time periods in which the train can 

be at edge e (control point p).  Let q

eT ( q

pT ) be the subset of periods in which train q  

Qm can enter edge e (control point p).  At the origin station s = oq,  for trains that are 

already within the territory at the start of the planning horizon, this time window may 

include only the time period at which the train entered that station (with appropriate 

adjustments to traversal time so that entry time is at or after time zero).  On the other 

hand, for future trains that will enter the territory later, the time window  may include all 

periods until the end of the horizon (including a dummy period H+1) if the train is 

permitted to wait at its starting location.  Since trains cannot wait on segments, for every 

segment m and each section g  Gm, we can determine the time needed for a train to enter 

(and leave) section g after it enters segment m.  Specifically, let 
q

g (
q

g ) be the time 

needed for train q to travel from the beginning of segment m to the beginning (end) of 

section g  Gm.  Our model largely focuses on single-track territories in which every 

segment has a single bi-directional track; with modest changes it also extends to multi-

track segments.  All the notation (indices, sets, and parameters) needed for the model 

formulation is listed as follows: 



 46 

Indices and sets 

s index of a station 

m index of a segment 

e index of an edge 

t index of time 

g index of a section 

p index of a control point 

+  indices of train directions 

S set of stations in the territory 

M set of segments in the territory 

Q set of trains to be dispatched 

P set of control points in the territory 

Parameters 

H number of time periods in the planning horizon 

Gm set of sections in segment m 

p control point headway (number of periods) at control point p 

ast number of available tracks in station s at time t 

o
q
 origin edge of train q 

d
q
 destination edge of train q 

q

e  traversal time of train q on edge e 

k

eQ  set of trains that will enter edge e in direction k, where k ∊  

Qe set of trains that will enter edge e 

Qp set of trains that will use control point p 

q

stf  cost for train q to wait at station s at time t 

q

etc  cost for train q to enter edge e at time t 
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q

eT  set of time periods that train q can enter edge e 

q

pT  set of time periods that train q can enter control point p 

q

g  time (number of periods) for train q to travel from the beginning of segment m, 

where g ∊ Gm, to the beginning of section g 

q

g  time (number of periods) for train q to travel from the beginning of segment m, 

where g ∊ Gm, to the end of section g 

q

eb  edge that train q travels on before it enters edge e 

q

pb  edge that train q travels on before it uses control point p 

 

Main dispatching decisions are when each train should enter each segment or 

station, and whether it should wait at a station.  To capture these decisions, we define the 

following decision variables: q

etx =1 if train q enters edge e at time t, and 0 otherwise; q

sty

=1 if train q waits at station s (after entering sation s) at time t, and 0 otherwise.  Note 

that we define variables based on segments, rather than on blocks, as in Şahin et al. 

(2008) and Harrod (2011), thereby dramatically reducing the number of variables. 

To make good use of track resources, we can either maximize the weighted 

velocity of trains or minimize the weighted waiting time of trains.  Assume 
q  is the 

weight for train q.  If we want to minimize the weighted waiting time, we can set q

stf  = 

q  for all s ∊ S and t ∊ q

sT , q

etc  = (t  t
q
) 

q  if e = o
q
, and q

etc  = 0 otherwise.  Next, we 

will show how to set the objective function coefficients so that the weighted velocity is 

maximized.  Let q
 represent the total runtime train q use to traverse all the stations and 

segments in the territory, and D
q
 represent the total length of such stations and segments.  

Let q

et  be the earliest time train q can enter segment or station e, achieved when train q 

does not wait before entering a.  If train q enters d
q
 at time t, the total time it spends in 
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the territory is q
 + t  q

q

d
t , and its velocity is D

q
/(q

 + t  q

q

d
t ).  Accordingly, the 

objective function coefficients can be set in the following way 

 
q

stf  = 0; q

etc  =  q D
q
/(q

 + t  q

q

o
t ) if e = d

q
, and q

etc  = 0 if e  d
q
 (3.1) 

Coefficients (3.1) use q

t

d
c  to record the velocity of train q when q arrives at destination 

d
q
.  Alternatively, we can set the coefficients in the following way 

 ˆ q

stf  = q D
q
/(q

 + t  q

q

o
t + 1)  q D

q
/(q

 + t  q

q

o
t ) 

 ˆq

etc  =  q D
q
/(q

 + t  q

at ) if e = o
q
 (3.2) 

 ˆq

etc  = 0 if e  o
q
 

Proposition 3.1.  Objective function coefficients (3.1) and (3.2) are equivalent. 

Proof:  We will show that for each train q, both objective function coefficients (3.1) and 

(3.2) give the same value in any feasible solution.  Given any solution (x, y), we assume 

without loss of generality that train q waits in station s at time t, i.e., 1q

s ty
 

 , for 

 and that train q enters edge o
q
 at time t

*
, i.e., * 1q

q

o t
x  .  Without loss of 

generality, we assume that t1< t2<<t.  Flow conservation constraint imply that t = 

q

st 
 +  + t

*
  t

q
  1 and that t

*
  t

q
= t1  1

qt .  Thus, the velocity of train q given by 

coefficients (3.2) is 

*

1

*
1

* * *
1

ˆˆ

ˆˆ

1

1

q
w w

q q
e s

e S M s St T t T

q q q q q q

s s

q q q q q

q q q q

et et st

q q q q q

s s s s

st

q q

s to t

q q q q q

q q q q q

x y

D D D

c f

c f

t t t t t t

t t t t t t t t

D D D

t t

 

   



  



  

   







 

   















 

      


        

 
 
 

 
  




 
 

 
  

 
    

  





* * *
1

*

1

q q q

q

q

q q q q q

q

q

q

q

t t t t t

t

D

t

D

t

D D

 



  








        




 
  

 






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Assume that train q arrives at d
q
 at time t, i.e., 1q

q

d t
x


 .  The flow conservation 

constraints guarantee that t =  + t
*
  t

q
.  Thus, the velocity of train q given by 

coefficients (3.1) is 

*
q q

e s

q q q q
e S M s

q
q q q q q q

et et st st

St
d

T t T
d t t

c f c
t t

D
x y x

 
   

 
 

    

which is the same to the velocity given by coefficient profile coefficients (3.2). 

Setting objective function coefficients according to (3.1) requires each train to 

enter its destination, which may not be achieved within the planning horizon.  On the 

other hand, it is not necessary to send the train to its destination to get a valid velocity 

under coefficients (3.2); if a train ends up in certain location before their destinations, 

they are assumed to run unimpeded from that location to its destination. 

Our computational experience show that the commercial LP solver (e.g., CPLEX) 

can solve the model with coefficients (3.2) much faster than the model with coefficients 

(3.1).  Thus, we will use coefficients (3.2) in subsequent discussions.  To model the 

implicit time window requirement, we define ˆq q q

et et etc c    and use q

et  to reflect the 

preference for train q to enter edge e at time t. 

3.3.3.  Mathematical formulation 

Given the notation defined in the previous section, we can formulate the train 

dispatching problem as follows: 

 

min
q q

se see S M q Q s S q Q

q q q q

e

t T

t et st s

t T

tc x f yz
     

     (3.3) 

subject to  

1 ,
q

e

q

t

t

q

T

ex q Q e o


    (3.4) 

1 2 2 1 2\{ , , ,} ,q q q q

st s

q q

mt s s ms S o q O t T m b tx x t         (3.5) 
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1 2 2 2 21 1 2, \{ }, , , ,qq q q q q

m m

q q

st s t t s st m sm M o q Q t T s b tx x y ty          
 

(3.6) 

1

1 1

, 1, ,
q

s s s

t
q q

st st

q Q

t

tQ t

s

q

x s S t Hy



   

        (3.7) 

1

1: 1

1 ,

q
e p

q
p e

q
p

t

q q

p

Q

et

q b t te

p P t Tx

 





 



  

     (3.8) 

'

' 1

1 , ,

q
g

q
m g

t

q q

mt m m

q Q t t

x m M G t Tg







   

       (3.9) 

, ,

' '

' ' 1 , ,

m m
q q
g g

q q

mt m

q

m m

q Q q

t

Q

t t t t

x m M G t Tx g

 

  

   

        (3.10) 

{0,1} ( , , )q

et q e Ax t    (3.11) 

{0,1} ( , , , 1)q

st q t Ay s t     (3.12) 

 

The objective function (3.3) minimizes the total cost so that the weighted 

velocity is maximized or the total waiting time is minimized.  Constraints (3.4) make 

sure that each train enters the territory and is thus dispatched.  Constraints (3.5) and 

(3.6) are flow conservation constraints.  Constraints (3.5) specify that if train q enters 

station s at time t2, it must have entered segment q

sm b  at time 2

q

mt  ; constraint (3.6) 

ensures that if train q enters the segment m or waits at its previous station s at time t2, it 

must have entered station s at time 2

q

st   or waited at station s at time t2 – 1.  

Constraints (3.7) are the station capacity constraints to ensure that the number of trains 

moving and waiting in a station s at any time t should not exceed the number of tracks 

available at the station.  Since we assume that the travel time through a station is the 

same for all tracks at the station, we do not define separate variables for the movement 

and waiting of trains on each parallel track within a station; using a single variable for a 

train’s movement or waiting at a station not only reduces the problem size but also avoids 

symmetry in the feasible solution space.  We can later apply a post-processing procedure 
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to assign the trains to specific tracks within a station.  Constraints (3.8) enforce the 

control point headway requirement: at most one train can pass through control point p for 

every p time units. 

Constraints (3.9) permit at most one train to occupy each section in any time 

period.  Since a section consists of two adjacent blocks, constraints (3.9) guarantee that 

two trailing trains are separated by at least one unoccupied block.  Constraints (3.9) can 

ensure that no meeting or overtaking occurs inside segments.  Observe that, if a train 

overtakes or meets another train inside a segment, they have to appear in some section of 

that segment at the same time; therefore, permitting no more than one train to use each 

track section at any time can prevent meets and passes inside segments.  Constraints 

(3.10) prevent trains from crossing each other at the boundary point of two adjacent 

blocks.  As shown in Harrod (2011), the formulation are not valid without constraints 

(3.10). 

The above formulation can solve for the optimal schedule for a given set of trains.  

To model the no-wait trains, we apply a two-stage hierarchical procedure.  In the first 

stage, we solve the problem with only no-wait trains; in the second stage, we fix the 

solution of no-wait trains and solve for the plans of the rest of the trains. 

3.4.  MODEL ENHANCEMENTS 

Constraints (3.9) specify that at most one train can occupy a specific section at 

any time; so, trains traveling in opposite directions should never appear in a particular 

section at the same time.  In fact, in any collision-free train schedule, trains traveling in 

the opposite directions on a segment should never occupy any section of the segment (not 

just a particular section) at the same time. We refer to this property as the unidirectional 

movement property.  In this section, we will study how to exploit the unidirectional 
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movement property to strengthen the model.  Specifically, we propose non-concurrency 

constraints based on sections as well as train movement.  For notational convenience, we 

assume that the control point headway is  for all control points. 

3.4.1.  Non-concurrency constraint 

One implication of the unidirectional movement property is that, if a train is 

traveling on any section of a segment at time t, then no trains traveling in the opposite 

direction can travel on any section of this segment at the same time.  The following 

constraints (3.13) enforce this requirement.  Similar to constraint (3.9), constraint 

(3.13) also ensures that at most one train is allowed in each section.  Further, as shown 

in Proposition 3.2, constraints (11) dominate constraints (3.9) and (3.10), i.e., the latter 

constraints are redundant when we include constraints (3.13) in the model.  

 ' '

' 1 ' 1

max max 1 ,

q q
g g

m mq q
m mg gm

t t

q q q

mt mt
g G g G

q Qq Q t t

m

q Q t t

x x m M t T

 

  

 

 
       

         (3.13) 

Proposition 3.2.  Constraint (3.13) dominates constraints (3.9) and (3.10). 

Proof: The proposition follows directly from the fact that any g ∊ Gm, we have  

' '

' 1 ' 1

max

m

q q
g g

m q q
g m g

t t

q q

mt mt
g G

q Q t t q Q t t

x x

 

  

 


       

     and ' '

' 1 ' 1

max

m

q q
g g

m q q
g m g

t t

q q

mt mt
g G

q Q t t q Q t t

x x

 

  

 


       

    . 

We call constraint (3.13) the non-concurrency constraint, since it simultaneously 

enforces unidirectional movement in segments, section capacity, and no-crossing of trains 

at section boundaries, thus tightening the model.  By introducing indicator variables mtu  

and mtu , we can linearize constraint (3.13) as follows: let ( ) 1mmt tu u   if any train is 

traveling in direction ( )   on segment m at time t, making the segment unavailable to 

trains traveling in direction ( )  , and 0 otherwise.  Constraints (3.14), (3.15) and 

(3.16) capture these definitions and enforce non-concurrency on segment m. 
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 '

' 1

, ,

q
g

q
s g

t

q

mt mt

q Q t t

mu x m M g G t T







   

        (3.14) 

 '

' 1

, ,

q
g

q
s g

t

q

mt mt

q Q t t

mu x m M g G t T







   

        (3.15) 

 1 ,mt mtu m Mu t T       (3.16) 

As we can see in Figure 5, if a train 
mq Q  enters segment m at time 

1q

mt     , constraints (3.14), (3.15) and (3.16) require that 
'mtu =1 for  

{ ' : 1 ' 1}' q

mt t tt t          .  The headway at control point 4 require that no 

trains traveling in direction   can enter segment m between time t  q +1 and t, which 

implies that 
1 1

'

1'
0

s

t

q

q

mttQ t
x







  
   for all g ∊ Gm.  If we also have 

11' { } ( )\
0q

s m g

q

mtq Q q g G t T t
x  

    for all g ∊ Gm, i.e., no other trains are traveling on m in 

direction + at time t, we could have three possible feasible solutions that give the same 

objective function value: ' '( , )mt mtu u  =(0, 1) or (1, 0) or (0, 0) for t+1≤ t ≤ t+.  In 

constraints (3.14), (3.15), and (3.16), mtu  and mtu  are auxiliary variables, and their 

actual values are not our concern as long as we have correct x values.  To break the 

symmetry, we can enforce 'mtu =1 and for 'mtu =0 t+1≤ t’ ≤ t+ if a train mq Q  enters 

segment m at time 1q

mt   .  One of the possible implementations is applying 

constraints (3.17) and (3.18). 
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 
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   

       (3.17) 
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1

1 1

, ,

q
m

ms
q

t
q

m s

q Qq Q t

t
q

mt st

t

m M g G t Tu x


 





 


   

       (3.18) 
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Figure 5.  Unidirectional movements 

3.4.2.  Refining the track sections 

For trains traveling in the same direction, we enforce two types of headway 

requirement, namely trailing headway and control point headway, to keep safe distances 

between trains.  This section discusses how to refine the trailing headway by exploiting 

the control point headway.   

Since trains must pass through a control point to enter or exit a segment, the 

control point headway can impact the trailing distances between trains.  If a slow train 

trails a fast train, they must be at least  time periods apart when entering a segment; the 

distance between them grows as they travel on the segment.  Hence, the minimal 

distance between these two trains is at least the distance traversed by the fast train in  

time periods.  The same result holds when a fast train trails a slow train.  Assume ml
  

and ml
  are the distance traversed during  time periods by the second slowest train that 

can travel on segment m in direction + and  respectively.  Then in any feasible solution, 
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the distances between any two trailing trains traveling on segment m in direction + and  

are no smaller than 
ml
  and 

ml
  respectively. 

Figure 6 provides a procedure to refine the track sections for segment m by 

making sections in 
mG  and 

mG  no shorter than 
ml
  and 

ml
  respectively.  The 

procedure first finds the distance traversed during  time period by the second slowest 

train in both directions in Step 1.  In Step 2 and Step 3, the procedure defines the 

sections for trains traveling in both directions respectively by finding the starting and 

ending location of each section. 

After the refinement, we use mG  and mG  to refine constraints (3.14) and (3.15) 

as  

 '

' 1

, ,

q
g

q
s g

t

q

mt m

q

t

Q

m

t t

u x m M g G t T











   

       (3.19) 

 '

' 1

, ,

q
g

q
s g

t

q

mt m

q

t

Q

m

t t

u x m M g G t T











   

       (3.20) 

Since sections in mG  and mG  are longer, constraints (3.19) and (3.20) have more 

variables movement variable at their right hand sides than constraints (3.14) and (3.15) 

respectively, which leads to stronger constraints.  Besides, the number of constraints 

(3.19) and (3.20) is smaller than number of constraints (3.14) and (3.15), since mG  

and mG  may have fewer sections than Gm. 
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Procedure refine_section 

Input:  segment m; ending locations of blocks in m: lm = (lm(1), lm(2), , lm(K)). 

Output:
mG  and 

mG

 (sections on segment m for directions + and ). 

Step 1: set lm(0) = 0;  
mG  =  ; 

mG  =  

ml
 ,

ml
  = distance traversed during  time periods by the second slowest 

train traveling in direction + and  on segment m  

Step 2: For k = 1 to K  1 

 Section 
kg   starts at lm(k1) and ends at Max{ lm(k+1), lm(k1)+

ml
 } 

 Add 
kg   to 

mG  

 If lm(k1)+ ml
   lm(K) 

  Go to Step 3; 

Step 3: For k = 1 to K  1 

 Section kg   starts at lm(k1) and ends at Max{ lm(k+1), lm(k1)+ ml
 }. 

 add 
kg   to 

mG . 

 If lm(k1)+ ml
   lm(K) 

  Terminate the procedure. 

Figure 6.  Procedure to refine section 

 

In some situations, we may not have the exact block location (namely lm(k), for k 

=1, 2, , K), or we may not even have trailing headway requirement ( e.g., Caprara et al. 

2002).  Instead of using pairwise unidirectional inequality (3.23) discussed later, we can 

apply the procedure described in Figure 7 to define sections, based on which we can 

enforce non-concurrency constraints (3.19) and (3.20).  Since constraints (3.19), (3.20) 

and (3.16) prevent trains from occupying a segment in different directions at any time, 

we don’t need to enforce constraints to prevent the simultaneous crossing of trains at the 

boundary point of two adjacent sections. 
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Procedure define_section 

Input:  segment m; length of m: Lm;  

Output:
mG  and 

mG  (set of sections on segment m for directions + and ). 

Step 1: 
ml
 ,

ml
  = distance traversed during  time periods by the second slowest 

train traveling in direction + and  on segment m  

Number of sections / mmK L l      and / mmK L l     in segment m; 

mG  =  ; 
mG  =  

Step 2: For k =1 to K
+
  1 

 Section 
kg    starts at ( 1) mi l  and ends at 

mil  ;  

 Add kg   to mG ; 

 Section g
+
 starts at m mL l  and ends at mL ; 

 Add the section to mG . 

Step 3: For k =1 to K

  1 

 section kg    starts at ( 1) mi l  and ends at mil ;  

 add kg   to mG ; 

 Section g

 starts at m mL l  and ends at mL ; 

 Add the section to mG . 

Figure 7.  Procedure to define section 

 

3.4.3.  Train-based unidirectional inequality 

The unidirectional movement property requires that at any time, only trains 

traveling in the same direction can appear in a segment, which is enforced by constraints 

(3.16).  From this point of view, the right hand sides of constraints (3.14) and (3.15) ( 

or the refined constraints (3.19) and (3.20)) are used to activate the binary variables mtu  

and mtu .  Since mtu  (also mtu ) is a binary variable, the set of variables used to enforce 

its value should constitute a clique, which means that no more than one of them can be 

active at any feasible solution.  Constraints (3.14) and (3.15) can be viewed as finding 

cliques based on the requirement that at most one train can occupy each section.  Here, 
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we study ways to enforce unidirectional movement from the perspectives of each train.  

For simplicity, we assume that the minimum headway is   for all control points from 

this point. 

Since all trains move only in a single pre-specified direction, every train can enter 

every segment at most once, providing a way to identify cliques, which we call train-

based cliques.  As Figure 5 illustrates, if train q (without loss of generality, we assume it 

is traveling in direction +) enters segment m at a certain time t, it will exit the segment at 

time q

mt  , and so the train is traveling on the segment between time t and 1q

mt   .  

Accordingly, if any train q enters segment m at any time between 1q

mt    and t, it is 

traveling on segment m at time t, thus 'mtu  = 1 and 'mtu  = 0 for 1 'q

mt t t    ;  

besides, the symmetry breaking constraints (3.17) and (3.18) enforce that 'mtu  = 1 and 

'mtu  = 0 for 1 'q q

m mt tt        .  Hence, we can activate variables mtu  and mtu  by 

using inequalities (3.21) and (3.22). 
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q
m

t

mt

t

q

mt m

t

m M q Q tu x T
 



 



 

      (3.21) 
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, ,
q
m

t

mt

t

q

mt m

t

m M q Q tu x T
 



 



 

      (3.22) 

Note that inequalities (3.21) and (3.22) do not dominate non-concurrency 

constraints (3.19) and (3.20), and vice versa: inequalities (3.21) and (3.22) are both 

enforced for each train but include more variables for each train; in contrast, inequalities 

(3.19) and (3.20) are enforced for all trains in a certain direction, but with fewer 

variables for each train. 

3.4.4.  Pairwise unidirectional inequalities 

To prevent trains from meeting inside a segment in the bi-directional train 

timetabling problem, Cacchiani et al. (2010) propose a set of crossing constraints.  Given 
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any pair of trains 
1 mq Q  ,

2 mq Q  and a time window from time t1 to 
1t  with 

2 1

1 11 1
q

m

q

mt t        , we can express their constraints as follows,   

 
1

2

2

21

1' '

' ' 1
q q

mt mt

t

t t

t t t

x x
 

    (3.23), 

where 2

12 1
q

mtt      and 1

2 1 1
q

mt t      .  If we take 1

1 1
q

mt t      and 

1t t , we have 

 21 1 2

1 2

1 2

1 1

1 , , ,
q q
m m

q
t t

q q

mt mt

t

q

m

t

m

t t

q Q q Q m Mx Tx M t
     

 

   

          (3.24) 

Proposition 3.3 shows that train-based non-concurrency inequalities (3.21), 

(3.22) and (3.16) are equivalent to inequality (3.24), a specifical case of general 

unidirectional inequality (3.23); by defining variables mtu  and mtu , the number of 

inequalities is significantly reduced. 

Proposition 3.3.  Constraint (3.24) is LP-equivalent to constraints (3.21), (3.22) and 

(3.16). 

Proof: It is obvious that (3.24) is implied by (3.21), (3.22) and (3.16).  We need to 

show that constraint (3.24) implies (3.21), (3.22) and (3.16).  Since constraint (3.24) 

applies to all mq Q  , we have  

1 1 2

1 2

2

1 2

1 1

1 , , ,
q q
m m

t t
q q

mt mt

t t

q q

m m

t t

q Q q Q m Mx M t Tx
   

 

      

         , 

which is equivalent to  

1 2

1 2

2

2

1 1

max 1 , ,
q qm
m m

q q

m
q Q

t t

t t
qq

mt mt

t t

q Q m M Tx M tx
   





   


 

        . 

for any train mq Q .  Applying the same logic to the above inequality for mq Q ,  we 

can have, 

 
1 11 1

max max 1 ,
q qm m
m m

q q

m m
q Q q Q

t t
q q

mt mt

t tt t

x x m M t T T
   

 



 
      

       (3.25) 
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Linearizing (3.25), we can get constraints (3.21), (3.22) and (3.16).  Constraints (3.21)

, (3.22) and (3.16) are implied by constraints (3.24).  Hence, these two set of 

constraints are LP-equivalent.  

The variables in the left hand side of constraint (3.23) form a clique.  By 

expoliting the control point headway requirement, we can incoporate more variables in 

the clique and thus identify a inequality that is stronger than constraint, as demonstrated 

in proposition 3.4.   

Proposition 3.4.  For any t1 , t2 , 1t , 2t , t(q’) and ( )t q  with 2

12 1
q

mtt     , 

1

2 1 1
q

mt t     , ( ')t q  = Max{ 1 1t   , '

2 1q

mt    , t1}, ( ')t q  = min{ t1+   1, 

2

2 1
q

mt    } for 1\' }{mq Q q , inequality (3.26) is valid. 
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1 21
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( ')\{ }

1

m

t tt q

t t t t q t tQ q

q qq

mt mt mt

q

x x x
    

       (3.26), 

Proof:  Since ( ')t q   t1 and ( ')t q   t1+   1, we have 

1 1( ') ( ') 1 1t q t q t t       ; 

therefore, the control point headway would imply that 

 

1

( )

( ')\{ }

'

'

'

1

m

t q

t t q

m

q q

t

Q

qx






   (3.27) 

If we know that a train q  Q
+
 enters segment m between time t1 and 1t , according to the 

control point headway, no trains traveling in direction + can enter segment m between 

time 1 1t    and t1+1, as required by the control point headway.  Thus, we have 

 
1

1 1

1

( )

(

'

' '

' ')\{ }

1

m

t t q

t t t t

q q

mt mt

q qQ q

x x




  

     (3.28). 

For 1\' }{mq Q q , we have ( ')t q  '

2 1q

mt     and ( ')t q ≤ 2

2 1
q

mt    , pairwise 

unidirectional inequalities would suggest that 

 2

2

2

( )

' (

'

' '

') '

1
tt q

qq

mt mt

q tt t t

x x
 

    (3.29). 



 61 

Combining with inequality (3.27), we have, 

 2

1

2

2

( )

( ')\{ }

'

'

'

'

'

1

m

qq

mt m

tt q

t

q tt t qQ q t

x x




 

     (3.30). 

As 2

12 1
q

mtt      and 1

2 1 1
q

mt t      , pairwise unidirectional inequality (3.23) 

is valid.  Taking ½ [(3.28) + (3.30) + (3.23)] and rounding down the right hand side 

give (3.26). 

Although we do not need inequalities (3.23) and (3.26) to define the feasible 

region in our model, adding them as cutting planes can help to strengthen our 

formulation.  Since the number of inequalities (3.23) and (3.26) are too large to be fully 

identified a priori, we develop a separation procedure to identify violated inequalities 

during the branch and bound algorithm.  Both inequalities are enforced for each pair of 

trains traveling on each specific segment in the opposite directions;  for each pair of 

trains and a segment, any given values of t1 and t  can determine values of t2 and 2t  in 

inequality (3.23) and values of t2, 2t  ( ')t q , and ( ')t q  in inequality (3.26).  Thus, the 

complexity for separation is  2

m mO Q Q M H  .  We can reduce the search procedure 

by applying the results in corollory 3.5: as long as some inequality is violated by a 

factional solution, we can always cut off the solution with inequalities with 1

1
0

q

mtx   and 

1

1
0mt

qx  .  Accordinly, we can just search for inequalities with 1

1
0

q

mtx   and 1

1
0mt

qx  .  

The detailed separation procedure is described in Appendix A. 

Corollory 3.5.  Given a fractional solution (x, y, u), if it does not satisfy all possible 

inequalities (3.26), there is a violated inequality (3.26) with 1

1
0

q

mtx   and 1

1
0mt

qx  . 

Proof:  if the solution (x, y, u) violates inequality (3.23), without loss of generality, we 

assume there exists (t, t , t2, 2t ) such that  

21 2

21

( ')

' \

'

' '{ } ( ') ' ''
1

m

t t q t

t

q qq

mt mtt Q q t t q mq t tt
x x x    

      . 



 62 

Taking t1 = 1

' ': 'arg m }' ,i { 0n
q

t mtt t xt    and 
1t  = 1

' ': 'arg m }' ,a { 0x
q

t mtt t xt   , we have 

11 1

1'' ''

t q q

mt mt

t

t t t t
x x

 
   and t  t1  

1t   t .  Thus, we find a violated inequality (23), 

with 1

1
0

q

mtx   and 1

1
0mt

qx  . 

3.4.5.  Pairwise unidirectional inequalities across segments 

Inequality (3.23) prevents the incompatible movements between two trains 

traveling on a specific segment in opposite directions.  Lemma 3.6 extends the results to 

more than one segment. 

 

  

Figure 8.  Illustration of unidirectional movements across segments 

 

Lemma 3.6.  Assume train q1 (traveling in direction +) and train q (traveling in direction 

) can both enter two adjacent segments m1 and m2, and the station s1 between them.  

For t̂ , t, 1t , 2t , t1, t2 that satisfy  

1 2

ˆ q q

s mt t    , 1 1q

mt t     , 1

22
ˆ 1

q

mtt        
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and either of the following condition holds: 

(1) 1

1 1
q

mtt       and 1 1

1 1 12 1
ˆmin{ 1, 1}

q q q

m s mt t t         , 

(2) 
12

ˆ 1q

mt t       and 1 1 1

1 11 21 1ma { , }x
q

s

q

mm

qt tt            . 

Inequality 
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is valid. 

Proof:  Here we prove that the proposition is true when condition (1) holds.  If train q1 

enters segment m1 between time t1 and 
1t , it will enter segment segment m2 no earlier 

than 1 1

1 11

q q

m st    (since 1 1

1 12 1

q q

m st t    ).  Therefore, inequality 
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is valid.  If 1

1 1
q

mtt       and 1 1q

mt t     , the pairwise unidirectional 

inequality (3.23) in segment m1 implies that inequality 
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is valid.  Since 
12 1q

stt      and 1

22
ˆ 1

q

mtt       , inequality (3.23) in 

segment m2 implies that inequality  
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is valid. 

For notational convenience, we define   1 2' '

ˆ
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 
   .  Since 
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 .  Thus, 

inequalities (3.33) and (3.34) would imply inequalities (3.35) and (3.36). 
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Taking ½[(3.32)+(3.35)+(3.36)] and rounding down the right hand side give inequality  
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Summing over flow conservation constraints for train q at station s1 and segment m1 

between time t and t   gives 
2 1 1 1
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For any feasible solution x, 
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q
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t mx
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 =0 or 1 and (
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q
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t mx
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 , 
1

q

s ty )=(0 , 1) or (1, 0).  

Thus, 
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x x
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0qtq
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y x
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  , and 

1 1 1'( 1) ' ( 1)

q

t m t tt

tq q

s st
y yx
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   . 

Accordingly, we know that inequality (3.38) is valid. 

 
1 1'
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( 1)
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m t tsx y x

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   (3.38) 

Inequalities (3.37) and (3.38) imply that inequality (3.31) is valid. 

We may view the development of inequality (3.31) as a lift-and-project cutting 

plane algorithm for 0-1 programs (Balas et al., 1993); we first lift the soluton space to a 

higher dimension by adding variable x
*
, and then project back to the original solution 

space, i.e., eliminate variable x
*
, by expoliting the our problem structure.  Intuitively, we 

can interpret inequality (3.31) in the following way: if train q enters segment m1 between 

time t and t  , its movement is incompatible with the entry of train q1 into segment m1 

between time t1 and 1t ; if it has not waited at station s1 at time t1, it should have entered 

segment m2 between time t̂  and t̂  , and thus its movement should be in conflict with 

the entry of train q1 into segment m2 between time t2 and 2t ;  thus, if train q enters 

segment m1 between time t and t  , its movement is not compatible with the entry of q1 

into segment m1 between time t1 and 1t  and the entry of train q1 into segment m2 between 
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time t2 and 
2t .  We can extend this logic to more than 2 segments, as stated in 

Proposition 3.7. 

Proposition 3.7.  Assume trains q1 (traveling in direction +) and q (traveling in direction 

) can enter K adjacent segments and the stations between these segments, denoted as m1, 

s1, m2, s2, mK1, sK1, mK.  For any t, 
1̂t t , 
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is valid.  

Proof: Similar to Proof of Lemma 4.1. 

Since there are two possible situations corresponding to any kt  and tk1 pair for k 

= 2, , K, number of possible situations grows exponentially with K.  Corollory 3.7 

shows that we can find the most violated inequality in O(K) for any given pair of trains, 

sequence of adjacnet edges, t and  , and thus we can identify the most violated 

inequality (3.39) in complexity  2

m mO Q Q M H K  . 

Corollory 3.7.  Given a fractional solution (x, y, u), pair of trains q and q1, seqence of 

adjacent edges m1, s1, m2, s2, mK1, sK1, mK, and t and  , there is a O(K) algorithm to 

find the most violated inequality (3.39), if any. 

Proof:  To get the most violated ineqiaity (3.39), if any, we need to find the (tk1, kt ) 

pairs for k = 2, , K that will maximize 1
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which is equivanet to maximizing 1
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 .  We will demonstrate a 

dynamic programming algorithm to solve the problem.  For the convenicence of 

notation, we define the following notation for any given t and  : 
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1 1

1 11

1 ˆmin{ 1, 1}
k k k

q q q

k m sk k mt t t   
         for all k = 2, , K; 

1 1

1 1 1

2

1 1
ˆ1, 1max{ }

kk kk

q q q

k m s k mt t t    
          for all k = 2, , K 

2 ˆ 1
k

q

k k mt t      for all k = 2, , K. 

For 'k  = 1, , K1 and i = 1, 2, we define  

1 1 2

' 1 1

1

1 2

1: ) ( )ma or ( )} 2x ;( , , ,,
k

k

k

t
i

k k k k

k
qi

k m t k k k

t t

k

k

t t t t t kt kf x t t  



  


    
  

  
  
  

and define 1

1 '

j
k

i
kk

qij

k m t

ti

k t t
h f x 

   if k

i

k

jt t , and 0 otherwise for k = 2, , K and i, j = 1, 

2.  Then we have 1 1 2

'1
max

k

kk

tK q

m Kt tk Kt f fx


   .  Accordingly, the dynamic 

programming recursion proceeds in the following fashion: 

1

1

1

1
1

1 1 '

t

t

qi i

t m tf h x


   for i =1, 2; 

1

1 '

j
k

i
kk

qij

k m t

ti

k t t
h f x 

   if k

i

k

jt t , and 0 otherwise 

1 2max{ , }j j j

k k kf h h . 

It is easy to check that the total number of updates is O(K).  

Our experience indicates that inequalities with more than two segments are 

rearely violated.  Thus, we focus on a separation procedure for inequality (3.31).  For 

each pair of trains traveling in opposite directions in any segmen, any possible value of t 

and t  corresponds to two pairs of (t1, 1t , t2, 2t );  thus, the complexity of separation for 

inequality (3.31) is  2

m mO Q Q M H  .  Corollory 3.8 can help to accelerate the 



 67 

separation procedure in practice by restricting the search to set of (t, t , t1, 1t , t2, 2t ) 

pairs with 0mt

qx  ; 
1

0q

m tx   or 
1

0s t

qy  , and 1

1 1
0

q

m tx   or 1

2 2
0t

q

mx  .  The detailed 

procedure is discussed in Appendix A. 

Corollory 3.8.  Given a fractional solution (x, y, u), if x do not satisfy all possible 

inequalities (3.39), we can find a violated inequality (3.31) with 0mt

qx  ; 
1

0q

m tx   or 

1
0s t

qy  , and 1

1 1
0

q

m tx   or 1

2 2
0t

q

mx  . 

Proof:  similar to the proof of Corollory 3.7.  

3.5.  SEQUENTIAL DISPATCHING HEURISTIC 

A heuristic solution procedure is important when the optimization model fails to 

find a good solution within reasonable amount of time.  Since trains can only wait inside 

stations, our heuristic tries to move trains from one station to the next sequentially and 

iteratively.  When the planning begins with some trains traveling at any segment, these 

trains move to the next stations during initialization.  Besides, we treat terminals at the 

ends of the territory as stations with infinite capacities.  Each iteration consists of three 

stages: the pre-dispatching stage, the active train selection stage, and the dispatching 

stage.  In the pre-dispatching stage, system state is updated to avoid deadlocks; in the 

active train selection stage, an active train is chosen as the candidate to move forward in 

the dispatching stage; in the dispatching stage, the heuristic decides whether to delay the 

active train or move it forward. 

3.5.1.  Notation and definitions 

At any point of the heuristic, we describe the state of the dispatching system by 

the station that each train is in, the movements and waiting of trains inside the territory 

that are already planned, and the track unavailability due to planned train movements and 

waiting and explicit time window requirements.  We use   to denote such a state.  
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Given any system state  , we define the following notation to facilitate the discussion 

of the heuristic procedure: 

s(q, ) the station train q is in 

m(q, )  = ( , )

q

s qe  , i.e., the next segment that train q traverse after exiting s(q, ) 

s1(q, )  = ),(m q

qe  , i.e., the next station that train q traverse after exiting m(q, ) 

p1(q, )  train q’s entry control points of m(q, ) 

p2(q, )  train q’s entry control points of s1(q, ) 

t(q, )  time up until which the schedule of train q is determined at state   

Q() set of trains that have not been sent to their destinations, ordered 

increasingly by t(q, ) 

( , )Q s  set of trains that are currently in station s  

w(s, q, ) total waiting time of train q in station s in state   

c( ) total cost of the movement plan if each train q leaves s(q, ) at t(q, ) 

and runs without waiting until its destination 

Note that c( ) gives an upper bound on the best objective function value that can 

be achieved from state  , and thus can be used as metric to compare different states.  

In any state  ,  each train can either be moved forward to next station or held to wait at 

the current station for some time.  In any given state , we define the following 

procedures: 

 move(q,  ) makes train q move out of station s(q, ) at time t(q, ), forward to 

m(q, ) and then into s1(q, ).  The detailed procedure is discussed in Figure 9.  

The procedure assigns train q to use control points p1(q, ) and p2(q, ), sections 

in segment m(q, ), and station s1(q, ). 
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 wait(q, t, ) makes train q wait at station s(q2, ) between time t(q2, ) and t1.  

The detailed procedure is presented in Figure 10.  The procedure assigns train q to 

use of one the wait tracks in train q. 

 movable(q, t, ) checks if train q can move from station s(q, ) to s1(q2, ) at time 

t.  Figure 11 shows the detailed procedure.  Specifically, the procedure checks if 

the control points p1(q, ) and p2(q, ), sections in segment m(q, ), and station 

s1(q, ) can be used. 

 waitable(q, t1, t2, ) checks if train q can wait at station s(q, ) between time t1 and 

t2.  Figure 12 describes the procedure.  The procedure checks if there is a wait 

section available for train q to use between time t1 and t2. 

 reverse(q, , ) reverses or backtracks train q to its previous station and waits 

additional  periods at previous station.  Figure 13 describes the detailed 

procedure.  The procedure first reverses train q to its previous station, denoted as s, 

calculates the time that q should wait in station s, and calls the procedure delay to 

delay train q at station s. 

 delay(q, t, ) makes train q either wait or reversed to the previous station so that it 

leave s(q, ) no earlier than time t.  The detailed procedure is presented in Figure 

14.  The procedure first checks if train q can wait at station s(q, ): if so, train q is 

made to wait at station s(q, ) for time t; otherwise, the procedure reverse is called 

so that train q enters station s(q, ) when s(q, ) has available track. 

 select_active_train(  ) selects an active train to serve as the candidate train to 

move forward in the dispatching stage.  Figure 15 presents the detailed procedure.  

The procedure first finds trains, if any, in stations that are fully occupied and 

identifies the earlier such train; if no such train exists, the train in Q() with earliest 
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t(q, ) is chosen.  As we will discussed later, this procedure can help reduce 

deadlocks. 

 

Procedure:  move(q,  ) 

Input: train q and system state   

Step 1: assign q to use control point p1(q, ) at t(q, ); 

Step 2: assign q to use control point p2(q, ) at t(q, ) + ( , )

q

m q  ; 

Step 3: assign q to use section g time between t(q, )+
q

g  and t(q, )+
q

g 1 for 

each ( , )m qGg   

Step 4: assign q to use one track in s1(q, ) during t(q, )+ ( , )

q

m q   and t(q, )+

( , )

q

m q  + 
1 ( , )

q

s q  1; 

Step 5: t(q, )  t(q, )+ ( , )

q

m q  + 
1 ( , )q

q

s   and s(q2, )  s1(q2, ). 

Figure 9.  Procedure to move a train forward 

 

Procedure wait(q, t,  ) 

Input: train q, time to end waiting t, and system state   

Step 1: assign q to use one track in s(q1, ) between t(q, ) and t 1; 

Step 2: updating t(q, )  t(q, ) + t 

Figure 10.  Procedure to make a train wait 

 

Procedure waitable(q, t1, t2,  ) 

Input: train q, time to start waiting t1, time to end waiting t2, and system state   

Output: <true> if q can wait in s(q, ) between t1 and t21, and <false> otherwise 

Step 1: If there is available wait section in s(q, ) between time t1 and t21 

  Return <true>; 

 Else 

  Return <false>; 

Figure 11.  Procedure to check if a train can wait in current station 
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Procedure movable(q, t,  ) 

Input: train q, time to leave s(q,  ) t, and system state   

Output: <true> if train q can leave s(q,  ) and move to s1(q,  ), and 

<false>otherwise 

Step 1: If p1(q, ) is used or unavailable between t+1 and t+ 1 

 Return <false> and terminate the procedure 

Step 2: If p2(q, ) is used or unavailable between t+ ( , )

q

m q  +1 and 

( , ) 1q

m qt      

 Return <false> and terminate the procedure 

Step 3: If there are trains traveling in m(q, ) in the opposite direction between t 

and t+ q

m 1 

 Return <false> and terminate the procedure 

Step 4: If there exists a g  ( , )m qG   that is unavailable or is used by other trains 

between t+
q

g  to t+
q

g 1 

 Return <false> and terminate the procedure 

Step 5: If there is no available track in s1(q, ) between time t + ( , )

q

m q   and t +

( , )

q

m q  + 
1 ( , )

q

s q  1 

 Return <false> and terminate the procedure 

Step 6: Return <true> 

Figure 12.  Procedure to check if a train can move forward at a certain time 

 

Procedure reverse (q, ,  ) 

Input: train q, additional time to wait in previous station , and system state   

Step 1: If s(q, ) = o
q
 and o

q
 is not a terminal 

 Terminate and the procedure cannot find a solution; 

 Else 

 Get station s and segment m such that q

sa m  and ( , )q

ma s q  . 

Step 2: t(q,  )  t(q,  )  w(q, s(q, ),  )  ( , )

q

s q   q

m ;  

Step 3: Clear the track assignment to q in s(q,  ), m, entry and exit control 

points to m; 

Step 4: s(q,  )  s; 

Step 5: delay(q, t(q,  ) +  ,  ) 

Figure 13.  Procedure to backtrack the train to its previous station 
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Procedure delay(q, t,  ) 

Input: train q, time to end delay t, and current state   

Step 1: t1 = t(q,  ); 

 While t1 ≤ t and not waitable(q, t1, t,  ) 

 t1t1+1; 

Step 2: If t1 == t(q,  ) 

 wait(q, t,  ); 

 Else 

 reverse(q, t1  t(q,  ) + w(q, s(q, ),  ) ,  ); 

Figure 14.  Procedure to delay a train 

 

Procedure select_active_train( ) 

Input:  system state   

Output: the active train 

Step 1: 'Q  =  

 For each station s that are fully occupied in state   

 'Q   'Q Q(s,  ); 

 If | 'Q |==0 

 Go to Step 2; 

 Else if 

 Sort 'Q  increasingly according to t(q,  ); 

 Return the first train in 'Q . 

Step 2: Sort ( )Q   increasingly according to t(q,  ); 

 Return the first train in ( )Q  . 

Figure 15.  Procedure to select the active train 

 

3.5.2.  Conflict resolution 

The procedure move(q,  ) of the active train may be incompatible with other 

trains since they may need to use the same segment at the same time or use the same 

control point within  periods.  Such incompatibilities are called conflicts.  The conflict 

is called a meet conflict if it is between two trains traveling in the same direction, and 

pass conflict otherwise.  The detailed procedures to detect these conflicts are described 
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in Figure 16 and Figure 17.  Both procedures check if two trains (traveling in the same 

direction for meet conflicts and traveling in opposite directions for pass conflicts) will 

appear at the same section or use the same control point at the same time; if so, there is a 

conflict.  Figure 18 and Figure 19 describe the procedure to resolve the pass and meet 

conflicts respectively.  As illustrated in Figure 18, faster trains are granted the right of 

way in any pass conflict so that the fast train does not need to wait for slow trains in all 

subsequent stations.  On the other hand, when a meet conflict arises, as illustrated in 

Figure 19, the right of way is first given to a train that is currently at a fully occupied 

station, then given to the train that will cause a hard deadlock if the other train moves, 

and assigned according to the cost.  Note that the value of the threshold probability  , a 

parameter in the procedure resolve_meet(q1, q2, ,  ), controls how often the active 

train is moved forward;  specifically when  = 0, the procedure resembles a greedy 

scheme that looks myopically at the total cost in the next iteration;  larger values of  

indicate granting right of way to the active train more frequently.  As discussed later, this 

parameter can enable creating different movement plans and searching for plans with 

lower cost. 
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Procedure isMeet(q1, q2) 

Input: trains q1 and q2 

Output: <true> if train q1 and q2 have a meet conflict, and <false> otherwise. 

Step 1: If q1 and q2 are traveling in the same direction or m(q1, )  m(q2, )  

 Return <false>; 

Else if {t: t(q1, ) ≤ t ≤ t(q1, ) + 1q

m 1} 

{t: t(q2, ) ≤ t ≤ t(q2, ) + 2q

m 1}   

 Return <true>; 

 Else if | t(q1, )  t(q2, )  2q

m  | <  or | t(q1, ) + 1q

m   t(q2, ) | <  

 Return <true>; 

 Else 

     Return <false>. 

Figure 16.  Procedure to check if two trains have a meet conflict 

 

Procedure isPass(q1, q2) 

Input: trains q1 and q2 

Output:<true> if train q1 and q2 have a pass conflict, and <false> otherwise. 

Step 1: If q1 and q2 are traveling in the opposite directions or m(q1, )  m(q2, )  

 Return <false>; 

Else if {t: t(q1, )+ 1q

g ≤ t ≤ t(q1, )+ 1q

g 1}{t: t(q2, ) + 2q

g ≤ t ≤ t(q2,

 ) + 2q

g 1} for some section mg G  

 Return <true>; 

 Else if |t(q1, )  t(q2, )| <  or |t(q1, ) + 1q

m   t(q2, )  2q

m | <  

 Return <true>; 

 ELSE 

 Return <false>. 

Figure 17.  Procedure to check if two trains have a pass conflict 
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Procedure resolve_pass(q1, q2,  ) 

Input: Trains q1 and q2, system state   

Step 1: Set m = m(q1,  ) = m(q2,  ); 

 If 1q

m > 2q

m  or 1q

m == 2q

m  and t(q1,  ) > t(q2,  ) 

 q = q2; 

 Else 

 q = q1; 

Step 2: move(q,  ); 

Figure 18.  Procedure to resolve a pass conflict 

 

Procedure resolve_meet(q1, q2, ,  ) 

Input: active train q1, meeting train q2, threshold probability , and state   

Step 1: If s(q1,  ) is fully occupied 

 move(q1,  ); terminate the procedure; 

 Else if s(q2,  ) is fully occupied 

 move(q2,  ); terminate the procedure; 

 Else 

 Go to Step 2; 

Step 2: t1 = t(q2,  ) + 2

2( , )

q

m q   +  1; 

 t2 = t(q1,  ) + 
1

2

( , )

q

m q   +  1; 

 If waitable(q1, t(q1,  ), t1,  ) and not waitable(q2, t(q2,  ), t2, ) 

 wait(q1, t1,  ); terminate the procedure; 

 Else if not waitable(q1, t(q1,  ), t1, ) and waitable(q2, t(q2,  ), t2, ) 

 wait(q2, t2,  ); terminate the procedure; 

 Else 

 go to step 3; 

Step 3: //move trains that result in higher value in next iteration 

 Let 1  be the state after executing wait(q1, t1,  ) and move(q1,  ); 

 Let 2  be the state after executing wait(q1, t2,  ) and move(q2,  ); 

 Generate a random number r between 0 and 1; 

 If c( 1 ) < c( 2 ) or r <  

 move(q1,  ); terminate the procedure; 

 Else 

 move(q2,  ); terminate the procedure; 

Figure 19.  Procedure to resolve a meet conflict 
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3.5.3.  Deadlock prevention and resolution 

As in discrete-event heuristics for train dispatching, deadlocks may occur when 

we progressively route trains.  A deadlock is a system state that no train is able to move 

forward without reversing at least one of them.  Depending on the states of trains in the 

deadlock, deadlock can be either hard or soft.   

In hard deadlocks, a train can neither move forward nor wait in current station.  

For example, if both movable(q, t(q, ), ) and waitable(q, t(q, ), t(q, ) + 1, ) 

return false value, the deadlock arises since train q can neither move forward nor wait in 

s(q, ) at time t(q, ).  In such a situation, we need to apply reverse(q, ,  ) with   1 

so that we will not get into state   later.  Although reversing trains can be resolved the 

hard deadlocks, it usually gives solutions with lower quality.  To reduce applications of 

reverse(q, ,  ), our heuristic adopt the following two strategies to prevent hard 

deadlocks in the pre-dispatch stage.  

 Apply procedure movablize(q, ) to delay train q accordingly if it is not movable in 

current state.  Figure 21 presents the procedure movablize(q, ).  Specifically, the 

procedure checks if train q can move forward at time t(q, ).  If not, procedure 

delay is called to make train q either wait at s(q, ) or reverse. 

 Apply procedure look_ahead(q, ) to delay train q appropriately if it is neither 

movable or waitable after every train q moves forward to its next station.  Figure 

22 presents the procedure look_ahead(q, ).  Specifically, the procedure checks 

whether train q, after moving to the next station s1(q, ), can wait at s1(q, ) or 

move forward to the next station of s1(q, ).  If not, procedure delay is called to 

make train q wait at s(q, ) or reverse. 

In soft deadlocks, trains can wait, but not move forward.  Figure 20 shows such a 

deadlock that commonly incurres.  In Figure 20, trains q1 and q2 are traveling in 
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direction +, and trains q3 and q4 are traveling in direction .  No trains are able to move 

forward without violating the capacity constraint of stations s1, s2 or segment m.  The 

only option left may be to reverse one of the trains.  When combined with unavailability 

of track resources, the situation can get more complicated and identifying all possible 

variants could require considerable effort.  For example, with the siding of station s2 is 

under MOW, deadlock arises even when only trains q1 and q2 are in station s1 and train q3 

is in station s2 in Figure 20.  As we know, a soft deadlock arises since the tracks inside 

stations are fully occupied.  For example, stations s1 and s2 in Figure 20 are fully 

occupied.  Thus, we can avoid all soft deadlocks by making sure that no stations are 

fully occupied.  Specifically we apply the following soft deadlock prevention strategies: 

 when selecting the active train in procedure select_active_train( ), as presented 

in Figure 15, we give higher priority to trains in stations that are fully occupied, as 

illustrated in Figure 15; 

 for an active train, we always apply resolve_pass(q1, q2,  ), as presented in 

Figure 18, before resolve_meet(q1, q2,  ), as presented in Figure 19, since a pass 

conflicts implies that the station is fully occupied; 

 when resolving the conflict between two meeting trains in resolve_meet(q1, q2, 

 ), as presented in Figure 19, we always make the train in fully occupied 

stations move forward and the other train wait. 
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Figure 20.  Example of a soft deadlock 

 

Procedure movablize(q,  ) 

Input: train q and system state   

Output: return <true> if the system state is updated, and <false> otherwise 

Step 1: Set t = t(q,  ); 

 While not movable(q, t,  ) 

 tt + 1; 

Step 2: If t == t(q,  ) 

 Return <false>; 

 Else 

 delay(q, t,  ); 

 Return <true>; 

Figure 21.  Procedure to movabilize trains 

 



 79 

Procedure look_ahead(q,  ) 

Input: train q and system state   

Output: return <true> if the system state is updated, and <false> otherwise 

Step 1: Assume the system state after perform move(q,  ) is   

 Set t = t(q,  ); 

 While not movable(q, t,  ) 

 tt + 1; 

 If t == t(q,  )  

 Return <false>; 

 Else 

 go to step 2; 

Step 2: t1= t(q,  ) 

 While t1 < t and not waitable(q, t1, t,  ) 

 t1t1 + 1; 

 IF t1 == t(q,  ) 

 Return false; 

 Else 

 delay(q, t1 t(q,  ),  ) 

 Return true; 

Figure 22.  Procedure to look head one station 

 

3.5.4.  Basic Procedure 

Figure 23 shows how the dispatching problem can be solved by our sequential 

routing heuristic.  In the initialization phase, the system state  is updated to capture the 

track unavailability and to ensure that all trains are at stations.  Each iteration starts with 

checking if the stopping criteria are met (Step 1); the procedure terminates when all trains 

are at their destinations or when maximum number of iterations is reached.  Next, the 

pre-dispatch stage (Step 2) is repeated until the following two conditions are met: 1) each 

train is movable to next station and 2) each train can move or wait at its next station.  In 

Step 3, we pick an active train and either move it forward or delay it, depending on the 

type of conflicts and possibly on the threshold probability . 
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Procedure sequential_routing( n
*
, ) 

Input: Maximum number of iterations N  

 Threshold probability  

Output:the system state   with a meet and pass plan 

Step 0: Let  be the initial state; 

 Update the track unavailability of ; 

 For each train q  Q 

 t(q, ) = t
q
, s(q, ) and = o

q
; 

 n = 0; 

Step 1: If n >n
*
 

 Return null; 

 Else if |Q()|==0 

 Return current solution; 

Step 2 continue_update = true; 

 FOR each train q  Q() 

 While not ( movablize(q, ) and look_ahead(q, ) ) 

  continue_update = true; 

 If continue_update 

 Go to step 1; 

 Else 

 Go to step 2; 

Step 3: q = select_active_train(); 

 If there is a train q2 so that isPass(q, q2) is true 

 resolve_pass(q, q2,); 

 Else if there is a train q2 so that isMeet(q, q2) is true 

 resolve_meet(q, q2, ,); 

 Else 

 move(q,  ) 

 Go to step 1; 

Figure 23.  Procedure general heuristic 

 

3.5.5.  Random search 

If we select 0<  <1 in sequential_routing( n
*
, ), the procedure would end with 

different final state  in different runs.  This enables a random search procedure by 

running sequential_routing( n
*
, ) multiple times and picking the final state with smallest 
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cost.  As illustrated in Figure 24, the random search starts with a greedy sequential 

routing procedure with  = 1, followed by n random sequential routing runs with 0<  <1.  

Such a random procedure can help generate a set of feasible solutions and picking the 

best one is usually better than the greedy heuristic. 

Procedure random_search(N, n
*
, ) 

Input: number of replications N, maximum number of iterations n* and random 

threshold replication  

Output:feasible solution   or null if no feasible solution found 

Step 1:  = sequential_routing( n
*
, 1) 

Step 2: For i = 1 to N  1 

 1 = sequential_routing(n
*
, ); 

 If c(1) > c() 

  = 1; 

  Return  

Figure 24.  Random search scheme 

 

3.6.  COMPUTATIONAL RESULTS 

We tested the proposed models and solution techniques using data from two 

territories of a Class I railroad company in the US.  Our models are implemented in 

JAVA, using CPLEX 12.4.  The instances were tested on Dell Poweredge T610 running 

Ubuntu Linux, with 2 sixcore hyperthreading 3.33 GHz Xeon processors and 24 GB of 

shared memory.  We terminate the procedure when the runtime reached 5 minutes or if 

the solver can find a solution with optimality gap of 2% or less.   

We tested the data on Territory B and Territory M, whose lengths are 100 miles 

and 140 miles respectively.  The planning horizon is 12 hours, time period length is 90 

seconds, and control point headway is 7 minutes. 

We use the base model to denote the model discussed in Section 3.4; the 

strengthened model incorporates the following improvements: 
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 replacing constraints (3.9) and (3.10) in base model with non-concurrency 

constraints  (3.16), (3.19), and (3.20) 

 refining the section definitions using the techniques discussed in Section 3.4.2,  

 using the heuristic solution as the warm-start to the branch and cut 

 applying the following valid inequalities as cuts: train-based non-concurrency 

inequalities (3.21) and (3.22), pairwise unidirectional inequalities (3.23), (3.26), 

and (3.31). 

Table 5 shows the computational results of the base model and strengthened 

model.  The strengthened model can get a near-optimal solution (within a 2% MIP gap) 

for 11 instances within 300 seconds, many more than the 3 instances in the base model.  

Besides, the strengthened model performs better than the base model in all cases; the 

strengthened model either reduces the solution time or gets lower MIP Gap value.  This 

can be attributed to good feasible solutions obtained by the heuristic procedures and 

better lower bounds achieved by our effective user cuts. 

To compare the effectiveness of our valid inequalities, we define the percentage 

of gap closed as ( ) / ( )LB LI LB LS  , where LI is the upper bound obtained after solving 

the root node, LB is the upper bound obtained after solving the root node, and LS is the 

objective function value of the best solution found.  Table 6 summarizes the percentage 

of gap closed and compares the number of valid inequalities by CPLEX and our 

separation procedures.  We can see that our separation procedure found many more cuts 

than CPLEX and closes the gap effectively. 
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Table 5.  Comparing Base Model and Improved Model for train dispatching 

 
# of 

Trains 

Base Model  Improved Model 

Instance Time(secs) MIP Gap  Time(secs) MIP Gap 

B1347 13 26 1.89%  8 1.09% 

B1013 16 164 1.91%  8 1.88% 

B0908 16 600 4.65%  9 1.82% 

B0942 17 600 4.79%  15 1.95% 

B1107 18 600 4.10%  15 1.92% 

M1955 13 600 2.71%  24 1.98% 

M1443 16 16 1.53%  25 1.62% 

B1037 15 48 1.76%  32 1.99% 

M1356 13 600 4.17%  52 1.93% 

M0957 19 600 6.88%  96 1.99% 

B0954 21 600 4.11%  107 0.88% 

B1243 16 600 7.89%  115 1.81% 

B1311 22 600 6.24%  600 2.35% 

B0914 19 600 20.60%  600 2.58% 

M1728 18 600 11.54%  600 4.18% 

B1358 30 600 30.81%  600 4.22% 

B1020 27 600 28.76%  600 4.80% 

B0806 18 600 12.89%  600 4.94% 

B1155 25 600 10.37%  600 5.77% 

M1225 21 600 28.87%  600 8.79% 

M1203 24 600 41.07%  600 12.64% 
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Table 6.  Impact of valid inequalities 

 

Base Model  Improved Model Percent of Gap 

Closed Instance # of CPX Cut  # of CPX Cut # of User Cut 

B1347 100  94 282 54.55% 

B1013 144  90 409 51.92% 

B0908 172  73 835 52.81% 

B0942 186  109 962 58.28% 

B1107 260  121 969 63.64% 

M1955 174  66 955 41.78% 

M1443 37  189 1197 35.47% 

B1037 97  60 1349 30.05% 

M1356 76  69 1153 74.93% 

M0957 298  90 1993 58.58% 

B0954 256  100 4965 74.54% 

B1243 179  111 1566 63.92% 

B1311 251  162 11055 85.85% 

B0914 205  182 12057 60.79% 

M1728 178  66 3074 52.73% 

B1358 314  239 8326 70.44% 

B1020 273  157 2867 50.71% 

B0806 187  168 16903 42.95% 

B1155 275  146 15816 49.69% 

M1225 439  194 4599 32.85% 

M1203 338  259 9195 17.73% 

 

3.7.  CONCLUSIONS 

To help train dispatching in single-track territories, we proposed an integer 

programming model for the train dispatching problem that takes into account various 

operational considerations including trailing of trains, minimal headway between trains, 

track unavailability and train priorities.  We developed a section-based non-concurrency 

constraint that can prevent the meeting and overtaking of trains inside a segment, as well 

as the crossing of trains at the section bound point.  We also proposed a train-based non-

concurrency inequality that can strengthen the model.  Besides strengthening the 
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pairwise unidirectional inequalities in Cacchiani et al.(2010), we extended the inequality 

to more than one segment and generalized it to incorporate more trains. 

Our study is the first to explore and improve modeling and algorithmic strategies 

to solve real-life train dispatching problems to optimality or near-optimality by using 

discrete time formulation.  Both Caprara et al. (2002) and Şahin et al. (2008) solved their 

problems by heuristics, and Harrod (2011) only applies his model to a small territory with 

simplified territory data.  Our computational results show that our solution method can 

obtain an optimal or near-optimal solution to many real-world problem instances within a 

reasonable amount of time. 
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Chapter 4.  Route Design for Delivery Vehicles with Backhauling 

4.1.  INTRODUCTION 

Major grocery chains require daily deliveries from one or more warehouses to 

restock their inventory and replenish perishable items.  On the return trip, it is common 

for a subset of the vehicles to pick up salvage items (or “returns”) from the stores and 

bring them back to the warehouse.  The resulting problem, which we call the retail route 

design problem (RRDP) with backhauls extends the capacitated vehicle routing problem 

with time windows (VRPTW) by incorporating context specific considerations.  As is in 

the traditional VRPTW, a vehicle corresponds to a truck-trailer combination that is 

assigned to a route for delivery of replenishment orders and for pickup of salvage orders.  

In our context, it is assumed that there are a sufficient number of drivers, trucks and 

trailers available on any given day to meet the demand within the given time windows.  

The costs associated with a vehicle route consist of two components: (1) the travel cost 

incurred by each route on a per mile basis, and (2) the driver idle time cost incurred when 

arriving early at store and having to wait for the start of the delivery and pick up 

windows. 

In addition to the requirements in the traditional VRPTW, the RRDP investigated 

here has a number of practical and unique constraints.  First, there are three types of 

delivery orders and one type of pickup order.  The delivery orders are required to be 

loaded onto the truck in certain sequences, and the truck can only start pick up orders 

after its deliveries are made.  Second, the truck has pre-specified weight and volume 

limits.  Separation curtains must be placed between different delivery order types and 

between different stores.  The weight of the curtains can be ignored but not the volume, 

which reduces the capacity of a truck on that dimension. Third, the loading capacity at 

the warehouse must be taken into account on a 30-minute basis, so only a limited number 



 87 

of vehicles can be loaded in each time slot.  Lastly, the total time of a route and the 

actually time a driver is behind the wheel must adhere to certain legal restrictions and 

union regulations.   

To model the RRDP, we first construct a route diagram in the form of a directed 

network in which each order is represented as a node and where the arcs capture possible 

transitions between the nodes.  Based on this diagram, we develop a mixed-integer 

program (MIP) for the problem.  However, because it was not possible to obtain 

solutions for realistic instances with a commercial code, we developed a greedy 

randomized adaptive search procedure (GRASP) following the work Kontoravdis and 

Bard (1995) and Solomon (1988).  In the construction phase, GRASP exploits the 

unsurprising observation that orders for the same store are usually served by the same 

route in high-quality solutions.  In the improvement phase, we initially relied on tabu 

search to find local optima; however, we discovered that every solution is likely to have 

many degenerate neighbors, i.e., neighbors with the same cost as the current solution.  

This limits the extent to which the feasible region can be locally explored.  To overcome 

this difficulty, we implemented a randomized variable neighborhood search as well as 

several augmented versions of tabu search.   

Extensive testing was done to determine the best combination of procedures.  

The results showed that GRASP with tabu search in phase II edged out pure tabu search 

with random variable neighborhood search when both procedures were run for 30 

minutes.  In a second set of tests, we compared the GRASP solutions with those 

provided by Kroger, the sponsoring company, and found that cost reductions averaging 

$2737 or almost 3% per day can be obtained with our methods.   

With this in mind, the contributions of the paper are fourfold: (1) we study a new 

version of a pickup and delivery VRPTW in which vehicle capacity is order dependent; 
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(2) we develop several solution methodologies that integrate a number a metaheuristic 

ideas; (3) we provide extensive comparisons of alternative implementation approaches; 

and (4), we compare the solutions obtained with our best algorithm with those actually 

used and with those obtained with an experimental set-partitioning code.  

The rest of the chapter is organized as follows.  Section 4.2 presents the literature 

review and Section 4.3 gives a formal description of the RDDP. This is followed by our 

MIP formulation in Section 4.4 and the development of alternative solution 

methodologies in Section 4.5.  In phase I of the GRASP, feasible solutions are 

constructed by sequentially inserting orders into existing routes, and in phase II we 

propose a variety of local improvement methods.  Test results are included in Section 4.6 

using seven days of data provided by Kroger, one of the largest grocery chains in the U.S.  

We close in Section 4.7 with some insights and suggestions for future research. 

4.2.  RELATED LITERATURE 

The past two decades have witnessed an outsized interest in the VRPTW and its 

variants.  Both branch and cut (e.g., see Bard et al. 2002, Kohl et al. 1999, Lysgaard 

2004) and branch and price (e.g., see Bard et al. 2014, Desaulniers et al. 2008, Azi 2010) 

have been applied successfully to find exact solutions to instances with a 100 or more 

nodes.  As a variation, Prescott‐Gagnon et al. (2009) developed a large neighborhood 

search algorithm that takes advantage of the power of branch-and-price.  For more 

information about the exact solution method, see the surveys by Baldacci et al. (2012) 

and Kallehauge (2008). 

Various heuristics have also been proposed for the VRPTW.  Bräysy and 

Gendreau (2005a, 2005b) present an extensive survey of related research that covers 

route construction algorithms, local search algorithms, and metaheuristics.  Solomon 
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(1987) discusses and compares several solution-construction approaches including saving 

heuristics, a nearest-neighbor heuristic, and insertion heuristics.  He found that an 

insertion-type heuristic consistently gave good results.  Various local search methods 

have also been developed to improve the solution.  Rochat and Semet (1994) present an 

insertion procedure to construct an initial solution followed by tabu search to improve the 

incumbent.  Taillard (1995) developed two partition methods to speed up the tabu search 

for VRPs.  Other variants of local search applied to these problems include granular tabu 

search (Toth and Vigo 2003), variable neighborhood search (Kytöjoki et al. 2007), and 

large neighborhood search (Ergun et al. 2006).  Also see Kontoravdis and Bard (1995) 

for a GRASP to solve the VRPTW and Nagata et al. (2010) for a memetic algorithm.   

An expansion of reverse logistics activities has led to a renewed interest in the 

study of the VRP with pickup and deliveries (PDP), that is, a VRP with demand for two 

types of services.  Berbeglia et al. (2007) and Parragh et al. (2008a and 2008b) present 

extensive surveys.  Depending on the problem context, some studies only allow vehicles 

to perform pickups after all the deliveries are made (e.g., see Thangiah et al. 1996), while 

others allow simultaneous pickups and deliveries (e.g., Bianchessi and Righini 2007 and 

Tasan and Gen 2012).  Various heuristics have been proposed to solve the PDP.  Bent 

and Hentenryck (2006) present a two-stage hybrid approach in which a single simulated 

annealing algorithm is used in the first stage to decrease the number of routes, while large 

neighborhood search is used in the second stage to decrease total travel cost.  Bianchessi 

and Righini (2007) present and compare construction algorithms, local search algorithms, 

and tabu search.  Their computational results give experimental evidence that local 

search with complex and variable neighborhoods yields good solutions that are very 

robust.  Recently, Tasan and Gen (2012) developed a genetic algorithm and Goksal et al. 

(2013) present a heuristic based on particle swarm optimization. 
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Researchers have also investigated more specialized models designed to 

accommodate practical restrictions.  Using adaptive large neighborhood search, Pisinger 

and Ropke (2007) solved several variants including VRPs with multiple depots.  Lau et 

al. (2003) provided a computable upper bound on the total number of customers that can 

be served by a given fleet size and designed a tabu search algorithm to solve the VRPTW 

with a minimum travel time objective.  Penna et al. (2013) considered a VRP in which 

clients are served by a heterogeneous fleet with distinct capacities and costs.  Vidal et al. 

(2013) proposed a hybrid genetic algorithm for multi-depot and periodic VRPs.  For 

more specialized applications, see Golden et al. (2008).  Nowak et al. (2008) 

demonstrated the benefit of using split loads for the PDP, while Nagy et al. (2013) was 

concerned with the level of savings that can be achieved by allowing the pickups and 

deliveries to be served separately as opposed to simultaneously.  The VRPTW that we 

investigate requires all deliveries be made before any pickups, although we do allow split 

deliveries (cf. Mitra 2008).   

In a recent study, Qu and Bard (2013) addressed a VRP in which the interior of 

the vehicles could be reconfigured to accommodate different structural loads.  Their 

constraints were similar to but less complex than ours.  Solutions were found with an 

adaptive large neighborhood search heuristic for an application in which members of a 

senior activity center had to be transported to and from the center as well as to secondary 

facilities for rehabilitative and medical treatment. The number of persons and support 

equipment that a van could carry was a function of how it was configured. 

4.3.  PROBLEM DESCRIPTION 

The RRDP, as an extension of the traditional VRPTW, requires the scheduling a 

set of configurable vehicles to deliver orders from a warehouse to geographically 
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dispersed locations, and then to pick up items at a subset of those locations on the return 

trip to the warehouse.  Each location or store s  S has a time window [as, bs] during 

which either loading or unloading can begin.  If a driver arrives prior to as, he has to 

wait, thus incurring unit idle time cost of.  For each day in the planning horizon, the 

objective is to minimize the total cost of a schedule, which is a function of the total time 

of each route in the schedule. 

Besides the constraints common to the generic VRPTW, the RRDP under 

consideration must also satisfy the following sets of constraints, which capture the 

operational requirements associated with retail inventory replenishment.  

(1) Loading capacity at the warehouse.  Orders must be pulled from the 

warehouse and delivered to the dock by the material handling equipment.  These 

operations take roughly the same amount of time for each trailer. Since the material 

handling equipment has limited capacity, only a certain number of trailers can be loaded 

simultaneously.  Accordingly, we divide the available operating time at the warehouse 

into a set of time periods 30 minutes in length, and restrict the number of routes that can 

be assigned to each period to some maximum, n
load

 (= 20).  

(2) Loading and unloading time at the stores.  There are two components to 

consider: a fixed setup time and order-specific variable time.  The fixed setup time is 

incurred only when a truck starts to deliver orders for a store.  The variable time of each 

order is proportional to its volume.  

 (3) Time limits. Each route must adhere to an upper limit of 10 hours on driving 

time (which does not include waiting time a store prior to the beginning of the time 

window or waiting at the warehouse) and total time that a truck is on the road.  The 

Federal Transportation Administration allows up to 14 hours on the road.   
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(4) Delivery order sequence restrictions. There are three categories of delivery 

orders, namely, frozen, refrigerated and grocery, and one category for pickups called the 

salvage order.  The sequence in which the delivery orders can be loaded onto a trailer, 

starting from the front, must be frozen, refrigerated, and grocery.  Salvage pickups can 

only begin after all deliveries are made and the truck is empty.  Each order has a weight 

and volume, but the corresponding values for salvage orders are small in comparison to 

the size of the truck and therefore are ignored. 

(5) Volume reduction. For a trailer carrying grocery orders together with 

refrigerated or frozen orders, a curtain is necessary between them.  Curtains are also 

placed between orders for different stores.  Each curtain reduces the total available 

volume of a trailer in a nonlinear way. 

(6) Capacity. The total volume and weight of the orders on a trailer must not 

exceed their respective limits. 

(7) Maximum number of stores per route.  To reduce the excessive traveling 

between stores, there is a limit on number of delivery stores a truck can visit and a limit 

on the number of pickup stores a truck can visit. 

In practice, some of these constraints are often treated as soft by the scheduling 

office.  For example, we found that the mixed use of two sets of time windows are 

common at Kroger.  “Short” time windows are standard but in some cases, they are 

extended by moving up ai to create “long” time windows.  Introducing more flexibility 

may significantly reduce the cost of a schedule.  We examined this case as well as an 

intermediate case in which only a certain portion,  (= 20%), of the routes are permitted 

to use the long time windows. 
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4.4.  MATHEMATICAL FORMULATION 

The RRDP can be modeled on a directed network with nodes representing the 

different categories of items for which demand exists at each store, and the salvage orders 

that are to be picked up on the return to the warehouse.  In Section 4.4.1, we define a 

route diagram G = (V, A) that captures precedence requirements among orders.  This is 

followed in Section 4.4.2 by the presentation of the mixed-integer programming model 

for the problem. 

4.4.1.  Route diagram 

The sequence in which orders are loaded onto the truck determines the sequence 

in which deliveries are made.  The requirement is that all orders of a particular type be 

unload before orders of a different type are unloaded.  The sequence is groceries 

followed by refrigerated orders and then with frozen orders. To capture this precedence 

relationship, we now define the route diagram G = (V, A). 

Assume that S is the set of all stores.  To facilitate the presentation, we assume 

that all stores have a grocery order, a refrigerated order, a frozen order, and a pickup 

order.  In the most general case, then, the network has four nodes for each store s ∊ S, 

denoted by s-G, s-R, s-F, and s-P, corresponding to its grocery, refrigerated, frozen, and 

pickup orders respectively.  Assume that this gives a total of N nodes.  The network also 

contains a starting node, denoted by node 0, to represent the warehouse where the 

vehicles begin their route and an ending node, N+1, also representing the warehouse but 

where the vehicles end their route. 

The possible sequences of the deliveries are enforced by the arcs in the network.  

For each store s ∊ S, we create one arc from node 0 to each of its order nodes s-G, s-R, s-

F and s-P; similarly, we create one arc from each of its order node to node N+1.  For 

each store s ∊ S, Table 7 identifies all possible arcs emanating from its order nodes to 
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other nodes in the network.  From node s-G, arcs connect to grocery nodes at other 

stores and to refrigerated, frozen and pickup nodes at s and other stores, i.e., refrigerated, 

frozen, and pickup nodes; from node s-R, arcs connect to refrigerated order nodes at other 

stores and to frozen or pickup nodes at s and at other stores; from node s-F, arcs connect 

to frozen order nodes at other stores and to all pickup nodes; from node s-P, arcs only 

extend to pickup nodes at other stores. 

Table 7.  Arcs emanating from order nodes at store s 

Node Arcs 

s-G 
(s-G, r-G) for r ∊ S \ {s} 

(s-G, r-R), (s-G, r-F), and (s-G, r-P) for r ∊ S 

s-R 
(s-R, r-R) for r ∊ S \ {s} 

(s-R, r-F), and (s-R, r-P) for r ∊ S 

s-F 
(s-F, r-F) for r ∊ S \ {s} 

(s-F, r-P) for r ∊ S 

s-P (s-P, r-P) for r ∊ S \ {s} 

 

Figure 25 depicts an example of possible transitions in the route graph.  Panel (a) 

identifies the nodes associated with a store along with the connecting arcs.  The network 

in panel (b) contains the arcs listed in Table 7, as well as the arcs (dashed lines) between 

node 0 and order nodes and arcs (dotted lines) between order nodes and node N + 1.  To 

avoid clutter, the arcs between pairs of nodes at the same store are not shown.  Each path 

from node 0 and N + 1 in the network corresponds to a vehicle route.  For example, path 

(0, s-G, r-G, r-F, r-P, s-P, N + 1), as shown in Figure 26, corresponds to a vehicle that 

visits the stores in the following sequence: (1) leave the warehouse, (2) visit store s to 

deliver grocery order, (3) visits store r to deliver grocery order, (4) remains at store r to 

deliver frozen order, (5) pick up salvage order at store r, (6) pick up salvage order at store 

s, and (7) return to the warehouse.  Figure 26 illustrates the path in more detail. 
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a.  Route arcs for a store 

 
b.  Route arcs between two different stores 

Figure 25.  Example route network for two stores  

 

 

Figure 26.  Example path (0, s-G, r-G, r-F, r-P, s-P, N + 1) 

 

4.4.2.  Mathematical formulation 

In this section, we provide a MIP formulation of the RRDP using the notation 

listed below.   
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Indices and sets 

i, j index for nodes in the route network (source, order, and sink) 

s index for stores 

k index for vehicles 

p, q index for vehicle depart time periods from the warehouse 

c(i) index for the order type associated with node i 

C set of order types; C = {1: frozen, 2: refrigerated, 3: grocery, 0 pickup} 

DO set of deliver order nodes 

K set of vehicles 

Os set of order nodes for store s 

O set of order nodes; O = DO  PO 

( )O i   set of order nodes that can immediately follow node i on a route; for any node 

j∊O
+
(i), we must have ˆ

i ij ja b   to meet the time window constraint (see 

below for symbol definitions) 

( )O i  set of order nodes that can immediate precede node i on a route; for any node 

j∊ ( )O i , we must have ˆ
j ji ia b   to meet the time window constraints  

P set of departure time periods from the warehouse for a vehicle 

PO set of pickup order nodes 

S set of stores 

Parameters 

aj start time of time window for order at node i 

bj end time of time window for order at node i 

h loading or unloading rate (ft
3
 per hour) at the stores 

 setup time to start loading or unloading at a store 

vi volume (ft
3
) of the order associated with node i 
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wi weight (lb) of the order associated with node i 

ij 1 if nodes i and j correspond to different locations, 0 otherwise. 

ij  1 if nodes i and j are such that c(i) = 3 and c(j) ∊ {2, 1}, and 0 otherwise 

ij 1 if nodes i and j are such that c(i) = 2 and c(j) = 1, and 0 otherwise 

Mij sufficiently large number associated with arc (i, j) 

ij travel time between nodes i and j 

îj  total time incurred in traversing arc (i, j), accounting for service time at the 

location of node i (if any), travel time between nodes i and j, and setup time at 

the location of node j (if any); specifically, îj  = ij +  if i = 0, îj = vi + ij 

if j = N+1, and îj  = hvi + ij + ij otherwise. 

n
load

 maximum number of trailers that can be loaded simultaneously (n
load

 = 20) 

endp end time for departure period p ∊ P 

startp start time for departure period p ∊ P 

tlimit1 limit on driving time per route (10 hours) 

tlimit2 limit on total time per route (14 hours) 

vcap volume capacity of a trailer (2000 ft
3
) 

wcap weight capacity of a trailer (42000 lb) 

dcap maximum number of delivery stores allowed per route 

pcap maximum number of pickup stores allowed per route 

vred0 reduction in volume capacity due to carrying refrigerated commodities in 

addition to frozen commodities on the same trailer (ft
3
)  

vred1 reduction in volume capacity due to carrying groceries in addition to frozen 

and/or refrigerated commodities on the same trailer (ft
3
) 

vred2 reduction in volume capacity of a trailer for each additional store visited 

beyond the first store (ft
3
) 
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ˆ
ij  travel cost between nodes i and j; note that the cost is 0 if order nodes i and j 

correspond to the same store  

ij cost for traversing arc (i, j), consisting of three components: (i) servicing cost 

at node i (if any), (ii) travel cost going from node i to node j, and (iii) the setup 

cost at node j 

 unit cost for driver idle time at a store incurred prior to the start of 

loading/unloading an order (dollars per hour); no cost is incurred at the 

warehouse if there is idle time before departure 

Decision variables 

e
k
 time at which route k returns to the warehouse 

s
k
 time at which route k departs the warehouse 

ti time at which service starts (either unloading or loading) at node i 

k

ijx  1 if route k visits node i and j in succession, 0 otherwise 

k

py  1 if route k is assigned to departure time period p at the warehouse, 0 

otherwise 

zi idle time incurred prior to fulfilling the order associated with node i 
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Time window constraints 

ˆ (1 ) , , ( )k
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Warehouse handling capacity constraints 
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Trailer capacity 
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Route time limits 
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Idle time constraints 

ˆ (1 ) , \{0}, ( )k

ij ij ij j ji M x z t k K i O j Ot i          (4.18) 
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Limit on number of stores 
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Variable definitions 
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The objective function (4.1) has two terms. The first minimizes the cost of 

traversing the arcs between each pair of successive nodes in a route.  The second 

penalizes the idle time incurred prior to fulfillment of orders, and indirectly reduces the 

total time drivers must wait at a node before service can begin. 

Constraints (4.2) require that each order node i has exactly one successor, while 

constraints (4.3) enforce flow balance for each route k in a solution.  That is, for route k, 

order i is either succeeded by some other order node j or by node N+1, and analogously, 

is either preceded by some order node j or by node 0.   

The next set of constraints enforces the time windows. Constraints (4.4) ensure 

that if order node j is the immediate successor of order node i on route k (i.e., 1k

ijx  ), 

then service cannot begin for node j before the vehicle travels from node i to node j.  The 

definition of îj  ensures that tj – ti is large enough to (1) unload the order corresponding 
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to node i, (2) transit from i to j, and (3) unload or unload items at node j.  When 0k

ijx  , 

implying that j is not an immediate successor of i, constraints (4.4) becomes redundant 

for sufficiently large parameter Mij.  Here, Mij = max{ îji jab   , 0}.  Constraints (4.5) 

and (4.6) are identical to (4.4) but explicitly enforce the first and last orders on route k, 

respectively.  

Constraints (4.7) make the time windows requirements redundant for second and 

third orders on a particular vehicle at the same location i.  We only want the time 

window constraints to be active for the first delivery to a store for each vehicle. Consider 

the situation where 1k

ijx  . If ij = 0, i.e., i and j correspond to the same store, then (4.7) 

is redundant; otherwise, it is equivalent to ii ia t b  .  As we know, if ij = 1, then Mij 

can be any arbitrarily large value.  To see the values of Mij, let’s see a store with grocery, 

refrigerated, frozen, and salvage orders, denoted as orders 1, 2, 3, and 4 respectively.  

Thus, we must have 11 ,

1j

ji l l l ijM  


   .  For example, we have M34 = 12 + 23 + 34.  

If a truck k pickup order 4 after serving order 3 (frozen order), i.e., 34 1kx  , the time to 

start pickup order 4 can be as late as b4 + 12 + 23 + 34, which happens when truck k 

delivers orders 1, 2, 3, and picks up 4. 

Constraints (4.8)-(4.11) are used to spread out route start times so as not to 

exceed the retrieval and loading capacity of the material handling equipment at the 

warehouse.  In particular, constraints (4.8) assign the vehicles to the various possible 

departure periods such that the cumulative number of vehicle departures during the first 

period through any subsequent period does not exceed the warehouse loading capacity.  

Written in this fashion, the constraints allow for trailers to be loaded early and then depart 

at a later time, thus making more efficient use of the material handling capacity.  

Constraints (4.9) require each route to start within the departure period it is assigned to, 

while constraints (4.10) require that each route be assigned to no more than one 
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departure period.  Finally, constraints (4.11) ensure that if a route is started, it is 

assigned to one of the departure periods.   

Constraints (4.12)-(4.15) enforce the weight and volume capacities of each 

trailer.  Constraints (4.12) require the total weight of the delivery orders to be within the 

weight limit for the trailer, while constraints (4.13) do the same for the pickup salvage 

orders.  Constraints (4.14) enforce the volume limit for the delivery orders, while 

capturing the reduction in trailer capacity due to the need for separation curtains.  The 

second term on the left-hand side is associated with the volume capacity reduction 

resulting from having groceries in addition to refrigerated and/or frozen items on the 

same trailer, having refrigerated items in addition to frozen items on the same trailer, and 

serving two or more stores with the same trailer.  Note that for each route k ∊ K., the 

sequencing requirement of orders in the trailers guarantee that 

( )
1k

ij iji DO j O i DO
x  

   .  Thus, the volume reduction vred0 and vred1 are each 

counted at most once in route k.  Constraints (4.15) enforce the overall volume 

limitation for the pickup orders.   

Constraints (4.16) and (4.17) impose the driving time and total time limits for 

each route, respectively.  Constraints (4.18) and (4.19) account for driver idle time 

prior to fulfilling the first order associated with node j when node i is a store and the 

warehouse, respectively.  When 1k

ijx  , constraints (4.18) become îj j ji zt a   , 

where zj represents the idle time before service at node j can begin in a cost-minimizing 

solution.  When 0k

ijx  , constraints (4.18) are redundant for sufficiently large Mij.  

Here, Mij = max{ îjj iba   , 0}. 

Constraints (4.20) and (4.21) enforce the limit on the number of stores that a 

vehicle can visit for deliveries and pickups, respectively.  Constraints (4.20) ensure that 

the number of transition arcs between delivery order nodes and between different stores 



 103 

does not exceed dcap – 1, thus enforcing the upper bound dcap.  In the same way, 

constraints (4.21) limit the number of pickup stores on a route to pcap.  Finally, variable 

definitions are given in (4.22). 

Note that in model RRDP, we assume that the reduction in volume due to the 

separation of order types for a given store as well as between stores is independent.  In 

our application, volume reduction is a function of the number of order types and the 

number of stores visited (e.g., see Table 10 in Section 4.6).  Modeling this aspect of the 

problem, however, requires defining new binary variables and enforcing additional 

constraints, and was omitted to avoid unnecessarily complicating the presentation.  A 

second feature also omitted for the same reason is the option to choose among multiple 

time windows at each store.  As mentioned, longer time windows give more flexibility 

and are occasionally used by the sponsoring company. 

4.5.  SOLUTION METHODOLOGY 

Model RRDP turned out to be unsolvable with commercial software for instances 

of practical size.  A typical realization has more than 50,000 arcs in the route diagram 

and may require 100 vehicles (or more), giving upwards of 5×10
6
 variables and 1×10

7
 

constraints.  Moreover, it is difficult to derive a good upper bound on the number of 

vehicles required in an optimal solution.  The number of vehicles available in practice or 

the number of vehicles that can be loaded per unit time both give a bad bound.  Due to 

these difficulties, obtaining exact solutions using a standard MIP solver is out of reach.  

As an alternative, we have developed a GRASP to find high quality solutions, at least 

from a practical point of view. 
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4.5.1.  GRASP 

GRASP is a metaheuristic that combines greedy heuristics, randomization, and 

local search, and has been widely applied to combinatorial optimization and industry-

based problems (Festa and Resende 2009).  Each iteration consists of two main phases: 

solution construction and local search.  In phase I, solutions are built iteratively by 

randomly selecting one or more elements from a candidate list of good choices.  

Multiple runs lead to different solutions thus allowing a large portion of the feasible 

region to be explored. In phase II, local search is applied to improve the promising 

solutions uncovered in phase I.  Depending on the size of the problem and how 

neighborhoods are defined, the algorithm may or may not converge to a local optimum.   

The process is repeated many times and the best solution is returned.  As noted 

by a number of researchers, many successfully GRASP applications to variants of the 

VRP have been reported (e.g., see Kontoravdis and Bard 1995, Carreto and Baker 2001, 

Nguyen et al. 2012).  Its main advantage over other metaheuristics is its ability to 

generate many good alternative solutions, which is important for routing applications 

since travel times are often estimates that can vary widely depending on time of day, road 

structure, speed limits, and weather. 

Compared to local search alone, GRASP has two general advantages.  First, it 

can make better use of parallel computing when multiple cores are available as was the 

case in work.  Different cores can run different programs independently, thus speeding 

up the computations. Specifically, many phase I and phase II iterations can run 

simultaneously.  In contrast, pure local search, which seeks to improve a given solution 

is sequential in nature and so cannot be effectively parallelized.  Second, GRASP 

investigates a large number of initial solutions rather than just one.  In our experience, 
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where you start is often highly correlated with solution quality (e.g., see Bard et al. 1998, 

Deng and Bard 2011, Bard et al. 2014). 

Similar to Kontoravdis and Bard (1995), our phase I procedure begins by 

initializing a number of seed routes and then iteratively assigning one delivery or pickup 

node to one route at a time subject to certain selection rules.  If a node cannot be inserted 

into an existing route, a new route is started.  This process is repeated until all nodes are 

assigned to some route.  Phase II tries to improve every solution found in phase I with a 

local search procedure.  To avoid overly complicating the logic, we only consider the 

short time window option during phase I and ignore the material handling capacity at the 

warehouse.  As a consequence, the solution found may not necessarily be feasible since 

there may be more routes identified than the material handling equipment at the 

warehouse can handle in a day.  To address this issue, a route elimination procedure is 

called during phase II that allows for the use of long time windows.  In Section 4.5.2, we 

discuss phase I, the solution construction procedure, and in Section 4.5.3, we discuss 

phase II, local search.   

As implemented, GRASP terminates when one of the following two conditions is 

met: i) a maximum runtime of 30 minutes is reached; ii) a total of M phase I and phase II 

iterations are executed.  In Appendix B we show that the complexity of the procedure is 

polynomial under these stopping rules. 

4.5.2.  Phase I: solution construction 

4.5.2.1.  Seed route generation 

As with many construction heuristics, phase I of our GRASP starts with a set of 

seed routes which are used to iteratively build a solution based on the opportunity cost of 

adding an order to a route.  To construct seed routes, Solomon (1987) suggests two 
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possible strategies: maximum distance from the depot and earliest deadline.  

Kontoravdis and Bard (1995) select seed locations (stores) that are either the most 

geographically dispersed from each other or the most time constrained.  In our context, 

there are several orders for a store so it would be suboptimal to select two seed routes to 

serve two different nodes associated with the same store.  To avoid this situation, we 

adopt a strategy that first selects a set of seed stores and creates one seed route for each.  

When selecting the seed stores, we consider two criteria: (i) geographically separation, 

and (ii) the volume of the orders – large is better.  Kontoravdis and Bard demonstrated 

that geographically dispersed seeds can generate high quality solutions.  Comparing 

volume to weight, we found that the former is generally the limiting factor so focusing on 

large volume orders first helps minimize the number of vehicles required to cover 

demand.  This is important in our application because the warehouse can only handle a 

limited number of vehicles within the 13-hour dispatching time window. 

The number of seed routes is calculated using the lower bounding procedures 

presented by Kontoravdis and Bard.  Specifically, we perform the following calculations 

and take the largest bound as the final number of seeds. 

 Volume capacity bound: only the volume of a vehicle is considered; all other 

constraints, including separations between different orders and stores, are ignored.  

In this way, the problem is reduced to a bin packing problem.  Since no volume 

separation is considered, the bin capacity corresponds to the capacity of the truck. 

 Weight capacity bound: this bound only considers the weight capacity of the 

vehicle.  Similarly, a bin packing problem is solved to get a bound. 

 Driving time bound: this bound considers the total driving time limit for a driver.  

We use s to denote the amount of time needed to go from store s to its closest 
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neighbor.  Solving a bin packing problem with bin capacity tlimit1 and items of 

size s, s ∊ S gives a lower bound on the number of vehicles. 

 Total time bound: this bound considers the total time limit from and back to the 

warehouse.  Here, s denotes the minimal amount of time needed to start serving 

orders in other stores or to return to the warehouse after completing an order at store 

s.  Note that s accounts for both the travel time between stores and any waiting 

time that is required.  Solving the following bin packing problem with bin capacity 

tlimit2 and items of size s, s ∊ S gives a lower bound.  Since we usually have 

tlimit1 < tlimit2, neither time bound dominates the other. 

Given that solving the above bin packing problems exactly may be too time 

consuming, we use the algorithm given by Martello and Toth (1990) to generate 

approximate solutions. 

Our seed selection procedure starts by ranking the stores by the volume of their 

orders.  Those at the top of the list whose total delivery volume cannot be served by a 

single vehicle are identified and then each is disaggregated into one or two orders whose 

volume does not exceed the capacity of a truck after reductions are taken into account.  

These orders form the core seeds and are placed in the set SE.  Other stores are iteratively 

added with the objective of maximizing the total distance of each candidate from those 

already selected until n seeds have been chosen, where n is a computed lower bound on 

the required number of vehicles.  Because our data sets do not include exact store 

coordinates, it was not possible to generate geographically dispersed seeds using the 

convex hull of the stores.  Instead, we use a greedy procedure: at each step a new seed is 

selected such that it maximizes the minimum distance to those in the set SE. 

In the presentation, we now let ij be the travel time between stores r and s rather 

than the travel time between nodes i and j.  Figure 27 highlights the algorithm.  Step 1 
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identifies stores that cannot be served by a single vehicle because of their excessive 

volume and adds them to the set of seed stores, SE.  Step 2 initializes the set of seeds and 

the minimum travel time t(s) from store s to the seed stores.  If store s is a seed store, we 

set t(s) = 0.  Step 3 sequentially adds seed stores based on the value of t(s); the store with 

maximum t(s) is selected at the current iteration. 

Procedure_Seed_Store_Selection 

Input:  Set of unscheduled stores S 

 Number of seed routes n (this value is based on lower bound calculations 

given below.) 

Output:Set of seed stores SE  

Step 1: Set SE = Ø 

 For s ∊ S 

v(s) = volume required for orders at s, including separation between 

different types 

If v(s) > vcap 

 add s to SE 

Step 2: For s ∊ S \ SE 

 t(s) = min{si : i ∊ SE} for all s ∊ S \ SE 

Step 3: While |SE| < n 

q = argmax{t(s) : s ∊ S \ SE} 

If t(q) ≠ 0, then 

 SE = SE  {q} 

 t(q) = 0 

 t(s) = max{t(s), sq} for all s ∊ S \ SE  

Else 

 Terminate 

Figure 27.  Procedure to select seed stores 

After selecting the seed stores, we need to construct a route for each seed store.  

Two strategies were considered.  In the first case, we only use one node from each seed 

store to initialize a route.  For store s, we pick the order i = argmax{vi : i ∊ Os}, i.e., the 

order with largest volume.  In the second case, we use multiple orders to initialize the 

routes.  For store s, we pick a combination of orders that are within the volume and 
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weight limit and that uses as much of the available volume capacity as possible while 

ensuring that the weight limits are not exceeded.  Potentially, this strategy has the 

following advantages. 

 Reduce unnecessary traveling between stores.  Accordingly, we can save both 

traveling time and traveling cost. 

 Reduce the separation volume between different stores whose orders are on the 

same vehicle.  Since volume is the primary bottleneck, we reduce the possibility 

that more vehicles will be required than the warehouse can handle. 

 Reduce driver idle time.  As indicated by constraints (4.7), the time window for a 

store is only enforced for the first order at that store.  When a vehicle finishes 

unloading an order at a given store, it can continue with any additional orders for 

that store without considering the time window.  In contrast, when a vehicle 

completes an order at one store and moves to another, the time window must be 

observed at the latter store. 

Our computational study confirmed that it is usually better for a single vehicle to 

serve multiple orders (nodes) at the same store rather than splitting those orders among 

vehicles.  Figure 28 describes how we generate a seed route with multiple nodes at seed 

store s.  Step 1 sorts the delivery order nodes for store s in decreasing value of volume 

and initializes the seed route.  Since the volume is the main capacity bottleneck, Step 2 

iteratively adds order nodes to the route as long as there is sufficient room on the truck. 

Procedure_Multi-node_Seed_Route_Generation 

Input:  Seed store s 

Output:A seed route   

Step 1: Os, = the delivery nodes for store s 

Sort Qs in decreasing order of volume. 

 Create an empty route 

 =  

Step 2: For each node i ∊ Os, 
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 Let 1 = the route after adding order node i to route   

 If the volume of route  ≤ vcap or weight of route 1 ≤ wcap 

 set 

Figure 28.  Procedure to generate a multi-node seed route 

4.5.2.2.  Route construction  

After initializing the seed routes, we construct a feasible solution by sequentially 

assigning other order nodes to either existing routes or to new routes.  One key element 

of this procedure is how to define the opportunity cost of inserting an unassigned order 

into partially built route.  We adopt one of the approaches of Solomon (1987) because it 

has been seen to generate good initial feasible solutions.  To facilitate future discussion, 

let be the index for a vehicle route that consists of an ordered set of transition arcs 

which start and end at the warehouse.  Also, let  be the set of routes in a complete or 

partial solution, and ij be the route to which arc (i, j) belongs. 

We call inserting node k into arc (i, j) feasible if the augmented route is feasible 

(of course, we mean that node k is being inserted between nodes i and j).  Figure 29 

describes the feasibility check.  It first determines if the weight and volume limits of the 

vehicle are violated, then determines whether the number of pickup stores and the 

number of delivery stores are within limits, and finally determines if the time window of 

each node on the route is met.  It is easy to see that the complexity of the procedure is 

O(|A|) where | A is the number of arcs in route .  If inserting node k into arc (i, j) is 

feasible, we associate an opportunity cost, with it, denoted by cij,k. This cost consists of 

two parts: (i) opportunity cost due to reduced capacity of the vehicle, denoted by 
1

,ij kc , 

and (ii) change in travel and waiting cost after inserting the new node, denoted by 
2

,ij kc .  

Since the volume and weight of pickup orders are negligible and therefore taken to be 

zero in the model, we define 
1

, 0ij kc   if k is a pickup order. 
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Procedure_Check_Route_Feasibility 

Input: Route A(i1, j1) - … - (iK, jK), where K is the number of arcs in route  

Output:<true> if route  is feasible, <false> otherwise 

Step 1: If total weight of route  > wcap or total volume of route  > vcap, then 

Return <false> and stop. 

Step 2: If number of delivery stores in route  ≥ dcap or number of pickup stores 

in route  ≥ pcap 

Return <false> and stop. 

Step 3: //check if the time window of each order node can be satisfied 

 t = 0 

 For (i, j) ∊ A 

 t = max( ak, t + îj ) 

 If t > bj, then return <false> and stop. 

  Return <true> 

Figure 29.  Procedure to check if a route is feasible 

Given that the available volume and weight of a vehicle are highly correlated and 

that the volume capacity is usually the bottleneck, we use the volume capacity when 

calculating cost 
1

,ij kc  for delivery order k.  As with bin packing heuristics, a rule of 

thumb in defining 
1

,ij kc  is that we should assign orders with larger volume a smaller 

opportunity cost so that they are inserted into routes earlier during construction; 

otherwise, additional routes might be needed at additional expense.  Accordingly, we 

define 
1

, ( ) /ij kc vcap v vcap  , where v is the volume of route ij after inserting node k.  

Cost 
2

,ij kc  measures the change in the actual cost after inserting node k into arc (i, j).  If 

such an insertion is not feasible, we set 
2

,ij kc = ∞; otherwise, we have  

2

, ,( )ij kj ij ij k ijij k zc z       , 

where zij is the total waiting time in route ij, and zij,k is the total waiting time after 

inserting k into arc (i, j).  The total cost of an insertion is then 
1 2

, , ,ij k ij k ij kc c c  , where  

is a capacity reduction parameter whose value reflects the relative importance of volume 

reduction versus the change in cost after node insertion.  When  is large, more emphasis 
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is placed on inserting large orders into the route earlier, and vice versa when  is small.  

Different problem contexts may require different values of  so parameter tuning is 

necessary before using the procedure. 

We now define the opportunity cost of inserting node k into route , denoted by 

c, k, as the minimum cost that can be achieved by such an insertion:  

,
( , )

,mink
i j

ij kc c


  

Accordingly, we can find the best route in which to insert node k as follows. 

*

,arg min{ : }kc    

To decide which node should be inserted first, we define the opportunity cost of inserting 

node k into route *  as  

 *, ,k k k
c c 

    

To summarize, the above symbols have the following meaning. 

  index for routes 

 set of routes in a complete or partial solution  

i  route to which node i belongs 

cij, k  opportunity cost of inserting node k into arc (i, j) 
1

,ij kc  opportunity cost due to reduced capacity of a vehicle after inserting node k into 

arc (i, j) 
2

,ij kc  travel and waiting cost change after inserting node k into arc (i, j) 

c, k opportunity cost of inserting node k into route  
*

k  best route to insert node k 

k opportunity cost of inserting node k into route *

k  

The procedure to construct an initial solution is summarized in Figure 30.  Step 0 

fixes the number of seed routes to generate, while Step 1 initializes the seed routes and 

calculates the opportunity cost of inserting each unassigned node into each seed route.  

Step 2 checks to see if there is any node that cannot be assigned to an existing route; if 

such a node exists, a new route is created.  Step 3 finds the smallest opportunity cost for 

each unassigned node.  Step 4 randomly selects one unassigned node from the restricted 



 113 

candidate list consisting of the  smallest opportunity cost nodes.  Step 5 updates the 

opportunity cost for the new or modified route. In Step 6, if the number of routes 

generated is greater than the number of seeds, nS, the process is restarted using the 

increased number of routes as the new number of seeds; otherwise, the procedure 

terminates.  Step 6 is motivated by the idea that creating more seed routes at the 

beginning of the procedure will provide more flexibility during solution construction and 

thus provide a better result. 
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Procedure_Generate_Initial_Solution 

Input:  Set of unscheduled nodes OU; integer parameter   

Output: Set of feasible routes  serving all stores and demands 

Step 0: n1 = volume capacity bound on the number of vehicles 

 n2 = weight capacity bound on the number of vehicles 

 n3 = driving time bound on the number of vehicles 

 n4 = total time bound on the number of vehicles 

Set number of seed routes n
*
 = max{n1, n2, n3, n4} 

Step 1: Generate n
*
 seed routes to form the set 

For each k ∊ OU and each route ∊ , determine 

 , ( , ) ,mink i j ij kc c   

Step 2: If there is a node k
*
 ∊ OU with c, k = ∞ for all  ∊ , then  

 Create a new route serving node k
*
 and denote as k*


 Put OU  OU \ {k

*
} and   {k*

} 

 Go to Step 5 

 Else 

 Go to Step 3 

Step 3: For each unassigned node k  

 Find the cost * , ,min kk
c c    

 Find the opportunity cost  *, ,k
k k k

c c 
    

Step 4: Sort OU by increasing value of k 

 Set *
 = min{, |OU|} 

 Randomly select a node from the first *
 elements in OU 

Let k
*
 be the node selected and (k

*
) the corresponding route 

 Insert node k
*
 into route (k

*
) at the min-cost location 

 Put OU  OU \ {k
*
} 

 If |OU| > 0, then 

 Go to Step 5 

 Else 

 Go to Step 6 

Step 5 For each k ∊ OU 

 Update * *( ), ( , ) ,( )
min

k k ij ki j k
c c
 

  

 Go to Step 2 

Step 6 If || > n
*
, then 

 n
*
 = || and go to Step 1 

 Else 

 Terminate 

Figure 30.  Procedure to generate initial routes 
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4.5.2.3.  Loading capacity 

The solution generated by the procedure in Figure 30 may not be feasible since it 

does not consider the loading capacity of 40 vehicles per hour at the warehouse.  To 

address this issue we apply two strategies.  The first starts each route as late as possible.  

Since a vehicle may be loaded any time before its departure time without incurring idle 

time cost, this strategy will reduce the material handling workload at the beginning of the 

planning horizon and thus increase the likelihood that routes with customers who have 

earlier time windows can be accommodated.  Figure 31 describes the procedure to 

determine the latest departure time of a route. 

The second strategy is to reduce the number of routes when possible.  Figure 32 

outlines the procedures.  It works by trying to move the nodes in a particular route to 

other routes, and terminates when a sufficient number of routes are eliminated so that the 

loading capacity is satisfied.  When moving a node to another route, we evaluate all 

feasible insert locations and pick the one that leads to the least cost for the route.  When 

the procedure terminates, it is possible that the number of routes is still too many to be 

loaded at the warehouse.  In this situation, the route elimination procedure is applied in 

every iteration of the local improvement heuristic.  If the solution is still infeasible at 

termination, we declare the problem instance to be infeasible. 

Procedure_Get_Latest_Departure_Time 

Input: Vehicle route  (i1, j1) - … - (iK, jK) 

Output:Latest departure time of route from the warehouse  

Step 1: t = ∞ 

Step 2: For (i, j) = (iK, jK) to (i1, j1) 

 Set t = min{ îjt  , bj} 

 Return t 

Figure 31.  Procedure to determine latest departure time from warehouse for a route 
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Procedure_Reduce_Number_of_Routes 

Input: Set of routes  in the phase I solution 

Output:New set of (fewer) routes 

Step 1: Sort  in decreasing order of the latest departure time from the warehouse 

Step 2: For each route  ∊ 

If all nodes in route  can be moved to other routes without causing 

infeasibilities, then 

 For each node l ∊   

 For each route r ∊ \ {}and arc (i, j) ∊ r 

   If r is feasible after insertion, then 

 Cij, r = change of cost for r after inserting l into (i, j)  

   Else 

 Cij, r = ∞ 

 (i, j, r) = argmin{Cij, r : r ∊ \ {}, (i, j) ∊ r} 

 Insert node l into arc (i, j) 

  Put  \ {} 

  If the loading capacity at the warehouse is satisfied 

 Terminate 

Figure 32.  Procedure to reduce the number of routes 

4.5.3.  Phase II: local improvement heuristics 

In phase II of GRASP, an effort is made to improve the solution found in phase I 

with various exchange techniques.  Here, we implemented several variants of tabu 

search as well as a large neighborhood search.  To facilitate the discussion, let GRO, 

REF, FRO and SAL denote grocery, refrigerated, frozen and salvage orders, respectively, 

and let x-XXX denote an order node, where x is the index for the store and XXX ∊ 

{GRO, REF, FRO, SAL} is the type of order.  As mentioned earlier, solution 

construction does not consider the use of long time windows.  Depending on the 

scenario, though, we now allow for their use on some or all of the routes.  For the mixed 

case, the fraction of routes that are permitted to use the long time window is limited to  = 

0.2. 
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4.5.3.1.  Tabu search 

Tabu search has been demonstrated to produce high quality solutions to many 

complex problems including various versions of the VRP (e.g., see Taillard 1993, Rochat 

and Semet 1994, Gendreau et al. 1994).  In this section, we present the framework for 

our tabu search algorithm developed to improve the phase I solutions. 

Four types of neighborhood are considered that take into account both short and 

long time window restrictions.  In the presentation, let gk = 0 indicate that route k is 

governed by its short time window and gk = 1 indicate that route k is governed by its 

long time window.  If neither option is specified it is assumed that the short time window 

restriction applies. 

 neighborhood RI[k, (i, j), gk, gi] is constructed from current solution by performing 

the following operations: 

o remove a node k from route k and insert it between nodes i and j in route i 

o use time window option gk for route k (after removing node k) and gi for route 

i (after inserting node k) 

Figure 33(a) and Figure 33(b) respectively illustrate the routes before and after 

these operations. 

 neighborhood S[i, j, gi, gj] is constructed from current solution by performing the 

following operations:  

o swap node i in route i with node j in route j 

o use time window option gi for route i (after the swap) and gj for route j (after 

the swap). 

Figure 34(a) and Figure 34(b) illustrate the routes before and after these operations.  

Note that if both i and j only serve one node, then swapping nodes i and j would 
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not change the solution.  Thus, we would not consider such a swap to be in the 

neighborhood. 

 neighborhood RRI[k, i, (j, l), gk, gi, gj] is constructed from the current solution by 

performing the following operations: 

o remove node k from route k  

o replace node i in route i with node k 

o insert node i into arc (j, l) in route j 

o use time window option gk for route k (after removing node k), use time 

window option gi for route i (after replacing node i with node k), and use time 

window option gj for route j (after inserting node i) 

Figure 35(a) and Figure 35(b) illustrate the routes i, j, and k before and after 

these operations. 

 neighborhood SA[(i, j), (k, l), gi, gk] is constructed from the current solution by 

performing the following operations 

o remove arc (i, j) from route i and arc (k, l) from route k 

o add arcs (i, l) and (j, k) to routes i and k respectively 

o use time window option gi for the new route i and use time window option gk 

for the new route k 

Figure 36(a) and Figure 36(b) illustrate the routes i and k before and after these 

operations. 
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Figure 33.  Neighborhood RI[k, (i, j), gk, gi] 

 

 

Figure 34.  Neighborhood S[i, j, gi, gj] 

 

 

 

Figure 35.  Neighborhood RRI[k, i, (j, l), gk, gi, gj] 
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Figure 36.  Neighborhood SA[(i, j), (k, l), gi, gk] 

A neighborhood solution is feasible if all the routes in the solution are feasible, 

the fraction of routes that use the long time window is within the limit , and the 

warehouse loading capacity is satisfied.  Thus, deciding whether a neighborhood is 

feasible involves three steps: (i) determine whether the ratio of the long-time-window 

routes is within the given limit ; (ii) check the feasibility of each route associated with 

the neighborhood using the procedure in Figure 29 (if any route is not feasible after being 

updated, the neighborhood is not feasible); and (iii) check to see if the warehouse loading 

capacity is sufficient for the solution. 

As a local search procedure, each iteration of tabu search entails moving from one 

neighborhood solution to another.  In doing so, a tabu list of size N
T
 is maintained that 

contains the most recent N
T
 neighborhoods that have been visited.  During each iteration 

of basic tabu search, only neighborhoods not on the list are considered and the best one is 

selected, i.e., the neighborhood with minimum cost.  As discussed earlier, though, the 

solution found in the construction phase of the GRASP may not be feasible to the 

warehouse loading capacity constraint.  When this is the case, tabu search calls the route 

elimination procedure outlined in Figure 32.  Terminate occurs when either N iterations 

are performed or a given time limit is reached. 

The general tabu search algorithm is highlighted in Figure 37.  The first step 

initializes the parameters and sets.  Step 2 searches for the best neighborhood and Step 3 
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updates the best feasible solution.  Step 4 updates tabu list and checks the termination 

criteria. 

Procedure_Tabu_Search 

Input: Set of routes  in a solution 

 Number of tabu iterations N 

 Size of tabu list N
T
 

 Solution time limit T 

Output:Improved solution 

 

Step 1: Tabu list LT= Ø 

 Iteration counter n = 1 

 If  satisfies the warehouse loading capacity 

Put 

 . 

 Else 

Put 

 = Ø and cost of 


 = ∞

 Current solution 
C
   

Step 2: Find the best neighborhood of 
C
 not in LT; call it NR and go to Step 3 

Step 3: Move to neighborhood NR and denote the resulting solution as 
1
 

 If 
1
 violates the warehouse loading capacity, then 

 Apply the route elimination procedure to 
1
in Figure 32 

If 
1
 satisfies the warehouse loading capacity and cost of 

1
 < cost of 

*
,  

 Put 
*
  

1 

 
Put 

C
  

1 

 
Go to Step 4 

Step 4: Put LT LT  NR 

 If |LT| > N
T
 

Remove the first element in LT 

Put n  n + 1 

If n ≥ N or the solution time ≥ T, then 

 Terminate 

Else 

Go to Step 2 

Figure 37.  High-level tabu search procedure 

4.5.3.2.  Tabu search with generalized neighborhood  

Initial testing showed that better solutions were obtained when nodes 

corresponding to the same store were together in a route.  This led to a new set of 

neighborhoods in which moves and swaps were made on more than one same-store node.  
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We call the resultant algorithm tabu search with generalized neighborhood (tabu search-

GN). 

To facilitate the discussion, we define the same-store adjacent node list (SANL) 

as a list of nodes that (i) belong to the same store, and (ii) are adjacent to each other in a 

route.  For example, for route  

Warehouse1-GRO1-REF1-FRO2-FROWarehouse, 

we have the following SANLs: SANL(1-GRO), SANL(1-REF), SANL(1-FRO), 

SANL(2-FRO), SANL(1-GRO, 1-REF), SANL(1-REF, 1-FRO), and SANL(1-GRO, 1-

REF, 1-FRO).  Now, let I be a SANL, and with a slight abuse of notation, let I denote 

the route to which SANL(I) belongs. 

For tabu search-GN, we consider three types of neighborhoods: 

 neighborhood G-RI[K, (i, j), gK, gi] is constructed from the current solution by 

performing the following operations: 

o remove a SANL(K) from route K and insert it between nodes i and j in route i 

o use time window option gK for route K (after removing node k) and gi for route 

i (after inserting node k) 

 neighborhood G-S[I, J, gI, gJ] is constructed from the current solution by 

performing the following operations: 

o swap SANL(I) in route I with SANL(J) in route J 

o use time window option gI for route I (after the swap) and gJ for route J (after 

the swap) 

 neighborhood G-RRI[K, I, (j, l), gK, gI, gj] is constructed from the current solution 

by performing the following operations:  

o remove SANL(K) from route K  

o replace SANL(I) in route I with SANL(K) 
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o insert SANL(I) into arc (j, l) in route j 

o use time window option gK for route K (after removing node k), use time 

window option gI for route I (after replacing SANL(I) with SANL(K), and use 

time window option gj for route j (after inserting SANL(I)) 

 neighborhood SA[(i, j), (k, l), gi, gk] is the same as defined in Section 4.5.3.1 for 

the basic tabu search. 

Note that the neighborhood S[i, j, gk, gi] is a special case of the neighborhood G-

S[I, J, gI, gJ] with SANL(I) = {i} and SANL(J) = {j}.  Similarly, the neighborhood RI[k, 

(i, j), gk, gi] is a special case of the neighborhood G-RI[K, (i, j), gK, gi], and the 

neighborhood RRI[k, i, (j, l), gk, gi, gj] is a special case of G-RRI[K, I, (j, l), gK, gI, gj].  

Because Tabu search-GN has strictly larger neighborhoods than tabu search, it has the 

potential to generate better solutions.  The implementation of Tabu search-GN is similar 

to tabu search but with Step 2 changed to accommodate the new neighborhood structures. 

4.5.3.3.  Degeneracy of the tabu neighborhood 

During our computational experiments, we observed that neighborhoods are 

highly degenerate, i.e., there are many neighbors that have the same cost as the 

incumbent.  To see this, consider the following examples where it is assumed that the 

time window option remains the same for all routes so there is no need to specify the 

values of the parameter gi. 

Example 1.  Degenerate RI[k, (i, j)]:  Consider the following two routes: 

Route 1: Warehouse 1-GRO1-REF1-SALWarehouse 

Route 2: Warehouse 2-GRO1-FROWarehouse 
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The corresponding routes in the neighborhood RI[1-SAL, (1-FRO, Warehouse)] are: 

Route 3: Warehouse 1-GRO1-REFWarehouse 

Route 4: Warehouse 2-GRO1-FRO1-SALWarehouse 

The total travel costs are the same for both set of routes.  Note that since 1-SAL is the 

last order and follows an order from store 1 in both routes, the total waiting time cost is 

the same for both solutions.  Thus, neighborhood RI[1-SAL, (1-FRO, Warehouse)] is 

degenerate. 

Example 2.  Degenerate S[i, j] and SA[(i, j), (k, l)]:  Consider the following two 

routes: 

Route 1: Warehouse 1-GRO1-REF1-SALWarehouse 

Route 2: Warehouse 2-GRO1-FROWarehouse 

The following routes are in the neighborhood S[1-REF, 1-FRO]: 

Route 3: Warehouse 1-GRO1-FRO1-SALWarehouse 

Route 4: Warehouse 2-GRO1-REFWarehouse 

Similar to Example 1, the total travel and waiting cost is the same for both solutions, and 

thus the neighborhood S[1-REF, 1-FRO] is degenerate. 

Example 3. Degenerate RRI[k, i, (j, l)]:  In this example, assume that store 1 has an 

early opening time window no waiting is ever required once a vehicle arrives.  Consider 

the following three routes: 

Route 1: Warehouse 2-REF1-FROWarehouse 

Route 2: Warehouse 2-GRO2-SALWarehouse 

Route 3: Warehouse 3-GRO2-FROWarehouse 
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Now, evaluating neighborhood RRI[1-FRO, 2-SAL, (2-FRO, Warehouse)] by performing 

the following moves: (i) remove 1-FRO from route 1, (ii) replace node 2-SAL with node 

1-FRO in route 2, (iii) insert node 2-SAL into arc (2-FRO, Warehouse) in route 3, the 

resulting routes are 

Route 4: Warehouse 2-REFWarehouse 

Route 5: Warehouse 2-GRO1-FROWarehouse 

Route 6: Warehouse 3-GRO2-FRO2-SALWarehouse 

Since the total travel cost of these routes is the same and there is no waiting time cost 

incurred for 1, the total cost of both solutions is the same.  Thus, neighborhood RRI[1-

FRO, 2-SAL, (2-FRO, Warehouse)] is degenerate. 

The tabu list has generally proven to be an effective tool for avoiding cycling in a 

small feasible region and thus allowing for a variety of diversified solutions to be 

explored before convergence.  When degeneracy is present, as in our case, the 

effectiveness of the tabu list to prevent cycling is reduced and the algorithm tends to get 

stuck around a small set of degenerate solutions.  If every solution has ndegenerate 

neighbors, it is necessary to make the tabu list larger than n to assure that the algorithm 

eventually escapes from the neighborhood.  However, if the degerate neighbors 

themselves have many degenerate neighbors, it would be necessary to use an even larger 

value of N
T
 which we now do. 

In addition, we have implemented two enhanced strategies.  In the first, we 

penalize solutions in a degenerate neighborhood.  If degenerate neighborhood R is 

visited nR times during the tabu search, we associate a penalty nR .cd with it, where cd is a 

cost parameter.  When selecting the best neighborhood, we opt for the one with the 

smallest sum of cost and penalty instead of smallest cost.  Such a strategy empirically 
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restricts degenerate solutions.  We call this method Tabu search-DP, where DP stands 

for degenerate penalty. 

The second strategy is to apply randomized variable neighborhood search (Tabu 

search-RVN).  Variable neighborhood search is a metaheuristic that exploits the idea of 

switching among neighborhoods during local search (Maldenovic and Hasen 1997).  

Hansen et al. (2010) give an extensive survey of applications.  In Section 4.5.3.1, we 

defined several types of neighborhoods for basic tabu search.  To escape from a 

degenerate neighborhood, we randomize the choice of the one to explore next.  Kytojoki 

et al. (2007) demonstrate this idea for a traditional VRP while Deng and Bard (2011) 

show its effectiveness when solving capacitated clustering problems.    

4.5.3.4.  Large neighborhood search  

When trying to improve an incumbent, an alternative to tabu search is large 

neighborhood search (LNS) (Ahuja et al. 2000) which has a strong history of successful 

implementations (e.g., see Ropke and Pisinger 2006, Pisinger and Ropke 2007).  We 

start with an integer parameter n and define two types of neighborhoods 

 neighborhood n-RI[k1, k2, … , kn, (i, j), g1, g2, … , gn, gi] is constructed from the 

current solution by performing the following operations: 

o remove a node k1 from route 
1k

 , let node kl  replace node kl + 1  in route 
1lk 
 

for l = 1,…,n – 1, and insert node kn into arc (i, j) 

o use time window option gl for route 
lk (after the ‘remove’ or ‘replace’ 

operation) for l = 1,…,n and use time window option gi for route i 

 neighborhood n-S[k1, k2, …, kn, g1, g2, … , gn] is constructed from the current 

solution by performing the following operations: 
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o let node ki  replace node ki + 1  in route 
1ik 
 for i = 1, …,n – 1, and let node kn  

replace node k1 in route 
1k

  

o use time window option gl for route 
lk (after the ‘replace’ operation) for l = 

1,…,n. 

Note that neighborhood RI[k, (i, j), gk, gi] is a special case of n-RI[k1, k2, … , kn, 

(i, j), g1, g2, … , gn, gi] with n = 1 and S[i, j, gi, gj] is a special case of n-S[k1, k2, …, kn, g1, 

g2, … , gn] with n = 1.  Neighborhood n-RI[k1, k2, … , kn, (i, j), g1, g2, … , gn, gi] 

generalizes RI[k, (i, j), gk, gi] by introducing a chain of node replacements.  As we can 

see, using n-RI[k1, k2, … , kn, (i, j), g1, g2, … , gn, gi] and n-S[k1, k2, …, in, g1, g2, … , gn] 

greatly expands the size of the original neighborhoods for a given solution and thus 

increases the possibility of improvement. As a consequence, LNS is often considered an 

alternative to metaheuristics like tabu search and genetic algorithms, and has been shown 

to be equally, if not more, effective (Ahuja et al. 2000).  Since no tabu list is necessary, 

the degeneracy in the neighborhood does not affect the performance of LNS. 

Figure 38 outlines our LNS.  In the procedure, we use || to denote the number 

of routes in solution .  The first step initializes the solution.  Step 2 identifies the best 

neighbor with respect to the neighborhoods defined above and reduces the number of 

routes if the warehouse loading capacity is violated.  Step 3 updates the incumbent.  

Step 4 checks whether the stopping criteria are met: the procedure continues (i) when no 

solution is found (due to warehouse loading capacity constraint) but it may be possible to 

further reduce the number of routes or (ii) when the current solution is not a local 

optimum.  
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Procedure_Large_Neighborhood_Search 

Input: Set of routes 
C
 in current solution 

 Neighborhood parameter n 

Output:Best solution found 

 

Step 1: If  satisfies the warehouse loading capacity 

Put 

  

 Else 

Put 

 = Ø and cost of 


 = ∞ 

 Current solution 
C
  

 Go to Step 2 

Step 2: N
*
 = the best neighbor of 

C
 among n-RI[k1, k2, … , kn, (i, j)] and n-S[k1, 

k2, …, in];  

 Move to neighborhood N
*
 and let 

1
 be the corresponding solution 

 If 
1
 violates the warehouse loading capacity constraint 

Apply the route elimination procedure in Figure 32 

 Go to Step 3 

Step 3: If 
1
 satisfies the warehouse loading capacity constraint and cost of 

1
 < 

cost of 
*
 

 Put 
*
  

1
 

 Go to Step 4 

Step 4: If (

 = Ø and |

C
| > |

1
|) or (cost of 

1
 < cost of 

C
) 

 Put 
C
  

1
 and go to Step 2 

Else 

 Terminate 

Figure 38.  Large neighborhood search procedure 

4.6.  COMPUTATIONAL RESULTS 

To test the effectiveness of our algorithms, we use seven data sets provided by 

Kroger that represent a typical week in the Cincinnati-Columbus region of Ohio.  The 

characteristics of the seven instances are summarized in Table 8.  As can be seen, the 

number of stores range from 120 to 150 and the total number of orders range from 390 to 

438.  The parameter values used in our computations are summarized in Table 9.  Table 

10 gives the volume for the separation curtains in a vehicle as a function of the number of 

stores and number of different order types on a route.  All algorithms were implemented 
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in JAVA and run under Ubuntu Linux on a Dell Poweredge T610 workstation with two 

6-core hyperthreading 3.33-GHz Xeon processors and 24 GB of memory. 

 

Table 8.  Summary of data set characteristics 

Instance 

# of 

stores 

# of 

orders 

# of grocery 

orders 

# of refrigerated 

orders 

# of frozen 

orders 

# of salvage 

orders 

0910ST 135 431 149 147 130 5 

0911ST 123 401 146 134 121 0 

0912ST 130 410 138 139 128 5 

0913ST 124 390 134 137 119 0 

0914ST 137 424 137 143 135 9 

0915ST 150 438 139 156 141 2 

0916ST 136 411 130 142 135 4 

 

Table 9.  Summary of problem parameters 

Name Value 

Set up cost per stop(dollars)  50 

Driving cost per mile (dollars)  2.207 

Driver idle time cost per hour (dollars) 40 

Truck weight limit (pounds) 42000 

Truck volume limit (ft
3
) 2000 

Load and unload rate per hour (ft
3
) 1200 

Load set up time (minutes) 30 

Driver time limit per route (hours) 50 

Total time limit per route (hours) 14 

Maximum number of trucks loaded at warehouse per 30 minutes 20 

Maximum number of stores per delivery route 4 

Maximum number of stores per pickup route 4 
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Table 10.  Volume required for separation curtains in a vehicle 

Number of order types One store Two stores Three or more 

stores 

One delivery order type 0 100 200 

Two delivery order types 160 210 260 

Three delivery order types 290 340 390 

 

4.6.1.  Results for different construction methods 

In this section, we examine the computational results for the two different phase I 

approaches.  When constructing an initial solution using the algorithms in Section 

4.5.2.2, we always set  = 0.02 in the calculation of the opportunity cost, cij, k, of inserting 

node k in arc (i,i) since it gave the best results on balance.  Table 11 compares the initial 

feasible solutions generated in phase I of the GRASP using multiple nodes vs. single 

nodes as seed routes.  We randomly generated 20 solutions for each instance using each 

method and report the min cost, the average cost, and total time for the two cases.  The 

results show that the former approach provides initial routes with much lower cost in 

comparable time.  On average, the cost differential for the seven instances is $16,688 

(14.11%).  This indicates that generating seed routes with multiple nodes for the same 

store can help identify better feasible solutions.   
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Table 11.  Comparing different seed route generating methods  

Measure 0910ST 0911ST 0912ST 0913ST 0914ST 0915ST 0916ST 

Multi-node seed route        

 Min cost ($) 106,068 106,634 94,094 100,471 95,014 104,867 94,671 

 Average cost ($) 107,133 108,079 94,201 102,116 95,521 107,550 95,283 

 Total time (s) 315 327 380 355 437 503 424 

One-node seed route        

 Min cost ($) 122,604 123,065 107,243 113,887 105,688 122,372 104,646 

 Average cost ($) 127,015 124,886 112,926 114,965 112,199 125,654 109,054 

 Total time (s) 412 392 415 424 417 476 380 

 

To compare the different local search methods considered for phase II, we 

randomly generated 20 initial solutions with the phase I construction procedure for each 

instance (a total of 140 solutions), and then tried to improve them.  Table 12 reports the 

minimum cost for each set of the 20 improved solutions, their average cost, and the total 

runtime.  For tabu search and its variants, we set the tabu list size to 200 and the number 

of iterations to 40,000, and derive an initial solution by running phase I of the GRASP for 

one iteration.  For the LNS, we explored all possible neighborhoods n-RI and n-S with n 

≤ 5.   

From the entries in Table 6 we can observe the following:  

 LNS is the worst performer, giving the largest minimum cost and largest average 

cost.  In contrast, all variants of tabu search were able to explore a larger portion of 

the solution space and thus obtain better solutions.   

 Tabu search-RVN performed the best amongst its competitors.  It produced the 

lowest average cost and minimum cost for all instances, and incurred the shortest 

runtime. For instance 0910ST, for example, the average cost of Tabu search-RVN 

solutions is $1056 (1.04%) lower than the basic tabu search solutions, $793 (0.78%) 

lower than the Tabu search-GN solutions, $3825 (3.77%) lower than the LNS 

solutions, and $731 (0.72%) lower than the Tabu search-DP solutions.  This 
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suggests that randomizing the selection of the neighborhood is an effective way to 

handle degeneracy.  

 As discussed earlier, Tabu search-GN examines larger neighborhoods than the other 

approaches and thus incurs longer runtimes per iteration.  In general, this leads to 

better solutions, which was the case for all instances when compared to the basic 

tabu search results.  For example, for instance 0911ST, the average cost of the 

Tabu search-GN solutions is $1045 (1.05%) lower than the basic tabu search 

solutions. 

 The penalties included for visiting degenerate neighborhoods improved the 

solutions obtained with Tabu search-DP when compared to basic tabu search.   For 

example, the average cost of the Tabu search-DP solutions for instance 0911ST is 

$1176 (1.19%) lower than the basic tabu search solutions. 

 

Table 13 compares the performance of Tabu search-RVN alone and GRASP 

using Tabu search-RVN in phase II.  The cost for each instance is averaged over twenty 

runs.  In each run of Tabu search-RVN, we randomly generate a solution and use Tabu 

search-RVN to improve the solution, with a runtime limit T = 30 minutes and tabu list 

size N
T
 = 200.  In each run of the GRASP, we set the total runtime limit to 30 minutes, 

and we use the tabu list size N
T
 = 200 number of tabu iterations N = 40,000.  Note that 

the phase II of the GRASP are terminated when number of Tabu iterations reaches 

40,000 or the total runtime limit of the GRASP (not the phase II of current iteration) 

reaches 30 minutes.  For GRASP, we used 23 threads so 23 phases I and II GRASP 

iterations were performed simultaneously.  The results show that GRASP performed 

marginally better in 6 of the 7 instances (except instance 0912ST), leading us to adopt it 

for the comparisons in the next section. 
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Table 12.  Summary of results for different phase II local search methods 

Method 0910ST 0911ST 0912ST 0913ST 0914ST 0915ST 0916ST 

Tabu search 
       

Min cost ($) 101,939 98,144 92,315 93,871 93,733 100,083 91,255 

Average cost ($) 102,428 100,167 92,468 94,733 94,062 100,836 91788 

Total time (s) 755 623 691 708 848 977 806 

Tabu search-GN 
       

Min cost ($) 101,266 97,801 91,997 93,242 92,624 99,628 91,064 

Average cost ($) 102,165 99,122 92,402 94,085 92,941 100,378 91,674 

Total time (s) 3337 2645 3052 3128 3650 3777 3023 

LNS 
       

Min cost ($) 103,913 101,929 92,753 97,305 94,130 102,535 94,125 

Average cost ($) 105,197 104,629 93,570 98,671 94,689 104,699 95,049 

Total time (s) 33 34 19 49 40 56 21 

Tabu search-DP 
       

Min cost ($) 101,300 97,590 91,586 93,335 92,738 99,860 90,361 

Average cost ($) 102,103 98,991 92,047 94,261 93,323 100,543 91,383 

Total time (s) 927 744 780 1101 1466 1515 1108 

Tabu search-RVN 
       

Min cost ($) 100,694 95,947 90,988 92,872 91,714 99,186 89,565 

Average cost ($) 101,372 97,069 91,619 93,334 92,126 99,561 90,288 

Total time (s) 639 526 537 591 872 840 795 

 

Table 13.  Comparing solutions generated by the tabu search and the GRASP 

 

0910ST 0911ST 0912ST 0913ST 0914ST 0915ST 0916ST 

Tabu search-RVN 100,913 96,420 90,960 92,671 91,843 99,098 90,007 

GRASP 100,679  96,277  90,999  92,580  91,665  98,877  89,641  

 

4.6.2.  Comparing GRASP solutions with Kroger’s solutions 

In this section, we compare our GRASP solutions with those provided by Kroger 

for the seven real instances highlighted in Table 2 and for a second set of results for 

instances 0911ST and 0196ST only.  The solutions for the seven instances were 
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generated with a commercial software package that is run daily, while the solutions for 

the two instances were obtained from an experimental set-partitioning heuristic.  To 

make better use of the vehicle capacity when planning, we found that Kroger splits most 

of the orders greater than 1100 ft
3
 into suborders and treats each separately.  We adhered 

to this procedure and did not aggregate orders for the same commodity at the same store.  

The number of orders associated with the two cases is summarized in Table 8 

andTable 14, respectively.  Because the orders correspond to different days of the year, 

the solutions are not directly comparable.  Interestingly, though not uncommon (e.g., see 

Bard et al. 2014), when examining these solutions, we found many violations of Kroger’s 

operational requirements.  Table 15 and Table 16 report the number of routes that violate 

each requirement in the commercial software solution and set-partitioning heuristic 

solution, respectively, with short time window violations being the most frequent.   

In light of this situation, we calculated two costs for each solution provided by 

Kroger.  In particular, the “Short TW” cost of each route is calculated in one of two 

ways: (i) if the route satisfies all the short time windows associated the nodes visited, 

then the total waiting time cost and the transition costs are summed to get the total cost; 

(ii) if the route violates any short time window of any node, then only the transition cost 

is reported.  In the same way, we calculate the “Long TW” cost.  In either case, the true 

cost of Kroger’s solutions are underestimated, considering that all the violations are 

ignored. 

When running the GRASP, Tabu search-RVN again was used in phase II with a 

list size of 200 and an iteration limit of 40,000.  A maximum of 30 minutes was allowed 

for each run.  In the comparisons, we considered four different time window options for 

the GRASP: long time windows, short time windows, a mix in which at most 20% of the 

routes were allowed to use the long time windows (20% long TW), and nominally, the 
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short time windows with the observed parameter values in the Kroger solutions (Short 

TW-KP).  In the latter case, the maximum values of the individual store time windows, 

vehicle volumes, and vehicle loads were used.   

 

Table 14.  Summary of problem characteristics for the set-partitioning solution 

Instances 

# of 

stores 

# of 

orders 

# of grocery 

orders 

# of refrigerated 

orders 

# of frozen 

orders 

# of salvage 

orders 

0911ST 123 402 154 127 121 0 

0916ST 136 418 139 140 135 4 

 

Table 15.  Number of violations in the commercial software solution 

Instance 

# of  

routes 

Total  

# of 

violations 

Short time 

window 

violations 

Long time 

window 

violations 

Weight 

limit 

violations 

Volume 

limit 

violations 

Order 

sequence 

violations 

0910ST 137 28 27 14 1 6 0 

0911ST 132 20 20 8 1 3 0 

0912ST 128 19 20 7 0 1 2 

0913ST 126 27 24 4 1 4 2 

0914ST 127 22 21 6 0 1 5 

0915ST 137 40 33 14 0 8 0 

0916ST 130 32 23 10 0 8 2 

 

Table 16.  Number of violations in the set-partitioning solution  

Instance 

# of  

routes 

Total  

# of 

violations 

Short time 

window 

violations 

Long time 

window 

violations 

Weight 

limit 

violations 

Volume 

limit 

violations 

Order 

sequence 

violations 

0911ST 127 24 17 0 12 0 9 

0916ST 124 33 27 0 7 0 2 

 

Table 17 and Table 18 compare the total cost of the GRASP solutions for the 

different time window options with those obtained with Kroger’s commercial package 

and set-partitioning heuristic, respectively.  We can see that even though the Kroger 
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solutions violate many operational requirements (which implies that their costs are 

underestimated), they are still inferior to the GRASP solutions in all instances.  

Nevertheless, the fairest comparison is for the Short TW-KP option in which the 

parameter values implied by Kroger’s solutions are used in the GRASP. Here, the results 

can be brought into clearer focus.  For example, the Short TW cost of the commercial 

software solutions for instance 0913ST in Table 17 is $2354 (2.48%) inferior to the 

GRASP Short TW solutions and $3615 (3.82%) worse than the GRASP Short TW-KP 

solutions.  The same pattern is true for the other instances in Table 17 and Table 18.  On 

average, the difference between the cost of the commercial software solutions and the 

GRASP Short TW-KP solutions is $2727 (2.85%), and the difference between the cost of 

the set-partitioning solutions and the GRASP Short TW-KP solutions is $1123 (1.21%).  

For the GRASP results only, the Long TW solutions dominate the 20% long TW 

solutions, which in turn dominate the Short TW solutions for all instances. This was to be 

expected since longer time windows mean a larger feasible region.  Relatively speaking, 

extending the time windows for only 20% of the routes achieved more than half of the 

cost reduction with respect to the Short TW solutions.  To see this, let the cost reduction 

percentage = 100 × (CS – CP)/CS, where CS denotes the solution with short time windows 

and CP denote the costs of solution with 20% long time windows.  On average, the cost 

reduction percentage is 0.78% ($732) for the seven instances in Table 17 and is 1.05% 

($969) for the two instances in Table 18. 

To evaluate the effect of extending time windows for all routes, we calculate the 

cost reduction percentage as 100 × (CS – CL)/CS, where CS and CL denote the solutions 

with short and long time windows, respectively.  On average, the cost reduction 

percentage is 1.39% ($1324) for the seven instances in Table 17 and is 1.41% ($1278) for 

the two instances in Table 18.  This means that the marginal benefit of extending the 
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time windows to more routes is a nonlinear decreasing function: go from 20% of the 

routes can achieve more than half of the cost savings resulting from extending time 

windows for all routes. 

 

Table 17.  Comparing GRASP solution with the commercial software solution 

Solution 0910ST 0911ST 0912ST 0913ST 0914ST 0915ST 0916ST 

GRASP        

Long TW 98,826 95,037 90,053 91,157 90,091 96,840 88,646 

20% Long TW 99,461 95,598 90,565 91,784 90,684 97,721 88,980 

Short TW 100,694 95,947 90,988 92,391 91,659 98,674 89,565 

Short TW-KP
†
 99,004 95,527 90,189 91,130 90,809 97,051 88,406 

Commercial software        

Short TW Cost 101,354 98,852 92,989 94,745 93,432 98,829 91,074 

Long TW Cost 100,190 97,688 91,530 93,524 92,505 98,208 90,424 
† Short TW-KP solution is generated by the GRASP using the maximum values of the parameters 

associated with the commercial software solution. 

 

Table 18.  Comparing GRASP solution with the set-partitioning solution 

Method Solution 0911ST 0916ST 

GRASP 

Long TW 95,149 87,790 

20% Long TW 95,153 88,422 

Short TW 95,947 89,565 

Short TW-KP†
 

95,527 88,399 

Set-partitioning 

heuristic 

Short TW 96,443 89,728 

Long TW 94,968 88,405 
† Short TW-KP solution is generated by the GRASP using the 

maximum value of the parameters used in the set-partitioning solution. 

 

4.7.  SUMMARY AND CONCLUSIONS 

In this paper, we developed a series of algorithms to help logistics managers 

construct daily pickup and delivery routes from a central warehouse to outlining retail 
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stores.  The problem was defined by a combination of standard and context-specific 

constraints, such as order loading restrictions, dynamic vehicle volume limits, weight 

limits, maximum time on the road, and warehouse time windows.  Several of these are 

new to the VRP literature.  To model the problem, we began with a route diagram that 

captured the possible transitions between order nodes and served as a basis for a mixed-

integer programming model.  

To find solutions, we designed and tested various heuristics that integrated 

techniques associated with GRASP, tabu search, and large neighborhood search.  In 

phase I of the GRASP, we found it best to use multiple order nodes to identify seed 

routes that are then expanded sequentially one node at a time.  In phase II four local 

search methods were considered to improve the initial solutions.  A critical observation 

at this stage was that all neighborhoods were degenerate.  This undermined the ability of 

tabu search, our primary phase II procedure, to find local optima.  To resolve this issue, 

we proposed two enhancements. The first was to greatly expand the neighborhood 

definition, and the second was to randomize the choice of neighborhoods to explore at 

each iteration. The latter proved to be the more effective.   

Not surprising, extensive testing showed that GRASP with RVN performed best 

in the vast majority of cases.  Comparing the corresponding solutions with those 

provided by Kroger for the Cincinnati-Columbus region showed that daily savings up to 

$3615 could be achieved, and perhaps more since the comparisons are based on 

conservative estimates of Kroger’s costs.  Basic tabu search did not perform well on 

these instances primarily due to neighborhood degeneracy.   

As extensions of this research, it is worth investigating different strategies for 

disaggregating the large, same-store orders. In general, split deliveries are not welcome 

by managers but when the demand at a store exceeds the capacity of the vehicle, there is 
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a clear need to work with reduced order sizes.  In the context of our problem, orders are 

specified by commodity rather than by store and each is subject a novel set of constraints.  

This further complicates the routing problem since it leads to an explosion in the number 

of feasible sequences.  A second extension centers on exact solution methods.  

Although it is unlikely that provably optimal solutions can be derived, decomposing the 

network into clusters of nearby delivery locations, and then finding solutions for each 

cluster might be a promising way to start.  
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Chapter 5.  Conclusions 

In this dissertation, we study three transportation scheduling problems: the train 

dispatching problem in railroad industry, the transportation network design problem with 

service requirements, and the daily service route design problem for major grocery 

chains.   

Each problem is important in their industry and has its industry-specific 

operational requirements.  The train dispatching problem coordinates the movements of 

trains on railroad tracks so that the average velocity of trains and the throughput of the 

railroad system are maximized.  Various operational requirements are considered, 

including the separation between adjacent trains, train priorities, and the track 

unavailability due to the maintenance of way.  The transportation network design 

problem with service requirement builds a subset of arcs in the network and routes 

commodities on built arcs to minimize the total fixed and variable cost.  Besides, each 

commodity is required to be routed in a simple path that satisfies the total service 

requirement.  The daily service route design problem routes a set of vehicles to deliver 

orders from the warehouse to stores and pickup salvage orders back to the warehouse.  A 

variety of operational requirements are incorporated, including the warehouse handling 

capacity, the truck weight and volume limits, and the driver time limits.  Moreover, there 

are four types of orders and these orders must be loaded in a certain sequence in trucks. 

Mathematical programming is a useful tool to model these problems.  We show 

that there are many alternative ways to model some requirements that and the strength 

and size of different models are different.  In the train dispatching context, we show that 

our non-concurrency constraints are more effective in modeling the unidirectional 

requirement than the pairwise constraints in literature since the number of constraints is 
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greatly reduced.  We compare three formulations, namely the arc-flow, path-flow and 

hybrid formulations, for the NDSR and show that they are different in terms of strength 

and model size.  Besides, we also develop a set of valid inequalities to strengthen the 

integer programming model in both the train dispatching problem and NDSR. 

We also show that heuristics are helpful in two aspects.  First, it can speed up the 

state-of-the-arc MIP solver by providing an initial feasible solution.  We show that an 

initial warm-start solution, together with model strengthening, can reduce the solution 

time tremendously.  Second, it can provide feasible solutions when the MIP solver fails 

to find one.  In the service route design problem, the mathematical formulation is too 

large to be solved within reasonable amount of time.  Instead, we develop a GRASP to 

provide a good solution. 

This dissertation can contribute to the existing literature in the following ways.  

First, the modeling and solution strategies of these problems are helpful to both 

academicians and practitioners in these areas.  Besides, it can contribute to the integer 

programming communities.  Our non-concurrency constraints that model the 

unidirectional requirements in train dispatching and the concept of hybrid formulation for 

NDSR are novel techniques that can be used in other context.  Finally, our work can 

contribute to the area of meta-heuristic.  We show that the Tabu search can be less 

effective when the neighborhood is highly degenerate.  To address the issue, we use the 

Tabu search with random variable neighborhood.  We also show that the GRASP, which 

improves many solutions with the Tabu search but spends less effort on each solution, 

can make use of the modern parallel computing technique and are thus more effective 

than the Tabu search, which improves only one solution with all the effort. 
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Appendices 

APPENDIX A.  SEPARATIONS FOR VALID INEQUALITIES IN CHAPTER 3 

A.1.  Separation procedure for inequality (3.26)  

Figure 39 discuss how to find all the violated inequality (3.26) for a given train 

movement solution vector x, a pair of trains q1 and q2 traveling in the opposite directions, 

and segment m.  Specifically, Step 1 of the procedure finds the set of time period that 

should be considered and Step 2 of the procedure goes over each possible pair of time 

periods to find violated inequalities. 
 

Procedure separate_unidirectional 

Input: movement solution vector x, train q1, train q2 and segment m. 

Output:C, set of inequalities (3.26) violated by x. 

Step 1: C = ; 

T(q1) = {t(q1, 1), t(q1, 2), , t(q1, K)}T, where ( , ) 0iq

mt q kx   and t(q1, i)> 

t(q1, i + 1); 

Step 2: For i = 1 to k 

 For j = i to k  

  t1 = t(q1, i) 

  1t  = t(q1, j) 

  2
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         Else if t2 > 2t  

             break; 

Figure 39.  Procedure to separate unidirectional inequalities (3.26) 
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A.2.  Separation procedure for inequality (3.31)  

Figure 40 discuss how to find all the violated inequality (3.31) for a given 

movement and wait solution vector (x, y), a pair of trains q1 and q2 traveling in the 

opposite directions, and segment m.  Specifically, Step 1 of the procedure finds the set of 

time period that should be considered.  Step 2 of the procedure goes over each possible 

pair of time periods to find violated inequalities by checking condition (1) of Lemma 3.6.  

Similarly, Step 3 finds violated inequalities by checking condition (2) of Lemma 3.6. 
 

Procedure separate_unidirectional_across_segment 

Input: solution vector x and y, train q1, train q2 and segment m 

Output:C, set of inequalities (3.31) violated by x. 

Step 1: C =; 

 let s be the station such that m = q

se ; 

T(q1) = {t(q1, 1), , t(q1, K)}T, where , ( , ) 0iq

m t q kx   or , ( , ) 0iq

s t q ky  ; 

Step 2: For i = 1 to k 

 For j = i to k 

  t = t(q1, i) and t  = t(q1, j); 

  1

1 1
q

mtt      and 1 1q
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Step 3: For i = 1 to k 

 For j = i to k  

  
12 1q
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Figure 40.  Procedure to separate unidirectional inequalities (3.31) 



 144 

APPENDIX B.  COMPLEXITY OF THE GRASP FOR RRDP 

In this section, we will show that the complexity of our GRASP is polynomial in 

the size of the underlying graph for a fixed runtime or fixed number of iterations.  In 

particular, we assume that the number of GRASP replications is M and that the number of 

tabu iteration is N. 

B.1.  Complexity of phase I 

To analyze the complexity of solution construction, we start with the work 

required to generate the seed stores, as given in Figure 27.  Step 1 requires using the 

lower bounding technique in Martello and Toth(1990) and thus has complexity O(|S|
2
).  

The complexity of Step 2 is O(|S|).  The third step requires O(|S|) time to find a store 

whose delivery volume is larger than vcap, and O(|S|
2
) time to initialize t(s) for each s ∊ S 

\ SE.  Step 4 requires at most O(|S|) iterations, where each iteration involves no more than 

O(|S|) operations, implying that its complexity is O(|S|
2
).  In summary, forming the set 

SE takes O(|S|
2
) time.  Since the number of orders in each store is not large, we can 

assume that the time to construct a seed route for a seed store is O(1).  Accordingly, the 

seed route construction procedure runs in O(|S|
2
) time.   

With respect to the solution generation procedure in Figure 30, we first consider 

the total number of routes that might be needed.  In Step 6, if the number of routes 

generated is greater than the current number of seed routes, the procedure is reinitialized 

using the increased number of seed routes.  The upper bound on the number of seed 

routes is O(|O|), which means that the maximum number of solutions that can be 

generated is O(|O|).  

Now let us consider the work required to construct each solution.  The 

complexity of generating seed routes in Step 1 is O(|S|
2
), as derived above.  The 

complexity of initializing the opportunity cost in Step 1 is O(|| . |O|) since it must 
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consider all arcs in the seed routes and unscheduled node.  Given that at most |O| new 

routes will be created in Step 2, its complexity is O(|O|).   

In Steps 3 to 5, an unscheduled node is identified and inserted it into an existing 

route, where the number of candidate nodes is at most |O|.  In Step 3, the effort to find 

the min-cost route is O(||) as is the effort to find the opportunity cost k for node k.  

Because ||  |O|, the complexity of Step 3 is O(|O|).  The sorting in Step 4 requires 

O(|O| log2|O|) time and all other operations can be performed in O(1) time.  Finally, 

updating the opportunity cost in Step 5 takes at most O(|| . |O|) time for each iteration.   

In putting these results together, we note that O(|O|) ≥ O(|S|) since each store has 

at least one order node,  and O(||)  ≥ O(|O|) since the graph is connected.  Thus, the 

total complexity of the algorithm is O(|O|) × [O(|S|
2
) + O(|| . |O|) + O(|O|) + O(|O|) × 

(O(|O|) + O( |O| log2|O|) + O(|| . |O|) ), or equivalently, O(|| . |O|
3
).  

B.2.  Complexity of Tabu Search-RVN 

Here we only analyze the complexity of Tabu search-RVN, which is the local 

search method we call in phase II of our GRASP.  To begin, we note that the number of 

transition arcs used in any given solution  is bounded by 2|O|, since at most one arc 

enters an order node and one arc exits.  This observation is used to determine the 

complexity of neighborhood search.  During this process, it may also be necessary to call 

the route reduction algorithm.  In the worst case, we need to check if the nodes on a 

route  can be moved to another route by inserting them, one at a time, into an arc in the 

existing solution  \ {}.  The complexity of route reduction is then O(N . |O|
2
). 

The work required to explore each of the four tabu neighborhoods is as follows: 
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 For RI[k, (i, j), gk, gi], it is necessary to evaluate all possible combinations of nodes 

k and arcs (i, j) included in the solution  to find a best insert position. The 

corresponding complexity is O(|O|
2
). 

 For S[i, j, gi, gj], it is necessary to examine all pairs of nodes i and j to find the best 

swap.  This can be done in O(|O|
2
) time.  

 For RRI[k, i, (j, l), gk, gi, gj], it is necessary to consider all possible combinations of 

nodes k and i and arcs (j, l) in the solution .  This has complexity O(|O|
3
). 

 For SA[(i, j), (k, l), gi, gk], it is necessary to evaluate all possible arc pairs (i, j) and 

(k, l) in the solution , which requires O(|O|
2
) time. 

In the worst case, each iteration selects RRI[k, i, (j, l), gk, gi, gj], the neighborhood 

with the highest complexity given by O(|O|
3
).  Thus, the total complexity of the local 

search algorithm is O(N . |O|
3
).   

B.3.  Complexity of the GRASP 

Combining the above results, we have that the total complexity of each GRASP 

replication is O(N . |O|
3
) + O(|A| . |O|

3
).  Because it is typically the case that N > |A|, this 

reduces to O(N . |O|
3
).  Considering that M tabu search iterations are performed for each 

feasible solution found in phase I, the total complexity of the GRASP is O(M .N . |O|
3
). 
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