
Copyright

by

Jungrae Kim

2016

The Dissertation Committee for Jungrae Kim
certifies that this is the approved version of the following dissertation:

Strong, Thorough, and Efficient Memory Protection

against Existing and Emerging DRAM Errors

Committee:

Mattan Erez, Supervisor

Yale Patt

Nur Touba

Calvin Lin

Alaa Alameldeen

Strong, Thorough, and Efficient Memory Protection

against Existing and Emerging DRAM Errors

by

Jungrae Kim, B.S.E., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2016

To loving parents,

Namho Kim and Eunsung Lee,

for their endless love, support, and encouragement.

Acknowledgments

First of all, I thank my great advisor, Professor Mattan Erez. Mattan is

my role model as an open-minded, hard-working, and brilliant researcher. He

kept encouraging me to develop new research ideas with in-depth discussion

and rigorous feedback. I was fortunate to have him as my advisor and enjoyed

working with him over the past 5 years.

I also would like to thank the other members of my dissertation com-

mittee: Professor Yale N. Patt, Professor Nur A. Touba, Professor Calvin Lin,

and Dr. Alaa Alameldeen. Their valuable comments helped me develop and

elaborate the concepts in my dissertation.

I thank Seh-Woong Jeong, Jaehong Park, Young Jun Kwon, Kyung-

Mook Lim, Jinpyo Park, Joonseok Kim, Nak Hee Seong, Yoonhwan Kim,

Suknam Kwon, and Sangyoon Lee at Samsung Electronics. I learned various

aspects of computing systems from them and am proud to have been a member

of a team which changed daily lives of the mankind. I am also thankful to the

company for supporting my Ph.D study.

I am also thankful to Min Kyu Jeong, Ikhwan Lee, Joonsoo Kim, and

Dam Sunwoo for their friendship. From the day one in Austin, their help

and support made me and my family stand here. I also should acknowledge

other friends in the LPH research group: Michael Sullivan, Dong Wan Kim,

v

Jinsuk Chung, Minsoo Rhu, Seong-Lyong Gong, Tianhao Zheng, Song Zhang,

Haishan Zhu, Esha Choukse, Sangkug Lym, Yongkee Kwon, Kyushick Lee,

Benjamin Cho, and Nicholas Kelly. They gave me invaluable comments and

feedback to my research and papers, and I would not have completed my

Ph.D. research without their help; especially Mike, who collaborated on all of

my papers.

Finally, I want to thank my family for their consistent support and

endless love. Very special thanks to my wife, Sun Young Hwang; she has been

supportive throughout the years and made my life full of joy with three loving

children; Dana Dongha Kim, Julia Dongjoo Kim, and Justin Kim.

vi

Strong, Thorough, and Efficient Memory Protection

against Existing and Emerging DRAM Errors

Publication No.

Jungrae Kim, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Mattan Erez

Memory protection is necessary to ensure the correctness of data in the

presence of unavoidable faults. As such, large-scale systems typically employ

Error Correcting Codes (ECC) to trade off redundant storage and bandwidth

for increased reliability. Single Device Data Correction (SDDC) ECC mecha-

nisms are required to meet the reliability demands of servers and large-scale

systems by tolerating even severe faults that disable an entire memory chip.

In the future, however, stronger memory protection will be required

due to increasing levels of system integration, shrinking process technology,

and growing transfer rates. The energy-efficiency of memory protection is also

important as DRAM already consumes a significant fraction of system energy

budget. This dissertation develops a novel set of ECC schemes to provide

strong, safe, flexible, and thorough protection against existing and emerging

types of DRAM errors. This research also reduces energy consumption of such

protection while only marginally impacting performance.

vii

First, this dissertation develops Bamboo ECC, a technique with stronger-

than-SDDC correction and very safe detection capabilities (≥ 99.999994% of

data errors with any severity are detected). Bamboo ECC changes ECC lay-

out based on frequent DRAM error patterns, and can correct concurrent errors

from multiple devices and all but eliminates the risk of silent data corruption.

Also, Bamboo ECC provides flexible configurations to enable more adaptive

graceful downgrade schemes in which the system continues to operate correctly

after even severe chip faults, albeit at a reduced capacity to protect against

future faults. These strength, safety, and flexibility advantages translate to a

significantly more reliable memory sub-system for future exascale computing.

Then, this dissertation focuses on emerging error types from scaling

process technology and increasing data bandwidth. As DRAM process tech-

nology scales down to below 10nm, DRAM cells are becoming more vulnerable

to errors from an imperfect manufacturing process. At the same time, DRAM

signal transfers are getting more susceptible to timing and electrical noises

as DRAM interfaces keep increasing signal transfer rates and decreasing I/O

voltage levels. With individual DRAM chips getting more vulnerable to errors,

industry and academia have proposed mechanisms to tolerate these emerging

types of errors; yet they are inefficient because they rely on multiple levels

of redundancy in the case of cell errors and ad-hoc schemes with subopti-

mal protection coverage for transmission errors. Active Guardband ECC and

All-Inclusive ECC make systematic use of ECC and existing mechanisms to

provide thorough end-to-end protection without requiring redundancy beyond

viii

what is common today.

Finally, this dissertation targets the energy efficiency of memory pro-

tection. Frugal ECC combines ECC with fine-grained compression to pro-

vide versatile and energy-efficient protection. Frugal ECC compresses main

memory at cache-block granularity, using any left over space to store ECC

information. Frugal ECC allows more energy-efficient memory configurations

while maintaining SDDC protection. Its tailored compression scheme mini-

mizes insufficiently compressed blocks and results in acceptable performance

overhead.

The strong, thorough, and efficient protection described by this disser-

tation may allow for more aggressive design of future computing systems with

larger integration, finer process technology, higher transfer rates, and better

energy efficiency.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Errors with Growing System Sizes 2

1.1.1 Limitations of Current SDDC Protection 3

1.1.2 Contribution w.r.t. Errors in Future Large-Scale Systems 4

1.2 Errors from Less-Reliable Process Technology 4

1.2.1 In-DRAM ECC Protection 5

1.2.2 Limitations of In-DRAM ECC 5

1.2.3 Contribution w.r.t. Scaling-Induced Errors 6

1.3 Errors from Less-Reliable Transfers 6

1.3.1 Current Transmission Protection 8

1.3.2 Limitations of Current Transmission Protection 9

1.3.3 Contribution w.r.t. Transmission Errors 10

1.4 Protection Energy Efficiency 10

1.4.1 Limitations of Current Protection 11

1.4.2 Contribution w.r.t. Energy Efficiency 11

1.5 Dissertation Organization . 13

Chapter 2. Background 14

2.1 Reliability Concepts . 14

2.2 DRAM . 17

2.3 Error Correcting Codes . 18

x

Chapter 3. Data Errors Protection Mechanisms 22

3.1 Data Error Patterns . 23

3.2 ECC Detection Coverage . 24

3.3 Bamboo ECC . 28

3.3.1 Organizations . 29

3.3.1.1 Single Pin Correcting ECC 29

3.3.1.2 Single Pin Correcting – Triple Pin Detecting ECC 30

3.3.1.3 Quadruple Pin Correcting ECC 32

3.3.1.4 Octuple Pin Correcting ECC 33

3.3.2 Graceful Downgrade . 33

3.3.3 Overheads . 35

3.4 Evaluation . 38

3.4.1 Error Coverage Evaluation 39

3.4.2 System Reliability . 43

3.4.3 Performance and Energy 49

3.5 Related Work . 50

3.6 Summary . 56

Chapter 4. Mechanisms against Manufacturing Faults 57

4.1 DRAM Faults from Process Scaling 58

4.2 In-DRAM ECC . 59

4.3 ECC Guardband . 62

4.3.1 Strict ECC Guardband 63

4.3.2 Zero ECC Guardband 64

4.3.3 Active ECC Guardband 65

4.4 Active Guardband QPC ECC 68

4.4.1 ECC decoding . 69

4.4.2 Fault Diagnosis and Erasure Decoding 71

4.4.3 Remapping . 72

4.4.4 Overheads . 73

4.5 Evaluation . 74

4.5.1 Manufacturability . 75

xi

4.5.2 System Reliability . 78

4.5.3 Performance and Energy 82

4.6 Related Work . 85

4.7 Summary . 88

Chapter 5. Mechanisms against Command/Address Errors 89

5.1 DRAM Transmission Errors 90

5.2 Current DRAM Practices . 94

5.2.1 DDR4 CCCA Signals 94

5.2.2 DDR4 Reliability Features 95

5.3 All-Inclusive ECC . 97

5.3.1 Extended Data ECC for Address Protection 98

5.3.2 Extended Write CRC for Timely Write Address Protection100

5.3.3 State and Timing Checker for Command Protection . . 101

5.3.4 Extended CA Parity (eCAP) 104

5.3.5 Clock and Control Protection 105

5.3.6 Precise Diagnosis . 105

5.3.7 Correction Details . 105

5.4 Evaluation . 106

5.4.1 CCCA Reliability . 107

5.4.1.1 Impact of undetected CCCA errors 108

5.4.1.2 Detection Coverage 109

5.4.2 Data Reliability . 112

5.4.3 System Reliability . 113

5.4.4 Hardware Overheads . 117

5.5 Related Work . 118

5.6 Summary . 121

Chapter 6. Efficient Protection using Compression 123

6.1 Frugal ECC . 124

6.2 Coverage-oriented Compression 127

6.2.1 Fitting Base + Delta Compression 128

6.2.2 Floating-point Compression 130

xii

6.2.3 Frequent Word Compression 131

6.3 ECC Flag Protection . 132

6.4 Frugal ECC Organizations . 133

6.4.1 Frugal ECC for x4 SDDC 133

6.4.2 Frugal ECC for ×8 SDDC 137

6.5 Evaluation . 137

6.5.1 Reliability . 139

6.5.2 Compression Coverage 141

6.5.3 Performance and Energy 145

6.5.4 Hardware Overheads . 148

6.6 Related Work . 151

6.6.1 Efficient ECC . 151

6.6.2 Memory Compression 153

6.7 Summary . 156

Chapter 7. Conclusion 157

7.1 Future Research Directions . 159

Bibliography 161

Vita 186

xiii

List of Tables

2.1 Examples of ECCs with different distances. 20

3.1 DRAM fault rates (in FIT) observed on the Jaguar supercom-
puter with 73K DDR2 DIMMs. 25

3.2 A comparison of the protection coverage of bit-level ECCs. . . 41

3.3 A comparison of the protection coverage of SDDC ECCs with
×4 and ×8 DRAM devices. 42

4.1 Traditional approaches for high reliability and high manufac-
turability. 59

4.2 A comparison of protection coverage using different QPC post-
processing schemes. 70

4.3 The performance/energy simulation parameters of AG-ECC. . 83

5.1 DDR4 DRAM commands with their allowed bank state and
timing constraints. 103

5.2 The impact of 1-pin CCCA errors across pin locations and com-
mands. 108

5.3 A comparison of the data and address protection coverage of
Bamboo QPC with and without address protection. 112

5.4 Representative benchmark clusters and their bandwidths. . . . 114

5.5 An evaluation of mean time to CCCA SDC failure on systems
with 1.2M and 36M DRAM devices and high bandwidth uti-
lization. 116

6.1 The frequent word compression mappings (per 64-bit data). . 132

6.2 A comparison of different SDDC and SDDC-level ECCs for ×4
devices over a 64-bit data channel. 134

6.3 A comparison of different SDDC and SDDC-level ECCs for ×8
devices. 136

6.4 The simulation parameters for the performance and energy eval-
uation. 147

xiv

List of Figures

1.1 The increasing DRAM transfer rates of command, address, and
data signals over the past 15 years. 7

1.2 The decreasing DRAM supply voltage levels. 7

1.3 DRAM power breakdown over core and I/O. 7

1.4 The standard fly-by topology of DDR4 registered DIMM. . . . 8

2.1 The hierarchical organization of DRAM. 16

3.1 Conceptual codespace of single symbol correcting codes. 26

3.2 Single Pin Correcting Bamboo ECC on (64+2)-bit channel . . 30

3.3 Single Pin Correcting – Triple Pin Detecting Bamboo ECC on
(64+4)-bit channel . 31

3.4 Quadruple Pin Correcting Bamboo ECC on (64+8)-bit channel 31

3.5 Octuple Pin Correcting Bamboo ECC on a (128+16)-bit channel. 33

3.6 The protection coverage and system reliability evaluation envi-
ronment. 39

3.7 The failure probability of a DDR 64-bit data channel over time
with different bit-level protection mechanisms. 44

3.8 The failure probability of a DDR 64-bit data channel over time
with different SDDC protection mechanisms. 45

3.9 The failure probability of a DDR 128-bit data channel with
different DDDC protection mechanisms. 46

3.10 The failure probability of a large system with 1,000,000 channels
over time with different SDDC protection mechanisms. 47

3.11 The failure probability of a large system with 1,000,000 channels
over time with different DDDC protection mechanisms. 48

3.12 The execution time slowdown of Bamboo ECC schemes (nor-
malized to AMD chipkill). 50

3.13 The SEC-DED codeword over (64+8)-bit channel / 1-beat. . . 51

3.14 The interleaving of 4 SEC-DED codewords over 288 bit channel
/ 1-beat. 51

xv

3.15 The interleaving of 2 SEC-DAEC codewords over 144 bit chan-
nel / 1-beat. 52

3.16 The 4-bit Symbol SDDC (SSC-DSD) over (128+16)-bit channel
/ 1-beat. 53

3.17 The 8-bit Symbol SDDC (SSC) over (64+8)-bit channel / 2-beat. 54

4.1 In-DRAM ECC for DRAM chips with different data interface
widths but the same 12.5% redundancy. 61

4.2 A strict ECC guardband example with QPC Bamboo ECC. . 63

4.3 A zero ECC guardband example with QPC Bamboo ECC. . . 64

4.4 An active ECC guardband example with QPC Bamboo ECC. 68

4.5 A comparison of 16GB DIMM yields using different ECC schemes
and varying cell fault rates. 76

4.6 A comparison of the number of spare 64B blocks needed to
achieve 99.99% yield on 16GB DIMMs. 77

4.7 The reliability of a 2-rank DRAM channel against both inherent
and operational faults (CFR = 10-6). 80

4.8 The reliability of a 2-rank DRAM channel against both inherent
and operational faults (CFR = 10-5). 81

4.9 The reliability of a 2-rank DRAM channel against both inherent
and operational faults (CFR = 10-4). 81

4.10 A comparison of the IPC slowdown comparison between AG-QPC
and in-DRAM-ECC-based schemes. 84

4.11 A comparison of the DRAM energy efficiency between AG-QPC
and in-DRAM-ECC-based schemes. 85

5.1 A read address error example. 91

5.2 A write address error example. 91

5.3 A command error example (duplicate activations). 92

5.4 The CCCA signal interface for DDR4 memory. 94

5.5 The reliability features available with DDR4. 96

5.6 A visualization of the extended Data ECC (eDECC) mechanisms. 99

5.7 An overview of the Extended Write CRC (eWCRC). 101

5.8 An overview of the Command State and Timing Checker. . . . 101

5.9 An overview of the Extended CA Parity (eCAP). 104

5.10 The CCCA reliability evaluation environment. 106

xvi

5.11 The CCCA error detection coverage of an unprotected DDR4
DIMM (None), DDR4+DECC (DECC), DDR4+eDECC (eDECC),
and DDR4+AIECC (AIECC). 110

5.12 A quantitative evaluation of the different AI-ECC components:
eDECC, eWCRC, address protection (eDECC+eWCRC), CSTC,
eCAP, command protection (CSTC+eCAP), eDECC+eWCRC
+eCAP (for completeness), and AI-ECC. 111

5.13 An estimation on ×4 DRAM CCCA FIT rates after protection
with 10-22 BER. 115

6.1 A comparison between Frugal ECC and existing ECC. 124

6.2 Memory reads and writes with Frugal ECC using a 64-bit non-
ECC DIMM. 125

6.3 The compressed data layout for the 448-bit target (64-bit re-
dundancy). 128

6.4 The compressed data layout for the 480-bit target (32-bit re-
dundancy). 128

6.5 The Frugal ECC layout for AMD chipkill and QPC Bamboo ECC
(64-bit redundancy). 134

6.6 The Frugal ECC layout for ×4 Multi-ECC (32-bit redundancy). 134

6.7 Probabilities of a DUE and SDC for a single rank with 1 or
2-chip errors. 140

6.8 Probabilities of a DUE and SDC for a system with 100K DIMMs,
assuming only 1 or 2-chip errors. 140

6.9 An evaluation on CoC compression coverage for 64-bit and 32-
bit redundancy. 142

6.10 A compression coverage comparison between CoC and prior
memory compression schemes. 144

6.11 The memory traffic and compression coverage results of all bench-
marks measured with Pin and the four representative detailed
simulations selected. 145

6.12 A comparison of execution time and DRAM energy consump-
tion (normalized to AMD chipkill). 149

6.13 A block diagram of the CoC compressor. 149

xvii

Chapter 1

Introduction

DRAM errors are not rare. Field measurements show that a DRAM

Dual Inline Memory Module (DIMM) suffers from an average of 0.65 − 330

errors per month [122, 48, 128, 129, 93, 127]. In large-scale systems with tens

of thousands of DIMMs, these numbers translate into significant system-wide

error rates. On the Jaguar supercomputer with 18K nodes and 73K DDR2

DIMMs, there are 250,000 DRAM errors per month on average, or there is

a DRAM error once every 10 seconds [128]. With such frequent errors, the

output of a large-scale computation is unreliable and the reliability of main

memory has become a significant and growing concern of system designers and

operators.

Large-scale systems, datacenters, and business-critical servers currently

employ Error Correcting Codes (ECC), which trade off redundant storage and

bandwidth for improved reliability. The most widely known ECC is Single

Error Correcting — Double Error Detecting (SEC-DED), which can correct

all 1-bit errors and detect all 2-bit errors. On 64-bit data, 8-bit redundancy

is added for SEC-DED. The standard ECC DIMM has 8 redundant pins with

64 data pins, resulting in 12.5% redundant storage and transfer.

1

Highly reliable systems require stronger levels of protection. Single

Device Data Correction (SDDC) ECC1 can restore data of a dead chip and can

tolerate more severe errors than SEC-DED. Field analyses report that SDDC

significantly improves memory reliability by correcting 99.94% of all errors,

compared to 91% with SEC-DED [50], and achieves a 42× better uncorrected

DRAM error rate than SEC-DED [128]. Recent SDDC implementations use

the same ECC DIMMs originally designed for SEC-DED [9].

While SDDC protection brings needed reliability improvements to cur-

rent large-scale systems, future systems will require even stronger error cor-

rection and detection capabilities due to three main reasons: growing system

sizes, less-reliable process technology, and increasing transmission error rates.

Also, energy-efficiency of protection is important because ECC costs extra

chips that consume a significant portion of a system’s energy budget. Further-

more, ECC often necessitates energy-inefficient configurations. The following

sections briefly describe these DRAM reliability challenges, current approaches

that address those challenges, limitations of these current approaches, and the

contributions of this dissertation.

1.1 Errors with Growing System Sizes

The number of DRAM devices per system is rapidly growing to support

exploding data volumes and computation throughput. The U.S. Department of

1SDDC is referred to as Chipkill, extended ECC, and ChipSpare protection by IBM, Sun
(now Oracle), and HP, respectively [9, 53, 108, 42].

2

Energy expects exascale supercomputers, which are capable of a billion billion

calculations per second, to be available by 2024 [94]. Such supercomputers

may employ millions of DRAM DIMMs for more than 128 peta bytes of main

memory [124]; this number of DRAM devices is 32× greater than the top

supercomputer in 2016 [139].

1.1.1 Limitations of Current SDDC Protection

The correction and detection strength of current SDDC protection may

not be sufficient to deal with the growing system integration levels and their

higher error rates. The mean time between uncorrectable errors in current

systems with SDDC protection is as low as 9 days [93]. Without a stronger

correction capability, future systems will suffer from degraded system-level

reliability with an uncorrectable error every few hours.

The detection capability of a protection scheme is as important as its

correction capability in large-scale computing. ECC has limited correction

capability due to physical constraints (e.g., the amount of redundancy) and

large-scale systems typically employ runtime support (e.g., checkpoint and

restart [38, 27]) to correct rare ECC-uncorrectable errors. Such schemes mostly

rely on ECC detection capability to trigger the state-restoration procedure

so that uncorrectable errors, if any, should at least be detected by ECC to

prevent applications from producing incorrect results. Despite the importance

of detection, some SDDC implementations trade off detection capability for

improved efficiency, missing up to 1.4% of double-chip-errors (Section 3.4).

3

1.1.2 Contribution w.r.t. Errors in Future Large-Scale Systems

This dissertation presents a novel family of efficient ECC mechanisms

for future large-scale systems. Bamboo ECC reduces service interruptions

from uncorrectable errors by correcting more pin and chip errors than state-of-

the-art SDDC mechanisms. Bamboo ECC also provides vastly superior detec-

tion capability against errors with any severity and eliminates the risk of silent

data corruption to ensure safe system operation. As permanent faults gener-

ate more serious and uncorrectable errors with accumulation, Bamboo ECC

provides fine-grained pin-level flexibility to aggressively retire such faults with

minimal cost, thereby extending system lifetime.

1.2 Errors from Less-Reliable Process Technology

Shrinking process technology will make individual DRAM devices more

vulnerable to errors. As DRAM technology continues to scale down to below

10nm, smaller transistors, capacitors, and wire pitches make DRAM cells more

vulnerable to smaller defects, retention errors, and disturbance errors, respec-

tively [70, 85, 82]. Current row and column sparing techniques fall short of

screening out all the faulty cells, so these repeated and permanent errors can

increase error rates even further, and can make error patterns more severe

when faults that affect the same memory region accumulate over time.

4

1.2.1 In-DRAM ECC Protection

In response, industry and academia have been exploring alternatives

that are based on integrating ECC within DRAM chips [68, 14, 81, 85, 70, 67,

107]. In-DRAM ECC works by reading and processing redundant informa-

tion within the DRAM chip, commonly allocating 6.25% or 12.5% additional

bits for each memory read or write. By keeping this ECC processing and

redundancy within each chip, the DRAM external interface remains mostly

unchanged. In-DRAM ECC allows a memory chip to present itself to the pro-

cessor as a reliable part even if inherent scaling faults exist, enabling future

DRAM devices to be manufactured with high yield.

1.2.2 Limitations of In-DRAM ECC

While in-DRAM ECC mitigates the issue of inherent faults at the

boundary of a single device, its use within the context of highly-reliable systems

raises an issue of increased redundancy compared to current practice. Highly-

reliable systems already utilize ECC across a memory rank2 (rank-level ECC)

to protect against operational memory faults. As opposed to inherent faults,

which exist when the system is first run, operational faults occur while the

system operates (as a result of particle strikes, signaling errors, aging, etc.).

Rank-level ECC commonly requires 12.5% redundancy in the form of redun-

dant chips added to each rank. Thus, with in-DRAM ECC and rank-level ECC

2A memory rank is a set of DRAM chips accessed simultaneously to provide the desired
channel data width.

5

both applied, the combined storage redundancy grows to 26.6% (1.125 ×

1.125 = 1.266).

1.2.3 Contribution w.r.t. Scaling-Induced Errors

This dissertation provides strong and efficient protection against both

inherent and operational faults. Active Guardband ECC (AG-ECC) utilizes

a novel and unique combination of ECC decoding and memory remapping

that simultaneously achieves high efficiency, high reliability, and high yield.

AG-ECC uses a strong rank-level ECC to tolerate both errors during operation

and errors from imperfect process technology, eliminating the need for separate

in-DRAM ECC protection against faulty cells. It not only restores the total

amount of redundancy back to 12.5%, compared to up to 26.6% overhead in the

proposed in-DRAM + rank-level ECC approaches, but also provides higher

yield than in-DRAM ECC. AG-ECC can maintain reliability stronger than

SDDC mechanisms available in current systems and significantly improves

DRAM energy efficiency.

1.3 Errors from Less-Reliable Transfers

DRAM transfers are getting more vulnerable to transmission errors.

DRAM has consistently evolved to provide more data with less energy. Each

recent generation of DRAM has more-than-doubled the data transfer rate of

its predecessor (Figure 1.1), and has also decreased core and I/O voltages

for better energy efficiency (Figure 1.2). Increasing signal transfer rates and

6

14 Gbps7 Gbps

3.2 Gbps

3.5 Gbps

1.6 Gbps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GDDR5X
GDDR5
GDDR4
GDDR3
DDR4
DDR3
DDR2
DDR1

Transfer rate (per pin)

Command rate Address rate Data rate

Figure 1.1: The increasing DRAM transfer rates of command, address, and
data signals over the past 15 years.

2.5

1.8
1.5 1.35 1.2

0
0.5
1

1.5
2

2.5
3

V
D
D
 (
V
)

Figure 1.2: The decreasing DRAM
supply voltage levels.

4.13
(54%)

3.23
(53%)

2.65
(48%) 2.04

3.49
(46%) 2.88

(47%)
2.88
(52%) 1.48

0

2

4

6

8

40nm
DDR3

30nm
DDR3L

20nm
DDR3L

20nm
DDR4

Po
w
er
 (
W
)

Core power IO power

(42%)

Figure 1.3: DRAM power break-
down over core and I/O.

lowering I/O voltages each exacerbate the problem of transmission errors. A

transmission error occurs when a signal is incorrectly transferred to or from

memory; higher transfer rates and lower voltages increase the vulnerability to

timing and electrical noise, respectively.

While current protection techniques primarily focus on protecting data

transmissions, Clock, Control, Command, and Address (CCCA) signals should

not be neglected. These signals typically operate at half the transfer rate of

data signals, yet they may suffer from more transmission errors due to DIMM

topology. On a DDR4 DIMM, for example, each CCCA signal visits up to

7

DIMM

72­bit data width

x4
DDR

x4
DDR

x4
DDR

VTT

Registered CLK/CMD/CTRL/ADDR (28 signals)

x4
DDR...

Buffer

CLK/
CMD/
ADDR

CLK/CMD/CTRL/
ADDR buffer

Up to 18 receivers

Figure 1.4: The standard fly-by topology of DDR4 registered DIMM.

18 DRAM chips sequentially and 27 CCCA signals are captured using a clock

signal. On the other hand, each data signal has a dedicated connection and

there is a strobe signal per up to 8 data signals. The larger number of re-

ceivers and the wider interface deteriorate CCCA signal quality by increasing

reflections and signal skew, respectively, making CCCA transfers potentially

more vulnerable to errors than data transfers despite the halved transfer rate.

Signal and power integrity simulations on DDR4 registered-DIMM show that

CCCA signals have a narrower time window to reliably receive signals than

data signals. Also, evidence from a large-scale field study [127] strongly sug-

gests that CCCA errors are already a severe problem for reliability-conscious

systems, even at the modest 1.6 Gbps CCCA rate of DDR3.

1.3.1 Current Transmission Protection

Traditionally, DRAM designs have managed the transmission error rate

using sophisticated circuit techniques to improve signal quality (e.g., delay-

locked loops, phase-locked loops, on-die termination, differential signaling, and

8

fly-by topology [56, 59, 60, 61, 66]) at the cost of consuming extra power. The

price paid for reliable transmission is significant because roughly half of DRAM

power is spent on I/O (Figure 1.3) [120]. Increasing transfer rates and tight

power constraints have made circuit techniques alone insufficient to provide

high levels of reliability and efficiency.

As a result, DRAM vendors have introduced ad-hoc architectural tech-

niques in recent memory generations to protect transfers, such as Cyclic Re-

dundancy Check (CRC) and Command/Address Parity (CAP) [60, 61, 66].

The 8-bit CRC on write data verifies the consistency of received data, while

an even-parity on command/address signals verifies the consistency of received

command/address. Once errors are detected by such schemes, they can be cor-

rected by retransmitting the signals.

1.3.2 Limitations of Current Transmission Protection

CAP provides limited detection capability of CCCA errors; it can de-

tect only odd bit errors on command/address signals. Errors on clock and

control signals (e.g., chip select and clock enable) and even-bit errors on com-

mand/address signals are not detected by CAP. Such errors can have disas-

trous impact that is not correctable by conventional data-only ECC, leaving

a serious hole in system reliability.

Due to the lack of strong protection and the severity of the problem, re-

cent DRAM generations passively limit CCCA rates for high reliability. DDR4

introduced gear-down mode which transfers CCCA signals at a quarter the

9

rate of data for reliability [60] and GDDR5X could not scale up CCCA rates

along with data rates [66] (Figure 1.1). These designs trade off performance

for CCCA reliability by lowering command bandwidth, adding command la-

tency, and increasing access granularity—all of which degrade performance

and efficiency.

1.3.3 Contribution w.r.t. Transmission Errors

This dissertation presents All-Inclusive ECC (AI-ECC), a holistic mem-

ory error protection scheme that is able to safeguard DRAM data and CCCA

signals against storage and transmission errors. Strong protection on any one

component (i.e., data) provides limited benefits to overall reliability as any

unprotected component will quickly become the reliability bottleneck. There-

fore, current data-oriented ECC should be redesigned to thoroughly protect

both data and CCCA. By leveraging the existing strong ECC schemes for the

protection of CCCA errors, AI-ECC remedies the approach of protecting only

or mostly DRAM data without discarding the extensive advancements made

in the area of data protection.

1.4 Protection Energy Efficiency

In addition to the heightened need for stronger protection, energy ef-

ficiency of memory protection should be improved. DRAMs already consume

more than 30% of total power in modern datacenters [97], and ECC over-

head takes a significant portion of it; the 12.5% extra chips on ECC DIMMs

10

translate into 1
9
of the DRAM energy consumption.

1.4.1 Limitations of Current Protection

Current SDDC ECCs increase DRAM energy consumption even further

by forcing energy-inefficient memory configurations. SDDC mechanisms rely

on narrower DRAM devices (e.g., 16 ×4 chips per channel) to reduce the num-

ber of affected bits from a chip failure and/or a wider channel (e.g., two ECC

DIMMs in parallel) to increase redundancy amount. Narrow devices double

the number of chips per access than energy efficient configurations with wider

devices (e.g., 8 × 8 chips per channel) and roughly double the DRAM energy

consumption per access. While a wider channel can increase the amount of

redundancy per access, its larger access granularity often also results in a se-

rious performance degradation due to overfetching and reduced memory-level

parallelism. Fujitsu reports that pairing two 64b channels together in an 8

DIMM system to form four 128b data channels degrades integer application

performance (SPECint2006 [130]) by 6% and memory-intensive benchmark

(STREAM [43]) performance by 43%. The performance hit is even more stag-

gering on a lower capacity node—with 4 DIMMs, the performance degradation

for the integer and memory benchmarks are 28.3% and 46.3%, respectively [32].

1.4.2 Contribution w.r.t. Energy Efficiency

This dissertation improves energy efficiency of main memory protection

as well as protection strength. Frugal ECC (FECC) is an adaptive and strong

11

ECC technique that relies on opportunistic compression to offer an entirely

new set of tradeoffs between reliability and ECC overheads. The insight behind

FECC follows recent research which observes that compression at the cache-

block granularity can free up enough space for other information [89, 123];

FECC uses this free space for storing the ECC redundancy. Thus, when

compression succeeds, FECC can match the performance of a conventional

ECC organization that uses dedicated ECC memory devices with less, or even

zero, dedicated redundancy.

While the concept is simple, two crucial innovations are introduced to

make FECC truly effective. First, a new compression scheme maximizes the

fraction of blocks that compress just enough for ECC rather than needlessly

aiming for greater levels of compression. The second innovation is how to

protect poorly compressed blocks. Not all memory blocks are sufficiently com-

pressible and some blocks fail to yield enough spare footprint for the redundant

information. To address these compression exceptions, FECC applies different

ECC layouts and protects its layout meta-data separately to guarantee up to

true SDDC protection.

This careful combination of compression and ECC layout simultane-

ously achieves superior reliability and lower overhead when compared to state-

of-the-art ECC mechanisms. As an example, this dissertation presents the first

true SDDC ECC on a narrow channel (i.e., single ECC DIMM) with wider de-

vices (i.e., 8-bit wide DRAM chips) to reduce the number of DRAM chips per

access and to improve DRAM energy efficiency.

12

1.5 Dissertation Organization

The remainder of this dissertation proceeds as follows: Chapter 2 lays

out the conceptual foundations of this dissertation by reviewing the terminol-

ogy and function of system reliability, DRAM, and ECCs. Chapter 3 develops

strong ECC mechanisms against data errors. Chapter 4 introduces errors from

imperfect process scaling and presents strong and efficient protection. Chap-

ter 5 discusses transmission errors and provides thorough protection on data

and CCCA signals. Chapter 6 presents mechanisms to improve energy effi-

ciency of protection using fine-grained compression. Chapter 7 summarizes

current findings and presents future research directions.

13

Chapter 2

Background

This chapter reviews the concepts and terminology that are fundamen-

tal and common to the mechanisms of this dissertation: reliability concepts,

DRAM, and ECC. More detailed motivations of particular mechanisms will

be provided at the beginning of its corresponding chapter: data errors patterns

(Section 3.1), inherent faults from process scaling (Section 4.1), and transmis-

sion errors (Section 5.1).

2.1 Reliability Concepts

As a matter of terminology: a fault is a physical phenomenon or defect

that may cause an error, an error is a discrepancy between the intended and

actual state of a system, and a failure is the event that a system deviates from

its intended service [15]. A fault may or may not generate an error depending

on circumstances, and an error can be masked or corrected by error control

systems. The aim of this research is to efficiently provide such an error control

system to prevent DRAM errors from developing into a system failure.

Faults can be classified based on their error manifestation and time of

occurrence. A transient fault is introduced by some temporary environmental

14

impetus (e.g., a high-energy particle strike), whereas a permanent fault is

an irreversible physical defect that continually produces errors (e.g., stuck-

at bit) [128]. An inherent fault is a permanent fault introduced during the

manufacturing process, and an operational fault is a fault during operation

(either transient or permanent).

Reliability indicates continuity of service without a failure, often mea-

sured in Mean Time To Failure (MTTF) or Failures In Time (FIT, the num-

ber of failures in billion hours), and manufacturability indicates the ease with

which a good product can be manufactured, measured in yield. A fault may

affect reliability by incurring failures and an inherent fault may decrease man-

ufacturability by making a chip defective. The aim of this dissertation is to

efficiently provide fault tolerance mechanisms using Error Correcting Codes

(ECC) to prevent DRAM faults from developing into a system failure or re-

sulting in poor yield.

No error control system can diagnose and correct all possible errors.

In general, an error control system handles an error in one of four ways: a

Detectable and Correctable Error (DCE), a Detectable but Uncorrectable Error

(DUE), a detectable but miscorrected error, or an undetectable and uncor-

rectable error. In the event of miscorrection or misdetection, incorrect data

escapes the error control system, resulting in a possible Silent Data Corrup-

tion (SDC) failure. The implication of a DUE failure can vary depending

on circumstances. A DUE during transmission can typically be corrected by

retry, simplifying the correction of any detected errors. In the case of stor-

15

Cell (C)

Transistor

Capacitor

(a) A DRAM cell.

Mat (M)

Lo
ca
lb
it
lin
e

Local wordline

Row
addr

Column
addr

C C C C...
C C C C...

 C C C C...

C C C C...
Sense­Amps

D
ec
o
d
er

...

Prefetch depth (=burst length)

(b) A DRAM mat.

Bank (BK)

G
lo
b
al
 b
it
lin
eGlobal wordline

Row
addr

Column
addr

M M M M...
M M M M...

 M M M M...

M M M M...
Sense­Amps

D
ec
o
d
er

...

Chip width x prefetch depth

...

(c) A DRAM bank.

Chip

Switch
SerDes

Data Pins
Chip width (e.g. x4)

BK Grp
BK BK
BK BK

BK Grp
BK BK
BK BK

...

(d) A DRAM chip.

 Rank
Chip Chip Chip

Channel width

...

...

B
u
rs
t
le
n
gt
h

Memory Transfer Block

Ti
m
e

(e) A DRAM rank and memory trans-
fer block.

Figure 2.1: The hierarchical organization of DRAM.

age, a DUE indicates that some data has been lost. This loss of data could

be acknowledged and tolerated (by an error tolerant application), it may be

corrected by some higher-level protection mechanisms (such as checkpoint and

restart [38] or a hierarchical state preservation and restoration system [27]),

or it may indicate a fail-stop condition where forward progress is halted (but

no SDC occurs).

16

2.2 DRAM

Dynamic Random Access Memory (DRAM) is widely used as system

main memory for its low cost and high density. The deeply hierarchical struc-

ture of DRAM is depicted in Figure 2.1. A DRAM cell stores each bit of

data using a single transistor and a capacitor (Figure 2.1a). DRAM cells are

organized into two-dimensional arrays, called banks, to amortize control over-

heads (Figure 2.1c). At a deeper look, each bank is physically sub-divided into

512×512 cell mats (Figure 2.1b) to reduce load capacitance and all data within

neighboring mats are connected to one data pin for efficiency [142, 83, 60, 33].

A DRAM chip (or a device) consists of multiple banks to interleave per-bank

accesses and hide long access latency (Figure 2.1d).

Most DRAMs use multiple data pins (DQs) to provide a parallel chip

interface. A DRAM with an N-bit DQ interface is called a ×N chip (e.g.,

a ×4 or ×8 DRAM); the set of DRAM chips that are accessed together in

parallel to provide the desired data bus width is called a rank (Figure 2.1e). A

channel is a set of ranks that time-share physical command/address and data

transfer lanes. A rank/channel comprises of Dual In-line Memory Modules

(DIMMs) that are built from multiple DRAM chips on a PCB board. A rank

can consist of a single DIMM (e.g., a ×64 rank using a ×64 DIMM) or multiple

DIMMs (e.g., a ×128 rank using two ×64 DIMMs in parallel), and a DIMM

can contain multiple ranks (e.g., a ×64 DIMM contains two ×64 ranks).

DRAM requires three commands to access a fresh piece of data. An

activation command (ACT) fetches a row of data into an internal row buffer.

17

Then, a read or write command (RD or WR) uses a column address to select

and transfer or overwrite a particular block from the activated row. To ex-

ploit data locality and amortize command overheads, an RD or WR transfers

a block of data over multiple cycles—one beat of data is transferred through

the rank at a time. The number of beats transferred during each access is

called the memory burst length, and most recent DRAMs use a burst length

of 8. A Memory Transfer Block (MTB) is the unit of memory access and is

defined by burst length and channel data width; typical MTB sizes from burst

length of 8 and ×64/×128 channels are 64B/128B, respectively (Figure 2.1e).

Once a memory read or write completes, the DRAM bank must be restored

to a ready state by issuing a precharge command (PRE). An access to an

already-activated row (a row buffer hit) does not require an ACT or PRE

command, potentially saving latency and command bandwidth for spatially

local accesses. However, command bandwidth can be a limiting factor for

programs lacking locality, especially in systems featuring fine-grained access

granularities [10, 152, 153, 117]. Furthermore, DRAM requires periodic re-

fresh commands (REF) to prevent data loss from leakage, further taxing the

available command bandwidth.

2.3 Error Correcting Codes

Error Correcting Codes (ECC) have long been used to protect data

against errors. ECC detects and corrects errors by adding redundant informa-

tion whose value is generated algorithmically from the protected data. A data

18

and check value pair is called an ECC word. A valid word whose check bits

are consistent with its data is called a codeword, while an invalid pair due to

errors is called a non-codeword. The process of generating a codeword from

data is called encoding and the process of detecting errors from a word and

(possibly) restoring the original data is called decoding.

The protection strength of an ECC can be defined by its correction

and detection coverage: X-correcting and Y -detecting codes can correct all of

up to X errors and detect all of up to Y errors. These protection coverages

can be theoretically extracted from the code distance: in information theory,

the Hamming distance between two words of equal length is the number of

positions at which their symbols differ, and the code distance is the minimum

Hamming distance between two distinct codewords. Codes with distance d,

if used for detection only, can detect all errors with less-than-d erroneous

symbols (i.e., (d− 1)-detecting codes), because these errors always result in a

non-codeword. Alternatively, the same codes can detect and correct all errors

with less-than-�(d−1)/2� erroneous symbols (i.e., �(d−1)/2�-correcting codes)

by decoding a non-codeword into the nearest unique codeword.

Table 2.1 illustrates some examples of ECCs with different distances.

In the figures, double-circles represent codewords; each diagram shows two

neighboring codewords that are colored black and white. Black and white

single-circles are non-codewords that are corrected to the codeword of the

corresponding color. Codes with distance 3 can correct all single-symbol errors

by finding the nearest unique codeword. However, two-symbol errors on codes

19

Code
distance

Error handling between two
neighboring codewords

Name

Binary symbol Non-binary symbol

3
Distance=3
1 1

Single Error Correcting
(SEC)

Single Symbol Correcting
(SSC)

4 1 1
22

Distance = 4

Single Error Correcting -
Double Error Detecting
(SEC-DED)

Single Symbol Correcting -
Double Symbol Detecting
(SSC-DSD)

5
Hamming distance = 5

1
22
1 Double Error Correcting

(DEC)
Double Symbol Correcting
(DSC)

Table 2.1: Examples of ECCs with different distances.

with distance 4 can make a word equally distant from two codewords (gray

single-circle); in that case the error is detectable yet uncorrectable. A typical

ECC scheme uses a t-symbol correcting and (t + 1) symbol detecting codes,

which is effective in systems where errors accumulate symbol-by-symbol. Once

the erroneous symbol count exceeds the correction capability, it will still be

within the detection boundary.

ECCs can be categorized based on their symbol sizes. Binary ECCs

use binary symbols and are most effective at protecting against random bit

errors. Hamming [37] and BCH codes [44, 20] can correct a single erroneous

bit in w bits of data using �log2(w+1)� redundant bits (and they can detect

one more bit-error by adding a parity bit).

Non-binary ECCs partition data into fixed-size symbols; error detection

and correction then occur at the symbol granularity. The most widely used

non-binary ECCs are Reed-Solomon (RS) codes [116], which can achieve the

20

minimum possible redundancy for a given distance [125]. RS codes with 8-

bit symbols can correct up to t symbol errors using 2t redundant symbols

(and they can detect one more symbol error using an additional symbol) on

up to 255-symbol (2040-bit) words; many SDDC schemes [9, 41] use 8-bit

symbol RS codes because of the efficiency. As most memory configurations

do not fully utilize such large word sizes, however, these SDDC schemes use

smaller words and regard the remaining symbols as zeros (i.e., a shortened

code).1 AI-ECC (Chapter 5) leverages the shortened nature of SDDC schemes

to strongly protect address information without any additional redundancy.

The correction capability of RS codes can be increased using a priori

knowledge about an error. Compared to a random error whose location and

value are unknown, an erasure has its location known in advance (e.g., based

on error history). Erasure decoding of RS codes can restore t symbol erasures

using t redundant symbols, doubling the correction efficiency relative to ran-

dom error decoding. AG-ECC (Chapter 4) utilizes erasure decoding to correct

rare cases of overlapping inherent and severe operational faults, while either

fault alone is corrected by random error decoding.

1Current 8-bit RS SDDC schemes use anywhere from 18 symbols [9] to 144 symbols [77].

21

Chapter 3

Data Errors Protection Mechanisms

This chapter presents and evaluates a novel family of efficient single-

tiered ECC mechanisms, called Bamboo ECC, for future large-scale systems.

The advantages of Bamboo ECC can be roughly characterized by three im-

portant improvements. Strength: Bamboo ECC has superior correction ca-

pabilities and can correct more pin and chip errors than the state-of-the-art

single-tiered ECC mechanisms, while requiring the same or less redundant

storage and off-chip bandwidth. Safety: The vastly superior detection capa-

bility of Bamboo ECC all but eliminates the risk of silent data corruption with

currently observed fault modes, ensuring safe system operation. Flexibility:

Bamboo ECC can increase redundancy at 8b granularity, compared to 8B for

the state-of-the-art SDDC techniques; this fine-grained redundancy allows for

more adaptive graceful downgrade schemes (i.e., memories with faulty devices

can continue operation with reduced-strength codes), further improving both

reliability and system lifetime. When combined into a system context, these

Parts of this chapter appear in [77]. The author is the main contributor of the idea,
implementation, and evaluation.

22

improvements can lead to orders of magnitude fewer silent data corruptions

or greatly extended system lifetime.

Three main insights lead to the innovative code design. First, many

faults manifest errors on a single data pin (DQ) due to the DRAM internal

structure (e.g., a mat fault) or the DRAM external interface (e.g., a faulty data

pin). Secondly, aligning ECC symbols to prevalent error patterns allows for

more frequent corrections. Finally, while an ECC code guarantees detection of

errors up to a certain severity, careful analysis reveals that some codes provide

superior detection capabilities beyond these guarantees. These insights are

described in more details below.

3.1 Data Error Patterns

Recent field studies of DRAM faults [122, 87, 48, 128, 129] indicate that

memory errors follow some idiosyncratic trends due to the deeply hierarchical

structure of DRAM (Section 2.2). DRAM cell arrays are sub-divided into

512 × 512 cell mats and all data within neighboring mats are connected to a

single DQ for efficiency [142, 83, 60, 33]. Therefore, a local fault commonly

generates errors over a single DQ.

Table 3.1 presents DRAM fault rates observed in the Jaguar supercom-

puters with ×4 DDR2 chips [128]. It indicates that about half of all faults

(49.6%) affect only a single bit. More importantly, 72.6% of all faults and

68.2% of permanent faults are confined to a single DQ. Furthermore, this

analysis is likely to underestimate the true likelihood of a single DQ error

23

within an access for methodological reasons, as intermittent single-DQ faults

that are separated in time may be classified as multi-DQ faults.1 Finally,

the majority of all faults (71.0%) are permanent, indicating even more severe

errors may accumulate. These findings show that the need for strong ECCs

to protect against accumulating faults, especially the accumulation of single

DQ faults over time. Bamboo ECC focuses on this important single-DQ fault

mode to improve correction capability.

3.2 ECC Detection Coverage

This section presents theoretical background on how Bamboo ECC im-

proves detection coverage to eliminate SDCs even in very large scale systems

(e.g., exascale computing) without increasing the redundancy ratio. Sec-

tion 2.3 presents theoretical correction and detection coverages of ECC. A

code with distance d, if used for detection only, can detect all errors with

fewer than d erroneous symbols, or detect and correct all errors with fewer

than �(d−1)/2� erroneous symbols. Errors that exceed the theoretical cover-

age of a code can either be detected (resulting in a DUE) or they can lead to

an SDC failure.

Another motivation of Bamboo ECC is that, in practice, the error de-

1The observation that single-DQ errors are dominant is supported by other measure-
ments. IBM reports that 91% of erroneous beats have a single bit corrupted [50], and other
results from Jaguar report that 2-bit correction provides only marginally better correction
coverage than 1-bit correction; both of these results indicate that errors tend to be confined
to a single DQ.

24

Fault Mode
Number of failing DQs Fault Rate

1 2 3 4 Transient Permanent

Single-bit
32.8

(49.6%)
N/A

14.2
(21.5%)

18.6
(28.1%)

Single-word N/A 1.7(2.6%) 1.4 (2.1%)
0.3

(0.5%)

Single-column
6.0

(9.1%)
0.2

(0.3%)
0.1

(0.1%)
0.7

(1.1%)
1.4 (2.1%)

5.6
(8.5%)

Single-row
2.6

(4.0%)
5.6

(8.5%)
0.1

(0.2%)
0.1

(0.1%)
0.2 (0.3%)

8.2
(12.4%)

Single-bank
6.0

(9.1%)
2.5

(3.8%)
0.4

(0.6%)
1.9

(2.9%)
0.8 (1.2%)

10.0
(15.1%)

Multiple-bank
0.3

(0.5%)
0.6

(0.9%)
0.1

(0.1%)
0.8

(1.2%)
0.3 (0.5%)

1.4
(2.1%)

Multiple-rank
0.3

(0.4%)
0.3

(0.4%)
0.1

(0.1%)
3.1

(4.7%)
0.9 (1.4%)

2.8
(4.2%)

Total
48.0

(72.6%)
9.2

(13.9%)
0.7

(1.1%)
6.5

(9.9%)
19.2

(29.0%)
46.9

(71.0%)

Table 3.1: DRAM fault rates (in FIT) observed on the Jaguar supercomputer
with 73K DDR2 DIMMs.

25

Figure 3.1: Conceptual codespace of single symbol correcting codes.

tection coverage of all error codes is not equal: in general, scaling-up ECC

codeword size (increasing codeword length, redundancy and correction capa-

bilities proportionally) is associated with higher error detection coverage for

severe errors. For example, two single-symbol correcting codes can be merged

into a double symbol correcting one. While the latter can correct all of the

errors that the former can, its larger codeword bestows stronger error detec-

tion capabilities. By maximizing its ECC word size, Bamboo ECC can safely

reduce the SDC probability for severe errors down to ≤0.0000006%, without

requiring more redundancy than what is currently available on a single ECC-

DIMM.

An example illustrates why the practical error detection coverage of

26

an ECC code is determined by its word size. Figure 3.1 shows a conceptual

codespace for a distance 3 (or Single Symbol Correcting (SSC)) code. A double

circle indicates a valid codeword (CW) and a single circle indicates an erro-

neous non-codeword. A ball of Hamming Distance (HD) d represents all words

that are d symbols different from a CW. If there is a single symbol error in a

CW, the erroneous word is on the HD=1 (innermost) ball and the SSC code

can always restore the original data by finding the nearest CW. If there are

two symbol errors, the erroneous word is on the HD=2 ball and the error will

be miscorrected to a neighboring CW if and only if it also falls on the HD=1

ball of the neighbor; otherwise, the error will result in a DUE. Note that the

theoretical coverage of this code is not double symbol detection as there exists

this potential for miscorrection. From a practical coverage perspective, how-

ever, the ratio of the number of miscorrections to the total number of words

on each ball decreases with larger ECC word sizes as the code space becomes

increasingly sparse. Thus, it can be seen that the error detection of a code

for errors beyond its guaranteed coverage is maximized with the ECC word

length. Likewise, three symbol errors on the HD=3 (outermost) ball may be

undetected (if they fall on a neighboring CW), miscorrected (if they fall on

another HD=1 ball), or they are otherwise detected. Again, it can be seen

that the error detection of a code for errors beyond its theoretical coverage

increases with the ECC word length.

High error detection of severe errors is fundamental for Bamboo ECC

to ensure safe system operation. Therefore, all of our analyses in Section 3.4.1

27

are performed using real ECC decoding behavior in order to capture the prac-

tical error detection coverage of the codes for errors beyond their worst-case

protection guarantees. This is in contrast to other studies that characterize

system failure rates using only the worst-case behavior of ECC codes [54, 118].

An important observation of Bamboo ECC is that, in practice, silent data cor-

ruption can be eliminated without resorting to expensive ECC with high worst-

case error detection coverage. By manipulating the size of the Bamboo ECC

codeword and by matching code layout with expected fault modes, SDC rates

can be extensively reduced without introducing additional redundancy or con-

straints on the memory channel size.

3.3 Bamboo ECC

Bamboo ECC protects the burst of data from a DQ to provide stronger

correction and detection with equal or less redundancy than previously pro-

posed ECC mechanisms. The following subsections describe the motivation,

operation, and overheads of Bamboo ECC in greater detail. Section 3.3.1 de-

scribes some useful Bamboo ECC organizations. Section 3.3.2 shows how the

flexibility of Bamboo ECC can be utilized to provide superior levels of pro-

tection over the lifetime of a system. Finally, Section 3.3.3 describes the cost

that Bamboo ECC schemes pay to achieve their high levels of protection and

storage efficiency.

28

3.3.1 Organizations

Bamboo ECC changes ECC layout to have per-DQ symbols over a

memory transfer block. It groups the data of a single DQ as an ECC symbol;

on a conventional 8-beat memory transfer block of DDR3/4, a per-DQ symbol

has 8 bits of data. By aligning ECC symbols to frequent single-DQ faults,

Bamboo ECC reduces the number of symbols to be corrected in the common

case and requires less redundancy to correct common errors. The 8-bit sym-

bols are encoded by a Reed Solomon code to achieve the minimum possible

redundancy for its level of correction (i.e., 2 redundant symbols per symbol

correction, Section 2.3). The per-DQ symbols also increase the ECC word

size to a memory transfer block. This large ECC word can detect almost all

severe errors, while resulting in manageable increases in decoding complexity

and latency (Section 3.3.3).

Bamboo ECC is a family of codes. With per-DQ symbols, Bamboo ECC

introduces redundancy at pin granularity and provides finer control over cor-

rection and detection capabilities compared to previous ECC mechanisms with

per-chip symbols. The following subsections describe some of the efficient

Bamboo ECC organizations. Other organizations can be used to meet differ-

ent memory system constraints and reliability requirements.

3.3.1.1 Single Pin Correcting ECC

The simplest Bamboo ECC is the Single Pin Correcting (SPC) orga-

nization (Figure 3.2), which can correct a bit or a pin error with 2 redundant

29

Chip (4­bit)

A codeword (SSC on 64+2 symbols)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Memory Transfer Block

Data (64­bit/16­chip) R
Channel (66­bit/16.5­chip)

8
b
it sym

b
o
l

(2­bit)

Figure 3.2: Single Pin Correcting Bamboo ECC on (64+2)-bit channel

pins. SPC requires just a quarter of the redundant storage of SEC-DED on

a 64b data channel (3.1% vs. 12.5%) yet it provides a better correctable er-

ror rate.2 One issue with SPC concerns the fixed granularity of commercial

DRAM chips–while memories such as embedded DRAM (eDRAM) have the

data width flexibility to support SPC, off-the-shelf memory chips are typically

×4 or ×8 DDR. Employing SPC with these chips will result in an inefficient

use of pins and storage. Even on commodity DRAM chips, however, SPC can

be efficiently employed as a component of a graceful degradation scheme, as

described in Subsection 3.3.2.

3.3.1.2 Single Pin Correcting – Triple Pin Detecting ECC

An extra ×4 DDR chip can provide 4 redundant Bamboo ECC symbols

(Figure 3.3). This redundancy can be used as either a Double Pin Correcting

(DPC) or Single Pin Correcting - Triple Pin Detecting (SPC-TPD) scheme;

2SPC misses some SEC-DED-correctable error patterns. However, Subsection 3.4.2
shows that SPC has better uncorrectable error rates due to the rarity of these patterns
and the fact that SPC has a lower raw error rate due to its lesser redundancy.

30

Chip (4­bit)

A codeword (SSC­TSD on 64+4 symbols)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Data (64­bit/16­chip) Redun.
Channel (68­bit/17­chip)

(4­bit)

8
b
it sym

b
o
l

Memory Transfer Block

Figure 3.3: Single Pin Correcting – Triple Pin Detecting Bamboo ECC on
(64+4)-bit channel

Chip (4­bit)

A codeword (QSC on 64+8 symbols)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Data (64­bit/16­chip) Redundancy
Channel (72­bit/18­chip)

(8­bit)

8
b
it sym

b
o
l

Memory Transfer Block

Figure 3.4: Quadruple Pin Correcting Bamboo ECC on (64+8)-bit channel

SPC-TPD usage has a very high detection coverage, detecting 100% of up-to-

3-pin errors and ≥99.9996% errors beyond this point, and is thus preferred.

The stronger correction capability of DPC, on the contrary, is less helpful as

faults affecting exactly 2 pins are infrequent (a field measurement on 2-bit

symbol correction [128] showed little improvement over SEC-DED) while it

can increase the SDC probability by aggressively miscorrecting severe errors.

SPC-TPD can be configured as a (64+4)-DQ configuration over a 64-bit data

channel, halving the redundancy of SEC-DED (6.25% vs. 12.5%).

31

3.3.1.3 Quadruple Pin Correcting ECC

Bamboo ECC can provide stronger-than-SDDC protection with equal

redundancy to state-of-the-art SDDC schemes by using a Quadruple Pin Cor-

recting (QPC) organization. With two redundant ×4 chips, QPC has 8 redun-

dant symbols (Figure 3.4) and can correct up to 4 symbol errors or any single

chip-error. QPC can be configured in a (64+8)-DQ manner over a 64-bit data

channel, in which case the redundant storage needs match those provided by

conventional ECC DIMMs (12.5%). This storage efficiency for single-tiered,

narrow-channel SDDC is only paralleled by the AMD chipkill scheme used

in recent processors. QPC enjoys a stronger correction capability than AMD

chipkill by correcting pin errors that are scattered over different chips. If there

are two pin faults on two chips, QPC can correct both of them while AMD

chipkill must report a DUE (or, in some cases, AMD chipkill results in SDC).

As single-DQ faults are prevalent, this distributed error correction capabil-

ity can reduce uncorrectable error rates significantly. In addition, QPC has

a stronger detection capability due to its large codeword size. This leads to

QPC detecting ≥99.9999994% of all errors. A more in-depth comparison of

the two ECC schemes is evaluated in Section 3.4.

One optimization to QPC is to limit its correction capability to reduce

SDC rate even further, in a manner similar to the history mechanism used by

AMD chipkill [9]. AMD chipkill uses the history of corrected symbol locations

within each access to reduce SDC rates. If corrected symbol locations differ

among words within an access, AMD chipkill discards the correction results

32

A codeword (Octuple Sym Correcting on 128+16 symbols)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Memory Transfer Block

Chip (4­bit)
Data (128­bit/32­chip) Redundancy (16­bit/4­chip)

Channel (144­bit/36­chip)

8
b
it sym

b
o
l

Figure 3.5: Octuple Pin Correcting Bamboo ECC on a (128+16)-bit channel.

and reports a DUE. The rationale behind this decision is that errors on dif-

ferent chips over a single access are very rare so that the symptom is likely

to have been generated from miscorrections arising from a severe error. Sim-

ilarly, QPC pessimistically reports a DUE if the diagnosed pin errors are not

confined to a single chip or to two pins on different chips.

3.3.1.4 Octuple Pin Correcting ECC

Bamboo ECC can correct errors on two ×4 chips or one ×8 chip by cor-

recting 8 pin symbols. Octuple Pin Correcting (OPC) Bamboo ECC achieves

8 pin correction with 16 redundant pins, resulting in a 25% overhead on a 64-

bit data channel or a 12.5% overhead on a 128-bit data channel (Figure 3.5).

OPC is optimized in a manner similar to that of QPC and limits its correction

capability to 2 chip errors or 4 independent pin errors to reduce the SDC rate.

3.3.2 Graceful Downgrade

The plethora of attractive organizations above allows a Bamboo ECC-

based system to more fully utilize redundant bit steering (RBS) than existing

33

ECC schemes. RBS is a graceful downgrade scheme proposed by IBM [21] and

uses parts of the ECC check bits as hot spares, remapping faulty pins through

these spares. The state-of-the-art RBS-based protection is Double Device Data

Correction (DDDC)+1 from Intel, which can tolerate two sequential chip fail-

ures and a bit failure over a 128-bit data channel (Section 3.5). A gracefully

downgrading Bamboo ECC-based system can correct more initial chip faults,

more sequential chip faults, more end-of-life faults and has a better end-of-

life detection capability than DDDC+1. In addition, a gracefully degrading

Bamboo ECC system can diagnose and remap errors at the pin granularity,

offering slower degradation for accumulating pin errors than a system that op-

erates on coarse-grained symbols. Such a gracefully degrading Bamboo ECC

scheme is described below.

OPC over a 128-bit data channel uses the same amount of redundancy

(12.5%, or 16 pin symbols) as DDDC+1. After a chip retirement, the available

redundancy decreases to 12 pins, but Bamboo ECC can still operate in hextuple

pin correcting mode to correct up to 6 pin errors. Successive pin errors can be

diagnosed and retired at the pin granularity–a luxury that non-Bamboo ECC

codes do not enjoy.

After the available spare pins are exhausted due to further pin or chip

retirement, the redundancy of the Bamboo ECC-based system decreases down

to 8 pins, which is sufficient for QPC. Finally, following a third round of pin or

chip retirement, the system can downgrade to SPC-TPD using the remaining

4 redundant (non-spare) pins. Due to the storage efficiency of SPC-TPD, the

34

Bamboo ECC-based system will still be able to correct a pin error and detect

≥ 99.9996% of errors. As a result, this graceful downgrade scheme can correct

two concurrent chip errors in its initial OPC phase and then can correct up to

1 sequential chip error and 1 pin error. It can also handle finer grained errors,

retiring faulty bits or pins as they accumulate.

Bamboo ECC-based graceful downgrade enjoys superior flexibility, and

can be modified to work on a narrower channel. For a system with a 64-bit

data channel, QPC (using 8 redundant pins) can be gracefully downgraded

to SPC-TPD (with a 4 pin redundancy), correcting a sequence of 1 chip error

and 1 pin error or up to 5 sequential pin errors while detecting most end-of-life

errors.

3.3.3 Overheads

The large ECC symbols and codewords of Bamboo ECC provide strong

and efficient error protection at the expense of decoding complexity and la-

tency. This section examines these costs, showing that the additional imple-

mentation overheads of Bamboo ECCs are modest and well-aligned to current

technological trends. It is demonstrated later that Bamboo ECCs incur little

performance overhead, and is expected that their memory bandwidth savings

(for the same level of protection) will outweigh their costs.

Circuit overhead: RS codes with 8-bit symbols have modest encoding and

decoding overheads to have a wide range of commercial applications, ranging

35

from CDs to satellites. AMD chipkill uses 8-bit RS codes with 16 data symbols

and 2 redundant symbols; a corresponding fully parallel encoder requires 6

XOR2 gates of delay and consumes an area equivalent to about 1, 600 NAND2

gates.3

With larger codewords, Bamboo ECCs have larger encoding/decoding

overheads. Specifically, a fully parallel encoder for QPC (64-symbol data +

8-symbol redundancy) is 8 XOR2 gates deep, which is 2 gates more than AMD

chipkill yet is still easily implementable within a single memory cycle (1.2GHz).

Even the most complex Bamboo ECC presented, OPC with 128-symbol data

and 16-symbol redundancy, requires only 10 logic levels. The fully parallel

QPC encoder consumes about 25,000 NAND2 gates of area, a ×16 increase

over that of AMD chipkill. DRAM data, however, does not arrive at the chip

in an extremely wide parallel interface, rather transfers over multiple cycles,

and as such narrower pipelined RS encoder [26] can be used to reduce the area

of the encoder. Using a simplified gate-level model, a 16-way parallel QPC

encoder derived from [26] is estimated to require 5,500 gates and a 32-way

parallel encoder for OPC will require 11,000 gates. These area overheads do

not represent a large amount of chip real estate considering the billions of gates

available in recent processors and current trends indicate that logic cost and

speed will continue to scale down more rapidly than DRAM [47].

3These delay and area estimates are found through standard-cell synthesis using the
Synopsys toolchain and the 40nm TSMC standard cell library [135, 136], but are presented
in a technology-independent manner.

36

Performance overhead: ECC decoding procedure consists of two phases:

error detection, which happens on every memory read, and error correction,

which happens with rare memory errors. Error detection is as simple as en-

coding and Bamboo ECC does not increase cycle latency compared to other

ECC mechanisms. An 8-bit RS symbol correction can be done within two

extra cycles (estimation based on [69, 24]) yet happens only in the rare cases

of a memory error and does not affect performance in the common case.

Bamboo ECC introduces some additional latency in the memory con-

troller due to the alignment of pin-based symbols. Until the completion of a

transfer, per-pin symbols are not fully available, which may delay encoding

and decoding. While encoding is on the less latency-critical write path (and

data are usually buffered before writes), decoding is on the latency-critical

read path. Bamboo ECC takes 4 DRAM cycles to transfer symbols (DDR

with burst length of 8), compared to 1 cycle in existing ECC schemes with

1- or 2-beat codewords. Section 3.4.3 evaluates the performance cost from

this increased latency, and shows that the impact is minor. This performance

impact can decrease further in future memories, as DRAM is aggressively re-

ducing cycle time to increase data bandwidth.

One way to overcome this additional latency is to use an asynchronous

ECC check [103]. With asynchronous ECC checking, data are speculatively

forwarded to the processing unit before decoding is complete. Later, if an error

is detected, the forwarded data and any dependent calculations are discarded

and corrected data are sent throughout the system. To be conservative, this

37

dissertation does not apply an asynchronous ECC check—data are forwarded

only after they are determined to be error-free.

Because Bamboo ECC requires an entire cache line of data for encoding

and decoding, a partial-update of a cache line requires a read-modify-write to

read existing values, re-generate check bits, and write them back to memory.

Partial-update is a known issue for many existing ECC schemes [9]. Fortu-

nately, when using a write-back last-level cache, all write-hits are buffered in

the cache and flushed to main memory at the full cache-line granularity. As

a result, only uncached or uncacheable partial writes (which are often not

performance critical) will require read-modify-writes; this is not expected to

significantly alter system performance or efficiency.

3.4 Evaluation

This section measures the error correction and detection coverage, sys-

tem failure rate, and performance impact of Bamboo ECC schemes and com-

pares them with other state-of-the-art single-tiered ECC. The range and flex-

ibility of Bamboo ECC leads to a design space of error control schemes that

vary in their error coverage, redundancy, and expected system lifetime. This

design space is evaluated below, demonstrating the substantive strength, safety,

and flexibility advantages of Bamboo ECC.

38

 System­reliability evaluation
 Error coverage evaluation

Decoder

ECC

ErrorSim
Monte Carlo
error injection

FaultSim
Monte Carlo
fault injection

Error
pattern

DCE, DUE,
or SDCFault

scenario

Fault
rate

Fault
history

or

Figure 3.6: The protection coverage and system reliability evaluation environ-
ment.

3.4.1 Error Coverage Evaluation

The error correction/detection coverage of each ECC scheme is evalu-

ated using Monte Carlo error injection experiments (Figure 3.6). Errors based

on 5 fault models (bit/pin/word/chip/rank faults) are generated and injected

into a cache line-sized memory block. These models represent faults at dif-

ferent levels of memory structures (e.g., cells, mats, chips and ranks) and

they match the fault modes in recent DRAM field studies [128, 129, 127]. A

bit-fault indicates that the block has a single bit-error at a random position,

and a pin-fault represents a block that has a single corrupted DQ pin. Simi-

larly, a word/chip/rank fault corrupts all bits within a single-chip/single-beat,

a single-chip/all-beats, and all-chips/all-beats, respectively. A fault scenario

can be one of the 5 fault models or a combination of them.

With given fault scenario, errors are randomly generated and injected

into a block, assuming that each bit within a corrupted region has a 50%

switching probability (but the error-free pattern is excluded). Error patterns

are tested by each ECC scheme to determine whether the error is detectable,

39

correctable, or miscorrected. An undetected error and a miscorrected error

are categorized as SDC, while a detectable-but-uncorrectable error is reported

as a DUE. If any word within a block reports a DUE, the block is reported

as DUE. Similarly, if any word in a non-DUE block reports an SDC, the

block is classified as SDC. Finally, if all the words are corrected to their

original data, then the block is marked as a detectable and correctable error

(DCE). The number of experimental runs is 10 billion with 99.9% confidence

intervals of ±0.0000001% for probabilities near 0.0000001% or 99.9999999%,

and ±0.0003% for probabilities near 1% or 99%.

Table 3.2 shows error coverage of bit-level protection schemes (SEC-DED,

SPC, and SPC-TPD) on a 64-bit data channel. SEC-DED, SPC, and SPC-TPD

can all correct a bit or a pin fault. The single pin correction capability of SPC

and SPC-TPD shows worse correction than SEC-DED in some fault scenar-

ios as it cannot correct multiple 1-bit-error-per-beat errors with different DQ

positions over multiple beats (a situation that is expected to be rare). How-

ever, SPC and SPC-TPD require only one quarter and one half the redundant

storage of SEC-DED, respectively. The detection capability of SPC-TPD is

very strong, detecting ≥99.9996% of all errors in all scenarios, compared to

the weak error detection capabilities of SEC-DED (up to 23.5% SDC).

Table 3.3 shows the error coverage of SDDC schemes: AMD chipkill

and QPC on a 64-bit data channel with ×4 devices and Single 8-bit Symbol

Correcting codes (S8SC) and OPC on a 128-bit data channel with ×8 devices.

S8SC builds 8-bit symbols using per-beat data from ×8 chip and applies the

40

SEC-DED
Bamboo

SPC
Bamboo

SPC-TPD

Codeword (bits x beats) 72 x 1 66 x 8 68 x 8

Codewords per MTB 8 1 1

Redundancy % 12.5% 3.13% 6.25%

1 bit/pin (%) DCE 100.0000 100.0000 100.0000

1 word fault (%)
DCE 26.6667 26.6683 26.6667
DUE 55.5553 47.9143 73.3333
SDC 17.7780 25.4172 0.0000

1 chip fault (%)
DCE 0.0091 0.0000 0.0000
DUE 98.8502 74.3182 99.9996
SDC 1.1407 25.6817 0.0004

1 bit fault +
1 bit fault (%)

DCE 87.5000 0.0000 0.0000
DUE 12.5000 75.4343 100.0000
SDC 0.0000 24.5657 0.0000

1 bit fault +
1 pin fault (%)

DCE 49.8036 0.0000 0.0000
DUE 50.1964 74.9024 100.0000
SDC 0.0000 25.0976 0.0000

1 bit fault +
1 chip fault (%)

DCE 0.0018 0.0000 0.0000
DUE 99.3297 74.3199 99.9996
SDC 0.6685 25.6801 0.0004

1 pin fault +
1 pin fault (%)

DCE 9.3043 0.0000 0.0000
DUE 90.6957 74.9016 100.0000
SDC 0.0000 25.0984 0.0000

1 pin fault +
1 word fault (%)

DCE 13.2878 0.0000 0.0000
DUE 63.1743 74.4093 100.0000
SDC 23.5380 25.5907 0.0000

1 pin fault +
1 chip fault (%)

DCE 0.0001 0.0000 0.0000
DUE 99.7537 74.3173 99.9996
SDC 0.2462 25.6827 0.0004

1 chip fault +
1 chip fault (%)

DCE 0.0000 0.0000 0.0000
DUE 99.9553 74.3190 99.9996
SDC 0.0447 25.6810 0.0004

1 rank fault (%)
DCE 0.0000 0.0000 0.0000
DUE 99.9956 74.3202 99.9996
SDC 0.0044 25.6798 0.0004

Table 3.2: A comparison of the protection coverage of bit-level ECCs.

41

Chip data width ×4 ×8

Channel configuration 1 ECC DIMM 2 ECC DIMMs

ECC AMD chipkill Bamboo QPC S8SC Bamboo OPC

Codeword (bits x beats) 72 x 2 72 x 8 144 x 2 144 x 8

Codewords per MTB 4 1 4 1

Redundancy % 12.5% 12.5% 12.5% 12.5%

1 bit/pin/
word/chip (%)

DCE 100.0000000 100.0000000 100.0000000 100.0000000

1 bit fault +
1 bit fault (%)

DCE 0.0000000 100.0000000 0.0000000 100.0000000
DUE 98.9252058 0.0000000 99.4626331 0.0000000
SDC 1.0747942 0.0000000 0.5373669 0.0000000

1 bit fault +
1 pin fault (%)

DCE 0.0000000 100.0000000 0.0000000 100.0000000
DUE 99.9399162 0.0000000 99.9831498 0.0000000
SDC 0.0600838 0.0000000 0.0168502 0.0000000

1 bit fault +
1 word fault (%)

DCE 0.0000000 26.6685560 0.0000000 3.1369578
DUE 98.6450420 73.3314440 99.2156554 96.8630422
SDC 1.3549580 0.0000000 0.7843446 0.0000000

1 bit fault +
1 chip fault (%)

DCE 0.0000000 0.0000262 0.0000000 0.0000000
DUE 99.9999993 99.9999734 100.0000000 100.0000000
SDC 0.0000007 0.0000004 0.0000000 0.0000000

1 pin fault +
1 pin fault (%)

DCE 0.0000000 100.0000000 0.0000000 100.0000000
DUE 99.9887495 0.0000000 99.9831536 0.0000000
SDC 0.0112505 0.0000000 0.0168464 0.0000000

1 pin fault +
1 chip fault (%)

DCE 0.0000000 0.0000259 0.0000000 0.0000000
DUE 99.9999998 99.9999737 100.0000000 100.0000000
SDC 0.0000002 0.0000004 0.0000000 0.0000000

1 chip fault +
1 chip fault (%)

DCE 0.0000000 0.0000000 0.0000000 0.0000000
DUE 99.9999995 99.9999996 100.0000000 100.0000000
SDC 0.0000005 0.0000004 0.0000000 0.0000000

1 rank fault (%)
DCE 0.0000000 0.0000000 0.0000000 0.0000000
DUE 100.0000000 99.9999994 100.0000000 100.0000000
SDC 0.0000000 0.0000006 0.0000000 0.0000000

Table 3.3: A comparison of the protection coverage of SDDC ECCs with ×4
and ×8 DRAM devices.

42

history mechanism used by AMD chipkill. Among the ×4 SDDC schemes,

QPC has a better correction capability than AMD chipkill because of its ability

to correct two independent pin errors (e.g., 1 bit fault + 1 bit fault). In

addition, QPC has a very strong detection capability of ≥ 99.9999994% in all

scenarios, compared to the strong-yet-incomplete detection capability of AMD

chipkill (up to 1.4% SDC in some scenarios). While the detection coverage of

QPC is not a perfect 100% (a few pathological error patterns can result in

SDC), it applies not only to two-chip faults but also to many-chip faults that

represent very severe errors.

Despite the doubled redundancy for ×8 SDDC, S8SC still suffers from

up to 0.5% SDC with single-beat faults, where history-based mechanism is not

effective. Instead, no SDC is observed with OPC during the 10 billion runs,

proving its vast superior detection capability.

3.4.2 System Reliability

The error coverage results from Section 3.4.1 show that Bamboo ECC

provides superior error correction and vastly improves error detection relative

to prior single-tiered SDDC solutions. The true mettle of an error control

system, however, is tested by how much it improves the failure rate of a large

system at scale.

A two-stage Monte Carlo simulation is used to evaluate the failure rates

over time of a large system with different ECC schemes (Figure 3.6). The first

stage injects faults into a simulated DRAM channel based on observed fault

43

1E-8

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5 6 7 8 9
D
U
E
p
ro
b
ab
ili
ty

Time (year)

SEC-DED

SPC

SPC-TPD 1E-8

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5 6 7 8 9

SD
C
 p
ro
b
ab
ili
ty

Time (year)

12,000x

Figure 3.7: The failure probability of a DDR 64-bit data channel over time
with different bit-level protection mechanisms.

modes and rates [128]. This first-stage fault injection methodology is similar to

that of [118], yet uses more detailed fault modes broken down by the number

of failing DQs to better evaluate the behavior of the pin-based Bamboo ECC.

Once (possibly) overlapping faults are identified by the first stage, the second

stage of Monte Carlo simulation maps the fault modes into one of the fault

models described in Section 3.4.1 and generates error patterns based on the

fault scenario. The error pattern is passed to ECC decoding in order to judge

its outcome. This realistically models the practical error coverage of each ECC

codes, as described in Section 3.2.

Figure 3.7 shows the failure rate of a single 64b data channel (2 ranks,

18 ×4 chips per rank) over time using different bit-level ECC mechanisms.

SPC-TPD has a slightly (1.2%) lower DUE probability and a 12, 000× lower

SDC probability than SEC-DED, despite requiring only half as much redun-

dancy. The lower DUE rate of SPC-TPD is due to this lower redundancy, as

the correspondingly lower raw fault rate is able to compensate for the slightly

weaker correction capability of the code. Using only a quarter of the redun-

dant storage, SPC reduces DUEs by 39% compared to SEC-DED as it has an

44

1E-12
1E-10
1E-8
1E-6
1E-4
1E-2
1E+0

1 2 3 4 5 6 7 8 9

D
U
E
p
ro
b
ab
ili
ty

Time (year)

AMD CK

QPC

QPC (chip retire)

QPC (chip/pin retire)

210x

1E-12
1E-10
1E-8
1E-6
1E-4
1E-2
1E+0

1 2 3 4 5 6 7 8 9

SD
C
 p
ro
b
ab
ili
ty

Time (year)

20,000x

Figure 3.8: The failure probability of a DDR 64-bit data channel over time
with different SDDC protection mechanisms.

even lower raw fault rate than SPC-TPD. However, the weaker error detection

capability of SPC results in a 15× higher SDC probability than SEC-DED.

The failure rate of a 64b data channel (2 ranks, 18 ×4 chips per rank)

using SDDC protection is shown in Figure 3.8. QPC has 12% lower overall

failure probability than AMD chipkill because it can correct two independent

single-DQ faults. In addition, the strong error detection coverage of QPC

results in a 20, 000× lower SDC probability. Graceful downgrade using QPC

can correct a sequence of one chip and one pin (QPC to SPC-TPD with chip

retirement) or a sequence of one chip and up to three pins (QPC to SPC-TPD

to SPC with chip/pin retirement). The stronger correction of downgrade-based

schemes lowers the overall failure probability of chip and pin-based retirement

to 0.02 and 0.005 that of AMD, respectively. The SDC probability increases

with downgrade schemes, however, as they continue operation with reduced-

strength codes; despite this, downgraded QPC still demonstrates an SDC rate

that is comparable to, or better than that of AMD.

Figure 3.9 demonstrates the failure rate of a 128b DDR data channel (2

45

1E-12
1E-10
1E-8
1E-6
1E-4
1E-2
1E+0

1 2 3 4 5 6 7 8 9

D
U
E
p
ro
b
ab
ili
ty

Time (year)

D-AMD

OPC

D-AMD (chip retire)

OPC (chip retire)

OPC (chip/pin retire)

1e7x

1E-12
1E-10
1E-8
1E-6
1E-4
1E-2
1E+0

1 2 3 4 5 6 7 8 9

SD
C
 p
ro
b
ab
ili
ty

Time (year)

Figure 3.9: The failure probability of a DDR 128-bit data channel with differ-
ent DDDC protection mechanisms.

ranks, 36 ×4 chips per rank). In this configuration, AMD chipkill was modified

to provide Double Device Data Correction (DDDC) protection (i.e., {36,4}

codes with history-based miscorrection detection), and is used as a baseline

for OPC. OPC has a 2% lower failure probability than doubled AMD chipkill

due to its ability to correct independent single-DQ faults. No occurrence

of SDC is observed with OPC during the 200B runs, while doubled AMD

chipkill shows a 10−10 probability of SDC. Doubled AMD chipkill can correct

a sequence of up to 3 faults by gracefully degrading through chip retirement

to AMD chipkill. The superior flexibility of OPC can correct a sequence of

up to 3 chip faults and 1 pin fault by degrading down to SPC-TPD with chip

retirement or a sequence of up to 3 chip and 3 pin faults by degrading down

to SPC with pin retirement.

Full-system estimates and lifetime considerations: Figure 3.10 il-

lustrates the failure probabilities of SDDC protection mechanisms on a large

system with one million memory channels, which is an order of magnitude

larger than the Jaguar system [128] and could match an exascale-computing

46

1E-3

1E-2

1E-1

1E+0

1 2 3 4 5 6 7 8 9

D
U
E
p
ro
b
ab
ili
ty

Time (year)

AMD CK

QPC

QPC (chip retire)

QPC (chip/pin retire)

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5 6 7 8 9

SD
C
 p
ro
b
ab
ili
ty

Time (year)

Figure 3.10: The failure probability of a large system with 1,000,000 channels
over time with different SDDC protection mechanisms.

system. Several findings are readily apparent. First, the massive number of

DRAM channels makes the memory system quickly reach a state where some

locations report uncorrectable errors and must be repaired or replaced. RBS-

based graceful degradation can be used to combat this rapid wearout of the

memory system; by employing chip retirement and pin retirement, QPC can

decrease the probability of a system repair in the first year down to 8.5%

and 1.7%, respectively; beyond that point, a higher-level repair mechanism is

required. Also, the safety of QPC relative to AMD chipkill is demonstrated

through greatly reduced SDC rates; this safe detection can be combined with

higher-level repair scheme to ensure reliable operation of the huge system over

a long period of time.

There is a natural tradeoff between lifetime extension and guaranteed

safety—an aggressive lifetime-extending scheme, such as Bamboo ECC with

per-pin retirement, will spend the majority of its time in a degraded mode by

design; as such, its safety may suffer compared to a code that conservatively

reports a DUE. Through per-chip and per-pin retirement, Bamboo ECCs

present a range of options that trade off safety and lifetime. More importantly,

47

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5 6 7 8 9

D
U
E
p
ro
b
ab
ili
ty

Time (year)

D-AMD

OPC

D-AMD (chip retire)

OPC (chip retire)

OPC (chip/pin retire)

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5 6 7 8 9

SD
C
 p
ro
b
ab
ili
ty

Time (year)

Figure 3.11: The failure probability of a large system with 1,000,000 channels
over time with different DDDC protection mechanisms.

even the most aggressively degrading Bamboo ECC schemes maintain compa-

rable SDC rates to AMD chipkill, such that even a long-lifetime Bamboo ECC

organization will not compromise system safety relative to the current state-

of-the-art.

To compare the system-level reliability among SDDC and DDDC mech-

anisms, Figure 3.11 presents the failure probabilities of DDDC schemes on a

system with the same number of DIMMs but half the channels. Note that this

wider channel configuration significantly sacrifices performance and energy ef-

ficiency for improved reliability. The double device correction capabilities have

limited improvements on DUE probability while their bigger codewords pro-

vide very safe detection capability (i.e., no SDC reported). RBS mechanisms

based on Bamboo ECC provide significantly better DUE and SDC probabil-

ities than the one based on doubled AMD chipkill in this configuration as

well.

48

3.4.3 Performance and Energy

The performance cost of Bamboo ECC is modeled by running the SPEC

CPU 2006 benchmark suite [130, 39] on the Gem5 simulator [1, 19] (version

2.0). A 2GHz single-core processor with a 32KB I-cache, 64KB D-cache,

and a 2MB L2 cache is used with 2GB of DRAM and an L2 cache stride

prefetcher. The latency overhead of the ECC schemes is modeled in the read

data queue and write request queue of the memory controller. Existing ECC

schemes are given a +1 (memory) cycle penalty for both reads and writes, while

Bamboo ECC schemes have a +4 cycle read and a +1 cycle write penalty. This

3 additional cycle increase models the waiting time for all beats of each symbol

to be transferred. There are 2 memory configurations: DDR4-2400 (1.2GHz

DDR) 64b data channel and DDR4-2400 128b data channel. For the 128b

channel, the cache line size is increased from 64B to 128B to match the DRAM

access granularity. The measurement period is 0.2 billion instructions using

detailed simulation after 0.5 billion instructions of functional simulation (to

warm up the caches). Among the 29 SPEC CPU2006 benchmark applications,

26 are evaluated; perlbench, tonto, and dealII fail to run due to simulator

issues.

Figure 3.12 shows the execution time comparison between existing ECC

schemes and Bamboo ECC. The benchmarks are sorted based on their mem-

ory traffic. Bamboo ECC shows 0.7% and 0.5% execution cycle increases

compared to AMD chipkill on DDR4-2400 64b and DDR4-2400 128b, respec-

tively. With memory-intensive applications, the slowdown increases to 2.3%

49

0%
1%
2%
3%
4%

sj
en

g
h
m
m
er

as
ta
r

p
o
vr
ay

h
2
6
4
re
f

G
em

sF
D
TD

ga
m
es
s

gr
o
m
ac
s

sp
h
in
x3

ca
lc
u
lix

n
am

d
o
m
n
et
p
p

gc
c

xa
la
n
cb
m
k

so
p
le
x

b
zi
p
2

w
rf

H
.M

.
b
w
av
e
s

lib
q
u
an
tu
m

m
ilc

le
sl
ie
3
d

ze
u
sm

p
lb
m

go
b
m
k

ca
ct
u
sA
D
M

m
cf

H
.M

.

Low bandwidth High bandwidth

IP
C
 s
lo
w
d
o
w
n

Figure 3.12: The execution time slowdown of Bamboo ECC schemes (normal-
ized to AMD chipkill).

and 1.7%, respectively. However, with the trend of increasing DDR bandwidth

and clock frequencies, the waiting time for the symbol transfer and its perfor-

mance impact should decrease. The execution cycle increases in Bamboo ECC

will be much smaller than the performance degradation from increasing the

data width from 64b to 128b for stronger ECC protection, which is reported

to be very performance limiting by Fujitsu [32].

DRAM energy consumption is estimated based on the Micron model [95]

with DDR4-2400 parameters [96]. The average differences between the exist-

ing ECC and Bamboo ECC schemes are 0.5% and 0.4% on 64b and 128b

channels, respectively. This increased energy consumption is mostly due to

the increased execution times, as the number of activations and data transfers

are nearly identical.

50

3.5 Related Work

ECC has long been used to detect and correct DRAM errors. A brief

review of prior single-tiered error protection approaches is presented below.

An emphasis is made on deciphering the state-of-the-art memory protection

schemes used by industry.

SEC-DED: A simple but widely-used ECC scheme for DRAM applies a

Single Error Correcting-Double Error Detecting (SEC-DED) code to each beat

of a memory transfer (Figure 3.13). On a 64b data channel, 8b of redundancy

are needed for SEC-DED, leading to the industry-standard 72b ECC DIMM

with 12.5% redundancy.

Interleaved SEC-DED Codes: One straightforward way to provide SDDC-

level memory protection is to interleave four SEC-DED codewords together.

By distributing data from a ×4 DRAM chip over 4 different codewords, single-

device-data-correction and double-device-data-detection can easily be achieved

(Figure 3.14). While such an approach was employed by IBM, HP, and EMC

in the past [29], it requires a 256b data channel. Forming such wide channels

are often disastrous to system performance and efficiency [32] and thus are not

competitive with Bamboo ECC.

Interleaved 2-bit Codes: Using the same methodology as interleaved

SEC-DED codes, SDDC can be implemented by interleaving two Single Er-

51

Chip (4­bit)

A codeword (SEC­DED on 64+8 bit)

...

B
ea
ts
p
er
 L
LC
 li
n
e
(8
)

Memory Transfer Block

Data (64­bit) Redun. (8­bit)
Channel (72­bit)

Figure 3.13: The SEC-DED codeword over (64+8)-bit channel / 1-beat.

A codeword (4 x SEC­DED on 256+32 bit)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Data (256­bit) Redundancy (32­bit)
Channel (288­bit/72­chip)

...

Memory Transfer Block

A codeword (4 x SEC­DED on 256+32 bit)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Data (256­bit) Redundancy (32­bit)
Channel (288­bit/72­chip)

...

Memory Transfer Block

Figure 3.14: The interleaving of 4 SEC-DED codewords over 288 bit channel
/ 1-beat.

A codeword (2 x SEC­DAEC on 128+16 bit)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Memory Transfer Block

Data (128­bit/32­chip) Redundancy (16­bit/4­chip)
Channel (144­bit/36­chip)

... ...

Figure 3.15: The interleaving of 2 SEC-DAEC codewords over 144 bit channel
/ 1-beat.

52

A codeword (SSC­DSD on 32+4 symbols)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Memory Transfer Block

4bit sym

Chip (4­bit)
Data (128­bit/32­chip) Redundancy (16­bit/4­chip)

Channel (144­bit/36­chip)

Figure 3.16: The 4-bit Symbol SDDC (SSC-DSD) over (128+16)-bit channel
/ 1-beat.

ror Correcting – Double Adjacent Error Correcting (SEC-DAEC) ECCs (Fig-

ure 3.15). Some IBM and Compaq products seem to have used this ap-

proach [51, 7]. This scheme requires a 144b channel, and only provides SDDC—

poor detection capabilities are provided following this correction [90]. The wide

channel and poor handling of accumulating errors preclude this scheme from

being competitive with Bamboo ECC.

4-bit RS Codes: Sun and older AMD chips use a 4-bit symbol Single

Symbol Correcting-Double Symbol Detecting (SSC-DSD) RS codes to provide

SDDC on ×4 DRAM chips (Figure 3.16) [134, 8]. The symbols are aligned

to chip boundaries so that a chip-fault is confined to a single symbol and

can be corrected by SSC-DSD. Four symbols of redundancy are needed to

provide SDDC protection because of the narrow (4-bit) symbol size. This

scheme requires a 144b memory channel, and as such cannot compete with

the efficiency of Bamboo ECC.

53

Chip (4­bit)

A codeword (SSC on 16+2 symbols)

...

B
ea
ts
 p
er
 L
LC
 li
n
e
(8
)

Memory Transfer Block

Data (64­bit/16­chip) Redun. (8­bit)
Channel (72­bit/18­chip)

8bit sym

Figure 3.17: The 8-bit Symbol SDDC (SSC) over (64+8)-bit channel / 2-beat.

8-bit RS Codes: Newer AMD chips use a Single Symbol Correcting (SSC)

RS codes with an 8-bit symbol to provide SDDC on ×4 DRAM chips [9, 41].

The 8-bit symbols are built from two beats from the same ×4 chip so that a

chip fault is confined to a single symbol (Figure 3.17). The large, 8-bit symbol

size achieves SSC with 2 redundant symbols, allowing a 72b memory channel

to be serviced by a single DIMM. Operating on a narrow channel makes this

scheme efficient; as such it is the closest related work to Bamboo ECC.

Because this scheme does not provide Double Symbol Detecting (DSD)

protection with a 72b memory channel, 2-chip faults may lead to silent data

corruption. To mitigate these concerns, AMD uses the history of corrected

symbol locations within each cache line to heighten error detection (Sec-

tion 3.3.1.3).

Redundant Bit Steering and Double Device Data Correction Double

Device Data Correction (DDDC) is provided by some products for applications

54

that demand higher levels of protection. Redundant bit steering (RBS)4 is a

technique that was developed by IBM for enterprise mainframe computers to

provide DDDC protection [21]. Remapping is done in the memory controller

and is transparent to both the OS and the user.

It seems as if DDDC capabilities are provided in current products

through RBS. Most notably, Intel’sDouble Device Data Correction (DDDC) [42]

(referred to by HP as Double ChipSpare [40]) appears to correct two sequential

chip-errors by applying a chip-level protection through dynamic bit steering.

If a chip fails, a spare chip is used to replace the failed chip. More recent prod-

ucts provide DDDC+1, which is able to correct an additional single bit-error

on top of DDDC [42].

While the exact details of RBS are unknown publicly at this time, a

sensible scheme that matches the reported redundancy requirements of com-

mercial products follows. An RS code with 4-bit symbols and a 128b data

channel requires a 3-symbol check code to provide SSC protection and an extra

symbol to provide SSC-DSD. At the beginning of system operation (assum-

ing no faults), memory uses all available pins to provide SSC-DSD protection.

Upon a detected chip or pin error, the memory controller downgrades all af-

fected memory to an SSC code and remaps the faulty chip through the fourth

redundant symbol.

By downgrading affected memory locations from an SSC-DSD code to

4Now referred to as IBM Memory ProteXion.

55

an SSC code, a memory system can tolerate up to 2 successive chip failures

(DDDC-level protection). It seems likely that DDDC+1 downgrades protec-

tion to an SEC code following a second successive chip failure to provide

end-of-life bit-correction capabilities. Bamboo ECC is designed to be highly

amenable to RBS. Compared to other SDDC ECCs, Bamboo ECCs can pro-

vide a fine-grained retirement (such as a pin retirement) to face single-DQ

faults. In coordination with retirement, Bamboo ECC can provide superior

correction capabilities for sequential faults, correcting two concurrent chip-

faults and up to 3 sequential chip faults and 3 pin faults on the same 128b

channel as DDDC+1.

3.6 Summary

This chapter presents and analyzes a family of strong error checking

and correcting mechanisms for DRAM called Bamboo ECC. Bamboo ECC

provides superior efficiency, operating as single-tiered mechanism that offer

stronger-than-SDDC protection over a 64b data channel. Meanwhile, Bamboo

ECC is strong and safe, delivering increased correction capabilities relative to

the state-of-the-art single-tiered DRAM schemes while simultaneously decreas-

ing the silent data corruption rate. It shows that Bamboo ECC is amenable

to graceful downgrade using redundant bit steering and is able to offer an un-

precedented level of accumulating error protection. Bamboo ECC with RBS

also demonstrates superior flexibility, and is able to retire finer grained er-

rors and operate on narrower channels than the current state-of-the-art ECC

56

mechanisms, potentially extending the memory system lifetime.

57

Chapter 4

Mechanisms against Manufacturing Faults

This chapter presents and evaluates mechanisms that enable efficient

and reliable memory protection against imperfect process scaling. As process

technology scales past 10nm, it is getting more difficult to manufacture a fault-

free DRAM chip even when considering row and column sparing techniques.

Accordingly, DRAM vendors and academics have proposed in-DRAM ECC to

maintain high yield. In-DRAM ECC can correct bit-level errors from inherent

faults, improving manufacturability (Section 2.1). Meanwhile, high reliability

systems continue to require stronger-than-bit-level protection against severe

errors from operational faults. Current high-reliability systems employ SDDC

ECC across a rank using extra chips and can restore data even if one chip fails.

Separate management of in-DRAM ECC and rank-level ECC is wasteful and

requires up to 26.6% storage overheads, compared to the 12.5% redundancy

that is standard today.

Active Guardband ECC (AG-ECC) [80] utilizes a novel and unique

combination of ECC decoding and memory remapping that simultaneously

achieves high efficiency, high reliability, and high manufacturability. AG-ECC

uses a strong rank-level ECC to tolerate most inherent and operational faults

58

by treating their errors as completely random. Because of redundancy and

granularity constraints, this common decoding for correcting random errors is

insufficient in rare cases where severe operational faults overlap inherent faults.

In such cases, AG-ECC uses the same rank-level ECC as a combination of era-

sure and random error decoding followed by remapping. This preserves the

efficiency of future accesses and maintains reliability against additional opera-

tional faults. As a result, AG-ECC can achieve stronger-than-in-DRAM-ECC

manufacturability and stronger-than-SDDC reliability with a total redundancy

of just 12.5% without introducing new capabilities or storage within DRAM

chips.

4.1 DRAM Faults from Process Scaling

Shrinking process technology makes DRAM more prone to inherent

faults for several reasons. A DRAM cell is composed of a transistor and

a capacitor. The smaller the transistor becomes, the more vulnerable it is

to minor defects. At the same time, smaller capacitors have more difficulty

in maintaining the required charge for correct operation due to aspect ratio

constraints [99, 70]. Narrower pitches can result in disturbance errors, such

as row hammering [82]. Increasing variability at smaller sizes can also cause

severe fluctuation in DRAM cell retention time. While the details of inherent

faults are unknown publicly at this time, prior research observes that they

manifest as random bit errors [99, 72, 16, 115].

The increasing prevalence of inherent faults worsens DRAM yield and

59

Reliability Manufacturability

Obstacles
Operational faults
(e.g., transistor wear-out)

Inherent faults
(e.g., high-leakage cells)

Metric Failure In Time (FIT) Yield (%)

Cost center System loses dependability Vendor loses money

Correction Required Not required

Removal Not required Required

Table 4.1: Traditional approaches for high reliability and high manufactura-
bility.

manufacturability, and screening the faults out at manufacture time is difficult

because some of the faults generate errors occasionally (e.g., due to variable

retention time). Such faults that escape testing may generate errors during

operation, degrading system reliability. Despite this similarity, it is important

to clearly distinguish these two separate goals, quantify their requirements,

and optimize based on relevant metrics for each. Table 4.1 compares and

contrasts the traditional focus of reliability and manufacturability techniques.

While they both originate from faults in DRAM, their impact, cost center, and

recovery requirements differ. AG-ECC simultaneously targets both reliability

and manufacturability using a principled combination of ECC and fine-grained

retirement to maintain both high yield and a low FIT rate.

4.2 In-DRAM ECC

The DRAM process has been highly optimized so far to have few in-

herent faults. Inherent faults, if any, have been removed by coarse-grained

remapping schemes (e.g., spare rows and columns) to increase yield [137].

60

With increasing prevalence of inherent faults and limited testing time, DRAM

vendors now provide post package repair [60, 67]. Post package repair allows a

memory controller to change a few memory row mappings during operation to

retire unscreened inherent faults and some operational faults. While current

industry practices tend towards coarse-grained remapping, academia proposed

fine-grained remapping at cache line granularity [99, 74], chip granularity [75],

and bit granularity [126]. These schemes support larger numbers of remap-

pings by reducing remapping overhead and can maintain high reliability in the

face of permanent operational faults.

Memory remapping alone is not sufficient, especially given the current

trend of increasing fine-grained inherent fault rates [45]; at a Cell Fault Rate

(CFR) of 10-5 (one out of every hundred-thousand cells is faulty), a 16GB ECC

DIMM has 1.5 million 64B blocks (0.5%) that need to be remapped. To im-

prove manufacturability without the need for expensive remapping schemes

and to tolerate latent inherent faults that escape testing, academics [155,

85] and DRAM suppliers [68, 81, 70, 107] are considering in-DRAM ECC.

In-DRAM ECC stores ECC check bits in redundant array storage within each

DRAM chip, generating this ECC internally before data is written and correct-

ing any single-bit errors inline before sending data back to the host processor.

In-DRAM ECC has been employed in low-power commodity DRAMs to im-

prove yield and decrease operating voltages [68, 14, 81, 67, 107], as well as

for refresh reduction [81, 155], and it is under standardization as a DDR4

extension.

61

B
u
rs
t

le
n
gt
h
 (
8
)

Chip width (8-bit)

Corrected
data

64­bit

x8 DDR

Bank
Redun.
(12.5%)

Data

P
re
fe
tc
h

d
ep

th
 (
8
)

72­bit transfer

In­DRAM ECC (SEC­DED)

(a) A ×8 chip. Each 72b
word is fetched and decoded by
SEC-DED ECC. All 64b data
after correction are transferred.

x4 DDR

Bank
Redun.
(12.5%)

Data

P
re
fe
tc
h

d
ep

th
 (
8
)

72­bit transfer
(overfetching)

In­DRAM ECC (SEC­DED)

32­bit

B
u
rs
t

le
n
gt
h
 (
8
)

Chip width (4-bit)

Corrected
data

(b) A ×4 chip. Each 72b
word is fetched and decoded by
SEC-DED ECC. Only 32 of
the 64b data are transferred to
the processor.

Figure 4.1: In-DRAM ECC for DRAM chips with different data interface
widths but the same 12.5% redundancy.

In-DRAM ECC not only costs array storage and a modest amount

of encoding and decoding logic within DRAM, but it also degrades perfor-

mance [81, 70]. ECC decoding increases access latency and a mismatch be-

tween write data granularity and internal ECC codeword size requires read-

modify-write operations that can also degrade performance. The best or-

ganization of in-DRAM ECC is an open research topic. In one proposal,

in-DRAM ECC uses 8 bits of redundancy per 64 bits of data to provide inter-

nal SEC-DED protection [70]. On a ×8 chip (Figure 4.1a), the ECC data size

matches the transfer granularity of the chip and implementation is straightfor-

ward. However, on a ×4 chip (Figure 4.1b), whose access granularity is 32b,

the 64b ECC data size results in overfetching read data and read-modify-writes

62

for write commands. Another in-DRAM ECC candidate increases the ECC

word size to 128 bits to amortize ECC overheads further [85, 70]. This de-

creases the amount of redundancy needed for SEC to 6.25%, but it exacerbates

the overfetching problem and decreases protection.

In-DRAM ECC is innately weaker than rank-level ECC because of its

per-chip operation—at this word size, in-DRAM ECC can only provide bit-

level correction (i.e., SEC-DED or SEC) without massive overfetching internal

to the DRAM. Also, in-DRAM ECC cannot correct errors outside the chip,

such as errors during transmission. In the context of a high-reliability system,

end-to-end protection is needed or such external DRAM errors may domi-

nate (Chapter 5). Meanwhile, current SDDC rank-level ECCs provide limited

improvement in manufacturability by failing to tolerate distributed bit-level

inherent faults across chips. Most importantly, providing high reliability in

the presence of both operational faults and a high rate of inherent faults is

challenging, so that future large-scale systems are expected to employ both

in-DRAM ECC and rank-level ECC at the expense of up to 26.6% redundancy

and overfetching.

4.3 ECC Guardband

High reliability in the presence of operational faults requires rank-level

ECC. In other words, the correction capability of rank-level ECC operates

as a guardband against operational faults. With increasing rates of inherent

faults, however, some of the rank-level ECC correction capability can be used

63

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6

Max. correction (rank­level)

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6 Inherent faults control

 by in­DRAM ECC
 or remapping

Strict
guardband

Error from inherent fault

à Poor yield

Error from operational fault

(a) An example of fault distribution after
chip manufacturing and DIMM assembly

EC
C

gu
ar
d
b
an
d

(b) After testing and initial
remapping

(c) After a chip­level operational fault

Figure 4.2: A strict ECC guardband example with QPC Bamboo ECC.

against inherent faults as well. This section presents three different uses of

this correction capability.

4.3.1 Strict ECC Guardband

In the proposed in-DRAM + rank-level ECC schemes [60, 67, 126],

all inherent faults are tolerated by in-DRAM ECC or remapping before the

system is operational and the entire correction capability of the rank-level ECC

serves as the ECC guardband against operational faults (Figure 4.2). Such

mechanism is called strict ECC guardband because it can strictly tolerate the

predetermined worst-case inherent (after remapping) and operational faults

simultaneously. Figure 4.2 (a) shows an example distribution of inherent cell

faults. Each bar represents the number of faulty cells within a particular

memory block that is read in one memory transfer (e.g., a 64B block); blocks

have up to 3 symbols with inherent faults in the example. After testing at

manufacture time, all inherent cell faults are either removed by remapping

or can be tolerated by the in-DRAM ECC and the rank-level ECC is used to

correct operational faults only.

64

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6

Max. correction (rank­level)

R
an
k­
le
ve
l

EC
C

Uncorrectable errors
à Poor reliability

Zero
guardband

(b) After a chip­level operational fault

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6

Error from inherent fault

(a) An example of fault distribution after
chip manufacturing and DIMM assembly

Error from operational fault

Figure 4.3: A zero ECC guardband example with QPC Bamboo ECC.

A strict ECC guardband provides high reliability at the expense of

requiring in-DRAM ECC and/or significant remapping resources; this is be-

cause the in-DRAM ECC is weak given the constraints on redundancy and

granularity within a DRAM chip. In fact, current in-DRAM ECC proposals

are limited to correcting a single erroneous bit. Section 4.5.1 shows that to

provide a strict ECC guardband under cell fault rates (CFRs) of 10-5 and 10-4,

more than 1,600 and 140,000 64B blocks, respectively, require remapping per

16GB ECC DIMM with in-DRAM ECC.

4.3.2 Zero ECC Guardband

The reason strict ECC guardband requires so much remapping capac-

ity is the weak in-DRAM ECC. As an alternative, zero ECC guardband uses

the rank-level ECC against both inherent and operational faults (Figure 4.3).

A strong rank-level ECC can tolerate a large number of bit errors, and zero

ECC guardband uses this strong correction capability to tolerate inherent

faults without considering possible operational faults. It is a very economi-

cal scheme as just the rank-level ECC covers both inherent and operational

65

faults, yet degrades reliability because it can no longer tolerate severe opera-

tional faults (e.g., a dead chip) after the rank-level ECC uses up some of its

correction capability for inherent faults. Also, the manufacturability improve-

ment of zero ECC guardband can be limited because strong rank-level ECCs

are designed for faults that are expected to be confined to a single chip (i.e.,

SDDC), while inherent faults are distributed across all devices. In summary,

zero ECC guardband can improve manufacturability at the cost of high relia-

bility.

4.3.3 Active ECC Guardband

Active Guardband ECC (AG-ECC) efficiently utilizes rank-level ECC

with 12.5% redundancy to tolerate overlapping inherent and operational faults.

This satisfies both high reliability and high manufacturing yield requirements

economically using reasonable remapping requirements and a standard level of

redundancy. An AG-ECC follows the insight that in very rare cases, it is pos-

sible to allow high-overhead error correction as long as correction is cheap in

the common case and that overall reliability is not compromised. Thus, mem-

ory blocks with existing faults only need to be remapped if even the expensive

correction mechanism will not be able to tolerate the most severe error case

targeted by the protection scheme. In other words, the ECC guardband must

be maintained at a safe level, but that level is for exceptional cases rather than

for common accesses. To avoid repeated high-overhead correction and main-

tain the safe ECC guardband, recent advancement on fine-grained memory

66

remapping (Section 4.6) is actively and dynamically applied.

There are three mechanisms that enable AG-ECC to restore data from

overlapping inherent and operational faults, whose errors can be beyond the

conventional correction capability of a rank-level ECC.

The first is to expand correction capability by using erasure-based cor-

rection. Erasure correction with known information of error locations doubles

the number of corrections compared to random error correction (Section 2.3).

For example, an ECC that can correct 4 random errors can replace 2 of its

error correction capability with 4 erasure corrections, resulting in a total of 6

corrections (2 random errors + 4 erasures).

The second is to identify the location of an operational fault using fault

diagnosis. With a DUE, AG-ECC starts a low overhead online diagnostic

routine which samples blocks along the same and nearby rows and columns to

the erring block to identify a block affected by the same operational fault but

no inherent fault. Correcting such a block provides the device location of the

operational fault, which can be used for erasure correction in the initial block.

This diagnosis is efficient because inherent faults are rare and operational faults

commonly affect multiple memory blocks. Even with a very high CFR of 10-5,

more than 99.5% of the blocks are expected to have no inherent fault. At

the same time, severe operational faults typically affect several memory blocks

(e.g., ≥90% of multi-pin faults affect a single DRAM row, single column, or a

group of rows in [128]). Note that if the diagnostic procedures are unable to

safely locate the operational fault, a DUE is reported. The same insight and

67

a similar diagnosis procedure is also described by Nair et al. [100], though not

evaluated to the same depth.

Lastly, AG-ECC uses to remapping to control the severity of faults

and maintain the erasure-based SDDC guardband. The maximum number

of corrections is still limited even with erasure decoding. In the previous

example of 2-error and 4-erasure correcting codes, up to 6 symbol errors can

be corrected in total. As a result, blocks with more than 2 existing errors

will lose erasure-based correction capability if a future chip-level fault occurs.

To prevent this reliability failure, AG-ECC preemptively retires blocks with

more than 2 symbol errors after correction, so that all blocks are correctable

by erasure-based decoding against a future chip-level fault.

Blocks with less severe faults (i.e., 1 or 2 symbol errors) are not remapped

but continue to be used with cheap corrections; correction latency can be as

low as 1 or 2 cycles per correction (Section 4.4.4). This selective remapping

policy, which retires a faulty block only if it will be uncorrectable with a fu-

ture chip-level fault and tolerates other faults, can efficiently and effectively

reduce remapping overhead in the presence of frequent cell faults with minimal

impact on reliability.

We call this scheme active guardband because it actively manage mem-

ory error protection in a way that is analogous to how voltage/timing guard-

bands are managed to maintain reliable circuit operation while improving per-

formance and efficiency [86]. The following section presents a detailed example

of AG-ECC using a strong rank-level ECC.

68

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6

Remap threshold

Max. correction

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6 Corrected by
erasure decoding

Remap to a healthy block

Tolerated by ECC

Corrected by
error decoding

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6

Remap to healthy
blocks

(b) After testing and initial
 remapping

(c) After a chip­level operational fault

Guardband

(d) After remapping during operation

Active
guardband

Er
ro
rs
 p
er
 b
lk
 (
sy
m
)

64B block ID
0
1
2
3
4
5
6

Error from inherent fault

(a) An example of fault distribution after
chip manufacturing and DIMM assembly

Error from operational fault

Figure 4.4: An active ECC guardband example with QPC Bamboo ECC.

4.4 Active Guardband QPC ECC

The goal of Active Guardband Quadruple Pin Correcting (AG-QPC)

ECC is to provide SDDC capability in the presence of inherent scaling cell

faults on standard 18-chip ECC DIMMs with ×4 DRAM devices. The multi-

symbol correction and by far safer detection capabilities of QPC make it an

excellent match for the AG-ECC approach. Following the AG-ECC flow dis-

cussed earlier, the threshold for remapping is set at two faults that affect

different symbols within a single memory block.

The overall flow of AG-QPC is depicted in Figure 4.4. AG-QPC main-

tains fault severity below a remapping threshold (i.e., 2 symbol errors) by

retiring blocks with more severe errors ((b) and (d)). Less severe faults are

69

tolerated by the rank-level ECC. When a chip-level operational fault occurs

on top of existing faults, 5-6 symbol errors are corrected via erasure decoding

(c). More details about the decoding, fault diagnosis, and remapping schemes

in AG-QPC are presented in the following subsections.

4.4.1 ECC decoding

AG-QPC uses the same encoding and organization of Bamboo QPC as

that described in Chapter 3, but decoding is adapted for scaling faults. With

operational faults, it is very unlikely for more than two chips to simultaneously

manifest errors within the same memory block because operational faults are

independent [48]. Therefore, when such rare corrections are reported, they

can be pessimistically considered to result from a severe error miscorrection

and ignored (i.e., the corrections are discarded and the block is reported as a

DUE). This conservative correction reduces the likelihood that a severe error

goes undetected and results in an SDC. Hence, the original QPC decoder does

not attempt to correct some possibly-correctable errors and reports a DUE if

the symbol corrections belong to neither a single chip nor two separate DQs.

With inherent faults, however, the high cell fault rate results in many

memory blocks in which there are multi-chip faults, necessitating redesign of

the post-processing heuristic to better balance correction and detection; if

the same scheme were used, too many common correctable errors would be

reported as uncorrectable. Table 4.2 compares the correction and detection

capabilities of different post-processing schemes. QPC ECC decoding with n-

70

Rank-level ECC QPC-2P QPC-3P QPC-4P

1 bit/pin/chip or
2×1 bit/pin faults (%)

DCE 100.0000000 100.0000000 100.0000000

3× 1 bit/pin faults (%)
DCE 0.0000000 100.0000000 100.0000000
DUE 100.0000000 0.0000000 0.0000000

4× 1 bit/pin faults (%)
DCE 0.0000000 0.0000000 100.0000000
DUE 100.0000000 100.0000000 0.0000000

1 bit fault +
1 chip fault (%)

DCE 0.0000262 0.0091167 1.5534977
DUE 99.9999734 99.9908829 98.4286531
SDC 0.0000004 0.0000004 0.0178492

2× 1 bit faults +
1 chip fault (%)

DCE 0.0000000 0.0000162 0.0090661
DUE 99.9999996 99.9999791 99.9680300
SDC 0.0000004 0.0000047 0.0229039

Rank fault (%)
DCE 0.0000000 0.0000000 0.0000000
DUE 99.9999994 99.9999954 99.9763927
SDC 0.0000006 0.0000046 0.0236073

Table 4.2: A comparison of protection coverage using different QPC post-
processing schemes.

71

pin correction (QPC-nP) accepts correction results if they belong to either a

single chip or n separate DQs. QPC-2P is the same as the original QPC ECC,

while QPC-4P has no post-processing. The result shows that QPC-3P has

balanced correction and detection capabilities by correcting a chip error or up

to 3 pin errors (e.g., 2 bit errors from inherent faults and 1 bit error from

operational fault) and detecting more than 99.999995% of any errors, which

makes it an excellent candidate to achieve both manufacturability (tolerating

inherent cell scaling faults) and reliability.

4.4.2 Fault Diagnosis and Erasure Decoding

Because of the initial test and remapping step, there are at most two

erroneous symbols from inherent cell faults in any block. Thus, errors from co-

located inherent faults and a chip-level operational fault may result in errors in

5-6 symbols and exceed the maximum error correction capability of QPC-3P,

which is limited to at most 4 symbols. In such cases, error decoding of QPC-3P

will report a DUE, except in extremely rare cases (< 5 × 10-6%, Table 4.2).

Before propagating an undetected error to the system, AG-ECC attempts fault

diagnosis. If the location of an error is precisely known from the diagnosis,

erasure decoding can correct it with only a single redundant symbol. Thus, if

the faulting DQs are known, the redundancy of 8 symbols is split as up to 4

symbols for erasure correction (one per DQ) and the other (≥ 4) symbols for

correcting the up to 2 random cell faults and for additional detection coverage.

72

4.4.3 Remapping

AG-ECC relies on a remapping mechanism for fault avoidance. The

focus of this dissertation is not on the details of the remapping mechanism and

any of the schemes described in Section 4.6 may be used. However, to provide

a concrete example of a remapping mechanism, FreeFault [74] is considered.

FreeFault dynamically remaps blocks from DRAM into blocks in a processor’s

large last-level cache (LLC) and even when a substantial number of blocks is

remapped—up to several thousands of blocks—performance of the evaluated

benchmarks is not significantly impacted. Section 4.5.1 evaluates the degree

of remapping required and shows that remapping needs are reasonable and do

not overly stress the remapping mechanism.

Another important aspect of utilizing remapping for active guardband

management is that blocks exhibiting a severe combination of inherent and

operational faults, and which therefore require higher-overhead erasure cor-

rection, are remapped after the first erasure procedure. Recall that blocks

with up to two symbol errors do not need to be remapped because the ECC

guardband is maintained. Once block-remapping capacity is saturated, it is

also possible to map out an entire faulty device using one of Bamboo ECC’s

graceful-downgrade modes (Section 3.3), or replace the affected memory mod-

ule.

73

4.4.4 Overheads

There are three sources of overhead for AG-QPC: the 12.5% redundant

DRAM chips, the ECC circuits, and additional memory access latency. The

redundancy level is standard and the circuits are not a significant concern as

evaluated in Section 3.3.3. Latency overhead is discussed below.

The Bamboo ECC codes of AG-QPC requires the entire memory block

to be transferred before decoding begins, which takes 4 DRAM bus cycles with

burst length of 8. Once the memory block has been transferred, QPC ECC

decoding proceeds: 2 cycles for syndrome generation and detection, an addi-

tional ≤ 2 cycles in rare cases of one symbol correction (∼ 0.5% of accesses

with a CFR of 10-5), and another ≤ 2 cycles in the even rarer cases that 2

symbols require correction (based on [69, 24]). The erasure decoding proce-

dure is estimated to take 12 cycles once the error locations are known. The

diagnostics procedure requires reading a small number of blocks that manifest

the same operational fault. While it may take hundreds of cycles, diagnosis

occurs once per operational fault and erasure decoding is only performed once

as well (followed by remapping); thus their overheads are negligible given that

operational faults occur once per hundreds of years (or more) on average per

DIMM.

In comparison, schemes that rely on in-DRAM ECC combined with

rank-level ECC have high latency overheads as well, in addition to power

overheads. First, in-DRAM ECC must internally decode the ECC requiring

2 cycles, followed by 1 cycle to transfer the information, and 2 cycles for the

74

rank-level ECC. Thus, the read latency overhead of AG-QPC relative to these

schemes is just a single cycle.

As explained in Section 4.2, every write operation on a ×4 DRAM

with in-DRAM ECC requires a read-modify-write operation due to the smaller

on-chip transfer granularity (32b) than the in-DRAM ECC data size (64b).

While a write command is performing a read-modify-write operation, follow-

ing read/write commands on the same bank cannot access the internal data

bus and must be delayed. This increases DRAM write-to-write command de-

lay (tCCD L for write operations) and degrades performance. In-DRAM ECC

also increases DRAM power consumption with extra cells, overfetching reads,

and read-modify-write operations. This can significantly increase the DRAM

energy consumption of applications with a fair amount of write traffic. Sec-

tion 4.5.3 shows that AG-ECC with only rank-level ECC shows similar per-

formance but significantly better energy efficiency than the combination of

in-DRAM ECC and rank-level ECC.

4.5 Evaluation

This section measures the manufacturability, reliability, and perfor-

mance impacts of AG-QPC and compares them with the state-of-the-art ECC

schemes: DRAM with in-DRAM ECC + strict-ECC-guardband SDDC and

XED-DDDC. XED [100] combines in-DRAM ECC and rank-level ECC to pro-

vide high reliability against inherent and operational faults, including chip fail-

ures (Section 4.6). It uses in-DRAM ECC to detect errors and rank-level ECC

75

to correct the detected errors using erasure decoding in most cases. AG-QPC

with 12.5% redundancy is directly compared to DDDC-level XED with 26.6%

total storage overhead from in-DRAM ECC and rank-level ECC redundancy.

The results demonstrate that AG-QPC provides stronger manufacturability

than in-DRAM ECC and roughly matches the high reliability currently seen

in high-performance systems despite the introduction of high inherent fault

rates. Furthermore, it does so without any changes to current DRAM chips,

modules, or interfaces while requiring reasonable fault remapping and retire-

ment capabilities. AG-QPC also shows similar performance yet better energy

efficiency than the in-DRAM + rank-level ECC based solutions.

4.5.1 Manufacturability

The manufacturability impact is evaluated by estimating DIMM yields

and uncorrectable block counts with varying bit-level inherent fault rates (i.e.,

CFR). XED-DDDC can correct up to two device errors per memory block,

yet using this full correction capability against inherent faults would sacrifice

reliability against chip-level operational faults. Therefore, it is assumed that

XED-DDDC tolerates 1-chip inherent faults (in addition to some bit faults

correctable by in-DRAM ECC) but retires any block that exhibits faults in

2 chips. This selection provides a balanced design of high manufacturability

and high reliability. Note that the manufacturability aspect is not discussed

by Nair et al. [100].

76

0%
20%
40%
60%
80%

100%

1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4

Y
ie
ld

Cell Fault Rate (Increasing)

None SDDC In-DRAM AG-QPC XED-DDDC

Figure 4.5: A comparison of 16GB DIMM yields using different ECC schemes
and varying cell fault rates.

DIMM yield: Figure 4.5 shows 16GB DIMM functional yield of the dif-

ferent error control schemes with varying CFRs, assuming that up to 32 64B

blocks in a DIMM can be remapped at manufacture time (e.g., through spare

rows and columns). In-DRAM ECC and XED remap memory at 128B gran-

ularity due to internal overfetching, while the others use 64B granularity.

The manufacturability of an ECC scheme depends on its correction capabil-

ity against inherent faults. With no ECC or standard SDDC rank-level ECC,

DIMM yield quickly drops to 0% around 10-10 CFR, explaining why DRAM

vendors have sought manufacturability solutions involving in-DRAM ECC.

In-DRAM ECC corrects up to one inherent bit error per chip; it maintains

almost 100% yield until a CFR of 10-7, and it can achieve high yield with

some block sparing until a CFR of 10-6. Above a CFR of 10-6, however, the

rate of two-bit errors in the same chip becomes problematic and the yield of

in-DRAM ECC quickly drops to 0%.

The fact that DRAM vendors employ In-DRAM ECC for the manufac-

turing of fault-free non-ECC DIMMs indicates that the expected inherent error

77

1E+0
1E+2
1E+4
1E+6
1E+8

1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4Sp
ar
e
 b
lo
ck
 c
o
u
n
t

Cell Fault Rate (Increasing)

None SDDC In-DRAM AG-QPC XED-DDDC

Figure 4.6: A comparison of the number of spare 64B blocks needed to achieve
99.99% yield on 16GB DIMMs.

rate is at most a CFR of 10-6. AG-QPC easily handles an inherent fault rate

10× higher than this, despite requiring no DRAM changes and only 12.5%

total redundancy. XED-DDDC extends this protection even further, at the

cost of the increased redundancy and complexity of In-DRAM ECC. It is not

clear that this increased manufacturability offers any substantive advantages

unless an extreme CFR of > 10−4 is expected.

Needed spare block count: As yield with a fixed retirement space often

saturates to either 0 or 100%, the number of spare blocks needed to replace un-

correctable blocks is also measured as a metric for the cost needed to ensure a

given yield (Figure 4.6). No ECC and SDDC rank-level ECC require 30 spare

blocks to achieve 99.99% yield at a CFR of 10-10, but the retirement needs rise

sharply to 13 million blocks at 10-4. These numbers will increase with process

and capacity scaling, such that neither technique is viably manufacturable.

Similarly, in-DRAM + rank-level ECC requires 38 spare blocks at a CFR of

10-6, but the number explodes to 140,000 at 10-4, requiring a total of 17MB

78

remapping capacity (assuming 128B block retirement due to in-DRAM ECC

overfetching) to deal with inherent faults. Despite only requiring 12.5% re-

dundancy, AG-QPC can achieve 99.99% yield at 10-5 and 10-4 CFRs with just

21 and 8,000 spare blocks, respectively, or 1KB and 500KB, respectively, of

64B retirement space; these remapping overheads are easily within reach of

FreeFault, frame retirement, and other remapping schemes. XED-DDDC uses

its double chip correction capability to minimize remapping and as such it re-

quires just 62 block remappings at 10-4; its overall 26.6% redundancy demands

a large amount of extra storage for ECC, however.

4.5.2 System Reliability

The reliability of the different ECC schemes is estimated by the DUE

and SDC failure probabilities of a DRAM channel using the two-stage Monte

Carlo simulation described in Section 3.4. The first Monte Carlo simulation

stage randomly injects faults into a simulated DRAM channel based on the

observed fault modes and rates of 2GB DDR2 DIMMs [128]. In the evaluation,

however, the DRAM bank count is doubled and the row count is quadrupled to

accommodate a 16GB DIMM capacity. Once (possibly overlapping) faults are

identified by the first stage, the second stage randomly generates errors based

on the underlying fault models, assuming each bit within a corrupted region

has a 50% flipping probability (but the error-free pattern is excluded). Also,

random bit errors are injected into each block based on the given inherent

cell fault rate. A protection scheme decodes the error patterns to determine

79

whether the errors are detectable, correctable, or miscorrected. Undetected

errors and miscorrected errors are categorized as SDC. A corrected error

may be retired, if its severity exceeds the retirement threshold set by an ECC

scheme, before resuming the simulation run. If the number of remapped blocks

exceeds the capacity of the ECC scheme, the DIMM is marked as bad and

replaced. Periodic memory scrubbing with an 8-hour interval is used to prevent

the accumulation of transient faults.

Remapping can be crucial for reliability because it reduces the accumu-

lation of permanent faults and avoids the need for frequent DIMM replacement.

It is assumed that 64 64B blocks can be remapped by coarse-grained remap-

ping schemes (e.g., 32 remappings per rank with spare rows and columns)

and that several thousand blocks can be remapped by fine-grained remapping

schemes (e.g., FreeFault). Furthermore, it is assumed that the same remapping

scheme and storage space is shared between uncorrectable inherent faults and

operational faults. At a CFR of 10-6, for example, 99.99% of 16GB DIMMs

with in-DRAM ECC and SDDC rank-level ECC require less than 38 remapped

blocks, leaving the rest of the remapping capacity for operational faults in the

field. For reliability analyses at higher CFRs, the remapping capacity can be

increased with the help from fine-grained remapping schemes.

A large-granularity operational fault commonly corrupts only a small

fraction of blocks within its affected region. Instead of pessimistically retiring

all of the blocks within the fault range, distributions on the number of affected

blocks per fault mode is extracted from the same paper as the fault rates [128]

80

to determine the necessary amount of remapping. The number of experimental

runs is 10 billion per scenario (CFR and scheme).

To compare reliability with current state-of-the-practice schemes, AMD

chipkill against operational faults only is set as the baseline to represent the

level of reliability in current high-reliability systems. There are two variants

of AMD chipkill with different remapping policies: one with DUE retirement

(which replaces a DIMM when a DUE is reported) and another with permanent

fault (PF) retirement that replaces a DIMM after repeated corrections from a

permanent fault are observed. DUE retirement is more efficient and requires

1/180× fewer DIMM replacements than PF retirement, but is less reliable

because it generates DUEs and SDCs in the presence of accumulated faults

(no DUE nor SDC is reported during 10B runs of PF retirement).

Baseline (DUE retire) Baseline (PF retire) ID + SDDC (64 spares) XED-DDDC (64 spares)
AG-QPC (64 spares) ID + SDDC (2K spares) XED-DDDC (2K spares) AG-QPC (2K spares)

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

R
e
p
la
ce
 p
ro
b
.

Time (year)

(a) DIMM replacement prob.

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

D
U
E
p
ro
b
.

Time (year)

(b) DUE probability.

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

SD
C
 p
ro
b
.

Time (year)

(c) SDC probability.

Figure 4.7: The reliability of a 2-rank DRAM channel against both inherent
and operational faults (CFR = 10-6).

To analyze the reliability of systems with both inherent and opera-

tional faults, 3 ECC schemes are evaluated: In-DRAM + AMD chipkill, XED-

DDDC, and AG-QPC. Other protection schemes that fail to provide a rea-

81

Baseline (DUE retire) Baseline (PF retire) ID + SDDC (2K spares) XED-DDDC (2K spares)
AG-QPC (2K spares) ID + SDDC (16K spares) XED-DDDC (16K spares) AG-QPC (16K spares)

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

R
e
p
la
ce
 p
ro
b
.

Time (year)

(a) DIMM replacement prob.

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

D
U
E
p
ro
b
.

Time (year)

(b) DUE probability.

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

SD
C
 p
ro
b
.

Time (year)

(c) SDC probability.

Figure 4.8: The reliability of a 2-rank DRAM channel against both inherent
and operational faults (CFR = 10-5).

Baseline (DUE retire) Baseline (PF retire) XED-DDDC (2K spares)
XED-DDDC (16K spares) AG-QPC (16K spares)

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

R
e
p
la
ce
 p
ro
b
.

Time (year)

(a) DIMM replacement prob.

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

D
U
E
p
ro
b
.

Time (year)

(b) DUE probability.

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

1 2 3 4 5

SD
C
 p
ro
b
.

Time (year)

(c) SDC probability.

Figure 4.9: The reliability of a 2-rank DRAM channel against both inherent
and operational faults (CFR = 10-4).

sonable DIMM yield at a CFR of 10-6 are excluded. Figures 4.7, 4.8, and 4.9

show the failure probabilities of a 2-rank DRAM channel due to combined op-

erational and inherent faults with a CFR of 10-6, 10-5, and 10-4, respectively.

The number of spare blocks ranges from 64 to 16K, which represents coarse-

grained retirement (e.g., 32 spare rows per rank) and fine-grained retirement

(e.g., Freefault), respectively. At 10-5 CFR, In-DRAM + SDDC (2K/16K

spares) and AG-QPC (2K spares) are excluded because they show 0% func-

82

tional yield.

Several trends are notable. In-DRAM ECC with SDDC (26.6% redun-

dancy) provides strong protection against both DUEs and SDCs, at the cost

of frequent DIMM replacement. XED-DDDC (26.6% redundancy) reduces

the DIMM replacement frequency by orders of magnitude, but suffers from

an increased risk of silent data corruption. AG-QPC (12.5% redundancy)

offers a compelling tradeoff between replacement probability and SDC rate,

despite requiring no DRAM changes and using only half the redundancy of

the other schemes. AG-QPC requires roughly 60% less frequent DIMM re-

placement than in-DRAM ECC with SDDC—only 1.0% − 1.8% of AG-QPC

DIMMs need to be replaced within 5 years, depending on the inherent fault

rate and remapping capacity. In addition, AG-QPC provides 4− 7× stronger

protection against SDCs than XED-DDDC. All of the considered techniques

make frugal use of the available retirement storage, and for the most part in-

creasing the maximum number of spares does not make a meaningful reliability

difference, except in the DIMM replacement probability. A larger remapping

capacity can lower the DIMM replacement frequency (by up to 42% in our

evaluation) by tolerating a larger fraction of operational faults.

4.5.3 Performance and Energy

In addition to maintaining high manufacturability and reliability, AG-QPC

offers significant energy benefits over in-DRAM + rank-level ECC based so-

lutions. This overall impact is quantified using the Gem5 simulator [1] with

83

Core
3.4GHz OoO core × 4 (issue width=8, ROB=192 entries)
32KB L1D, 1MB L2, 8MB L3 (64B lines)w/ stride prefetcher

DRAM timing
(cycle)

×4 16GB DIMM (DDR4-2400)

CAS latency tCCD L(WR) tFAW

No in-DRAM 16 6 16
In-DRAM 18 24 26

RD data FIFO lat. WR data FIFO lat.

AMD CK +3 +2
QPC-3P +6 +2

DRAM current
(mA)

IDD0 IDD3N IDD4R IDD4W IDD5

No in-DRAM 43 38 110 103 250
In-DRAM 46.8 44.3 141.3 184.3 254.1

Table 4.3: The performance/energy simulation parameters of AG-ECC.

DRAMSim2 [119] running homogeneous multi-programmed SPEC CPU 2006

workload mixes with one program per core [130]. Table 4.3 shows the machine

configuration, latency penalties, and DRAM power consumption used in this

evaluation. These parameters are based on the Intel E7-4470 CPU (Haswell)

and Micron DDR4-2400 memory [96]. Due to a lack of publicly available infor-

mation, in-DRAM ECC power consumption is estimated based on differences

between ×4 and ×8 configurations of the same DRAM chip. For example,

×4 and ×8 configurations activate 4Kb and 8Kb row buffers, and consume

IDD0s of 43mA and 46mA, respectively.1 In-DRAM ECC requires a 9Kb row

buffer, and accordingly it is estimated to consume 46.8mA. The read over-

head of the internal in-DRAM ECC read-modify-write operation is modeled as

1IDD0, IDD3N, IDD4R/IDD4W, and IDD5 are the DRAM activation current, active
standby current, operating burst read/write current, and burst refresh current, respectively
(see [60] for details.)

84

0%
1%
2%
3%
4%

sj
en

g

h
m
m
er

n
am

d

sp
h
in
x

o
m
n
et
p
p

d
ea
lII

gr
o
m
ac
s

so
p
le
x

b
zi
p
2

m
cf

H
.M

.

b
w
av
e
s

ca
ct
u
s

lib
q
u
an
t.

le
sl
ie
3
d

H
.M

.

Low bandwidth High bandwidth

Sl
o
w
d
o
w
n

In­DRAM + SDDC or XED AG­QPC

Figure 4.10: A comparison of the IPC slowdown comparison between AG-QPC
and in-DRAM-ECC-based schemes.

a {IDD4R×8 - IDD4R×4}×9
4
increase in IDD4W. The total power is calculated

based on Micron DDR3 power model [95] and divided by the average IPC to

calculate energy efficiency.

Figure 4.10 shows a performance comparison between AG-QPC and

in-DRAM ECC based schemes. The figure presents the IPC slowdowns of

the mechanisms against a system without ECC (neither in-DRAM nor rank-

level). The increased tCCD LWR (write-to-write delay) from read-modify-

write operations and the increased CAS latency in in-DRAM ECC degrade

the performance of memory-intensive applications by up to 3%. By elim-

inating in-DRAM ECC, AG-QPC not only improves storage efficiency but

it also maintains similar performance to ECC-free operation in most appli-

cations. The memory-intensive benchmark bwaves shows anomalously poor

performance with AG-QPC during the chosen program interval due to some

memory scheduling conflict caused by the QPC decoding delay. This causes

one processor core to starve relative to the others, slowing the overall perfor-

mance; if this anomalous core statistics are discarded, the performance impact

85

0%
5%

10%
15%
20%
25%
30%

sj
en

g

h
m
m
er

n
am

d

sp
h
in
x

o
m
n
et
p
p

d
ea
lII

gr
o
m
ac
s

so
p
le
x

b
zi
p
2

m
cf

H
.M

.

b
w
av
e
s

ca
ct
u
s

lib
q
u
an
t.

le
sl
ie
3
d

H
.M

.

Low bandwidth High bandwidth

D
R
A
M
 e
n
er
gy

In­DRAM + SDDC or XED AG­QPC

Figure 4.11: A comparison of the DRAM energy efficiency between AG-QPC
and in-DRAM-ECC-based schemes.

is roughly 2% and it is less than that of in-DRAM + rank-level ECC.

Figure 4.11 shows that AG-QPC significantly improves energy effi-

ciency relative to in-DRAM + rank-level ECC. For bandwidth intensive ap-

plications, in-DRAM + rank-level ECC consumes 18% more DRAM energy

on average (and up to 25%) than an ECC-free system. AG-QPC shows a

more modest 0.5% average degradation in energy efficiency, akin to the nor-

mal expectations for an ECC-protected system. The benchmark bwaves suffers

from 3.6% energy degradation using AG-QPC due to its aforementioned 3.6%

slowdown. Compared to in-DRAM + rank-level ECC solutions with similar

reliability, AG-QPC offers more than 16% energy savings (up to 24%) in mem-

ory intensive applications.

4.6 Related Work

Traditionally, inherent DRAM faults have been controlled by fault-

removal mechanisms (e.g., spare rows and columns), while operational faults

86

have been tolerated via rank-level ECC. More recently, rank-level ECC has

been employed to tolerate inherent faults caused by variability in retention

time and to aggressively trim retention margins as well [72, 115, 71, 88]. These

efforts use error coding against inherent faults, similar to this work, but they

do not consider the operational reliability of their endeavors nor do they target

SDDC level of reliability.

It has long been known that remapping can have a synergistic effect

with ECC for tolerating persistent operational faults [131, 133]; a finding that

has led to DRAM vendors providing post package repair in recent memo-

ries [60, 67]. Platform developers (such as NVIDIA [138]) retire memory frames

and rely on non-volatile storage to maintain the mapping. Academia has pro-

posed fine-grained remapping to reduce remapping overhead: ArchShield [99]

and FreeFault [74] with the cache line granularity, RelaxFault [75] with sub-

cacheline granularity, and CiDRA [126] with bit granularity. AG-ECC is

remapping-mechanism agnostic and could work alongside any of these ap-

proaches.

CiDRA [126] has some relation to AG-ECC in that it considers the use

of a fine-grained fault remapping cache alongside in-DRAM ECC and rank-

level SEC-DED. While CiDRA does concern itself with maintaining SEC-

DED levels of operational protection in the presence of inherent faults, it uses

both in-DRAM ECC and rank-level ECC (26.6% redundancy) and does not

consider SDDC levels of reliability. Also, the inherent fault model used by

CiDRA is stuck-at permanent failures and it relies on mask error correction

87

which does not apply to retention faults. ECC-Asprin [73] is similar to CiDRA

but it uses rank-level ECC (12.5% redundancy) instead of in-DRAM ECC.

Again, it differs from AG-ECC because it maintains only SEC-DED levels of

protection and it relies on mask error correction for its fault diagnoses.

Several non-DRAMmemory papers have observed that ECC and remap-

ping can be combined to improve yield in a cost-effective manner [148, 91].

These approaches are similar in concept to AG-ECC, but they are not evalu-

ated in the context of DRAM and only incorporate reliability to demonstrate

that the effectiveness of bit-level ECC is not significantly compromised using

a simple stuck-at random bit error model. HI-ECC [145] and FREE-p [154]

adopt a similar approach for caches and non-volatile memories, respectively.

AG-ECC differs in many ways, not the least of which is the target of inherent

scaling faults combined with operational faults in DRAM.

VS-ECC [11] allows more aggressive voltage scaling by protecting weaker

SRAM cells with stronger protection. E-ECC [24] combines error and erasure

correction to provide SDDC-level protection on ×8 chips using one redundant

chip. If a chip error corrupts multiple ECC words within an access, it uti-

lizes the correction information of one word to apply erasure decoding on the

remaining words. XED [100] is closely related work that combines error and

erasure correction to provide high reliability against inherent and operational

faults. XED uses in-DRAM ECC to detect errors and rank-level ECC to cor-

rect the detected errors using erasure decoding in most cases. In some cases,

multiple chips may report errors from in-DRAM ECC, exceeding the erasure

88

correction capability. When that happens, XED first attempts to use the

single-error correction capability of its in-DRAM ECC to correct the errors.

If that does not succeed, low-overhead online diagnostics are used to provide

additional information on fault location and erasure decoding is attempted

once more. On standard ECC DIMM with ×4 chips, XED can correct up

to 2 chip errors using the 2 extra chips (and some 1-bit-per-chip errors us-

ing in-DRAM ECC). Despite this strength, its reliance on in-DRAM ECC

increases the redundancy to 26.6% and degrades performance with overfetch-

ing.

4.7 Summary

While manufacturability and reliability are top priorities for DRAM

vendors and large-scale system designers, respectively, separate in-DRAM ECC

and rank-level ECC mechanisms incur storage overheads as high as 26.6% and

they can degrade performance with overfetching. This chapter presents a

novel and systematic management of rank-level ECC, called AG-ECC, to tol-

erate both inherent and operational faults. Rigorous evaluation shows that

AG-QPC satisfies both the high reliability and high manufacturability re-

quirements without modifying the conventional DRAM chips, modules, or

interfaces. Accordingly, AG-ECC may enable the economical scaling of stan-

dard DRAM technology to meet future capacity demands without sacrificing

yield, reliability, or efficiency.

89

Chapter 5

Mechanisms against Command/Address

Errors

Any thorough system-level protection scheme must be holistic and pro-

vide end-to-end protection. Strong protection of any one component provides

limited benefit to the overall reliability, as any unprotected component will

quickly become the reliability bottleneck. While the strong SDDC mechanisms

described in the previous chapters can reduce uncorrectable data error rates

down to 1 FIT/chip [93], Clock, Control, Command, and Address (CCCA) sig-

nal transfers are poorly protected or left unprotected. Transmission errors on

these signals are already as frequent as uncorrectable data errors with current

DRAM [127]. Transmission errors are likely to become more frequent than

uncorrectable data errors as transfer rates increase and I/O voltage levels de-

crease. Once manifested, these errors can result in serious data errors over a

large memory region which are not detectable by data-only protection. There-

fore, future systems will suffer from degraded overall memory reliability unless

strong protection against this important emerging error type is provided.

Parts of this chapter appear in [79]. The author is the main contributor of the idea,
implementation, and evaluation.

90

This chapter presents All-Inclusive ECC (AI-ECC), a holistic mem-

ory protection scheme that is able to safeguard both DRAM data and CCCA

signals against storage and transmission errors. AI-ECC augments existing

data-protection schemes to provide very safe detection of CCCA errors with-

out additional redundant storage or new signals and without degrading the

effective level of data protection. It is meant to be an unobtrusive addition

to future memory standards. AI-ECC as an extension to DDR4 memory is

described, and is demonstrated to provide complete CCCA and data error

protection; DDR4 is the most dominant main memory system design today

for high-capacity servers and HPC systems, and is therefore used as a concrete

example.

5.1 DRAM Transmission Errors

Increasing transfer rates and decreasing I/O voltage levels make DRAM

transfers more vulnerable to transmission errors (Section 1.3). Attributes of

transmission errors make them easier to correct than storage errors but more

critical to detect and diagnose. An erroneous transmission can typically be

corrected by retry, simplifying the correction of any detected transmission

error. However, transmission errors are difficult to reproduce because most

of them are intermittent, making identification of the error in the first place

important for repairs.

For data signals, SDDC ECC can provide strong correction and safe

detection of transmission errors and correction information can identify the

91

Memory

Data A ECC A

Data B ECC B

Codeword A

Codeword B

@addr B:
 Wrong codeword

@addr A:
 Original codeword

MemCont

Read
Addr A

Addr
error

Figure 5.1: A read address error example.

Memory

Data A' ECC A'

Data A ECC A

Codeword A'

Codeword A

@addr B:
 Overwritten codeword

@addr A:
 Out-dated codeword

MemCont

Write
Addr A

Addr
error

Figure 5.2: A write address error example.

faulty data lines. Recent memories also introduced Cyclic Redundancy Check

(CRC) to detect write data transmission errors prior to updating storage

data [60, 61, 66]. These schemes provide very robust protection against data

transmission errors, enabling aggressive speed-ups of data transfer.

CCCA signals are more difficult to protect due to the fine-grained na-

ture of the signals. Compared to data, which has a wide interface (e.g., 64-bit

channel) and lengthy bursts (e.g., burst length of 8), CCCA has a narrower

interface (e.g., 27 CCCA signals) and cycle-by-cycle transfers, which make

amortization of redundancy overhead difficult and strong error coding expen-

sive. As will be shown later, the current JEDEC response of adding one bit

parity to the command and address signals is insufficient for many CCCA

errors. Furthermore, even the most aggressive known mechanisms from indus-

trial patents for dealing with CCCA errors only provide partial protection.

If undetected, CCCA transmission errors can result in severe failures;

92

Memory

Row A

Row B Row B:
Overwritten

MemCont

Activation
Row B

Bank
error Row A:

 Already open

Figure 5.3: A command error example (duplicate activations).

some escape existing protection and can compromise the final output (i.e.,

SDCs), while others cannot be corrected by retries and require expensive

checkpoint-and-restart [38] to restore the data. Figures 5.1 and 5.2 give some

examples of address transmission errors and their associated consequences.

Figure 5.1 shows a transmission error that changes the address of a read op-

eration. Despite reading the wrong location, the data-only ECC codeword

({data B, ECC B}) is valid and the error causes an SDC. An error in a write

address (Figure 5.2) poses an even more serious risk—not only is the wrong

location (address B) updated with incorrect data, but also the data in the

originally intended destination (address A) becomes stale and incorrect. Both

locations have their storage data corrupted (memory data corruption (MDC))

yet each location still holds a valid ECC codeword such that a following read

will escape data-only ECC and result in SDC.

Transmission errors in the clock, control, and command signals can be

catastrophic as well. Figure 5.3 shows a CCCA error that generates duplicate

activations (for row A and B) on the same bank. In that case, the memory

bit-lines are already activated with row A data and mistakenly opening a word-

line copies this data into row B, destroying it and causing significant MDC.

93

Accordingly, a later read to row B will yield valid codewords yet incorrect

data, resulting in SDC.

Rates of CCCA errors heavily depend on I/O and board designs and are

proprietary information, yet are likely growing rapidly with increasing trans-

fer rates. A large-scale field analysis on DDR3 DIMM shows that the number

of reported command/address errors by an even-parity detection mechanism

is as high as 72% of all uncorrectable data errors encountered using SDDC

ECC [127]. With a conservative assumption that circuit techniques will en-

sure a fixed Bit Error Ratio (BER), DDR4 with doubled command bandwidth

will suffer from more raw CCCA errors than uncorrectable data errors. With

a more realistic assumption that increasing transfer rates will increase BER,

weak protection (e.g., DDR4 command/address parity bit) will not be enough

and undetected CCCA errors will outpace uncorrectable data errors. Sec-

tion 5.4 shows that CCCA BER should be improved to one millionth of the

current JEDEC DDR4 standard (10-16 BER for data signals) [60], to make

undetectable CCCA error rate by the parity bit comparable to uncorrectable

data error rates by SDDC ECCs.

AI-ECC detects and diagnoses transmission errors as they occur, pre-

venting a high BER from translating into silent data corruption or system

failures. This allows the continuing use of commodity DRAMs (which are not

necessarily optimized for high reliability) in business or safety-critical systems,

even in the presence of increasing transmission error rates. Additionally, the

strong protection of AI-ECC may expose tradeoffs between CCCA error rates

94

16...15
BA1...0

14
A12/BC

13...11
A17,13,11

10
A10/AP

9...0
A9...0

Pin #
Signal
Group

19
WE/A14

18...17
BG1...0

CMD/ADD

Pin #
Signal
Group

27
CK

26
CKE

25
CS

24
ODT

23
PAR

CK CTRL

22
ACT

21
RAS/A16

20
CAS/A15

CMD/ADD

Figure 5.4: The CCCA signal interface for DDR4 memory.

and other design choices, such as increasing operating frequency.

5.2 Current DRAM Practices

This section introduces the latest DDR4, which will be used as the un-

derlying DRAM for AI-ECC and future standards, with focuses on its CCCA

signals and reliability features.

5.2.1 DDR4 CCCA Signals

DDR4 DRAM commands use 28 non-data pins to issue and control 4

types of signals: clock (CK), control (CTRL), command (CMD), and address

(ADD), as shown in Figure 5.4 [60]. Note that signal identifiers are overlined

to differentiate them from DRAM commands. Also note that there is both an

activate command, ACT, and an activate signal, ACT.

There are 3 signals in the CTRL group; CKE, CS, and ODT. CKE

(clock enable) saves energy by putting an idle rank into a power-save mode. CS

(chip select) selects a rank in multi-rank configurations. ODT (on die termina-

tion) controls dynamic on-die termination of DRAM to improve transmission

quality for write data.

95

The CMD and ADD signals time-multiplex physical pins, called CA

(command and address). For non-ACT commands, pin 21/20/19 is used to

indicate the RAS (row address strobe)/CAS (column address strobe)/WE

(write enable) signal, respectively. For ACT commands, which require the

most address signals (up to 18 bits), DDR4 uses 21-19 pins to indicate address

signals, while a separate ACT pin indicates the command. A separate PAR

(command/address parity) signal transfers an even parity of the CA signals

to protect against transmission errors, as will be explained in more details in

Section 5.2.2. BG, BA, BC, and AP stand for bank group, bank address,

burst-chop, and auto-precharge, respectively. Transmission errors over any of

these CCCA signals can have a disastrous impact that is not correctable by

conventional data-only ECC.

5.2.2 DDR4 Reliability Features

Large-scale systems typically employ Data ECC (DECC) to protect

memory data against storage and transmission errors (Figure 5.5a). On a

read, DECC fetches both data and its ECC check bits, detecting and correcting

inconsistencies due to errors. A data transmission error on a memory write,

however, remains latent as MDC until a following read to the locations with

erroneous data. Such MDC is problematic, as it is likely to cause severe data

loss that is not correctable through ECC.

Accordingly, DDR4 introduces a write CRC (WCRC) for the early

detection of write data transmission errors to reduce the chance of memory

96

ECC
DIMM

Data

...Data
chip0

Data
chip1

Data
chip15

ECC
chip0

ECC
chip1

ECC
Read

Write

Encode

Decode

Data ECC
MemCon
@Write

MemCon
@Read

(a) An overview of Data ECC (DECC).

DIMM

chip1chip0

Data0 CRC0 Data1 CRC1

Data0 CRC0 Data1 CRC1

Decode Decode

Write

...

MemCon
@Write

Mem
@Write

Encode Encode

(b) The DDR4 Write CRC (WCRC).

DIMM ...

chip0

CA CAP

chip1

CA CAP

CA CAP
MemCon
@CMD

Mem
@CMD

...Command

Decode Decode

Encode

(c) The DDR4 CA Parity (CAP).

Figure 5.5: The reliability features available with DDR4.

97

data corruption (Figure 5.5b). WCRC generates an 8-bit CRC checksum of the

write data to each chip and transmits this CRC over 2 additional beats that

trail the standard 8-beat data transfer. Each DDR4 DRAM chip checks the

consistency of this checksum with the received data before writing its memory

array. On detecting an error, memory uses a separate signal (ALERT) to let

the memory controller to know and re-transmit.

DDR4 introduces two other weak ad-hoc mechanisms for dealing with

CCCA errors: CA parity (CAP) and Gear down mode. CA parity (Fig-

ure 5.5c) uses a dedicated pin (PAR) to transfer the even parity of the CMD/ADD

signals. Upon receiving a command, each DRAM chip computes the parity

of its received CMD/ADD and checks it against the received PAR. CAP is

a weak level of CCCA protection, as it does not cover the CK and CTRL

groups and cannot detect an even number of bit-errors on the CMD/ADD

signals. Gear down mode halves the CCCA transfer rate to trade off latency

and command bandwidth for signal quality, keeping the data transmission rate

and the data bandwidth the same. While gear down mode reduces the CCCA

error rate, it is not a viable solution for memory-intensive workloads that do

not exhibit very high locality.

5.3 All-Inclusive ECC

AI-ECC provides strong and thorough protection by combining 4 com-

plementary techniques. Extended data ECC (eDECC) and extended write CRC

(eWCRC) protect memory against address errors by exploiting currently un-

98

used faculties of the data ECC and write CRC. They are able to strongly

protect both the data and address simultaneously with no extra storage and

transfer overheads. An architectural mechanism called the Command State

and Timing Checker (CSTC) uses memory protocol information to detect il-

legal command sequences and protect against errors in the CK, CTRL, and

CMD signals. Finally, extended CA Parity (eCAP) strengthens this command

error protection, filling remaining coverage holes.

5.3.1 Extended Data ECC for Address Protection

Extended data ECC (eDECC) augments SDDC data ECC to protect

address information without extra storage/transfer overheads (Figure 5.6). A

×4 DRAM transfers 32 bits of data per access; eDECC leverages the strength

of SDDC ECC to detect and precisely diagnose up to 32 bits of address infor-

mation. The 32-bit address used by AI-ECC is an MTB address that includes

the rank, bank, row, and (partial) column address for the given 64B block

of physical memory. By using the MTB address, AI-ECC can protect up to

256GB per channel (compared to 4GB if it uses the full byte address); a ca-

pacity of 256GB per channel is larger than any published DRAM standard

and it should be sufficient for even the highest-capacity servers.

Commonly used error coding can protect longer codewords than those

that are called for by conventional memory access granularities (i.e., shortened

codes, Section 2.3). These underlying capabilities are used by eDECC to embed

DRAM address information without additional redundancy, similar to their

99

ECC
DIMM

DataRD addr

...Data
chip0

Data
chip1

Data
chip15

ECC
chip0

ECC
chip1

ECC
Read

Write

Encode

Decode

DataWR addr ECC
MemCon
@Write

MemCon
@Read

Mem

(a) An overview of eDECC. Both the write address and data are ECC protected. On a read,
the check bits verify both the read address and data.

8b symADD300
ADD200
ADD100
ADD000Codeword0

Codeword1
Codeword2
Codeword3

......

......

......

Data
(16-sym)

Redundancy
(2-sym)

Zeros
(236-sym)

Addr
(1-sym)

Memory Transfer Block
(72-bit x 8-beat)

(b) eDECC codeword layout for AMD chipkill.

Addr A Data B ECC B

Decode

Addr B Data B ECC B

(1-sym) (16-sym) (2-sym)

Diagnose

(c) The detection and diagnosis of a read address error using eDECC with AMD chipkill.

8
-b
it
 s
ym

...0 0 0 00 0 0 0 ...

Data
(64-sym)

Redundancy
(8-sym)

Zeros
(179-sym)

Addr
(4-sym)

Codeword0

A
D
D
R
3

A
D
D
R
2

A
D
D
R
1

A
D
D
R
0

Memory Transfer Block
(72-bit x 8-beat)

(d) eDECC codeword layout for Bamboo QPC ECC.

Figure 5.6: A visualization of the extended Data ECC (eDECC) mechanisms.

100

use for embedding other types of metadata [34, 35]. Figure 5.6b shows eDECC

with AMD chipkill [9]. The AMD chipkill data ECC codeword has 16 data

symbols and 2 check symbols, though its 8-bit RS codes could potentially

protect 237 more symbols without either extra redundancy or compromising

correction capability. AI-ECC adds one extra write address symbol to the

eDECC encoding using this auxiliary protection. On a read, the returned data

and redundancy are decoded together with the read address (Figure 5.6a). If a

read address error fetches data and redundancy from a wrong address (address

B instead of address A in Figure 5.6c), the inconsistent tuple ({address A, data

B, redundancy B}) will be detected by eDECC. Further decoding of the word

will reconstruct the address symbol from data and redundancy (address B in

Figure 5.6c), diagnosing the faulty address pins by revealing the erroneous

address that DRAM received. Figure 5.6d shows another example of eDECC

organization using Bamboo QPC ECC. The original Bamboo codeword with

64 data symbols and 8 check symbols is extended to hold 4 extra address

symbols. This eDECC organization is also able to detect and diagnose any

32-bit address error without additional redundancy.

5.3.2 Extended Write CRC for Timely Write Address Protection

Extended write CRC (eWCRC) extends the write CRC of DDR4 to pro-

tect the write address as well as the data, in a similar manner to how eDECC

extends data ECC. To implement eWCRC, the DRAM controller generates

an 8-bit CRC checksum from both the write data and its MTB address as

101

DIMM

chip1chip0

TX addr

Data0 CRC0RX addr0 Data1 CRC1RX addr1

Data0 CRC0 Data1 CRC1

Decode Decode

Write

...

MemCon
@Write

Mem
@Write

Encode Encode

Figure 5.7: An overview of the Extended Write CRC (eWCRC).

DIMM ...

chip0
Bank

CA
MemCon
@CMD

Mem
@CMD

...Command

FSM

Bank

FSM

Bank

FSM...

chip1
Bank

FSM

Bank

FSM

Bank

FSM...

Figure 5.8: An overview of the Command State and Timing Checker.

shown in Figure 5.7. DRAM receives the CRC along with a write command

and validates its data and address prior to changing the contents of memory.

The detection coverage of eWCRC is 100% for any error that affects 8 or fewer

contiguous address or data bits, and 99.6% for more severe errors. eWCRC

detects write address errors prior to memory data corruption, allowing cheap

common-case correction through write retry. In the rare case that an address

error escapes the eWCRC, an MDC occurs; erroneously overwritten data can

be diagnosed by eDECC, but the stale data that is left behind can result in

SDC if read.

5.3.3 State and Timing Checker for Command Protection

The first tier of AI-ECC command protection is to detect illegal com-

mands by tracking DRAM state transitions and command arrival times. AI-ECC

102

adds a Command State and Timing Checker (CSTC) to the DRAM along-

side each bank for this purpose; this CSTC checks the validity of received

commands based on the memory protocol (Figure 5.8). At any given time,

DRAM has a predetermined bank context (e.g., ACT/REF on an idle bank

and RD/WR/PRE on an open bank) and a valid context-breaking command

(e.g., ACT on an open bank) can be easily detected by monitoring bank states.

In the previous example of duplicate activations (Figure 5.3), the second er-

roneous activation on the already open bank will be detected by CSTC before

corrupting stored data. Missing activations are not immediately detected by

the CSTC, but they change the bank state so that the next command to the

bank will trigger a CSTC error and data integrity is not compromised. Addi-

tionally, command arrival times are monitored to detect erroneous commands

that violate the DRAM timing guarantees. Each CSTC is implemented as a

small Finite State Machine (FSM) using DRAM commands from the JEDEC

standard and binned timing parameters that are known by the vendor. Ta-

ble 5.1 shows the bank state and timing constraints for DDR4 DRAM, taken

from the JEDEC specification [60]. Commands for DRAM initialization (mode

register set and ZQ calibration) and for power saving modes (self-refresh and

power down) are excluded for simplicity, but these commands are later in-

cluded in our experimental evaluation.

Command Error Detection by Address Protection: While the CSTC

can detect any state-altering command error (e.g., transition to or from ACT

103

Command Bank state Timing parameters

ACT Idle tRC, tRRD, tFAW, tRP, tRFC
REF Idle tRRD, tFAW, tRP, tRFC
RD Open tRCD, tCCD, tWTR
WR Open tRCD, tCCD
PRE Open tRAS, tRTP, tWR
NOP Any None

Table 5.1: DDR4 DRAM commands with their allowed bank state and timing
constraints.

or PRE) and any timing violation, some errors are not necessarily caught by

the CSTC; most of these errors either will be detected through the address

checking mechanisms or do not compromise the functionality of the system.

Errors that corrupt a command to or from an RD result in an extra

or missing read operation, respectively. An extra or missing read command

corrupts the write pointer in the read data FIFO of the DDR PHY (physical

interface) such that the memory controller receives a wrong entry from the

PHY. This wrong entry is then detected by eDECC as it will not validate the

address of the codeword taken from the read FIFO (this address is produced

and stored within the memory controller itself and is not subject to transmis-

sion errors). An extra write command will attempt to interpret the I/O at

the data pins as a value and will write this value back to the open row. The

data interpreted from the undriven I/O pins can be random (if they are fully

undriven) or all-ones (if they are partially driven by termination resistors); in

either case, the erroneous write will be handled by the eWCRC and eDECC

like any write data error.

104

DIMM ...

chip0

CA CAPWRT

chip1

CA CAPWRT

CA CAPWRT
MemCon
@CMD

Mem
@CMD

...Command

Decode Decode

Encode

Figure 5.9: An overview of the Extended CA Parity (eCAP).

An extra refresh operation with valid timing may not be detected by

the CSTC, but it does not affect correct operation. A missing refresh is not

detected; DRAM has some retention time margins so that a lost refresh oper-

ation does not corrupt data.

5.3.4 Extended CA Parity (eCAP)

The only command error that is not covered by either the CSTC or

the AI-ECC address checking mechanisms is a missing write. In this case,

as DRAM never receives the command, it would not report an error and the

memory controller would assume that an error-free write completes. To detect

this erroneous situation, the CA parity of DDR4 is extended to cover missing

WR commands (Figure 5.9). To enforce extended CA parity (eCAP), the

memory controller and memory maintain synchronized write toggle (WRT)

bits that flip upon sending/receiving a WR command. The CA parity is then

generated across both the 24 CA pin values and the WRT bit. If there is a

missing WR, the WRT values in the memory controller and memory disagree

on the next command and the error is detected.

105

5.3.5 Clock and Control Protection

Errors in the CK and CTRL signals can compromise commands as well.

An additional toggle on CK results in the reception of an erroneous command,

while a missing toggle causes a command to be lost. Errors in CKE (clock

enable) and CS (chip select) can also incur an extra/missing command. These

extra/missing commands are all detected by CSTC, eDECC, eWCRC, and

eCAP as explained above. Errors in ODT (on die termination) degrade the

data signal quality, which can be detected by eWCRC and eDECC.

5.3.6 Precise Diagnosis

eDECC not only detects address errors but can also pin-point faulty

address pin(s) by restoring the original address and comparing it against the

erroneous address. Such knowledge can be valuable to repair techniques, such

as selectively tuning delay and drive parameters of the reported pin. With-

out this knowledge, extensive diagnostic routines are required to identify in-

termittent transmission errors or repeated CCCA errors may impact system

reliability and availability.

5.3.7 Correction Details

AI-ECC correction is more straightforward than data correction via

ECC. Because AI-ECC generally detects CCCA errors early (before possible

data corruption), correction simply entails retrying the faulty command. In

the rare case that AI-ECC detects an error late (after possible data corruption)

106

MemCon DRAM model

SDC
+ MDC

SDC

Command

Data

CCA error injection
(1-/all-pin errors)

Error Injector

Early
detection

Late
detection

Decoder
eCAP

CSTC

eWCRC

eDECC

State

bank

bank

bank

Figure 5.10: The CCCA reliability evaluation environment.

then a DUE must be flagged to higher system levels. This is no difference from

current systems that encounter an uncorrectable error, and the uncorrectable

AI-ECC error rate is shown in Section 5.4 to be low.

5.4 Evaluation

This section measures the reliability and efficiency of AI-ECC and com-

pares them with current practices and state-of-the-art industrial patents. Sec-

tion 5.4.1 analyzes the level of CCCA reliability provided by AI-ECC and

prior protection techniques. Section 5.4.2 investigates the impact of AI-ECC

on the strength of the SDDC data protection, finding it to be negligible. Sec-

tion 5.4.3 estimates the system-level reliability of systems with transmission

errors, showing the impact of AI-ECC to be significant in many scenarios. Fi-

nally, Section 5.4.4 describes the modest design changes (and correspondingly

low overheads) required to extend a DDR4 memory to support AI-ECC.

107

5.4.1 CCCA Reliability

The CCCA error detection coverage is evaluated using Monte-Carlo

error injection simulations, as depicted by Figure 5.10. Transmission errors are

modeled as 1-pin, 2-pin, and all-pin errors; these models represent transmission

noise such as inter-symbol interference, crosstalk with 2 victims, and power

noise, respectively. A CK error is modeled as one source of all-pin errors, rather

than individual 1-pin errors. Errors are injected into the 27 CTRL, CMD, and

ADD signals of the target command. In the no-protection configuration, errors

are not injected on the PAR pin because it is assumed to be non-existent

or disconnected. A multi-pin error has 50% switching probability for each

erroneous pin.

A CCCA error has different consequences with different DRAM com-

mands; 5 dominant command patterns are tested: ACT (followed by WR),

ACT (followed by RD), WR, RD, and PRE. ACT is sub-categorized because

the consequence of an activate error depends on the following command—a

missing ACT followed by a WR results in memory data corruption, while a

missing ACT followed by an RD reads arbitrary data but does not corrupt stor-

age. The impact of other command errors does not vary significantly based

on the following command, and a single test sequence is used for each. A

DRAM model is implemented to track DRAM state, decode erroneous CCCA

signals, and interpret the impact of each error based on the decoded command

and resultant DRAM state. Before each erroneous command, the simulated

DRAM is set to have all banks open (except for erroneous ACTs where the

108

Erroneous Pin DRAM Command in Error

Name ACT WR RD PRE

27 CK Clock error

26,25 CKE, CS ACT− WR− RD− PRE−
24 ODT On-die termination error

23 PAR No error

22 ACT ACT→? ACT+

21 RAS/A16 WR→MRS RD→REF PRE→ZQC

20 CAS/A15 WR→ZQC RD→NOP PRE→MRS

19 WE/A14
ACTrowaddr

WR→RD RD→WR PRE→RFU

18∼15
BG1...0,
BA1...0

ACTbankaddr WRbankaddr RDbankaddr PREbankaddr

14 A12/BC WRburstchop RDburstchop No error

13∼11 A17,13,11 No error

10 A10/AP ACT−
9∼0 A9...0

ACTrowaddr

WRcoladdr RDcoladdr No error

SDC SDC and conditional MDC SDC and MDC

Table 5.2: The impact of 1-pin CCCA errors across pin locations and com-
mands.

target bank is closed).

5.4.1.1 Impact of undetected CCCA errors

Table 5.2 presents results from undetected 1-pin CCCA errors. CMD-

/CMD+/CMDA→CMDB indicate missing, extra, and altered commands (changed

from CMDA to CMDB), respectively. A transition to MRS, ZQC, and RFU

indicate that the DRAM was erroneously given a mode register set command,

ZQ calibration command, or a reserved-for-future-use command, respectively.

The key findings are summarized below (results of 2-pin and all-pin errors

109

appear in later experiments, but they are not included in this analysis for sim-

plicity). ACT: Any undetected error during an ACT causes a failure. Errors

in the row address select an incorrect row, resulting in SDC+MDC (if fol-

lowed by WR) or SDC (if followed by RD). WR: Three pins (A11, A13, and

A17) do not participate in the WR operation and manifest no error. Errors

on CKE, CS, ODT, ACT, RAS, CAS, WE, BC, AP, bank address, and col-

umn address manifest as SDC+MDC. RD: Three pins (A11, A13, and A17)

manifest no error. Errors on CKE, CS, CAS, BC, bank address, and column

address manifest as SDC in the read data, while errors on other signals gener-

ate SDC+MDC. PRE: Fourteen pins (A17, A13∼A11, A9∼A0) manifest no

error, while errors on CKE, CS, ACT, RAS, CAS, WE, A10 and bank address

manifest SDC+MDC.

5.4.1.2 Detection Coverage

The generated CCCA errors are checked against four increasing lev-

els of protection: no protection, DDR4 + data ECC, DDR4 + eDECC, and

DDR4 + AI-ECC. DDR4 + eDECC is used to represent the strongest address

protection available through some patents [104, 102].

Figure 5.11 shows the fraction of 1-/2-/all-pin CCCA errors that DECC,

eDECC, and AI-ECC can detect. Some MDCs can be detected prior to data

corruption (i.e., early detection), while others are detected after the corrup-

tion (i.e., late detection). 1-pin errors: CA parity detects 1-pin errors on the

24 CA signals but not on the 3 CTRL signals, two of which are problematic

110

No Error (e)CAP CSTC (e)WCRC (e)DECC­E (e)DECC­L SDC SDC and MDC

0 0.5 1

None
DECC
eDECC
AIECC

None
DECC
eDECC
AIECC

None
DECC
eDECC
AIECC

None
DECC
eDECC
AIECC

None
DECC
eDECC
AIECC

A
C
T
(+
W
R
)

A
C
T
(+
R
D
)

W
R

R
D

P
R
E

1-pin Error

0 0.5 1

2-pin Error

0 0.5 1

All-pin Error

Figure 5.11: The CCCA error detection coverage of an unprotected DDR4
DIMM (None), DDR4+DECC (DECC), DDR4+eDECC (eDECC), and
DDR4+AIECC (AIECC).

(CKE and CS). A missing RD command manifests as SDC with data-only

DECC, yet it can be detected by eDECC. AI-ECC can detect all 1-pin errors.

2-pin errors: The detection strength of CA parity is limited for 2-pin errors, re-

sulting in large coverage holes in DDR4+DECC and DDR4+eDECC. AI-ECC

fills the holes in CAP, avoiding nearly all SDC and MDC; only those errors that

escape eWCRC (0.4% of such errors) cause an SDC when the target location

that has stale data is read and cause an MDC at the erroneous location, which

can then be detected by eDECC. All-pin errors: CA parity actually performs

better in an all-pin scenario than with 2 erroneous pins, as it has a 50% chance

111

0
0.2
0.4
0.6
0.8
1

ACT
(+WR)

ACT
(+RD)

WR RD PRE ACT
(+WR)

ACT
(+RD)

WR RD PRE ACT
(+WR)

ACT
(+RD)

WR RD PRE

1­pin 2­pin All­pin

C
o
ve
ra
ge

eCAP only eWCRC only eDECC only CSTC only

Address Protection Command Protection eCAP + eWCRC + eDECC AIECC

Figure 5.12: A quantitative evaluation of the different AI-ECC components:
eDECC, eWCRC, address protection (eDECC+eWCRC), CSTC, eCAP, com-
mand protection (CSTC+eCAP), eDECC+eWCRC +eCAP (for complete-
ness), and AI-ECC.

of detecting the error. However, as undetected command and control errors

are likely to severely corrupt data, extra coverage is still needed. AI-ECC

provides thorough command and control protection using CSTC and eCAP,

and only errors that escape eWCRC may cause SDC+MDC.

Figure 5.12 shows which AI-ECC components detect different CCCA

errors. It is apparent that the most effective CCCA protection mechanism

heavily depends on the specific error scenario, such that all four AI-ECC

mechanisms are required for robust CCCA error coverage. Address protec-

tion (eWCRC and eDECC) is crucial for protecting write and read commands.

All-pin errors during activation are best detected by CSTC, as the errors fre-

quently change the command into another (invalid) command. However, eCAP

is the most effective mechanism for 1-pin activation errors, and 2-pin errors

are protected by either address protection or CSTC, depending on whether

the address or command is affected. Only through a combination of eDECC,

112

Address
Error

Data
Error

Protection

Data-only QPC QPC+eDECC

None
1-bit 100% DCE 100% DCE
1-chip 100% DCE 100% DCE
rank 6× 10-7% SDC 6× 10-7% SDC

1-bit

None 100% SDC 100% DCE
1-bit 100% SDC 100% DCE
1-chip 100% SDC 4× 10-7% SDC
rank 100% SDC 6× 10-7% SDC

32-bit

None 100% SDC 100% DCE
1-bit 100% SDC 4× 10-7% SDC
1-chip 100% SDC 6× 10-7% SDC
rank 100% SDC 6× 10-7% SDC

Table 5.3: A comparison of the data and address protection coverage of Bam-
boo QPC with and without address protection.

eWCRC, CSTC, and eCAP is AI-ECC able to provide complete coverage.

5.4.2 Data Reliability

Despite its strong level of CCCA protection, AI-ECC has a negligible

impact on the levels of existing data protection. To evaluate potential ECC

coverage loss from protecting both data and address, Bamboo QPC is evalu-

ated with and without eDECC against data and address errors using random

error injection simulations (Section 3.4.1). Table 5.3 compares the level of

data and address protection. With no address error, eDECC does not change

the correction capability and does not show observable differences in the very

strong detection capability against data errors. With concurrent address and

data errors, eDECC can correct most of them with decoding (if the number

113

of erroneous symbols is no greater than 4) or with a retry (otherwise) while

data-only protection results in SDCs.

5.4.3 System Reliability

Section 5.4.1 shows that AI-ECC provides thorough and strong protec-

tion against CCCA errors on any and all pins. Its implication on system-level

reliability, however, depends on the underlying CCCA error rate. Due to a

lack of publicly available DDR4 CCCA error rates, a sensitivity sweep on

the BER is performed and multiplied with command bandwidths and signal

counts to estimate CCCA error rates. Other approaches for CCCA errors,

such as simulation-based modeling and lab measurements, are excluded due

to factors like confidential process and layout information and low confidence

from limited samples.

Due to the dependence of CCCA error manifestation on the DRAM

command stream, the DRAM behavior of 56 benchmarks from the NPB, SPEC

CPU 2006, PARSEC, and SPLASH2X benchmark suites1 [2, 130, 17, 147] is

characterized using the Xeon E5 and E7 v3 memory controller performance

counters [5]. Four representative clusters are identified by hierarchically clus-

tering across the memory bandwidth utilization, read to write ratio, CAS to

ACT ratio, and ACT→RD to ACT→WR ratio of each program. Three of

the clusters differ mainly in their data bandwidth utilization, and the other

1The C, ref, and native input sets are used for these suites, with one thread per core.
SPEC CPU 2006 is run with 10 replicated processes in order to fit in a 16GB memory
footprint.

114

Apps Major Feature Data BW
Command BW (×106 cmds/sec)

ACT (+WR) ACT (+RD) WR RD PRE

33 Low Data BW 0.50% 0.64 0.39 0.69 2.22 1.03
10 Med. Data BW 7.90% 9.18 16.7 8.57 33.3 25.9
11 High Data BW 22.0% 39.4 76.2 29.2 90.1 116

wat-ns High RD/WR 4.31% 0.15 6.13 0.17 23.6 6.28

Table 5.4: Representative benchmark clusters and their bandwidths.

(SPLASH2X’s wat-ns) is an outlier with an extreme read-to-write ratio.2 Ta-

ble 5.4 gives the data and command bandwidth for the median centroids of

these clusters.

For a given BER, the CCCA FIT rate of each representative centroid is

estimated using Equation 5.1. This equation accumulates the FIT contribution

from each CCCA-sensitive command—ACT (+WR), ACT (+RD), WR, RD,

and PRE—over all 1-pin errors. Apart from a CK error, which affects all

pins, no multi-pin errors are modeled due to a lack of data on their rates and

distributions. 3.6×1012 is multiplied to convert per-second bandwidth to FIT.

FITCCCA = BER×
�

i∈CMD

�

j∈ERR

{{Command Bandwidth}i

× {Signal Count}j

× {Undetected Probability}i,j

× 3.6× 1012} (5.1)

2NPB’s cg is also an outlier with a high but less-extreme read-to-write ratio.

115

1E-8

1E-6

1E-4

1E-2

1E+0

N
o
n
e

D
EC

C

eD
EC

C

A
IE
C
C

N
o
n
e

D
EC

C

eD
EC

C

A
IE
C
C

N
o
n
e

D
EC

C

eD
EC

C

A
IE
C
C

N
o
n
e

D
EC

C

eD
EC

C

A
IE
C
C

Low BW Medium BW High BW High R/W

FI
T C

C
C
A
w
it
h
 1
0
-2
2
B
ER

SDC SDC and MDC SDC or MDC

Figure 5.13: An estimation on ×4 DRAM CCCA FIT rates after protection
with 10-22 BER.

CMD = {ACT(+WR), ACT(+RD), WR, RD, PRE}

ERR = {1-pin error, all-pin error}

The evaluation sweeps from 10-16 BER, which is the minimum design

specification for data in the JEDEC DDR4 standard [60], up to 10-22. The

minimum JEDEC BER of 10-16 is very weak and corresponds to 2.8×106 un-

protected FITCCCA per device with the high-bandwidth centroid. This BER

is likely to be higher than that in a real system—the FIT of a DDR2/DDR3

x4 DRAM device (including both storage and transmission errors) is around

25–66 [128, 129, 127]. The stronger BER of 10-22 corresponds to 2.8 FITCCCA,

3.4× 106 system-FIT and a 12-day MTTF on a system with 1.2M DRAM de-

vices. This number could be within an order of magnitude of the CCCA error

rate exhibited by the Cielo system [127], which has a similar number of DDR3

chips as the modeled system; however, the actual measurements on Cielo are

not public at the time of writing this dissertation.

Figure 5.13 shows FITCCCA from 10-22 BER with and without protec-

116

System BER
Protection

None DECC eDECC AI-ECC

1.2M DRAM
devices

10-22 12 days 4 months 5 months 768 years
10-21 1 day 13 days 15 days 77 years
10-20 3 hours 32 hours 35 hours 8 years

36M DRAM
devices

10-22 10 hours 4 days 5 days 26 years
10-21 1 hour 10 hours 12 hours 3 years
10-20 6 minutes 1 hour 1 hour 3 months

Table 5.5: An evaluation of mean time to CCCA SDC failure on systems with
1.2M and 36M DRAM devices and high bandwidth utilization.

tion. Applications with more data bandwidth have a higher FITCCCA because

they issue more commands. DDR4+DECC reduces the CCCA SDC and MDC

rates by an order of magnitude using the DDR4 reliability mechanisms (e.g.,

CAP). eDECC reduces the SDC rate further by detecting read address errors.

AI-ECC improves the unprotected CCCA failure rate by four orders of mag-

nitude because it detects all read errors and nearly all write errors (as was

shown in Section 5.4.1.2). Large-scale systems utilizing DDR4 can suffer from

increased CCCA error rates due to its doubled transfer rate, and higher BER

values of 10-21 and 10-20 are tested as well. These BERs change the Y-axis

scale of Figure 5.13 yet the shape remains the same.

Table 5.5 shows the estimated CCCA mean-time-to-failure (MTTF)

of a current-scale large system (1.2M DRAM chips in the Cielo supercom-

puter [127]) and a future-scale large system (36M DRAM chips or 1M 2-rank

DRAM channels for the Exascale computing) with high bandwidth utilization.

In the current-scale system, AI-ECC provides an MTTF of 8 years, even with

117

the more severe BER. In contrast, other schemes have orders of magnitude

worse reliability with an MTTF of just 1 or 2 days. Even in the future-scale

system, AI-ECC can still provide high reliability against CCCA errors.

5.4.4 Hardware Overheads

AI-ECC has negligible hardware overhead and it represents a straight-

forward upgrade to existing DDR4 features and SDDC data ECC. It requires

no additional pins or bandwidth to and from memory as it reuses the existing

WCRC and CAP mechanisms and it does not require any additional ECC

storage. A Verilog model of AI-ECC is implemented and synthesized with the

Synopsys toolchain and the TSMC 40nm LP standard cell library [135, 136] to

estimate its logic overheads. eCAP/eWCRC/eDECC+AMD/eDECC+QPC

have area overheads equivalent to 30/180/140/2200 NAND2 gates and dy-

namic+static power increases of 0.01/0.1/0.05/0.8mW, respectively. The logic

depth of the DECC decoder increases by 1 XOR gate and cycle latency is not

impacted. On the DRAM side, eCAP/eWCRC/CSTC require the area equiv-

alent of 30/180/9000 NAND2 gates per chip and consume 0.01/0.1/0.8mW,

respectively. CSTC is off the critical path and it does not affect memory

latency. The AI-ECC correction procedure requires support in the memory

controller for command replay. Most systems, however, already support on-

demand scrubbing3 [9, 30] (writing back corrected data to DRAM to eliminate

transient bit-flips), and the further additions for AI-ECC correction are ex-

3On-demand scrubbing is also called redirect scrubbing by AMD

118

pected to be modest.

While eDECC does not impact performance with QPC ECC, it could

potentially increase read latency if AMD chipkill or other SDDC schemes are

used. These schemes can detect data errors before a read transfer is complete,

but would have to wait until the end of a block transfer for precise eDECC

address error diagnosis. Prior simulation results of Bamboo ECC show this

performance overhead to be modest (an average of 0.7% on a 64-bit DDR4-2400

data channel (Section 3.4.3)). Alternatively, a different eDECC organization

could sacrifice precise diagnosis to enable early data error detection, or asyn-

chronous ECC checking [103] could avoid this penalty in the common case; a

detailed exploration of AI-ECC performance with alternative ECC schemes is

left for future work.

5.5 Related Work

The topic of the end-to-end memory protection is of great importance

to the server industry, and some form of CCCA protection has been the topic

of patents from Freescale [98], Fujitsu [84], IBM [22, 23, 102], Intel [143], Mi-

cron [110, 140], Sun (now Oracle) [114, 146], Azul Systems [104, 105], and oth-

ers [31, 144]. The different approaches taken by these protection mechanisms

(as well as a single chain of academic literature [34, 35, 121]) are described

below.

119

Separate Address Protection: Various authors describe techniques to

protect the address signal using separate check bits [110, 140, 114]. While these

approaches are straightforward, they are inefficient as they sacrifice transmis-

sion bandwidth and require additional signals to and from memory.

Combined Address and Data Protection: Address protection can be

combined with data protection while sharing check bits. It appears that two

prevailing techniques exist for such protection: codeword transformation and

combined ECC.

Codeword transformation uses the address information to transform

the data or check bits upon a write, reversing this transformation before ECC

decoding. In the case of an address transmission error, this reverse transfor-

mation will corrupt the codeword; this corruption may be detected via data

ECC. Nicholas [102] partitions a write data block into 32 sub-blocks and

XORs each sub-block with a corresponding address bit. Sub-blocks should be

organized to report address errors as detectable-yet-uncorrectable; no specific

ECC or details are mentioned, however. Normoyle [104] and Wong et al. [146]

generate checksums over the address and later XOR this information in with

the DECC check bits. Normoyle generates a 4-bit CRC checksum from the

address and merges it with 2 DECC nibbles, which results in a detectable-

but-uncorrectable error in 4-bit symbol SSC-DSD codes. Wong merges a 1-bit

address parity into at least two check bits for similar capabilities in SEC-DED

codes.

120

An alternative mechanism, combined ECC, combines the address with

the data prior to ECC encoding. Chen et al. [22, 23] describe a linear code that

accepts the address along with the data and encodes them together for either a

140 or 146-bit channel, providing relatively weak address protection but taking

special care to correctly diagnose address errors in most cases. Vogt [143]

appends the address to the data before encoding, with no consideration of ECC

specifics or correct address error diagnosis. The same approach was studied by

Gumpertz for checking a variety of metadata, including the storage address [34]

(also mentioned in [35]). The concept is described with respect to SEC-DED

ECC and is not evaluated in the context of off-chip memory. Sazeides et

al. [121] describe a scheme to combine metadata with ECC, but they do not

consider address errors or off-chip memory. Normoyle and Hathaway [105] first

take a CRC of the address and then append it and other metadata to the data

before encoding.

Protection of Control Signals: The protection of control signals through

separate ECC has been proposed, trading transmission bandwidth for reliabil-

ity [110, 114]. Partial protection of the DRAM command stream through his-

tory tracking is proposed by Wang [144] and an abandoned patent application

by Romdhane [31]. These approaches check for illegal command sequences or

timing violations without requiring any additional signals to or from memory,

but they cannot provide complete protection against command and control

errors.

121

Relationship of Prior Work with AI-ECC: AI-ECC is designed to put

the CCCA reliability mechanisms present in DDR4 [60] to good use in a co-

hesive and comprehensive protection scheme; its relationship with this work

is clear and intentional. AI-ECC further protects the ADD signal by concate-

nating it with the data before encoding, similar to [143, 34]. AI-ECC is the

first approach that considers strong levels of protection (100% address error

detection with detailed error diagnosis for address transmission errors) and

represents the first realistic evaluation of a combined ECC protection scheme

for off-chip memory.

The CSTC proposed for AI-ECC is similar in principle to the mech-

anisms described by [31, 144], yet is more complete. AI-ECC is the first to

evaluate the coverage of protocol tracking, and it augments the approach to

provide the complete coverage of command errors by extending the DDR4 CA

parity signal to fill gaps (such as a missing WR command).

When taken as a whole, AI-ECC both combines and extends the best

aspects of prior CCCA protection efforts. No other approach simultaneously

protects against data, address, clock, and command errors with error coverage

as high as AI-ECC. AI-ECC also performs early write error detection, is

able to correctly diagnose address errors, and it does not require additional

redundancy or new signals to and from DRAM.

122

5.6 Summary

All-inclusive ECC is a readily-implementable suite of complementary

error protection mechanisms for DRAM data and CCCA signals. Evaluation

results demonstrate that data ECC, the DDR4 reliability mechanisms, and ad-

dress protection similar to that which may be used by industry are insufficient

for the complete end-to-end protection of DRAM; AI-ECC supplements these

current practices to provide strong holistic protection and enables more ag-

gressive growth in transfer rates. Despite its advantages, AI-ECC has minimal

associated costs and requires no new signals to or from memory, no additional

storage, negligible hardware real-estate, and it negligibly affects the level of

data protection.

123

Chapter 6

Efficient Protection using Compression

Memory protection trades off redundant storage, bandwidth, and en-

ergy for increased reliability. DRAM ECC typically employs ECC DIMMs

that have 12.5% more chips than non-ECC DIMMs; hence ECC typically adds

12.5% capacity, bandwidth, and energy overheads. Strong SDDC protection

increases the energy consumption even further by necessitating compromises in

memory system design; such as using narrow ×4 devices or using wide 128-bit

channels.

This chapter presents a versatile and efficient ECC solution, called

Frugal ECC (FECC) that offsets the ECC overheads through fine-grained

compression. In conventional single-tiered ECC organizations, redundant in-

formation is stored in dedicated memory devices that are accessed together

with the devices that store data (Figure 6.1a). In this way, ECC does not

impact performance when compared to unprotected memory. FECC com-

presses main memory at cache-block granularity, using any leftover space to

Parts of this chapter appear in [78]. The author is the main contributor of the idea,
implementation, and evaluation.

124

Last level cache

Cache line (64B)

DRAM (x72 ECC DIMM)

Cache line (64B) ECC
ECC encode

(a) An overview of existing ECC.

Last level cache

Cache line (64B)

DRAM (x64 non-ECC DIMM)

Compressed data ECC

Compress

Uncompressed data ECC

Overflow
data

ECC
encode

Enough
space?

Yes

No

ECC flag

(b) An overview of Frugal ECC.

Figure 6.1: A comparison between Frugal ECC and existing ECC.

store ECC information. Compressed data and its ECC information are then

frequently read with a single access even without redundant memory chips;

insufficiently compressed blocks require additional storage and accesses (Fig-

ure 6.1b). FECC attempts to approach the performance and reliability of the

conventional single-tiered organizations while at the same time reduce ECC

overheads and enable more code design flexibility. As examples, this chapter

presents SDDC ECCs on a non-ECC DIMM with ×4 chips and the first true

SDDC ECC for ×8 devices using an ECC DIMM.

6.1 Frugal ECC

Figure 6.2 provides an overview of how FECC works. On a memory

write, FECC losslessly compresses a data block to remove data-inherent re-

dundancy and free up space. If FECC successfully creates enough space for

the redundant ECC information, the compressed data and ECC check bits

125

Non-ECC DIMM (64b)

Last level cache

Cache line (64B)

Compress

Compressed data

Uncompressed data ECC
Overflow
data

 ECC encode

Compressed data ECC

ECC encode

Uncompressed data (64B)

 ECC decodeDecompress

Cache line (64B)

64B

Cache line (64B)

 ECC decode

64B

Success Fail
W
ri
te

R
ea
d

ECC flag

Figure 6.2: Memory reads and writes with Frugal ECC using a 64-bit non-ECC
DIMM.

are stored in the memory footprint of the uncompressed data. As its starting

address does not change, a compressible memory block can still be randomly

accessed and no additional address translation procedure or level of indirec-

tion is needed. Furthermore, as with a conventional ECC, both data and

redundant ECC information are accessed in unison. On a memory read, ECC

checking and decompression occur in parallel as ECC is computed on the com-

pressed data. If no errors are detected, the decompressed data is forwarded to

the last-level cache. Otherwise, ECC attempts to recover any lost data and

decompression repeats using the corrected data.

Not all blocks can be compressed to the reduced footprint needed for

ECC. Memory blocks that fail to meet the compression threshold for a given

ECC scheme result in a compression exception. Upon a compression exception,

FECC uses one full block and one partial block to store the uncompressed

126

data and ECC check bits. Each compression exception degrades performance,

because both the write and any future read require two (potentially cached)

accesses to memory instead of the single access used in a conventional ECC

design.

As the ECC layouts for compressed and exception data differ, some

ECC meta-data is used to identify whether compression was successful and to

determine the resulting ECC layout. FECC stores the ECC flag that indicates

which layout is used along with the compressed data and applies an additional

level of error protection to the flag—this higher level of protection is necessary

because a compromised ECC flag indicates that a wrong set of bits should be

treated as ECC information; using incorrect bits for ECC decoding degrades

the protection level. FECC therefore uses a 3 to 5-bit ECC flag, as described

further in Section 6.3.

FECC statically reserves enough storage for its overflow data and ac-

cesses this overflow storage as-needed using a deterministic addressing scheme.

After a read, if the ECC flag identifies an exception, FECC deterministically

generates the address of its overflow data and checks the Last Level Cache

(LLC). Upon a miss, FECC fetches the overflow data from DRAM (similar

to VECC [151]). The resulting worst-case latency is the LLC miss penalty

plus the round-trip delay between the memory controller and LLC, but LLC

caching reduces the latency in the common case.

The key to the success of FECC is a design that minimizes excep-

tions while maintaining enough redundancy to meet reliability goals. As such,

127

FECC requires both state-of-the-art compression and ECC schemes. The fol-

lowing sections present a novel compression scheme, Coverage-oriented Com-

pression, to increase compression coverage far beyond what is possible with

prior compression techniques and also describe how FECC can utilize the most

aggressive available ECC schemes.

6.2 Coverage-oriented Compression

While most existing compression schemes focus on improving the com-

pression ratio, compressing data to a size as small as possible, left-over space

from an over-compression is left unused in FECC. In the meantime, com-

pression exceptions due to under-compression cost FECC additional mem-

ory accesses for overflow data, consuming additional latency, bandwidth, and

energy. Therefore, FECC relies on a novel compression scheme, Coverage-

oriented Compression (CoC), which focuses on maximizing coverage for the

modest compression ratio goals needed for ECC.

The fundamental observation behind CoC is that there are tradeoffs be-

tween compression ratio and compression coverage. A conventional compression-

ratio-oriented compression assigns short codes to the most frequent values to

reduce the average number of bits needed to store a value. A key drawback of

this assignment is that the number of available “good” codes runs out quickly.

Coverage-oriented compression, on the other hand, tries to cover as many val-

ues as possible with “acceptable” codes to maximize coverage. For example,

an ideal coverage-oriented compression would assign m-bit codes to the most

128

0 64b base (double) {54b delta} x 7

(443=512­64­5)­bit compressed data

100

101 32b base (flt) {28b delta} x 3 + {27b delta} x 12

1100 64b base (quadword) {54b delta} x 4 + {53b delta} x 3

1101 32b base {28b delta} x 2 + {27b delta} x 13

111016b B {14b delta} x 20 + {13b delta} x 11

11118b B {7b delta} x 53 + {6b delta} x 10 ...

Compression
flag
(1 to 4­bit)

ID Comp.data ID Comp.data ID Comp.data
Compressed words (up to 440b)

Figure 6.3: The compressed data layout for the 448-bit target (64-bit redun-
dancy).

0

64b base (double) {59b delta} x 2 + {58b delta} x 5

(475=512­32­5)­bit compressed data

100

101 32b base (flt) {30b delta} x 5 + {29b delta} x 10

1100 64b base (quadword) {59b delta} x 1 + {58b delta} x 6

1101 32b base {30b delta} x 4 + {29b delta} x 11

111016b B {15b delta} x 21 + {14b delta} x 10

11118b B {8b delta} x 22 + {7b delta} x 41

Compression
flag
(1 to 4­bit)

ID Comp.data ID Comp.data ID Comp.data
Compressed words (up to 474b)

Figure 6.4: The compressed data layout for the 480-bit target (32-bit redun-
dancy).

frequent 2m values, so that all of these values can be compressed into an m-bit

footprint.

CoC has three main components that together maximize coverage with

acceptable implementation overheads: 1) fitting base + delta compression for

homogeneously-typed data, 2) exponent compression for floating-point data,

and 3) frequent word pattern compression for heterogeneously-typed data.

These three components are described in detail below.

6.2.1 Fitting Base + Delta Compression

If a data block has homogeneously-typed data, values within the block

are likely to have similar values. Base-Delta-Immediate (BDI) compression

129

exploits this small dynamic range of integer and pointer types by storing the

first value as a base and compressing all the other values as small differences

from this base [113]. For blocks with mixed integer and pointer types, BDI

adds another base value (implicitly assumed to be 0) that is used for integers

while the original base is employed for pointers.

CoC extends the Base-Delta compression of BDI and increases delta

sizes so that the overall compressed size fits within the modest thresholds

needed for FECC. The top 4 organizations in Figure 6.3 and Figure 6.4 show

the layouts used to represent integer data when targeting 448-bit and 480-bit

layouts, respectively. The 448-bit and 480-bit compressed sizes yield room for

64-bit and 32-bit redundancy, respectively and reserve 5-bit for ECC layout

information (Section 6.3).

Each organization includes the compression flag to indicate the type

of compression used, a base value, and a set of deltas. The 448-bit footprint

is used to hold a compression flag (up to 4-bit) and a 64-bit base value. The

remaining 375 bits are used to store deltas for the other 7 64-bit values in

the block, which allows 54-bit deltas for 4 of the 7 64-bit values and 53-bit

deltas for 3 of the 7 64-bit values. By fully utilizing every bit of the available

footprint, Fitting Base+Delta (FBD) supports large delta sizes and compresses

more cache lines without exceptions. For 64-bit data, the delta sizes are large

enough to compress a mixture of 64-bit integers and 64-bit pointers without

the need for a separate base for pointers. FBD follows similar reasoning for

maximizing delta sizes to fit within the compression footprint for 32-bit, 16-bit,

130

and 8-bit integers, as shown in Figures 6.3 and 6.4.

6.2.2 Floating-point Compression

Low-latency floating-point (FP) compression is difficult, as the nor-

malized floating-point significand can cause small value changes to manifest

as a very different binary representation. As the target compression ratio in

FECC is low (8:7 compression for 12.5% redundancy), FP compression in CoC

only targets the exponent and sign of floating-point data. These fields often

have higher value locality and comprise a larger number of bits than FECC

compression goals (18.8% and 28.1% of double and single-precision numbers,

respectively [52]). Similar to the use of delta coding for integer values, CoC can

compress the sign and exponent with simple subtraction assuming that their

values exhibit locality. The bottom organizations in Figure 6.3 and Figure 6.4

show how CoC compress homogeneously-typed floating-point data using FBD

compression.

The 448-bit footprint is used to hold a 1-bit compression flag and a

64-bit base value with the remaining 378 bits evenly split to represent the

7 remaining FP values. Each 54-bit value represents the 1-bit original sign,

52-bit original mantissa, and a 1-bit exponent delta from the exponent of the

base. While a 1-bit delta can cover only +0 and -1 changes in the exponent,

Section 6.5.2 demonstrates good coverage with this scheme across a range

of applications. For single-precision floating-point numbers, the delta size is

increased to 3 or 4 bits, because our experiments show a need for a larger range

131

of exponent differences. For the 480b compression target (32-bit redundancy

for ECC), the compressed size for double-precision FP increases to 58 or 59

bits and CoC uses the additional bits to represent 6 or 7-bit exponent deltas.

6.2.3 Frequent Word Compression

While FBD provides high compression coverage for homogeneously-

type data, it suffers from suboptimal coverage with heterogeneously-typed data

(e.g., structs and classes). In particular, FBD works poorly with heterogeneously-

typed data with mixed fixed and floating-point numbers, as no single base is

appropriate.

To augment this weakness, CoC employs a secondary compression scheme,

called Frequent Word Compression (FWC), that compresses at the 64-bit gran-

ularity. Each 64-bit data is compressed as either a frequent pattern [12] or as a

difference from a previous 64-bit data within its block. The per-word compres-

sor suite in FWC is selected from a large pool of compressors with different

bases, bit positions, and delta sizes. As per-word compression is designed to

complement FBD, SPEC CPU 2006 benchmark suite (using “test” inputs)

is run to collect the blocks that are incompressible with FBD for the 448-

bit target. Then, the top 16 compressors based on their estimated coverage

are selected with IDs based on Huffman coding [46] to reduce the necessary

amount of meta-data. Section 6.5.2 shows that this choice of compressors and

encoding is robust across other benchmark suites and inputs. Table 6.1 shows

the complete list of the selected compressors.

132

Description Size (bits) ID

All zero 64-bit 0 001
Same as left 64-bit 0 1000

Same as left-left 64-bit 0 111110
Same as left-left-left-left 64-bit 0 11110

32-bit data, 32-bit zero 32 11010
2 x {16-bit sign-extension to 32-bit} 32 11011

32-bit sign-extension 32 1010
48-bit sign-extension 48 11100

44-bit delta from left 64-bit 44 11101
52-bit delta from left 64-bit 52 1001

12-bit delta from left-left 64-bit 12 1011
sign, exponent([63:52]) as 4-bit delta from bias (1023) 56 010
sign, exponent([63:52]) as 8-bit delta from bias (1023) 60 011
sign, exponent([63:52]) as 4-bit delta from left 64-bit 56 1100

Exponent([62:52]) as 3-bit delta from bias (1023) 56 111111
Incompressible 64-bit 64 000

Table 6.1: The frequent word compression mappings (per 64-bit data).

6.3 ECC Flag Protection

The ECC flag in FECC identifies which of several possible ECC layouts

is used for a particular block; the specific layout depends on the code design

and the level of compression achieved for a given block. In current designs,

FECC aims to free up either 64 bits or 32 bits of data for ECC; the terms

full and half-compression are used to denote whether the full 64 bits needed

for some ECCs are freed or whether only half that amount are reclaimed,

respectively. An error in the ECC flag can lead to undetected errors because

data will be interpreted as ECC information or vice versa.

Different FECC schemes require a different number of possible layouts.

133

If there are only two layouts (uncompressed / compressed), triple-modular-

redundancy can be used to encode the 1-bit ECC flag; the flag is replicated

twice and a majority vote between the 3 copies determines its value (Fig-

ure 6.6). If there are three layouts (uncompressed / half-compressed / fully-

compressed), three different ECC flags are needed. To guarantee correction

from a single bit error on the flag, the 3 codewords are different in at least 3

bits (with a Hamming distance of 3) and codewords of 4 or 5 bits are used

(Figure 6.5). In all cases, the bits used to store the ECC flag are distributed

over different chips so that a chip error corrupts only a single bit of the en-

coded flag, and is therefore correctable. If two chip errors compromise a flag,

a wrong data layout may be selected for decoding. However, even in this case,

the codes used by FECC have very high detection coverage so that decoding

with incorrect layout is very likely to result in a detected error.

6.4 Frugal ECC Organizations

FECC can flexibly trade off performance for error protection using dif-

ferent ECC schemes and by changing its target compression threshold. Several

compelling configurations are presented in following subsections.

6.4.1 Frugal ECC for x4 SDDC

FECC can employ ×4 SDDC ECCs to provide the same level of protec-

tion and a similar level of performance without the use of redundant memory

devices. Table 6.2 shows some of the efficient ×4 SDDC and SDDC-level pro-

134

ECC flag
(4 or 5-bit) Overflow data

 68-bit0
Uncompressed data

444-bit
ECC
64-bit000

0
Full-compressed data

443-bit
ECC
64-bit

111 0

1
Half-compressed data

475-bit
ECC
32-bit110 1

ECC
32-bit

512-bit (64B)

encode

encode

Figure 6.5: The Frugal ECC layout for AMD chipkill and QPC Bamboo ECC
(64-bit redundancy).

ECC flag
(3-bit) Overflow

 35-bit
Uncompressed data

477-bit
ECC
32-bit

000

Compressed data
477-bit

ECC
32-bit111

encode

encode

512-bit (64B)

Figure 6.6: The Frugal ECC layout for ×4 Multi-ECC (32-bit redundancy).

ECC Channel
width

Protection
Overheads

Chip Storage Access

AMD chipkill 72-bit 1 chip correct 12.50% 12.50% None
Bamboo QPC 72-bit 1 chip correct 12.50% 12.50% None
FECC+Multi 64-bit Almost 1 chip correct 0.00% 7.25% R/W (exception)
FECC+QPC 64-bit 1 chip correct 0.00% 13.50% R/W (exception)

Table 6.2: A comparison of different SDDC and SDDC-level ECCs for ×4
devices over a 64-bit data channel.

135

tection mechanisms with and without FECC. AMD chipkill [9] and Bamboo

QPC (Section 3.3) are used as examples of ×4 SDDC. Both schemes require

12.5% redundancy (8 bits on a 64-bit channel) and FECC can provide this

space by compressing a 512-bit block into 443 bits of data and 5 bits for the

ECC flag. This 448b compression target determines the rate of compression ex-

ceptions, and thus the impact on performance. Therefore, to minimize perfor-

mance degradation even further, the ECC schemes are treated as a two-tiered

ECC [151] with a 6.25%-redundancy first-tier error code (T1EC) that can de-

tect any single-chip error and a second-tier 6.25%-redundancy code (T2EC)

that can correct any such error.1

If a block compresses to the 448-bit threshold, the T1EC and T2EC

check bits are stored along with compressed data in the original uncompressed

data footprint. If a block is half-compressed to a size in between 448 and 480

bits (including the 5b ECC flag), the T1EC is stored along with compressed

data but the T2EC is stored in a separate block. If a block fails to compress

to even a 480-bit footprint, part of the uncompressed data is stored along with

the T1EC and T2EC in a separate memory block. These organizations are

depicted in Figure 6.5. Note that the ECC flag is protected using a 4 or 5-bit

encoding to ensure true SDDC reliability—even if a chip with ECC flag has

errors, the ECC flag will be correctly decoded.

Multi-ECC [55] was published as SDDC-level protection for ×8 DRAM

1The T2EC code must be combined with the T1EC to correct a single-chip error. It is
not independently capable of this level of correction.

136

ECC Channel
width

Protection
Overheads

Chip Storage Access

OPC 144-bit 1 chip correct 12.50% 12.50% None
VECC 144-bit 1 chip correct - 2 chip detect 12.50% 18.75% W
VECC 128-bit 1 chip correct - 2 chip detect 0.00% 18.75% R/W

LOT-ECC 72-bit Most 1 chip correct 12.50% 26.50% None
Multi-ECC 72-bit Almost 1 chip correct 12.50% 12.90% W
FECC+OPC 72-bit 1 chip correct 12.50% 26.00% R/W (exception)
FECC+Multi 64-bit Almost 1 chip correct 0% 13.50% R/W (exception)

Table 6.3: A comparison of different SDDC and SDDC-level ECCs for ×8
devices.

devices through erasure coding. It uses one redundant symbol to detect any

single ×8 chip error and employs a separate checksum (which is shared among

multiple lines to amortize storage overheads) to locate the faulty chip. Once

the error location is identified, it uses erasure coding with the previous one-

symbol redundancy to correct the error. For ×4 SDDC FECC, Multi-ECC

is modified to build a 16-bit RS symbol from 4 data transfer beats, reducing

its main ECC redundancy down to 6.25%; the same checksum mechanism is

maintained as in the original Multi-ECC design. FECC with ×4 Multi-ECC

can access any block that is compressed to a 480-bit footprint without accessing

secondary storage. In the case of a compression exception, the data and its

ECC information are split over two blocks. This is depicted in Figure 6.6. The

ECC flag for Multi-ECC is protected using a 3-bit encoding because it has only

two ECC layouts and triplicating the 1-bit flag can correct a single-bit error.

137

6.4.2 Frugal ECC for ×8 SDDC

The amount of redundancy required for the ×8 true SDDC (Bamboo

OPC or S8SC in Section 3.3) over a narrow channel is 25%; 16 bits on 64-bit

data channel. As CoC primarily focuses on 12.5% redundancy, FECC uses

ECC-DIMMs with 12.5% redundant devices to split the 25% ECC overhead

between the redundant chips and the space made available by compression.

FECC with OPC uses a two-tiered ECC so that if a block is compressed to less

than 448 bits (443 bits of data and the 5-bit ECC flag), the compressed data

and the 128 bits of redundant information (T1EC + T2EC) is stored within

a single block of an ECC DIMM. If a 512-bit block is compressible to 512 bits

(some blocks fail due to compression and ECC flag overheads), the ECC flag,

compressed data, and 64-bit T1EC are stored on the ECC DIMM. In this case,

a write accesses an additional memory location for the T2EC but error-free

reads require only a single memory access. If compression fails entirely, part

of the uncompressed data, the T1EC, and T2EC are stored across the ECC

chip and also in a separate memory block.

The ×8 SDDC-level Multi-ECC requires 12.5% redundancy; 8 bits on

64-bit data channel. FECC solely uses its 12.5% compression (448-bit target)

to yield room for the redundancy without resorting to ECC DIMMs.

6.5 Evaluation

To understand the benefits of FECC and the tradeoffs involved, this

section evaluates its reliability, performance impact, and energy efficiency in

138

comparison to competing ECC schemes (including current commercial ap-

proaches as well as academic designs). First, it measures the protection cover-

age against chip failures to show FECC can maintain SDDC protection despite

the reduced overheads. Then, the effectiveness of CoC is demonstrated to be

both an excellent match for the goals of FECC and superior to previously

published compression mechanisms in this context. Section 6.5.3 presents the

significant energy and performance gains of FECC over existing approaches,

and Section 6.5.4 shows the hardware cost of CoC is acceptable.

For the reliability, performance, and energy consumption evaluation,

14 ECC configurations are evaluated. The two commercial configurations

are the S4SC-D4SD on a 144b channel (strong SDDC similar to [29]) and

the AMD chipkill on a 72b channel, both with ×4 DRAM devices. Virtual-

ized ECC [151] is evaluated with 136b and 128b channels for ×4 devices and

144b and 128b channels for ×8 devices and follows the configuration described

in Section 6.6. The SDDC-level schemes (i.e., LOT-ECC [141] and Multi-

ECC) are also evaluated. Finally, four FECC variants are evaluated: SDDC

FECC+QPC and SDDC-level FECC+Multi-ECC on 64b channels with ×4

devices, SDDC FECC+OPC on a 72b channel with ×8 devices, and SDDC-

level FECC+Multi-ECC on a 64b channel with ×8 devices. Note that the

FECC configurations have the smallest number of redundant DRAM devices,

with the exception of the 128b VECC configurations, though VECC is only

defined for wide channels. Also note that the 72b FECC+OPC is, to the best

of our knowledge, the only true SDDC ECC that can use both a 72b channel

139

and ×8 DRAM devices.

For the compression coverage, performance impact, and energy con-

sumption evaluation, the SPEC CPU 2006 [130, 39], PARSEC [3, 18], SPLASH2X2 [147,

111], and NAS Parallel Benchmarks suites3 are used.

6.5.1 Reliability

The reliability of SDDC and SDDC-level ECCs are evaluated using

random error injection simulations (Section 3.4). Figure 6.7 and 6.8 show the

rank-level and system-level reliability evaluation results, respectively. ECC

flag protection is evaluated assuming blocks are fully-compressed/half-compressed/

uncompressed with 70/20/10% probabilities, respectively. Due to the lack of

decoding details, S4SC-D4SD is omitted from these results.

LOT-ECC and Multi-ECC are not true SDDC techniques and exhibit

errors even with only single-chip errors (Section 6.6). LOT-ECC uses a 7-

bit checksum at a chip granularity and thus exhibits a high SDC probability,

which is particularly problematic for large systems (Figure 6.8). Multi-ECC

with ×8 devices has a 2-16 probability of uncorrectable errors per codeword;

with 2 codewords per 512b block, the probability of a DUE is 2-15. Despite this

problematic protection for single-device errors, the overall reliability result of

Multi-ECC is very close to that of the other good SDDC-level ECCs, such as

2SPLASH2X is an update of the SPLASH2 benchmark suite [147] with larger input
sets [111]. It is distributed as part of PARSEC v3.0 [3].

3While the majority of benchmarks are evaluated, some programs are omitted due to
compilation issues or runtime errors.

140

3.1E­05 6.1E­05 6.1E­05

7.8E­03

2.2E­09

2.6E­09
2.2E­09 4.9E­09

7.8E­03

1E­10
1E­8
1E­6
1E­4
1E­2
1E+0

1
4
4
b
 S
4
SC
­D
4
SD

1
3
6
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 A
M
D

7
2
b
 Q
P
C

6
4
b
 F
EC

C
+M

u
lt
i

6
4
b
 F
EC

C
+Q

P
C

1
4
4
b
 O
P
C

1
4
4
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 L
O
T

7
2
b
 M

u
lt
i

7
2
b
 F
EC

C
+O

P
C

6
4
b
 F
EC

C
+M

u
lt
i

1
4
4
b
 S
4
SC
­D
4
SD

1
3
6
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 A
M
D

7
2
b
 Q
P
C

6
4
b
FE
C
C
+M

u
lt
i

6
4
b
 F
EC

C
+Q

P
C

1
4
4
b
 O
P
C

1
4
4
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 L
O
T

7
2
b
 M

u
lt
i

7
2
b
 F
EC

C
+O

P
C

6
4
b
 F
EC

C
+M

u
lt
i

128b data 64b data 128b data 64b data 128b data 64b data 128b data 64b data

x4 chipkill x8 chipkill x4 chipkill x8 chipkill

1 chip error 2 chip errors

P
ro
ab

ab
ili
ty

DUE SDC

Figure 6.7: Probabilities of a DUE and SDC for a single rank with 1 or 2-chip
errors.

1E­8

1E­6

1E­4

1E­2

1E+0

0.01

0.1

1

1
3
6
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 A
M
D

7
2
b
 Q
P
C

6
4
b
 F
EC

C
+M

u
lt
i

6
4
b
 F
EC

C
+Q

P
C

1
4
4
b
 O
P
C

1
4
4
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 L
O
T

7
2
b
 M

u
lt
i

7
2
b
 F
EC

C
+O

P
C

6
4
b
 F
EC

C
+M

u
lt
i

1
3
6
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 A
M
D

7
2
b
 Q
P
C

6
4
b
 F
EC

C
+M

u
lt
i

6
4
b
 F
EC

C
+Q

P
C

1
4
4
b
 O
P
C

1
4
4
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 L
O
T

7
2
b
 M

u
lt
i

7
2
b
 F
EC

C
+O

P
C

6
4
b
 F
EC

C
+M

u
lt
i

128b
data

64b data 128b
data

64b data 128b
data

64b data 128b
data

64b data

x4 chipkill x8 chipkill x4 chipkill x8 chipkill

DUE in 1 yr SDC in 10 yrs

SD
C
 P
ro
b
ab

ili
ty

D
U
E
P
ro
b
ab

ili
ty DUE in 1 yr SDC in 10 yrs

Figure 6.8: Probabilities of a DUE and SDC for a system with 100K DIMMs,
assuming only 1 or 2-chip errors.

141

AMD chipkill and QPC, because the fault model does lead to some errors that

span two or more chips. Importantly, FECC shows almost identical protection

as the underlying ECC code it utilizes (i.e., QPC, OPC, or Multi×8), despite

using fewer devices. In fact, the best overall protection in terms of both

the DUE and SDC rates is provided by FECC+OPC, as it relies on fewer

devices and therefore exhibits fewer faults, assuming only the faults reported

by Sridharan and Liberty [128] can occur.

6.5.2 Compression Coverage

The compressibility of benchmark memory traffic and the effectiveness

of coverage-oriented compression are evaluated using a Pin-based [92] cache

model that implements CoC compression at the main memory interface. Serial

program versions are used, with a weighted average over all program invoca-

tions taken in the case of fork-based multi-programmed benchmarks. Every

main memory read and write-back is compressed4 and its size tallied.

Figure 6.9 shows the overall compression coverage results. Because

of the data dependence of CoC, the compression coverage experiments are

conducted over a wide variety of benchmarks and input sets. Benchmarks

are sorted within each suite by descending memory traffic and the harmonic

mean behavior for each benchmark suite is given by a corresponding HM col-

4Stratified sampling [149] is used to reduce the experimental runtime of SPEC with
the “ref” input set and PARSEC/SPLASH2X with the “native” input sets. Fast-forward,
detailed warming, and execution periods of 16M, 2M, and 1M instructions are used, respec-
tively.

142

0
0.2
0.4
0.6
0.8
1

E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R

gem lq mcf as sj om gcc bz2 gob pb h2 hmm xa HM

SPECint

C
o
m
p
.
C
o
ve
ra
ge

448b compression (64b redundancy) 480b compression (32b redundancy)

0
0.2
0.4
0.6
0.8
1

E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R E T R

le lbm bw mc ton zs sop cac spx gro nmd pov HM

SPECFP

C
o
m
p
.
C
o
ve
ra
ge

0
0.2
0.4
0.6
0.8
1

T D SM L N T D SM L N T D SM L N T D SM L N T D SM L N T D SM L N T D SM L N T D SM L N T D SM L N

stc can fer fla frq bls vip bdt HM

PARSEC

C
o
m
p
.
C
o
ve
ra
ge

0
0.2
0.4
0.6
0.8
1

S W A B S W A B S W A B S W A B S W A B S W A B S W A B S W A B S W A B S W A B

sp ua lu bt cg mg ft is ep HM

NPB

C
o
m
p
.
C
o
ve
ra
ge

0
0.2
0.4
0.6
0.8
1

S M L N S M L N S M L N S M L N S M L N S M L N S M L N S M L N S M L N S M L N S M L N

oce­cp radix fft radiosi. fmm barnes wat­sp wat­ns raytrace volrend HM

SPLASH2X

C
o
m
p
.
C
o
ve
ra
ge

E/T/R in SPECCPU stand for test/train/ref input set.
T/D/S/M/L/N in PARSEC stand for test/dev/small/medium/large/native input set.
S/W/A/B in NPB stand for small/workstation/A/B input set.
S/M/L/N in SPLASH2X stand for small/medium/large/native input set.

Figure 6.9: An evaluation on CoC compression coverage for 64-bit and 32-bit
redundancy.

143

umn. It can be seen that CoC compresses most benchmarks well, with many

benchmarks resulting in ≥ 99% compression coverage. In general, integer

benchmarks compress sufficiently down to the 448b compression target, while

many floating-point benchmarks must resort to the 480b level of compression.

This is not unexpected, since the compressibility of floating-point numbers is

limited (see Section 6.2.2 for more details).

The proper compression target varies according to the target ECC

scheme. On a 64b rank with ×4 DRAM chips, FECC+Multi uses a 480b

target coverage for both reads and writes and FECC+QPC uses a 448b target

fully-compressed blocks and 480b for half-compressed blocks. On a 72b rank

with ×8 DRAM chips, FECC+Multi uses a 448b target and FECC+OPC

uses 448b and 512b targets full-compressed and half-compressed blocks, re-

spectively. Note that Figure 6.9 gives results only on a 64b rank; compression

coverage trends over a 72b rank are similar but they are not shown in the

interest of brevity.

While most benchmarks and input sets compress satisfactorily with

CoC, a few benchmarks show more lackluster compressibility. Ferret performs

a content-based similarity search of images using JPEG images as query inputs.

The inherent compressibility of these images is poor, perhaps leading to the

low CoC coverage. Similarly, VIPS is an image processing system. Within

PARSEC, the input images to VIPS are formatted in a native file format [4]

and they happen to encode pixels in a non-IEEE754 floating-point format

(using the “labq” encoding), which causes the lackluster coverage of CoC.

144

0
0.2
0.4
0.6
0.8
1

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

stc can fer fla frq bls vip bdt HM

PARSEC.L

C
o
m
p
. C

o
ve
ra
ge

448b compression 480b compression

0
0.2
0.4
0.6
0.8
1

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

FP
C

B
D
I

FB
D

C
o
C

sp ua lu bt cg mg ft is ep HM

NPB.B

C
o
m
p
. C

o
ve
ra
ge

448b compression 480b compression

Figure 6.10: A compression coverage comparison between CoC and prior mem-
ory compression schemes.

Sjeng is an artificial intelligence program for chess. It makes heavy use of

heterogeneous mixed-size data structures and it is expected that the data

structures are not aligned or coalesced properly for CoC to fully capture the

value locality within them. 64b-level compression does adapt somewhat to

the heterogeneous nature of Sjeng—without it the compression coverage is

dismal instead of lackluster, and enabling word-level compression increases

the coverage by 5.54× and 6.25× at 448b and 480b, respectively. Perlbench

is heavily multi-programmed through repeated forks; some of these program

invocations are highly compressible and others compress poorly.

The average compressibility of programs in Figure 6.9 is high; this

high compression coverage is a direct result of coverage-oriented compression

scheme and it would not have been possible using prior fine-grained compres-

145

NPB.cg

NPB.sp SPECFP.mc

PARSEC.fer

SPECint.mcf SPECFP.lbm

NPB.sp

SPEC.lq

NPB.ep

SPEC.spx

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
o
m
p
. c
o
ve
ra
ge

Transfers Per Killo Instructions

448b coverage by PIN 480b coverage by PIN 448b coverage by Gem5

Figure 6.11: The memory traffic and compression coverage results of all bench-
marks measured with Pin and the four representative detailed simulations se-
lected.

sion approaches. Figure 6.10 demonstrates this through compression coverage

experiments for PARSEC and NPB using BDI [113] and FPC [12] compres-

sion as well as fitting base + delta compression alone, which represents CoC

without word-granularity compression. The results show that CoC always per-

forms as well or better than the best of the other approaches, in some cases

(like LU) outperforming all others. It is also readily apparent how insufficient

BDI and FPC compression are for floating-point data—the floating-point com-

pressors used for Frugal ECC are necessary for HPC benchmark suites such

as NPB. Correspondingly, the compression approach used by Free ECC (com-

bining BDI and FPC) [25] would not suffice for a large range of benchmark

programs.

146

6.5.3 Performance and Energy

The performance impact and DRAM energy consumption of the differ-

ent ECC schemes are estimated using the Gem5 simulator [1] and the Micron

DDR3 power model [95]. Because of the long runtime of the simulator, not all

the benchmarks used in compression analysis are evaluated for performance.

Instead, four benchmarks are selected to represent different points in the space

of parameter values that most-strongly impact the performance and energy be-

havior of FECC; off-chip data bandwidth (or last-level cache misses) and the

frequency of compression exceptions. Figure 6.11 depicts how the benchmarks

in coverage evaluation map across these two dimensions.

Sphinx from SPEC 2006 (denoted SPEC.spx) is chosen as representa-

tive of benchmarks with low traffic and high compression coverage, which are

ideal for FECC. Libquantum from SPEC 2006 (SPECFP.lq) and EP from

NPB (NPB.ep) are representative of benchmarks with high coverage / high

traffic and low coverage / low traffic, respectively; both of which are expected

to also perform well with FECC. As an example for an application that stresses

FECC, SP from NPB (NPB.sp) is tested, which has poor compression cover-

age and also significant traffic. Note that these cases do not precisely match

the extreme points observed with the Pin-based evaluation, but they are the

closest ones found in detailed simulation.

The detailed single-core simulation parameters are summarized in Ta-

ble 6.4. For FECC, CoC compression and decompression are assumed to have

2 memory cycle latency (Section 6.5.4), while ECC encoding and decoding

147

Core 2GHz OoO core, 16KB L1I, 64KB L1D

LLC
2MB L2, 8-way (7-way for Multi-ECC) w/ stride prefetcher
20-cycle hit latency, 20 MSHR entries (40 for VECC, Multi-ECC, and FECC)

DRAM
DDR3-1600, 2 rank, 2 channel for 64b data and 1 channel for 128b data

RD data FIFO lat. WR data FIFO lat.

AMD CK, S4SC-D4SD, VECC,
and Multi-ECC

+1 +1

QPC, OPC, and LOT-ECC +4 +4
FECC+Multi +2 +3
FECC+QPC and FECC+OPC +4 +5

Simulation 400M cycles after 800M cycles of fast-forwarding

Table 6.4: The simulation parameters for the performance and energy evalu-
ation.

after the necessary data are fully available take 1 cycle. While multi-core

simulations are more realistic and put more pressure on memory bandwidth,

single-core simulations are used because FECC degrades performance mostly

due to its extra latency and because single-core results allow for a clearer pre-

sentation of behavior and insights. The baseline IPC and DRAM energy are

measured in the AMD chipkill configuration; the four benchmarks have 0.82

IPC / 0.23J for Libquantum, 1.33 IPC / 0.12J for Sphinx3, 1.24 IPC / 0.13J

for NPB.ep, and 1.71 IPC / 0.10J for NPB.sp.

Figure 6.12 shows the estimated execution time and DRAM energy

consumption over the chosen simulation interval of the selected benchmarks.

Execution times are shown in bars (left y-axis) normalized to the AMD chipkill

configuration and the relative energy is shown as lines (right y-axis). As ex-

pected, the FECC configurations exhibit essentially no impact on performance

148

with the ideal SPEC.spx and also with the low-traffic NPB.ep.

The performance of SPEC.lq is impacted by type of code used and

channel width, but as expected, the addition of FECC has a negligible impact

(< 1%) because of the high compression coverage. The only configuration for

which FECC has a measurable impact is for NPB.sp, which has meaningful

traffic and poor compression coverage; the 64b FECC+Multi configuration

exhibits a 3.7% performance degradation because it requires a 480b level of

compression for all reads and writes. FECC+OPC does not show a similar

degradation because it relies on a 72b channel and does not add any latency

for read operations, regardless of the compression achieved.

Energy results show that DRAM energy consumption varies more dra-

matically, from 1.98× down to 0.44×, among SDDC-level schemes. The main

reason for the variation is the number of DRAM devices per access; the most

energy inefficient configuration is 144b channel with ×8 devices (i.e., S4SC-

D4SD with 36 devices) and the most efficient one is a 64b channel with ×8

devices (i.e., FECC+Multi-ECC with 8 devices). SPEC.lq with high data

traffic and high locality benefits from the 128B cache lines and its reduced

execution time lessens DRAM energy cost. FECC variants improves energy

efficiency over their non-frugal counterparts: up to 11% in FECC+Multi-ECC.

FECC+OPC is the only SDDC protection that that can use both a 72b chan-

nel and ×8 devices, and because of this it requires only about half the energy

consumption of ECCs with competing levels of protection.

149

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0
0.2
0.4
0.6
0.8
1

1.2

1
4
4
b
 S
4
SC
­D
4
SD

1
3
6
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 A
M
D

7
2
b
 Q
P
C

6
4
b
 V
EC

C
+M

u
lt
i

6
4
b
 V
EC
C
+Q

P
C

6
4
b
 F
EC

C
+M

u
lt
i

6
4
b
 F
EC

C
+Q

P
C

1
4
4
b
 O
P
C

1
4
4
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 L
O
T

7
2
b
 M

u
lt
i

7
2
b
 F
EC

C
+O

P
C

6
4
b
 F
EC

C
+M

u
lt
i

1
4
4
b
 S
4
SC
­D
4
SD

1
3
6
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 A
M
D

7
2
b
 Q
P
C

6
4
b
 V
EC

C
+M

u
lt
i

6
4
b
 V
EC
C
+Q

P
C

6
4
b
 F
EC

C
+M

u
lt
i

6
4
b
 F
EC

C
+Q

P
C

1
4
4
b
 O
P
C

1
4
4
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 L
O
T

7
2
b
 M

u
lt
i

7
2
b
 F
EC

C
+O

P
C

6
4
b
 F
EC

C
+M

u
lt
i

128b data 64b data 128b data 64b data 128b data 64b data 128b data 64b data

x4 chipkill­level x8 chipkill­level x4 chipkill­level x8 chipkill­level

SPEC.lq (high traffic/high coverage) NPB.sp (mid traffic/low coverage)

N
o
rm

al
iz
e
d
 D
R
A
M
 E
n
e
rg
y

N
o
rm

al
iz
e
d
 E
xe
cu
ti
o
n
 T
Im

e Execution time DRAM energy

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0
0.2
0.4
0.6
0.8
1

1.2

1
4
4
b
 S
4
SC
­D
4
SD

1
3
6
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 A
M
D

7
2
b
 Q
P
C

6
4
b
 V
EC

C
+M

u
lt
i

6
4
b
 V
EC
C
+Q

P
C

6
4
b
 F
EC

C
+M

u
lt
i

6
4
b
 F
EC

C
+Q

P
C

1
4
4
b
 O
P
C

1
4
4
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 L
O
T

7
2
b
 M

u
lt
i

7
2
b
 F
EC

C
+O

P
C

6
4
b
 F
EC

C
+M

u
lt
i

1
4
4
b
 S
4
SC
­D
4
SD

1
3
6
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 A
M
D

7
2
b
 Q
P
C

6
4
b
 V
EC

C
+M

u
lt
i

6
4
b
 V
EC
C
+Q

P
C

6
4
b
 F
EC

C
+M

u
lt
i

6
4
b
 F
EC

C
+Q

P
C

1
4
4
b
 O
P
C

1
4
4
b
 V
EC

C

1
2
8
b
 V
EC

C

7
2
b
 L
O
T

7
2
b
 M

u
lt
i

7
2
b
 F
EC

C
+O

P
C

6
4
b
 F
EC

C
+M

u
lt
i

128b data 64b data 128b data 64b data 128b data 64b data 128b data 64b data

x4 chipkill­level x8 chipkill­level x4 chipkill­level x8 chipkill­level

SPEC.spx (low traffic/high coverage) NPB.ep (low traffic/low coverage)

N
o
rm

al
iz
e
d
 D
R
A
M
 E
n
e
rg
y

N
o
rm

al
iz
e
d
 E
xe
cu
ti
o
n
 T
Im

e Series1 Series2

Figure 6.12: A comparison of execution time and DRAM energy consumption
(normalized to AMD chipkill).

150

Compressor ECC
Encoder

Block compressor

1B subtract x 16
2B subtract x 8
4B subtract x 4
8B subtract x 2 Comp.

data
buffer

Comp.
data
buffer

Comp.
data
buffer

Comp.
data
buffer

Comp.
data
buffer

Comp.
data
buffer

Word compressor

Se
lectio

nComp.
data
buffer

Freq. word comp.
Freq. word comp.

D
ataIn

(1
6B

/cycle)

D
ataO

u
t

(1
6B

/cycle)

Figure 6.13: A block diagram of the CoC compressor.

6.5.4 Hardware Overheads

CoC compression requires some hardware to compress and decompress

each memory transfer; yet they require a very small amount of chip area and

are readily implementable in the 2-cycle latency assumed by the performance

and energy evaluation. Figure 6.13 shows an overview of the compression

process, broken into two stages. The first stage implements the block and

word-granularity compressors through subtraction and equality testing. The

output of this first-stage logic is the compressed data for each constituent

compressor and the validity of each compression (whether it captures all of

the data in its allotted space). This compressor and validity data is fed into

a second stage that chooses the most appropriate compressor and outputs the

final result.

The first-stage compressor logic is expected to consume the majority

of the area for the CoC compressor. A straightforward, behavioral implemen-

tation of this first-stage logic easily achieves a 1ns latency. The block and

word compressors consume areas equivalent to 4,383 and 5,866 NAND2 gates,

151

respectively.5 Combined, the block and word compressors consume about 25%

more chip area than a single 32-bit fixed-point multiplier—an insignificant area

compared to an entire processor.

The second compressor stage consists of a priority encoder with a small

amount of ID generation logic, and is expected to easily and cheaply fit within

the remaining 1ns of compression latency. The CoC decompressor is expected

to consume less area than the compressor, because it does not need to spec-

ulatively perform all constituent compression schemes in parallel and can ef-

fectively use less internal arithmetic. Also, because decompression uses addi-

tion instead of subtraction for all delta operations, logic sharing between the

different-width compression schemes should be a straightforward and poten-

tially worthwhile optimization.

6.6 Related Work

This section reviews recent accomplishments in ECC and main memory

compression that are closely related to FECC but not described above.

6.6.1 Efficient ECC

There is wealth of prior research that focuses on efficiency of memory

protection. Recent ECC approaches attempt to improve reliability while stay-

5These delay and area estimates are found through standard-cell synthesis using the
Synopsys toolchain and the 40nm TSMC standard cell library [135, 136] but are presented
in a technology-independent manner.

152

ing within the bounds of acceptable system parameters (i.e., 64-bit memory

data channels and near-12.5% redundant storage and bandwidth) by intro-

ducing new reliability and performance tradeoffs [28, 36, 151, 141, 55, 9]. One

example is the use of ECCs that do not precisely match the definition of SDDC

but still correct the vast majority of single chip errors [141, 55]; this class of

protection is referred as SDDC-level. Another example is the use of multi-

tiered codes in which a first ECC code is used for detection and a second

code is used for correction [151, 141, 55]. This section lists some of the most

important and efficient SDDC and SDDC-level ECC schemes with focuses on

multi-tiered ECCs.

SDDC ECCs for ×4 DRAM Devices: Virtualized ECC (VECC) [151]

provides SDDC protection on a wider variety of memory module organizations

using its multi-tiered protection. VECC can provide ×4 SDDC protection on

a 128-bit data interface (two non-ECC DIMMS), by virtualizing and storing

3 check symbols elsewhere in the memory space as data. Two separate ac-

cesses are required for each access to memory—one for data and the other for

redundancy—though caching the ECC information is often effective and helps

to reduce the performance impact of the additional memory traffic. Alterna-

tively, VECC can separate the codes used for error detection and correction

and can use a 136-bit data interface (built from one 72-bit ECC DIMM and

one 64-bit non-ECC DIMM) to provide SDDC protection without needing

two accesses in the common case. In this organization, VECC virtualizes

153

a one-symbol error correcting code and stores it elsewhere in the memory

space as data, but this secondary code needs only be accessed in the rare case

when errors are detected (or upon a memory write, as it must be updated).

Other approaches exist, similar to VECC, that embed ECC data elsewhere

in the memory space to allow a more flexible use of non-ECC memory mod-

ules [28, 36].

SDDC ECCs for ×8 DRAM Devices: Wider ×8 DRAM chips save en-

ergy by activating fewer chips per memory access for a given data channel

width. However, as a chip failure compromises a larger number of bits, ×8

SDDC is generally more challenging and requires more redundancy than its

×4 counterpart. To correct a ×8 chip error, the minimum redundancy is twice

the correction size [125], giving a minimum of 25% redundancy for a 64-bit

interface and 12.5% for a 128-bit interface.

There are, however, recent academic approaches that target SDDC-

level protection on a narrow channel with ×8 devices and 12.5% redundancy.

LOT-ECC [141] can correct most single chip errors (127
128

or 99.2%) on a 72-

bit ECC DIMM by using a 4-tiered ECC scheme. Due to its use of a 7-bit

error detecting checksum, however, 1
128

of chip errors remain undetected by

LOT-ECC and lead to silent data corruption. Multi-ECC [55] uses an error

localization and erasure code to enable SDDC-level protection on a 72-bit ECC

DIMM with 12.9% redundancy. The error localization procedure of Multi-ECC

is based on a 16-bit checksum, and it fails to identify the faulty symbol with

154

2-16 probability, making 2-16 of single chip errors detectable-yet-uncorrectable.

E-ECC [24] relies on error and erasure correction to correct most ×8 device

failures on a single ECC DIMM.

6.6.2 Memory Compression

Memory compression has been actively researched and deployed in

caches and main memory to increase the available memory capacity and re-

duce off-chip traffic. Frequent value compression [150] targets a small set of

2–8 frequent values that collectively occupy over 50% of memory entries in

some benchmarks. It replaces each frequent value by a small index to reduce

space.

Frequent pattern compression [12] targets frequent patterns rather than

frequent values. Most of their patterns are based on the fact that large data

types (e.g., 32 or 64-bit fixed-point numbers) often contain small values that

do not fully utilize their allocated storage. Frequent pattern compression saves

storage by opportunistically converting such values to use smaller data types.

IBM MXT technology [6] is a word-granularity compressor that relies

on a derivative of adaptive dictionary based coding [156] to more than double

the effective main memory capacity. However, the drawbacks of MXT in-

clude a large cache line size (1KB) to amortize its significant dictionary cost,

long compression/decompression latencies from sequential processing and ad-

ditional accesses to locate the compressed data.

Linearly compressed pages (LCP) [112] compresses all cache lines within

155

a page to the same size, making address calculation straightforward and avoid-

ing memory fragmentation. Upon a compression exception, LCP allocates

separate regions within the physical page for exception flags and exception

data. If the number of exceptions overflows this allocated storage, LCP traps

to operating system and requests a bigger physical page for the virtual page.

MemZip [123] compresses cache lines for memory traffic reduction, not

for capacity savings. The compressed data are stored in the same footprint as

uncompressed data but memory traffic and energy are reduced on a memory

channel that supports fine-grained rank subsetting. Space savings can also

be used to store meta-data, such as data bus inversion for memory interface

energy saving or ECC for opportunistically stronger protection (though the

potential for ECC is largely unexplored). Other work also employs memory

compression to store optional prefetch hints [89].

Free ECC [25] combines compression and ECC for the last level cache.

Free ECC depends on customized tags to store compression meta-data, how-

ever, and it combines BDI and FPC compression. The lack of dedicated meta-

data storage makes this approach inappropriate for DRAM; Section 6.5 also

shows the ineffectiveness of BDI and FPC alone for a wide range of benchmark

suites.

COP [109] uses compression to enable ECC protection using non-ECC

DIMMs. The specifics of the COP approach make its level of error protec-

tion quite weak—significantly worse than SEC-DED—and preclude it from

being a viable alternative to FECC for high-performance and high-availability

156

systems. The COP ECC scheme cannot be extended in a straightforward

manner to SDDC levels of protection, even in its strongest organization, be-

cause the implicit manner in which it tracks the compressibility of a memory

block degrades the coverage of its ECC code. The compression scheme used

by COP also targets 6.25% redundancy and it provides poor compression cov-

erage for the industry-standard 12.5% ECC footprint. There is also a patent

that describes the use of compression with non-ECC DIMMs [132] without

any evaluation or consideration of SDDC-level protection.

Recent research on compression algorithms [76, 101, 13] has demon-

strated higher compression ratios than earlier compression work. FECC’s

unique CoC scheme may utilize the insights from this recent research to im-

prove compression coverage or reduce compressed data footprint further. In

turn, this may enable even more energy-efficient memory configurations (e.g.,

true ×8 SDDC using non-ECC DIMM) while amortizing compression over-

heads with storage and bandwidth reductions.

6.7 Summary

Frugal ECC provides new tradeoffs between reliability, performance,

and efficiency. By combining a novel compression scheme and meta-data en-

coding and management techniques, FECC designs are able to match the

memory access characteristics of conventional ECC designs while requiring

fewer, or even no, redundant DRAM devices. The coverage-oriented compres-

sion technique is carefully co-designed with its intended use and far exceeds

157

the capabilities of previously-published fine-grained compression mechanisms,

especially for floating-point intensive programs. The ECC layout can provide

flexible tradeoffs between energy efficiency and performance without degrading

levels of reliability.

158

Chapter 7

Conclusion

This dissertation presents and evaluates a set of novel memory pro-

tection mechanisms. The mechanisms, taken together, may provide thorough

end-to-end protection of DRAM against existing and emerging types of errors,

while the individual mechanisms are demonstrated to be stronger and safer

than their current state-of-the-art counterparts. Despite their strength, the

proposed mechanisms also improve energy efficiency by reducing redundancy,

eliminating inefficient and separate protection and/or enabling more energy-

efficient configurations. These mechanisms achieve such reliability benefits

with minimal changes to DRAM design and no extra storage and bandwidth

overheads compared to current schemes, making them readily implementable

to influence industry and to change the world.

In Chapter 3, this dissertation develops a new data ECC mechanism,

Bamboo ECC, that can detect most uncorrectable errors and which may allow

future large-scale systems to operate safely without silent data corruptions.

Its strong level of error correction and support for flexible graceful downgrade

schemes can also greatly extend the lifetime of a system by tolerating perma-

nent faults.

159

In Chapter 4, this dissertation provides a novel mechanism against

emerging errors from imperfect process scaling. By combining ECC error and

erasure decoding with fault remapping, AG-ECC preserves SDDC reliability

in the presence of frequent inherent faults, while improving manufacturability

without separate in-DRAM ECC protection. Its high reliability, high manufac-

turability and high efficiency may allow DRAM process technology to continue

shrinking despite increasing cell fault rates without requiring modifications to

DRAM chips themselves.

In Chapter 5, this dissertation presents ECCmechanisms against emerg-

ing transmission errors to provide holistic system-level protection. Transmis-

sion errors on the clock, control, command, and address signals are expected to

grow as DRAM transfer rates increase and I/O voltage levels decrease; these

CCCA errors can dominate system reliability after data is strongly protected

by an aggressive ECC. AI-ECC is the first approach to provide strong and

thorough protection against all aspects of this important error type. By aug-

menting existing data protection schemes, AI-ECC does not cost additional

storage and bandwidth overheads and demands minimal changes to DRAM

design. This strong protection may enable more aggressive speedups in DRAM

signal transfers for future throughput-oriented computations.

In Chapter 6, this dissertation improves the energy efficiency of DRAM

protection through fine-grained compression. Frugal ECC can decouple the

amount of redundancy needed for protection and the number of chips needed

for the redundancy, allowing for versatile and more energy-efficient memory

160

configurations. With a carefully co-designed compression algorithm and robust

ECC layouts, Frugal ECC provides flexible tradeoffs between energy-efficiency

and performance without degrading the level of error protection.

This dissertation also contributes with its rigorous evaluation of relia-

bility and manufacturability, including the practical impact of ECC detection

coverage, consequences from CCCA errors, manufacturability from inherent

faults, and protection coverage of SDDC-level ECCs.

7.1 Future Research Directions

The key findings of this dissertation can be extended to other memory

products and other compute architectures. Some of the most exciting research

opportunities are presented below.

AG-ECC based on In-DRAM Redundancy: AG-ECC eliminates the

need for a separate in-DRAM ECC by utilizing rank-level ECC against both

inherent and operational faults. For systems that do not employ similar

schemes and systems with low reliability requirements (e.g., personal comput-

ers without rank-level ECC), however, DRAM vendors may produce devices

with in-DRAM ECC only, or sell them at a cheaper price due to economies of

scale.

In such cases, the proposed AG-ECC approach can be redesigned to

rely on the extra cells of in-DRAM ECC, instead of extra chips on the DIMM

for redundancy. With slight changes to the DRAM core and interface, the

161

extra cells can be optionally exposed and utilized as rank-level ECC redun-

dancy. Such an idea is promising, as rank-level ECC can provide SDDC-level

protection with fewer or even no redundant chips. The biggest challenge of this

research opportunity is how to deal with the increased level of error severity;

now a dead ×4 chip generates not only up to 32 erroneous data bits but also

up to 4-bit errors in the redundant information.

Protection of Memory with Wider Interface: Research should target

the future, not the present. This dissertation uses DDR4 because it is a con-

crete and well-understood example for which good models exist; a requirement

for a thorough and convincing evaluation. Other architectures, however, em-

ploy different lines of DRAM products (graphics DDR [61, 66], low-power

DDR [57, 63, 64, 67], 3D-stacked memories [62, 58, 65, 49], etc.) to meet their

computation throughput and energy efficiency requirements.

These DRAMs commonly utilize a wider data interface (16- or 32-bit)

than DDR4 (4- or 8-bit) to reduce the number of chips per access and to

improve energy efficiency at the cost of capacity and reliability. The current

practice of using weak SEC-DED [106] provides limited reliability improve-

ments, and it is very important to develop protection mechanisms as reliable

as DDR4 SDDC protection to enable reliable computation using these de-

vices. While ECC alone may be insufficient due to the large number of bit

errors from a chip fault, the safe detection capability of Bamboo ECC may

allow complementary protection schemes to achieve high reliability.

162

Bibliography

[1] The gem5 Simulator System: A Modular Platform for Computer System

Architecture Research. http://www.gem5.org.

[2] The Nas Parallel Benchmarks. http://www.nas.nasa.gov/publications/

npb.html.

[3] The Princeton Application Repository for Shared-Memory Computers

(PARSEC). http://parsec.cs.princeton.edu.

[4] The VIPS file format. http://www.vips.ecs.soton.ac.uk/supported/

current/doc/html/libvips/file-format.html.

[5] Intel Xeon Processor E5 and E7 v3 Family Uncore Performance Monitor-

ing Reference Manual. Technical Report 331051-002, Intel Corporation,

2015.

[6] B. Abali, H. Franke, D. E. Poff, R. A. Saccone, C. O. Schulz, L. M.

Herger, and T. B. Smith. Memory Expansion Technology (MXT): Soft-

ware Support and Performance. IBM Journal of Research and Develop-

ment, 45(2):287–301, March 2001.

[7] David G Abdoo and J David Cabello. Error correction system for N bits

using error correcting code designed for fewer than N bits. US Patent,

US 5,490,155, February 6 1996.

163

[8] Advanced Micro Devices (AMD), Inc. Kernel developers guide for AMD

NPT family 0Fh processors. Technical report, 2007.

[9] Advanced Micro Devices (AMD), Inc. BIOS and Kernel Developers

Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors, Jan

2013.

[10] Jung Ho Ahn, Mattan Erez, and William J. Dally. The Design Space

of Data-Parallel Memory Systems. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and

Analysis (SC), pages 2–2, Nov 2006.

[11] Alaa R. Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilk-

erson, and Shih-Lien Lu. Energy-efficient Cache Design Using Variable-

strength Error-correcting Codes. In Proceedings of the International

Symposium on Computer Architecture (ISCA), ISCA ’11, pages 461–

472, 2011.

[12] Alaa R. Alameldeen and David A. Wood. Frequent Pattern Compres-

sion: A Significance-Based Compression Scheme for L2 Caches. Tech-

nical report, Technical Report 1500, Computer Sciences Department,

University of Wisconsin-Madison, 2004.

[13] Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. HyComp: A

Hybrid Cache Compression Method for Selection of Data-type-specific

Compression Methods. In Proceedings of the International Symposium

on Microarchitecture (MICRO), MICRO-48, pages 38–49, 2015.

164

[14] K. Arimoto, Y. Matsuda, K. Furutani, M. Tsukude, T. Ooishi, K. Mashiko,

and K. Fujishima. A speed-enhanced DRAM array architecture with

embedded ECC. IEEE Journal of Solid State Circuits (JSSC), 25(1):11–

17, 1990.

[15] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts

and taxonomy of dependable and secure computing. IEEE Transactions

on Dependable and Secure Computing, 1(1):11–33, Jan 2004.

[16] A. Bacchini, M. Rovatti, G. Furano, and M. Ottavi. Characterization

of data retention faults in DRAM devices. In Proceedings of the In-

ternational Symposium on Defect and Fault Tolerance in VLSI Systems

(DFT), pages 9–14, Oct 2014.

[17] C. Bienia and K. Li. Fidelity and scaling of the PARSEC benchmark

inputs. In Proceedings of the International Symposium on Workload

Characterization (IISWC), 2010.

[18] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, January 2011.

[19] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar

Krishna, Somayeh Sardashti, et al. The gem5 Simulator. ACM SIGARCH

Computer Architecture News, 39(2):1–7, 2011.

165

[20] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting

binary group codes. Information and Control, 3(1):68–79, March 1960.

[21] Mark T. Chapman. Introducing IBM Enterprise X-Architecture Tech-

nology. Technical report, 2001.

[22] Chin-Long Chen, Mu-Yue Hsiao, Patrick J. Meaney, and William Wu

Shen. Detecting address faults in an ECC-protected memory. US

Patent, US 6,457,154 B1, Sep 2002.

[23] Chin-Long Chen, R. Brett Tremaine, and Michael E. Wazlowski. (146,130)

error correction code utilizing address information. US Patent, US

6,751,769 B2, Jun 2004.

[24] Hsing-Min Chen, Akhil Arunkumar, Carole-Jean Wu, Trevor Mudge,

and Chaitali Chakrabarti. E-ECC: Low Power Erasure and Error Cor-

rection Schemes for Increasing Reliability of Commodity DRAM Sys-

tems. In Proceedings of the International Symposium on Memory Sys-

tems (MEMSYS), pages 60–70, 2015.

[25] Long Chen, Yanan Cao, and Zhao Zhang. Free ECC: An efficient er-

ror protection for compressed last-level caches. In IEEE International

Conference on Computer Design (ICCD), 2013.

[26] Chang-Seok Choi and Hanho Lee. High throughput four-parallel RS

decoder architecture for 60GHz mmWAVE WPAN systems. In Pro-

166

ceedings of the IEEE International Conference of Consumer Eletronics

(ICCE), pages 225–226, Jan 2010.

[27] Jinsuk Chung, Ikhwan Lee, Michael Sullivan, Jee Ho Ryoo, Dong Wan

Kim, Doe Hyun Yoon, Larry Kaplan, and Mattan Erez. Containment

domains: A scalable, efficient, and flexible resilience scheme for exas-

cale systems. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis (SC), pages

58:1–58:11, Nov 2012.

[28] Radoslav Danilak. Transparent error correction code memory system

and method. US Patent, US 7,117,421 B1, October 2006.

[29] T. J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for

PC Server Main Memory. IBM Microelectronics Division, November

1997.

[30] Michael Demshki and Robert Shiveley. Advanced Reliability for Intel

Xeon Processor-based Servers, 2010.

[31] Khaled Fekih-Romdhane. Illegal commands handling at the command

decoder stage. US Patent, US 20070245036 A1, Oct 2007.

[32] Fujitsu Technology Solutions. White Paper: FUJITSU Server PRIMERGY

& PRIMEQUEST Memory performance of Xeon E7-8800 / 4800 v2 (Ivy

Bridge-EX) based systems. http://globalsp.ts.fujitsu.com/dmsp/

167

Publications/public/wp-ivy-bridge-ex-memory-performance-ww-en.

pdf, 2014.

[33] Bharan Giridhar, Michael Cieslak, Deepankar Duggal, Ronald Dreslin-

ski, Hsing Min Chen, Robert Patti, Betina Hold, Chaitali Chakrabarti,

Trevor Mudge, and David Blaauw. Exploring DRAM Organizations for

Energy-efficient and Resilient Exascale Memories. In Proceedings of the

International Conference on High Performance Computing, Networking,

Storage and Analysis (SC), pages 23:1–23:12, 2013.

[34] Richard Henry Gumpertz. Error Detection with Memory Tags. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1981.

[35] Richard Henry Gumpertz. Combining Tags with Error Codes. In

Proceedings of the International Symposium on Computer Architecture

(ISCA), pages 160–165, 1983.

[36] Michael John Haertel, R. Stephen Polzin, Andrej Kocev, and Mau-

rice Bennet Steinman. ECC implementation in non-ECC components.

US Patent, US 8,135,935 B2, March 2012.

[37] R. W. Hamming. Error Detecting and Error Correcting Codes. Bell

System Technical Journal, 29(2):147–160, 1950.

[38] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart

(BLCR) for Linux clusters. Journal of Physics: Conference Series,

46(1):494, 2006.

168

[39] John L. Henning. SPEC CPU2006 Benchmark Descriptions. ACM

SIGARCH Computer Architecture News, 34(4):1–17, September 2006.

[40] Hewlett-Packard. Servers and Storage Technology for the Adaptive

Infrastructure, 2006.

[41] Hewlett-Packard. HP Advanced Memory Error Detection Technology,

2011.

[42] Hewlett-Packard. How memory RAS technologies can enhance the up-

time of HP ProLiant servers, 2013.

[43] High Productivity Computing Systems (HPCS). HPC challenge Bench-

marks. http://icl.cs.utk.edu/hpcc/hpcc_results.cgi.

[44] A. Hocquenghem. Codes Correcteurs d’Erreurs. Chiffres (Paris),

2:147–156, September 1959.

[45] S. Hong. Memory technology trend and future challenges. In IEEE

International Electron Devices Meeting, pages 12.4.1–12.4.4, Dec 2010.

[46] David Huffman. AMethod for the Construction of Minimum-Redundancy

Codes. Proceedings of the IRE, 1952.

[47] Jaehyuk Huh, Doug Burger, and Stephen W Keckler. Exploring the

design space of future CMPs. In Proceedings of the International Con-

ference on Parallel Architectures and Compilation Techniques (PACT),

pages 199–210, 2001.

169

[48] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic

Rays Don’t Strike Twice: Understanding the Nature of DRAM Errors

and the Implications for System Design. In Proceedings of the Interna-

tional Symposium on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 111–122, 2012.

[49] Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification

2.0, 2014.

[50] IBM. Chipkill Memory. Technical report, 2012.

[51] IBM, Inc. IBM Enterprise X-Architecture Technology: Reaching the

Summit. Technical report, 2002.

[52] IEEE Task P754. IEEE 754-1985, Standard for Binary Floating-Point

Arithmetic. IEEE, 1985.

[53] Intel corp. Intel Xeon Processor E7 Family: Reliability, Availability,

and Serviceability, 2011.

[54] Xun Jian, Nathan DeBardeleben, Sean Blanchard, Vilas Sridharan, and

Rakesh Kumar. Analyzing Reliability of Memory Sub-systems with

Double-Chipkill Detect/Correct. In Proceedings of IEEE Pacific Rim

International Symposium on Dependable Computing, pages 88–97. IEEE,

2013.

[55] Xun Jian, Henry Duwe, John Sartori, Vilas Sridharan, and Rakesh Ku-

mar. Low-power, low-storage-overhead chipkill correct via multi-line er-

170

ror correction. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis (SC), pages

1–12, Nov 2013.

[56] Joint Electron Device Engineering Council. DDR2 SDRAM Specifica-

tion, JESD79-2F, Nov. 2009.

[57] Joint Electron Device Engineering Council. Low Power Double Data

Rate (LPDDR) SDRAM Standard, JESD209B, Feb. 2010.

[58] Joint Electron Device Engineering Council. Wide I/O Single Data Rate

(Wide I/O SDR), JESD229, Dec. 2011.

[59] Joint Electron Device Engineering Council. DDR3 SDRAM STAN-

DARD, JESD79-3F, July 2012.

[60] Joint Electron Device Engineering Council. DDR4 SDRAM STAN-

DARD, JESD79-4, Sep. 2012.

[61] Joint Electron Device Engineering Council. Graphics Double Data Rate

(GDDR5) SGRAM Standard, JESD212B.01, Dec. 2013.

[62] Joint Electron Device Engineering Council. High Bandwidth Memory

(HBM) DRAM, JESD235, Oct. 2013.

[63] Joint Electron Device Engineering Council. Low Power Double Data

Rate 2 (LPDDR2), JESD209-2F, June 2013.

171

[64] Joint Electron Device Engineering Council. Low Power Double Data

Rate 3 (LPDDR3), JESD209-3B, Aug. 2013.

[65] Joint Electron Device Engineering Council. Wide I/O 2, JESD229-2,

Aug. 2014.

[66] Joint Electron Device Engineering Council. Graphics Double Data Rate

(GDDR5X) SGRAM Standard, JESD232, Nov. 2015.

[67] Joint Electron Device Engineering Council. Low Power Double Data

Rate 4 (LPDDR4), JESD209-4A, Nov. 2015.

[68] H. L. Kalter, C. H. Stapper, J. E. Barth, J. DiLorenzo, C. E. Drake,

J. A. Fifield, G. A. Kelley, S. C. Lewis, W. B. van der Hoeven, and J. A.

Yankosky. A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip

ECC. IEEE Journal of Solid State Circuits (JSSC), 25(5):1118–1128,

1990.

[69] H. J. Kang and I. C. Park. A high-speed and low-latency Reed-Solomon

decoder based on a dual-line structure. In Proceedings of the Interna-

tional Conference on Acoustics, Speech, and Signal Processing, volume 3,

pages III–3180–III–3183, 2002.

[70] Uksong Kang, Hak soo Yu, Churoo Park, Hongzhong Zheng, John Hal-

bert, Kuljit Bains, SeongJin Jang, and Joo Sun Choi. Co-Architecting

Controllers and DRAM to Enhance DRAM Process Scaling. In Pro-

ceedings of the Memory Forum, 2014.

172

[71] Y. Katayama, Y. Negishi, and S. Morioka. Efficient error correction

code configurations for quasi-nonvolatile data retention by DRAMs. In

Proceedings of the International Symposium on Defect and Fault Toler-

ance in VLSI Systems (DFT), pages 201–209, 2000.

[72] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris

Wilkerson, and Onur Mutlu. The Efficacy of Error Mitigation Tech-

niques for DRAM Retention Failures: A Comparative Experimental

Study. In Proceedings of the International Joint Conference on Mea-

surement and Modeling of Computer Systems (SIGMETRICS), pages

519–532, 2014.

[73] Dae-Hyun Kim and Linda S. Milor. ECC-ASPIRIN: An ECC-assisted

post-package repair scheme for aging errors in DRAMs. In Proceedings

of the VLSI Test Symposium (VTS), pages 1–6, 2016.

[74] Dong Wan Kim and Mattan Erez. Balancing reliability, cost, and per-

formance tradeoffs with FreeFault. In Proceedings of the International

Symposium on High Performance Computer Architecture (HPCA), pages

439–450, Feb 2015.

[75] Dong Wan Kim and Mattan Erez. RelaxFault Memory Repair. In

Proceedings of the International Symposium on Computer Architecture

(ISCA), 2016.

[76] Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. Bit-

Plane Compression: Transforming Data for Better Compression in Many-

173

core Architectures. In Proceedings of the International Symposium on

Computer Architecture (ISCA), 2016.

[77] Jungrae Kim, Michael Sullivan, and Mattan Erez. Bamboo ECC:

Strong, safe, and flexible codes for reliable computer memory. In Pro-

ceedings of the International Symposium on High Performance Computer

Architecture (HPCA), pages 101–112, 2015.

[78] Jungrae Kim, Michael Sullivan, Seong-Lyong Gong, and Mattan Erez.

Frugal ECC: Efficient and Versatile Memory Error Protection Through

Fine-grained Compression. In Proceedings of the International Confer-

ence on High Performance Computing, Networking, Storage and Analy-

sis (SC), pages 12:1–12:12, 2015.

[79] Jungrae Kim, Michael Sullivan, Sangkug Lym, and Mattan Erez. All-

Inclusive ECC: Thorough End-to-End Protection for Reliable Computer

Memory. In Proceedings of the International Symposium on Computer

Architecture (ISCA), 2016.

[80] Jungrae Kim, Michael Sullivan, Sangkug Lym, Dong Wan Kim, Seong-

Lyong Gong, and Mattan Erez. Active Guardband ECC for Strong and

Efficient Reliability and Manufacturability. In Submission to HPCA,

2017.

[81] Saeng-Hwan Kim, Won-Oh Lee, Jung-Ho Kim, Seong-Seop Lee, Sun-

Young Hwang, Chang-Il Kim, Tae-Woo Kwon, Bong-Seok Han, Sung-

Kwon Cho, Dae-Hui Kim, Jae-Keun Hong, Min-Yung Lee, Sung-Wook

174

Yin, Hyeon-Gon Kim, Jin-Hong Ahn, Yong-Tark Kim, Yo-Hwan Koh,

and Joong-Sik Kih. A low power and highly reliable 400Mbps mobile

DDR SDRAM with on-chip distributed ECC. pages 34–37, 2007.

[82] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk

Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in

Memory Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors. In Proceedings of the International Symposium on

Computer Architecture (ISCA), pages 361–372, 2014.

[83] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur

Mutlu. A Case for Exploiting Subarray-level Parallelism (SALP) in

DRAM. In Proceedings of the International Symposium on Computer

Architecture (ISCA), pages 368–379, 2012.

[84] Masahiro Kuramoto, Masao Koyabu, Jun Tsuiki, and Junichi Inagaki.

Storage control circuit, and method for address error check in the storage

control circuit. US Patent, US 7,555,699 B2, Jun 2009.

[85] Sanghyuk Kwon, Young Hoon Son, and Jung Ho Ahn. Understand-

ing DDR4 in pursuit of In-DRAM ECC. In SoC Design Conference

(ISOCC), 2014 International, pages 276–277, Nov 2014.

[86] Charles R. Lefurgy, Alan J. Drake, Michael S. Floyd, Malcolm S. Allen-

Ware, Bishop Brock, Jose A. Tierno, and John B. Carter. Active Man-

agement of Timing Guardband to Save Energy in POWER7. In Pro-

175

ceedings of the International Symposium on Microarchitecture (MICRO),

pages 1–11, 2011.

[87] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. A Realistic

Evaluation of Memory Hardware Errors and Software System Suscep-

tibility. In Proceedings of the USENIX Annual Technical Conference

(USENIX), 2010.

[88] Chung-Hsiang Lin, De-Yu Shen, Yi-Jung Chen, Chia-Lin Yang, and

M. Wang. SECRET: Selective error correction for refresh energy re-

duction in DRAMs. In IEEE International Conference on Computer

Design (ICCD), pages 67–74, 2012.

[89] Gang Liu, Jih-Kwon Peir, and V. Lee. Miss-Correlation Folding: En-

coding Per-Block Miss Correlations in Compressed DRAM for Data

Prefetching. In Proceedings of the International Symposium on Par-

allel and Distributed Processing (IPDPS), pages 691–702, 2012.

[90] David Locklear. Chipkill Correct Memory Architecture. Technical

report, 2000.

[91] S. K. Lu, C. J. Tsai, and M. Hashizume. Integration of Hard Repair

Techniques with ECC for Enhancing Fabrication Yield and Reliability

of Embedded Memories. pages 49–54, 2015.

[92] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

176

wood. Pin: Building Customized Program Analysis Tools with Dy-

namic Instrumentation. In Proceedings of the International Symposium

on Programming Languages Design and Implementation (PLDI), 2005.

[93] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and

W. Kramer. Lessons Learned from the Analysis of System Failures at

Petascale: The Case of Blue Waters. In Proceedings of the International

Conference on Dependable Systems and Networks (DSN), pages 610–621,

June 2014.

[94] Paul Messina and Stephen Lee. Exascale Computing Project (ECP) Up-

date. http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/

201604/ECP_ASCAC_Overview_final.pdf, April 2016.

[95] Micron Technology Co. Calculating Memory System Power for DDR3.

http://www.micron.com/~/media/documents/products/technical-note/

dram/tn41_01ddr3_power.pdf, 2007.

[96] Micron Technology Co. 8Gb DDR4 SDRAM datasheet. https:/www.

micron.com/~/media/documents/products/data-sheet/dram/ddr4/8gb_

ddr4_sdram.pdf, 2015.

[97] Sparsh Mittal. A Survey of Architectural Techniques for DRAM Power

Management. International Journal of High Performance System Ar-

chitecture, 4(2):110–119, December 2012.

177

[98] William C. Moyer. Selective masking for error correction. US Patent,

US 8,990,657 B2, Mar 2015.

[99] Prashant J Nair, Dae-Hyun Kim, and Moinuddin K Qureshi. ArchShield:

Architectural Framework for Assisting Dram Scaling by Tolerating High

Error Rates. In Proceedings of the International Symposium on Com-

puter Architecture (ISCA), 2013.

[100] Prashant J Nair, Vilas Sridharan, and Moinuddin K Qureshi. XED:

Exposing On-Die Error Detection Information for Strong Memory Re-

liability. In Proceedings of the International Symposium on Computer

Architecture (ISCA), 2016.

[101] Tri M. Nguyen and David Wentzlaff. MORC: A Manycore-oriented

Compressed Cache. In Proceedings of the International Symposium on

Microarchitecture (MICRO), MICRO-48, pages 76–88, 2015.

[102] Richard Nicholas. Address error detection. US Patent, US 8,949,694

B2, Feb 2015.

[103] Michael Nicolaidis, Thierry Bonnoit, and Nacer-Eddine Zergainoh. Elim-

inating speed penalty in ECC protected memories. In Proceedings of

Design, Automation, and Test in Europe (DATE), pages 1–6, 2011.

[104] Kevin B. Normoyle. Address error detection by merging a polynomial-

based CRC code of address bits with two nibbles of data or data ECC

bits. US Patent, US 7,203,890 B1, Apr 2007.

178

[105] Kevin B. Normoyle and Robert G. Hathaway. Encoding 64-bit data

nibble error correct and cyclic-redundancy code (CRC) address error

detect for use on a 76-bit memory module. US Patent, US 7,398,449

B1, Jul 2008.

[106] NVIDIA Corp. NVIDIA’s Next Generation CUDA Compute Architec-

ture: Kepler GK110/210. http://images.nvidia.com/content/pdf/

tesla/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf,

2014.

[107] Tae-Young Oh, Hoeju Chung, Jun-Young Park, Ki-Won Lee, Seunghoon

Oh, Su-Yeon Doo, Hyoung-Joo Kim, ChangYong Lee, Hye-Ran Kim,

Jong-Ho Lee, Jin-Il Lee, Kyung-Soo Ha, YoungRyeol Choi, Young-Chul

Cho, Yong-Cheol Bae, Taeseong Jang, Chulsung Park, Kwangil Park,

SeongJin Jang, and Joo Sun Choi. A 3.2 Gbps/pin 8 Gbit 1.0 V

LPDDR4 SDRAM With Integrated ECC Engine for Sub-1 V DRAM

Core Operation. IEEE Journal of Solid State Circuits (JSSC), 50(1):178–

190, 2015.

[108] Oracle, Inc. Oracle SPARC Server RAS Comparison.

[109] David J. Palframan, Nam Sung Kim, and Mikko H. Lipasti. COP:

To Compress and Protect Main Memory. In Proceedings of the Inter-

national Symposium on Computer Architecture (ISCA), pages 682–693,

2015.

179

[110] Ward D. Parkinson and Edward J. Heitzeberg. Parity and error correc-

tion coding on integrated circuit addresses. US Patent, US 5,173,905 A,

Dec 1992.

[111] PARSEC Group. A Memo on Exploration of SPLASH-2 Input Sets,

2011.

[112] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry.

Linearly Compressed Pages: A Main Memory Compression Framework

with Low Complexity and Low Latency. In Proceedings of the Interna-

tional Symposium on Microarchitecture (MICRO), 2013.

[113] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons,

Michael A. Kozuch, and Todd C. Mowry. Base-delta-immediate Com-

pression: Practical Data Compression for On-chip Caches. In Pro-

ceedings of the International Conference on Parallel Architectures and

Compilation Techniques (PACT), September 2012.

[114] Andrew Phelps. Memory subsystem including an error detection mech-

anism for address and control signals. US Patent, US 6,941,493 B2, Sep

2005.

[115] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu. AVATAR:

A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems.

In Proceedings of the International Conference on Dependable Systems

and Networks (DSN), pages 427–437, June 2015.

180

[116] Irving Reed and Golomb Solomon. Polynomial codes over certain finite

fields. J. Soc. for Industrial and Applied Mathematics, 8(2):300–304,

06/1960 1960.

[117] Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. A

Locality-aware Memory Hierarchy for Energy-efficient GPU Architec-

tures. In Proceedings of the International Symposium on Microarchitec-

ture (MICRO), pages 86–98, 2013.

[118] D Roberts and P Nair. FAULTSIM: A fast, configurable memory-

resilience simulator. In Proceedings of the Memory Forum, volume 41,

2014.

[119] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A

Cycle Accurate Memory System Simulator. IEEE Computer Architec-

ture Letters, 10(1):16–19, January 2011.

[120] Samsung Electronics Co. Samsung DDR4 SDRAM. http://samsung.

com/global/business/semiconductor/file/media/DDR4_Brochure-0.

pdf, 2013.

[121] Yiannakis Sazeides, Emre Özer, Danny Kershaw, Panagiota Nikolaou,

Marios Kleanthous, and Jaume Abella. Implicit-Storing and Redundant-

Encoding-of-Attribute Information in Error-Correction-Codes. In Pro-

ceedings of the International Symposium on Computer Architecture (ISCA),

2013.

181

[122] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM

Errors in the Wild: A Large-scale Field Study. In Proceedings of the

International Joint Conference on Measurement and Modeling of Com-

puter Systems (SIGMETRICS), pages 193–204, 2009.

[123] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis. MemZip:

Exploring unconventional benefits from memory compression. In Pro-

ceedings of the International Symposium on High Performance Computer

Architecture (HPCA), 2014.

[124] John Shalf, Sudip Dosanjh, and John Morrison. Exascale Computing

Technology Challenges. In Proceedings of the International Conference

on High Performance Computing for Computational Science, pages 1–25,

2011.

[125] Richard Singleton. Maximum distance q-nary codes. IEEE Transac-

tions on Information Theory (ITIT), 10(2):116–118, Apr 1964.

[126] Y. H. Son, S. Lee, O. Seongil, S. Kwon, N. S. Kim, and J. H. Ahn.

CiDRA: A cache-inspired DRAM resilience architecture. In Proceedings

of the International Symposium on High Performance Computer Archi-

tecture (HPCA), pages 502–513, Feb 2015.

[127] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Fer-

reira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi. Memory

Errors in Modern Systems: The Good, The Bad, and The Ugly. In Pro-

ceedings of the International Symposium on Architectural Support for

182

Programming Languages and Operating Systems (ASPLOS), pages 297–

310, 2015.

[128] Vilas Sridharan and Dean Liberty. A Study of DRAM Failures in the

Field. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis (SC), pages 76:1–

76:11, 2012.

[129] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard,

and Sudhanva Gurumurthi. Feng Shui of Supercomputer Memory: Po-

sitional Effects in DRAM and SRAM Faults. In Proceedings of the In-

ternational Conference on High Performance Computing, Networking,

Storage and Analysis (SC), pages 22:1–22:11, 2013.

[130] Standard Performance Evaluation Corporation. SPEC CPU 2006. http:

//www.spec.org/cpu2006/, 2006.

[131] Charles H. Stapper and Hsing-San Lee. Synergistic fault-tolerance for

memory chips. IEEE Transactions on Computers, 41(9):1078–1087,

1992.

[132] Henry Stracovsky, Michael Espig, Victor W. Lee, and Daehyun Kim.

Reliability support in memory systems without error correcting code

support. US Patent, US 8,495,464 B2, 2013.

[133] Chin-Lung Su, Yi-Ting Yeh, and Cheng-Wen Wu. An integrated ECC

and redundancy repair scheme for memory reliability enhancement. In

183

Proceedings of the International Symposium on Defect and Fault Toler-

ance in VLSI Systems (DFT), pages 81–89, 2005.

[134] Sun Microsystems, Inc. T2 core microarchitecture specification.

[135] Synopsys Inc. Design Compiler I-2013.12-SP5-2, September 2014.

[136] Taiwan Semiconductor Manufacturing Company. 40nm CMOS Stan-

dard Cell Library v120b, 2009.

[137] T. Takahashi, T. Sekiguchi, R. Takemura, S. Narui, H. Fujisawa, S. Miy-

atake, M. Morino, K. Arai, S. Yamada, S. Shukuri, M. Nakamura,

Y. Tadaki, K. Kajigaya, K. Kimura, and K. Itoh. A multigigabit DRAM

technology with 6F2 open-bitline cell, distributed overdriven sensing,

and stacked-flash fuse. IEEE Journal of Solid State Circuits (JSSC),

36(11):1721–1727, Nov 2001.

[138] Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and Don

Maxwell. Reliability lessons learned from GPU experience with the

Titan supercomputer at Oak Ridge leadership computing facility. In

Proceedings of the International Conference on High Performance Com-

puting, Networking, Storage and Analysis (SC), 2015.

[139] Top500 Supercomputer Sites, http://top500.org.

[140] Alberto Troia. Integrity of an address bus. US Patent, US 9,009,570

B2, Apr 2015.

184

[141] Aniruddha N. Udipi, Naveen Muralimanohar, Rajeev Balasubramonian,

Al Davis, and Norman P. Jouppi. LOT-ECC: Localized and Tiered

Reliability Mechanisms for Commodity Memory Systems. In Proceed-

ings of the International Symposium on Computer Architecture (ISCA),

pages 285–296, 2012.

[142] Aniruddha N. Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Ra-

jeev Balasubramonian, Al Davis, and Norman P. Jouppi. Rethinking

DRAM Design and Organization for Energy-constrained Multi-cores. In

Proceedings of the International Symposium on Computer Architecture

(ISCA), pages 175–186, 2010.

[143] Pete D. Vogt. Combined command and data code. US Patent, US

7,827,462 B2, Nov 2010.

[144] David Wang. Protocol checking logic circuit for memory system relia-

bility. US Patent, US 8,966,327 B1, Feb 2015.

[145] Chris Wilkerson, Alaa R. Alameldeen, Zeshan Chishti, Wei Wu, Dinesh

Somasekhar, and Shih-lien Lu. Reducing Cache Power with Low-Cost,

Multi-Bit Error-Correcting Codes. In Proceedings of the International

Symposium on Computer Architecture (ISCA), 2010.

[146] Samson S. Wong, Kandasamy Aravinthan, Gideon N. Levinsky, Shahar

Dor, Richard T. Van, and Jiejun Lu. Methods and systems for detect-

ing memory address transfer errors in an address bus. US Patent, US

7,293,221 B1, Nov 2007.

185

[147] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The

SPLASH-2 Programs: Characterization and Methodological Consider-

ations. In Proceedings of the International Symposium on Computer

Architecture (ISCA), 1995.

[148] T. H. Wu, P. Y. Chen, M. Lee, B. Y. Lin, C. W. Wu, C. H. Tien,

H. C. Lin, H. Chen, C. N. Peng, and M. J. Wang. A memory yield

improvement scheme combining built-in self-repair and error correction

codes. In IEEE International Test Conference (ITC), pages 1–9, 2012.

[149] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe. SMARTS:

Accelerating Microarchitecture Simulation via Rigorous Statistical Sam-

pling. In Proceedings of the International Symposium on Computer

Architecture (ISCA), pages 84–95, 2003.

[150] Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent Value Compres-

sion in Data Caches. In Proceedings of the International Symposium on

Microarchitecture (MICRO), pages 258–265, 2000.

[151] Doe Hyun Yoon and Mattan Erez. Virtualized and Flexible ECC for

Main Memory. In Proceedings of the International Symposium on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 397–408, 2010.

[152] Doe Hyun Yoon, Min Kyu Jeong, and Mattan Erez. Adaptive Gran-

ularity Memory Systems: A Tradeoff Between Storage Efficiency and

186

Throughput. In Proceedings of the International Symposium on Com-

puter Architecture (ISCA), pages 295–306, 2011.

[153] Doe Hyun Yoon, Min Kyu Jeong, Michael Sullivan, and Mattan Erez.

The Dynamic Granularity Memory System. In Proceedings of the Inter-

national Symposium on Computer Architecture (ISCA), pages 548–559,

2012.

[154] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy

Ranganathan, Norman P. Jouppi, and Mattan Erez. FREE-p: Protect-

ing non-volatile memory against both hard and soft errors. In Proceed-

ings of the International Symposium on High Performance Computer

Architecture (HPCA), pages 466–477, Feb 2011.

[155] Y. C. Yu, C. S. Hou, L. J. Chang, J. F. Li, C. Y. Lo, D. M. Kwai, Y. F.

Chou, and C. W. Wu. A hybrid ECC and redundancy technique for

reducing refresh power of DRAMs. In Proceedings of the VLSI Test

Symposium (VTS), pages 1–6, 2013.

[156] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential

data compression. IEEE Transactions on Information Theory (ITIT),

23(3):337–343, 1977.

187

Vita

Jungrae Kim was born in Seoul, Korea on October 30, 1978. He grad-

uated from Seoul Science High School in 1997. Jungrae studied at Seoul Na-

tional University, Seoul, Korea, where he received a B.S. degree in Electrical

Engineering in 2001 and an M.S. degree in Electrical Engineering and Com-

puter Science in 2003. He has worked in the lab of Professor Soo-Mook Moon,

researching Java Just-In-Time compilers for the Intel IA-64 architecture.

Jungrae joined Samsung Electronics in 2003 and developed System-on-

a-Chips for smart phones and digital media players. In 2011, he was awarded

a full financial sponsorship for his Ph.D study from Samsung owing to his

accomplishments.

Jungrae started graduate studies at the University of Texas at Austin

in August, 2011. His research is focused on memory sub-systems, including

DRAM reliability and memory compression. His research has been published

in major computer architecture conferences, such as ISCA, HPCA, and SC.

One paper was nominated as best paper in HPCA ’15.

Permanent address: 54 Giheung-ro 38beon-gil Suite 101-105,
Yongin-si, Gyeonggi-do, Korea 16975

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

188

