

Copyright

by

Sifeng Lin

2015

The Dissertation Committee for Sifeng Lin Certifies that this is the approved

version of the following dissertation:

Optimization Models and Methods for Transportation Services

Committee:

Anantaram Balakrishnan, Supervisor

Jonathan F. Bard, Co-Supervisor

Prakash Mirchandani

John J. Hasenbein

Nedialko Dimitrov

Optimization Models and Methods for Transportation Services

by

Sifeng Lin, B.E.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas at Austin

August 2015

 iv

Acknowledgements

I am deeply grateful to my advisors, Professor Anant Balakrishnan and Professor

Jonathan Bard for their patience, help, and support. I would also like to offer my sincere

thanks to Professor Prakash Mirchandani for his guidance in the “Network Design

Problem with Service Requirement”, as well as in writing this dissertation. Besides, I

would like to thank Professor John Hasenbein and Professor Ned Dimitrov to serve on

my committee. I am very thankful to Dr. Alper Uygur for his support on the train

dispatching problem. Finally, I deeply appreciate the endless support, love, caring and

understanding from Lyn Chen.

 v

Optimization Models and Methods for Transportation Services

Sifeng Lin, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Anantaram Balakrishnan

Co-Supervisor: Jonathan F. Bard

Managing transportation services efficiently is essential to both public and private

sectors. This dissertation addresses three scheduling problems in modern transportation

systems: the network design problem, the train dispatching problem, and the service route

design problem. The transportation network design problem with service requirements

designs arcs on a directed network and route commodities on the designed arcs so that i)

commodities satisfy service requirements and ii) the total cost is minimized. We

develop three mathematical programming models: a compact but weak arc-flow

formulation, a large but strong path-flow formulation, and a hybrid formulation that uses

both the arc-flow and the path-flow representations. We show that the hybrid

formulation can significantly strengthen the LP formulation without introducing many

variables. To find a good hybrid formulation, we develop columnization and

decolumnization algorithms that uses the LP relaxation information to identify

commodities that should use the path-flow representation. We also develop valid

inequalities for commodities using the path-flow representation. The train dispatching

problem schedules the movements of trains on scarce railroad tracks so as to improve the

average velocity of trains. We develop a mathematical programming model and

 vi

strengthen the model using valid inequalities. Besides, we present a heuristic to find a

feasible solution quickly, which can serve as the warm-start solution to the MIP solver.

For the third problem, we seek to design vehicle routes to deliver and pickup orders for a

major grocery chain. We design a GRASP that can incorporate various operational

requirements, including warehouse loading capacity, loading sequence, time window

requirements, truck volume and weight capacities, and driver time limits. Our GRASP

procedure consists of two phases: the solution construction (Phase I) and the Tabu search

(Phase II). We show that the neighborhood structure of solutions is highly degenerate,

which limits the solution space explored by the Tabu search. We apply the Tabu search

with random variable neighborhood to increase the solution space explored.

 vii

Table of Contents

List of Tables ...x

List of Figures .. xi

Chapter 1. Introduction ..1

Chapter 2. Network Design with Service Constraints ...3

2.1. Introduction..3

2.2. Model formulation ...6

2.2.1. Arc-flow formulation ...8

2.2.2. Path-flow formulation ..9

2.2.3. Comparing Model [AF] and Model [PF] Models10

2.2.4. Hybrid formulation ..12

2.2.5. Columnization methods ...14

2.2.6. Decolumnization method ...16

2.2.7. Dynamic columnization and decolumnization18

2.3. Strengthening the hybrid formulation ..20

2.3.1. Arc-flow representation ...20

2.3.2. Union-intersection inequality ..21

2.3.3. Q-union inequality ...26

2.4. Computational Results ...30

2.5. Concluding remarks ...34

Chapter 3. The Train Dispatching Problem ...36

3.1. Introduction..36

3.2. Literature review ..40

3.3. Model formulation ...41

3.3.1. Problem description ...41

3.3.2. Notation ...43

3.3.3. Mathematical formulation ...49

3.4. Model enhancements ...51

 viii

3.4.1. Non-concurrency constraint ...52

3.4.2. Refining the track sections ...54

3.4.3. Train-based unidirectional inequality57

3.4.4. Pairwise unidirectional inequalities ...58

3.4.5. Pairwise unidirectional inequalities across segments62

3.5. Sequential dispatching heuristic ..67

3.5.1. Notation and definitions ..67

3.5.2. Conflict resolution ...72

3.5.3. Deadlock prevention and resolution ..76

3.5.4. Basic Procedure ...79

3.5.5. Random search ...80

3.6. Computational results ..81

3.7. Conclusions..84

Chapter 4. Route Design for Delivery Vehicles with Backhauling86

4.1. Introduction..86

4.2. Related Literature ..88

4.3. Problem Description ..90

4.4. Mathematical Formulation...93

4.4.1. Route diagram ..93

4.4.2. Mathematical formulation ...95

4.5. Solution Methodology ...103

4.5.1. GRASP ..104

4.5.2. Phase I: solution construction ..105

4.5.2.1. Seed route generation ..105

4.5.2.2. Route construction ...110

4.5.2.3. Loading capacity ..115

4.5.3. Phase II: local improvement heuristics116

4.5.3.1. Tabu search ..117

4.5.3.2. Tabu search with generalized neighborhood121

4.5.3.3. Degeneracy of the tabu neighborhood123

 ix

4.5.3.4. Large neighborhood search ..126

4.6. Computational Results ...128

4.6.1. Results for different construction methods130

4.6.2. Comparing GRASP solutions with Kroger’s solutions133

4.7. Summary and Conclusions ..137

Chapter 5. Conclusions ..140

Appendices ...142

Appendix A. Separations for valid inequalities In Chapter 3142

A.1. Separation procedure for inequality (3.26)142

A.2. Separation procedure for inequality (3.31)143

Appendix B. Complexity of the GRASP for RRDP144

B.1. Complexity of phase I ..144

B.2. Complexity of Tabu Search-RVN..145

B.3. Complexity of the GRASP ...146

Bibliography ..147

 x

List of Tables

Table 1. Comparison of Model [AF] and Model [PF] models11

Table 2. IP comparison for arc-based, hybrid, and path-based methods33

Table 3. Model size and linear programming relaxation bounds comparison for arc-

based, hybrid, and path-based methods ..33

Table 4. Comparison of arc-based and hybrid methods with different values of

 and  ..34

Table 5. Comparing Base Model and Improved Model for train dispatching83

Table 6. Impact of valid inequalities...84

Table 7. Arcs emanating from order nodes at store s ..94

Table 8. Summary of data set characteristics ..129

Table 9. Summary of problem parameters ..129

Table 10. Volume required for separation curtains in a vehicle130

Table 11. Comparing different seed route generating methods131

Table 12. Summary of results for different phase II local search methods133

Table 13. Comparing solutions generated by the tabu search and the GRASP .133

Table 14. Summary of problem characteristics for the set-partitioning solution135

Table 15. Number of violations in the commercial software solution135

Table 16. Number of violations in the set-partitioning solution135

Table 17. Comparing GRASP solution with the commercial software solution137

Table 18. Comparing GRASP solution with the set-partitioning solution137

 xi

List of Figures

Figure 1. Procedure for dynamic columnization ...19

Figure 2. Example for Union-intersection inequality ...23

Figure 3. Procedure to separate union-intersection inequality26

Figure 4. Example for Q-union inequality ..28

Figure 5. Unidirectional movements...54

Figure 6. Procedure to refine section ...56

Figure 7. Procedure to define section ..57

Figure 8. Illustration of unidirectional movements across segments62

Figure 9. Procedure to move a train forward ...70

Figure 10. Procedure to make a train wait ...70

Figure 11. Procedure to check if a train can wait in current station70

Figure 12. Procedure to check if a train can move forward at a certain time71

Figure 13. Procedure to backtrack the train to its previous station71

Figure 14. Procedure to delay a train ...72

Figure 15. Procedure to select the active train ...72

Figure 16. Procedure to check if two trains have a meet conflict74

Figure 17. Procedure to check if two trains have a pass conflict74

Figure 18. Procedure to resolve a pass conflict ...75

Figure 19. Procedure to resolve a meet conflict ..75

Figure 20. Example of a soft deadlock ..78

Figure 21. Procedure to movabilize trains ...78

Figure 22. Procedure to look head one station ..79

Figure 23. Procedure general heuristic ..80

 xii

Figure 24. Random search scheme ..81

Figure 25. Example route network for two stores ...95

Figure 26. Example path (0, s-G, r-G, r-F, r-P, s-P, N + 1)95

Figure 27. Procedure to select seed stores ...108

Figure 28. Procedure to generate a multi-node seed route110

Figure 29. Procedure to check if a route is feasible ...111

Figure 30. Procedure to generate initial routes ..114

Figure 31. Procedure to determine latest departure time from warehouse for a route

...115

Figure 32. Procedure to reduce the number of routes ..116

Figure 33. Neighborhood RI[k, (i, j), gk, gi]...119

Figure 34. Neighborhood S[i, j, gi, gj] ...119

Figure 35. Neighborhood RRI[k, i, (j, l), gk, gi, gj] ..119

Figure 36. Neighborhood SA[(i, j), (k, l), gi, gk] ..120

Figure 37. High-level tabu search procedure ...121

Figure 38. Large neighborhood search procedure ...128

Figure 39. Procedure to separate unidirectional inequalities (3.26)..................142

Figure 40. Procedure to separate unidirectional inequalities (3.31)..................143

 1

Chapter 1. Introduction

The effective and efficient management of transportation services is essential to

the distribution of goods and services. With increased complexities of modern business

operations, a firm with decision support systems for transportation planning can obtain

significant competitive advantage. The objective of this research is to examine three

important problems in transportation planning. Specifically, we develop mathematical

models and solution methods for (i) the train dispatching problem in the railroad industry,

(ii) the transportation network design problem with end-to-end service constraints, and

(iii) the route design for delivery vehicles with backhauling.

We first study the train dispatching problem, which is one of the top priorities for

railway companies. The train dispatching problem aims to optimize the movement of

freight trains on railway tracks to reduce train waiting times and increase the average

train velocity. To model the problem, we discretize time into periods and model

movements of trains using arcs in the time space network. Our model incorporates

various service requirements, including time window constraints, headways between

consecutive trains, maintenance of way, and train priorities. To solve the resulting

integer program, we explore several model enhancement strategies and propose a

sequential routing heuristic to generate an initial feasible solution. We test our solution

strategies using real-life data from a Class I railroad company.

Our second problem is the transportation network design problem with service

constraints (NDSR). Since infrastructure networks are usually capital-intensive,

minimizing the cost has been a major concern in transportation network design.

However, increased global competition has forced firms to take the responsiveness and

reliability into account. To address this problem, Balakrishnan et al. (2014) propose the

 2

network design problem with service requirement. On top of the traditional fixed-charge

multi-commodity network design representation, the NDSR problem incorporates

additional constraints to ensure that each commodity’s route satisfies various service

requirements. We present three formulations for this problem: the weak but compact

arc-flow formulation, the strong but large path-flow formulation, and a hybrid

formulation that applies the arc-flow representation to some commodities and the path-

flow representation to others. To identify a hybrid formulation that achieves the strength

of path-flow formulation and the compactness of the arc-flow formulation, we propose

two strategies, both of which decide path-flow commodities by iteratively solving the LP

relaxation. To further improve the performance of the hybrid formulation, we develop

valid inequalities based on the path-flow representation.

The third problem, the route design for delivery vehicles with backhauling,

extends the traditional capacitated vehicle routing problem with time window

(CVRPTW) to capture additional sequencing and warehouse capacity considerations.

The problem entails routing vehicles to deliver replenishment orders from the warehouse

to stores and pick up salvage orders from stores back to the warehouse, while considering

the loading capacity at the warehouse, loading and unloading time at each store,

sequencing of different types of items on the truck trailer, and volume and weight

capacities of the trailer. Since size of the problem is too large to apply exact solution

method, we use the greedy randomized adaptive search procedure to solve the problem.

The rest of this proposal is organized as follows. In Chapter 2, we show the

modeling and solution strategies for train dispatching. Chapter 3 discusses the weight-

constraint network design problem. Chapter 4 presents the store servicing routes design

problem and our solution strategy. Chapter 5 concludes this dissertation.

 3

Chapter 2. Network Design with Service Constraints

2.1. INTRODUCTION

Transportation networks play a critical role in both private and public sectors.

Since building such infrastructure networks is usually capital-intensive, network

designers have traditionally adopted strategies that emphasize cost minimization. A

consequence of an undue focus on cost minimization is that the optimal design ends up

being sparse—which, in turn, entails long routes for some commodities which may result

in transportation delays and unresponsive supply chains. A singular focus on cost can

thus have adverse consequences along other criteria.

With increasing global competition, shorter product life-cycles and more

demanding customers, firms are being forced to take into account additional factors such

as responsiveness and reliability while making network design decisions. To address

this problem, Balakrishnan et al. (2014) proposed an extension of the traditional fixed-

charge, multi-commodity network design problem. Their model incorporates additional

constraints to ensure that each commodity’s chosen route satisfies various service

requirements. The service requirements are modeled by assigning weights to the arcs

and ensuring that the sum (or product) of the arc weights for each commodity does not

exceed the specified limit. The goal of this paper is to develop a new solution method

for this important problem, which we refer to as the Network Design with Service

Requirements (NDSR) problem.

We can use two opposite approaches for modeling the NDSR problem. The first

one defines arc flow variables to represent the commodity flow on arcs and enforces flow

conservation equations to ensure that flows constitute a path, as desired, from the

commodity’s origin node to its destination node. The advantages of such formulation

are obvious: it is compact (in the sense that the model size is polynomial) and it can

 4

easily incorporate additional constraints like the service, or weight—requirements that

exist in the NDSR problem. In the NDSR context, such a formulation has a weak linear

programming relaxation since its solution permits the weight constraint to be satisfied on

average; in other words, the decomposition of the LP optimal solution may incur origin-

destination flow along paths that do not satisfy one or more weight constraints.

Alternatively, we can model the NDSR problem using path flows. In this case,

we enumerate all feasible paths for each commodity, i.e., all paths from the commodity’s

origin node to its destination node whose weights for each service metric are within the

specified limits, and explicitly model the commodity flows on these feasible paths. By

excluding the infeasible paths that violate any of the service requirements, this path-flow

formulation provides a tighter linear programming relaxation; however, since the number

of feasible paths may be exponential, solving the resulting formulation can be

computationally difficult.

To synergistically exploit the compactness of the arc-based formulation and

tightness of the path-based formulation, we propose a hybrid formulation that uses the

arc-flow representation for some commodities and the path-flow representation for

others. We show that the commodities with stringent service requirements favor the

path-flow representation, while arc-flow representation is preferred for commodities with

loose service requirements. However, instead of deciding a priori as to whether a

commodity should have the arc-based or the path-based representation, we use the

information contained in the optimal solutions of linear programming relaxations of

continuously evolving formulations in the solution process. Thus, rather than using a

static codification, we categorize the commodities dynamically, adapting not only to the

original network structure but also to the information from progressively stronger linear

programming relaxations.

 5

To decide the representation of each commodity based on the information in the

linear programming relaxation solutions, we use two methods that are respectively

grounded in estimated bound improvement and in the flow decomposition. These

procedures help find a hybrid formulation that has only slightly larger number of

variables than the pure arc-flow representation but only slightly worse bound than the

pure path-flow representation.

For the commodities using the path-flow representation, we develop new valid

inequalities that help us tighten the hybrid formulation. The linear programming

solution of the path-flow representation contains a decomposition of commodity flow

into paths; this information facilitates taking unions and intersections of the paths to

develop these new valid inequalities.

This study advances current state of knowledge in several aspects. First, it

provides a novel approach to effectively solve the NSDR problem. Second, it introduces

the idea of hybrid formulation, which may be extendable to other problem contexts that

have a block-diagonal structure. Third, this paper uses the information contained in the

path-flow representation of commodity flows to help define new valid inequalities that

strengthen the hybrid model. Finally, the computations demonstrate that our solution

approach based on the new hybrid formulation is effective, and that the Pareto principle

applies in this context as well: using the path-based representation for just a small

proportion of the commodities results in successfully closing a large proportion of the

integrality gap.

The rest of this chapter is organized as follows. Section 2.2 introduces the

NDSR problem, reviews the arc-flow formulation discussed in Balakrishnan et al. (2014),

presents the path-flow formulation, and introduces the hybrid formulation and our

dynamic reformulation strategies. In Section 2.3, we develop the new valid inequalities

 6

based on path flow representation, as well as reviewing some of the valid inequalities

discussed in Balakrishnan et al. (2014). Section 2.4 presents the computational results

and Section 2.5 provides the concluding remarks.

2.2. MODEL FORMULATION

In the Network Design with Service Requirements (NDSR) problem, we are given

a directed network with a set of available point-to-point links, and a set of commodities

with their corresponding origins and destinations and service requirements. The service

requirements can model the allowable end-to-end delay, reliability, and number of arcs or

nodes traversed by the commodity. We seek to select a subset of arcs of the given

network and route commodities on origin-destination paths along the selected arcs to

minimiz the sum of the fixed costs for selecting the arcs and the variable costs for routing

the commodities while meeting the service requirements. Specifically, consider a

directed network G: (N, A) with the node set N = {1, 2, …, n} representing the origin

nodes, destination nodes or transshipments points for the commodities, and arc set A =

{(i, j): ,i j N }, with |A| = m, representing facilities or possible interconnections for

routing flows. Let K represent the set of commodities, and for each commodity k K ,

let sk denote its origin node and tk its destination node. We wish to route the

commodities in K on simple paths from their respective source nodes to their destination

nodes using the selected arcs. Since the arcs are uncapacitated, we can normalize the

demand of each commodity to one. Let 0ijf  denote the fixed cost of selecting arc (i,

j), and 0k

ijc  denote the cost to route each unit of commodity k on that arc. Each

commodity has up to L service requirements, indexed by l, that any feasible path for the

commodity must satisfy. For each service requirement l and arc (i, j), we associate a

nonnegative weight
,k l

ijw corresponding to commodity k. The sum of the weights of the

 7

arcs on the selected path for commodity k and service requirement l must not exceed the

specified upper limit on the weight ,k lW . This model also applies in situations where

the reliabilities of the chosen paths are required not to exceed pre-specified levels. The

reliability of a path is the product of the reliabilities of the arcs comprising the path.

Taking the logarithm of both sides of the reliability requirement results in an additive

rather than a multiplicative constraint.

The NDSR problem aims to select the set of arcs and route each commodity from

its origin to its destination to minimize the total fixed and variable costs, while satisfying

the weight constraint of each commodity. The NDSR problem generalizes several well-

known NP-Complete problems, including the fixed-charge network design, weight-

constrained shortest path, and hop-constrained network design problems. Without the

weight constraint, the problem reduces to the traditional uncapacitated fixed-charge

network design problem, which has been extensively studied (e.g., Magnanti and Wong

1984, Balakrishnan et al. 1997, Randazzo and Luna 2001, Agarwal and Aneja 2012). If

the design costs are zero and there is only one weight metric, or if there is only one

commodity and one weight metric, the problem reduces to the weight-constrained

shortest path problem (Righini and Salani 2008, Carlyle et al. 2008, Dumitrescu and

Boland 2003); Pugliese and Guerriero (2013) provide an recent survey of exact solution

approaches for the problem. When the weights are the same for all arcs, i.e.,
, ,k l k l

ijw w ,

the problem reduces to the hop-constrained network design problem; Balakrishnan and

Altinkemer (1992) propose a Lagrangian-based algorithm to solve the problem, and

Pirkul and Soni (2003) present an alternative formulation that models the number of hops

explicitly. When the problem has n – 1 commodities with a common origin node and

distinct destination nodes, a single service level requirement and same weights for all

 8

arcs, the problem reduces to hop constrained minimum spanning tree problem on a

directed network (Dahl and Gouveia, 2004).

Recent research has studied the NDSR problem and its variants. Balakrishnan et

al. (2014) model the NDSR problem using arc-flow variables and propose various valid

inequalities to strengthen the model. Holmberg and Yuan (2003) consider a variant of

the NDSR problem in which the commodities are not restricted to be routed on one a

single path; they propose a formulation that models the flow of commodities on paths and

apply column generation to solve the problem. Both these approaches have some

disadvantages, as we discuss below, and prepare us to develop a hybrid approach.

2.2.1. Arc-flow formulation

Balakrishnan et al. (2014) propose an arc-flow formulation by defining two sets

of variables: arc design variables and arc routing variables. Design variable zij, equals

one if the solution selects arc (,)i j and is zero otherwise; arc routing variable
k

ijx equals

one if commodity k is routed on arc (,)i j and zero otherwise. Using these variables,

the NDSR problem has the following integer programming formulation, denoted as

Model [AF]:

Model [AF]
(,) (,)

Min k k

ij ij ij ij

i j A k K i j A

f z c x
  

   (2.1)

subject to:

:(,) :(,)

 1 if

1 if

 0 otherwise

k

k k

jiij k

j i j A j j i A

i s

x x i t k K
 




     



  , i N (2.2)

, ,

(,)

k l k k l

ij ij

i j A

w x W k K


   ,l = 1, …, L, (2.3)

, (,)k

ij ijx z k K i j A    , and (2.4)

{0,1} ,(,),k

ij ijx k j Az K i    . (2.5)

 9

The objective function (2.1) minimizes the sum of total fixed costs of installing

arcs and the routing costs of all commodities. Constraints (2.2) are the flow

conservation equations to ensure that each commodity is routed from its origin to its

destination. Constraints (2.3), which we refer to as the weight constraints, enforce the

requirement that the total weight of arcs used by each commodity does not exceed the

limit W
k,l

 for each metric l. The forcing constraints (2.4) impose the condition that a

commodity can only be routed on a path when the underlying arc is selected.

Constraints (2.5) impose the binary requirement on the flow and design variables.

2.2.2. Path-flow formulation

An alternative way to formulate the problem is to model the routing path of each

commodity explicitly, instead of using arc flow variables and imposing flow conservation

equations (2.2) on arc flow variables; we call this new formulation path-flow

formulation. Let k denote the set of feasible paths for commodity k, i.e. paths

originating at sk and ending at tk whose total weight is within
,k lW for every metric l; let

{ : (,) }k k

ij p i j p    denote the set of feasible paths for commodity k that contain

arc (i, j). Let
(,)

k

iji j p

k
p cC


 represent the total variable cost of routing commodity k

on path p. As earlier, we let zij equal one if the design selects arc (,)i j and zero

otherwise. In addition, we define the path routing variable
k

py , where a value of one for

k

py indicates that commodity k flows on path p, and a value of zero indicates that it does

not. Using the design and path routing variables, the path flow formulation, denoted by

Model [PF], is as follows:

Model [PF]
(,)

Min
k

k k

ij ij p p

i j A k K p

f z C y
  

   (2.6)

subject to:

1
k

k

p

p

y k K


   , (2.7)

 10

, (,)
k
ij

k

p ij P

p

y z k K i j A


    , (2.8)

{0,1} (,) , ,,k k

p ijy i j A k K pz      . (2.9)

Constraints (2.7) require that each commodity should be routed on one feasible

path. Constraints (2.8) specify that a commodity k is routed on a path p only when

every arc on p has been selected by the design. Constraints (2.9) impose the binary

requirement on the flow and design variables.

2.2.3. Comparing Model [AF] and Model [PF] Models

We discuss the advantages and disadvantages of formulations Model [AF] and

Model [PF] in this subsection, based on which we propose a new model to overcome the

disadvantages of both models in Section 2.2.4. Denote the optimal linear programming

relaxation value of Model [AF] and Model [PF] as
AFL and

PFL respectively.

Proposition 2.1. For any given problem instance,
PAF FL L .

Proof. Let (y,z) denote an optimal solution to the linear programming relaxation

of Model [PF]. Define
:(,)k

k k

ij pp i j p
x y

 
 , then (x,z) satisfies constraints (2.2) and

(2.4). In addition,
, , , , ,

(,) (,) (,)

()
k

k kij

k l k k l k k l k k l k k l

ij ij ij p ij p p

i j A i j A p i j p pp

w x w y w y W y W
    

         .

Hence, (x,z) is feasible to the linear programming relaxation of formulation

[AF]. Thus, PAF FL L .■

Proposition 2.1 shows that Model [AF] has a weaker linear programming

relaxation than Model [PF]. Intuitively, the linear programming relaxation of Model

[AF] is weaker since commodities can meet the weight limit constraint on average, i.e.,

by combining flows on paths with large and small weight values. On the other hand,

Model [PF] excludes all infeasible paths, and so has a smaller feasible space.

 11

A natural question is: How poorly can the linear programming relaxation of

Model [AF] perform relative to the linear programming relaxation of Model [PF]? We

can construct examples to show that the relative gap between the optimal linear

programming relaxation values, i.e., () /AF PF PFL L L , can be infinity.

Table 1 compares the size of the two formulations: the size of the arc-flow

formulation is polynomial in the size of the network, whereas the number of variables in

the path flow model can be exponential. As the number of service metrics L increases,

the difficulty of solving Model [AF] may increase since the number of constraints

increases, while it is easier to solve Model [PF] due to fewer number of variables.

Likewise, when the weight limit requirement becomes more stringent, i.e. W
k,l

 is

decreased, number of variables in Model [PF] decreases and so does the effort to solve

Model [PF], whereas the size of Model [AF] remains unchanged.

Table 1. Comparison of Model [AF] and Model [PF] models

Criteria Model [AF] Model [PF]

of variables | | (| | 1)A K  || | |k

k K
A




of constraints | | (| |)K n L A  | | (1 | |)K A

of service metrics L ↑
of constraints ↑

of variables unchanged

of constraints unchanged

of variables ↓

Weight limits W
k,l

 ↓ # of variables unchanged # of variables ↓

Strength of linear

programming relaxation
Lower Greater

The pros and cons of Model [AF] and Model [PF] exhibit the classic tradeoff in

integer programming formulations: compactness versus strength of the model. The

stringency of the weight limit can affect the relative effectiveness of the two models.

 12

When the weight limit is loose (i.e. when ,k lW is relatively large), Model [AF] becomes

more advantageous; in this case, the weight limit constraint is not likely to be binding in

the linear programming relaxation of Model [AF], which implies the difference between

AFL and
PFL may not be large. However, | |k may be high for every commodity k

and the higher number of variables may add to the difficulty of solving Model [PF]. If

the weight limit is stringent, Model [PF] contains fewer path variables making it easier to

solve. On the other hand, the weight limit constraint is very likely to be violated by the

linear programming relaxation of Model [AF], resulting in the solution using infeasible

paths (and satisfying the weight constraint on average), and hence a larger difference in

AFL and PFL values.

2.2.4. Hybrid formulation

The comparison of Model [AF] and Model [PF] suggests that an approach based

on path-flow variables is likely to be better for tightly-constrained commodities, and

using arc-flow variables is likely to perform better otherwise. Since the weight limits of

commodities are unlikely to be all stringent or all loose in the same problem instance, we

are motivated to use the path-flow representation for commodities with tight weight

constraints, and the arc-flow representation for others.

We use AK K to denote the set of commodities for which the model uses the

arc-flow representation and PK K to denote the set of commodities for which the

model uses the path-flow representation. Note that KA and KP form a partition of K, i.e.

PAK K  and PAK K K  . Given the partitions (KA, KP), the hybrid formulation

Model [HF(KA, KP)] can be represented as follows:

 13

Model [HF(KA, KP)]
(,) (,)

Min
k

A P

k k k k

ij ij ij ij p p

i j A k K i j A k K p

f z c x C y
    

      (2.10)

subject to:

:(,) :(,)

 1 if ()

1 if ()

 0 otherwise

k k

ij ji A

j i j A j j i A

i O k

x x i D k k K
 




     



  , i N (2.11)

(,)

k k k

ij ij ij A

i j A

w x W k K


   ,l, = 1, …, L, (2.12)

, (,)k

ij ij Ax z k K i j A    , (2.13)

1
k
ij

k

p P

p

y k K


   , (2.14)

:(,)

, (,)
k

k

p ij P

p i j p

y z k K i j A
 

    , (2.15)

{0,1} ,k k

p Py k K p    , (2.16)

, {0,1} ,(,)ij

k

ij Az x k K i j A    , (2.17)

If KA = K, the model reduces to the weaker but more compact arc-flow

formulation; if KP = K, the model reduces to the larger but stronger path flow

formulation.

The number of variables in Model [HF(KA, KP)] is | || | | | | |
P

k

KA k
A K A


  ,

larger than the number of variables in Model [AF] and smaller than that in Model [PF].

We denote the optimal linear programming relaxation value of Model [HF(KA, KP)] as

(,)A PHF K KL .

Proposition 2.3. For any problem instance and any commodity partition (KA, KP),

(,)A PAF HF K K PFL L L  .

Proof. The proof of this proposition is similar to the proof of Proposition 2.1. ■

Proposition 2.3 indicates that the strength of the model is also between Model

[AF] and Model [PF]. Thus, we can view Model [HF(KA, KP)] as the compromise

between the arc-flow and the path-flow representation: (i) compared to Model [AF],

Model [HF(KA, KP)] has a stronger linear programming relaxation but without an undue

 14

increase in the model size, but (ii) compared to Model [PF], the hybrid model has fewer

number of variables but a weaker linear programming relaxation bound.

While Model [HF(KA, KP)] achieves an advantageous middle ground, we need to

determine KA and KP before we can use the model. The partition of K into KA and KP is

essential to the performance of Model [HF(KA, KP)]; we would like to choose a partition

that brings about the appropriate mix of compactness of Model [AF] and strength of

Model [PF]. As discussed earlier, the tightness of the weight limit values can greatly

affect the effectiveness of the path-flow and the arc-flow representations: if commodity k

has stringent weight limits, it is more advantageous to include it in the set KP; but hand, if

commodity k has loose weight limits, it is better to include it in the set KA.

2.2.5. Columnization methods

Since determining the tightness of the weight limits a priori is difficult, we adopt

an iterative method that exploits linear programming relaxation solutions to guide the

partitioning of the set of commodities into those for which the arc-based formulation is

more appropriate and those for which the path-based formulation is more appropriate.

Starting with KA=K, we refer to the process of moving a commodity k from KA to KP as

columnizing commodity k. Given the linear programming solution to the current hybrid

model, we propose two possible methods to evaluate the choice of commodities to

columnize: the flow-decomposition method and the estimate-bound method.

The flow-decomposition method examines the flow decomposition of the arc flow

commodities to decide which commodities to be columnized. Given any linear

programming relaxation solution with arc-flow values for commodity k, we decompose

the arc-flow into a set of path flows (Ahuja et al. 1993), denoted as P
k
. If

, ,

(,)

k l k l

iji j p
w W


 for some path kp P and metric l, i.e., the solution attempts to use

 15

some infeasible path, the weight metric l may be stringent for commodity k. In the flow

decomposition method, we columnize a commodity k if , ,

(,)

k l k k l

ij iji j p
xw W


 for any

path kp P . We tested several strategies for flow decomposition in a network, and

based on this testing, used the shortest-weight path first strategy when decomposing the

arc-flow into path flows. With such a strategy, the path with shortest-weight are

considered first during the flow decomposition.

The estimate-improvement method tires to estimate the potential improvement of

the linear programming relaxation solution and use this estimated improvement to decide

which commodities to columnize. For each commodity k and arc (i, j) with 0k

ijx  , we

must have i

k

ij jx z . If
k

ij ijx z , then arc (i, j) is not specially designed to route

commodity k. If
k

ij ijx z , we can divide the design value zij into two parts: the portion of

value specially designed for commodity k and the portion of value used by other

commodities. Given the LP solution (, ,)x y z to hybrid Model [HF(KA, KP)], the

portion of value used by commodities other than k is the maximum flow value of those

commodities, represented by

\{ }
:(,)

(,) max max ,(,max ,)
PA k

k k

ij A P ij p
k k k

i j

k

A
K K

p p

x y k K iK j AK  

 
 

  
  

 

 



 .

Accordingly, the portion of the arc designed specifically for commodity k is

(,)k

ij ij A PKz K . Thus, we can estimate the contribution of commodity k to the total

cost as

 
(,)

}(,) max{0, (,)k

ij ij Ai

k k k

A P ij A j ij ij A Px zE K K c f k KK K


    .

We can solve the following LP problem to estimate the contribution of

commodity k to the total cost after columnizing commodity k.

(,)

(,) min
k

k k

p p

i j Ap

k

A P ij ijD K K C y f u


   (2.18)

subject to

 16

1
k

k

p

p

y


 (2.19)

(,)
k
ij

k

p A P

k

ij ij

p

uy K aK A


    (2.20)

0 kk

p py    (2.21)

0 (,)ij iu j A   (2.22)

In the above model, uij is the portion of the arc specially designed for commodity

k. The following proposition shows that D
k
(KA, KP) – E

k
(KA, KP) gives an upper bound

on the improvement in the LP relaxation value after columnizing commodity k. Thus,

we can use D
k
(KA, KP) – E

k
(KA, KP) as a criterion to decide if commodity k should be

columnized.

Proposition 2.4. (\ { } , { }) (,H)H (,) (,)
A AP P

k k

K k K k K K A P A PL L D K K E K K 

Proof: Denote (,) (,)H H (,)
A AP P

k

K K K K A Pl L E K K  . Assume the optimal solution to the LP

relaxation of H(KA, KP) is (x
1
, y

1
, z

1
) and the optimal solution to formulation (2.18)-(2.22)

is (y
2
, u

2
). We can define a feasible solution (x

3
, y

3
, z

3
) to formulation

H({ },\ { })A PK k K k as follows:

3 1k k

ij ijx x  for all \{ }Ak K k and (,)i j A

3 1k k

p py x  for all Pk K and kp

3 2k k

p py y  for k k  and kp

23 (,)ij A P

k

ij ijz K Ku  for all (i, j) ∊ A.

The objective function value of solution (x
3
, y

3
, z

3
) is)H(, (,)

PA

k

K K A Pl D K K . Thus, we

have (,) (\{ },H { })H (,) 0
AP PA

k

K K A P K k K kl D K K L    , which is equivalent to

(\{ }, { }) (,H)H (,) (,)
A AP P

k k

K k K k K K A P A PL L D K K E K K    .■

2.2.6. Decolumnization method

As we columnize more commodities, some of the commodities columnized earlier

may no longer need the path-flow representation. So, we may need a decolumnization

 17

algorithm to transform the commodity from the path-flow representation to the arc-flow

version. Given the LP relaxation solution of a hybrid formulation, we propose an

estimate-bound method to decolumnize commodities.

Given the LP solution (, ,)x y z to Model [HF(KA, KP)] the portion of value used

by commodities other than k is the maximum flow value of those commodities,

represented by

\{ }
(,) max max , max

P
i

A k
j

k k

ij A P ij p
k k k

k

K K
p

K K x y  

 


  
  

  
 for k ∊ KP and (i, j) ∊ A.

Accordingly, the portion of the arc designed specifically for commodity k is

(,)k

ij ij A PKz K . Thus, we can estimate the contribution of commodity k to the total

cost as

(,)
max{0(,) , }k

k k k

p p ij

k

A P ij ijp i j A
K K C y f zF 

 
   .

We can solve the following problem to estimate the contribution of commodity k

to the total cost after columnizing commodity k.

(,) (,)

(,) min
i j A

k k k

A P i

i j A

j ij ij ijG K K c x f u
 

  

subject to

(,):(,) (,):(,)

1 if ()

1 if ()

0 otherwise

k k

i j i j A j i j i A

ij ji

i O

x x

k

i D k i N
 




     



  (2.23)

(,)

k

i

k k

ij

j A

ijx Ww


 (2.24)

(,) (,)k

ij ij ij A Px u K K i j A    (2.25)

0 (,)k

ij ix j A   (2.26)

0 (,)ij iu j A   (2.27)

In the formulation, uij denotes the portion of the arc (i, j) designed to incorporate

the flow of commodity k. Proposition 2.5 shows that F
k
(KA, KP) – G

k
(KA, KP) gives a

lower bound on the decrease in the LP relaxation value, after decolumnizing commodity

 18

k. Therefore, the value of F
k
(KA, KP) – G

k
(KA, KP) gives a criterion on whether

commodity k should be decolumnized: if the value of D
k
(KA, KP) – E

k
(KA, KP) is high,

we should not decolumnize k.

Proposition 2.5. (,) ({ }, \{H)H } (,) (,)
P PA A

k k

K K K k K k A P A PL L F K K G K K 

Proof: Similar to the proof of Proposition 2.4.■

2.2.7. Dynamic columnization and decolumnization

In this section, we integrate the columnization and decolumnization methods to

find a good hybrid formulation. To prevent the size of hybrid formulation from

becoming too large, we require that commodities that are considered to be candidates for

columnization have a limited number of feasible paths. Specifically, commodity k is a

candidate for assignment to KP only when | |k U  , where U is a parameter.

Starting with KA = K, we iteratively solve the linear programming relaxation

problem and use the resulting solution to decide the set of additional commodities to

columnize. When no commodities can be columnized (because no commodity satisfied

our columnization check), we start to decolumnize commodities, and when no

commodities can be decolumnized, the resulting partition of commodity is returned

Figure 1 illustrates the procedure.

 19

Procedure dynamic_columnization_and_decolumnization

Input: NDSR problem instance with network G and set of commodities K

 U, the upper bound for number of feasible paths of any commodity k  KP

 Method to evaluate the weight tightness

Output: (KA, KP), a partition of commodity set K

Step 1: KA = K and KP = 

Step 2: Solve the linear programming relaxation of Model [HF (KA, KP)]

 Ka = 

 For each commodity k  KA with |П
k
| < U

If we use the estimate-improvement method and

D
k
(KA, KP) – E

k
(KA, KP) > 0 for some k

 Add k to Ka

 Break

Else if we use the flow-decomposition method

 Decompose the solution into path flows, denoted as P
k

 If , ,

(,)

k l k l

iji j p
w W


 for some p P

k
 and some l

 Add k to Ka

If Ka == 

Go to step 4

Else

Go to Step 3

Step 3. KA := KA \ Ka and KP := KP  Ka

 Go to Step 2.

Step 4. Solve the linear programming relaxation of Model [HF (KA, KP)]

 Ka = 

 For each commodity k  KP

If F
k
(KA, KP) – G

k
(KA, KP) ≤ 0 for some k

Add k to Ka

If Ka == 

Stop the procedure and return (KA, KP)

Else

Go to Step 5

Step 5. KA := KA  Ka and KP := KP \ Ka

 Go to Step 4.

Figure 1. Procedure for dynamic columnization

 20

2.3. STRENGTHENING THE HYBRID FORMULATION

In this section, we discuss how to further strengthen the hybrid formulation by

applying valid inequalities. For the arc-flow proportion of the formulation, we apply

various inequalities proposed in Balakrishnan et al. (2014); we also adapt their  OR-IF

inequalities for commodities that have a path-flow representation. In addition, we

discuss how the path-flow representation enables us to develop valid inequalities which

we cannot replicate using just the arc flow variables.

2.3.1. Arc-flow representation

Balakrishnan et al. (2014) propose various inequalities to help strengthen Model

[AF]. By exploiting the weight constraints, they derive several valid inequalities that

tighten the linear programing relaxation of the model. For example, the incompatible r-

Arc inequality

(,) '

1
i j A

k

ij rx


  (2.28)

states that commodity can flow over at most 1r  of the arcs 'A A for the selected

route to avoid violating weight limits. The contingent routing inequality

(,) '

k k

gh ij

i j A

x x


  (2.29)

stipulates that if commodity k flows on arc (g, h), then it must also be routed on at least

one of the arcs in the set 'A A to satisfy the weight constraints. While both

inequalities are effective in closing the integrality gap for Model [AF], they are

automatically satisfied by any linear programming solution for Model [PF], since all

infeasible paths are already excluded from the formulation.

Balakrishnan et al. (2014) also combine the r-arc inequalities and the contingent

routing inequalities to derive the generalized OR-IF inequality. Let us consider one

specialization of this generalized inequality when r = 2 for the r-arc inequalities (OR

 21

inequalities) and | ' | 1A  for the contingent routing inequalities (IF inequalities). Let I

= {1, 2, …, Q} denote a set of indices, with
ORI I denote the set of OR indices and

\IF ORI I I denote the set of IF indices. Each OR index
ORq I has a corresponding

2-arc inequality
1 1

1q q

q q q q

k k

i j i jx x
 

  , and each IF index
IFq I has a corresponding

contingent routing constraint q q

q q q q

k k

g h i jx x . Starting from these base inequalities,

Balakrishnan [2014] derive the following  OR-IF inequality,

1 1

1

(1) / 2()q q q

q q q q

O

q q

R

q

IF

k k k

i j i j g

Q

q I q I q

h ax x x z 
 

  

      , (2.30)

where | |ORI  . We can use k
ij

k k

ij pp
x y


 for

Pk K so that inequality

(2.30) is applicable in the hybrid model.

2.3.2. Union-intersection inequality

The path-based representation for commodities is more “informative” than the

arc-based representation: the arc-flow variables provide only local information about the

flow on each arc, and a flow decomposition method is needed to determine the origin-

destination path flow values (which may not be unique) from the arc-flow values. On

the other hand, the path-flow representation explicitly models the flow on feasible paths;

thus, not only do we know the decomposition of the path flows from sk to tk, but the arc

flow on each arc (i, j) can be easily determined by using k
ij

k k

ij pp
x y


 . Knowing the

path flows permits us to take the unions and intersections of paths and thus derive new

valid inequalities.

Proposition 2.6. For any Q arcs 1 1 2 2(,), (,),..., (,)Q Qi j i j i j and Q commodities

1 2, ,..., Qk k k , the Union-Intersection inequality

1 1 1 1

1

1 1

Q q

q q
k k k kQ Q q q
i j i j i j i jQ Q q q q q

Q Q
k k

p p i j

q qp p

y y z

 



    

     (2.31)

is valid.

 22

Proof. For any q = 1, …, Q – 1, the forcing constraints require that

1 1

q
k kq q

q q
i j i jq q q q

k

p i jp
y z

 
 

 and
1 1

1 1

q
k kq q

q q
i j i jq q q q

k

p i jp
y z

 
 

 
 . In addition, we have

1 1

1Q
k kQ Q
i j i jQ Q

k

pp
y

 
 (since the left hand side of this inequality is less than or equal to

q
kq

k

pp
y

 , which itself does not exceed one), and
1 1

1 1

Q
k kQ Q

Q Q
i j i jQ Q

k

p i j i jp
y z z

 
  (since

the left hand side of this inequality is less than or equal to
1 1

Q Q
k kQ Q
i j i jQ Q

k k

p pp p
y y

 
  ,

which is less than or equal to the right hand side of the inequality). Summing these four

sets of inequalities, dividing both sides by two, and rounding down the right hand side

give inequality (3.4). ■

Note that the Q commodities in inequality (2.31) need not be all distinct. To

intuitively understand the inequality, let us look the inequality with Q = 2 for arcs
1 1(,)i j ,

2 2(,)i j ; enforcing inequalities for all pairs of k1 and k2 is equivalent to enforcing the

inequality

1 1 2 2

1 1 2 2 1 1 2 2

max maxk k k k
i j i j i j i j

k k

k p k p i j i jp p
y y z z

   
    (2.32)

Inequality (2.32) strengthens inequality

1 1 2 2
1 1 2 2 1 1 2 2

k k k k
i j i j i j i j

k k

p p i j i jp p
y y z z

   
    (it is valid since the left hand side is

equivalent to
1 1 2 2

k k
i j i j

k k

p pp p
y y

 
 ) for each commodity k by taking maximization

over all commodities. Given any pair of arcs, we cannot use arc-flow variables to

represent the flow of a commodity passing through both arcs, nor can we represent the

flow passing through at least one of them; thus, it is hard, if not impossible, for us to

enforce inequality (2.32) using the arc-flow representation.

To appreciate the effectiveness of the inequality, consider the example in Figure 2.

In this example, Q = 2, we want to route commodity k1 from node 1 to node 6 and route

commodity k2 from node 2 to node 5; the weight limit for both commodities is 5. The

fixed costs and weights for the arcs are shown in Figure 2a; the costs of routing both

 23

commodities on all the arcs are zero; note that both commodities have the same weights

for all arcs. Figure 2b illustrates the design values in linear programming solution for

formulation Model [PF]; in the solution, the design value for each arc is ½, the required

flow of commodity k1 splits equally on paths 1-2-4-6 and 1-3-5-6, and the flow of

commodity k2 splits equally on paths 2-4-3-5- and 2-5; the objective function value is

13/2.

To see the effectiveness of inequality (3.4), denote path 1-2-4-6 as p1 , path 1-3-5-

6 as p2 , path 2-4-3-5 as p3, and path 2-5 as p4; the linear programming solution has
1 1 2 2

1 2 3 4
1/ 2

k k k k

p p p py y y y    . Since 1 1 2

1 1 1 2 324 35 24 35

1 2

2 2k k k k

k k k k k

p p p p pp p
y y y y y

   
     ,

inequality (2.31) is simplified into 1 1 2

1 2 3 24 35

k k k

p p py y y z z    ; enforcing this constraint

would cut off the solution and yield an integer (optimal) solution whose design value is

shown in Figure 2c. In the solution, commodity k1 uses path 1-2-4-6 and commodity k2

uses path 2-4-3-5.

a. Network with arc fixed cost

and weight

b. Solution of linear

programming without

inequality (2.31)

c. Solution of linear

programming with inequality

(2.31)

Figure 2. Example for Union-intersection inequality

 24

To facilitate the study of the separation procedure, we first discuss the necessary

conditions that must be met before an linear programming solution (y, z) can violate

inequality (2.31).

Corollary 2.7. A linear programming solution (y,z) can violate inequality (2.31) only if

1 1
1 1

1 1

(i) / 2 / 2, and

(ii) for all 0 1,2,..., 1.

Q
k kQ Q

Q Q
i j i jQ Q

q
k kq q
i j i jq q q q

k

p i j i jp

k

pp

y z z

y q Q
 

 

 

 

 





Proof: We need to show that if either condition is violated, inequality (2.31) is satisfied.

First note that any linear programming solution satisfies

1 1
1 1

/ 2 / 2q
k kq q

q q q q
i j i jq q q q

k

p i j i jp
y z z

 
 

 
  for all i = 1, …, 1Q . Now suppose

1 1
1 1

/ 2 / 2Q
k kQ Q

Q Q
i j i jQ Q

k

p i j i jp
y z z

 
  . Adding these inequalities gives inequality (2.31).

Hence, condition (i) is necessary. Next, suppose
1 1

0h
k kh h
i j i jh h h h

k

pp
y

 
 

 for some h;

adding inequalities
1 1

q
k kq q

q q
i j i jq q q q

k

p i jp
y z

 
 

 for q h ,
1 1

1 1

q
k kq q

q q
i j i jq q q q

k

p i jp
y z

 
 

 
 for

q h , and
1 1

1 1

Q
k kQ Q

Q Q
i j i jQ Q

k

p i j i jp
y z z

 
  (implied by forcing constraints) gives inequality

(2.31). Therefore, condition (ii) is necessary.■

Condition (i) implies that the total flow of kQ on the feasible paths that contain

either (i1, j1) or (iQ, jQ) must be high enough, and condition (ii) implies
1 1

q q

q q q q

k k

i j i j 
  is

non empty for all q = 1, 2, …, Q. As we will see later, these conditions help to speed up

the separation procedure for inequality (2.31).

We create an undirected network (,)G N A based on the linear programming

solution (y,z) as follows: for each arc (,)i j A with 0ijz  , we create a node, denoted

as [i, j], corresponding to it; for each pair of nodes 1 1 2 2[,],[,]i j i j N , if

1 1 2
1

2
1 2 2[,][,] max 0k k

i j i j

k

ppi j i j k yY
 

  , we create an undirected arc, with cost

1 1 2 2 1 1 2 2 1 1 2 2[,][,] [,][,]/ 2 / 2i j i j i j i j i j i jd z z Y   , between nodes [i1, j1] and [i2, j2]. Note that (a)

Condition (ii) permits us to include only those node pairs [i1, j1] and [i2, j2] for which

 25

1 1 2 2[,][,] 0i j i jY  , and (b)
1 1 2 2[,][,] 0i j i jd  since

1 1 2 2 1 1[,][,] [,]i j i j i jzY  and
1 1 2 2 2 2[,][,] [,]i j i j i jzY  .

Besides, any simple path in network G corresponds to an inequality (2.31). For

example, path
1 1[,]i j -

2 2[,]i j -…- [,]Q Qi j corresponds to arcs inequality (2.31) defined

by arcs
1 1(,)i j , …, (,)Q Qi j in network G and commodities

arg max k k
i j i jq q q q

k

pk pqk y
 

  for q = 1, …, Q – 1 and
1 1

arg max k k
i j i jQ Q

k

pk pQk y
 

  ; in

addition, this path has cost
1 1

1 1

1 1

2 1
/ 2 / 2 q

k kq q
Q Q q

i j i jq q q q

Q Q k

i j i j i pq q p
z z z y

 

 

   
    ,and the

sum of this cost and
1 1

1 1

/ 2 / 2 Q
k kQ Q

Q Q
i j i jQ Q

k

i j i j pp
z z y

 
  gives the difference between the

right hand side and left hand side of inequality (2.31).

In the separation procedure, for a given pair of arcs
1 1(,)i j and

0 0(,)i j , we seek

the most violated inequality (2.31), if any, with 0 0(,) (,)Q Qi j i j for some number Q.

We denote the cost of shortest path from
1 1[,]i j to

0 0[,]i j as
1 1 0 0[,][,]i j i jD . To identify

violated inequalities, condition (i) of Corollary 2.7 allows us to only study origin node [i1,

j1] and destination node [i0, j0] with

01 1 0 0 1 1 0 0
1 1 0 0

[,][,] / 2 / 2 max 0kk
i j i j

k

i j i j i j i j k pp
E z z y

 
    . If

1 1 0 0 1 1 0 0[,][,] [,][,] 0i j i j i j i jE D  , we

have identified an violated inequality ; otherwise no such inequality is violated. Figure 3

describes the detailed procedure.

 26

Procedure separate_union-intersection_inequalities

Input: (y, z), linear programming solution of Model [PF]

 arcs (i1, j1) and (i0, j0)

Output: the most violated Union-Intersection inequality (2.31)

Step 1. Calculate
1 1 0 0

0 0 1 1

/ 2 / 2 max k k
i j i j

k

i j i j k pp
D z z y

 
   

 If 0D 

 Stop the procedure and there is no violated inequality.

Step 2. Create the intersection network (,)G N A

Find the shortest path between nodes [i1, j1] and [i0, j0]; denote the path as

1 1[,]i j -
2 2[,]i j -…- 1 1[,]Q Qi j  -

0 0[,]i j and its cost as E

 If D + E < 0

Return the inequality (2.31) with arcs 1 1(,)i j ,…, 1 1(,)Q Qi j  , 0 0(,)i j

and commodities
1 1

arg max k k
i j i jq q q q

k

k

pq pyk
 

 
  for q = 1,

…, Q – 1, and commodity
0 0 1 1

0 arg max k k
i j i j

k

pk p
k y

 
  .

 Else

 Stop the procedure and there is no violated inequality

Figure 3. Procedure to separate union-intersection inequality

2.3.3. Q-union inequality

Proposition 2.8 Let Q be an odd integer number. Given Q arcs

1 1 2 2(,), (,),..., (,)Q Qi j i j i j , and Q commodities 1 2, ,..., Qk k k , the Q-union inequality

1 1 1 1

1

1 1

(1) / 2Q q

q q
k k k kQ Q q q
i j i j i j i jQ Q q q q q

Q Q
k k

p p i j

q qp p

y y z Q

 



    

       (2.33)

is valid.

Proof: Consider the valid inequalities
1 1

1 1

q
k kq q

q q q q
i j i jq q q q

k

p i j i jp
y z z

 
 

 
  and

1 1

1q
k kq q
i j i jq q q q

k

pp
y

 
 

 for q = 1, …, Q – 1,
1 1

1 1

Q
k kQ Q

Q Q
i j i jQ Q

k

p i j i jp
y z z

 
  , and

1 1

1Q
k kQ Q
i j i jQ Q

k

pp
y

 
 ; summing up these inequalities, dividing both sides by two, and

rounding down the right hand side, we obtain inequality (2.33).■

Balakrishnan et al. (2014) considers a specialization of the  OR-IF inequality

for the arc-flow formulation, called  OR inequality, in Model [AF] model; for an odd

 27

number Q, arcs
1 1(,),i j

2 2(,),i j …, (,)Q Qi j , and commodities 1 2, ,..., Qk k k , the  OR

inequality

1 1 1 1

1

1
1

(1) / 2()Q Q q q

Q Q q q q q q q

k k k k

i j i j i j i j

Q
Q

q i j

q

x x z Qx x
 






      (2.34)

is valid if
1 1

1q q

q q q q

k k

i j i jx x
 

 for q = 1, …, Q – 1 and
1 1

1Q Q

Q Q

k k

i j i jx x  . We can view

inequality (2.34) as a specialization of inequality (2.33) when
1 1

1q q

q q q q

k k

i j i jx x
 

 (or

equivalently
1 1

q q

q q q q

k k

i j i j 
  ) for q = 1, …, Q – 1 and

1 1
1Q Q

Q Q

k k

i j i jx x  (or equivalently

1

1 1

Q

Q Q

kk

i j i j  ). In the arc-flow representation, without knowing decomposition of

the path flows from sk to tk, we can only enforce the special case, i.e. inequality (2.34),

but not the general inequality (2.33).

We demonstrate the effectiveness of the inequality using the example in Figure 4.

This problem instance has three commodities k1, k2, and k3 with origins s1, s2, and s3 and

destinations t1, t2, and t3 respectively. The weight limit for each commodity is 3 and the

cost to route each commodity on each arc is 0. The numbers in Figure 4a present the

fixed cost and weight for each arc. Figure 4b illustrates the linear programming solution

to Model [PF]. In the solution, the design value for each arc is ½ and the objective

function value is 3/2; the flow of commodity k1 splits equally on paths 1-2-6-8, and 1-3-

7-8, the flow of commodity k2 splits equally on paths 2-6 and 2-4-5-6, and the flow of

commodity k3 splits equally on paths 3-7 and 3-4-5-7. Denoting paths 1-2-6-8, 1-3-7-8,

2-6, 2-4-5-6, 3-7, and 3-4-5-7 as p1, p2, p3, p4, p5, and p6, we have
3 3 31 2 1 1 2 2

3 31 1 2 2 1 2 3 4 5 626 37 26 45 37 45
k kk k k k

k k kk k k k k k

p p p p p p p p pp p p
y y y y y y y y y

     
          ,

and inequality (2.33) is simplified to 3 31 1 2 2

1 2 3 4 5 6 26 45 37 1
k kk k k k

p p p p p py y y y y y z z z         ;

Adding this constraint cuts off the solution and yields an integer (optimal) solution shown

in Figure 4c.

 28

a. Network with arc fixed

cost and weight value

b. Solution of linear

programming without

inequality (2.33)

c. Solution of linear

programming with valid

inequality (2.33)

Figure 4. Example for Q-union inequality

To separate violated inequality (2.33), we create an undirected arc-union network

(,)N AG    based on the linear programming solution (y, z) as follows: for each node

arc (,)i j A with 0ijz  , we create a node corresponding to it, denoted as [i, j]. For

each pair of nodes 1 1 2 2[,],[,]i j i j N  , if
1 1 2

1
2

1 2 2[,][,] max 0k k
i j i j

k

ppi j i j k yY
 

  , we create

an undirected arc, with cost
1 1 2 2 1 1 2 2 1 1 2 2[,][,] [,][,] / 2 / 2i j i j i j i j i j i jd Y z z   , between them. Any

simple cycle 1 1[,]i j - 2 2[,]i j -…- [,]Q Qi j - 1 1[,]i j in G , with Q being an odd number,

corresponds to an inequality (2.33) defined by arcs 1 1(,)i j , …, (,)Q Qi j and

commodities arg max k k
i j i jq q q q

k

pk pqk y
 

  for q = 1, …, Q – 1 and

1 1

arg max k k
i j i jQ Q

k

pk pQk y
 

  ; the cost of the cycle is

1 1 1 1

1

1 1

max Q q
k k k kQ Q q q

q q
i j i j i j i jQ Q q q q q

Q Q
k k

k p p i jp p
q q

y y z
 



   
 

    , and if this cost is bigger than (Q –

1)/2, we find a violated inequality (2.33). Our cutting plane method implements the

inequality with Q = 3 and applies conditions in Corollary 3.8 to speed up the separation

by reducing the number of possible arc triplets. Conditions in Corollary 3.8 indicates

 29

that the design values or the total flow on two arcs should be large enough to violate

inequality (2.33).

Corollary 3.8. Inequality (2.33) with Q = 3, i.e. inequality

 31 2

3 31 1 2 2 1 1 2 2 3 3
1 1 2 2 2 2 3 3 3 3 1 1

1k kk k k k

i j i j i j i j i j i j

kk k

p p p i j i j i jp p p
y y y z z z

     
       

can be violated by the linear programming solution (y, z) only if the following conditions

are met:

(i)
1 1 2 2 3 3

1i j i j i jz z z  

(ii) k k
a b

k

pp ay z
 

 and k k
a b

k

pp by z
 

 for all triplets [a, b, k] = [(i1, j1), (i2,

j2), k1], [(i2, j2), (i3, j3), k2], [(i3, j3), (i1, j1), k3].

(iii) 1k k
a b

k

p cp
y z

 
  for all quadruplets [a, b, c, k] = [(i1, j1), (i2, j2), (i3, j3),

k1], [(i2, j2), (i3, j3), (i1, j1), k2], [(i3, j3), (i1, j1), (i2, j2), k3].

Proof: (i) We have
3 1 2

3 3 1 1 2 2 1 1 2 2 3 3
3 3 1 1 1 1 2 2 2 2 3 3

2 2 2k k k k k k

i j i j i j i j i j i j

k k k

p p p i j i j i jp p p
y y y z z z

     
       , since

3

3 3 1 1 3 3
1 1 3 3

k k

i j i j

k

p i j i jp
y z z

 
  , 1

1 1 1 1 2 2
1 1 2 2

k k

i j i j

k

p i j i jp
y z z

 
  , and 2

2 2 2 2 3 3
2 2 3 3

k k

i j i j

k

p i j i jp
y z z

 
 

. If inequality (2.33) is violated,
1 1 2 2 3 3 1 1 2 2 3 3

2 2 2 1i j i j i j i j i j i jz z z z z z      , which

implies inequality
1 1 2 2 3 3

1i j i j i jz z z   .

(ii) Since 2

2 2 2 2 3 3
2 2 3 3

k k

i j i j

k

p i j i jp
y z z

 
  and 2

2 2

2 2 3 3

1k k

i j i j

k

pp
y

 
 , we have inequality (2.33)

violated only if 3

3 3 1 1
3 3 1 1

k k

i j i j

k

p i jp
y z

 
 . The proof for the other cases of Condition (ii) is

similar.

(iii) Since 1 2

1 1 2 2 1 1 2 2 3 3
1 1 2 2 2 2 3 3

2k k k k

i j i j i j i j

k k

p p i j i j i jp p
y y z z z

   
     , inequality (2.33) can

only be violated if 3

3 3 1 1 2 2 3 3 1 1 2 2 3 3
1 1 3 3

2 1k k

i j i j

k

p i j i j i j i j i j i jp
y z z z z z z

 
       , which implies

inequality 3

3 3 2 2
1 1 3 3

1k k

i j i j

k

p i jp
y z

 
  . We can similarly prove the other cases.■

 30

2.4. COMPUTATIONAL RESULTS

Our computational testing has several goals. First, we would like to demonstrate

that the hybrid formulation can help solve the NDSR problem to optimality and that it is

robust across a wide range of problems. Second, we would like to show that the hybrid

formulation can help increase the lower bound without unduly increasing the model size.

Third, we would like to evaluate the impact of using dynamic adaptive strategy for

columnization of some of the commodities.

To conduct the study, we used the following approach to generate test problems

with varying sizes, costs, and service requirements. The method randomly locates each

node on a rectangular grid, connects all nodes with a spanning tree, and adds arcs to

ensure that the network is strongly connected. The fixed cost for each arc is a

combination of the Euclidean distance between its endpoints and a random component.

Balakrishnan et al. (1989) suggests that the ratio of variable to fixed costs can influence

computational performance; we use a parameter γ to represent this ratio: higher values of

this parameter correspond to higher relative variable costs. The number of metrics L is

one. The weight of each arc is randomly generated between 1  and 1  , where 

is a given parameter. By varying the value of  , we can generate problems with

different service requirements. The weight limit of commodity k is w
k
 + , where (i)

w
k
 is the length of the shortest weight path for commodity k from its origin to its

destination, (ii)  and  is are random numbers. For conciseness, we use notation  ∊

[1, 2] to denote that the values of  is randomly generated in the closed interval

specificed by 1 and 2.

We compare three solution methods: the arc-based method, the path-based

method, and the hybrid method. The arc-based method uses CPLEX to solve Model

[AF]. The path-based method uses CPLEX to solve Model [PF] with the path-based

 31

valid inequalities applied. The hybrid method first uses dynamic columnization and

decolumnization to identify commodities that are suited for path flow representations and

then uses CPLEX to solve the resulting hybrid formulation, applying all the model

strengthening techniques in Section 2.3. In the subsequent tables we use “EB” to denote

the estimate-bound columnization method and “FD” to denote the flow-decomposition

columnization method. We set the limit on number of paths U is set to 15000 in the

dynamic modeling process to keep the problem size manageable.

We implement all methods in JAVA using CPLEX 12.4 to solve the optimization

problem and run under Ubuntu Linux on a Dell Poweredge 2950 workstation with two

hex-core, hyperthreading 3.33 GHz Xeon processors and 24 GB of shared memory. For

each problem, the bound-and-bound terminates after 20 minutes or when the integrality

gap become less than 0.1%.

We first consider different problem sizes with γ = 0.1,  = 0.2,  ∊ [1, 1.2], and

 ∊ [1, 7]. The size of the problems are represented by n/m/|K|, where n and m are the

number of nodes and arcs in the network and K is the set of commodities. Table 2

compares the performance of the arc-based, the hybrid, and the path-based methods for

three scenarios with different number of arcs and number of commodities. The results,

which are the averages of five instances, show that the hybrid method outperforms the

arc-based and the path-based methods: it always finds a lower gap. The final gaps for

the arc-based and the path-based methods are much larger and increase dramatically as

the problem size increases. The hybrid formulation results in the lowest solution time.

For 40/240/160 and 40/200/200 problems, due to the large number of feasible paths, we

cannot solve the path-based formulation. We can also see that two dynamic

columnization methods perform similarly.

 32

Table 3 further establishes the superiority of our hybrid formulation by comparing

the model size and the linear programming relaxation bounds of three alternative

formulations. It shows that our approach usually columnized a small portion of the

commodities and thus has only slightly more variables than the arc-based formulation.

On the other hand, the number of feasible paths are so large that it is either infeasible to

formulate the path-based model (in the allotted memory) or it takes an enormous

computational effort to solve the resulting path-based formulation. Although the hybrid

formulation has much fewer variables, its linear programming relaxation bound is almost

the same as that of the path-based formulation. In other words, a little columnization can

go a long way. By harnessing the respective strengths of the arc- and path-based

formulations, our approach of dynamically columnizing commodities results in an

approach that is methodologically sound and computationally successful.

A comparison of the two columnization methods shows that their performance are

quite similar. Both alternatives columnize nearly the same number of commodities and

taking almost the same amount of time to perform the columnization.

For the robustness of our solution method, we fix the problem size to 40/200/160

and compare the result of problems with different values of , , γ and  in Table 4. As

we can see, the hybrid formulations are better than the arc flow and path flow

formulations in all possible instances.

 33

Table 2. IP comparison for arc-based, hybrid, and path-based methods

(Averages over five instances)

Problem

Size

n/m/|K|

Average Final Gap
a

(%)
Solved to Optimality

Average CPLEX Time

if Solved to Optimality

(secs)

Arc EB
b
 FD

c
Path Arc EB

b
 FD

c
 Path Arc EB

b
 FD

c
 Path

40/200/160 11.1 2.5 2.1 6.1 0 1 1 0 NA 160 135 NA

40/240/160 13.7 4.4 4.0 NA 0 0 0 NA NA NA NA NA

40/200/120 10.1 1.6 1.3 5.9 0 3 3 0 NA 396 519 NA

40/200/200 11.6 2.6 2.7 NA 0 1 1 0 NA 283 346 NA
a
Final Gap = (Final upper bound – Final lower bound) / Final upper bound × 100%

b
EB: the hybrid formulation generated using estimate-bound columnization method

c
FD: the hybrid formulation generated using flow-decomposition columnization method

Table 3. Model size and linear programming relaxation bounds comparison

for arc-based, hybrid, and path-based methods

(Averages over five instances)

Problem

Size

n/m/|K|

Average of Ratio

of #Variables
a

Average of

Hybrid Bound

Quality
b

Average # of

Columnized

Commodities

Average Time to

Columnize and

Decolumnize
EB

b
FD

c
Path EB

b
 FD

c
 EB

b
 FD

c
 EB

b FD
c

40/200/160 1.99 1.97 57.93 0.9743 0.9742 49.6 49.4 115 100

40/240/160 2.20 2.21 NA NA NA 50.0 49.8 135 149

40/200/120 2.53 2.57 64.48 0.9615 0.9608 37.8 37.0 387 358

40/200/200 1.92 1.91 NA NA NA 57.4 57.6 121 116
a
Ratio of #Variables = # of variables in the hybrid or the path-based method / # of variables in the arc-based

method
b
EB: the hybrid formulation generated using estimate-bound columnization method

c
FD: the hybrid formulation generated using flow-decomposition columnization method

d
Hybrid Bound Quality = (LHF – LAF) / (LPF – LAF), where LHF, LAF, and LPF are the linear programming

relaxation bounds of the hybrid, the arc-based, and the path-based formulations.

 34

Table 4. Comparison of arc-based and hybrid methods with different values of 

and 

 Average Final Gap
a
 (%)

 Values Arc EBb FDc Path


[0.1, 1.1] 11.2 1.3 1.6 3.8

[1.2, 1.4) 8.0 2.5 2.2 NA


[1, 6] 13.3 0.8 0.6 1.0

[3, 8] 6.4 1.6 1.3 NA


0.05 20.6 6.4 6.5 14.9

0.15 4.6 0.0 0.2 1.1


0.1 10.9 2.1 1.7 6.0

0.3 12.7 2.2 1.8 5.8
a
Final Gap = (Final upper bound – Final lower bound) / Final upper bound × 100%

b
EB: the hybrid formulation generated using estimate-bound columnization method

c
FD: the hybrid formulation generated using flow-decomposition columnization

method

2.5. CONCLUDING REMARKS

In this chapter, we examined the arc-flow, path-flow, hybrid formulations for the

NDSR problem. The hybrid formulation is powerful since it leverages the advantages of

both the arc-flow and the path-flow formulation. Specifically, the arc-flow

representation results in a compact formulation but a weak relaxation bound, while the

path-flow representation leads to a tight formulation but with an excessive number of

variables. By applying a dynamic columnization and decolumnization strategy, we can

construct a hybrid formulation that has a strong linear programming bound but is also

manageable in size. To further improve the algorithmic effectiveness, we developed and

implemented valid inequalities that strengthen the path-flow representation.

To apply the path-flow representation for any commodity, our current approach

requires enumerating all the possible feasible paths for the commodity. As an extension,

it is appealing to apply the column generation technique (Barnhart et al. 1998): start with

a promising subset of paths and generate other paths when necessary by solving a pricing

 35

problem, i.e., the constrained shortest path problem. The resulting model may be called

“hybrid column generation” since column generation is only applied to a subset of

commodities and other commodities use the original representation, i.e., the arc-flow

representation. This approach could lead to solving much larger problem instances. It

would be also interesting to study how to develop and implement the “hybrid column

generation” idea in other problem contexts. Likewise, the idea of the hybrid method can

be extended to other areas of integer programming, including Benders decomposition and

Lagrangian relaxation.

The path-flow variables available in the path-flow representation enable us to

develop new valid inequalities; we cannot readily formulate equivalent inequalities in the

arc-flow representation. Identifying inequalities of this type and using them in other

situations could lead to solution approach improvements.

We could also investigate the NDSR model defined on undirected networks. In

these networks, a selected arc permits flow of commodities in both directions. These

and other promising directions can prove to be a feasible area of research on the NDSR

and related problems.

 36

Chapter 3. The Train Dispatching Problem

3.1. INTRODUCTION

The freight rail industry is an important segment of the transportation sector.

According to a study by Association of American Railroads (2013), freight railroads

move about 40% of the total freight in US (measured in ton-miles), more than any other

transportation mode. As a cost-effective and environmentally-friendly transportation

mode, rail transportation will continue to play important roles as transportation needs

grow nationwide to interconnect geographically expanding supply chains and to transport

new commodities such as shale oil. With rising fuel prices and growing concerns about

greenhouse effects, rail transport is also gaining popularity due to its energy efficiency.

To meet the increasing demand for rail freight services, railroad companies are focusing

on first improving the utilization of their existing resources before investing in expensive

capacity expansion projects. Among these resources, capital-intensive railway tracks are

one of the main bottlenecks that limit the flow of freight traffic. The utilization of tracks

depends on how well the train dispatchers orchestrate the movement of trains through

each territory. The tracks are shared by trains, with varying speeds and priorities,

traveling in both directions. To avoid collisions, dispatchers must decide whether and

how long to hold a particular train at various sidings to permit other trains to meet (and

cross) or pass (overtake) it. These sequencing and scheduling decisions govern the

effective velocity of trains, defined as the distance traveled divided by the total travel and

waiting time for each train; in turn, the velocity averaged over all trains determines track

occupancy and utilization. According to a recent report (GE Report 2010), every mile-

per-hour increase in average train velocity can yield annual savings of millions of dollars

in capital and expenses. Single-track territories, used primarily to reduce construction

cost, are the greatest capacity bottleneck on the train transit lines (Kittelson and

 37

Associates, 2003). Two tracks usually have around four times more capacity than a

single track (Abril et al., 2008); however, a four-track line only has 50% more capacity

than a double line (Kittelson and Associates, 2003). Optimizing the train movements in

single-track territories is critical to manage the flow of trains in the whole rail network.

The goal of this paper is to develop a model and an effective solution method to optimize

the movement plans for freight trains passing through each dispatching territory so as to

maximize average velocity in that territory. We propose several modeling and

methodological enhancements, and demonstrate using real data on actual train schedules

and track characteristics for a U.S. freight railroad that these enhancements are very

effective in reducing solution time.

Freight trains carry many different goods ranging from commodities such as coal,

petroleum, and agricultural products to automobiles and intermodal freight. Unlike

passenger trains whose itineraries are fixed well in advance, freight trains do not follow a

fixed schedule. Rather, their routes and timing vary from week to week depending on

the volume of traffic between various locations. Based on the type of freight they carry

and their schedule requirements, trains have different priorities for movement and hence

their relative priorities in terms of passing or crossing other trains. To manage the traffic

on the freight rail network, the system is partitioned into “territories,” each covering one

or more parallel tracks between two “terminal” locations. Dispatchers, one for each

territory, are responsible for the short-term decisions of planning the movement of trains

and managing the traffic in their respective territories. Each dispatcher faces the

following decision problem: given the set of trains that will traverse the dispatcher’s

territory over the planning horizon (e.g., next 12 hours), the attributes of each train,

including its priority, speed, and the time and location at which it enters the territory, and

the characteristics of the territory in terms of its physical configuration, capacities of

 38

track segments, and locations of stations and sidings, the train dispatching problem seeks

to sequence these trains and plan their meet and pass events so as to maximize average

train velocity (or minimize the total waiting time) while satisfying various operational

and safety requirements. Prior research has discussed mathematical programming

models for train dispatching, but founds that solving real world problem to near-

optimality is too time-consuming for the models to be useful in practice. Therefore,

most papers largely focus on heuristic solution methods and do not emphasize modeling

or methodological refinements to optimally solve actual problems within reasonable time.

We propose an integer programming model for the train dispatching problem that

uses a discrete time representation, and explore techniques to solve real-life problem

instances to optimality. Our model maximizes the weighted velocity of trains, taking

into account various practical requirements for railway operations including operational

rules regarding trailing of trains, headway requirements between trains, track

unavailability, and train priorities. Solving the model using standard solvers (e.g.,

CPLEX) is too time-consuming to be used for real-time planning; the dispatchers expect

that a useful tool should return a good plan within several minutes. When we applied

CPLEX to a base model (without enhancements) for real problem instances, the solver

cannot find solutions within 4% MIP gap after 5 minutes for most instances(see Section

3.6). To improve solution performance, we develop and incorporate several modeling

enhancements. We first propose strong non-concurrency constraints that exploit the

unidirectional movement property on each track segment; these inequalities are not only

tighter than previous track capacity constraints (e.g., Şahin et al. 2008), but also reduce

the model size by eliminating the need for separate constraints to avoid train-swap

conflicts at block transitions (Harrod 2011). Further, based on the non-concurrency and

headway requirements, we refine the partition of segments into sections so as to

 39

strengthen the non-concurrency constraints while also reducing model size. We propose

another set of non-concurrency inequalities based on a train’s movement to further

tighten the model. Moreover, we strengthen the pairwise unidirectional inequalities

discussed in Cacchiani et al. (2010), extend these inequalities to more than one segment,

and generalize the inequalities to incorporate more than one train. We also develop

separation procedures for these inequalities so as to add them dynamically (as user cuts)

during the branch and cut process. Finally, we develop a sequential dispatching

heuristic, with randomization, to find good solutions quickly. These solutions can serve

to warm-start and accelerate exact solution procedures. Computational tests, using real

problem instances demonstrate that our modeling and methodological enhancements

vastly improve the performance of exact solution methods.

Our work can contribute to this area in at least two aspects. First, the existing

literature overwhelmingly rely on heuristics to solve the problem, and little effort has

been devoted to improving the performance of the exact solution process. Our work

may be the first to explore ways to solve the problem optimally. Furthermore, solution

methods, especially those designed for train dispatching in US, are rarely validated

through real-life instances. Usually, the test instances are randomly generated (Şahin et

al. 2008) or simplified (Harrod, 2011). In contrast, we demonstrate the validity of our

methods by testing more than 20 instances from a Class I railroad company in US.

The rest of this chapter is organized as follows. Section 3.2 reviews related

literature. We describe our model formulation in Section 3.3, and develop techniques to

tighten and reduce the model in Section 3.4. Section 3.5 discusses our heuristic solution

procedure. We test our model and solution method based on data from a major U.S.

railroad company, and report computational results in Section 3.6. Section 3.7 offers

concluding remarks.

 40

3.2. LITERATURE REVIEW

As one of the most important operational planning problems for railroads, the

train dispatching problem or train timetabling problem (typically defined in the context of

planning movements of trains, particularly passenger trains in Europe) has drawn

considerable attention from both researchers and practitioners. Cordeau et al. (1998),

Törnquist (2006), and Lusby et al. (2011) provide extensive surveys of related models

and solution methods.

Caprara et al. (2002) prove that the train timetabling problem is NP-complete by

polynomially transforming any instance of a maximum independent set problem into a

simplified version of the problem. The problem can be viewed as a job-shop problem

with blocking and no-wait constraints (Corman et al. 2010) or a multicommodity network

flow problem with additional constraints (Caprara et al. 2002), which are both known to

be NP-complete.

To formulate the train dispatching problem as a mathematical program,

researchers have considered two broad approaches – continuous time models (e.g., Carey

1994a, Carey 1994b, and Carey and Lockwood 1995, Higgins et al. 1996, Zhou and

Zhong 2007, and Mu and Dessouky 2011) and discrete time models (e.g. Brännlund et al.

1998, Caprara et al. 2002, and Cacchiani et al. 2010, Cacchiani and Caprara 2008, Şahin

et al. 2008, and Harrod 2011) – to represent train travel and waiting times.

The key part of the discrete-time mathematical programming approach is how to

model the headway requirement and track capacity requirement (i.e. prevent overtaking

and meeting of trains in segments). Caprara et al. (2002) consider a passenger train

timetabling problem on uni-directional single-track railroads. They develop three sets of

clique constraints to enforce the headway between trains when entering and exiting

stations and to prevent overtaking of trains inside any track. By using pre-specified

 41

segment traversal time, Caprara et al. (2006) develop a stronger version of the non-

overtaking constraints to reduce computation time. Cacchiani et al. (2010) generalize

the model in Caprara et al. (2006) to incorporate the movement of freight trains on bi-

directional tracks. Şahin et al. (2008) and Harrod (2011) enforce the headway and track

capacity requirements by dividing each segment into smaller pieces and forbidding

simultaneous occupancy of each piece by trains.

Since solving the problem using standard commercial solvers (e.g. CPLEX) is too

time-consuming, various mathematical-programming-based heuristics are developed to

solve the problem. For example, Şahin et al. (2008) propose a LP-greedy construction

heuristic; Caprara et al. (2002) provide a heuristic based on Largrangian Relaxation; Mu

and Dessouky (2011) develop various heuristics to reduce the model size. An alternative

to optimization-based heuristics is the discrete-event heuristic (e.g. Dorfman and

Medanic 2004, Cai et al. 1998, and Şahin 1999). One major advantage of discrete-event

heuristic models over the optimization model is that they can provide a detailed

description of the transient behavior of the railway system and incorporate many real-

world concerns that are difficult to formulate mathematically (Cai et al. 1998).

3.3. MODEL FORMULATION

3.3.1. Problem description

The operations planning process in freight railroads begins with decisions on

which trains to run (between which locations and at what times) over the next week or so,

based on the actual and projected volume of shipments between various origin-

destination pairs. This train operations plan specifies, for each train, the starting

location, intermediate stopping locations (e.g., to pick up and drop off freight cars,

change crews), final destination, and its planned starting time and desired arrival times at

 42

the intermediate and final locations. To effectively manage the traffic and dynamically

plan the movements of the scheduled trains, railroad companies partition their networks

into territories, each assigned to a dispatcher. A dispatching territory typically covers

100 to 200 miles of single or parallel tracks flanked by “terminal” locations at the two

ends of the territory, and having intermediate sidings and stations where trains can wait to

let other trains cross or pass. Each train typically traverses multiple territories on its

origin-to-destination route. Our model seeks to optimize the movements of trains inside

a specific territory over a short-term planning horizon of, say, 12 hours.

We refer to any location within a territory that contains one or more sidings where

trains can wait and/or change tracks as a station. Trains can meet or pass other trains

only at the stations. A “meet” occurs when two trains traveling in opposite directions

cross each other safely without colliding into each other. One of the trains uses the

mainline while the other uses or waits on a siding. A “pass” event happens when a fast

or high priority train overtakes another train traveling in the same direction; the latter

train waits on a siding to permit the former train to pass. We refer to the mainline

track(s) between two adjacent stations as segment. Without loss of generality, we

assume that stations and segments alternate along the territory, i.e., each intermediate

station is flanked by two segments on either side, and each station has two adjacent

segments. Since segments do not contain intermediate locations where trains can wait,

trains traveling in opposite directions cannot simultaneously use the same track on a

segment. But, to increase the utilization of tracks, trains traveling in the same direction

are permitted to trail each other, i.e., multiple trains can use a track at the same time as

long as they are separated by a minimum required distance, called the trailing headway.

Operationally, dispatchers usually specify this separation requirement in terms of blocks;

each block typically corresponds to the portion of track between two adjacent signals on a

 43

segment. At most one train can occupy each block at any time, and dispatchers usually

separate two successive trains by at least one unoccupied block so that the trailing train

can move safely at its nominal speed with sufficient stopping distance. To model this

separation requirement, we treat every two adjacent blocks as a section and permit at

most one train (traveling in either direction) to occupy a section at any time; specifically,

if a segment has K blocks, indexed as blocks 1, 2,, K, we define blocks k and k + 1 as

section k for k = 1, 2, , K  1. Another safety requirement pertains to the minimum

required time separation between trains crossing a control point. A control point,

located at any junction where a track splits into multiple tracks or vice versa, represents a

railroad switch to guide trains from one track to another. In particular, every station has

one control point at each of its two endpoints (that demarcate the station from its adjacent

segments). To ensure safe operation, successive trains passing through a control point

(in either direction) must be separated by a minimum required time (typically, five to

seven minutes); we refer to this restriction as the control point headway.

3.3.2. Notation

To formulate the train dispatching problem, we adopt a discrete time modeling

approach (as in Caprara et al. 2002 and Şahin et al. 2008). In this approach, we divide

the planning horizon into fine-grained time intervals or periods (e.g., each period is one

or two minutes). Let H denote the total number of time periods in the planning horizon,

indexed as t = 1, 2, …, H. Consider a territory with stations s  S, segments m  M, and

control points p  P. Both stations and segments are called edges and let e  S  M

represent an edge in the territory. Each track segment m is partitioned into one or more

sections, denoted as Gm; each section s  Gm can be occupied by no more than one train

at any time. As discussed earlier, these sections are defined to ensure that trailing trains

 44

(traveling in the same direction) maintain sufficient inter-train headway or distance. For

each train q  Q, we know its direction of travel, denoted as + or – (e.g., + is eastbound

or northbound and – is westbound or southbound), the sequence of stations or segments

that it must traverse, its priority (used to decide the importance or weight for maximizing

average velocity), any arrival time windows or hard time window, and the train’s

traversal (travel) time on each segment or station that is passes through. Let o
q
 and d

q

respectively denote train q’s starting and ending stations in the territory. Assume,

without loss of generality, that these starting and ending locations are stations where train

q can wait (e.g., the terminals for future trains that pass through the territory, or

intermediate stations for trains that are already in the territory). We define p as the

minimum required control point headway (in time periods) between two successive trains

passing through control point p in either direction.

For every edge e and train q  Qe, we are given the time q

e (in number of

periods) for train q to traverse that edge. We assume for simplicity that, at every station,

the train’s traversal time (including any track crossover time) is the same on all the tracks

at that station. With this assumption (which largely holds in practice, particularly when

we take into account the control point headway requirements), we do not need to

distinguish between assignments and movements of trains along different tracks within

the station. So, if st denotes the number of available parallel tracks at station s at time t,

we can simply impose an aggregate capacity of st on the number of trains that are within

the station in period t. We can readily extend the model to permit varying traversal

times on different tracks, but at the expense of adding more decision variables. Trains

can only wait at stations (at most train one per track at any time), and not on segments.

Based on a train’s entry and traversal times, waiting time restrictions, track availability,

and any explicit arrival time window requirements at intermediate stations or the end of

 45

the territory, we can determine possible time periods at which the train can enter each

edge e (control point p), permitting us to narrow the time periods in which the train can

be at edge e (control point p). Let q

eT (q

pT) be the subset of periods in which train q 

Qm can enter edge e (control point p). At the origin station s = oq, for trains that are

already within the territory at the start of the planning horizon, this time window may

include only the time period at which the train entered that station (with appropriate

adjustments to traversal time so that entry time is at or after time zero). On the other

hand, for future trains that will enter the territory later, the time window may include all

periods until the end of the horizon (including a dummy period H+1) if the train is

permitted to wait at its starting location. Since trains cannot wait on segments, for every

segment m and each section g  Gm, we can determine the time needed for a train to enter

(and leave) section g after it enters segment m. Specifically, let
q

g (
q

g) be the time

needed for train q to travel from the beginning of segment m to the beginning (end) of

section g  Gm. Our model largely focuses on single-track territories in which every

segment has a single bi-directional track; with modest changes it also extends to multi-

track segments. All the notation (indices, sets, and parameters) needed for the model

formulation is listed as follows:

 46

Indices and sets

s index of a station

m index of a segment

e index of an edge

t index of time

g index of a section

p index of a control point

+ indices of train directions

S set of stations in the territory

M set of segments in the territory

Q set of trains to be dispatched

P set of control points in the territory

Parameters

H number of time periods in the planning horizon

Gm set of sections in segment m

p control point headway (number of periods) at control point p

ast number of available tracks in station s at time t

o
q
 origin edge of train q

d
q
 destination edge of train q

q

e traversal time of train q on edge e

k

eQ set of trains that will enter edge e in direction k, where k ∊

Qe set of trains that will enter edge e

Qp set of trains that will use control point p

q

stf cost for train q to wait at station s at time t

q

etc cost for train q to enter edge e at time t

 47

q

eT set of time periods that train q can enter edge e

q

pT set of time periods that train q can enter control point p

q

g time (number of periods) for train q to travel from the beginning of segment m,

where g ∊ Gm, to the beginning of section g

q

g time (number of periods) for train q to travel from the beginning of segment m,

where g ∊ Gm, to the end of section g

q

eb edge that train q travels on before it enters edge e

q

pb edge that train q travels on before it uses control point p

Main dispatching decisions are when each train should enter each segment or

station, and whether it should wait at a station. To capture these decisions, we define the

following decision variables: q

etx =1 if train q enters edge e at time t, and 0 otherwise; q

sty

=1 if train q waits at station s (after entering sation s) at time t, and 0 otherwise. Note

that we define variables based on segments, rather than on blocks, as in Şahin et al.

(2008) and Harrod (2011), thereby dramatically reducing the number of variables.

To make good use of track resources, we can either maximize the weighted

velocity of trains or minimize the weighted waiting time of trains. Assume
q is the

weight for train q. If we want to minimize the weighted waiting time, we can set q

stf =

q for all s ∊ S and t ∊ q

sT , q

etc = (t  t
q
)

q if e = o
q
, and q

etc = 0 otherwise. Next, we

will show how to set the objective function coefficients so that the weighted velocity is

maximized. Let q
 represent the total runtime train q use to traverse all the stations and

segments in the territory, and D
q
 represent the total length of such stations and segments.

Let q

et be the earliest time train q can enter segment or station e, achieved when train q

does not wait before entering a. If train q enters d
q
 at time t, the total time it spends in

 48

the territory is q
 + t  q

q

d
t , and its velocity is D

q
/(q

 + t  q

q

d
t). Accordingly, the

objective function coefficients can be set in the following way

q

stf = 0; q

etc =  q D
q
/(q

 + t  q

q

o
t) if e = d

q
, and q

etc = 0 if e  d
q
 (3.1)

Coefficients (3.1) use q

t

d
c to record the velocity of train q when q arrives at destination

d
q
. Alternatively, we can set the coefficients in the following way

 ˆ q

stf = q D
q
/(q

 + t  q

q

o
t + 1)  q D

q
/(q

 + t  q

q

o
t)

 ˆq

etc =  q D
q
/(q

 + t  q

at) if e = o
q
 (3.2)

 ˆq

etc = 0 if e  o
q

Proposition 3.1. Objective function coefficients (3.1) and (3.2) are equivalent.

Proof: We will show that for each train q, both objective function coefficients (3.1) and

(3.2) give the same value in any feasible solution. Given any solution (x, y), we assume

without loss of generality that train q waits in station s at time t, i.e., 1q

s ty
 

 , for

 and that train q enters edge o
q
 at time t

*
, i.e., * 1q

q

o t
x  . Without loss of

generality, we assume that t1< t2<<t. Flow conservation constraint imply that t =

q

st 
 +  + t

*
  t

q
  1 and that t

*
  t

q
= t1  1

qt . Thus, the velocity of train q given by

coefficients (3.2) is

*

1

*
1

* * *
1

ˆˆ

ˆˆ

1

1

q
w w

q q
e s

e S M s St T t T

q q q q q q

s s

q q q q q

q q q q

et et st

q q q q q

s s s s

st

q q

s to t

q q q q q

q q q q q

x y

D D D

c f

c f

t t t t t t

t t t t t t t t

D D D

t t

 

   



  



  

   







 

   















 

      


        

 
 
 

 
  




 
 

 
  

 
    

  





* * *
1

*

1

q q q

q

q

q q q q q

q

q

q

q

t t t t t

t

D

t

D

t

D D

 



  








        




 
  

 







 49

Assume that train q arrives at d
q
 at time t, i.e., 1q

q

d t
x


 . The flow conservation

constraints guarantee that t =  + t
*
  t

q
. Thus, the velocity of train q given by

coefficients (3.1) is

*
q q

e s

q q q q
e S M s

q
q q q q q q

et et st st

St
d

T t T
d t t

c f c
t t

D
x y x

 
   

 
 

  

which is the same to the velocity given by coefficient profile coefficients (3.2).

Setting objective function coefficients according to (3.1) requires each train to

enter its destination, which may not be achieved within the planning horizon. On the

other hand, it is not necessary to send the train to its destination to get a valid velocity

under coefficients (3.2); if a train ends up in certain location before their destinations,

they are assumed to run unimpeded from that location to its destination.

Our computational experience show that the commercial LP solver (e.g., CPLEX)

can solve the model with coefficients (3.2) much faster than the model with coefficients

(3.1). Thus, we will use coefficients (3.2) in subsequent discussions. To model the

implicit time window requirement, we define ˆq q q

et et etc c   and use q

et to reflect the

preference for train q to enter edge e at time t.

3.3.3. Mathematical formulation

Given the notation defined in the previous section, we can formulate the train

dispatching problem as follows:

min
q q

se see S M q Q s S q Q

q q q q

e

t T

t et st s

t T

tc x f yz
     

    (3.3)

subject to

1 ,
q

e

q

t

t

q

T

ex q Q e o


   (3.4)

1 2 2 1 2\{ , , ,} ,q q q q

st s

q q

mt s s ms S o q O t T m b tx x t        (3.5)

 50

1 2 2 2 21 1 2, \{ }, , , ,qq q q q q

m m

q q

st s t t s st m sm M o q Q t T s b tx x y ty          

(3.6)

1

1 1

, 1, ,
q

s s s

t
q q

st st

q Q

t

tQ t

s

q

x s S t Hy



   

       (3.7)

1

1: 1

1 ,

q
e p

q
p e

q
p

t

q q

p

Q

et

q b t te

p P t Tx

 





 



  

    (3.8)

'

' 1

1 , ,

q
g

q
m g

t

q q

mt m m

q Q t t

x m M G t Tg







   

      (3.9)

, ,

' '

' ' 1 , ,

m m
q q
g g

q q

mt m

q

m m

q Q q

t

Q

t t t t

x m M G t Tx g

 

  

   

       (3.10)

{0,1} (, ,)q

et q e Ax t   (3.11)

{0,1} (, , , 1)q

st q t Ay s t    (3.12)

The objective function (3.3) minimizes the total cost so that the weighted

velocity is maximized or the total waiting time is minimized. Constraints (3.4) make

sure that each train enters the territory and is thus dispatched. Constraints (3.5) and

(3.6) are flow conservation constraints. Constraints (3.5) specify that if train q enters

station s at time t2, it must have entered segment q

sm b at time 2

q

mt  ; constraint (3.6)

ensures that if train q enters the segment m or waits at its previous station s at time t2, it

must have entered station s at time 2

q

st  or waited at station s at time t2 – 1.

Constraints (3.7) are the station capacity constraints to ensure that the number of trains

moving and waiting in a station s at any time t should not exceed the number of tracks

available at the station. Since we assume that the travel time through a station is the

same for all tracks at the station, we do not define separate variables for the movement

and waiting of trains on each parallel track within a station; using a single variable for a

train’s movement or waiting at a station not only reduces the problem size but also avoids

symmetry in the feasible solution space. We can later apply a post-processing procedure

 51

to assign the trains to specific tracks within a station. Constraints (3.8) enforce the

control point headway requirement: at most one train can pass through control point p for

every p time units.

Constraints (3.9) permit at most one train to occupy each section in any time

period. Since a section consists of two adjacent blocks, constraints (3.9) guarantee that

two trailing trains are separated by at least one unoccupied block. Constraints (3.9) can

ensure that no meeting or overtaking occurs inside segments. Observe that, if a train

overtakes or meets another train inside a segment, they have to appear in some section of

that segment at the same time; therefore, permitting no more than one train to use each

track section at any time can prevent meets and passes inside segments. Constraints

(3.10) prevent trains from crossing each other at the boundary point of two adjacent

blocks. As shown in Harrod (2011), the formulation are not valid without constraints

(3.10).

The above formulation can solve for the optimal schedule for a given set of trains.

To model the no-wait trains, we apply a two-stage hierarchical procedure. In the first

stage, we solve the problem with only no-wait trains; in the second stage, we fix the

solution of no-wait trains and solve for the plans of the rest of the trains.

3.4. MODEL ENHANCEMENTS

Constraints (3.9) specify that at most one train can occupy a specific section at

any time; so, trains traveling in opposite directions should never appear in a particular

section at the same time. In fact, in any collision-free train schedule, trains traveling in

the opposite directions on a segment should never occupy any section of the segment (not

just a particular section) at the same time. We refer to this property as the unidirectional

movement property. In this section, we will study how to exploit the unidirectional

 52

movement property to strengthen the model. Specifically, we propose non-concurrency

constraints based on sections as well as train movement. For notational convenience, we

assume that the control point headway is  for all control points.

3.4.1. Non-concurrency constraint

One implication of the unidirectional movement property is that, if a train is

traveling on any section of a segment at time t, then no trains traveling in the opposite

direction can travel on any section of this segment at the same time. The following

constraints (3.13) enforce this requirement. Similar to constraint (3.9), constraint

(3.13) also ensures that at most one train is allowed in each section. Further, as shown

in Proposition 3.2, constraints (11) dominate constraints (3.9) and (3.10), i.e., the latter

constraints are redundant when we include constraints (3.13) in the model.

 ' '

' 1 ' 1

max max 1 ,

q q
g g

m mq q
m mg gm

t t

q q q

mt mt
g G g G

q Qq Q t t

m

q Q t t

x x m M t T

 

  

 

 
       

        (3.13)

Proposition 3.2. Constraint (3.13) dominates constraints (3.9) and (3.10).

Proof: The proposition follows directly from the fact that any g ∊ Gm, we have

' '

' 1 ' 1

max

m

q q
g g

m q q
g m g

t t

q q

mt mt
g G

q Q t t q Q t t

x x

 

  

 


       

    and ' '

' 1 ' 1

max

m

q q
g g

m q q
g m g

t t

q q

mt mt
g G

q Q t t q Q t t

x x

 

  

 


       

    .

We call constraint (3.13) the non-concurrency constraint, since it simultaneously

enforces unidirectional movement in segments, section capacity, and no-crossing of trains

at section boundaries, thus tightening the model. By introducing indicator variables mtu

and mtu , we can linearize constraint (3.13) as follows: let () 1mmt tu u   if any train is

traveling in direction ()  on segment m at time t, making the segment unavailable to

trains traveling in direction ()  , and 0 otherwise. Constraints (3.14), (3.15) and

(3.16) capture these definitions and enforce non-concurrency on segment m.

 53

 '

' 1

, ,

q
g

q
s g

t

q

mt mt

q Q t t

mu x m M g G t T







   

       (3.14)

 '

' 1

, ,

q
g

q
s g

t

q

mt mt

q Q t t

mu x m M g G t T







   

       (3.15)

 1 ,mt mtu m Mu t T      (3.16)

As we can see in Figure 5, if a train
mq Q enters segment m at time

1q

mt     , constraints (3.14), (3.15) and (3.16) require that
'mtu =1 for

{ ' : 1 ' 1}' q

mt t tt t          . The headway at control point 4 require that no

trains traveling in direction  can enter segment m between time t  q +1 and t, which

implies that
1 1

'

1'
0

s

t

q

q

mttQ t
x







  
  for all g ∊ Gm. If we also have

11' { } ()\
0q

s m g

q

mtq Q q g G t T t
x  

   for all g ∊ Gm, i.e., no other trains are traveling on m in

direction + at time t, we could have three possible feasible solutions that give the same

objective function value: ' '(,)mt mtu u  =(0, 1) or (1, 0) or (0, 0) for t+1≤ t ≤ t+. In

constraints (3.14), (3.15), and (3.16), mtu and mtu are auxiliary variables, and their

actual values are not our concern as long as we have correct x values. To break the

symmetry, we can enforce 'mtu =1 and for 'mtu =0 t+1≤ t’ ≤ t+ if a train mq Q enters

segment m at time 1q

mt   . One of the possible implementations is applying

constraints (3.17) and (3.18).

1

1

1 1

, ,

q
m

ms
q

t
q

m s

q Qq Q t

t
q

mt st

t

m M g G t Tu x


 





 


   

      (3.17)

1

1

1 1

, ,

q
m

ms
q

t
q

m s

q Qq Q t

t
q

mt st

t

m M g G t Tu x


 





 


   

      (3.18)

 54

Figure 5. Unidirectional movements

3.4.2. Refining the track sections

For trains traveling in the same direction, we enforce two types of headway

requirement, namely trailing headway and control point headway, to keep safe distances

between trains. This section discusses how to refine the trailing headway by exploiting

the control point headway.

Since trains must pass through a control point to enter or exit a segment, the

control point headway can impact the trailing distances between trains. If a slow train

trails a fast train, they must be at least  time periods apart when entering a segment; the

distance between them grows as they travel on the segment. Hence, the minimal

distance between these two trains is at least the distance traversed by the fast train in 

time periods. The same result holds when a fast train trails a slow train. Assume ml


and ml
 are the distance traversed during  time periods by the second slowest train that

can travel on segment m in direction + and  respectively. Then in any feasible solution,

 55

the distances between any two trailing trains traveling on segment m in direction + and 

are no smaller than
ml
 and

ml
 respectively.

Figure 6 provides a procedure to refine the track sections for segment m by

making sections in
mG and

mG no shorter than
ml
 and

ml
 respectively. The

procedure first finds the distance traversed during  time period by the second slowest

train in both directions in Step 1. In Step 2 and Step 3, the procedure defines the

sections for trains traveling in both directions respectively by finding the starting and

ending location of each section.

After the refinement, we use mG and mG to refine constraints (3.14) and (3.15)

as

 '

' 1

, ,

q
g

q
s g

t

q

mt m

q

t

Q

m

t t

u x m M g G t T











   

      (3.19)

 '

' 1

, ,

q
g

q
s g

t

q

mt m

q

t

Q

m

t t

u x m M g G t T











   

      (3.20)

Since sections in mG and mG are longer, constraints (3.19) and (3.20) have more

variables movement variable at their right hand sides than constraints (3.14) and (3.15)

respectively, which leads to stronger constraints. Besides, the number of constraints

(3.19) and (3.20) is smaller than number of constraints (3.14) and (3.15), since mG

and mG may have fewer sections than Gm.

 56

Procedure refine_section

Input: segment m; ending locations of blocks in m: lm = (lm(1), lm(2), , lm(K)).

Output:
mG and

mG

 (sections on segment m for directions + and ).

Step 1: set lm(0) = 0;
mG =  ;

mG = 

ml
 ,

ml
 = distance traversed during  time periods by the second slowest

train traveling in direction + and  on segment m

Step 2: For k = 1 to K  1

 Section
kg  starts at lm(k1) and ends at Max{ lm(k+1), lm(k1)+

ml
 }

 Add
kg  to

mG

 If lm(k1)+ ml
  lm(K)

 Go to Step 3;

Step 3: For k = 1 to K  1

 Section kg  starts at lm(k1) and ends at Max{ lm(k+1), lm(k1)+ ml
 }.

 add
kg  to

mG .

 If lm(k1)+ ml
  lm(K)

 Terminate the procedure.

Figure 6. Procedure to refine section

In some situations, we may not have the exact block location (namely lm(k), for k

=1, 2, , K), or we may not even have trailing headway requirement (e.g., Caprara et al.

2002). Instead of using pairwise unidirectional inequality (3.23) discussed later, we can

apply the procedure described in Figure 7 to define sections, based on which we can

enforce non-concurrency constraints (3.19) and (3.20). Since constraints (3.19), (3.20)

and (3.16) prevent trains from occupying a segment in different directions at any time,

we don’t need to enforce constraints to prevent the simultaneous crossing of trains at the

boundary point of two adjacent sections.

 57

Procedure define_section

Input: segment m; length of m: Lm;

Output:
mG and

mG (set of sections on segment m for directions + and ).

Step 1:
ml
 ,

ml
 = distance traversed during  time periods by the second slowest

train traveling in direction + and  on segment m

Number of sections / mmK L l     and / mmK L l     in segment m;

mG =  ;
mG = 

Step 2: For k =1 to K
+
  1

 Section
kg  starts at (1) mi l and ends at

mil ;

 Add kg  to mG ;

 Section g
+
 starts at m mL l and ends at mL ;

 Add the section to mG .

Step 3: For k =1 to K

  1

 section kg  starts at (1) mi l and ends at mil ;

 add kg  to mG ;

 Section g

 starts at m mL l and ends at mL ;

 Add the section to mG .

Figure 7. Procedure to define section

3.4.3. Train-based unidirectional inequality

The unidirectional movement property requires that at any time, only trains

traveling in the same direction can appear in a segment, which is enforced by constraints

(3.16). From this point of view, the right hand sides of constraints (3.14) and (3.15) (

or the refined constraints (3.19) and (3.20)) are used to activate the binary variables mtu

and mtu . Since mtu (also mtu) is a binary variable, the set of variables used to enforce

its value should constitute a clique, which means that no more than one of them can be

active at any feasible solution. Constraints (3.14) and (3.15) can be viewed as finding

cliques based on the requirement that at most one train can occupy each section. Here,

 58

we study ways to enforce unidirectional movement from the perspectives of each train.

For simplicity, we assume that the minimum headway is  for all control points from

this point.

Since all trains move only in a single pre-specified direction, every train can enter

every segment at most once, providing a way to identify cliques, which we call train-

based cliques. As Figure 5 illustrates, if train q (without loss of generality, we assume it

is traveling in direction +) enters segment m at a certain time t, it will exit the segment at

time q

mt  , and so the train is traveling on the segment between time t and 1q

mt   .

Accordingly, if any train q enters segment m at any time between 1q

mt   and t, it is

traveling on segment m at time t, thus 'mtu = 1 and 'mtu = 0 for 1 'q

mt t t    ;

besides, the symmetry breaking constraints (3.17) and (3.18) enforce that 'mtu = 1 and

'mtu = 0 for 1 'q q

m mt tt        . Hence, we can activate variables mtu and mtu by

using inequalities (3.21) and (3.22).

1

1 1

, ,
q
m

t

mt

t

q

mt m

t

m M q Q tu x T
 



 



 

     (3.21)

1

1 1

, ,
q
m

t

mt

t

q

mt m

t

m M q Q tu x T
 



 



 

     (3.22)

Note that inequalities (3.21) and (3.22) do not dominate non-concurrency

constraints (3.19) and (3.20), and vice versa: inequalities (3.21) and (3.22) are both

enforced for each train but include more variables for each train; in contrast, inequalities

(3.19) and (3.20) are enforced for all trains in a certain direction, but with fewer

variables for each train.

3.4.4. Pairwise unidirectional inequalities

To prevent trains from meeting inside a segment in the bi-directional train

timetabling problem, Cacchiani et al. (2010) propose a set of crossing constraints. Given

 59

any pair of trains
1 mq Q ,

2 mq Q and a time window from time t1 to
1t with

2 1

1 11 1
q

m

q

mt t        , we can express their constraints as follows,

1

2

2

21

1' '

' ' 1
q q

mt mt

t

t t

t t t

x x
 

   (3.23),

where 2

12 1
q

mtt     and 1

2 1 1
q

mt t      . If we take 1

1 1
q

mt t     and

1t t , we have

 21 1 2

1 2

1 2

1 1

1 , , ,
q q
m m

q
t t

q q

mt mt

t

q

m

t

m

t t

q Q q Q m Mx Tx M t
     

 

   

         (3.24)

Proposition 3.3 shows that train-based non-concurrency inequalities (3.21),

(3.22) and (3.16) are equivalent to inequality (3.24), a specifical case of general

unidirectional inequality (3.23); by defining variables mtu and mtu , the number of

inequalities is significantly reduced.

Proposition 3.3. Constraint (3.24) is LP-equivalent to constraints (3.21), (3.22) and

(3.16).

Proof: It is obvious that (3.24) is implied by (3.21), (3.22) and (3.16). We need to

show that constraint (3.24) implies (3.21), (3.22) and (3.16). Since constraint (3.24)

applies to all mq Q , we have

1 1 2

1 2

2

1 2

1 1

1 , , ,
q q
m m

t t
q q

mt mt

t t

q q

m m

t t

q Q q Q m Mx M t Tx
   

 

      

         ,

which is equivalent to

1 2

1 2

2

2

1 1

max 1 , ,
q qm
m m

q q

m
q Q

t t

t t
qq

mt mt

t t

q Q m M Tx M tx
   





   


 

        .

for any train mq Q . Applying the same logic to the above inequality for mq Q , we

can have,

1 11 1

max max 1 ,
q qm m
m m

q q

m m
q Q q Q

t t
q q

mt mt

t tt t

x x m M t T T
   

 



 
      

      (3.25)

 60

Linearizing (3.25), we can get constraints (3.21), (3.22) and (3.16). Constraints (3.21)

, (3.22) and (3.16) are implied by constraints (3.24). Hence, these two set of

constraints are LP-equivalent. 

The variables in the left hand side of constraint (3.23) form a clique. By

expoliting the control point headway requirement, we can incoporate more variables in

the clique and thus identify a inequality that is stronger than constraint, as demonstrated

in proposition 3.4.

Proposition 3.4. For any t1 , t2 , 1t , 2t , t(q’) and ()t q with 2

12 1
q

mtt     ,

1

2 1 1
q

mt t     , (')t q = Max{ 1 1t   , '

2 1q

mt    , t1}, (')t q = min{ t1+   1,

2

2 1
q

mt    } for 1\' }{mq Q q , inequality (3.26) is valid.

1 2

1 2

1 21

('
'

' ' '

'

)

(')\{ }

1

m

t tt q

t t t t q t tQ q

q qq

mt mt mt

q

x x x
    

      (3.26),

Proof: Since (')t q  t1 and (')t q  t1+   1, we have

1 1(') (') 1 1t q t q t t       ;

therefore, the control point headway would imply that

1

()

(')\{ }

'

'

'

1

m

t q

t t q

m

q q

t

Q

qx






  (3.27)

If we know that a train q  Q
+
 enters segment m between time t1 and 1t , according to the

control point headway, no trains traveling in direction + can enter segment m between

time 1 1t   and t1+1, as required by the control point headway. Thus, we have

1

1 1

1

()

(

'

' '

' ')\{ }

1

m

t t q

t t t t

q q

mt mt

q qQ q

x x




  

    (3.28).

For 1\' }{mq Q q , we have (')t q  '

2 1q

mt    and (')t q ≤ 2

2 1
q

mt    , pairwise

unidirectional inequalities would suggest that

 2

2

2

()

' (

'

' '

') '

1
tt q

qq

mt mt

q tt t t

x x
 

   (3.29).

 61

Combining with inequality (3.27), we have,

 2

1

2

2

()

(')\{ }

'

'

'

'

'

1

m

qq

mt m

tt q

t

q tt t qQ q t

x x




 

    (3.30).

As 2

12 1
q

mtt     and 1

2 1 1
q

mt t      , pairwise unidirectional inequality (3.23)

is valid. Taking ½ [(3.28) + (3.30) + (3.23)] and rounding down the right hand side

give (3.26).

Although we do not need inequalities (3.23) and (3.26) to define the feasible

region in our model, adding them as cutting planes can help to strengthen our

formulation. Since the number of inequalities (3.23) and (3.26) are too large to be fully

identified a priori, we develop a separation procedure to identify violated inequalities

during the branch and bound algorithm. Both inequalities are enforced for each pair of

trains traveling on each specific segment in the opposite directions; for each pair of

trains and a segment, any given values of t1 and t can determine values of t2 and 2t in

inequality (3.23) and values of t2, 2t (')t q , and (')t q in inequality (3.26). Thus, the

complexity for separation is  2

m mO Q Q M H  . We can reduce the search procedure

by applying the results in corollory 3.5: as long as some inequality is violated by a

factional solution, we can always cut off the solution with inequalities with 1

1
0

q

mtx  and

1

1
0mt

qx  . Accordinly, we can just search for inequalities with 1

1
0

q

mtx  and 1

1
0mt

qx  .

The detailed separation procedure is described in Appendix A.

Corollory 3.5. Given a fractional solution (x, y, u), if it does not satisfy all possible

inequalities (3.26), there is a violated inequality (3.26) with 1

1
0

q

mtx  and 1

1
0mt

qx  .

Proof: if the solution (x, y, u) violates inequality (3.23), without loss of generality, we

assume there exists (t, t , t2, 2t) such that

21 2

21

(')

' \

'

' '{ } (') ' ''
1

m

t t q t

t

q qq

mt mtt Q q t t q mq t tt
x x x    

      .

 62

Taking t1 = 1

' ': 'arg m }' ,i { 0n
q

t mtt t xt   and
1t = 1

' ': 'arg m }' ,a { 0x
q

t mtt t xt   , we have

11 1

1'' ''

t q q

mt mt

t

t t t t
x x

 
  and t  t1 

1t  t . Thus, we find a violated inequality (23),

with 1

1
0

q

mtx  and 1

1
0mt

qx  .

3.4.5. Pairwise unidirectional inequalities across segments

Inequality (3.23) prevents the incompatible movements between two trains

traveling on a specific segment in opposite directions. Lemma 3.6 extends the results to

more than one segment.

Figure 8. Illustration of unidirectional movements across segments

Lemma 3.6. Assume train q1 (traveling in direction +) and train q (traveling in direction

) can both enter two adjacent segments m1 and m2, and the station s1 between them.

For t̂ , t, 1t , 2t , t1, t2 that satisfy

1 2

ˆ q q

s mt t    , 1 1q

mt t     , 1

22
ˆ 1

q

mtt      

 63

and either of the following condition holds:

(1) 1

1 1
q

mtt      and 1 1

1 1 12 1
ˆmin{ 1, 1}

q q q

m s mt t t         ,

(2)
12

ˆ 1q

mt t      and 1 1 1

1 11 21 1ma { , }x
q

s

q

mm

qt tt            .

Inequality

1 2

1 1

1 1 1 2

1 2

' (1) ' ' 1
t tt

q

s

t t t t

q qq

m t t m t m t

t t

yx x x


  



 

      (3.31)

is valid.

Proof: Here we prove that the proposition is true when condition (1) holds. If train q1

enters segment m1 between time t1 and
1t , it will enter segment segment m2 no earlier

than 1 1

1 11

q q

m st   (since 1 1

1 12 1

q q

m st t   ). Therefore, inequality

2 1

1 1

12

2 1

' '

' '

1
t t

t t t t

q q

m t m tx x
 

   (3.32)

is valid. If 1

1 1
q

mtt      and 1 1q

mt t     , the pairwise unidirectional

inequality (3.23) in segment m1 implies that inequality

1

1

1 1

1

' '

' '

1
t t

q q

m t m t

t t tt

x x
 

   (3.33)

is valid. Since
12 1q

stt     and 1

22
ˆ 1

q

mtt       , inequality (3.23) in

segment m2 implies that inequality

2

2

2

2

1

ˆ

ˆ'

'

'

' 1
q q

m t m

t t

t t

t

t t

x x


 

   (3.34)

is valid.

For notational convenience, we define   1 2' '

ˆ
*

ˆ' '

q q

m t m tt

t t

t t t
x x x

  

 
   . Since

1' ' 1
t

t

q

m tt
x




 and

2

ˆ

ˆ' ' 1
t

t t

q

m tx



 , we have

1

*

' '

t q

t m tt
x x




 and

2

ˆ
*

ˆ ''

q

m t

t

t t
x x




 . Thus,

inequalities (3.33) and (3.34) would imply inequalities (3.35) and (3.36).

1

1

1

1

'

*

'

1
t

t t

q

m t xx


  (3.35)

2

2

2

1 *

'

'

1
t

t t

q

m t xx


  (3.36)

 64

Taking ½[(3.32)+(3.35)+(3.36)] and rounding down the right hand side give inequality

1

1 1

1

2 1

2

2 ' '

*

' '

1
t t

t t t

q

t

q

m t m t xx x
 

    (3.37).

Summing over flow conservation constraints for train q at station s1 and segment m1

between time t and t  gives
2 1 1 1

ˆ

' 1' (ˆ '')

t t q q

s t st t t

q q

m t m t tt
y yx x

 



 

 
    , which leads to

  1 1 1 1

*

' ' (1' ')

t t q q

s t st t

q q

m t m t tt t
x x y yx

  

     .

For any feasible solution x,
1' '

q

tt

t

t mx


 =0 or 1 and (
1' '

q

tt

t

t mx


 ,
1

q

s ty)=(0 , 1) or (1, 0).

Thus,

 1 1

2

' ' ''

q q

m t m tt t

t t

t t
x x

  

 
  ,

1 1 ''
0qtq

s t t m tt
y x




  , and

1 1 1'(1) ' (1)

q

t m t tt

tq q

s st
y yx



   .

Accordingly, we know that inequality (3.38) is valid.

1 1'

*

(1)

'

t
q

tt

q

m t tsx y x








  (3.38)

Inequalities (3.37) and (3.38) imply that inequality (3.31) is valid.

We may view the development of inequality (3.31) as a lift-and-project cutting

plane algorithm for 0-1 programs (Balas et al., 1993); we first lift the soluton space to a

higher dimension by adding variable x
*
, and then project back to the original solution

space, i.e., eliminate variable x
*
, by expoliting the our problem structure. Intuitively, we

can interpret inequality (3.31) in the following way: if train q enters segment m1 between

time t and t  , its movement is incompatible with the entry of train q1 into segment m1

between time t1 and 1t ; if it has not waited at station s1 at time t1, it should have entered

segment m2 between time t̂ and t̂  , and thus its movement should be in conflict with

the entry of train q1 into segment m2 between time t2 and 2t ; thus, if train q enters

segment m1 between time t and t  , its movement is not compatible with the entry of q1

into segment m1 between time t1 and 1t and the entry of train q1 into segment m2 between

 65

time t2 and
2t . We can extend this logic to more than 2 segments, as stated in

Proposition 3.7.

Proposition 3.7. Assume trains q1 (traveling in direction +) and q (traveling in direction

) can enter K adjacent segments and the stations between these segments, denoted as m1,

s1, m2, s2, mK1, sK1, mK. For any t,
1̂t t ,

' 1 '

'

1

1 1

ˆ
k k

k k

k

q q

k s

k

mtt  
 

 

   for k’ = 2, …, K,

11 1q

mt t     , ˆ 1
K

q

K mK tt      , kkt t for all k =1, 2, …, K, and either of the

following conditions holds for each k = 2, , K,

11 1
ˆ 1

k

q

k mk tt   
     and 1 1

1 11
ˆmin{ 1, 1}

k k k

q q q

k m sk k mt t t   
       

ˆ 1
k

q

k k mt t     and 1 1

1 1 11 1
ˆ1, 1}max{

kk kk

q q q

k m s k mt tt     
         ,

inequality

 1

1

1

' '(1)
1 1

ˆ 1
k

kk k

k

K K
qq

m t m t

tt
q

s t
t t t tk k

yx x


  




 

     (3.39)

is valid.

Proof: Similar to Proof of Lemma 4.1.

Since there are two possible situations corresponding to any kt and tk1 pair for k

= 2, , K, number of possible situations grows exponentially with K. Corollory 3.7

shows that we can find the most violated inequality in O(K) for any given pair of trains,

sequence of adjacnet edges, t and  , and thus we can identify the most violated

inequality (3.39) in complexity  2

m mO Q Q M H K  .

Corollory 3.7. Given a fractional solution (x, y, u), pair of trains q and q1, seqence of

adjacent edges m1, s1, m2, s2, mK1, sK1, mK, and t and  , there is a O(K) algorithm to

find the most violated inequality (3.39), if any.

Proof: To get the most violated ineqiaity (3.39), if any, we need to find the (tk1, kt)

pairs for k = 2, , K that will maximize 1

1 ˆ 1

1

' '(1)1

k

kk k k

t K tq

s tt t k t t

K qq

m t m tk
x xy

 





   
     ,

 66

which is equivanet to maximizing 1

1 '

k

kk

K t

k t t

q

m tx
   1

'

1

k

k

k

t

t t

K
q

m t

k

x


 . We will demonstrate a

dynamic programming algorithm to solve the problem. For the convenicence of

notation, we define the following notation for any given t and  :

1

1

1 1

2 1q

mt t t      ,

1 2 ˆ 1
K

q

K K K mtt t         ,

1

1

11
ˆ 1

k

q

k mk tt   
     for all k = 2, , K,

1 1

1 11

1 ˆmin{ 1, 1}
k k k

q q q

k m sk k mt t t   
        for all k = 2, , K;

1 1

1 1 1

2

1 1
ˆ1, 1max{ }

kk kk

q q q

k m s k mt t t    
         for all k = 2, , K

2 ˆ 1
k

q

k k mt t     for all k = 2, , K.

For 'k = 1, , K1 and i = 1, 2, we define

1 1 2

' 1 1

1

1 2

1:) ()ma or ()} 2x ;(, , ,,
k

k

k

t
i

k k k k

k
qi

k m t k k k

t t

k

k

t t t t t kt kf x t t  



  


    
  

  
  


and define 1

1 '

j
k

i
kk

qij

k m t

ti

k t t
h f x 

  if k

i

k

jt t , and 0 otherwise for k = 2, , K and i, j = 1,

2. Then we have 1 1 2

'1
max

k

kk

tK q

m Kt tk Kt f fx


   . Accordingly, the dynamic

programming recursion proceeds in the following fashion:

1

1

1

1
1

1 1 '

t

t

qi i

t m tf h x


  for i =1, 2;

1

1 '

j
k

i
kk

qij

k m t

ti

k t t
h f x 

  if k

i

k

jt t , and 0 otherwise

1 2max{ , }j j j

k k kf h h .

It is easy to check that the total number of updates is O(K). 

Our experience indicates that inequalities with more than two segments are

rearely violated. Thus, we focus on a separation procedure for inequality (3.31). For

each pair of trains traveling in opposite directions in any segmen, any possible value of t

and t corresponds to two pairs of (t1, 1t , t2, 2t); thus, the complexity of separation for

inequality (3.31) is  2

m mO Q Q M H  . Corollory 3.8 can help to accelerate the

 67

separation procedure in practice by restricting the search to set of (t, t , t1, 1t , t2, 2t)

pairs with 0mt

qx  ;
1

0q

m tx  or
1

0s t

qy  , and 1

1 1
0

q

m tx  or 1

2 2
0t

q

mx  . The detailed

procedure is discussed in Appendix A.

Corollory 3.8. Given a fractional solution (x, y, u), if x do not satisfy all possible

inequalities (3.39), we can find a violated inequality (3.31) with 0mt

qx  ;
1

0q

m tx  or

1
0s t

qy  , and 1

1 1
0

q

m tx  or 1

2 2
0t

q

mx  .

Proof: similar to the proof of Corollory 3.7. 

3.5. SEQUENTIAL DISPATCHING HEURISTIC

A heuristic solution procedure is important when the optimization model fails to

find a good solution within reasonable amount of time. Since trains can only wait inside

stations, our heuristic tries to move trains from one station to the next sequentially and

iteratively. When the planning begins with some trains traveling at any segment, these

trains move to the next stations during initialization. Besides, we treat terminals at the

ends of the territory as stations with infinite capacities. Each iteration consists of three

stages: the pre-dispatching stage, the active train selection stage, and the dispatching

stage. In the pre-dispatching stage, system state is updated to avoid deadlocks; in the

active train selection stage, an active train is chosen as the candidate to move forward in

the dispatching stage; in the dispatching stage, the heuristic decides whether to delay the

active train or move it forward.

3.5.1. Notation and definitions

At any point of the heuristic, we describe the state of the dispatching system by

the station that each train is in, the movements and waiting of trains inside the territory

that are already planned, and the track unavailability due to planned train movements and

waiting and explicit time window requirements. We use  to denote such a state.

 68

Given any system state  , we define the following notation to facilitate the discussion

of the heuristic procedure:

s(q,) the station train q is in

m(q,) = (,)

q

s qe  , i.e., the next segment that train q traverse after exiting s(q, )

s1(q,) =),(m q

qe  , i.e., the next station that train q traverse after exiting m(q, )

p1(q,) train q’s entry control points of m(q,)

p2(q,) train q’s entry control points of s1(q,)

t(q,) time up until which the schedule of train q is determined at state 

Q() set of trains that have not been sent to their destinations, ordered

increasingly by t(q,)

(,)Q s set of trains that are currently in station s

w(s, q, ) total waiting time of train q in station s in state 

c() total cost of the movement plan if each train q leaves s(q,) at t(q,)

and runs without waiting until its destination

Note that c() gives an upper bound on the best objective function value that can

be achieved from state  , and thus can be used as metric to compare different states.

In any state  , each train can either be moved forward to next station or held to wait at

the current station for some time. In any given state , we define the following

procedures:

 move(q, ) makes train q move out of station s(q, ) at time t(q, ), forward to

m(q, ) and then into s1(q, ). The detailed procedure is discussed in Figure 9.

The procedure assigns train q to use control points p1(q,) and p2(q,), sections

in segment m(q, ), and station s1(q, ).

 69

 wait(q, t, ) makes train q wait at station s(q2,) between time t(q2,) and t1.

The detailed procedure is presented in Figure 10. The procedure assigns train q to

use of one the wait tracks in train q.

 movable(q, t, ) checks if train q can move from station s(q,) to s1(q2,) at time

t. Figure 11 shows the detailed procedure. Specifically, the procedure checks if

the control points p1(q,) and p2(q,), sections in segment m(q, ), and station

s1(q, ) can be used.

 waitable(q, t1, t2, ) checks if train q can wait at station s(q, ) between time t1 and

t2. Figure 12 describes the procedure. The procedure checks if there is a wait

section available for train q to use between time t1 and t2.

 reverse(q, , ) reverses or backtracks train q to its previous station and waits

additional  periods at previous station. Figure 13 describes the detailed

procedure. The procedure first reverses train q to its previous station, denoted as s,

calculates the time that q should wait in station s, and calls the procedure delay to

delay train q at station s.

 delay(q, t, ) makes train q either wait or reversed to the previous station so that it

leave s(q, ) no earlier than time t. The detailed procedure is presented in Figure

14. The procedure first checks if train q can wait at station s(q, ): if so, train q is

made to wait at station s(q, ) for time t; otherwise, the procedure reverse is called

so that train q enters station s(q, ) when s(q, ) has available track.

 select_active_train() selects an active train to serve as the candidate train to

move forward in the dispatching stage. Figure 15 presents the detailed procedure.

The procedure first finds trains, if any, in stations that are fully occupied and

identifies the earlier such train; if no such train exists, the train in Q() with earliest

 70

t(q, ) is chosen. As we will discussed later, this procedure can help reduce

deadlocks.

Procedure: move(q, )

Input: train q and system state 

Step 1: assign q to use control point p1(q,) at t(q,);

Step 2: assign q to use control point p2(q,) at t(q,) + (,)

q

m q  ;

Step 3: assign q to use section g time between t(q,)+
q

g and t(q,)+
q

g 1 for

each (,)m qGg 

Step 4: assign q to use one track in s1(q,) during t(q,)+ (,)

q

m q  and t(q,)+

(,)

q

m q  +
1 (,)

q

s q  1;

Step 5: t(q,)  t(q,)+ (,)

q

m q  +
1 (,)q

q

s  and s(q2,)  s1(q2,).

Figure 9. Procedure to move a train forward

Procedure wait(q, t, )

Input: train q, time to end waiting t, and system state 

Step 1: assign q to use one track in s(q1,) between t(q,) and t 1;

Step 2: updating t(q,)  t(q,) + t

Figure 10. Procedure to make a train wait

Procedure waitable(q, t1, t2, )

Input: train q, time to start waiting t1, time to end waiting t2, and system state 

Output: <true> if q can wait in s(q,) between t1 and t21, and <false> otherwise

Step 1: If there is available wait section in s(q,) between time t1 and t21

 Return <true>;

 Else

 Return <false>;

Figure 11. Procedure to check if a train can wait in current station

 71

Procedure movable(q, t, )

Input: train q, time to leave s(q, ) t, and system state 

Output: <true> if train q can leave s(q, ) and move to s1(q, ), and

<false>otherwise

Step 1: If p1(q,) is used or unavailable between t+1 and t+ 1

 Return <false> and terminate the procedure

Step 2: If p2(q,) is used or unavailable between t+ (,)

q

m q  +1 and

(,) 1q

m qt    

 Return <false> and terminate the procedure

Step 3: If there are trains traveling in m(q,) in the opposite direction between t

and t+ q

m 1

 Return <false> and terminate the procedure

Step 4: If there exists a g  (,)m qG  that is unavailable or is used by other trains

between t+
q

g to t+
q

g 1

 Return <false> and terminate the procedure

Step 5: If there is no available track in s1(q,) between time t + (,)

q

m q  and t +

(,)

q

m q  +
1 (,)

q

s q  1

 Return <false> and terminate the procedure

Step 6: Return <true>

Figure 12. Procedure to check if a train can move forward at a certain time

Procedure reverse (q, , )

Input: train q, additional time to wait in previous station , and system state 

Step 1: If s(q,) = o
q
 and o

q
 is not a terminal

 Terminate and the procedure cannot find a solution;

 Else

 Get station s and segment m such that q

sa m and (,)q

ma s q  .

Step 2: t(q, )  t(q, )  w(q, s(q,), )  (,)

q

s q   q

m ;

Step 3: Clear the track assignment to q in s(q, ), m, entry and exit control

points to m;

Step 4: s(q, )  s;

Step 5: delay(q, t(q, ) +  , )

Figure 13. Procedure to backtrack the train to its previous station

 72

Procedure delay(q, t, )

Input: train q, time to end delay t, and current state 

Step 1: t1 = t(q, );

 While t1 ≤ t and not waitable(q, t1, t, )

 t1t1+1;

Step 2: If t1 == t(q, )

 wait(q, t, );

 Else

 reverse(q, t1  t(q, ) + w(q, s(q,), ) , );

Figure 14. Procedure to delay a train

Procedure select_active_train()

Input: system state 

Output: the active train

Step 1: 'Q = 

 For each station s that are fully occupied in state 

 'Q  'Q Q(s, );

 If | 'Q |==0

 Go to Step 2;

 Else if

 Sort 'Q increasingly according to t(q, );

 Return the first train in 'Q .

Step 2: Sort ()Q  increasingly according to t(q, );

 Return the first train in ()Q  .

Figure 15. Procedure to select the active train

3.5.2. Conflict resolution

The procedure move(q, ) of the active train may be incompatible with other

trains since they may need to use the same segment at the same time or use the same

control point within  periods. Such incompatibilities are called conflicts. The conflict

is called a meet conflict if it is between two trains traveling in the same direction, and

pass conflict otherwise. The detailed procedures to detect these conflicts are described

 73

in Figure 16 and Figure 17. Both procedures check if two trains (traveling in the same

direction for meet conflicts and traveling in opposite directions for pass conflicts) will

appear at the same section or use the same control point at the same time; if so, there is a

conflict. Figure 18 and Figure 19 describe the procedure to resolve the pass and meet

conflicts respectively. As illustrated in Figure 18, faster trains are granted the right of

way in any pass conflict so that the fast train does not need to wait for slow trains in all

subsequent stations. On the other hand, when a meet conflict arises, as illustrated in

Figure 19, the right of way is first given to a train that is currently at a fully occupied

station, then given to the train that will cause a hard deadlock if the other train moves,

and assigned according to the cost. Note that the value of the threshold probability  , a

parameter in the procedure resolve_meet(q1, q2, , ), controls how often the active

train is moved forward; specifically when  = 0, the procedure resembles a greedy

scheme that looks myopically at the total cost in the next iteration; larger values of 

indicate granting right of way to the active train more frequently. As discussed later, this

parameter can enable creating different movement plans and searching for plans with

lower cost.

 74

Procedure isMeet(q1, q2)

Input: trains q1 and q2

Output: <true> if train q1 and q2 have a meet conflict, and <false> otherwise.

Step 1: If q1 and q2 are traveling in the same direction or m(q1,)  m(q2,)

 Return <false>;

Else if {t: t(q1,) ≤ t ≤ t(q1,) + 1q

m 1}

{t: t(q2,) ≤ t ≤ t(q2,) + 2q

m 1}  

 Return <true>;

 Else if | t(q1,)  t(q2,)  2q

m | <  or | t(q1,) + 1q

m  t(q2,) | < 

 Return <true>;

 Else

 Return <false>.

Figure 16. Procedure to check if two trains have a meet conflict

Procedure isPass(q1, q2)

Input: trains q1 and q2

Output:<true> if train q1 and q2 have a pass conflict, and <false> otherwise.

Step 1: If q1 and q2 are traveling in the opposite directions or m(q1,)  m(q2,)

 Return <false>;

Else if {t: t(q1,)+ 1q

g ≤ t ≤ t(q1,)+ 1q

g 1}{t: t(q2,) + 2q

g ≤ t ≤ t(q2,

) + 2q

g 1} for some section mg G

 Return <true>;

 Else if |t(q1,)  t(q2,)| <  or |t(q1,) + 1q

m  t(q2,)  2q

m | < 

 Return <true>;

 ELSE

 Return <false>.

Figure 17. Procedure to check if two trains have a pass conflict

 75

Procedure resolve_pass(q1, q2, )

Input: Trains q1 and q2, system state 

Step 1: Set m = m(q1, ) = m(q2, );

 If 1q

m > 2q

m or 1q

m == 2q

m and t(q1, ) > t(q2, )

 q = q2;

 Else

 q = q1;

Step 2: move(q, );

Figure 18. Procedure to resolve a pass conflict

Procedure resolve_meet(q1, q2, , )

Input: active train q1, meeting train q2, threshold probability , and state 

Step 1: If s(q1, ) is fully occupied

 move(q1, ); terminate the procedure;

 Else if s(q2, ) is fully occupied

 move(q2, ); terminate the procedure;

 Else

 Go to Step 2;

Step 2: t1 = t(q2, ) + 2

2(,)

q

m q  +  1;

 t2 = t(q1, ) +
1

2

(,)

q

m q  +  1;

 If waitable(q1, t(q1, ), t1, ) and not waitable(q2, t(q2, ), t2, )

 wait(q1, t1, ); terminate the procedure;

 Else if not waitable(q1, t(q1, ), t1, ) and waitable(q2, t(q2, ), t2, )

 wait(q2, t2, ); terminate the procedure;

 Else

 go to step 3;

Step 3: //move trains that result in higher value in next iteration

 Let 1 be the state after executing wait(q1, t1, ) and move(q1, );

 Let 2 be the state after executing wait(q1, t2, ) and move(q2, );

 Generate a random number r between 0 and 1;

 If c(1) < c(2) or r < 

 move(q1, ); terminate the procedure;

 Else

 move(q2, ); terminate the procedure;

Figure 19. Procedure to resolve a meet conflict

 76

3.5.3. Deadlock prevention and resolution

As in discrete-event heuristics for train dispatching, deadlocks may occur when

we progressively route trains. A deadlock is a system state that no train is able to move

forward without reversing at least one of them. Depending on the states of trains in the

deadlock, deadlock can be either hard or soft.

In hard deadlocks, a train can neither move forward nor wait in current station.

For example, if both movable(q, t(q, ), ) and waitable(q, t(q, ), t(q, ) + 1, )

return false value, the deadlock arises since train q can neither move forward nor wait in

s(q, ) at time t(q, ). In such a situation, we need to apply reverse(q, , ) with   1

so that we will not get into state  later. Although reversing trains can be resolved the

hard deadlocks, it usually gives solutions with lower quality. To reduce applications of

reverse(q, , ), our heuristic adopt the following two strategies to prevent hard

deadlocks in the pre-dispatch stage.

 Apply procedure movablize(q, ) to delay train q accordingly if it is not movable in

current state. Figure 21 presents the procedure movablize(q, ). Specifically, the

procedure checks if train q can move forward at time t(q, ). If not, procedure

delay is called to make train q either wait at s(q, ) or reverse.

 Apply procedure look_ahead(q, ) to delay train q appropriately if it is neither

movable or waitable after every train q moves forward to its next station. Figure

22 presents the procedure look_ahead(q, ). Specifically, the procedure checks

whether train q, after moving to the next station s1(q, ), can wait at s1(q, ) or

move forward to the next station of s1(q, ). If not, procedure delay is called to

make train q wait at s(q, ) or reverse.

In soft deadlocks, trains can wait, but not move forward. Figure 20 shows such a

deadlock that commonly incurres. In Figure 20, trains q1 and q2 are traveling in

 77

direction +, and trains q3 and q4 are traveling in direction . No trains are able to move

forward without violating the capacity constraint of stations s1, s2 or segment m. The

only option left may be to reverse one of the trains. When combined with unavailability

of track resources, the situation can get more complicated and identifying all possible

variants could require considerable effort. For example, with the siding of station s2 is

under MOW, deadlock arises even when only trains q1 and q2 are in station s1 and train q3

is in station s2 in Figure 20. As we know, a soft deadlock arises since the tracks inside

stations are fully occupied. For example, stations s1 and s2 in Figure 20 are fully

occupied. Thus, we can avoid all soft deadlocks by making sure that no stations are

fully occupied. Specifically we apply the following soft deadlock prevention strategies:

 when selecting the active train in procedure select_active_train(), as presented

in Figure 15, we give higher priority to trains in stations that are fully occupied, as

illustrated in Figure 15;

 for an active train, we always apply resolve_pass(q1, q2, ), as presented in

Figure 18, before resolve_meet(q1, q2, ), as presented in Figure 19, since a pass

conflicts implies that the station is fully occupied;

 when resolving the conflict between two meeting trains in resolve_meet(q1, q2,

), as presented in Figure 19, we always make the train in fully occupied

stations move forward and the other train wait.

 78

Figure 20. Example of a soft deadlock

Procedure movablize(q, )

Input: train q and system state 

Output: return <true> if the system state is updated, and <false> otherwise

Step 1: Set t = t(q, );

 While not movable(q, t, )

 tt + 1;

Step 2: If t == t(q, )

 Return <false>;

 Else

 delay(q, t, );

 Return <true>;

Figure 21. Procedure to movabilize trains

 79

Procedure look_ahead(q, )

Input: train q and system state 

Output: return <true> if the system state is updated, and <false> otherwise

Step 1: Assume the system state after perform move(q, ) is 

 Set t = t(q, );

 While not movable(q, t, )

 tt + 1;

 If t == t(q, )

 Return <false>;

 Else

 go to step 2;

Step 2: t1= t(q, )

 While t1 < t and not waitable(q, t1, t, )

 t1t1 + 1;

 IF t1 == t(q, )

 Return false;

 Else

 delay(q, t1 t(q, ), )

 Return true;

Figure 22. Procedure to look head one station

3.5.4. Basic Procedure

Figure 23 shows how the dispatching problem can be solved by our sequential

routing heuristic. In the initialization phase, the system state  is updated to capture the

track unavailability and to ensure that all trains are at stations. Each iteration starts with

checking if the stopping criteria are met (Step 1); the procedure terminates when all trains

are at their destinations or when maximum number of iterations is reached. Next, the

pre-dispatch stage (Step 2) is repeated until the following two conditions are met: 1) each

train is movable to next station and 2) each train can move or wait at its next station. In

Step 3, we pick an active train and either move it forward or delay it, depending on the

type of conflicts and possibly on the threshold probability .

 80

Procedure sequential_routing(n
*
, )

Input: Maximum number of iterations N

 Threshold probability 

Output:the system state  with a meet and pass plan

Step 0: Let  be the initial state;

 Update the track unavailability of ;

 For each train q  Q

 t(q, ) = t
q
, s(q, ) and = o

q
;

 n = 0;

Step 1: If n >n
*

 Return null;

 Else if |Q()|==0

 Return current solution;

Step 2 continue_update = true;

 FOR each train q  Q()

 While not (movablize(q, ) and look_ahead(q, ))

 continue_update = true;

 If continue_update

 Go to step 1;

 Else

 Go to step 2;

Step 3: q = select_active_train();

 If there is a train q2 so that isPass(q, q2) is true

 resolve_pass(q, q2,);

 Else if there is a train q2 so that isMeet(q, q2) is true

 resolve_meet(q, q2, ,);

 Else

 move(q, )

 Go to step 1;

Figure 23. Procedure general heuristic

3.5.5. Random search

If we select 0<  <1 in sequential_routing(n
*
, ), the procedure would end with

different final state  in different runs. This enables a random search procedure by

running sequential_routing(n
*
, ) multiple times and picking the final state with smallest

 81

cost. As illustrated in Figure 24, the random search starts with a greedy sequential

routing procedure with  = 1, followed by n random sequential routing runs with 0<  <1.

Such a random procedure can help generate a set of feasible solutions and picking the

best one is usually better than the greedy heuristic.

Procedure random_search(N, n
*
, )

Input: number of replications N, maximum number of iterations n* and random

threshold replication 

Output:feasible solution  or null if no feasible solution found

Step 1:  = sequential_routing(n
*
, 1)

Step 2: For i = 1 to N  1

 1 = sequential_routing(n
*
, );

 If c(1) > c()

  = 1;

 Return 

Figure 24. Random search scheme

3.6. COMPUTATIONAL RESULTS

We tested the proposed models and solution techniques using data from two

territories of a Class I railroad company in the US. Our models are implemented in

JAVA, using CPLEX 12.4. The instances were tested on Dell Poweredge T610 running

Ubuntu Linux, with 2 sixcore hyperthreading 3.33 GHz Xeon processors and 24 GB of

shared memory. We terminate the procedure when the runtime reached 5 minutes or if

the solver can find a solution with optimality gap of 2% or less.

We tested the data on Territory B and Territory M, whose lengths are 100 miles

and 140 miles respectively. The planning horizon is 12 hours, time period length is 90

seconds, and control point headway is 7 minutes.

We use the base model to denote the model discussed in Section 3.4; the

strengthened model incorporates the following improvements:

 82

 replacing constraints (3.9) and (3.10) in base model with non-concurrency

constraints (3.16), (3.19), and (3.20)

 refining the section definitions using the techniques discussed in Section 3.4.2,

 using the heuristic solution as the warm-start to the branch and cut

 applying the following valid inequalities as cuts: train-based non-concurrency

inequalities (3.21) and (3.22), pairwise unidirectional inequalities (3.23), (3.26),

and (3.31).

Table 5 shows the computational results of the base model and strengthened

model. The strengthened model can get a near-optimal solution (within a 2% MIP gap)

for 11 instances within 300 seconds, many more than the 3 instances in the base model.

Besides, the strengthened model performs better than the base model in all cases; the

strengthened model either reduces the solution time or gets lower MIP Gap value. This

can be attributed to good feasible solutions obtained by the heuristic procedures and

better lower bounds achieved by our effective user cuts.

To compare the effectiveness of our valid inequalities, we define the percentage

of gap closed as () / ()LB LI LB LS  , where LI is the upper bound obtained after solving

the root node, LB is the upper bound obtained after solving the root node, and LS is the

objective function value of the best solution found. Table 6 summarizes the percentage

of gap closed and compares the number of valid inequalities by CPLEX and our

separation procedures. We can see that our separation procedure found many more cuts

than CPLEX and closes the gap effectively.

 83

Table 5. Comparing Base Model and Improved Model for train dispatching

of

Trains

Base Model Improved Model

Instance Time(secs) MIP Gap Time(secs) MIP Gap

B1347 13 26 1.89% 8 1.09%

B1013 16 164 1.91% 8 1.88%

B0908 16 600 4.65% 9 1.82%

B0942 17 600 4.79% 15 1.95%

B1107 18 600 4.10% 15 1.92%

M1955 13 600 2.71% 24 1.98%

M1443 16 16 1.53% 25 1.62%

B1037 15 48 1.76% 32 1.99%

M1356 13 600 4.17% 52 1.93%

M0957 19 600 6.88% 96 1.99%

B0954 21 600 4.11% 107 0.88%

B1243 16 600 7.89% 115 1.81%

B1311 22 600 6.24% 600 2.35%

B0914 19 600 20.60% 600 2.58%

M1728 18 600 11.54% 600 4.18%

B1358 30 600 30.81% 600 4.22%

B1020 27 600 28.76% 600 4.80%

B0806 18 600 12.89% 600 4.94%

B1155 25 600 10.37% 600 5.77%

M1225 21 600 28.87% 600 8.79%

M1203 24 600 41.07% 600 12.64%

 84

Table 6. Impact of valid inequalities

Base Model Improved Model Percent of Gap

Closed Instance # of CPX Cut # of CPX Cut # of User Cut

B1347 100 94 282 54.55%

B1013 144 90 409 51.92%

B0908 172 73 835 52.81%

B0942 186 109 962 58.28%

B1107 260 121 969 63.64%

M1955 174 66 955 41.78%

M1443 37 189 1197 35.47%

B1037 97 60 1349 30.05%

M1356 76 69 1153 74.93%

M0957 298 90 1993 58.58%

B0954 256 100 4965 74.54%

B1243 179 111 1566 63.92%

B1311 251 162 11055 85.85%

B0914 205 182 12057 60.79%

M1728 178 66 3074 52.73%

B1358 314 239 8326 70.44%

B1020 273 157 2867 50.71%

B0806 187 168 16903 42.95%

B1155 275 146 15816 49.69%

M1225 439 194 4599 32.85%

M1203 338 259 9195 17.73%

3.7. CONCLUSIONS

To help train dispatching in single-track territories, we proposed an integer

programming model for the train dispatching problem that takes into account various

operational considerations including trailing of trains, minimal headway between trains,

track unavailability and train priorities. We developed a section-based non-concurrency

constraint that can prevent the meeting and overtaking of trains inside a segment, as well

as the crossing of trains at the section bound point. We also proposed a train-based non-

concurrency inequality that can strengthen the model. Besides strengthening the

 85

pairwise unidirectional inequalities in Cacchiani et al.(2010), we extended the inequality

to more than one segment and generalized it to incorporate more trains.

Our study is the first to explore and improve modeling and algorithmic strategies

to solve real-life train dispatching problems to optimality or near-optimality by using

discrete time formulation. Both Caprara et al. (2002) and Şahin et al. (2008) solved their

problems by heuristics, and Harrod (2011) only applies his model to a small territory with

simplified territory data. Our computational results show that our solution method can

obtain an optimal or near-optimal solution to many real-world problem instances within a

reasonable amount of time.

 86

Chapter 4. Route Design for Delivery Vehicles with Backhauling

4.1. INTRODUCTION

Major grocery chains require daily deliveries from one or more warehouses to

restock their inventory and replenish perishable items. On the return trip, it is common

for a subset of the vehicles to pick up salvage items (or “returns”) from the stores and

bring them back to the warehouse. The resulting problem, which we call the retail route

design problem (RRDP) with backhauls extends the capacitated vehicle routing problem

with time windows (VRPTW) by incorporating context specific considerations. As is in

the traditional VRPTW, a vehicle corresponds to a truck-trailer combination that is

assigned to a route for delivery of replenishment orders and for pickup of salvage orders.

In our context, it is assumed that there are a sufficient number of drivers, trucks and

trailers available on any given day to meet the demand within the given time windows.

The costs associated with a vehicle route consist of two components: (1) the travel cost

incurred by each route on a per mile basis, and (2) the driver idle time cost incurred when

arriving early at store and having to wait for the start of the delivery and pick up

windows.

In addition to the requirements in the traditional VRPTW, the RRDP investigated

here has a number of practical and unique constraints. First, there are three types of

delivery orders and one type of pickup order. The delivery orders are required to be

loaded onto the truck in certain sequences, and the truck can only start pick up orders

after its deliveries are made. Second, the truck has pre-specified weight and volume

limits. Separation curtains must be placed between different delivery order types and

between different stores. The weight of the curtains can be ignored but not the volume,

which reduces the capacity of a truck on that dimension. Third, the loading capacity at

the warehouse must be taken into account on a 30-minute basis, so only a limited number

 87

of vehicles can be loaded in each time slot. Lastly, the total time of a route and the

actually time a driver is behind the wheel must adhere to certain legal restrictions and

union regulations.

To model the RRDP, we first construct a route diagram in the form of a directed

network in which each order is represented as a node and where the arcs capture possible

transitions between the nodes. Based on this diagram, we develop a mixed-integer

program (MIP) for the problem. However, because it was not possible to obtain

solutions for realistic instances with a commercial code, we developed a greedy

randomized adaptive search procedure (GRASP) following the work Kontoravdis and

Bard (1995) and Solomon (1988). In the construction phase, GRASP exploits the

unsurprising observation that orders for the same store are usually served by the same

route in high-quality solutions. In the improvement phase, we initially relied on tabu

search to find local optima; however, we discovered that every solution is likely to have

many degenerate neighbors, i.e., neighbors with the same cost as the current solution.

This limits the extent to which the feasible region can be locally explored. To overcome

this difficulty, we implemented a randomized variable neighborhood search as well as

several augmented versions of tabu search.

Extensive testing was done to determine the best combination of procedures.

The results showed that GRASP with tabu search in phase II edged out pure tabu search

with random variable neighborhood search when both procedures were run for 30

minutes. In a second set of tests, we compared the GRASP solutions with those

provided by Kroger, the sponsoring company, and found that cost reductions averaging

$2737 or almost 3% per day can be obtained with our methods.

With this in mind, the contributions of the paper are fourfold: (1) we study a new

version of a pickup and delivery VRPTW in which vehicle capacity is order dependent;

 88

(2) we develop several solution methodologies that integrate a number a metaheuristic

ideas; (3) we provide extensive comparisons of alternative implementation approaches;

and (4), we compare the solutions obtained with our best algorithm with those actually

used and with those obtained with an experimental set-partitioning code.

The rest of the chapter is organized as follows. Section 4.2 presents the literature

review and Section 4.3 gives a formal description of the RDDP. This is followed by our

MIP formulation in Section 4.4 and the development of alternative solution

methodologies in Section 4.5. In phase I of the GRASP, feasible solutions are

constructed by sequentially inserting orders into existing routes, and in phase II we

propose a variety of local improvement methods. Test results are included in Section 4.6

using seven days of data provided by Kroger, one of the largest grocery chains in the U.S.

We close in Section 4.7 with some insights and suggestions for future research.

4.2. RELATED LITERATURE

The past two decades have witnessed an outsized interest in the VRPTW and its

variants. Both branch and cut (e.g., see Bard et al. 2002, Kohl et al. 1999, Lysgaard

2004) and branch and price (e.g., see Bard et al. 2014, Desaulniers et al. 2008, Azi 2010)

have been applied successfully to find exact solutions to instances with a 100 or more

nodes. As a variation, Prescott‐Gagnon et al. (2009) developed a large neighborhood

search algorithm that takes advantage of the power of branch-and-price. For more

information about the exact solution method, see the surveys by Baldacci et al. (2012)

and Kallehauge (2008).

Various heuristics have also been proposed for the VRPTW. Bräysy and

Gendreau (2005a, 2005b) present an extensive survey of related research that covers

route construction algorithms, local search algorithms, and metaheuristics. Solomon

 89

(1987) discusses and compares several solution-construction approaches including saving

heuristics, a nearest-neighbor heuristic, and insertion heuristics. He found that an

insertion-type heuristic consistently gave good results. Various local search methods

have also been developed to improve the solution. Rochat and Semet (1994) present an

insertion procedure to construct an initial solution followed by tabu search to improve the

incumbent. Taillard (1995) developed two partition methods to speed up the tabu search

for VRPs. Other variants of local search applied to these problems include granular tabu

search (Toth and Vigo 2003), variable neighborhood search (Kytöjoki et al. 2007), and

large neighborhood search (Ergun et al. 2006). Also see Kontoravdis and Bard (1995)

for a GRASP to solve the VRPTW and Nagata et al. (2010) for a memetic algorithm.

An expansion of reverse logistics activities has led to a renewed interest in the

study of the VRP with pickup and deliveries (PDP), that is, a VRP with demand for two

types of services. Berbeglia et al. (2007) and Parragh et al. (2008a and 2008b) present

extensive surveys. Depending on the problem context, some studies only allow vehicles

to perform pickups after all the deliveries are made (e.g., see Thangiah et al. 1996), while

others allow simultaneous pickups and deliveries (e.g., Bianchessi and Righini 2007 and

Tasan and Gen 2012). Various heuristics have been proposed to solve the PDP. Bent

and Hentenryck (2006) present a two-stage hybrid approach in which a single simulated

annealing algorithm is used in the first stage to decrease the number of routes, while large

neighborhood search is used in the second stage to decrease total travel cost. Bianchessi

and Righini (2007) present and compare construction algorithms, local search algorithms,

and tabu search. Their computational results give experimental evidence that local

search with complex and variable neighborhoods yields good solutions that are very

robust. Recently, Tasan and Gen (2012) developed a genetic algorithm and Goksal et al.

(2013) present a heuristic based on particle swarm optimization.

 90

Researchers have also investigated more specialized models designed to

accommodate practical restrictions. Using adaptive large neighborhood search, Pisinger

and Ropke (2007) solved several variants including VRPs with multiple depots. Lau et

al. (2003) provided a computable upper bound on the total number of customers that can

be served by a given fleet size and designed a tabu search algorithm to solve the VRPTW

with a minimum travel time objective. Penna et al. (2013) considered a VRP in which

clients are served by a heterogeneous fleet with distinct capacities and costs. Vidal et al.

(2013) proposed a hybrid genetic algorithm for multi-depot and periodic VRPs. For

more specialized applications, see Golden et al. (2008). Nowak et al. (2008)

demonstrated the benefit of using split loads for the PDP, while Nagy et al. (2013) was

concerned with the level of savings that can be achieved by allowing the pickups and

deliveries to be served separately as opposed to simultaneously. The VRPTW that we

investigate requires all deliveries be made before any pickups, although we do allow split

deliveries (cf. Mitra 2008).

In a recent study, Qu and Bard (2013) addressed a VRP in which the interior of

the vehicles could be reconfigured to accommodate different structural loads. Their

constraints were similar to but less complex than ours. Solutions were found with an

adaptive large neighborhood search heuristic for an application in which members of a

senior activity center had to be transported to and from the center as well as to secondary

facilities for rehabilitative and medical treatment. The number of persons and support

equipment that a van could carry was a function of how it was configured.

4.3. PROBLEM DESCRIPTION

The RRDP, as an extension of the traditional VRPTW, requires the scheduling a

set of configurable vehicles to deliver orders from a warehouse to geographically

 91

dispersed locations, and then to pick up items at a subset of those locations on the return

trip to the warehouse. Each location or store s  S has a time window [as, bs] during

which either loading or unloading can begin. If a driver arrives prior to as, he has to

wait, thus incurring unit idle time cost of. For each day in the planning horizon, the

objective is to minimize the total cost of a schedule, which is a function of the total time

of each route in the schedule.

Besides the constraints common to the generic VRPTW, the RRDP under

consideration must also satisfy the following sets of constraints, which capture the

operational requirements associated with retail inventory replenishment.

(1) Loading capacity at the warehouse. Orders must be pulled from the

warehouse and delivered to the dock by the material handling equipment. These

operations take roughly the same amount of time for each trailer. Since the material

handling equipment has limited capacity, only a certain number of trailers can be loaded

simultaneously. Accordingly, we divide the available operating time at the warehouse

into a set of time periods 30 minutes in length, and restrict the number of routes that can

be assigned to each period to some maximum, n
load

 (= 20).

(2) Loading and unloading time at the stores. There are two components to

consider: a fixed setup time and order-specific variable time. The fixed setup time is

incurred only when a truck starts to deliver orders for a store. The variable time of each

order is proportional to its volume.

 (3) Time limits. Each route must adhere to an upper limit of 10 hours on driving

time (which does not include waiting time a store prior to the beginning of the time

window or waiting at the warehouse) and total time that a truck is on the road. The

Federal Transportation Administration allows up to 14 hours on the road.

 92

(4) Delivery order sequence restrictions. There are three categories of delivery

orders, namely, frozen, refrigerated and grocery, and one category for pickups called the

salvage order. The sequence in which the delivery orders can be loaded onto a trailer,

starting from the front, must be frozen, refrigerated, and grocery. Salvage pickups can

only begin after all deliveries are made and the truck is empty. Each order has a weight

and volume, but the corresponding values for salvage orders are small in comparison to

the size of the truck and therefore are ignored.

(5) Volume reduction. For a trailer carrying grocery orders together with

refrigerated or frozen orders, a curtain is necessary between them. Curtains are also

placed between orders for different stores. Each curtain reduces the total available

volume of a trailer in a nonlinear way.

(6) Capacity. The total volume and weight of the orders on a trailer must not

exceed their respective limits.

(7) Maximum number of stores per route. To reduce the excessive traveling

between stores, there is a limit on number of delivery stores a truck can visit and a limit

on the number of pickup stores a truck can visit.

In practice, some of these constraints are often treated as soft by the scheduling

office. For example, we found that the mixed use of two sets of time windows are

common at Kroger. “Short” time windows are standard but in some cases, they are

extended by moving up ai to create “long” time windows. Introducing more flexibility

may significantly reduce the cost of a schedule. We examined this case as well as an

intermediate case in which only a certain portion,  (= 20%), of the routes are permitted

to use the long time windows.

 93

4.4. MATHEMATICAL FORMULATION

The RRDP can be modeled on a directed network with nodes representing the

different categories of items for which demand exists at each store, and the salvage orders

that are to be picked up on the return to the warehouse. In Section 4.4.1, we define a

route diagram G = (V, A) that captures precedence requirements among orders. This is

followed in Section 4.4.2 by the presentation of the mixed-integer programming model

for the problem.

4.4.1. Route diagram

The sequence in which orders are loaded onto the truck determines the sequence

in which deliveries are made. The requirement is that all orders of a particular type be

unload before orders of a different type are unloaded. The sequence is groceries

followed by refrigerated orders and then with frozen orders. To capture this precedence

relationship, we now define the route diagram G = (V, A).

Assume that S is the set of all stores. To facilitate the presentation, we assume

that all stores have a grocery order, a refrigerated order, a frozen order, and a pickup

order. In the most general case, then, the network has four nodes for each store s ∊ S,

denoted by s-G, s-R, s-F, and s-P, corresponding to its grocery, refrigerated, frozen, and

pickup orders respectively. Assume that this gives a total of N nodes. The network also

contains a starting node, denoted by node 0, to represent the warehouse where the

vehicles begin their route and an ending node, N+1, also representing the warehouse but

where the vehicles end their route.

The possible sequences of the deliveries are enforced by the arcs in the network.

For each store s ∊ S, we create one arc from node 0 to each of its order nodes s-G, s-R, s-

F and s-P; similarly, we create one arc from each of its order node to node N+1. For

each store s ∊ S, Table 7 identifies all possible arcs emanating from its order nodes to

 94

other nodes in the network. From node s-G, arcs connect to grocery nodes at other

stores and to refrigerated, frozen and pickup nodes at s and other stores, i.e., refrigerated,

frozen, and pickup nodes; from node s-R, arcs connect to refrigerated order nodes at other

stores and to frozen or pickup nodes at s and at other stores; from node s-F, arcs connect

to frozen order nodes at other stores and to all pickup nodes; from node s-P, arcs only

extend to pickup nodes at other stores.

Table 7. Arcs emanating from order nodes at store s

Node Arcs

s-G
(s-G, r-G) for r ∊ S \ {s}

(s-G, r-R), (s-G, r-F), and (s-G, r-P) for r ∊ S

s-R
(s-R, r-R) for r ∊ S \ {s}

(s-R, r-F), and (s-R, r-P) for r ∊ S

s-F
(s-F, r-F) for r ∊ S \ {s}

(s-F, r-P) for r ∊ S

s-P (s-P, r-P) for r ∊ S \ {s}

Figure 25 depicts an example of possible transitions in the route graph. Panel (a)

identifies the nodes associated with a store along with the connecting arcs. The network

in panel (b) contains the arcs listed in Table 7, as well as the arcs (dashed lines) between

node 0 and order nodes and arcs (dotted lines) between order nodes and node N + 1. To

avoid clutter, the arcs between pairs of nodes at the same store are not shown. Each path

from node 0 and N + 1 in the network corresponds to a vehicle route. For example, path

(0, s-G, r-G, r-F, r-P, s-P, N + 1), as shown in Figure 26, corresponds to a vehicle that

visits the stores in the following sequence: (1) leave the warehouse, (2) visit store s to

deliver grocery order, (3) visits store r to deliver grocery order, (4) remains at store r to

deliver frozen order, (5) pick up salvage order at store r, (6) pick up salvage order at store

s, and (7) return to the warehouse. Figure 26 illustrates the path in more detail.

 95

a. Route arcs for a store

b. Route arcs between two different stores

Figure 25. Example route network for two stores

Figure 26. Example path (0, s-G, r-G, r-F, r-P, s-P, N + 1)

4.4.2. Mathematical formulation

In this section, we provide a MIP formulation of the RRDP using the notation

listed below.

 96

Indices and sets

i, j index for nodes in the route network (source, order, and sink)

s index for stores

k index for vehicles

p, q index for vehicle depart time periods from the warehouse

c(i) index for the order type associated with node i

C set of order types; C = {1: frozen, 2: refrigerated, 3: grocery, 0 pickup}

DO set of deliver order nodes

K set of vehicles

Os set of order nodes for store s

O set of order nodes; O = DO  PO

()O i set of order nodes that can immediately follow node i on a route; for any node

j∊O
+
(i), we must have ˆ

i ij ja b  to meet the time window constraint (see

below for symbol definitions)

()O i set of order nodes that can immediate precede node i on a route; for any node

j∊ ()O i , we must have ˆ
j ji ia b  to meet the time window constraints

P set of departure time periods from the warehouse for a vehicle

PO set of pickup order nodes

S set of stores

Parameters

aj start time of time window for order at node i

bj end time of time window for order at node i

h loading or unloading rate (ft
3
 per hour) at the stores

 setup time to start loading or unloading at a store

vi volume (ft
3
) of the order associated with node i

 97

wi weight (lb) of the order associated with node i

ij 1 if nodes i and j correspond to different locations, 0 otherwise.

ij 1 if nodes i and j are such that c(i) = 3 and c(j) ∊ {2, 1}, and 0 otherwise

ij 1 if nodes i and j are such that c(i) = 2 and c(j) = 1, and 0 otherwise

Mij sufficiently large number associated with arc (i, j)

ij travel time between nodes i and j

îj total time incurred in traversing arc (i, j), accounting for service time at the

location of node i (if any), travel time between nodes i and j, and setup time at

the location of node j (if any); specifically, îj = ij +  if i = 0, îj = vi + ij

if j = N+1, and îj = hvi + ij + ij otherwise.

n
load

 maximum number of trailers that can be loaded simultaneously (n
load

 = 20)

endp end time for departure period p ∊ P

startp start time for departure period p ∊ P

tlimit1 limit on driving time per route (10 hours)

tlimit2 limit on total time per route (14 hours)

vcap volume capacity of a trailer (2000 ft
3
)

wcap weight capacity of a trailer (42000 lb)

dcap maximum number of delivery stores allowed per route

pcap maximum number of pickup stores allowed per route

vred0 reduction in volume capacity due to carrying refrigerated commodities in

addition to frozen commodities on the same trailer (ft
3
)

vred1 reduction in volume capacity due to carrying groceries in addition to frozen

and/or refrigerated commodities on the same trailer (ft
3
)

vred2 reduction in volume capacity of a trailer for each additional store visited

beyond the first store (ft
3
)

 98

ˆ
ij travel cost between nodes i and j; note that the cost is 0 if order nodes i and j

correspond to the same store

ij cost for traversing arc (i, j), consisting of three components: (i) servicing cost

at node i (if any), (ii) travel cost going from node i to node j, and (iii) the setup

cost at node j

 unit cost for driver idle time at a store incurred prior to the start of

loading/unloading an order (dollars per hour); no cost is incurred at the

warehouse if there is idle time before departure

Decision variables

e
k
 time at which route k returns to the warehouse

s
k
 time at which route k departs the warehouse

ti time at which service starts (either unloading or loading) at node i

k

ijx 1 if route k visits node i and j in succession, 0 otherwise

k

py 1 if route k is assigned to departure time period p at the warehouse, 0

otherwise

zi idle time incurred prior to fulfilling the order associated with node i

Model RRDP

Minimize 0 0 , 1 , 1

()

i

k k k

j j ij ij i N i N

k K j O i O i O i OO ij

x zx x   


 

    

 
  



 


      (4.1)

subject to

Demand and flow balance constraints

,

()

1 1k

ij

k K k KO i

k

i N

j

xx i O
 

      (4.2)

, 1 0

() ()

0 ,k kk k

i N i

j O i i

ij ji

j O

x x k K i Ox x
 



 

        (4.3)

 99

Time window constraints

ˆ (1) , , ()k

ij ij ij ji M x t k K O j O it i        (4.4)

0 0 0
ˆ (1) , (0)k

j

k

j j jM x t k K j Os        (4.5)

, 1 , 1 , 1
ˆ (1) , (1)k k

i N Ni i N iM x e k K i O Nt  

         (4.6)

()

(1)i i j

k

i ji

k j

i ji

K O i

a xt b M i O
 

       (4.7)

Warehouse handling capacity constraints

load

1

p

k

q

q

k

K

p n py P
 

   (4.8)

,k k

p p p p

p P p

k

P

start y end y ps k K P
 

      (4.9)

1
P

k

p

p

y k K


   (4.10)

0

k k

p i

p P i O

y x k K
 

    (4.11)

Trailer capacity

, 1

()

k k

ij i N

i DO O

i

ij

x x wcap kw K




 

 
 

 


 

  (4.12)

, 1

()

k k

ij i N

i PO O

i

ij

x x wcap kw K




 

 
 

 


 

  (4.13)

 2

() { 1} (

0 1

)

k k

ij ij ij ij ij

i DO O i N j O i D

i

Oj

x vred x vcap kv vred vred K
      

 
      

 

    (4.14)

, 1

()

k k

ij i N

i PI O i

i

j

x x vcav p k K




 

 
  






    (4.15)

Route time limits

0 , 1 , 1 1

(

0

)

k k

j ij ij i N i N

j O i O ij

j

O

k

Oi

x x tlimit k Kx  


 

  

        (4.16)

2

k k tlimite s k K   (4.17)

 100

Idle time constraints

ˆ (1) , \{0}, ()k

ij ij ij j ji M x z t k K i O j Ot i         (4.18)

0 0 0
ˆ (1) , (0)k

j j j

k

j jM x z t k K j Os         (4.19)

Limit on number of stores

()

1k

ij ij

i DO j O i DO

x dcap k K
  

     (4.20)

()

1k

ij ij

i PO j O i PO

x pcap k K
  

     (4.21)

Variable definitions

{0,1} , , ()k

ij k K i O j ix O    

0 , 1, {0,1} , k k

i i Nx x k K i O    

{0,1} ,k

p k p Py K   

0,k k ks e K  

0,i i it z O   (4.22)

The objective function (4.1) has two terms. The first minimizes the cost of

traversing the arcs between each pair of successive nodes in a route. The second

penalizes the idle time incurred prior to fulfillment of orders, and indirectly reduces the

total time drivers must wait at a node before service can begin.

Constraints (4.2) require that each order node i has exactly one successor, while

constraints (4.3) enforce flow balance for each route k in a solution. That is, for route k,

order i is either succeeded by some other order node j or by node N+1, and analogously,

is either preceded by some order node j or by node 0.

The next set of constraints enforces the time windows. Constraints (4.4) ensure

that if order node j is the immediate successor of order node i on route k (i.e., 1k

ijx ),

then service cannot begin for node j before the vehicle travels from node i to node j. The

definition of îj ensures that tj – ti is large enough to (1) unload the order corresponding

 101

to node i, (2) transit from i to j, and (3) unload or unload items at node j. When 0k

ijx  ,

implying that j is not an immediate successor of i, constraints (4.4) becomes redundant

for sufficiently large parameter Mij. Here, Mij = max{ îji jab   , 0}. Constraints (4.5)

and (4.6) are identical to (4.4) but explicitly enforce the first and last orders on route k,

respectively.

Constraints (4.7) make the time windows requirements redundant for second and

third orders on a particular vehicle at the same location i. We only want the time

window constraints to be active for the first delivery to a store for each vehicle. Consider

the situation where 1k

ijx  . If ij = 0, i.e., i and j correspond to the same store, then (4.7)

is redundant; otherwise, it is equivalent to ii ia t b  . As we know, if ij = 1, then Mij

can be any arbitrarily large value. To see the values of Mij, let’s see a store with grocery,

refrigerated, frozen, and salvage orders, denoted as orders 1, 2, 3, and 4 respectively.

Thus, we must have 11 ,

1j

ji l l l ijM  


   . For example, we have M34 = 12 + 23 + 34.

If a truck k pickup order 4 after serving order 3 (frozen order), i.e., 34 1kx  , the time to

start pickup order 4 can be as late as b4 + 12 + 23 + 34, which happens when truck k

delivers orders 1, 2, 3, and picks up 4.

Constraints (4.8)-(4.11) are used to spread out route start times so as not to

exceed the retrieval and loading capacity of the material handling equipment at the

warehouse. In particular, constraints (4.8) assign the vehicles to the various possible

departure periods such that the cumulative number of vehicle departures during the first

period through any subsequent period does not exceed the warehouse loading capacity.

Written in this fashion, the constraints allow for trailers to be loaded early and then depart

at a later time, thus making more efficient use of the material handling capacity.

Constraints (4.9) require each route to start within the departure period it is assigned to,

while constraints (4.10) require that each route be assigned to no more than one

 102

departure period. Finally, constraints (4.11) ensure that if a route is started, it is

assigned to one of the departure periods.

Constraints (4.12)-(4.15) enforce the weight and volume capacities of each

trailer. Constraints (4.12) require the total weight of the delivery orders to be within the

weight limit for the trailer, while constraints (4.13) do the same for the pickup salvage

orders. Constraints (4.14) enforce the volume limit for the delivery orders, while

capturing the reduction in trailer capacity due to the need for separation curtains. The

second term on the left-hand side is associated with the volume capacity reduction

resulting from having groceries in addition to refrigerated and/or frozen items on the

same trailer, having refrigerated items in addition to frozen items on the same trailer, and

serving two or more stores with the same trailer. Note that for each route k ∊ K., the

sequencing requirement of orders in the trailers guarantee that

()
1k

ij iji DO j O i DO
x  

   . Thus, the volume reduction vred0 and vred1 are each

counted at most once in route k. Constraints (4.15) enforce the overall volume

limitation for the pickup orders.

Constraints (4.16) and (4.17) impose the driving time and total time limits for

each route, respectively. Constraints (4.18) and (4.19) account for driver idle time

prior to fulfilling the first order associated with node j when node i is a store and the

warehouse, respectively. When 1k

ijx  , constraints (4.18) become îj j ji zt a   ,

where zj represents the idle time before service at node j can begin in a cost-minimizing

solution. When 0k

ijx  , constraints (4.18) are redundant for sufficiently large Mij.

Here, Mij = max{ îjj iba   , 0}.

Constraints (4.20) and (4.21) enforce the limit on the number of stores that a

vehicle can visit for deliveries and pickups, respectively. Constraints (4.20) ensure that

the number of transition arcs between delivery order nodes and between different stores

 103

does not exceed dcap – 1, thus enforcing the upper bound dcap. In the same way,

constraints (4.21) limit the number of pickup stores on a route to pcap. Finally, variable

definitions are given in (4.22).

Note that in model RRDP, we assume that the reduction in volume due to the

separation of order types for a given store as well as between stores is independent. In

our application, volume reduction is a function of the number of order types and the

number of stores visited (e.g., see Table 10 in Section 4.6). Modeling this aspect of the

problem, however, requires defining new binary variables and enforcing additional

constraints, and was omitted to avoid unnecessarily complicating the presentation. A

second feature also omitted for the same reason is the option to choose among multiple

time windows at each store. As mentioned, longer time windows give more flexibility

and are occasionally used by the sponsoring company.

4.5. SOLUTION METHODOLOGY

Model RRDP turned out to be unsolvable with commercial software for instances

of practical size. A typical realization has more than 50,000 arcs in the route diagram

and may require 100 vehicles (or more), giving upwards of 5×10
6
 variables and 1×10

7

constraints. Moreover, it is difficult to derive a good upper bound on the number of

vehicles required in an optimal solution. The number of vehicles available in practice or

the number of vehicles that can be loaded per unit time both give a bad bound. Due to

these difficulties, obtaining exact solutions using a standard MIP solver is out of reach.

As an alternative, we have developed a GRASP to find high quality solutions, at least

from a practical point of view.

 104

4.5.1. GRASP

GRASP is a metaheuristic that combines greedy heuristics, randomization, and

local search, and has been widely applied to combinatorial optimization and industry-

based problems (Festa and Resende 2009). Each iteration consists of two main phases:

solution construction and local search. In phase I, solutions are built iteratively by

randomly selecting one or more elements from a candidate list of good choices.

Multiple runs lead to different solutions thus allowing a large portion of the feasible

region to be explored. In phase II, local search is applied to improve the promising

solutions uncovered in phase I. Depending on the size of the problem and how

neighborhoods are defined, the algorithm may or may not converge to a local optimum.

The process is repeated many times and the best solution is returned. As noted

by a number of researchers, many successfully GRASP applications to variants of the

VRP have been reported (e.g., see Kontoravdis and Bard 1995, Carreto and Baker 2001,

Nguyen et al. 2012). Its main advantage over other metaheuristics is its ability to

generate many good alternative solutions, which is important for routing applications

since travel times are often estimates that can vary widely depending on time of day, road

structure, speed limits, and weather.

Compared to local search alone, GRASP has two general advantages. First, it

can make better use of parallel computing when multiple cores are available as was the

case in work. Different cores can run different programs independently, thus speeding

up the computations. Specifically, many phase I and phase II iterations can run

simultaneously. In contrast, pure local search, which seeks to improve a given solution

is sequential in nature and so cannot be effectively parallelized. Second, GRASP

investigates a large number of initial solutions rather than just one. In our experience,

 105

where you start is often highly correlated with solution quality (e.g., see Bard et al. 1998,

Deng and Bard 2011, Bard et al. 2014).

Similar to Kontoravdis and Bard (1995), our phase I procedure begins by

initializing a number of seed routes and then iteratively assigning one delivery or pickup

node to one route at a time subject to certain selection rules. If a node cannot be inserted

into an existing route, a new route is started. This process is repeated until all nodes are

assigned to some route. Phase II tries to improve every solution found in phase I with a

local search procedure. To avoid overly complicating the logic, we only consider the

short time window option during phase I and ignore the material handling capacity at the

warehouse. As a consequence, the solution found may not necessarily be feasible since

there may be more routes identified than the material handling equipment at the

warehouse can handle in a day. To address this issue, a route elimination procedure is

called during phase II that allows for the use of long time windows. In Section 4.5.2, we

discuss phase I, the solution construction procedure, and in Section 4.5.3, we discuss

phase II, local search.

As implemented, GRASP terminates when one of the following two conditions is

met: i) a maximum runtime of 30 minutes is reached; ii) a total of M phase I and phase II

iterations are executed. In Appendix B we show that the complexity of the procedure is

polynomial under these stopping rules.

4.5.2. Phase I: solution construction

4.5.2.1. Seed route generation

As with many construction heuristics, phase I of our GRASP starts with a set of

seed routes which are used to iteratively build a solution based on the opportunity cost of

adding an order to a route. To construct seed routes, Solomon (1987) suggests two

 106

possible strategies: maximum distance from the depot and earliest deadline.

Kontoravdis and Bard (1995) select seed locations (stores) that are either the most

geographically dispersed from each other or the most time constrained. In our context,

there are several orders for a store so it would be suboptimal to select two seed routes to

serve two different nodes associated with the same store. To avoid this situation, we

adopt a strategy that first selects a set of seed stores and creates one seed route for each.

When selecting the seed stores, we consider two criteria: (i) geographically separation,

and (ii) the volume of the orders – large is better. Kontoravdis and Bard demonstrated

that geographically dispersed seeds can generate high quality solutions. Comparing

volume to weight, we found that the former is generally the limiting factor so focusing on

large volume orders first helps minimize the number of vehicles required to cover

demand. This is important in our application because the warehouse can only handle a

limited number of vehicles within the 13-hour dispatching time window.

The number of seed routes is calculated using the lower bounding procedures

presented by Kontoravdis and Bard. Specifically, we perform the following calculations

and take the largest bound as the final number of seeds.

 Volume capacity bound: only the volume of a vehicle is considered; all other

constraints, including separations between different orders and stores, are ignored.

In this way, the problem is reduced to a bin packing problem. Since no volume

separation is considered, the bin capacity corresponds to the capacity of the truck.

 Weight capacity bound: this bound only considers the weight capacity of the

vehicle. Similarly, a bin packing problem is solved to get a bound.

 Driving time bound: this bound considers the total driving time limit for a driver.

We use s to denote the amount of time needed to go from store s to its closest

 107

neighbor. Solving a bin packing problem with bin capacity tlimit1 and items of

size s, s ∊ S gives a lower bound on the number of vehicles.

 Total time bound: this bound considers the total time limit from and back to the

warehouse. Here, s denotes the minimal amount of time needed to start serving

orders in other stores or to return to the warehouse after completing an order at store

s. Note that s accounts for both the travel time between stores and any waiting

time that is required. Solving the following bin packing problem with bin capacity

tlimit2 and items of size s, s ∊ S gives a lower bound. Since we usually have

tlimit1 < tlimit2, neither time bound dominates the other.

Given that solving the above bin packing problems exactly may be too time

consuming, we use the algorithm given by Martello and Toth (1990) to generate

approximate solutions.

Our seed selection procedure starts by ranking the stores by the volume of their

orders. Those at the top of the list whose total delivery volume cannot be served by a

single vehicle are identified and then each is disaggregated into one or two orders whose

volume does not exceed the capacity of a truck after reductions are taken into account.

These orders form the core seeds and are placed in the set SE. Other stores are iteratively

added with the objective of maximizing the total distance of each candidate from those

already selected until n seeds have been chosen, where n is a computed lower bound on

the required number of vehicles. Because our data sets do not include exact store

coordinates, it was not possible to generate geographically dispersed seeds using the

convex hull of the stores. Instead, we use a greedy procedure: at each step a new seed is

selected such that it maximizes the minimum distance to those in the set SE.

In the presentation, we now let ij be the travel time between stores r and s rather

than the travel time between nodes i and j. Figure 27 highlights the algorithm. Step 1

 108

identifies stores that cannot be served by a single vehicle because of their excessive

volume and adds them to the set of seed stores, SE. Step 2 initializes the set of seeds and

the minimum travel time t(s) from store s to the seed stores. If store s is a seed store, we

set t(s) = 0. Step 3 sequentially adds seed stores based on the value of t(s); the store with

maximum t(s) is selected at the current iteration.

Procedure_Seed_Store_Selection

Input: Set of unscheduled stores S

 Number of seed routes n (this value is based on lower bound calculations

given below.)

Output:Set of seed stores SE

Step 1: Set SE = Ø

 For s ∊ S

v(s) = volume required for orders at s, including separation between

different types

If v(s) > vcap

 add s to SE

Step 2: For s ∊ S \ SE

 t(s) = min{si : i ∊ SE} for all s ∊ S \ SE

Step 3: While |SE| < n

q = argmax{t(s) : s ∊ S \ SE}

If t(q) ≠ 0, then

 SE = SE  {q}

 t(q) = 0

 t(s) = max{t(s), sq} for all s ∊ S \ SE

Else

 Terminate

Figure 27. Procedure to select seed stores

After selecting the seed stores, we need to construct a route for each seed store.

Two strategies were considered. In the first case, we only use one node from each seed

store to initialize a route. For store s, we pick the order i = argmax{vi : i ∊ Os}, i.e., the

order with largest volume. In the second case, we use multiple orders to initialize the

routes. For store s, we pick a combination of orders that are within the volume and

 109

weight limit and that uses as much of the available volume capacity as possible while

ensuring that the weight limits are not exceeded. Potentially, this strategy has the

following advantages.

 Reduce unnecessary traveling between stores. Accordingly, we can save both

traveling time and traveling cost.

 Reduce the separation volume between different stores whose orders are on the

same vehicle. Since volume is the primary bottleneck, we reduce the possibility

that more vehicles will be required than the warehouse can handle.

 Reduce driver idle time. As indicated by constraints (4.7), the time window for a

store is only enforced for the first order at that store. When a vehicle finishes

unloading an order at a given store, it can continue with any additional orders for

that store without considering the time window. In contrast, when a vehicle

completes an order at one store and moves to another, the time window must be

observed at the latter store.

Our computational study confirmed that it is usually better for a single vehicle to

serve multiple orders (nodes) at the same store rather than splitting those orders among

vehicles. Figure 28 describes how we generate a seed route with multiple nodes at seed

store s. Step 1 sorts the delivery order nodes for store s in decreasing value of volume

and initializes the seed route. Since the volume is the main capacity bottleneck, Step 2

iteratively adds order nodes to the route as long as there is sufficient room on the truck.

Procedure_Multi-node_Seed_Route_Generation

Input: Seed store s

Output:A seed route 

Step 1: Os, = the delivery nodes for store s

Sort Qs in decreasing order of volume.

 Create an empty route 

 = 

Step 2: For each node i ∊ Os,

 110

 Let 1 = the route after adding order node i to route 

 If the volume of route  ≤ vcap or weight of route 1 ≤ wcap

 set 

Figure 28. Procedure to generate a multi-node seed route

4.5.2.2. Route construction

After initializing the seed routes, we construct a feasible solution by sequentially

assigning other order nodes to either existing routes or to new routes. One key element

of this procedure is how to define the opportunity cost of inserting an unassigned order

into partially built route. We adopt one of the approaches of Solomon (1987) because it

has been seen to generate good initial feasible solutions. To facilitate future discussion,

let be the index for a vehicle route that consists of an ordered set of transition arcs

which start and end at the warehouse. Also, let  be the set of routes in a complete or

partial solution, and ij be the route to which arc (i, j) belongs.

We call inserting node k into arc (i, j) feasible if the augmented route is feasible

(of course, we mean that node k is being inserted between nodes i and j). Figure 29

describes the feasibility check. It first determines if the weight and volume limits of the

vehicle are violated, then determines whether the number of pickup stores and the

number of delivery stores are within limits, and finally determines if the time window of

each node on the route is met. It is easy to see that the complexity of the procedure is

O(|A|) where | A is the number of arcs in route . If inserting node k into arc (i, j) is

feasible, we associate an opportunity cost, with it, denoted by cij,k. This cost consists of

two parts: (i) opportunity cost due to reduced capacity of the vehicle, denoted by
1

,ij kc ,

and (ii) change in travel and waiting cost after inserting the new node, denoted by
2

,ij kc .

Since the volume and weight of pickup orders are negligible and therefore taken to be

zero in the model, we define
1

, 0ij kc  if k is a pickup order.

 111

Procedure_Check_Route_Feasibility

Input: Route A(i1, j1) - … - (iK, jK), where K is the number of arcs in route 

Output:<true> if route  is feasible, <false> otherwise

Step 1: If total weight of route  > wcap or total volume of route  > vcap, then

Return <false> and stop.

Step 2: If number of delivery stores in route  ≥ dcap or number of pickup stores

in route  ≥ pcap

Return <false> and stop.

Step 3: //check if the time window of each order node can be satisfied

 t = 0

 For (i, j) ∊ A

 t = max(ak, t + îj)

 If t > bj, then return <false> and stop.

 Return <true>

Figure 29. Procedure to check if a route is feasible

Given that the available volume and weight of a vehicle are highly correlated and

that the volume capacity is usually the bottleneck, we use the volume capacity when

calculating cost
1

,ij kc for delivery order k. As with bin packing heuristics, a rule of

thumb in defining
1

,ij kc is that we should assign orders with larger volume a smaller

opportunity cost so that they are inserted into routes earlier during construction;

otherwise, additional routes might be needed at additional expense. Accordingly, we

define
1

, () /ij kc vcap v vcap  , where v is the volume of route ij after inserting node k.

Cost
2

,ij kc measures the change in the actual cost after inserting node k into arc (i, j). If

such an insertion is not feasible, we set
2

,ij kc = ∞; otherwise, we have

2

, ,()ij kj ij ij k ijij k zc z       ,

where zij is the total waiting time in route ij, and zij,k is the total waiting time after

inserting k into arc (i, j). The total cost of an insertion is then
1 2

, , ,ij k ij k ij kc c c  , where 

is a capacity reduction parameter whose value reflects the relative importance of volume

reduction versus the change in cost after node insertion. When  is large, more emphasis

 112

is placed on inserting large orders into the route earlier, and vice versa when  is small.

Different problem contexts may require different values of  so parameter tuning is

necessary before using the procedure.

We now define the opportunity cost of inserting node k into route , denoted by

c, k, as the minimum cost that can be achieved by such an insertion:

,
(,)

,mink
i j

ij kc c




Accordingly, we can find the best route in which to insert node k as follows.

*

,arg min{ : }kc  

To decide which node should be inserted first, we define the opportunity cost of inserting

node k into route * as

 *, ,k k k
c c 

  

To summarize, the above symbols have the following meaning.

 index for routes

 set of routes in a complete or partial solution

i route to which node i belongs

cij, k opportunity cost of inserting node k into arc (i, j)
1

,ij kc opportunity cost due to reduced capacity of a vehicle after inserting node k into

arc (i, j)
2

,ij kc travel and waiting cost change after inserting node k into arc (i, j)

c, k opportunity cost of inserting node k into route 
*

k best route to insert node k

k opportunity cost of inserting node k into route *

k

The procedure to construct an initial solution is summarized in Figure 30. Step 0

fixes the number of seed routes to generate, while Step 1 initializes the seed routes and

calculates the opportunity cost of inserting each unassigned node into each seed route.

Step 2 checks to see if there is any node that cannot be assigned to an existing route; if

such a node exists, a new route is created. Step 3 finds the smallest opportunity cost for

each unassigned node. Step 4 randomly selects one unassigned node from the restricted

 113

candidate list consisting of the  smallest opportunity cost nodes. Step 5 updates the

opportunity cost for the new or modified route. In Step 6, if the number of routes

generated is greater than the number of seeds, nS, the process is restarted using the

increased number of routes as the new number of seeds; otherwise, the procedure

terminates. Step 6 is motivated by the idea that creating more seed routes at the

beginning of the procedure will provide more flexibility during solution construction and

thus provide a better result.

 114

Procedure_Generate_Initial_Solution

Input: Set of unscheduled nodes OU; integer parameter 

Output: Set of feasible routes  serving all stores and demands

Step 0: n1 = volume capacity bound on the number of vehicles

 n2 = weight capacity bound on the number of vehicles

 n3 = driving time bound on the number of vehicles

 n4 = total time bound on the number of vehicles

Set number of seed routes n
*
 = max{n1, n2, n3, n4}

Step 1: Generate n
*
 seed routes to form the set 

For each k ∊ OU and each route ∊ , determine

 , (,) ,mink i j ij kc c 

Step 2: If there is a node k
*
 ∊ OU with c, k = ∞ for all  ∊ , then

 Create a new route serving node k
*
 and denote as k*


 Put OU  OU \ {k

*
} and   {k*

}

 Go to Step 5

 Else

 Go to Step 3

Step 3: For each unassigned node k

 Find the cost * , ,min kk
c c  

 Find the opportunity cost  *, ,k
k k k

c c 
  

Step 4: Sort OU by increasing value of k

 Set *
 = min{, |OU|}

 Randomly select a node from the first *
 elements in OU

Let k
*
 be the node selected and (k

*
) the corresponding route

 Insert node k
*
 into route (k

*
) at the min-cost location

 Put OU  OU \ {k
*
}

 If |OU| > 0, then

 Go to Step 5

 Else

 Go to Step 6

Step 5 For each k ∊ OU

 Update * *(), (,) ,()
min

k k ij ki j k
c c
 



 Go to Step 2

Step 6 If || > n
*
, then

 n
*
 = || and go to Step 1

 Else

 Terminate

Figure 30. Procedure to generate initial routes

 115

4.5.2.3. Loading capacity

The solution generated by the procedure in Figure 30 may not be feasible since it

does not consider the loading capacity of 40 vehicles per hour at the warehouse. To

address this issue we apply two strategies. The first starts each route as late as possible.

Since a vehicle may be loaded any time before its departure time without incurring idle

time cost, this strategy will reduce the material handling workload at the beginning of the

planning horizon and thus increase the likelihood that routes with customers who have

earlier time windows can be accommodated. Figure 31 describes the procedure to

determine the latest departure time of a route.

The second strategy is to reduce the number of routes when possible. Figure 32

outlines the procedures. It works by trying to move the nodes in a particular route to

other routes, and terminates when a sufficient number of routes are eliminated so that the

loading capacity is satisfied. When moving a node to another route, we evaluate all

feasible insert locations and pick the one that leads to the least cost for the route. When

the procedure terminates, it is possible that the number of routes is still too many to be

loaded at the warehouse. In this situation, the route elimination procedure is applied in

every iteration of the local improvement heuristic. If the solution is still infeasible at

termination, we declare the problem instance to be infeasible.

Procedure_Get_Latest_Departure_Time

Input: Vehicle route  (i1, j1) - … - (iK, jK)

Output:Latest departure time of route from the warehouse

Step 1: t = ∞

Step 2: For (i, j) = (iK, jK) to (i1, j1)

 Set t = min{ îjt  , bj}

 Return t

Figure 31. Procedure to determine latest departure time from warehouse for a route

 116

Procedure_Reduce_Number_of_Routes

Input: Set of routes  in the phase I solution

Output:New set of (fewer) routes

Step 1: Sort  in decreasing order of the latest departure time from the warehouse

Step 2: For each route  ∊ 

If all nodes in route  can be moved to other routes without causing

infeasibilities, then

 For each node l ∊ 

 For each route r ∊ \ {}and arc (i, j) ∊ r

 If r is feasible after insertion, then

 Cij, r = change of cost for r after inserting l into (i, j)

 Else

 Cij, r = ∞

 (i, j, r) = argmin{Cij, r : r ∊ \ {}, (i, j) ∊ r}

 Insert node l into arc (i, j)

 Put  \ {}

 If the loading capacity at the warehouse is satisfied

 Terminate

Figure 32. Procedure to reduce the number of routes

4.5.3. Phase II: local improvement heuristics

In phase II of GRASP, an effort is made to improve the solution found in phase I

with various exchange techniques. Here, we implemented several variants of tabu

search as well as a large neighborhood search. To facilitate the discussion, let GRO,

REF, FRO and SAL denote grocery, refrigerated, frozen and salvage orders, respectively,

and let x-XXX denote an order node, where x is the index for the store and XXX ∊

{GRO, REF, FRO, SAL} is the type of order. As mentioned earlier, solution

construction does not consider the use of long time windows. Depending on the

scenario, though, we now allow for their use on some or all of the routes. For the mixed

case, the fraction of routes that are permitted to use the long time window is limited to  =

0.2.

 117

4.5.3.1. Tabu search

Tabu search has been demonstrated to produce high quality solutions to many

complex problems including various versions of the VRP (e.g., see Taillard 1993, Rochat

and Semet 1994, Gendreau et al. 1994). In this section, we present the framework for

our tabu search algorithm developed to improve the phase I solutions.

Four types of neighborhood are considered that take into account both short and

long time window restrictions. In the presentation, let gk = 0 indicate that route k is

governed by its short time window and gk = 1 indicate that route k is governed by its

long time window. If neither option is specified it is assumed that the short time window

restriction applies.

 neighborhood RI[k, (i, j), gk, gi] is constructed from current solution by performing

the following operations:

o remove a node k from route k and insert it between nodes i and j in route i

o use time window option gk for route k (after removing node k) and gi for route

i (after inserting node k)

Figure 33(a) and Figure 33(b) respectively illustrate the routes before and after

these operations.

 neighborhood S[i, j, gi, gj] is constructed from current solution by performing the

following operations:

o swap node i in route i with node j in route j

o use time window option gi for route i (after the swap) and gj for route j (after

the swap).

Figure 34(a) and Figure 34(b) illustrate the routes before and after these operations.

Note that if both i and j only serve one node, then swapping nodes i and j would

 118

not change the solution. Thus, we would not consider such a swap to be in the

neighborhood.

 neighborhood RRI[k, i, (j, l), gk, gi, gj] is constructed from the current solution by

performing the following operations:

o remove node k from route k

o replace node i in route i with node k

o insert node i into arc (j, l) in route j

o use time window option gk for route k (after removing node k), use time

window option gi for route i (after replacing node i with node k), and use time

window option gj for route j (after inserting node i)

Figure 35(a) and Figure 35(b) illustrate the routes i, j, and k before and after

these operations.

 neighborhood SA[(i, j), (k, l), gi, gk] is constructed from the current solution by

performing the following operations

o remove arc (i, j) from route i and arc (k, l) from route k

o add arcs (i, l) and (j, k) to routes i and k respectively

o use time window option gi for the new route i and use time window option gk

for the new route k

Figure 36(a) and Figure 36(b) illustrate the routes i and k before and after these

operations.

 119

Figure 33. Neighborhood RI[k, (i, j), gk, gi]

Figure 34. Neighborhood S[i, j, gi, gj]

Figure 35. Neighborhood RRI[k, i, (j, l), gk, gi, gj]

 120

Figure 36. Neighborhood SA[(i, j), (k, l), gi, gk]

A neighborhood solution is feasible if all the routes in the solution are feasible,

the fraction of routes that use the long time window is within the limit , and the

warehouse loading capacity is satisfied. Thus, deciding whether a neighborhood is

feasible involves three steps: (i) determine whether the ratio of the long-time-window

routes is within the given limit ; (ii) check the feasibility of each route associated with

the neighborhood using the procedure in Figure 29 (if any route is not feasible after being

updated, the neighborhood is not feasible); and (iii) check to see if the warehouse loading

capacity is sufficient for the solution.

As a local search procedure, each iteration of tabu search entails moving from one

neighborhood solution to another. In doing so, a tabu list of size N
T
 is maintained that

contains the most recent N
T
 neighborhoods that have been visited. During each iteration

of basic tabu search, only neighborhoods not on the list are considered and the best one is

selected, i.e., the neighborhood with minimum cost. As discussed earlier, though, the

solution found in the construction phase of the GRASP may not be feasible to the

warehouse loading capacity constraint. When this is the case, tabu search calls the route

elimination procedure outlined in Figure 32. Terminate occurs when either N iterations

are performed or a given time limit is reached.

The general tabu search algorithm is highlighted in Figure 37. The first step

initializes the parameters and sets. Step 2 searches for the best neighborhood and Step 3

 121

updates the best feasible solution. Step 4 updates tabu list and checks the termination

criteria.

Procedure_Tabu_Search

Input: Set of routes  in a solution

 Number of tabu iterations N

 Size of tabu list N
T

 Solution time limit T

Output:Improved solution 


Step 1: Tabu list LT= Ø

 Iteration counter n = 1

 If  satisfies the warehouse loading capacity

Put 

 .

 Else

Put 

 = Ø and cost of 


 = ∞

 Current solution 
C
  

Step 2: Find the best neighborhood of 
C
 not in LT; call it NR and go to Step 3

Step 3: Move to neighborhood NR and denote the resulting solution as 
1

 If 
1
 violates the warehouse loading capacity, then

 Apply the route elimination procedure to 
1
in Figure 32

If 
1
 satisfies the warehouse loading capacity and cost of 

1
 < cost of 

*
,

 Put 
*
  

1

Put 

C
  

1

Go to Step 4

Step 4: Put LT LT  NR

 If |LT| > N
T

Remove the first element in LT

Put n  n + 1

If n ≥ N or the solution time ≥ T, then

 Terminate

Else

Go to Step 2

Figure 37. High-level tabu search procedure

4.5.3.2. Tabu search with generalized neighborhood

Initial testing showed that better solutions were obtained when nodes

corresponding to the same store were together in a route. This led to a new set of

neighborhoods in which moves and swaps were made on more than one same-store node.

 122

We call the resultant algorithm tabu search with generalized neighborhood (tabu search-

GN).

To facilitate the discussion, we define the same-store adjacent node list (SANL)

as a list of nodes that (i) belong to the same store, and (ii) are adjacent to each other in a

route. For example, for route

Warehouse1-GRO1-REF1-FRO2-FROWarehouse,

we have the following SANLs: SANL(1-GRO), SANL(1-REF), SANL(1-FRO),

SANL(2-FRO), SANL(1-GRO, 1-REF), SANL(1-REF, 1-FRO), and SANL(1-GRO, 1-

REF, 1-FRO). Now, let I be a SANL, and with a slight abuse of notation, let I denote

the route to which SANL(I) belongs.

For tabu search-GN, we consider three types of neighborhoods:

 neighborhood G-RI[K, (i, j), gK, gi] is constructed from the current solution by

performing the following operations:

o remove a SANL(K) from route K and insert it between nodes i and j in route i

o use time window option gK for route K (after removing node k) and gi for route

i (after inserting node k)

 neighborhood G-S[I, J, gI, gJ] is constructed from the current solution by

performing the following operations:

o swap SANL(I) in route I with SANL(J) in route J

o use time window option gI for route I (after the swap) and gJ for route J (after

the swap)

 neighborhood G-RRI[K, I, (j, l), gK, gI, gj] is constructed from the current solution

by performing the following operations:

o remove SANL(K) from route K

o replace SANL(I) in route I with SANL(K)

 123

o insert SANL(I) into arc (j, l) in route j

o use time window option gK for route K (after removing node k), use time

window option gI for route I (after replacing SANL(I) with SANL(K), and use

time window option gj for route j (after inserting SANL(I))

 neighborhood SA[(i, j), (k, l), gi, gk] is the same as defined in Section 4.5.3.1 for

the basic tabu search.

Note that the neighborhood S[i, j, gk, gi] is a special case of the neighborhood G-

S[I, J, gI, gJ] with SANL(I) = {i} and SANL(J) = {j}. Similarly, the neighborhood RI[k,

(i, j), gk, gi] is a special case of the neighborhood G-RI[K, (i, j), gK, gi], and the

neighborhood RRI[k, i, (j, l), gk, gi, gj] is a special case of G-RRI[K, I, (j, l), gK, gI, gj].

Because Tabu search-GN has strictly larger neighborhoods than tabu search, it has the

potential to generate better solutions. The implementation of Tabu search-GN is similar

to tabu search but with Step 2 changed to accommodate the new neighborhood structures.

4.5.3.3. Degeneracy of the tabu neighborhood

During our computational experiments, we observed that neighborhoods are

highly degenerate, i.e., there are many neighbors that have the same cost as the

incumbent. To see this, consider the following examples where it is assumed that the

time window option remains the same for all routes so there is no need to specify the

values of the parameter gi.

Example 1. Degenerate RI[k, (i, j)]: Consider the following two routes:

Route 1: Warehouse 1-GRO1-REF1-SALWarehouse

Route 2: Warehouse 2-GRO1-FROWarehouse

 124

The corresponding routes in the neighborhood RI[1-SAL, (1-FRO, Warehouse)] are:

Route 3: Warehouse 1-GRO1-REFWarehouse

Route 4: Warehouse 2-GRO1-FRO1-SALWarehouse

The total travel costs are the same for both set of routes. Note that since 1-SAL is the

last order and follows an order from store 1 in both routes, the total waiting time cost is

the same for both solutions. Thus, neighborhood RI[1-SAL, (1-FRO, Warehouse)] is

degenerate.

Example 2. Degenerate S[i, j] and SA[(i, j), (k, l)]: Consider the following two

routes:

Route 1: Warehouse 1-GRO1-REF1-SALWarehouse

Route 2: Warehouse 2-GRO1-FROWarehouse

The following routes are in the neighborhood S[1-REF, 1-FRO]:

Route 3: Warehouse 1-GRO1-FRO1-SALWarehouse

Route 4: Warehouse 2-GRO1-REFWarehouse

Similar to Example 1, the total travel and waiting cost is the same for both solutions, and

thus the neighborhood S[1-REF, 1-FRO] is degenerate.

Example 3. Degenerate RRI[k, i, (j, l)]: In this example, assume that store 1 has an

early opening time window no waiting is ever required once a vehicle arrives. Consider

the following three routes:

Route 1: Warehouse 2-REF1-FROWarehouse

Route 2: Warehouse 2-GRO2-SALWarehouse

Route 3: Warehouse 3-GRO2-FROWarehouse

 125

Now, evaluating neighborhood RRI[1-FRO, 2-SAL, (2-FRO, Warehouse)] by performing

the following moves: (i) remove 1-FRO from route 1, (ii) replace node 2-SAL with node

1-FRO in route 2, (iii) insert node 2-SAL into arc (2-FRO, Warehouse) in route 3, the

resulting routes are

Route 4: Warehouse 2-REFWarehouse

Route 5: Warehouse 2-GRO1-FROWarehouse

Route 6: Warehouse 3-GRO2-FRO2-SALWarehouse

Since the total travel cost of these routes is the same and there is no waiting time cost

incurred for 1, the total cost of both solutions is the same. Thus, neighborhood RRI[1-

FRO, 2-SAL, (2-FRO, Warehouse)] is degenerate.

The tabu list has generally proven to be an effective tool for avoiding cycling in a

small feasible region and thus allowing for a variety of diversified solutions to be

explored before convergence. When degeneracy is present, as in our case, the

effectiveness of the tabu list to prevent cycling is reduced and the algorithm tends to get

stuck around a small set of degenerate solutions. If every solution has ndegenerate

neighbors, it is necessary to make the tabu list larger than n to assure that the algorithm

eventually escapes from the neighborhood. However, if the degerate neighbors

themselves have many degenerate neighbors, it would be necessary to use an even larger

value of N
T
 which we now do.

In addition, we have implemented two enhanced strategies. In the first, we

penalize solutions in a degenerate neighborhood. If degenerate neighborhood R is

visited nR times during the tabu search, we associate a penalty nR .cd with it, where cd is a

cost parameter. When selecting the best neighborhood, we opt for the one with the

smallest sum of cost and penalty instead of smallest cost. Such a strategy empirically

 126

restricts degenerate solutions. We call this method Tabu search-DP, where DP stands

for degenerate penalty.

The second strategy is to apply randomized variable neighborhood search (Tabu

search-RVN). Variable neighborhood search is a metaheuristic that exploits the idea of

switching among neighborhoods during local search (Maldenovic and Hasen 1997).

Hansen et al. (2010) give an extensive survey of applications. In Section 4.5.3.1, we

defined several types of neighborhoods for basic tabu search. To escape from a

degenerate neighborhood, we randomize the choice of the one to explore next. Kytojoki

et al. (2007) demonstrate this idea for a traditional VRP while Deng and Bard (2011)

show its effectiveness when solving capacitated clustering problems.

4.5.3.4. Large neighborhood search

When trying to improve an incumbent, an alternative to tabu search is large

neighborhood search (LNS) (Ahuja et al. 2000) which has a strong history of successful

implementations (e.g., see Ropke and Pisinger 2006, Pisinger and Ropke 2007). We

start with an integer parameter n and define two types of neighborhoods

 neighborhood n-RI[k1, k2, … , kn, (i, j), g1, g2, … , gn, gi] is constructed from the

current solution by performing the following operations:

o remove a node k1 from route
1k

 , let node kl replace node kl + 1 in route
1lk 

for l = 1,…,n – 1, and insert node kn into arc (i, j)

o use time window option gl for route
lk (after the ‘remove’ or ‘replace’

operation) for l = 1,…,n and use time window option gi for route i

 neighborhood n-S[k1, k2, …, kn, g1, g2, … , gn] is constructed from the current

solution by performing the following operations:

 127

o let node ki replace node ki + 1 in route
1ik 
 for i = 1, …,n – 1, and let node kn

replace node k1 in route
1k



o use time window option gl for route
lk (after the ‘replace’ operation) for l =

1,…,n.

Note that neighborhood RI[k, (i, j), gk, gi] is a special case of n-RI[k1, k2, … , kn,

(i, j), g1, g2, … , gn, gi] with n = 1 and S[i, j, gi, gj] is a special case of n-S[k1, k2, …, kn, g1,

g2, … , gn] with n = 1. Neighborhood n-RI[k1, k2, … , kn, (i, j), g1, g2, … , gn, gi]

generalizes RI[k, (i, j), gk, gi] by introducing a chain of node replacements. As we can

see, using n-RI[k1, k2, … , kn, (i, j), g1, g2, … , gn, gi] and n-S[k1, k2, …, in, g1, g2, … , gn]

greatly expands the size of the original neighborhoods for a given solution and thus

increases the possibility of improvement. As a consequence, LNS is often considered an

alternative to metaheuristics like tabu search and genetic algorithms, and has been shown

to be equally, if not more, effective (Ahuja et al. 2000). Since no tabu list is necessary,

the degeneracy in the neighborhood does not affect the performance of LNS.

Figure 38 outlines our LNS. In the procedure, we use || to denote the number

of routes in solution . The first step initializes the solution. Step 2 identifies the best

neighbor with respect to the neighborhoods defined above and reduces the number of

routes if the warehouse loading capacity is violated. Step 3 updates the incumbent.

Step 4 checks whether the stopping criteria are met: the procedure continues (i) when no

solution is found (due to warehouse loading capacity constraint) but it may be possible to

further reduce the number of routes or (ii) when the current solution is not a local

optimum.

 128

Procedure_Large_Neighborhood_Search

Input: Set of routes 
C
 in current solution

 Neighborhood parameter n

Output:Best solution found 


Step 1: If  satisfies the warehouse loading capacity

Put 

 

 Else

Put 

 = Ø and cost of 


 = ∞

 Current solution 
C
  

 Go to Step 2

Step 2: N
*
 = the best neighbor of 

C
 among n-RI[k1, k2, … , kn, (i, j)] and n-S[k1,

k2, …, in];

 Move to neighborhood N
*
 and let 

1
 be the corresponding solution

 If 
1
 violates the warehouse loading capacity constraint

Apply the route elimination procedure in Figure 32

 Go to Step 3

Step 3: If 
1
 satisfies the warehouse loading capacity constraint and cost of 

1
 <

cost of 
*

 Put 
*
  

1

 Go to Step 4

Step 4: If (

 = Ø and |

C
| > |

1
|) or (cost of 

1
 < cost of 

C
)

 Put 
C
  

1
 and go to Step 2

Else

 Terminate

Figure 38. Large neighborhood search procedure

4.6. COMPUTATIONAL RESULTS

To test the effectiveness of our algorithms, we use seven data sets provided by

Kroger that represent a typical week in the Cincinnati-Columbus region of Ohio. The

characteristics of the seven instances are summarized in Table 8. As can be seen, the

number of stores range from 120 to 150 and the total number of orders range from 390 to

438. The parameter values used in our computations are summarized in Table 9. Table

10 gives the volume for the separation curtains in a vehicle as a function of the number of

stores and number of different order types on a route. All algorithms were implemented

 129

in JAVA and run under Ubuntu Linux on a Dell Poweredge T610 workstation with two

6-core hyperthreading 3.33-GHz Xeon processors and 24 GB of memory.

Table 8. Summary of data set characteristics

Instance

of

stores

of

orders

of grocery

orders

of refrigerated

orders

of frozen

orders

of salvage

orders

0910ST 135 431 149 147 130 5

0911ST 123 401 146 134 121 0

0912ST 130 410 138 139 128 5

0913ST 124 390 134 137 119 0

0914ST 137 424 137 143 135 9

0915ST 150 438 139 156 141 2

0916ST 136 411 130 142 135 4

Table 9. Summary of problem parameters

Name Value

Set up cost per stop(dollars) 50

Driving cost per mile (dollars) 2.207

Driver idle time cost per hour (dollars) 40

Truck weight limit (pounds) 42000

Truck volume limit (ft
3
) 2000

Load and unload rate per hour (ft
3
) 1200

Load set up time (minutes) 30

Driver time limit per route (hours) 50

Total time limit per route (hours) 14

Maximum number of trucks loaded at warehouse per 30 minutes 20

Maximum number of stores per delivery route 4

Maximum number of stores per pickup route 4

 130

Table 10. Volume required for separation curtains in a vehicle

Number of order types One store Two stores Three or more

stores

One delivery order type 0 100 200

Two delivery order types 160 210 260

Three delivery order types 290 340 390

4.6.1. Results for different construction methods

In this section, we examine the computational results for the two different phase I

approaches. When constructing an initial solution using the algorithms in Section

4.5.2.2, we always set  = 0.02 in the calculation of the opportunity cost, cij, k, of inserting

node k in arc (i,i) since it gave the best results on balance. Table 11 compares the initial

feasible solutions generated in phase I of the GRASP using multiple nodes vs. single

nodes as seed routes. We randomly generated 20 solutions for each instance using each

method and report the min cost, the average cost, and total time for the two cases. The

results show that the former approach provides initial routes with much lower cost in

comparable time. On average, the cost differential for the seven instances is $16,688

(14.11%). This indicates that generating seed routes with multiple nodes for the same

store can help identify better feasible solutions.

 131

Table 11. Comparing different seed route generating methods

Measure 0910ST 0911ST 0912ST 0913ST 0914ST 0915ST 0916ST

Multi-node seed route

 Min cost ($) 106,068 106,634 94,094 100,471 95,014 104,867 94,671

 Average cost ($) 107,133 108,079 94,201 102,116 95,521 107,550 95,283

 Total time (s) 315 327 380 355 437 503 424

One-node seed route

 Min cost ($) 122,604 123,065 107,243 113,887 105,688 122,372 104,646

 Average cost ($) 127,015 124,886 112,926 114,965 112,199 125,654 109,054

 Total time (s) 412 392 415 424 417 476 380

To compare the different local search methods considered for phase II, we

randomly generated 20 initial solutions with the phase I construction procedure for each

instance (a total of 140 solutions), and then tried to improve them. Table 12 reports the

minimum cost for each set of the 20 improved solutions, their average cost, and the total

runtime. For tabu search and its variants, we set the tabu list size to 200 and the number

of iterations to 40,000, and derive an initial solution by running phase I of the GRASP for

one iteration. For the LNS, we explored all possible neighborhoods n-RI and n-S with n

≤ 5.

From the entries in Table 6 we can observe the following:

 LNS is the worst performer, giving the largest minimum cost and largest average

cost. In contrast, all variants of tabu search were able to explore a larger portion of

the solution space and thus obtain better solutions.

 Tabu search-RVN performed the best amongst its competitors. It produced the

lowest average cost and minimum cost for all instances, and incurred the shortest

runtime. For instance 0910ST, for example, the average cost of Tabu search-RVN

solutions is $1056 (1.04%) lower than the basic tabu search solutions, $793 (0.78%)

lower than the Tabu search-GN solutions, $3825 (3.77%) lower than the LNS

solutions, and $731 (0.72%) lower than the Tabu search-DP solutions. This

 132

suggests that randomizing the selection of the neighborhood is an effective way to

handle degeneracy.

 As discussed earlier, Tabu search-GN examines larger neighborhoods than the other

approaches and thus incurs longer runtimes per iteration. In general, this leads to

better solutions, which was the case for all instances when compared to the basic

tabu search results. For example, for instance 0911ST, the average cost of the

Tabu search-GN solutions is $1045 (1.05%) lower than the basic tabu search

solutions.

 The penalties included for visiting degenerate neighborhoods improved the

solutions obtained with Tabu search-DP when compared to basic tabu search. For

example, the average cost of the Tabu search-DP solutions for instance 0911ST is

$1176 (1.19%) lower than the basic tabu search solutions.

Table 13 compares the performance of Tabu search-RVN alone and GRASP

using Tabu search-RVN in phase II. The cost for each instance is averaged over twenty

runs. In each run of Tabu search-RVN, we randomly generate a solution and use Tabu

search-RVN to improve the solution, with a runtime limit T = 30 minutes and tabu list

size N
T
 = 200. In each run of the GRASP, we set the total runtime limit to 30 minutes,

and we use the tabu list size N
T
 = 200 number of tabu iterations N = 40,000. Note that

the phase II of the GRASP are terminated when number of Tabu iterations reaches

40,000 or the total runtime limit of the GRASP (not the phase II of current iteration)

reaches 30 minutes. For GRASP, we used 23 threads so 23 phases I and II GRASP

iterations were performed simultaneously. The results show that GRASP performed

marginally better in 6 of the 7 instances (except instance 0912ST), leading us to adopt it

for the comparisons in the next section.

 133

Table 12. Summary of results for different phase II local search methods

Method 0910ST 0911ST 0912ST 0913ST 0914ST 0915ST 0916ST

Tabu search

Min cost ($) 101,939 98,144 92,315 93,871 93,733 100,083 91,255

Average cost ($) 102,428 100,167 92,468 94,733 94,062 100,836 91788

Total time (s) 755 623 691 708 848 977 806

Tabu search-GN

Min cost ($) 101,266 97,801 91,997 93,242 92,624 99,628 91,064

Average cost ($) 102,165 99,122 92,402 94,085 92,941 100,378 91,674

Total time (s) 3337 2645 3052 3128 3650 3777 3023

LNS

Min cost ($) 103,913 101,929 92,753 97,305 94,130 102,535 94,125

Average cost ($) 105,197 104,629 93,570 98,671 94,689 104,699 95,049

Total time (s) 33 34 19 49 40 56 21

Tabu search-DP

Min cost ($) 101,300 97,590 91,586 93,335 92,738 99,860 90,361

Average cost ($) 102,103 98,991 92,047 94,261 93,323 100,543 91,383

Total time (s) 927 744 780 1101 1466 1515 1108

Tabu search-RVN

Min cost ($) 100,694 95,947 90,988 92,872 91,714 99,186 89,565

Average cost ($) 101,372 97,069 91,619 93,334 92,126 99,561 90,288

Total time (s) 639 526 537 591 872 840 795

Table 13. Comparing solutions generated by the tabu search and the GRASP

0910ST 0911ST 0912ST 0913ST 0914ST 0915ST 0916ST

Tabu search-RVN 100,913 96,420 90,960 92,671 91,843 99,098 90,007

GRASP 100,679 96,277 90,999 92,580 91,665 98,877 89,641

4.6.2. Comparing GRASP solutions with Kroger’s solutions

In this section, we compare our GRASP solutions with those provided by Kroger

for the seven real instances highlighted in Table 2 and for a second set of results for

instances 0911ST and 0196ST only. The solutions for the seven instances were

 134

generated with a commercial software package that is run daily, while the solutions for

the two instances were obtained from an experimental set-partitioning heuristic. To

make better use of the vehicle capacity when planning, we found that Kroger splits most

of the orders greater than 1100 ft
3
 into suborders and treats each separately. We adhered

to this procedure and did not aggregate orders for the same commodity at the same store.

The number of orders associated with the two cases is summarized in Table 8

andTable 14, respectively. Because the orders correspond to different days of the year,

the solutions are not directly comparable. Interestingly, though not uncommon (e.g., see

Bard et al. 2014), when examining these solutions, we found many violations of Kroger’s

operational requirements. Table 15 and Table 16 report the number of routes that violate

each requirement in the commercial software solution and set-partitioning heuristic

solution, respectively, with short time window violations being the most frequent.

In light of this situation, we calculated two costs for each solution provided by

Kroger. In particular, the “Short TW” cost of each route is calculated in one of two

ways: (i) if the route satisfies all the short time windows associated the nodes visited,

then the total waiting time cost and the transition costs are summed to get the total cost;

(ii) if the route violates any short time window of any node, then only the transition cost

is reported. In the same way, we calculate the “Long TW” cost. In either case, the true

cost of Kroger’s solutions are underestimated, considering that all the violations are

ignored.

When running the GRASP, Tabu search-RVN again was used in phase II with a

list size of 200 and an iteration limit of 40,000. A maximum of 30 minutes was allowed

for each run. In the comparisons, we considered four different time window options for

the GRASP: long time windows, short time windows, a mix in which at most 20% of the

routes were allowed to use the long time windows (20% long TW), and nominally, the

 135

short time windows with the observed parameter values in the Kroger solutions (Short

TW-KP). In the latter case, the maximum values of the individual store time windows,

vehicle volumes, and vehicle loads were used.

Table 14. Summary of problem characteristics for the set-partitioning solution

Instances

of

stores

of

orders

of grocery

orders

of refrigerated

orders

of frozen

orders

of salvage

orders

0911ST 123 402 154 127 121 0

0916ST 136 418 139 140 135 4

Table 15. Number of violations in the commercial software solution

Instance

of

routes

Total

of

violations

Short time

window

violations

Long time

window

violations

Weight

limit

violations

Volume

limit

violations

Order

sequence

violations

0910ST 137 28 27 14 1 6 0

0911ST 132 20 20 8 1 3 0

0912ST 128 19 20 7 0 1 2

0913ST 126 27 24 4 1 4 2

0914ST 127 22 21 6 0 1 5

0915ST 137 40 33 14 0 8 0

0916ST 130 32 23 10 0 8 2

Table 16. Number of violations in the set-partitioning solution

Instance

of

routes

Total

of

violations

Short time

window

violations

Long time

window

violations

Weight

limit

violations

Volume

limit

violations

Order

sequence

violations

0911ST 127 24 17 0 12 0 9

0916ST 124 33 27 0 7 0 2

Table 17 and Table 18 compare the total cost of the GRASP solutions for the

different time window options with those obtained with Kroger’s commercial package

and set-partitioning heuristic, respectively. We can see that even though the Kroger

 136

solutions violate many operational requirements (which implies that their costs are

underestimated), they are still inferior to the GRASP solutions in all instances.

Nevertheless, the fairest comparison is for the Short TW-KP option in which the

parameter values implied by Kroger’s solutions are used in the GRASP. Here, the results

can be brought into clearer focus. For example, the Short TW cost of the commercial

software solutions for instance 0913ST in Table 17 is $2354 (2.48%) inferior to the

GRASP Short TW solutions and $3615 (3.82%) worse than the GRASP Short TW-KP

solutions. The same pattern is true for the other instances in Table 17 and Table 18. On

average, the difference between the cost of the commercial software solutions and the

GRASP Short TW-KP solutions is $2727 (2.85%), and the difference between the cost of

the set-partitioning solutions and the GRASP Short TW-KP solutions is $1123 (1.21%).

For the GRASP results only, the Long TW solutions dominate the 20% long TW

solutions, which in turn dominate the Short TW solutions for all instances. This was to be

expected since longer time windows mean a larger feasible region. Relatively speaking,

extending the time windows for only 20% of the routes achieved more than half of the

cost reduction with respect to the Short TW solutions. To see this, let the cost reduction

percentage = 100 × (CS – CP)/CS, where CS denotes the solution with short time windows

and CP denote the costs of solution with 20% long time windows. On average, the cost

reduction percentage is 0.78% ($732) for the seven instances in Table 17 and is 1.05%

($969) for the two instances in Table 18.

To evaluate the effect of extending time windows for all routes, we calculate the

cost reduction percentage as 100 × (CS – CL)/CS, where CS and CL denote the solutions

with short and long time windows, respectively. On average, the cost reduction

percentage is 1.39% ($1324) for the seven instances in Table 17 and is 1.41% ($1278) for

the two instances in Table 18. This means that the marginal benefit of extending the

 137

time windows to more routes is a nonlinear decreasing function: go from 20% of the

routes can achieve more than half of the cost savings resulting from extending time

windows for all routes.

Table 17. Comparing GRASP solution with the commercial software solution

Solution 0910ST 0911ST 0912ST 0913ST 0914ST 0915ST 0916ST

GRASP

Long TW 98,826 95,037 90,053 91,157 90,091 96,840 88,646

20% Long TW 99,461 95,598 90,565 91,784 90,684 97,721 88,980

Short TW 100,694 95,947 90,988 92,391 91,659 98,674 89,565

Short TW-KP
†
 99,004 95,527 90,189 91,130 90,809 97,051 88,406

Commercial software

Short TW Cost 101,354 98,852 92,989 94,745 93,432 98,829 91,074

Long TW Cost 100,190 97,688 91,530 93,524 92,505 98,208 90,424
† Short TW-KP solution is generated by the GRASP using the maximum values of the parameters

associated with the commercial software solution.

Table 18. Comparing GRASP solution with the set-partitioning solution

Method Solution 0911ST 0916ST

GRASP

Long TW 95,149 87,790

20% Long TW 95,153 88,422

Short TW 95,947 89,565

Short TW-KP†

95,527 88,399

Set-partitioning

heuristic

Short TW 96,443 89,728

Long TW 94,968 88,405
† Short TW-KP solution is generated by the GRASP using the

maximum value of the parameters used in the set-partitioning solution.

4.7. SUMMARY AND CONCLUSIONS

In this paper, we developed a series of algorithms to help logistics managers

construct daily pickup and delivery routes from a central warehouse to outlining retail

 138

stores. The problem was defined by a combination of standard and context-specific

constraints, such as order loading restrictions, dynamic vehicle volume limits, weight

limits, maximum time on the road, and warehouse time windows. Several of these are

new to the VRP literature. To model the problem, we began with a route diagram that

captured the possible transitions between order nodes and served as a basis for a mixed-

integer programming model.

To find solutions, we designed and tested various heuristics that integrated

techniques associated with GRASP, tabu search, and large neighborhood search. In

phase I of the GRASP, we found it best to use multiple order nodes to identify seed

routes that are then expanded sequentially one node at a time. In phase II four local

search methods were considered to improve the initial solutions. A critical observation

at this stage was that all neighborhoods were degenerate. This undermined the ability of

tabu search, our primary phase II procedure, to find local optima. To resolve this issue,

we proposed two enhancements. The first was to greatly expand the neighborhood

definition, and the second was to randomize the choice of neighborhoods to explore at

each iteration. The latter proved to be the more effective.

Not surprising, extensive testing showed that GRASP with RVN performed best

in the vast majority of cases. Comparing the corresponding solutions with those

provided by Kroger for the Cincinnati-Columbus region showed that daily savings up to

$3615 could be achieved, and perhaps more since the comparisons are based on

conservative estimates of Kroger’s costs. Basic tabu search did not perform well on

these instances primarily due to neighborhood degeneracy.

As extensions of this research, it is worth investigating different strategies for

disaggregating the large, same-store orders. In general, split deliveries are not welcome

by managers but when the demand at a store exceeds the capacity of the vehicle, there is

 139

a clear need to work with reduced order sizes. In the context of our problem, orders are

specified by commodity rather than by store and each is subject a novel set of constraints.

This further complicates the routing problem since it leads to an explosion in the number

of feasible sequences. A second extension centers on exact solution methods.

Although it is unlikely that provably optimal solutions can be derived, decomposing the

network into clusters of nearby delivery locations, and then finding solutions for each

cluster might be a promising way to start.

 140

Chapter 5. Conclusions

In this dissertation, we study three transportation scheduling problems: the train

dispatching problem in railroad industry, the transportation network design problem with

service requirements, and the daily service route design problem for major grocery

chains.

Each problem is important in their industry and has its industry-specific

operational requirements. The train dispatching problem coordinates the movements of

trains on railroad tracks so that the average velocity of trains and the throughput of the

railroad system are maximized. Various operational requirements are considered,

including the separation between adjacent trains, train priorities, and the track

unavailability due to the maintenance of way. The transportation network design

problem with service requirement builds a subset of arcs in the network and routes

commodities on built arcs to minimize the total fixed and variable cost. Besides, each

commodity is required to be routed in a simple path that satisfies the total service

requirement. The daily service route design problem routes a set of vehicles to deliver

orders from the warehouse to stores and pickup salvage orders back to the warehouse. A

variety of operational requirements are incorporated, including the warehouse handling

capacity, the truck weight and volume limits, and the driver time limits. Moreover, there

are four types of orders and these orders must be loaded in a certain sequence in trucks.

Mathematical programming is a useful tool to model these problems. We show

that there are many alternative ways to model some requirements that and the strength

and size of different models are different. In the train dispatching context, we show that

our non-concurrency constraints are more effective in modeling the unidirectional

requirement than the pairwise constraints in literature since the number of constraints is

 141

greatly reduced. We compare three formulations, namely the arc-flow, path-flow and

hybrid formulations, for the NDSR and show that they are different in terms of strength

and model size. Besides, we also develop a set of valid inequalities to strengthen the

integer programming model in both the train dispatching problem and NDSR.

We also show that heuristics are helpful in two aspects. First, it can speed up the

state-of-the-arc MIP solver by providing an initial feasible solution. We show that an

initial warm-start solution, together with model strengthening, can reduce the solution

time tremendously. Second, it can provide feasible solutions when the MIP solver fails

to find one. In the service route design problem, the mathematical formulation is too

large to be solved within reasonable amount of time. Instead, we develop a GRASP to

provide a good solution.

This dissertation can contribute to the existing literature in the following ways.

First, the modeling and solution strategies of these problems are helpful to both

academicians and practitioners in these areas. Besides, it can contribute to the integer

programming communities. Our non-concurrency constraints that model the

unidirectional requirements in train dispatching and the concept of hybrid formulation for

NDSR are novel techniques that can be used in other context. Finally, our work can

contribute to the area of meta-heuristic. We show that the Tabu search can be less

effective when the neighborhood is highly degenerate. To address the issue, we use the

Tabu search with random variable neighborhood. We also show that the GRASP, which

improves many solutions with the Tabu search but spends less effort on each solution,

can make use of the modern parallel computing technique and are thus more effective

than the Tabu search, which improves only one solution with all the effort.

 142

Appendices

APPENDIX A. SEPARATIONS FOR VALID INEQUALITIES IN CHAPTER 3

A.1. Separation procedure for inequality (3.26)

Figure 39 discuss how to find all the violated inequality (3.26) for a given train

movement solution vector x, a pair of trains q1 and q2 traveling in the opposite directions,

and segment m. Specifically, Step 1 of the procedure finds the set of time period that

should be considered and Step 2 of the procedure goes over each possible pair of time

periods to find violated inequalities.

Procedure separate_unidirectional

Input: movement solution vector x, train q1, train q2 and segment m.

Output:C, set of inequalities (3.26) violated by x.

Step 1: C = ;

T(q1) = {t(q1, 1), t(q1, 2), , t(q1, K)}T, where (,) 0iq

mt q kx  and t(q1, i)>

t(q1, i + 1);

Step 2: For i = 1 to k

 For j = i to k

 t1 = t(q1, i)

 1t = t(q1, j)

 2

12 1
q

mtt    

 1

2 1 1
q

mt t      ;

 (')t q = max{ 1 1t   , '

2 1q

mt    , t1}

 (')t q = min{ t1+   1, 2

2 1
q

mt    } for all 1\' }{mq Q q

 If 1t  t1   1 and
1 2

1 2

1 21

('
'

' ' '

'

)

(')\{ }

1

m

t tt q

t t t t q t tQ q

q qq

mt mt mt

q

x x x
    

     

 add
1 2

1 2

1 21

('
'

' ' '

'

)

(')\{ }

1

m

t tt q

t t t t q t tQ q

q qq

mt mt mt

q

x x x
    

      to C(q1, q2);

 Else if t2 > 2t

 break;

Figure 39. Procedure to separate unidirectional inequalities (3.26)

 143

A.2. Separation procedure for inequality (3.31)

Figure 40 discuss how to find all the violated inequality (3.31) for a given

movement and wait solution vector (x, y), a pair of trains q1 and q2 traveling in the

opposite directions, and segment m. Specifically, Step 1 of the procedure finds the set of

time period that should be considered. Step 2 of the procedure goes over each possible

pair of time periods to find violated inequalities by checking condition (1) of Lemma 3.6.

Similarly, Step 3 finds violated inequalities by checking condition (2) of Lemma 3.6.

Procedure separate_unidirectional_across_segment

Input: solution vector x and y, train q1, train q2 and segment m

Output:C, set of inequalities (3.31) violated by x.

Step 1: C =;

 let s be the station such that m = q

se ;

T(q1) = {t(q1, 1), , t(q1, K)}T, where , (,) 0iq

m t q kx  or , (,) 0iq

s t q ky  ;

Step 2: For i = 1 to k

 For j = i to k

 t = t(q1, i) and t = t(q1, j);

 1

1 1
q

mtt     and 1 1q

mt t      ;

 1 1

1 1 12 1Min{ 1, 1}
q q q

m s stt t         

1

1 2 22 1
qq q

s m mt t        ;

 If
1 2

1 1

1 1 1 2

1 2

' (1) ' ' 1
q

t tt
q

s

t t

qq

t t

m t t m t m t

t t

x x xy 

    

     

 add (t1, 1t , t2, 2t) to C

Step 3: For i = 1 to k

 For j = i to k

12 1q

stt     and 1

1 2 22 1
qq q

s m mt t        ;

 1 1q

mtt      and 1 1 1

1 11 2Max{ 1, 1}
q q

m s

q

mt t t         ;

 If
1 2

1 1

1 1 1 2

1 2

' (1) ' ' 1
q

t tt
q

s

t t

qq

t t

m t t m t m t

t t

x x xy 

    

     

 add (t1, 1t , t2, 2t) to C

Figure 40. Procedure to separate unidirectional inequalities (3.31)

 144

APPENDIX B. COMPLEXITY OF THE GRASP FOR RRDP

In this section, we will show that the complexity of our GRASP is polynomial in

the size of the underlying graph for a fixed runtime or fixed number of iterations. In

particular, we assume that the number of GRASP replications is M and that the number of

tabu iteration is N.

B.1. Complexity of phase I

To analyze the complexity of solution construction, we start with the work

required to generate the seed stores, as given in Figure 27. Step 1 requires using the

lower bounding technique in Martello and Toth(1990) and thus has complexity O(|S|
2
).

The complexity of Step 2 is O(|S|). The third step requires O(|S|) time to find a store

whose delivery volume is larger than vcap, and O(|S|
2
) time to initialize t(s) for each s ∊ S

\ SE. Step 4 requires at most O(|S|) iterations, where each iteration involves no more than

O(|S|) operations, implying that its complexity is O(|S|
2
). In summary, forming the set

SE takes O(|S|
2
) time. Since the number of orders in each store is not large, we can

assume that the time to construct a seed route for a seed store is O(1). Accordingly, the

seed route construction procedure runs in O(|S|
2
) time.

With respect to the solution generation procedure in Figure 30, we first consider

the total number of routes that might be needed. In Step 6, if the number of routes

generated is greater than the current number of seed routes, the procedure is reinitialized

using the increased number of seed routes. The upper bound on the number of seed

routes is O(|O|), which means that the maximum number of solutions that can be

generated is O(|O|).

Now let us consider the work required to construct each solution. The

complexity of generating seed routes in Step 1 is O(|S|
2
), as derived above. The

complexity of initializing the opportunity cost in Step 1 is O(|| . |O|) since it must

 145

consider all arcs in the seed routes and unscheduled node. Given that at most |O| new

routes will be created in Step 2, its complexity is O(|O|).

In Steps 3 to 5, an unscheduled node is identified and inserted it into an existing

route, where the number of candidate nodes is at most |O|. In Step 3, the effort to find

the min-cost route is O(||) as is the effort to find the opportunity cost k for node k.

Because ||  |O|, the complexity of Step 3 is O(|O|). The sorting in Step 4 requires

O(|O| log2|O|) time and all other operations can be performed in O(1) time. Finally,

updating the opportunity cost in Step 5 takes at most O(|| . |O|) time for each iteration.

In putting these results together, we note that O(|O|) ≥ O(|S|) since each store has

at least one order node, and O(||) ≥ O(|O|) since the graph is connected. Thus, the

total complexity of the algorithm is O(|O|) × [O(|S|
2
) + O(|| . |O|) + O(|O|) + O(|O|) ×

(O(|O|) + O(|O| log2|O|) + O(|| . |O|)), or equivalently, O(|| . |O|
3
).

B.2. Complexity of Tabu Search-RVN

Here we only analyze the complexity of Tabu search-RVN, which is the local

search method we call in phase II of our GRASP. To begin, we note that the number of

transition arcs used in any given solution  is bounded by 2|O|, since at most one arc

enters an order node and one arc exits. This observation is used to determine the

complexity of neighborhood search. During this process, it may also be necessary to call

the route reduction algorithm. In the worst case, we need to check if the nodes on a

route  can be moved to another route by inserting them, one at a time, into an arc in the

existing solution  \ {}. The complexity of route reduction is then O(N . |O|
2
).

The work required to explore each of the four tabu neighborhoods is as follows:

 146

 For RI[k, (i, j), gk, gi], it is necessary to evaluate all possible combinations of nodes

k and arcs (i, j) included in the solution  to find a best insert position. The

corresponding complexity is O(|O|
2
).

 For S[i, j, gi, gj], it is necessary to examine all pairs of nodes i and j to find the best

swap. This can be done in O(|O|
2
) time.

 For RRI[k, i, (j, l), gk, gi, gj], it is necessary to consider all possible combinations of

nodes k and i and arcs (j, l) in the solution . This has complexity O(|O|
3
).

 For SA[(i, j), (k, l), gi, gk], it is necessary to evaluate all possible arc pairs (i, j) and

(k, l) in the solution , which requires O(|O|
2
) time.

In the worst case, each iteration selects RRI[k, i, (j, l), gk, gi, gj], the neighborhood

with the highest complexity given by O(|O|
3
). Thus, the total complexity of the local

search algorithm is O(N . |O|
3
).

B.3. Complexity of the GRASP

Combining the above results, we have that the total complexity of each GRASP

replication is O(N . |O|
3
) + O(|A| . |O|

3
). Because it is typically the case that N > |A|, this

reduces to O(N . |O|
3
). Considering that M tabu search iterations are performed for each

feasible solution found in phase I, the total complexity of the GRASP is O(M .N . |O|
3
).

 147

Bibliography

Agarwal, Y., and Aneja, Y. (2012). Fixed-charge transportation problem: Facets of the

projection polyhedron. Operations research, 60(3), 638-654.

Ahuja, R. K., Magnanti, T. L., Orlin, J. B. (1993). Network flows: theory, algorithms, and

applications. Prentice Hall, Englewood Cliffs, NJ.

Ahuja, R. K., Orlin, J. B., and Sharma, D. (2000). Very large‐scale neighborhood search.

International Transactions in Operational Research, 7(4‐5), 301-317.

Azi, N., Gendreau, M. and Potvin, J. Y. (2010). An exact algorithm for a vehicle routing

problem with time windows and multiple use of vehicles. European Journal of

Operational Research, 202(3), 756-763.

Balakrishnan, A., and Graves, S. C. (1989). A composite algorithm for a concave‐cost

network flow problem. Networks, 19(2), 175-202.

Balakrishnan, A., and Altinkemer, K. (1992). Using a hop-constrained model to generate

alternative communication network design. ORSA Journal on Computing, 4(2), 192-205.

Balakrishnan, A., Li, G., and Mirchandani, P. (2014). Optimal network design with end-

to-end service requirement. Department of Information, Risk, and Operations

Managemetn, The University of Texas at Austin, Austin.

Balakrishnan, A., Magnanti, T. L., and Mirchandani, P. (1997). Network design.

Annotated bibliographies in combinatorial optimization, 311-334.

Baldacci, R., Mingozzi, A., and Roberti, R. (2012). Recent exact algorithms for solving

the vehicle routing problem under capacity and time window constraints. European

Journal of Operational Research, 218(1), 1-6.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance, P. H.

(1998). Branch-and-price: Column generation for solving huge integer programs.

Operations research, 46(3), 316-329.

 148

Bent, R. and Hentenryck, P. V. (2006). A two-stage hybrid algorithm for pickup and

delivery vehicle routing problems with time windows. Computers & Operations

Research, 33(4), 875-893.

Berbeglia, G., Cordeau, J. F., Gribkovskaia, I., and Laporte, G. (2007). Static pickup and

delivery problems: a classification scheme and survey. Top, 15(1), 1-31.

Bianchessi, N., and Righini, G. (2007). Heuristic algorithms for the vehicle routing

problem with simultaneous pick-up and delivery. Computers & Operations Research,

34(2), 578-594.

Brännlund, U., Lindberg, P. O., Nõu, A., and Nilsson, J. (1998). Railway timetabling

using Lagrangian relaxation. Transportation Science, 32(4), 358-369.

Bräysy, O., and Gendreau, M. (2005a). Vehicle routing problem with time windows, Part

I: Route construction and local search algorithms. Transportation science, 39(1), 104-

118.

Bräysy, O., and Gendreau, M. (2005b). Vehicle routing problem with time windows, Part

II: Metaheuristics. Transportation science, 39(1), 119-139.

Cacchiani, V., Caprara, A., and Toth, P. (2008). A column generation approach to train

timetabling on a corridor. A Quality Journal of Operations Research, 6(2), 125-142.

Cacchiani, V., Caprara, A., and Toth, P. (2010). Scheduling extra freight trains on

railway networks. Transportation Research Part B: Methodological, 44(2), 215-231.

Cai, X., Goh, C., and Mees, A. I. (1998). Greedy heuristics for rapid scheduling of trains

on a single track. IIE transactions, 30(5), 481-493.

Caprara, A., Fischetti, M, and Toth, P. (2002). Modeling and solving the train timetabling

problem. Operations Research, 50(5), 851-861.

 149

Caprara, A., Monaci, M., Toth, P., and Guida, P. L. (2006). A Lagrangian heuristic

algorithm for a real-world train timetabling problem. Discrete Applied Mathematics,

154(5), 738-753.

Carey, M. (1994). Extending a train pathing model from one-way to two-way track.

Transportation Research Part B: Methodological, 28(5), 395-400.

Carey, M., and Lockwood, D. (1995). A model, algorithms and strategy for train pathing.

Journal of the Operational Research Society, 46(8), 988-1005.

Carlyle, W. M., Royset, J. O, and Wood, R. K. (2008). Lagrangian relaxation and

enumeration for solving constrained shortest‐path problems. Networks, 52(4), 256-270.

Carreto, C., and Baker, B. (2001). An improved GRASP interactive approach for the

vehicle routing problem with backhauls. Essays and Surveys in Metaheuristics, 185-199.

Cordeau, J. F., Toth, P, and Vigo, D. (1998). A survey of optimization models for train

routing and scheduling. Transportation science, 32(4), 380-404.

Corman, F., D’Ariano, A., Pacciarelli, D., and Pranzo, M. (2010). A tabu search

algorithm for rerouting trains during rail operations. Transportation Research Part B:

Methodological, 44(1), 175-192.

Dahl, G., and Gouveia, L. (2004). On the directed hop-constrained shortest path problem.

Operations Research Letters, 32(1), 15-22.

Deng, Y., and Bard, J. F. (2011). A reactive GRASP with path relinking for capacitated

clustering. Journal of Heuristics, 17(2), 119-152.

Desaulniers, G., Lessard, F., and Hadjar A. (2008). Tabu search, partial elementarity, and

generalized k-path inequalities for the vehicle routing problem with time windows.

Transportation Science, 42(3), 387-404.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm

for the vehicle routing problem with time windows. Operations research, 40(2), 342-354.

 150

Dorfman, M. J., and Medanic, J. (2004). Scheduling trains on a railway network using a

discrete event model of railway traffic. Transportation Research Part B: Methodological,

38(1), 81-98.

Dumitrescu, I., and Boland, N. (2003). Improved preprocessing, labeling and scaling

algorithms for the Weight‐Constrained Shortest Path Problem. Networks, 42(3), 135-153.

Ergun, Ö., Orlin, J. B., and Steele-Feldman, A. (2006). Creating very large scale

neighborhoods out of smaller ones by compounding moves. Journal of Heuristics, 12(1-

2), 115-140.

Festa, P., and Resende, M. G. (2009). An annotated bibliography of GRASP–Part II:

Applications. International Transactions in Operational Research, 16(2), 131-172.

GE Reports. (2010). RailEdge tech: Faster, smarter trains to save millions.

http://www.gereports.com/railedge-tech-faster-smarter-trains-to-save-millions/

Goksal, F. P., Karaoglan, I., and Altiparmak, F. (2013). A hybrid discrete particle swarm

optimization for vehicle routing problem with simultaneous pickup and delivery.

Computers & Industrial Engineering, 65(1), 39-53.

Golden, B. L., Raghavan, S., and Wasil, E. A. (2008). The Vehicle Routing Problem:

Latest Advances and New Challenges: latest advances and new challenges. Springer,

New York.

Harrod, S. (2011). Modeling network transition constraints with hypergraphs.

Transportation Science, 45(1), 81-97.

Higgins, A., Kozan, E., and Ferreira, L. (1996). Optimal scheduling of trains on a single

line track. Transportation Research Part B: Methodological, 30(2), 147-161.

Holmberg, K., and Yuan, D. (2003). A multicommodity network-flow problem with side

constraints on paths solved by column generation. INFORMS Journal on Computing,

15(1), 42-57.

 151

Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle routing

problem with time windows. Computers & Operations Research, 35(7), 2307-2330.

Kittelson and Associates. (2003). Transit capacity and quality of service manual. U.S.

Department of Transportation, Washington DC.

Kohl, N., Desrosiers, J., Madsen, O. B., Solomon, M. M., and Soumis, F. (1999). 2-path

cuts for the vehicle routing problem with time windows. Transportation Science, 33(1),

101-116.

Kontoravdis, G. and Bard, J. F. (1995). A GRASP for the vehicle routing problem with

time windows. ORSA journal on Computing, 7(1), 10-23.

Kytöjoki, J., Nuortio, T., Bräysy, O., and Gendreau, M. (2007). An efficient variable

neighborhood search heuristic for very large scale vehicle routing problems. Computers

& Operations Research, 34(9), 2743-2757.

Lau, H. C., Sim, M., and Teo, K. M. (2003). Vehicle routing problem with time windows

and a limited number of vehicles. European Journal of Operational Research, 148(3),

559-569.

Lusby, R. M., Larsen, J., Ehrgott, M., and Ryan, D. (2011). Railway track allocation:

models and methods. OR spectrum, 33(4), 843-883.

Lysgaard, J., Letchford, A. N., and Eglese , R. W.(2004). A new branch-and-cut

algorithm for the capacitated vehicle routing problem. Mathematical Programming,

100(2), 423-445.

Magnanti, T. L., and Wong, R. T.. Network design and transportation planning: Models

and algorithms. Transportation Science, 18(1), 1-55.

Mu, S., and Dessouky, M. (2011). Scheduling freight trains traveling on complex

networks. Transportation Research Part B: Methodological, 45(7), 1103-1123.

 152

Nagata, Y., Bräysy, O., and Dullaert, W. (2010). A penalty-based edge assembly

memetic algorithm for the vehicle routing problem with time windows. Computers &

Operations Research, 37(4), 724-737.

Nagy, G., Wassan, N. A., Speranza, M. G., and Archetti, C. (2013). The vehicle routing

problem with divisible deliveries and pickups. Transportation Science, 49(2), 271-294.

Nguyen, V. P., Prins, C., and Prodhon, C. (2012). Solving the two-echelon location

routing problem by a GRASP reinforced by a learning process and path relinking.

European Journal of Operational Research, 216(1), 113-126.

Nowak, M., Ergun, Ö., and White III, C. C. (2008). Pickup and delivery with split loads.

Transportation Science, 42(1), 32-43.

Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008a). A survey on pickup and delivery

problems. Journal für Betriebswirtschaft, 58(1), 21-51.

Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008b). A survey on pickup and delivery

problems. Journal für Betriebswirtschaft, 58(1), 81-117.

Penna, P. H. V., Subramanian, A., and Ochi, L. S. (2013). An iterated local search

heuristic for the heterogeneous fleet vehicle routing problem. Journal of Heuristics,

19(2), 201-232.

Pirkul, H., and Soni, S. (2003). New formulations and solution procedures for the hop

constrained network design problem. European Journal of Operational Research, 148(1),

126-140.

Pisinger, D., and Ropke, S. (2007). A general heuristic for vehicle routing problems.

Computers & operations research, 34(8), 2403-2435.

Prescott‐Gagnon, E., Desaulniers, G., and Rousseau, L. M. (2009). A branch‐and‐price‐

based large neighborhood search algorithm for the vehicle routing problem with time

windows. Networks, 54(4), 190-204.

Pugliese, L. D. P., and Guerriero, F. (2013). A survey of resource constrained shortest

path problems: Exact solution approaches. Networks, 62(3), 183-200.

 153

Randazzo, C. D., and Luna, H.P. L. (2001). A comparison of optimal methods for local

access uncapacitated network design. Annals of Operations Research, 106(1-4), 263-286.

Righini, G., and Salani, M. (2008). New dynamic programming algorithms for the

resource constrained elementary shortest path problem. Networks, 51(3), 155-170.

Rochat, Y., and Semet, F. (1994). A tabu search approach for delivering pet food and

flour in Switzerland. Journal of the Operational Research Society, 1233-1246.

Ropke, S., and Pisinger, D. (2006). A unified heuristic for a large class of vehicle routing

problems with backhauls. European Journal of Operational Research, 171(3), 750-775.

Şahin, G., Ahuja, R. K., , and Cunha, C. B. (2008). Integer programming based

approaches for the train dispatching problem. Department of Industrial and Systems

Engineering, University of Florida, Gainesville.

Şahin, İ. (1999). Railway traffic control and train scheduling based oninter-train conflict

management. Transportation Research Part B: Methodological, 33(7), 511-534.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations research, 35(2), 254-265.

Solomon, M. M. and Desrosiers, J. (1988). Time Window Constrained Routing and

Scheduling Problems. Transportation science, 22(1), 1-13.

Taillard, É. (1993). Parallel iterative search methods for vehicle routing problems.

Networks, 23(8), 661-673.

Tasan, A. S., and Gen, M. (2012). A genetic algorithm based approach to vehicle routing

problem with simultaneous pick-up and deliveries. Computers & Industrial Engineering,

62(3), 755-761.

Thangiah, S. R., Potvin, J. Y., and Sun, T. (1996). Heuristic approaches to vehicle routing

with backhauls and time windows. Computers & Operations Research, 23(11), 1043-

1057.

 154

Toth, P., and Vigo, D. (2003). The granular tabu search and its application to the vehicle-

routing problem. Informs Journal on computing, 15(4), 333-346.

Törnquist, J. (2006). Computer-based decision support for railway traffic scheduling and

dispatching: A review of models and algorithms. In OASIcs-OpenAccess Series in

Informatics (Vol. 2). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2013). A hybrid genetic algorithm

with adaptive diversity management for a large class of vehicle routing problems with

time-windows. Computers & Operations Research, 40(1), 475-489.

Zhou, X., and Zhong, M. (2007). Single-track train timetabling with guaranteed

optimality: Branch-and-bound algorithms with enhanced lower bounds. Transportation

Research Part B: Methodological, 41(3), 320-341.

