
Copyright

by

Daniel Hunter Garrette

2015

The Dissertation Committee for Daniel Hunter Garrette
certifies that this is the approved version of the following dissertation:

Inducing Grammars from Linguistic Universals

and Realistic Amounts of Supervision

Committee:

Jason Baldridge, Supervisor

Raymond J. Mooney, Co-Supervisor

Pradeep Ravikumar

James G. Scott

Noah A. Smith

Inducing Grammars from Linguistic Universals

and Realistic Amounts of Supervision

by

Daniel Hunter Garrette, B.S.; M.S.Comp.Sci.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2015

Acknowledgments

I would like to thank my co-authors: Jason Baldridge, Chris Dyer, and Noah
Smith. I would also like to thank Ray Mooney, Katrin Erk, James Scott, Liang Sun,
Jason Mielens, Yoav Goldberg, Slav Petrov, Oscar Täckström, Sujith Ravi, Kyle
Jerro, Vijay John, Jim Evans, the members of the UT Natural Language Learning
group, and the anonymous reviewers for their feedback.

This work was supported by: a National Defense Science and Engineer-
ing Graduate (NDSEG) Fellowship from the U.S. Department of Defense; grant
number W911NF-10-1-0533 from the U.S. Army Research Office; NSF grant EIA-
0303609 for the UTCS Mastodon Cluster; and a grant from the Texas Advanced
Computing Center.

iv

Inducing Grammars from Linguistic Universals

and Realistic Amounts of Supervision

Daniel Hunter Garrette, Ph.D.

The University of Texas at Austin, 2015

Supervisors: Jason Baldridge and Raymond J. Mooney

The best performing NLP models to date are learned from large volumes
of manually-annotated data. For tasks like part-of-speech tagging and grammatical
parsing, high performance can be achieved with plentiful supervised data. However,
such resources are extremely costly to produce, making them an unlikely option for
building NLP tools in under-resourced languages or domains.

This dissertation is concerned with reducing the annotation required to learn
NLP models, with the goal of opening up the range of domains and languages to
which NLP technologies may be applied. In this work, we explore the possibility
of learning from a degree of supervision that is at or close to the amount that could
reasonably be collected from annotators for a particular domain or language that
currently has none. We show that just a small amount of annotation input — even
that which can be collected in just a few hours — can provide enormous advantages
if we have learning algorithms that can appropriately exploit it.

This work presents new algorithms, models, and approaches designed to
learn grammatical information from weak supervision. In particular, we look at
ways of intersecting a variety of different forms of supervision in complementary
ways, thus lowering the overall annotation burden. Sources of information include
tag dictionaries, morphological analyzers, constituent bracketings, and partial tree
annotations, as well as unannotated corpora. For example, we present algorithms
that are able to combine faster-to-obtain type-level annotation with unannotated text
to remove the need for slower-to-obtain token-level annotation.

v

Much of this dissertation describes work on Combinatory Categorial Gram-
mar (CCG), a grammatical formalism notable for its use of structured, logic-backed
categories that describe how each word and constituent fits into the overall syntax
of the sentence. This work shows how linguistic universals intrinsic to the CCG
formalism itself can be encoded as Bayesian priors to improve learning.

vi

Table of Contents

Chapter 1 Introduction .. 1
1.1 Syntactic Analysis .. 1
1.2 Statistical Approaches... 3
1.3 Weakly-Supervised Learning ... 5

1.3.1 Minimal input from annotators ... 5
1.3.2 Universal grammar .. 6
1.3.3 Combining the universal with the empirical 9

1.4 This Dissertation .. 11

Chapter 2 Minimally-Supervised POS Tagging.. 13
2.1 Background.. 14
2.2 Setting up a Realistic Training Scenario.. 16
2.3 HMM Learning .. 18

2.3.1 Token-supervised training .. 19
2.3.2 Type-supervised training .. 19

2.4 Data .. 20
2.4.1 Data sources ... 21
2.4.2 Annotation-collection tasks .. 21
2.4.3 Annotated data .. 24

2.5 Morphological finite-state transducers .. 25
2.6 Generalizing the Annotations... 27

2.6.1 Annotation expansion with label propagation 28
2.6.2 Removing annotation noise with model minimization 32

2.7 Tagger Training .. 39
2.8 Experiments ... 40

2.8.1 Evaluating the pipeline... 41
2.8.2 Weighted vs. unweighted minimization 43
2.8.3 Types versus tokens ... 44
2.8.4 Mixing type and token annotations...................................... 46
2.8.5 FST development .. 47

vii

2.8.6 The effect of more raw data .. 48
2.8.7 Correcting existing annotations... 49
2.8.8 Error analysis.. 49

2.9 Related Work ... 51
2.10 Conclusions and Future Work .. 52

Chapter 3 Grammar-Informed CCG Supertagging 54
3.1 CCG and Supertagging.. 55

3.1.1 Grammar-informed supertagger learning 56
3.2 Model.. 58

3.2.1 Transition prior means (π0
t) .. 59

3.2.2 Unigram category generator (PCAT(u))................................. 59
3.2.3 Bigram category generator (PCOMB(u | t)) 62
3.2.4 Emission prior means (φ0

t).. 64
3.3 Posterior Inference.. 65
3.4 Experiments ... 67

3.4.1 Error analysis.. 71
3.5 Related Work ... 71
3.6 Conclusion and Future Work ... 72

Chapter 4 Grammar-Informed CCG Parsing.. 74
4.1 Combinatory Categorial Grammar.. 75
4.2 CCG Parsing with Likely Categories .. 76

4.2.1 Generative Model .. 77
4.2.2 Posterior Inference .. 80
4.2.3 Experiments.. 83
4.2.4 Conclusions .. 89

4.3 Supertag-Context Parsing .. 89
4.3.1 Generative Model .. 91
4.3.2 Posterior Inference .. 97
4.3.3 Experiments.. 100
4.3.4 Conclusions .. 103

viii

4.4 Learning with Constituent Constraints .. 104
4.4.1 Bracket Annotations and CCG Parsing 105
4.4.2 Experiments.. 107
4.4.3 Conclusion ... 113

4.5 A Future Direction: Infinite CCG Parsing 114
4.5.1 Infinite CCG model .. 115
4.5.2 Background: iHMM beam sampler 116
4.5.3 Beam sampling for the infinite CCG 119
4.5.4 Performing inference ... 127
4.5.5 Conclusions .. 127

4.6 Conclusions and Future Work .. 128

Chapter 5 Conclusion.. 130
5.1 Future Directions.. 133

References... 136

ix

Chapter 1

Introduction

The field of natural language processing (NLP) has seen great success in
the development of models built through the use of statistical machine learning
techniques. However, the best of these models are trained using large amounts of
fully-annotated data as supervision. For languages and domains for which we do
not have access to large annotated corpora, it is necessary to use approaches that
are able to learn from less input.

This dissertation is concerned with weakly-supervised learning for models
of natural language syntax. In particular, we want to be able to learn from only
small amounts of cheaply-obtained annotations from people — either expert lin-
guists, or non-experts. We accomplish this goal by using the little available data,
in conjunction with universal, cross-lingual properties common to natural language
grammars, to construct inductive biases that can be used to learn better models. By
combining our prior beliefs about how natural languages function with the statistics
gleaned from larger amounts of raw text within a Bayesian setting, we are able to
encourage our models to estimate better parameters.

We explore a variety of syntactic tasks, including part-of-speech tagging,
Combinatory Categorial Grammar (CCG) supertagging, and CCG parsing. Our ex-
periments empirically demonstrate the benefit of these universal biases, and show
that it is possible to train good models from very small amounts of human input.

1.1 Syntactic Analysis

Most contemporary NLP systems are designed around a pipeline architec-
ture in which each stage in a chain of programs receives some input, performs a
transformation or analysis on that input, and sends the output to the next stage of
the pipeline. Such a pipeline usually begins with raw text (for example, text pulled
from the web). The system may start by tokenizing (separating punctuation from

1

S

VP

NP

PP

NP

N
cheese

P
with

N
spaghetti

V
ate

NP

N
man

Det
The

(a) A constituent parse for the sentence, with part
of speech tags (bold) written above words.

ate

spaghetti

with

cheese

man

The

(b) An unlabeled dependency parse.

Figure 1.1: Alternative parses for the sentence “The man ate spaghetti with cheese”.

words), then segmenting the text into sentences.
At this point, it is typical for an NLP system to perform some form of syn-

tactic analysis on the tokenized sentences. This often means tagging each token in
the sentence with its part of speech (POS) before running a parser to produce a full
syntax tree that describes the grammar of the sentence. The syntax tree breaks the
sentence into constituents, and shows how those constituents assemble. An example
constituent parse tree is shown in Figure 1.1a. Alternatively, one might convert this
sequence of POS tags into a dependency tree, in which words are directly connected
according to their relationships (see Figure 1.1b).

The ability to produce such analyses may be of intrinsic value to linguists
wishing to conduct large-scale analyses of language usage; by parsing large cor-
pora, one may be able to compare empirical observations about grammatical us-
age, or discover new, unexpected linguistic patterns (Sinclair, 1992; Wallis, 2007).
Work in NLP, however, is generally concerned with using these analyses as inputs
to higher-level language-processing tasks. Previous researchers have demonstrated
the value of syntactic analyses in a wide range of applications including machine
translation (Gildea, 2004; Chiang, 2005; Weese et al., 2012), information extraction
(Ramshaw et al., 2001; Viola and Narasimhan, 2005), speech recognition (Chelba
and Jelinek, 1998), text correction (Shieber and Tao, 2003), and semantic parsing
(Zettlemoyer and Collins, 2005).

2

1.2 Statistical Approaches

Early NLP research was focused on the development of symbolic systems.
This typically meant that taggers and parsers were built from hand-written rules de-
scribing the grammar of a language. This approach evolved naturally from what had
long been the standard in theoretical linguistics, where the idea of constituent gram-
mar dates back to Wundt (1900) and Bloomfield (1914, 1933). Chomsky (1956)
later introduced the Context-Free Grammar (CFG), which has become the dominant
mathematical model of natural language phrase structure. The CFG formalism has
also had particular appeal for NLP researchers due to the abundance of efficient al-
gorithms for parsing and learning. Symbolic approaches, however, have inherent
drawbacks. In particular, they require enormous rulebanks that must be developed
by expert linguists at great expense, and may be fairly inflexible, making it difficult
to adapt them to new domains or changing patterns of language use.

Since the early 1990s, most NLP work has shifted to statistical approaches,
the kinds of approaches we use in this dissertation. Instead of writing rules by
hand, researchers began to use statistical machine learning techniques to automati-
cally recognize patterns in tag sequences and parse trees, thus inducing probabilistic
models of grammar simply by seeing example analyses (Lari and Young, 1990; Je-
linek et al., 1990; Ney, 1991; Kupiec, 1992). Perhaps most importantly for our
purposes, these empirically-driven approaches have the major advantage that they
learn directly from the data itself, meaning that the parameters of the learned models
will reflect the way the language is actually being used.

The most accurate statistical NLP tools to date are built using supervised

machine learning approaches, in which the training data contains pairs of inputs
and their corresponding expected outputs. For a task like POS-tagging, this means
sentences paired with full tag sequences; for parsing, it might mean either bare
sentences or POS-tagged sentences paired with full parse trees. Research on super-
vised learning has produced extremely effective taggers and parsers — for those
languages for which annotated corpora are available. The best POS taggers for the
Penn Treebank (Marcus et al., 1993), a million-word corpus of phrase-structure

3

parse trees of English news text, have accuracies above 97% (Manning, 2011). The
best constituent parsers on the same data exceed 91% F1 scores (Charniak and
Johnson, 2005; Petrov and Klein, 2007).

These supervised approaches, however, necessarily require large amounts
of annotated data in the target language or domain. Large treebanks are simply
not a viable option for under-studied languages due to a lack of expert linguists
who work on those languages, a lack of time available for those experts to spend
on annotation efforts (since they are presumably busy with their own research), and
especially a lack of funding to pay experts for their time and effort. As a result, there
are currently not more than a few dozen languages with non-negligible amounts of
machine-readable data (Maxwell and Hughes, 2006; Abney and Bird, 2010). For
the thousands of languages and countless domains for which these resources are not
available, alternative approaches must be explored.

The other end of the spectrum from supervised learning is appropriately
called unsupervised learning. Under this paradigm, algorithms attempt to divine lin-
guistic structure without the benefit of fully annotated example outputs (like parse
trees). Early research in this area explored various ways that guidance could be
given to the learning algorithms, without resorting to giving full examples; this of-
ten took the form of various constraints that restrict the parameter space that the
algorithms must examine. For POS-tagger induction, this often meant, in addition
to unannotated text, a restricted set of valid tags would be given for each word
type so that, for example, the algorithm would not learn that “the” should be a verb
(Merialdo, 1994). For parsing, this could mean restrictions on which words may be
dependents of other words (Carroll and Charniak, 1992) or specification of which
strings of tokens are constituents (Pereira and Schabes, 1992).

Ultimately, the most successful unsupervised approaches have tended to
be those that define a generative probabilistic model and estimate its parameters
using techniques such as maximum likelihood estimation with the Expectation-
Maximization (EM) algorithm (Merialdo, 1994; Ney, 1991; Klein and Manning,
2002, 2004).

4

1.3 Weakly-Supervised Learning

This dissertation is concerned with learning models from so-called weak su-

pervision. While this term could mean many things, we take it to broadly mean
learning without abundant amounts of data, and without full, expert-produced an-
notations. We examine these issues for a variety of NLP tasks, and explore a vari-
ety of forms of supervision for each of those tasks, in order to help us (and other
researchers) understand the trade-offs between various forms and amounts of anno-
tation. The ultimate goal of this line of research is to make it possible to efficiently
build NLP tools for languages and domains for which it is not feasible to acquire
traditional forms of supervised training data. Dealing with this paucity of resources
is what drives the questions that underlie this dissertation: Can we train tools for
syntactic analysis from less supervision, or less-costly supervision, and how can we
make better use of the data that we have available?

Broadly speaking, our approach is to use whatever information we have
available to construct effective inductive biases (Mitchell, 1980) that will help guide
our learning algorithms toward finding better parameters. These biases will encode
our basic beliefs about how the models should look. In this work, we examine
two complementary approaches to inducing inductive biases: generalizing small
amounts of human-provided guidance, and encoding universal grammatical princi-
ples.

1.3.1 Minimal input from annotators

While it is certainly true that for most under-studied languages and domains,
it is not possible to acquire the amount of annotation needed to train state-of-the-art
NLP tools, it is almost always possible to acquire some information from a knowl-
edgeable person. With a very small annotation budget, it becomes important to
figure out how best to allocate our funds. The goal of a small annotation effort
is to maximize the benefit (measured in percent-improvement of the final model)
given the fixed budget (measured in money). This requires optimizing according to
several variables.

5

We must first decide what annotation tasks should be completed. The tasks
we choose should be fast to complete, making efficient use of the annotators’ time,
and they should produce data that is valuable to the model. We then need to decide
who should perform the tasks. Expert linguists may be able to provide complex
annotations with high quality, but there are not very many of them who are knowl-
edgeable about any particular language, they are expensive to hire, and they have
limited amounts of time that can be dedicated to annotation tasks. Thus, having ex-
perts perform simple tasks would be a poor allocation of budget. Finally, we must
decide how time should be dedicated to each annotation task. It might be best to
have a small amount of difficult, but highly valuable tasks that can be done only
by experts, complemented with a larger amount of shallower annotation that can be
done by non-experts at lower cost.

Once we have these annotations, we need to be able to extract as much in-
formation out of them as we can to achieve the best performance we can on our
models. Likely this will involve analyzing them carefully with a procedure that
generates an initial starting estimate for the parameter values based on whatever
information is available. Additionally, it may require the use of procedures that au-
tomatically generalize from the small sample of annotator-provided data to a larger
(possibly noisy) corpus of pseudo-annotated data.

1.3.2 Universal grammar

The concept of universal grammar, in the strictest sense, refers to a theory
promoted by Chomsky (1965) which argues that all natural languages have a com-
mon underlying structure, and that the human brain is hard-wired with a small set
of grammar rules that give us the ability to learn language by mapping what we
hear onto that structure. For our purposes, we use a weaker definition of universal,
in which we recognize that, cross-lingually, languages tend to share certain broad
grammatical properties. Of particular value to us is the observation that natural
languages seem to follow the principle that simpler syntactic structures tend to be
more common than complex ones. With prior beliefs about how languages work,
we can design statistical models that are biased toward simpler grammars, encour-

6

aging them to assign simpler syntactic analyses to sentences.
Chomskian theories assume that human language learning is highly con-

strained by the set of representations that can be supported by the architecture of the
brain (Goldwater, 2007). Thus, computational approaches that have employed the
concept of universal grammar in the past have tended to treat these universal char-
acteristics as a set of hard constraints on the space of possible grammars that can be
learned (Villavicencio, 2002). Since we are interested in a probabilistic modeling
approach, we have the advantage that we can treat universal grammatical informa-
tion as soft constraints (Goldwater, 2007). This soft approach is consistent with
our views of language learning as statistical: the grammar of natural languages is
known to be very flexible, but it has very strong tendencies, such as the tendency to
prefer simpler syntactic structures when possible. Soft constraints are able to guide
the learner toward more appropriate grammars, while allowing these preferences to
be overridden when there is compelling contradictory evidence in the data.

This approach can be seen as a linguistic argument for the Minimum De-
scription Length (MDL) principle (Rissanen, 1995), or “Occam’s razor”. The MDL

principle states that when we are attempting to find the best hypothesis to describe a
set of examples, we should prefer the hypothesis that is compact in length, but that
describes the data with reasonable accuracy. For our task, we are attempting to find
the grammar that describes a set of example sentences. Thus, the “length” in ques-
tion is the grammar itself: word-tag relationships, grammatical production rules,
etc. The MDL principle says that we should choose a grammar that minimizes the
number of relationships and rules used, or alternatively, that maximizes the amount
of rule reuse, as it seeks to describe all example sentences. The MDL principle
ensures a balanced model: neither a model that overfits the data by choosing pa-
rameters are too closely tied to data, nor an over-simplified model that describes the
data poorly (Villavicencio, 2002).

Given our desire to train NLP models in low-supervision scenarios, the pos-
sibility of constructing inductive biases out of universal properties of languages is
enticing: if we can do this well, then it only needs to be done once, and can be
applied to any language or domain without the need to collect additional new an-

7

notation data. One of the main driving factors behind the development of weakly-
supervised learning techniques is that we want to be able to build NLP tools for new
domains and languages quickly, so minimizing the amount of new data that must
be collected is crucial.

Furthermore, such universal biases help to alleviate the issues of domain-
dependence that cause problems for supervised approaches (Smith, 2006). If the
training data is domain-specific, then models trained using it are unlikely to perform
well when applied to other novel domains (Daumé III and Marcu, 2006). Universal
biases are domain-independent, meaning a reduction in the amount of new-domain
information that is required for adaptation.

This work is similar in spirit to, for example, Collins (1999), who demon-
strated the value of capturing constituent “heads”; Naseem et al. (2010), who showed
that significant gains can be made in the area of unsupervised dependency parsing
by starting with a small set of universal dependency rules that guide learning by
specifying a few key head-argument relationships; or Cohn et al. (2010), who de-
veloped inductive biases in a Bayesian setting to encourage sparse grammars with
shallow productions while inducing Tree Substitution Grammars.

We take a different path, working within the Combinatory Categorial Gram-
mar (CCG) formalism. The CCG framework requires that each word token in a
sentence be associated with a complex category that dictates its relationships to sur-
rounding constituents — effectively dictating its role in the syntax of the sentence.
Our strategy is to encourage our models to prefer simpler syntactic structures by
developing Bayesian priors that encode the idea that we should universally prefer
simpler, more cross-linguistically plausible categories. By grounding our priors in
CCG, we are building our inductive biases directly into a true grammatical formal-
ism.

Figure 1.2 shows a pair of CCG parse trees with alternate analyses for the
same sentence: “a man walks a dog”. The sentence contains two noun phrases: “a
man” and “a dog”. In Figure 1.2a, these noun phrases are analyzed in the same way,
with the binary production ‘np→ np/n n’. This repetition, and the fact that the word
“a” receives the same category np/n in both cases, conforms to our MDL-inspired

8

s

np

np/n n

s\np

(s\np)/np

np

np/n n
a man walks a dog

(a) A simple parse in which both noun
phrases are analyzed the same way, and
the word “a” is assigned the same cate-
gory on both occurrences.

s

np

np/n n

s\np

(s\np)/np

np

np/(n/n) n/n
a man walks a dog

(b) An overly-complex parse in which there
are two different noun phrase analyses, the
word “a” is assigned two different categories
(one of which is more complex), and the word
“dog” is given a more complex category.

Figure 1.2: Alternate CCG parse trees for the sentence “a man walks a dog”.

belief that the optimal grammar will be one that does not contain more complexity
than necessary. The analysis in Figure 1.2b uses different production rules for each
of the noun phrases, and different categories for the word “a”, thus increasing the
length of the grammar. Furthermore, the categories chosen for words “a” and “dog”
in the second noun phrase, np/(n/n) and n/n, are themselves more complex than
the categories in the first noun phrase, np/n and n. As we will see beginning in
Chapter 3, there is a positive interaction between biasing toward small rulesets and
small categories: if we encourage the grammar to use simpler categories, then we
will be further biasing the model toward reusing rules — specifically reusing the
rules that contain those simpler categories.

While there has been much work in computational modeling of the inter-
action between universal grammar and observable data in the context of studying
child language acquisition (e.g. Villavicencio (2002); Goldwater (2007); Pearl and
Goldwater (In press)), we are interested in applying these principles to the design
of models and learning procedures that result in better tagging and parsing tools.

1.3.3 Combining the universal with the empirical

In order to train the best weakly-supervised NLP tools we can, it is important
that we make the best possible use of all language information we have available;
this means both efficiently collecting the right kinds of annotations from people, and

9

combining them with the right universal inductive biases. Thus, our work brings
together the long-standing notion of universal grammar with contemporary data-
driven statistical machine learning techniques.

Our work on CCG in performed using Bayesian techniques. A grammar
can be thought of as the combination of structure and parameters; the CCG formal-
ism and corresponding universal biases give us the structure, while the data-driven
machine learning estimates the parameters. The Bayesian framework seems to be
well-matched to this approach since our inductive biases — those derived from uni-
versal grammar principles, human-annotated data, and estimations based on unan-
notated data — can be encoded as priors, and we can use Markov chain Monte
Carlo (MCMC) inference procedures to automatically blend these biases with the
way language is seen in actual corpora. This allows us to conveniently incorporate
the available linguistic information into proven statistical techniques, and results in
learned models that perform better than that which could be learned from the text
alone.

Given that NLP systems seem to be most successful when the kind of syn-
tactic analysis performed is tailored to the specific end task, highly-adaptable learn-
ing methods seem particularly important. For approaches like the work of Chiang
(2005) or Zettlemoyer and Collins (2005), where syntactic induction is performed
within a larger task (phrase-based translation and semantic parsing, respectively),
the ability to combine universal constraints with empirical data seems particularly
valuable.

In Table 1.1, we summarize the sources of weak supervision discussed in this
dissertation. Each column defines a broad genre of supervision: universal grammar
constraints, word-tag association lexicons, or various kinds of annotation. Each
of these supervision sources has its own benefits but also its own acquisition chal-
lenges, from universal information that only needs to be done once but must be
done by an expert, to fast annotation that requires less expertise but must be done
on many individual documents. Importantly, all of these sources of information are
complementary, since they each provide their own view of the underlying grammat-
ical structure.

10

Grammar
constraints

Lexicons Shallow
annotations

Examples “prefer simpler
analyses”

word-to-tagset mappings brackets,
dependencies

Scope universal,
cross-lingual

specific to the language
or domain

can annotate
many documents

Expertise
required

expert expert non-expert

Ease to
obtain

based on
grammar
formalism

linguistic knowledge, but
can automatically expand
a (very) small lexicon
into a large one

can be fast, noisy,
and incomplete

Table 1.1: Sources of weak supervision.

1.4 This Dissertation

In this work, we present new algorithms, models, and approaches designed
to learn grammatical information from weak supervision. On the annotation front,
we look at ways of intersecting a variety of different forms of supervision in com-
plementary ways, thus lowering the overall annotation burden. Sources of informa-
tion include tag dictionaries, morphological analyzers, and constituent bracketings,
as well as unannotated corpora. In terms of algorithms, we present new approaches
that are able to combine simple, fast-to-obtain annotation with unannotated text to
remove the need for slower-to-obtain types of annotation. We also present new
parsing models that are able to capture and exploit linguistic information for better
learning.

In Chapter 2, we show that for the task of part-of-speech (POS) tagging, a
simple building-block of grammatical analysis, it is possible to combine different
forms of simple annotation collected from a linguist in just a few hours to train
taggers that provide accuracies comparable to existing systems that use years worth
of annotation to train. We accomplish this by introducing machine learning algo-

11

rithms that are able to generalize from the tiny amount of initially-provided annota-
tion data that covers only a small fraction of the language, to automatically induce
some amount of information on every token in a previously-unannotated corpus.

The remainder of this dissertation describes work on Combinatory Catego-
rial Grammar (CCG), a grammatical formalism notable for its use of structured,
logic-backed categories that describe how each word and constituent fits into the
overall syntax of a sentence. In Chapter 3, we move from POS-tagging to weakly-
supervised learning of a sequence model that labels each token in a text with a
one of these CCG categories, a task known as supertagging. These supertags are a
valuable stage in grammatical analysis because they provide more grammatical in-
formation than simple POS tags without requiring the modeling of the full grammar
of a sentence. While the task of supertagging is substantially more difficult than
POS-tagging due to the very high number of potential tags for any given word, we
are able to show how linguistic universals intrinsic to the CCG formalism itself —
in particular, the knowledge that certain categories are more likely than others, and
that certain pairs of categories are likely to be in close proximity — can be encoded
as Bayesian priors to improve learning when only limited supervision is available.
We further show that we can build on the techniques we developed for POS-tagging
that allowed us to automatically extract valuable information from only weak su-
pervision in order to combine corpus-specific information with these universals to
learn even better supertagging models.

In Chapter 4, we extend these principles to full parsing models by using our
prior on the relative likelihoods of categories throughout the parse tree, not just at
the supertag level. We present a novel model in §4.3 that shows how the other CCG

principle used in the supertagger — that certain pairs of categories are more likely
to be in close proximity — can be incorporated into our parsing model to comple-
ment the bias toward simpler categories. In §4.4, we demonstrate that fast, noisy,
incomplete, cheap-to-obtain bracket annotations, collected from human annotators
in only a few hours, can provide positive benefit when training a parser. Finally, in
§4.5, we develop a novel nonparametric parsing model that is able to use an infinite
set of CCG categories to learn parsers in the face of incomplete information.

12

Chapter 2

Minimally-Supervised POS Tagging

Learning accurate part-of-speech (POS) taggers based on plentiful labeled
training material is generally considered a solved problem. The best taggers obtain
accuracies of over 97% for English newswire text in the Penn Treebank, which can
be considered as an upper-bound that matches human performance on the same task
(Manning, 2011). However, this story changes as soon as the amount or quality of
annotation is reduced: learning a POS-tagger from less training data, or different
kinds of training data, remains a difficult problem. In particular, there has been
recent work on efforts to induce POS tags without labels (Christodoulopoulos et al.,
2010); learn from POS-tag dictionaries (Merialdo, 1994; Smith and Eisner, 2005;
Ravi et al., 2010b), incomplete dictionaries (Hasan and Ng, 2009) and human-
constructed dictionaries (Goldberg et al., 2008); bootstrap taggers for a language
based on knowledge about other languages (Das and Petrov, 2011); and create su-
pervised taggers for new, challenging domains such as Twitter (Gimpel et al., 2011).

Learning from just a partial tag dictionary — a mapping from some small
set of known words to their potential tags — and a raw, unlabeled corpus has partic-
ularly strong appeal since it seemingly requires substantially less annotation effort.
This type of learning, often characterized as unsupervised or weakly-supervised
training, but which we call type-supervised learning to distinguish it from training
only from raw text, seems particularly relevant for developing taggers for languages
or domains in which no annotated resources exist. While it may take substantial
effort to produce a corpus of labeled sentences for token-supervised learning, pro-

The contents of this chapter are based on the following publications: Dan Garrette and Jason
Baldridge. 2012. Type-supervised hidden Markov models for part-of-speech tagging with incom-
plete tag dictionaries. In Proc. of EMNLP; Dan Garrette and Jason Baldridge. 2013. Learning
a part-of-speech tagger from two hours of annotation. In Proc. of NAACL; Dan Garrette, Jason
Mielens, and Jason Baldridge. 2013. Real-world semi-supervised learning of POS-taggers for low-
resource languages. In Proc. of ACL. My co-authors worked with me to develop the ideas underlying
this work.

13

ducing a dictionary may be relatively cheap.
There is real need for the ability to learn taggers using very little data: only

a tiny fraction of the world’s languages have enough data for standard supervised
models to work well (Abney and Bird, 2010). The collection or development of
resources is a time-consuming and expensive process, which creates a significant
barrier for the development of tools for under-studied languages where there are few
experts and little funding. It is thus important to develop approaches that achieve
good accuracy based on the amount of data that can be reasonably obtained, for
example, in just a few hours by a linguist doing fieldwork on a language that he or
she does not even speak natively.

The work presented in this chapter is threefold. First, we present our data
annotation effort in which we asked linguists, in time-controlled sessions, to provide
a variety of manual annotation on multiple languages, including truly low-resource
languages that have not been studied in NLP and thus, for which there really are not
resources. Second, we present a training procedure that is able to train a reasonably-
accurate POS-tagger from the amount of data that can be collected from a linguist in
only a few hours by automatically generalizing the annotations to cover the entire
language. And third, we perform a series of experiments to evaluate the trade-offs
of using various kinds and amounts of annotation, with the goal of gaining insights
that will allow us to make recommendations to researchers wishing to train POS-
taggers for languages with no existing resources (Garrette and Baldridge, 2012,
2013; Garrette et al., 2013).

2.1 Background

Type-supervised POS-tagger learning has a long history in NLP, with most
work centered on using Expectation-Maximization (EM) to train Hidden Markov
Model (HMM) taggers (Kupiec, 1992; Merialdo, 1994). Early research appeared to
show that learning from types works nearly as well as learning from tokens, with
researchers in the 1990s obtaining accuracies up to 96% on English (e.g. Kupiec
(1992)). However, the tag dictionaries in these cases were obtained by automatic

14

extraction from corpora with token-level annotations, thus bending the parameters
of the scenario that they were purporting to solve. While replicating earlier experi-
ments, Banko and Moore (2004) discovered that performance was highly dependent
on cleaning tag dictionaries using statistics gleaned from the token-level frequen-
cies. Removing low-frequency entries from the dictionary greatly simplifies the job
of a type-supervised HMM since it no longer needs to entertain entries for uncom-
mon word-tag pairs (or mistaken pairs due to annotation errors), which otherwise
stand on equal footing with the common ones and have a strong tendency to derail
learning. When a full, noisy tag dictionary is employed, Banko and Moore found
accuracies drop from 96% to 77%, while Smith and Eisner (2005) saw smaller
drops, but with a more sophisticated contrastive estimation model.

Following on Banko and Moore’s findings, some subsequent researchers
have sought to improve performance in the face of full, noisy dictionaries. However,
most of this work still relies on unrealistic assumptions about the tag dictionaries
they use as input (Toutanova and Johnson, 2008; Ravi and Knight, 2009; Hasan
and Ng, 2009). For example, tag dictionaries are typically constructed from every
word-tag pair in the corpus, including the data that is to be used as raw, unlabeled
text during training. This is troublesome because it means that every word encoun-
tered during training will have an entry in the tag dictionary, substantially lower-
ing the degree of ambiguity that the learning algorithm must contend with. But
in real-world scenarios, perfect corpus knowledge is never possible, and designing
algorithms around this assumption is highly problematic because the scenarios for
which type-supervised learning makes the most sense — the low-resource scenarios
— are precisely those scenarios in which one must learn using a corpus populated
primarily with unknown words. Even more egregiously, most work constructs the
tag dictionary additionally using the test corpus word-tag pairs, meaning that the
evaluation of these taggers does not measure how they perform on sentences that
contain unseen words or unseen word-tag pairs — a certainty in any real use of a
trained tagger — which allows their work to side-step the most difficult cases for
the tagger to handle. Worse, for rare words there will almost certainly be exactly
one possible tag listed in the dictionary, meaning that the tagger will achieve perfect

15

performance on the words that should be maximally ambiguous since the model has
no information about them!

The justification for the use of labeled-corpus-extracted tag dictionaries is
that they are a proxy for dictionaries produced by linguists. But even if we do away
with the assumption of completeness exercised by most previous work, this setup
still overstates the effectiveness of dictionary-based training. In addition to pruning
based on should-be-unavailable token-level annotations, dictionaries extracted from
corpora are unrealistically biased towards including only the most likely tag for each
word type, and especially only the tag most likely in the given domain, resulting in
a cleaner dictionary than one would find in real scenario. Further, tag dictionaries
extracted from annotated tokens benefit from the annotation process of labeling and

review and refinement over an extended collaboration period by teams of trained
expert annotators.

2.2 Setting up a Realistic Training Scenario

We are interested in developing tools for low-resource languages, and, thus,
must directly confront the issue of how to bootstrap a tagger when no annotation
is available. Rather than attempting to “simulate” low-resource scenarios but re-
lying on large resources, we chose to collect our own annotations in a scenario
that resembles what might be possible for a linguist working in the field. For this,
we set up time-constrained annotation sessions and had linguists produce annota-
tions for truly low-resource languages with which they were familiar, but for which
they were not native speakers. As professionals studying and documenting those
languages, they were the ideal annotators for the experimental data since they are
precisely the type of individuals that this line of research is designed to help.

The annotations produced under our conditions differ in several ways from
the labeled data used in previous work. Most obviously, there is less of it. In-
stead of using hundreds of thousands of labeled tokens to construct a tag dictionary
(and hundreds of thousands more as unlabeled (raw) data for training), we only use
the 1-2k labeled tokens or types provided by our annotators within the timeframe.

16

Our training data is also much noisier than the data from a typical corpus: the an-
notations were produced by a single non-native-speaker working alone for only a
few hours. Therefore, dealing with the size and quality of training data were core
challenges to our task. We are particularly interested in being able to assess the
trade-offs between the amount of time spent on various annotation tasks, and the
gains in tagger accuracy produced by the additional annotation. Therefore, we had
the annotators work in specific time increments, and annotate data in multiple ways.
We specifically look at the effect of four types of data collection:

1. Time spent annotating full sentences (token supervision)
2. Time spent creating tag dictionary (type supervision)
3. Time spent constructing a morphology finite state transducer (FST)
4. Amount of raw data available for training

To learn a POS-tagger from so little labeled data, we developed an approach
that starts by generalizing the initial annotations to cover the entire raw corpus.
Our approach uses label propagation (LP) (Talukdar and Crammer, 2009), which
allows us to connect annotated information to unannotated text in a graph and push
labels between them. The LP algorithm is used to infer a distribution over POS

tags for every token in the raw corpus, essentially producing a soft tagging of every
previously-unannotated sentence. We then apply a novel weighted variant of the
model minimization procedure originally developed by Ravi and Knight (2009) to
find an approximately-minimal set of tag bigrams needed to explain the data. This
procedure allows us to induce a hard tagging of every sentence from the soft one.
The hard tagging contains significantly less noise than the LP output, and, crucially,
allows us to estimate sequence and word-tag frequency information even when the
only annotations provided were at the type level. Using this hard tagging of a larger
corpus, we can effectively estimate initial transition and emission distributions to
use as a starting point for learning of an HMM using EM, which far outperforms just
using EM on the raw annotations themselves.

We explore these strategies in the context of POS-tagging for Kinyarwanda
and Malagasy. We also include experiments for English, pretending it is a low-

17

resource language. The overwhelming take-away from our results is that type su-
pervision — when backed by an effective semi-supervised learning approach that is
able to induce sequence and frequency information — is the most important source
of linguistic information. Also, morphological analyzers help for morphologically-
rich languages when there are few labeled types or tokens (and, it never hurts to use
them). Finally, performance improves with more raw data, though we see dimin-
ishing returns past 400k tokens. With just four hours of type annotation, our system
obtains good accuracy across the three languages: 89.8% on English, 81.9% on
Kinyarwanda, and 81.2% on Malagasy.

In order to ensure the validity of our experimental scenarios, all results pre-
sented in this work adhere to clear standards regarding the use of data. In every
experiment, data is always divided into four disjoint sets: data used to construct
the tag dictionary, unlabeled data to be used during training, an annotated develop-
ment evaluation corpus for hyperparameter tuning, and an annotated test evaluation
corpus for measuring final results.

Our results compare favorably with previous work despite using consider-
ably less supervision and a finer-grained set of tags. For example, Li et al. (2012)
use the entirety of English Wiktionary directly as a tag dictionary to obtain 87.1%
accuracy on English, below our result. Täckström et al. (2013) average 88.8%
across eight major languages, but for Turkish, a morphologically rich language,
they achieve only 65.2%, significantly below our 81.9% for morphologically-rich
Kinyarwanda.

2.3 HMM Learning

Hidden Markov models (HMMs) are well-known generative probabilistic se-
quence models commonly used for POS-tagging. An HMM is defined by a set of
transition parameters πt(u), the probability of transitioning from tag t to tag u, and
a set of emission parameters φt(w), the probability of emitting word w for a token
tagged as t. The probability of a tag sequence t for a word sequence w is deter-
mined from the product of emission and transition probabilities (where 〈S〉 and 〈E〉

18

are special start and end tags, respectively):

P (w, t) = π〈S〉(t1) ·

(
N∏
i=1

φti(wi) · πti−1
(ti)

)
· πtN (〈E〉)

HMMs can be trained directly from fully-supervised, token-labeled data by
calculating maximum likelihood estimates or from type-supervision (in the form of
tag dictionaries that constrain the set of tags that each word may take) using the
Expectation Maximization (EM) algorithm (Dempster et al., 1977).

2.3.1 Token-supervised training

When token-level tag annotations are given, an HMM can be trained simply
by taking Maximum Likelihood Estimates (MLE). Because the MLE calculation
will result in zero-probabilities for any emissions or transitions that were absent
form the training corpus, we employ simple add-δ smoothing to assume non-zero
counts for any value licensed by the tag dictionary. While more complex smooth-
ing methods exist, this simple scheme is quite effective: an HMM trained with δ=0.1
for both transitions and emissions on a tag dictionary built from sections 00-15 of
the Penn Treebank (PTB) corpus, using sections 16-18 as supervised training data,
and evaluated on sections 19-21, achieves 94.0% accuracy.

2.3.2 Type-supervised training

Token-level supervision is, however, not often available. For those contexts,
we must learn from some form of weaker supervision. This has traditionally been
done using a combination of unlabeled text and tag dictionary. As is standard, we
use Expectation-Maximization (EM) to iteratively estimate token-label counts from
the unlabeled data.

The EM algorithm has two alternating phases. In the Expectation phase, we
use the Forward-Backward algorithm (Baum, 1972) to compute the expected counts
for every possible transition and emission in the raw corpus. In the Maximization

step, we sum those expected counts and compute the MLE.

19

In order to begin the iterative process, the algorithm requires initial esti-
mated transition and emission distributions so that it can compute the first round of
expected counts. The simplest way to estimate these distributions would be to just
assume that all distributions are uniform. However, given any available informa-
tion, it is usually advantageous to attempt to pick a better initialization. Relevant
information might include any token-level annotations that are available, or even
estimates carefully derived from the tag dictionary and raw corpus.

When the EM algorithm terminates, the result is a final set of expected tran-
sition and emission counts from which we can compute the MLE. These counts
(which may be fractional) will be non-zero for every word-tag pair allowed by the
tag dictionary, and will cover every token in the raw corpus. However, there will
clearly not be counts for words that do not appear in the raw corpus. But since
novel words may appear in the test data, it is critical that our HMM not assume zero
probabilities for these words. To avoid this scenario, we smooth the final computed
expected counts from EM as we would with normal token-label counts in the fully-
supervised case: by assuming they have some small fractional count δ (and adding
δ to the count of every known word as well).

2.4 Data

In past POS-tagging work, tag dictionaries have typically been automatically
extracted from large annotated corpora. Additionally, in most cases researchers
have taken the additional step of removing tag dictionary entries that occur with low
frequencies (see Banko and Moore (2004) for discussion). However, conclusions
about how well these experimental scenarios, given their reliance on large labeled
corpora, often do not generalize to low-resource situations.

In order to determine how our tagger learning methods would perform in true
low-resource scenarios — exactly those languages for which weakly-supervised
learning is needed — we designed and carried out an annotation effort in which we
had linguists annotate data that we could use to train our models. Our experiments
use Kinyarwanda (KIN) and Malagasy (MLG), both true low-resource languages.

20

KIN is a Niger-Congo language spoken in Rwanda while MLG is an Austronesian
language spoken in Madagascar. Additionally, KIN is morphologically-rich, mean-
ing that are many morphemes in the language that can be concatenated to make
a wide variety of words, resulting in a higher word-type to word-token ratio than
is seen in a language like English; this presents additional challenges in learning.
Annotations for KIN and MLG were performed by linguistics graduate students who
were familiar with the languages, but not native speakers. Our experiments are thus
relevant to the reasonable context in which one has access to a linguist who is famil-
iar with the target language and a given set of POS tags. We also used English (ENG)
for experiments comparing multiple annotators on the same data, and to compare
with previous work.

2.4.1 Data sources

The KIN texts are transcripts of testimonies by survivors of the Rwandan
genocide provided by the Kigali Genocide Memorial Center. The MLG texts are
articles from the websites1 Lakroa and La Gazette and Malagasy Global Voices,2 a
citizen journalism site.3 For each language, the word tokens were divided into four
sets: training data to be labeled by annotators, raw training data, development data,
and test data. The KIN and MLG data have 12 and 23 distinct POS tags, respectively.

The Penn Treebank (PTB) (Marcus et al., 1993) is used as ENG data. Section
01 was used for token-supervised annotation, sections 02-14 were used as raw data,
15-18 for development of the FST, 19-21 as a dev set and 22-24 as a test set. The
PTB uses 45 distinct POS tags.

2.4.2 Annotation-collection tasks

We are interested in studying how different kinds of annotation affect model
performance so that we might be able to make concrete suggestions to field linguists

1wwww.lakroa.mg and wwww.lagazette-dgi.com
2www.ark.cs.cmu.edu/global-voices/; wmg.globalvoicesonline.org/
3The public-domain data is available at github.com/dhgarrette/low-resource-pos-tagging-2013

21

wwww.lakroa.mg
wwww.lagazette-dgi.com
www.ark.cs.cmu.edu/global-voices/
wmg.globalvoicesonline.org/

who are collecting data in real scenarios. Therefore, we asked the annotators to
perform two different time-constrained annotation tasks, which we explain below.

In the first task, type-supervision, the annotator was given a list of the words
in the target language (ranked from most to least frequent), and they annotated
each word type with its potential POS tags. The annotators were allowed to give
multiple tags for each word if necessary, attempting to identify all possible tags
relevant to the word. The annotators were also permitted to skip words if they were
unsure of the correct tags; these words were simply ignored for training, along with
all the words that were not reached due to time constraints. The word types and
frequencies used for this task were taken from the raw training data and did not
include the test sets.

In the second task, token-supervision, full sentences were annotated with
POS tags. Sentences were taken from the raw corpora and presented, in order, to the
annotators.4 Again, annotators were permitted to skip words if they felt it neces-
sary; in these (rare) cases, the skipped tokens were simply excluded from the final
transition and emission counts, along with any sentences that were not reached in
time.

Having both kinds of annotations allows us to investigate the relative value
of each with respect to training taggers. Token-supervision provides valuable fre-
quency and tag context (transition) information, but type-supervision produces larger
dictionaries, giving higher word-type coverage. This can be seen in Table 2.1,
where the dictionary size column in the table gives the number of unique word/tag
pairs derived from the data.

It was important that we be able to measure tagger performance directly
against the time required to produce the inputs to learning so that we could see how
learning ability progressed over the course of the annotation task. To accomplish
this, we had our annotators work in 30-minute increments, which allowed us to
run experiments measuring the incremental benefit of an additional batch of anno-

4Providing the sentences in corpus-order was a poor choice. Consecutive sentences tend to be
on the same topic, and thus reuse the same words, leading to fewer distinct words being annotated.
A better ordering of sentences, even simply shuffling the order of sentences, would almost certainly
perform better.

22

sent. tok. dict.
KIN human token-level A 90 1537 750
KIN human type-level A 1798
MLG human token-level B 92 1805 666
MLG human type-level B 1067
ENG human token-level A 86 1897 903
ENG human type-level A 1644
ENG human token-level B 107 2650 959
ENG human type-level B 1090

Table 2.1: Statistics for Kinyarwanda, Malagasy, and English data annotated by two
equally-experienced annotators (A and B). Annotations were provided separately at
the token level and type level.

tations. Being able to measure accuracy over the course of the annotation process
can help us to understand where the gains begin to diminish. Additionally, hav-
ing increments for each type of annotation allows us to see how different kinds of
annotations might be combined within a fixed annotation budget.

Baldridge and Palmer (2009) found that annotator expertise greatly influ-
ences effectiveness of active learning for morpheme glossing, a related task. To
see how differences in annotator speed and quality impact our task, we had two
different annotators complete the same two tasks for English: one who had per-
formed that task before (the “experienced” annotator), and one who had not (the
“novice”). As can be seen in Table 2.1, there are clear differences between the two
annotators. Most notably, the experienced annotator worked much more quickly
and, thus, provided much more data.

In the error analysis of some of our previous work we found that annota-
tor mistakes on high-frequency tokens, such as punctuation and the word “to”, can
have a large negative impact on overall accuracy (Garrette and Baldridge, 2013).
We sought to lessen these problems in our second data collection — the data used
for the results presented here — by providing clear instructions to our annotators
about the correct uses of these low-entropy tags. We felt that this step was justified
because, while it is not possible to provide annotation instructions for all word types

23

KIN MLG ENG - Exp. ENG - Nov.
time type token type token type token type token
0:30 362 316 329 262 225 296 96 197
1:00 801 559 660 422 910 522 210 308
1:30 1352 794 981 581 1735 782 409 469
2:00 1814 948 1363 785 2660 1036 631 646
2:30 2190 1137 1698 927 3632 1201 984 797
3:00 2539 1324 2043 1082 4561 1314 1350 953
3:30 3028 1477 2410 1221 5587 1508 1725 1091
4:00 3682 1651 2773 1378 6598 1697 2185 1220

Table 2.2: Annotations for each language and annotator (experienced and novice)
as time increases. Shows the number of tag dictionary entries from type annotation
vs. token.

(or even all punctuation), it is reasonable that, when designing a set of POS tags, one
would have a good idea of how the punctuation and closed-class tags are intended to
be used. These decisions can be trivially conveyed to the annotator while explain-
ing the task, resulting in cleaner annotations and leaving the annotators’ attention
focused on the lower-frequency and open-class words.

Ngai and Yarowsky (2000) investigated the effectiveness of rule-writing ver-
sus annotation (using active learning) for chunking, and found the latter to be far
more effective. While we do not explore a rule-writing approach to POS-tagging,
we were interested in the impact of rule-based morphological analyzers as a com-
ponent in our semi-supervised POS-tagging system.

2.4.3 Annotated data

Table 2.2 gives statistics for all languages and annotators showing progress
during the 4-hour tasks. With token-annotation, tag dictionary growth is slower
because high-frequency words are repeatedly annotated, producing only additional
frequency and sequence information. In contrast, every type-annotation label is a
new tag dictionary entry. For types, growth increases over time, reflecting the fact
that high-frequency words (which are addressed first) tend to be more ambiguous

24

ENG - Exp. ENG - Nov.
type tok type tok

0:30 0.01 0.02 0.01 0.01
1:00 0.05 0.03 0.01 0.02
1:30 0.10 0.04 0.02 0.02
2:00 0.15 0.05 0.03 0.03
2:30 0.19 0.06 0.05 0.04
3:00 0.24 0.06 0.07 0.05
3:30 0.28 0.07 0.09 0.05
4:00 0.32 0.08 0.11 0.06

Table 2.3: Tag dictionary recall against the test set for ENG annotators on type and
token annotations.

and thus require more careful thought than later words. For ENG, we can compare
the tagging speed of the experienced annotator with the novice: 50% more tokens
and three times as many types. The token-tagging speed stayed fairly constant for
the experienced annotator, but the novice increased his rate, showing the benefit of
practice.

Checking the annotators’ output against the gold tags in the PTB shows that
both had good tagging accuracy on tokens: 94-95%. Comparing the tag dictionary
entries versus the test data, precision starts in the high 80%s and falls to the mid-
70%s in all cases. However, the differences in recall, shown in Table 2.3, are more
interesting. On types, the experienced annotator maxed out at 32%, but the novice
only reaches 11%. Moreover, the maximum recall for token annotations is much
lower due to high repeat-annotation. The discrepancies between experienced and
novice, and between type and token recall, explain a great deal of the performance
disparity seen in the experiments.

2.5 Morphological finite-state transducers

Finite-state transducers (FSTs) can be constructed easily using regular ex-
pressions, which makes them quite useful for phonology, morphology and limited
areas of syntax (Karttunen, 2001). Past work has used FSTs for direct POS-tagging

25

(Roche and Schabes, 1995), but this requires tight coupling between the FST and
target tagset. We use FSTs for morphological analysis: the FST accepts a word type
and produces a set of morphological features. If there are multiple possible analy-
ses for a given word type, the FST returns them all. For instance the Kinyarwanda
verb sibatarazuka “he is not yet resurrected” is analyzed in several ways:

(a) negation, class 2, 1st-person plural, verb, “arazuk”, imperative mood

(b) negation, class 2, NOT YET, “razuk”, imperative mood

(c) negation, class 2, NOT YET, present tense, “zuk”, imperative mood

Class 2 refers to the category reprsenting people in the noun class marking sys-
tem in Kinyarwanda/Bantu. The imperative mood usually indicates a command or
warning.

FSTs are particularly valuable for their ability to analyze out-of-vocabulary
items. By looking for known affixes, FSTs can guess the stem of a word and produce
an analysis despite not having knowledge of that stem. For morphologically com-
plex languages like KIN, this ability is especially useful. Other factors, such as a
large number of morphologically-conditioned phonological changes (seen in MLG)
make out-of-vocabulary guessing more challenging because of the large number of
potential stems (high ambiguity).

Development of the FSTs for all three languages was done by iteratively
adding rules and lexical items with the goal of increasing coverage on a raw dataset.
To accomplish this on a fixed time budget, the most frequently occurring unana-
lyzed tokens were examined, and their stems plus any observable morphological
or phonological patterns were added to the transducer. Additionally, developers
searched for known morphological alternations to locate instances of phonological
change for inclusion. Coverage was checked against a raw dataset which did not
include the test data used for the POS experiments.

The KIN and MLG FSTs were created by English-speaking linguists who
were familiar with their respective language. They also used dictionaries and gram-
mars. Each FST was developed in 10 hours. To evaluate the benefits of more devel-
opment time, a version of the English FST was saved every 30 minutes (Table 2.4).

26

elapsed
time

tokens types
count pct count pct

2:00 130k 61% 2.1k 12%
4:00 159k 75% 4.1k 24%
6:00 170k 80% 6.7k 39%
8:00 182k 86% 7.7k 44%

10:00 192k 91% 10.7k 62%

Table 2.4: Coverage of the English morphological FST during development. For
brevity, showing 2-hour increments instead of 30-minute segments.

tokens types
cov. ambig. cov. ambig.

KIN 86% 2.62 82% 5.31
MLG 78% 2.98 37% 1.13
ENG 91% 1.19 62% 1.97

Table 2.5: Coverage and ambiguity (analyses per word type) of the final FST for
each language.

2.6 Generalizing the Annotations

In order to learn from the extremely small amounts of annotation available
to our system, we have designed the following training scheme. First, we generalize
the initial annotations to cover the entire raw corpus. Next, we automatically clean
up noise from the generalization. Then, we use the cleaned expanded annotations
to initialize EM learning. Finally, we smooth the output expected counts from EM

to produce an HMM, which we use to tag the raw corpus and train an Maximum
Entropy Markov Model (MEMM).

In a low-resource setting, most word types will not be found in the initial tag
dictionary. EM-HMM training uses the tag dictionary to limit ambiguity by restrict-
ing the set of tags with which a word may be associated, so a sparse tag dictionary
is problematic because it does not sufficiently confine the parameter space. Small
dictionaries also interact poorly with the model minimization of Ravi et al. (2010b):
if there are too many unknown words, and every tag must be considered for them,

27

then the minimal model will simply be the one that assumes that they all have the
same tag.

For these reasons, we must automatically expand the initial small set of an-
notations into one that has coverage for most of the vocabulary appearing in the raw
corpus.

2.6.1 Annotation expansion with label propagation

For the initial annotation expansion, we use label propagation (LP) — specif-
ically, the Modified Adsorption (MAD) algorithm (Talukdar and Crammer, 2009)5

— which is a graph-based technique for spreading labels between related items in
a graph. The MAD algorithm uses the concept of an iterative graph random-walk to
assign probability distributions over labels for each node in the graph, given some
seed distributions on a subset of nodes. It constructs an objective based on three
characteristics that the output should be close to any given seed labels and nodes
that are close in the graph should have similar labelings.

Our technique for setting up the LP graph is simple: we create a node for
every token in the raw corpus, a node for every annotated type and token, and then
connect them all via various kinds of feature nodes. We seed the “annotated” nodes
with the labels from the annotations and use the MAD algorithm to push labels from
annotated nodes to unannotated tokens.

The result of the LP procedure is a tag distribution over every raw corpus
token. In other words, we take a raw corpus for which we have no information
about most of its vocabulary and contexts, and we induce noisy, soft annotations
for every token in that corpus.

Defining the LP graph

Our LP graph has several types of nodes, as shown in Figure 2.1. The graph
contains a TOK node for each token of the labeled corpus (when available) and raw

5The MAD implementation we used is provided through the open-source software package Junto:
github.com/scalanlp/junto

28

NEXT man PREV 〈S〉 NEXT dog PREV dog NEXT . PREV man

TOK The 3 1 TOK The 2 1 TOK A 1 1 TOK barks 1 3 TOK walks 2 3 TOK walks 3 3

TYPE The TYPE A TYPE barks TYPE walks

SUF1 e SUF2 he DICTPOS D SUF1 s SUF2 ks DICTPOS N DICTPOS V

Figure 2.1: Subsets of the LP graph showing regions of connected nodes. Graph
represents the sentences “A dog barks .”, “The dog walks .”, and “The man walks
.”. Nodes derived from external dictionaries are optional, and only used for some
extension experiments.

corpus. Each word type has one TYPE node that is connected to its TOK nodes.
Both kinds of nodes are connected with feature nodes.

Seeding the graph is straightforward. With token-supervision, labels for to-
kens are injected into the corresponding TOK nodes with a weight of 1.0. In the
type-supervised case, any TYPE node that appears in the tag dictionary is injected
with a uniform distribution over the tags in its tag dictionary entry.

Bigram Features The PREV x and NEXT x nodes represent the features of a token
being preceded by or followed by word type x in the corpus. These bigram features
capture extremely simple syntactic information.

Affix Features To capture shallow morphological relatedness, we use prefix and
suffix nodes that connect word types that share prefix or suffix character sequences
up to length 5. For each node-feature pair, the connecting edge is weighted as 1/N
where N is the number of nodes connected to the particular feature.

(Optional) External Dictionary For some experiments, we also explored the ef-
fectiveness of using an optional external dictionary in the graph since this is one of
the few available sources of information for many low-resource languages. Though
a standard dictionary probably will not use the same POS tag set that we are tar-
geting, it nevertheless provides information about the relatedness of various word
types. Thus, we use nodes DICTPOS p that indicate that a particular word type

29

TYPE sibatarazuka

NEG CL2 1PL V arazuk IMP NOT.YET razuk PRES zuk

Figure 2.2: LP subgraph showing connections between a word type and its morpho-
logical features.

is listed as having POS p in the dictionary. Crucially, these tags bear no par-

ticular connection to the tags we are predicting: we still target the tags defined
by the linguist who annotated the types or tokens used, which may be more or
less granular than those provided in the dictionary. As external dictionaries, we
use English Wiktionary (614k entries), malagasyworld.org (78k entries), and
kinyarwanda.net (3.7k entries).6

Morphological Features The character n-gram affix-as-morphology approach
produces many features, but only a fraction of them represent actual morphemes.
Incorrect features end up pushing noise around the graph, so affixes can lead to
more false labels that drown out the true labels. While affixes may be sufficient for
languages with limited morphology, their effectiveness diminishes for morphology-
rich languages, which have much higher type-to-token ratios. More types means
sparser word frequency statistics and more out-of-vocabulary items, and thus prob-
lems for EM. Here, we modify the LP graph by supplementing or replacing generic
affix features with a focused set of morphological features produced by an FST, as
introduced in §2.5. These targeted morphological features are effective during LP

because words that share them are much more likely to actually share POS tags.
FSTs produce multiple analyses, which is actually advantageous for LP. Am-

biguities need not be resolved since we just take the union of all morphological
features for all analyses and use them as features in the graph. Note that each FST

produces its own POS-tags as features, but these do not correspond to the target POS

tagset used by the tagger. This is important because it decouples FST development
and the final POS task. Thus, any FST for the language, regardless of its provenance,

6Wiktionary (wiktionary.org) has only 3,365 entries for Malagasy and 9 for Kin-
yarwanda.

30

malagasyworld.org
kinyarwanda.net
wiktionary.org

can be used with any target POS tagset.

Extracting a result from LP

LP assigns a label distribution to every node. Importantly, each individual
TOK gets its own distribution instead of having all tokens of the same word type
share a single tag distribution. From this graph, we extract a new version of the raw
corpus that contains a distribution over tags for each token. This provides the input
for model minimization.

We seek a small set of likely tags for each token, but LP gives each token a
distribution over the entire set of tags. Most of the tags are simply noise, some of
which we remove by normalizing the weights and excluding tags with probability
less than some threshold (we use 0.1). After applying this cutoff, the weights of
the remaining tags are re-normalized. We stress that this tag dictionary cutoff is not
like those used in past research by Merialdo (1994) and others, which were done
with respect to frequencies obtained from labeled tokens: we use either no word-
tag frequency information (type-supervision) or very small amounts of word-tag
frequency information indirectly through LP (token-supervision). See Banko and
Moore (2004) for further discussion of these issues.

Some tokens might not have any associated tag labels after LP. This occurs
when there is no path from a TOK node to any seeded nodes or when all tags for
the TOK node have weights less than the threshold. Since we require a distribution
for every token, we use a default distribution for such cases. Specifically, we use
a novel unsupervised emission probability distribution that captures both the esti-
mated frequency of a tag and its openness using only a small tag dictionary and
unlabeled text. This exact procedure is explained in §3.2.4.

Finally, we ensure that tokens of a word in the original tag dictionary are
only assigned tags from its entry. With this filter, LP does not add new tags to known
words (without it, we found performance drops). If there is no overlap between the
small tag dictionary’s entry and the token’s resulting distribution from LP (after
thresholding), we fall back to the filtered and renormalized default distribution for

31

that token’s type.
The result of this process is a sequence of (initially raw) tokens, each associ-

ated with a distribution over a subset of tags. From this we can extract an expanded

tag dictionary for use in subsequent stages that, crucially, provides tag information
for words not covered by the human-supplied tag dictionary. This expansion is sim-
ple: an word type is assigned the set of tags that is the union of all tags assigned to
its tokens by the LP procedure. Additionally, we add the full entries of word types
given in the original tag dictionary.

2.6.2 Removing annotation noise with model minimization

As was discussed above, one of the major problems for type-supervised POS-
tagger training with EM is a tag dictionary with low-frequency entries such as the
word “a” being associated with the foreign word tag when nearly all of its instances
are tagged as determiner. To avoid the need for manually pruning the tag dictionary,
Ravi and Knight (2009) proposed that low-probability tags might be automatically
filtered from the tag dictionary through a model minimization procedure applied to
the raw text and constrained by the full tag dictionary. The procedure works by
finding a minimal set of tag bigrams needed to explain the sentences in the raw
corpus. Ravi et al. (2010b) develop a faster approach for model minimization using
a greedy algorithm that they call MIN-GREEDY. It is this algorithm that we extend.

Because the LP procedure is not very discriminating in the way that it pushes
labels between nodes, the resulting automatically-induced annotations contain quite
a bit of noise. Is it for this reason that we chose to apply model minimization.
However, unlike the original model minimization work, our input comes from LP in
the form of distributions over tags for every token in the corpus. Therefore, we have
developed a novel variant of MIN-GREEDY that is specifically designed to make use
of this weighted information to find a better minimized model. Our version is also
innovative in its attempts to break ties in desirable ways. The model minimization
procedure outputs a corpus of tagged sentences, which are used as a good starting
point for EM training of an HMM.

Model minimization is also a natural fit for our system since our low-resource

32

〈S〉 The man saw a dog 〈E〉

〈S〉

D

N

V

D

F

N

〈E〉2

1 1 3

(a) MIN-GREEDY graph
showing a state in the first
phase. Numbered, solid
arrows: order of chosen
bigrams; dotted: potential
choices.

〈S〉 The man saw a dog 〈E〉

〈S〉

D

N

V

D

F

N

〈E〉

(b) End of the first MIN-
GREEDY phase; every word
is touched by an edge.

〈S〉 The man saw a dog 〈E〉

〈S〉

D

N

V

D

F

N

〈E〉

(c) Potential MIN-GREEDY

conclusion; gaps have been
filled so that there is a com-
plete path through the sen-
tence.

Figure 2.3: Demonstration of the original MIN-GREEDY algorithm (Ravi et al.,
2010b).

scenario means that we start with little or no frequency information. By finding a
decent tagging of the corpus, model minimization helps us to be able to estimate
that sequence and frequency information that we lack. This, in turn, allows us to
estimate a much better starting point for EM than we would be able to with only the
small set of provided annotations.

The original MIN-GREEDY algorithm

The MIN-GREEDY algorithm starts by initializing a graph with a vertex for
each possible tag of each token in the raw data. The set of possible tags for each
token is the set of tags associated with that word in the tag dictionary. Special
sentence boundary vertices are added to the graph for each sentence to mark its
beginning and end. The algorithm works in three phases: Greedy Set Cover, Greedy
Path Completion, and Iterative Model-Fitting. In the first two phases, the algorithm
chooses tag bigrams that form the edges of the graph. The goal of these phases is
to select a set of edges that is sufficient to allow a path through every sentence in
the raw corpus. The algorithm greedily selects these edges in an attempt to quickly
approximate the minimal set of tag bigrams needed to accomplish this goal. In the

33

final phase, the algorithm runs several iterations of EM in order to fit the bigram set
to the raw data.

In the first phase, Greedy Set Cover, the algorithm selects tag bigrams in an
effort to cover all of the word tokens. A word token is considered covered if there
is at least one tag bigram edge connected to at least one of its vertices. At each
iteration, the algorithm examines the entire graph, across all sentences, to find the
tag bigram that, if added, would maximize the number of newly covered words.

Consider the graph in Figure 2.3a. Assume, for example, that this sentence
comprises the entire raw corpus. At the start of the first phase, no tag bigrams are
selected. On the first iteration, the algorithm chooses the tag bigram D→N because
this tag bigram describes two edges for a total of four words newly covered: The,
boy, a, and dog. On the second iteration, there are only three word tokens left
uncovered: the start, saw, and the end. At this point, as the figure shows, there
are six tag bigrams that would each result in covering one additional token. Since
there are no tag bigrams whose choosing would result in covering more than one
additional token, the algorithm randomly chooses one of these six. The algorithm
iterates like this until all words are covered, as in, for example, Figure 2.3b.

The second phase of the MIN-GREEDY algorithm, Greedy Path Completion,
seeks to fill holes in the tag paths found in the graph. A hole is a potential edge that,
if added, would connect two existing edges. At each iteration, the algorithm finds
the tag bigram that, if selected, would maximize the number of holes that would be
filled across all raw sentences.

The example graph in Figure 2.3b shows a potential start of the second
phase. At this point, there are three tag bigrams that each fill one hole if selected,
and the algorithm randomly selects one. Iteration continues until there is at least
one complete tag path through each sentence in the raw corpus. One potential res-
olution for the example is given in Figure 2.3c.

Once a set of tag bigrams has been generated that allows for a complete
tag path through every sentence of the raw corpus, MIN-GREEDY begins its final
phase: Iterative Model-Fitting. In this phase, the algorithm trains a succession of
type-supervised HMM models. Each iteration trains an HMM using EM and then uses

34

it to tag the raw corpus, the result of which is used to prepare inputs for the next
iteration.

Problems with the original MIN-GREEDY algorithm

The MIN-GREEDY algorithm, as originally presented, has several problems
both in terms of the algorithm design itself, and in terms of the experimental as-
sumptions required for the algorithm to work properly.

The first issue is that the algorithm’s heuristics for choosing the next tag bi-
gram frequently result in many-way ties. In the first two phases of MIN-GREEDY,
the greedy procedure looks for the tag bigram that will have the most positive im-
pact. In the Greedy Set Cover phase this means choosing the tag bigram that would
cover the most new tokens, and in the Greedy Path Completion phase this means
choosing the tag bigram that would fill the most holes. However, it is frequently
the case that there are many distinct tag bigrams that would cover the most new to-
kens or fill the most holes, leaving the MIN-GREEDY algorithm with no choice but
to randomly select from these options. Since there are frequently cases of having
many dozens of options, it is clear that some of those choices must be better than
others, even though MIN-GREEDY does not make a distinction and considers them
all to be equally good choices.

Consider the example in Figure 2.3a representing a possible state of the min-
imization graph. To have reached this stage, tag bigram D→N would have been
chosen since it covered the highest number of tokens: four. Additionally, 〈S〉→D
and N→〈E〉 could have been chosen as the second and third tag bigrams since they
tied for the most new tokens covered: one. For the state shown in this figure, there
is only one uncovered token, sees, but three tag bigrams that cover it. Since each
of these tag bigrams covers exactly one new word, they are all considered by MIN-
GREEDY to be equally good choices as the next tag bigram for inclusion, and the
algorithm will choose one at random. However, it should be clear that the V→F tag
bigram is wrong while the other two would lead to a correct answer. As such, we
would like for the algorithm to avoid choosing V→F, and to pick one of the others.

35

〈S〉 The man saw a dog 〈E〉

〈S〉

D D

N

V

D

N

V

D D

N

V

〈E〉

(a) A degenerate optimal solution to MIN-
GREEDY that requires only three tag bi-
grams. This occurs when words man, saw,
and dog are are not found in the tag dictio-
nary, meaning that they must be assumed
to take any tag. Such degenerate bigram
choices are highly likely as tag dictionar-
ies become more incomplete.

〈S〉 The man saw the saw 〈E〉

〈S〉

D

N

V

1.0

1.0

1.0 0.2

0.8

1.0

0.7

0.3

1.0

(b) Weighted, greedy model minimization
graph showing a potential state between
the stages of the tag bigram choosing algo-
rithm. Solid edges: selected bigrams. Dot-
ted edges: holes in the path.

Figure 2.4: Demonstrations of model minimization behaviors.

Another, more serious, issue is that the MIN-GREEDY algorithm is very re-
liant on a fairly complete tag dictionary, meaning that it requires that most words
appearing in the corpus be associated with a subset of tags. The reason for this is
that if a token’s word is not found in the dictionary, then we must assume that it
can have any possible tag. If there are many such words, then the algorithm will
end up choosing tag bigrams that cover large numbers of words but that are not
discriminating enough about which tags are chosen. An example of this behavior
can be seen in Figure 2.4a. In our low-resource scenario, where the tag dictionary
provided by an annotator is extremely sparse, this aspect of MIN-GREEDY is likely
to be extremely problematic.

Our novel weighted variant of MIN-GREEDY, presented below, addresses
both of these drawbacks when employed in our semi-supervised training pipeline,
as well as improving the general ability of model minimization to find a good tag-
ging of the corpus.

36

Weighted model minimization

The output of the tag dictionary generalization procedure via LP is a corpus
of sentences where each token is associated with a distribution over tags. Rather
than discard this distribution information, reducing this data to a simple (expanded)
tag dictionary to use the MIN-GREEDY as it was originally presented, we devel-
oped a novel extension of the algorithm that makes explicit use of this weighted
information. As shown in Figure 2.4b, each node in the graph is assigned a weight
corresponding to the probability assigned to that label on that token by the LP proce-
dure. Our general strategy is to find a minimal model that is biased toward keeping
tag bigrams that have consistently high weights across the entire corpus.

The original MIN-GREEDY algorithm selects tag bigrams that cover the most
new words (stage 1) or fill the most holes in the tag paths (stage 2). Our version
modifies the criteria to use the tag weights on each token: a tag bigram b is chosen
by summing up the node weights of any not-yet covered words touched by the
tag bigram and choosing the bigram that maximizes this value.7 Summing node
weights captures the intuition of Ravi et al. (2010b) that good bigrams are those
which have high coverage of new words: each newly covered node contributes
additional (partial) counts. However, by using the weights instead of full counts,
we also account for the confidence assigned by LP. Considering only the weights
of not-yet-included tokens keeps the algorithm focused on bigrams pushing toward
full coverage of the corpus.

At the start of model minimization, there are no selected tag bigrams, and
thus no valid path through any sentence in the corpus. As bigrams are selected,
we can begin to cover sub-sequences and eventually full sentences. There may be
multiple valid taggings for a sentence, so after each new bigram is selected, we run
the Viterbi algorithm over the raw corpus using the set of selected tag bigrams as a
hard constraint on the allowable transitions. This efficiently identifies the highest-
weight path through each sentence, if one exists. If such a path is found, we remove

7In the case of token-supervision, we simply include the sentences and declare that each token’s
distribution is defined such that the given tag receives probability 1.

37

the sentence from the corpus and store the tags from the Viterbi tagging. The al-
gorithm terminates when a path is found for every raw corpus sentence. The result
of weighted model minimization is this set of tag paths. Since each path represents
a valid tagging of the sentence, we use this output as a noisily labeled corpus for
initializing EM in the next stage.

Removing sentences from consideration as soon as a tag path though the
sentence is found is a novel contribution of our approach that has several advan-
tages over the original MIN-GREEDY formulation. First, if all sentences were left
in place, then as more bigrams are selected, we could end up with multiple paths
through sentences. However, by storing the sentence’s tagging as soon as the first
tagging is found, we are sure to be storing the tags that our greedy algorithm deter-
mined to be best. Second, by removing the sentences, we no longer include their
count statistics when trying to choose bigrams. This is useful because if already-
completed sentences are driving the selection, then we are likely to end up picking
tags that are less useful for helping us to tag the remaining sentences, meaning that
we will likely end up choosing more tag bigrams than we want. Finally, removing
sentences has the side effect of making the bigram-choosing iterations faster be-
cause the algorithm has less data that it must consider for each decision. The end
result of this improvement to the algorithm is that we find cleaner minimized tag
bigram sets and cleaner corpus taggings.

The use of weights also has the advantage that it virtually eliminates the
possibility of ties among bigram choices because it is very unlikely that two bi-
grams would have exactly the same real-valued scores. This addresses one of the
issues with the original MIN-GREEDY algorithm without needing to resort to the
tie-breaking strategy introduced by Garrette and Baldridge (2012) which compli-
cates the bigram-choice procedure by trying to find the bigram that introduces the
smallest possible number of new word/tag pairs into the paths.

38

2.7 Tagger Training

The approach just described for generalizing the initial annotations produces
two outputs: a large tag dictionary that contains an entry for every word in the
raw data, and a noisy tagging of every sentence in that raw data. With these two
sources of information, we can run EM to estimate good parameters for an HMM.
To initialize EM, we simply calculate the smoothed MLE based on the noisy tagging
that came from model minimization. We use this as the starting set of parameters,
and run EM to iteratively estimate new parameters, constraining the tag choices with
the generalized tag dictionary. If human-tagged sentences are available as training
data, then we use their counts to supplement the noisy labeled text for initialization
and we add their counts into every iteration’s result.

To obtain a still-better tagger, we take the additional step of using the EM-
trained HMM to find the Viterbi tagging of the entire raw corpus and then using
that “auto-supervised” corpus, concatenated with any token-supervised corpus sen-
tences that might be available, to train a Maximum Entropy Markov Model (MEMM)
tagger.8 The MEMM exploits subword features and generally produces 1-2% better
results than an HMM trained on the same material. While training an HMM before
the MEMM is not strictly necessary, our tests have shown that this generative-then-
discriminative combination generally results in around 3% accuracy improvement.

A tagger trained using our semi-supervised pipeline performs better than
one trained simply on the provided annotations for two major reasons. The first
is that we use our procedure to estimate a good initialization for EM. If EM were
run directly on the annotated data, it would likely lead to a poor local optimum, far
from what the corpus actually needs. The second reason is that by inducing a large
tag dictionary that contains an entry for every raw corpus word, we dramatically
constrain the search space of EM because it no longer has to assume that those
unknown words can choose from any of the 45 possible tags. This constraint helps
keep EM on track in learning a good HMM.

8We use OpenNLP: opennlp.apache.org.

39

opennlp.apache.org

0. No EM 1. EM only 2. With LP 3. LP+min
Initial data A K U A K U A K U A K U

KIN tokens 72 90 58 55 82 32 71 86 58 71 86 58
KIN types 63 77 32 78 83 69 79 83 70
MLG tokens 74 89 49 68 87 39 74 89 49 74 89 49
MLG types 71 87 46 72 81 57 74 86 56
ENG tokens A 63 83 38 62 83 37 72 85 55 72 85 55
ENG types A 66 76 37 75 81 56 76 83 56
ENG tokens B 70 87 44 70 87 43 78 90 60 78 90 60
ENG types B 69 83 38 75 82 61 78 85 61

Table 2.6: Results from the NAACL two-hour experiments. Three languages are
shown: Kinyarwanda (KIN), Malagasy (MLG), and English (ENG). The letters A and
B refer to the annotator. Five experiments were executed: (0) supervised training
directly from the human-provided labeled sentences without EM; (1) EM without LP

or model minimization; (2) EM with LP, but not model minimization; (3) EM with LP

and our weighted model minimization procedure; and (4) EM with LP that includes
nodes from an external dictionary and weighted model minimization. Each result
given as percentage of tokens accurately labeled for All word types (A), Known
word types (K), which appear in the original tag dictionary, and Unknown word
types (U), which do not.

2.8 Experiments9

To better understand the effect that each type of supervision has on tagger ac-
curacy, we perform a series of experiments, with KIN and MLG as true low-resource
languages. English experiments, for which we had multiple annotators, allow for
further exploration into issues concerning data collection and preparation.10

During the course of this research, we ran two different batches of experi-
ments. In the first batch, we gave annotators two hours to annotate types and two
hours to annotate tokens. We did not provide them with much guidance beyond the
basic parameters of the task, which led to a relatively high degree of annotator error.

9Code available at github.com/dhgarrette/low-resource-pos-tagging-2013
10We are unable to provide the KIN or ENG data for download due to licensing restrictions. How-

ever, ENG data may be shared with those holding a license for the Penn Treebank and KIN data may
be shared on a case-by-case basis.

40

github.com/dhgarrette/low-resource-pos-tagging-2013

The results this batch of experiments is discussed in §2.8.1 and in the error analysis
of §2.8.8.

Based on our findings in the first experiments, we ran new experiments by
collecting new data under different guidelines. For this second batch of experi-
ments, we gave our annotators four hours to complete each task, and asked them to
indicate 30-minute breaks so that we could analyze learning curves. For English,
we again had two annotators, though this time we specifically chose an experienced
annotator who had performed the task for the previous experiments, and a novice
who had not performed the task before. We also gave the annotators stronger guid-
ance, which yielded cleaner annotations. This data allows us to provide the more
in-depth analyses below.

The overall best accuracies achieved by language are 81.9% for KIN using
four hours of type annotations, 81.2% for MLG using two hours each of type and
token annotations, and 89.8% for ENG using all types and the maximal amount
of raw data. All of these best values were achieved using both FST and affix LP

features.
All results described in this section are averaged over five folds of raw data.

2.8.1 Evaluating the pipeline

Experimental results are shown in Table 2.6 that evaluate at each stage of our
semi-supervised pipeline. Each experiment starts with an initial data set provided
by an annotator. Experiment (1) uses EM with the initial small tag dictionary to
learn a tagger from the raw corpus. (2) uses LP to infer an expanded tag dictionary
and tag distributions over raw corpus tokens, but then takes the highest-weighted
tag from each token for use as noisily-labeled training data to initialize EM. (3) per-
forms weighted model-minimization on the LP output to derive that noisily-labeled
corpus. Finally, (4) is the same as (3), but additionally uses external dictionary
nodes in the LP graph.

The results show that performance improves with our LP and minimization
techniques compared to basic EM-HMM training. LP gives large across-the-board
improvements over EM training with only the original tag dictionary (compare

41

columns 1 & 2). Weighted model minimization further improves results for type-
supervision settings, but not for token supervision (compare 2 & 3).

Using an external dictionary in the LP graph has little effect for KIN, proba-
bly due to the available dictionary’s very small size. However, MLG with its larger
dictionary obtains an improvement in both scenarios. Results on ENG are mixed;
this may be because the PTB tagset has 45 tags (far more than the dictionary) so
the external dictionary nodes in the LP graph may consequently serve to collapse
distinctions (e.g. singular and plural) in the larger set.

Our results show differences between token- and type-supervised annota-
tions. Tag dictionary expansion is helpful no matter what the annotations look
like: in both cases, the initial dictionary is too small for effective EM learning,
so expansion is necessary. However, model minimization only benefits the type-
supervised scenarios, leaving token-supervised performance unchanged. This sug-
gests that minimization is working as intended: it induces frequency information
when none is provided. With token-supervision, the annotator provides some in-
formation about which tag transitions are best and which emissions are most likely.
This is missing with type-supervision, so model minimization is needed to bootstrap
word/tag frequency guesses.

This leads to perhaps our most interesting result: in a time-critical annotation
scenario, it seems better to collect a simple tag dictionary than tagged sentences.
While the tagged sentences certainly contain useful information regarding tag fre-
quencies, our techniques can learn this missing information automatically. Thus,
having wider coverage of word type information, and having that information be
focused on the most frequent words, is more important.

Our experiments also allow us to compare how the data from different an-
notators affects the quality of taggers learned. Looking at the direct comparison on
English data, annotator B was able to tag more sentences than A, but A produced
more tag dictionary entries in the type-supervision scenario. However, it appears,
based on the EM-only training, that the annotations provided by B were of higher
quality and produced more accurate taggers in both scenarios. Regardless, our full
training procedure is able to substantially improve results in all scenarios.

42

Tag Dictionary Source R P
(1) human-annotated TD 18.42 29.33
(2) LP output 35.55 2.62
(3) model min output 30.49 4.63

Table 2.7: Recall (R) and precision (P) for tag dictionaries versus the test data in a
“MLG types” run.

Table 2.7 gives the recall and precision of the tag dictionaries for MLG for
settings 1, 2 and 3. The initial, human-provided tag dictionary unsurprisingly has
the highest precision and lowest recall. LP expands that data to greatly improve
recall with a large drop in precision. Minimization culls many entries and improves
precision with a small relative loss in recall. Of course, this is only a rough indicator
of the quality of the tag dictionaries since the word/tag pairs of the test set only
partially overlap with the raw training data and annotations.

Because gold-standard annotations are available for the English sentences,
we also ran oracle experiments using labels from the PTB corpus (essentially, the
kind of data used in previous work). We selected the same amount of labeled tokens
or word/tag pairs as were obtained by the annotators. We found similar patterns
of improved performance by using LP expansion and model minimization, and all
accuracies are improved compared to their human-annotator equivalents (about 2-
6%). Overall accuracy for both type and token supervision comes to 78-80%.

2.8.2 Weighted vs. unweighted minimization

To determine whether that weighted model minimization is beneficial, we
ran experiments using the unweighted strategy. On average, the weighted version
yields an increase of 0.76%. However, the average increase is 1.27% for type-
supervision, so the weighted version is particularly useful when the human annota-
tion is a tag dictionary without frequency information.

43

(a) KIN type annotations − Elapsed Annotation Time

A
cc

ur
ac

y

0:
30

1:
00

1:
30

2:
00

2:
30

3:
00

3:
30

4:
00

50

55

60

65

70

75

80

No LP
Affixes only
FST only
Affixes+FST

(b) KIN token annotations − Elapsed Annotation Time

A
cc

ur
ac

y

0:
30

1:
00

1:
30

2:
00

2:
30

3:
00

3:
30

4:
00

50

55

60

65

70

75

80

No LP
Affixes only
FST only
Affixes+FST

(c) MLG type annotations − Elapsed Annotation Time

A
cc

ur
ac

y

0:
30

1:
00

1:
30

2:
00

2:
30

3:
00

3:
30

4:
00

65

70

75

80

No LP
Affixes only
FST only
Affixes+FST

(d) MLG token annotations − Elapsed Annotation Time

A
cc

ur
ac

y

0:
30

1:
00

1:
30

2:
00

2:
30

3:
00

3:
30

4:
00

65

70

75

80

No LP
Affixes only
FST only
Affixes+FST

Figure 2.5: Annotation time vs. tagger accuracy for type-only and token-only an-
notations.

2.8.3 Types versus tokens

Our primary question was the relationship between annotation type and time.
Annotation must be done by someone familiar with the target language, linguistics,
and the target POS tagset. For many low-resource languages, such people, and the
time they have to spend, are likely to be in short supply. To make the best use of
their time, we need to know which annotations are most useful so that efforts can be
concentrated there. Additionally, it is useful to identify when returns on annotation
effort diminish so that annotators do not spend time doing work that is unlikely to
add much value.

The annotators produced four hours each of type and token annotations, each
in 30-minute increments. To assess the effects of annotation time, we trained tag-
gers cumulatively on each increment and determine the value of each additional

44

Elapsed Annotation Time

A
cc

ur
ac

y

0:
30

1:
00

1:
30

2:
00

2:
30

3:
00

3:
30

4:
00

65

70

75

80

85

Experienced annotator − Types
Experienced annotator − Tokens
Novice annotator − Types
Novice annotator − Tokens

(a) Annotation time vs. tagger accuracy
for ENG type-only and token-only anno-
tations with affix and FST LP features.

Type/Token Annotation Mixture

A
cc

ur
ac

y

t0
/s8

t1
/s7

t2
/s6

t3
/s5

t4
/s4

t5
/s3

t6
/s2

t7
/s1

t8
/s0

70

75

80

85

Exp. − With LP
Nov. − With LP
Exp. − No LP
Nov. − No LP

(b) Annotation mixture vs. tagger accu-
racy on ENG using affix and FST LP fea-
tures for experienced (Exp.) and novice
(Nov.) annotators.

Figure 2.6: English experimental results. In (b), x-axis labels give annotation pro-
portions, e.g. “t2/s6” indicates 2/8 of the time (1 hour) was spent annotating types
and 6/8 (3 hours), full sentences.

half-hour of effort. Results are shown for KIN and MLG in Figure 2.5 and ENG

in Figure 2.6a. In all scenarios, the use of LP (with model minimization) delivers
huge performance gains. Additionally, the use of FST features, usually along with
affixes, yielded better results than without. This indicates the LP procedure makes
effective use of the morphological features produced by the FST and that the affix
features are able to capture missing information without adding too much noise to
the LP graph.

Furthermore, performance is considerably better when type annotations are
used than with only tokens. Type annotations plateau much faster, so less time is
required for annotating if types are used rather than token annotations. For KIN it
takes approximately 1.5 hours to reach near-maximum accuracy for types, but 2.5
hours for tokens. This difference is due to the fact that the type annotations started
with the most frequent words whereas the token annotations were on random sen-
tences. Thus, type annotations quickly cover a significant portion of the language’s
tokens. With annotations directly on tokens, some of the highest frequency types
are covered, but annotation time is also ineffectively used on low-frequency types

45

that happen to appear in those sentences.
Finally, the use of FST features yields larger gains for KIN than other lan-

guages, but only when small amounts of annotation are available. This makes
sense: KIN is a morphologically rich language, so sparsity is greater and crude
affixes capture less actual morphology. With little annotated data, LP relies heavily
on morphological features to make clean links between words. But, with more an-
notations, the gains of the FST over affix features alone diminish: the affix features
eventually capture enough of the morphology to make up the difference.

Figure 2.6a shows the dramatic differences between the experienced and
novice ENG annotators.11 For the former, results using types and tokens were sim-
ilar after 30 minutes, but type annotations proved much more useful beyond that.
In contrast, the novice annotated types much more slowly, so early on there were
not enough annotated types for the training to be as effective. Even so, after three
hours of annotation, type annotations still win with the novice, and even beat the
experienced annotator labeling tokens.

2.8.4 Mixing type and token annotations

Because type and token annotations are each better at providing different in-
formation — a tag dictionary of high-frequency words vs. sequence and frequency
information — it is reasonable to expect that a combination of the two might yield
higher performance by each contributing different but complementary information
during training. This matters in low-resource settings because type or token anno-
tations will likely be produced by the same people, so there is a tradeoff between
spending resources on one form of annotation over the other. Understanding the
best mixture of annotations can inform us on how to maximize the benefit of a set
annotation budget. To this end, we ran experiments fixing the annotation time to
four hours while varying the mix of type and token annotations. Results are shown
for KIN and MLG in Figure 2.7 and ENG in Figure 2.6b.

11The ENG graph omits “No LP” results since they followed patterns similar to KIN and MLG.
Additionally, the results without FST features are not shown because they were nearly identical
(though slightly lower) than with the FST.

46

(a) KIN − Type/Token Annotation Mixture

A
cc

ur
ac

y

t0
/s8

t1
/s7

t2
/s6

t3
/s5

t4
/s4

t5
/s3

t6
/s2

t7
/s1

t8
/s0

60

65

70

75

80

No LP
Affixes only
FST only
Affixes+FST

(b) MLG − Type/Token Annotation Mixture

A
cc

ur
ac

y

t0
/s8

t1
/s7

t2
/s6

t3
/s5

t4
/s4

t5
/s3

t6
/s2

t7
/s1

t8
/s0

70

72

74

76

78

80

No LP
Affixes only
FST only
Affixes+FST

Figure 2.7: Annotation mixture vs. tagger accuracy. X-axis labels give annotation
proportions, e.g. “t2/s6” indicates 2/8 of the time (1 hour) was spent annotating
types and 6/8 (3 hours), full sentences.

Types clearly win for ENG. The experienced annotator was much faster
at annotating types and the speed difference was less pronounced for tokens, so
accuracy is most similar when only token annotations are used. The performance
disparity grows with increasing the type proportion.

Täckström et al. (2013) explore the use of mixed type and token annotations
in which a tagger is learned by projecting information via parallel text. In their ex-
periments, they—like us—found that type information is more valuable than token
information. However, they were able to see gains from the complementary effects
of mixing type and token annotations. It is likely that this difference in our results
is due to the amount of annotated data used. It seems that the amount of type infor-
mation collected in four hours is not sufficient to saturate the system, meaning that
switching to annotating tokens tends to hurt performance.

2.8.5 FST development

The third set of experiments evaluate how the amount of time spent devel-
oping an FST affects the performance of trained tagger. To do this, we had our ENG

FST developer save progress after each hour (for ten hours). The results show that,
for ENG, the FST provided no value, regardless of how much time was spent on its
development. Moreover, since large gains in accuracy can be achieved by spending
a small amount of time just annotating word types with POS tags, we are led to

47

Number of Raw Data Tokens

A
cc

ur
ac

y

10
0k

20
0k

30
0k

40
0k

50
0k

60
0k

80

82

84

86

88

90

4hr types, FST, With LP
4hr types, FST, No LP
1hr types, No FST, With LP

Figure 2.8: Amount of raw data vs. tagger accu-
racy for ENG using high vs. low amounts of an-
notation and using LP vs. no LP., for experienced
annotator (novice results were similar).

conclude that time should be spent annotating types or tokens instead of developing
an FST. While it is likely that FST development time would have a greater impact
for morphologically rich languages, we suspect that greater gains can still be ob-
tained by instead annotating types. Nonetheless, using FSTs never seems to hurt

performance, so if one is readily available, it should be used.12

2.8.6 The effect of more raw data

In addition to annotations, semi-supervised tagger training requires a corpus
of raw text. Raw data can be easier to acquire since it does not need the attention of
a linguist. Even so, for many low-resource languages, the amount of digitized text,
such as transcripts or websites, is very limited and may, in fact, require substantial
effort to accumulate, even with assistance from computational tools (Bird, 2011).
Therefore, the collection of raw data can be considered another time-sensitive task
for which the tradeoffs with previously-discussed annotation efforts must contend.

It could be the case that more raw data for training could make up for ad-
ditional annotation and FST development effort or make the LP procedure unneces-

12The KIN and MLG experts were no longer available to re-develop FSTs so that time increments
could be measured.

48

sary. Figure 2.8 shows that that increased raw data does provide increasing gains,
but they diminish after 200k tokens. The best performance is achieved by using
more annotation and LP. Most importantly, however, removing either annotations
or LP results in a significant decline in accuracy, such that even with 600k training
tokens, we are unable to achieve the results of high annotation and LP using only
100k tokens.

2.8.7 Correcting existing annotations

For all of the ENG experiments, we also ran “oracle” experiments using
gold tags for the same sentences or a tag dictionary containing the same number
of type/tag entries as the annotator produced, but containing only the most frequent
entries as determined by the gold-labeled corpus. Using this simulated “perfect
annotator” data shows we lose accuracy due to annotator mistakes: for our expe-
rienced annotator and maximal FST, using 4 hours of types, the oracle accuracy is
90.5 vs. 88.5, while using only tokens we see 83.9 vs. 81.5. This indicates that
there are gains to be made by correcting mistakes in the annotations. This is true
even after the point of diminishing returns on the learning curve, meaning that even
when adding more annotations no longer improves performance, progress can still
be made by correcting errors, so it may be reasonable to ask annotators to attempt to
correct errors in their past annotations. Automated techniques for facilitating error
identification can be employed for this (Dickinson and Meurers, 2003).

2.8.8 Error analysis

One potential source of errors comes from the annotators. Though our ap-
proach is designed to be robust to annotation errors, it cannot correct all mistakes.
In the first round of experiments (two-hour annotation time), we gave less guidance
to the annotators, which resulted in more annotation errors. For example, for the
“ENG types B” experiment, the annotator listed IN (preposition) as the only tag for
word type “to”. However, the PTB test set only ever assigns tag TO for this word.
This single error accounts for a 2.3% loss in overall tagging accuracy (Table 2.8).

49

#Errors Gold Model
11k TO IN
6k NNP NN
5k NN JJ
4k JJ NN
3k NNP JJ

Table 2.8: Top errors from
an “ENG types B” run.

for *IN *RP JJ NN CD
(1) EM 1,221 2764 9 5
(2) LP 4,003
(3) min 4,004 1
gold 3,999 5
, (comma) *, *: JJS PTD VBP
(1) EM 24,708 4 3 3
(2) LP 15,505 9226 1
(3) min 24,730
gold 24,732
opposition NN JJ DT NNS VBP
(1) EM 24 4 1 4 4
(2) LP 41 4
(3) min 45
gold 45

Table 2.9: Tag assignments in different scenar-
ios for three representitive words. Star (*) indi-
cates an entry in the human-provided TD.

In many situations, however, we are able to automatically remove improba-
ble tag dictionary entries, as shown in Table 2.9. Consider the word type “for”. The
annotator has listed RP (particle) as a potential tag, but only five out of 4k tokens
have this tag. With RP included, EM becomes confused and labels a majority of the
tokens as RP when nearly all should be labeled IN. We are able to eliminate RP as a
possibility, giving excellent overall accuracy for the type. Likewise for the comma
type, the annotator has incorrectly given “:” as a valid tag, and LP, which uses the
tag dictionary, pushes this label to many tokens with high confidence. However,
minimization is able to correct the problem.

Finally, the word type “opposition” provides an example of the expected
behavior for unknown words. The type is not in the tag dictionary, so EM assumes
all tags are valid and uses many labels. LP expands the starting dictionary to cover
the type, limiting it to only two tags. Minimization then determines that NN is the
best tag for each token.

50

2.9 Related Work

As previously discussed, many researchers have explored a variety of ap-
proaches for weakly-supervised POS-tagging. Some previous work has focused on
learning from existing linguistic resources. Cucerzan and Yarowsky (2002) learn a
POS-tagger from a dictionary and a reference grammar while Li et al. (2012) train
an HMM using EM using a dictionary extracted directly from Wiktionary. Gold-
berg et al. (2008) trained a tagger for Hebrew using a high-coverage, high-quality
lexicon manually created by trained lexicographers.

Other work has focused on the task of expanding small resources into larger
ones. Haghighi and Klein (2006) develop a model in which a POS-tagger is learned
from a list of POS tags and just three “prototype” word types for each tag, using a
vector space to compute the distributional similarity between prototypes and other
word types in the corpus. Toutanova and Johnson (2008) use a simple method for
predicting possible tags for unknown words: a set of 100 most common suffixes
are extracted and then models of P (tag | suffix) are built and applied to unknown
words. Ding (2011) constructed an LP graph for learning POS tags on Chinese text
by propagating labels from an initial tag dictionary to a larger set of data. This LP

graph contained Wiktionary word/POS relationships as features as well as Chinese-
English word alignment information and used it to directly estimate emission prob-
abilities to initialize an EM training of an HMM.

Finally, there has been more recent work on adapting tag information for use
in weakly-supervised scenarios. Subramanya et al. (2010) apply LP to the problem
of tagging for domain adaptation, constructing a graph that connects tokens in low-
and high-resource domains, and propagate labels from high to low. Das and Petrov
(2011) learn taggers for languages in which there are no POS-annotated resources,
but for which parallel texts are available between that language and a high-resource
language. Täckström et al. (2013) further evaluate the use of mixed type and token
constraints generated by projecting information from a high-resource language to a
low-resource language via this parallel corpus.

Our results compare favorably with previous work despite using consider-

51

ably less supervision and a more difficult set of tags. For example, Li et al. (2012)
use the entirety of English Wiktionary directly as a tag dictionary to obtain 87.1%
accuracy on English, below our result. Täckström et al. (2013) average 88.8%
across 8 major languages, but for Turkish, a morphologically rich language, they
achieve only 65.2%, significantly below our 81.9% for morphologically-rich Kin-
yarwanda.

2.10 Conclusions and Future Work

Care must be taken when drawing conclusions from small-scale annotation
studies such as those presented in this chapter. Nonetheless, we have explored
realistic annotation scenarios for POS-tagging for low-resource languages and found
several consistent patterns. Most importantly, it is clear that type annotations are
the most useful input one can obtain from a linguist in a low-resource scenario —
provided a semi-supervised algorithm for projecting that information reliably onto
raw tokens is available. In a sense, this result validates the research trajectory of
efforts over the past two decades put into learning taggers from tag dictionaries:
type-supervised learning is indeed a valuable tool, as we have been able to show in
experiments that approximate realistic low-resource conditions.

The result of most immediate practical value is that we show it is possible
to train effective POS-taggers on actual low-resource languages given only a rela-
tively small amount of unlabeled text and a few hours of annotation by a non-native
linguist. Instead of having annotators label full sentences as one might expect the
natural choice would be, it is much more effective to simply extract a list of the
most frequent word types in the language and concentrate efforts on annotating
these types with their potential parts of speech. We note, however, that techniques
such as active learning may be able to choose better sentences or phrases, boost-
ing the utility of token supervision. Furthermore, for languages with rich morphol-
ogy, a morphological transducer can yield significant performance gains when large
amounts of other annotated resources are unavailable. (And it never hurts perfor-
mance.)

52

Finally, additional raw text does improve performance. However, using sub-
stantial amounts of raw text is unlikely to produce gains larger than only a few
hours spent annotating types. Thus, when deciding whether to spend time locating
volumes of digitized text or to spend time annotating types, choose types.

Future work might dig deeper into what kinds of annotations should be used.
Petrov et al. (2012) proposed an alternative set of “universal” POS tags that greatly
simplify the distinctions found in the PTB data. For example, it has just one verb
tag instead of the six types of verbs in the PTB set. Having annotators label data
with this coarse tagset would dramatically increase the speed with which they could
label data since they would no long need to spend time trying to decide which types
of, e.g., verb a particular word type represents. However, as Petrov et al. note, this
coarse data comes at the expense of input detail, providing less specific information
than the fine-grained set, though we suspect that the increased volume of annotation
achievable due to the decreased effort would likely have a much higher impact.

53

Chapter 3

Grammar-Informed CCG Supertagging

Supertagging, broadly defined, is the task of assigning complex categories,
known as supertags, to each lexical item in a text (Bangalore and Joshi, 1999).
These supertags are used to localize information about linguistic structure and pro-
vide constraints on local contexts. Supertagging approaches have been applied to
Lexicalized Tree-Adjoining Grammar (Joshi and Srinivas, 1994) and Combinatory
Categorial Grammar (Clark, 2002). The goal of supertagging is to encode enough
information at the lexical level that reassembling the full structure — generally a
parse tree — can be done with relative ease. In this sense, the task of supertagging
can be thought of as “almost parsing”. By reducing the parsing problem to one
of supertagging, we are turning a complex structure-prediction problem into one
that can be undertaken with simpler models that focus on local decisions, even as
these local decisions have goal ramifications. This is particularly desirable to us
because we are interested in learning models of language using only weak forms of
supervision. With limited input, simpler models are appealing.

We approach supertagging as a sequence modeling task in the vein of weakly-
supervised part-of-speech (POS) induction, a much more widely studied problem
(see Chapter 2). Many proposed solutions to POS-tagger learning are based on
Hidden Markov models (HMMs), with various improvements obtainable through:
inductive bias in the form of tag dictionaries (Kupiec, 1992; Merialdo, 1994), spar-
sity constraints (Lee et al., 2010), careful initialization of parameters (Goldberg
et al., 2008), feature based representations (Berg-Kirkpatrick et al., 2010; Smith
and Eisner, 2005), and priors on model parameters (Johnson, 2007; Goldwater and
Griffiths, 2007; Blunsom and Cohn, 2011, inter alia).

The contents of this chapter are based on the following publication: Dan Garrette, Chris Dyer,
Jason Baldridge, and Noah A. Smith. 2014. Weakly-supervised Bayesian learning of a CCG su-
pertagger. In Proc. of CoNLL. My co-authors worked with me to develop the ideas underlying this
work.

54

When tag dictionaries are available, a situation we called type-supervision

in Chapter 2, POS induction from unlabeled corpora can be relatively successful;
however, as the number of possible tags increases, performance drops (Ravi and
Knight, 2009). In such cases, there are a large number of possible labels for each
token, so picking the right one simply by chance is unlikely; the parameter space
tends to be large, and devising good initial parameters is difficult. Therefore, it is
unsurprising that the weakly-supervised learning of a supertagger for Combinatory
Categorial Grammar (CCG), for which there is a very large (possibly unbounded)
number of structured categories, is a considerable challenge.

Despite the apparent complexity of the task, supertag sequences have regu-
larities due to universal properties of the CCG formalism (§3.1) that can be used to
reduce the complexity of the problem (Garrette et al., 2014). Previous work showed
promising results by using these regularities to initialize an HMM that is then refined
with EM (Baldridge, 2008). Here, we exploit CCG’s category structure to motivate
a novel prior over HMM parameters for use in Bayesian learning (§3.2). This prior
encourages (i) cross-linguistically common tag types, (ii) tag bigrams that can com-
bine using CCG’s combinators, and (iii) sparse transition distributions. We also go
beyond the use of these universals to show how additional, corpus-specific infor-
mation can be automatically extracted from a combination of the tag dictionary and
raw data, and how that information can be combined with the universal knowledge
for integration into the model to improve the prior.

We use a blocked sampling algorithm to sample supertag sequences for the
sentences in the training data, proportional to their posterior probability (§3.3). We
experimentally verify that our Bayesian formulation is effective and substantially
outperforms the state-of-the-art baseline initialization/EM strategy in several lan-
guages (§3.4).

3.1 CCG and Supertagging

CCG (Steedman, 2000; Steedman and Baldridge, 2011) is a grammar for-
malism in which each lexical token is associated with a structured category, often

55

referred to as a supertag. CCG categories are defined by the following recursive
definition:

C → {s, sdcl, sadj, sb, n, np, npnb, pp, ...}
C → {(C/C), (C \C)}

A CCG category can either be an atomic category indicating a particular type of
basic grammatical phrase (s for a sentence, n for a noun, np for a noun phrase, etc),
or a complex category formed from the combination of two categories — possibly
complex themselves — by one of two slash operators. In CCG, complex categories
indicate a grammatical relationship between the two operands. For example, the
category (s\np)/np might describe a transitive verb, looking first to its right (indi-
cated by /) for an object, then to its left (\) for a subject, to produce a sentence.
Further, atomic categories may be augmented with features, such as sdcl, to restrict
the set of atoms with which they may unify. The task of assigning a category to
each word in a text is called supertagging (Bangalore and Joshi, 1999).

Because they are recursively defined, there are an infinite number of poten-
tial CCG categories (though in practice it is limited by the number of actual gram-
matical contexts). As a result, the number of supertags appearing in a corpus far
exceeds the number of POS tags (see Table 3.2). Since supertags specify the gram-
matical context of a token, and high frequency words appear in many contexts, CCG

grammars tend to have very high lexical ambiguity, with frequent word types asso-
ciating with a large number of categories. This ambiguity has made type-supervised
supertagger learning very difficult because the typical approaches to initializing pa-
rameters for EM become much less effective (Baldridge, 2008; Ravi et al., 2010a).

3.1.1 Grammar-informed supertagger learning

Baldridge (2008) was successful in extending the standard type-supervised
tagger learning to the task of CCG supertagging by setting the initial parameters for
EM training of an HMM using two intrinsic properties of the CCG formalism: the
tendency for adjacent tags to combine, and the tendency to use less complex tags.

56

s

np

np/n n

s\np

(s\np)/np
np

np/n n
The man walks a dog

Figure 3.1: CCG parse for “The man walks a dog”

Forward Application: X/Y Y ⇒ X (>)
Backward Application: Y X\Y ⇒ X (<)
Forward Harmonic Comp.: X/Y Y/Z ⇒ X/Z (>B)
Forward Harmonic Comp. 2: X/Y (Y/Z)|iW ⇒ (X/Z)|iW (>B2)
Backward Harmonic Comp.: Y\Z X\Y ⇒ X\Z (<B)
Backward Crossed Comp.: Y/Z X \Y ⇒ X/Z (<B×)
Backward Crossed Comp. 2 (Y/Z)|iW X \Y ⇒ (X/Z)|iW (<B2

×)

Table 3.1: Combination rules used by our supertagger. In generalized composition
rules, |i may be either / or \, but co-indexed operators must be the same. Backward
composition rules are blocked where Y is n or np.

These properties are explained in detail in the original work, but we restate the ideas
briefly throughout this chapter for completeness.

Tag combinability

A CCG parse of a sentence is derived by recursively combining the cate-
gories of sub-phrases. Category combination is performed using only a small set of
generic rules (see Table 3.1). In the tree in Figure 3.1, we can see that a and dog can
combine via Forward Application (>), with np/n and n combining to produce np.
The associativity engendered by CCG’s composition rules means that most adjacent
lexical categories may be combined. In the Figure 3.1 tree, we can see that in-
stead of combining (walks·(a·dog)), we could have combined ((walks·a)·dog) since
(s\np)/np and np/n can combine using >B.

Note, however, that this does not mean that two adjacent tags are required

to be combinable. For any bigram of tags A·B, it is always possible that some

57

constituent C after the bigram may combine with B without involving A: A·(B·C).
Likewise with constituents to the left of A. Thus, any bias toward supertag combin-
ability we implement must be soft, allowing for non-combinations as well.

3.2 Model

In this section we define the generative process of the Bayesian HMM (Gold-
water and Griffiths, 2007) that we use to model a corpus of sentences. We begin
by generating the model parameters: for each supertag type t in the tag set T , the
transition probabilities to the next state (πt) and the emission probabilities (φt) are
generated by draws from Dirichlet distributions parameterized with per-tag mean
distributions (π0

t and φ0
t , respectively) and concentration parameters (απ and αφ).

By setting απ close to zero, we can encode our prior expectation that transition dis-
tributions should be relatively peaked (i.e., that each tag type should be followed by
relatively few tag types). The prior means, discussed below, encode both linguis-
tic intuitions about expected tag-tag transition behavior and automatically-extracted
corpus information. Given these parameters, we next generate the sentences of the
corpus. This process is summarized as follows:

Parameters:
φt ∼ Dirichlet(αφ, φ

0
t) ∀t ∈ T

πt ∼ Dirichlet(απ, π
0
t) ∀t ∈ T

Sentence:
y1 ∼ Categorical(π〈S〉)

for i ∈ {1, 2, . . .}, until yi = 〈E〉
xi | yi ∼ Categorical(φyi)

yi+1 | yi ∼ Categorical(πyi)

We next discuss how the prior distributions are constructed to build in additional
inductive bias.

58

3.2.1 Transition prior means (π0
t)

We use the prior mean for each tag’s transition distribution to build in two
kinds of bias. First, we want to favor linguistically probable tags. Second, we
want to favor transitions that result in a tag pair that combines according to CCG’s
combinators. Thus, we will define π0

t as a mixture of two components, the first,
PCAT(u) is an (unconditional) distribution over category types u that favors cross-
linguistically probable categories. The second component, PCOMB(u | t), conditions
on the previous tag type, t, and assigns higher probability to pairs of tags that can
be combined. That is, the probability of transitioning from t to u in the Dirichlet
mean distribution is given by1

π0
t(u) = λ · PCAT(u) + (1− λ) · PCOMB(u | t).

We discuss the two mixture components in turn.

3.2.2 Unigram category generator (PCAT(u))

In this section, we define a CCG category generator that generates cross-
linguistically likely category types. Baldridge’s approach estimated the likelihood
of a category using the inverse number of sub-categories: PCPLX(u) ∝ 1/complexity(u).
We propose an improvement, PCAT, expressed as a probabilistic grammar over the
infinite set of CCG categories T .2 For readability, we use the notation p = (1− p).

C→z ppunc · ppuncdist(z)

C→a ppunc · pterm · patom(a)

C→A/A ppunc · pterm · pfwd · (pmod ·PCAT(A) + pmod ·PCAT(A)
2)

C→A/B A 6= B ppunc · pterm · pfwd · pmod ·PCAT(A) ·PCAT(B)

C→A\A ppunc · pterm · pfwd · (pmod ·PCAT(A) + pmod ·PCAT(A)
2)

C→A\B A 6= B ppunc · pterm · pfwd · pmod ·PCAT(A) ·PCAT(B)

1Following Baldridge (2008), we fix λ = 0.5 for our experiments.
2This is an updated version of the model first presented in (Garrette et al., 2014) to accommodate

usage by the parsing models in later chapters.

59

where A,B,C are categories, z is a punctuation category (and terminal), neither
A nor B is a punctuation category, and a is an atomic category (and terminal):
a ∈ {s, n, np, ...}.3 Note that the probability of a modifier category (A/A or A\A)
is the sum of both the probability of being a modifier and the probability of being a
A/B (or A\B), since every A/A is also a A/B; this ensures that probability mass
is not lost, making PCAT a valid probability distribution. Also note that punctuation
may not be combined with a slash operator as part of a complex category.

We have designed this grammar to capture several important CCG character-
istics. In particular we encode four main ideas, each captured through a different
parameter of the grammar and discussed in greater detail below:

1. Simpler categories are more likely: e.g. n/n is a priori more likely than
(n/n)/(n/n).

2. Some atoms are more likely than others: e.g. np is more likely than s, and
much more than npexpl.

3. Modifiers are more likely: e.g. (s\np)/(s\np) is more likely than non-modifiers
with otherwise similar complexity, such as (s\np)/(np\np).

4. Slash operators may occur with different frequencies.

The first idea subsumes the complexity measure used by Baldridge, but ac-
complishes the goal naturally by letting the probabilities decrease as the category
grows. This ensures that simple categories are a priori more likely than complex
categories, a trend that can be corroborated by examining the data: for example,
the transitive verb “buy” appears with supertag (sb\np)/np 342 times in CCGbank,
but just once with (((sb\np)/pp)/pp)/np. The rate of decay is governed by the pterm

parameter: the marginal probability of generating a terminal (atomic) category in
each expansion. A higher pterm means a stronger emphasis on simplicity. The prob-
ability distribution over categories is guaranteed to be proper so long as pterm > 1

2

3While very similar to standard probabilistic context-free grammars seen in NLP work, this gram-
mar is not context-free because modifier categories must have matching operands. However, this is
not a problem for our approach since the grammar is unambiguous, defines a proper probability
distribution, and is only used for modeling the relative likelihoods of categories (not parsing cate-
gories).

60

since the probability of the depth of a tree will decrease geometrically (Chi, 1999).
The second idea is a natural extension of the complexity concept and is par-

ticularly relevant when features are used. The original complexity measure treated
all atoms uniformly, but e.g. we would expect npexpl/n to be less likely than np/n

since it contains the more specialized, and thus rarer, atom npexpl. We define the
distribution patom(a) as the prior over atomic categories.

Due to our weak, type-only supervision, we have to estimate patom from just
the tag dictionary and raw corpus, without frequency data. Our goal is to estimate
the number of each atom in the supertags that should appear on the raw corpus to-
kens. Since we don’t know what the correct supertags are, we first estimate counts
of supertags, from which we can extract estimated atom counts. Our strategy is
to uniformly distribute each raw corpus token’s counts over all of its possible su-
pertags, as specified in the tag dictionary. Word types not appearing in the tag
dictionary are ignored for the purposes of these estimates. Assuming that C(w) is
the number of times that word type w is seen in the raw corpus, atoms(a, t) is the
number of times atom a appears in t, TD(w) is the set of tags associated with w,
and TD(t) is the set of word types associated with t:

Csupertag(t) =
∑

w∈TD(t)

C(w) / |TD(w)|

Catom(a) =
∑
t∈T

atoms(a, t) · Csupertag(t)

patom(a) ∝ Catom(a) + δ

Adding δ smooths the estimates.
Using the raw corpus and tag dictionary data to set patom allows us to move

beyond Baldridge’s work in another direction: it provides us with a natural way to
combine CCG’s universal assumptions with corpus-specific data.

The third and fourth ideas pertain only to complex categories. If the cate-
gory is complex, then we consider two additional parameters. The parameter pfwd

is the marginal probability that the complex category’s operator specifies a forward
argument. The parameter pmod gives the amount of marginal probability mass that

61

is specially reserved for modifier categories to be added to their normal (pmod) prob-
ability mass. This addresses the fact that, for example, a category containing six
atoms may, in general, be very unlikely, but a six-atom category that is merely
a modifier of a three-atom category (like an adverb modifying a transitive verb)
would be fairly common.

3.2.3 Bigram category generator (PCOMB(u | t))

While the above processes encode important properties of the distribution
over categories, the internal structure of categories is not the full story: cross-
linguistically, the categories of adjacent tokens are much more likely to be com-
binable via some CCG rule. This is the second component of our mixture model.

Baldridge derives this bias by allocating the majority of the transition proba-
bility mass from each tag t to tags that can follow t according to some combination
rule. Let κ(t,u) be an indicator of whether t combines with u (in that order); for
σ ∈ [0, 1]:4

Pκ(u | t) =

{
σ · uniform(u) if κ(t,u)
(1− σ) · uniform(u) otherwise

There are a few additional considerations that must be made in defining κ,
however. In assuming the special tags 〈S〉 and 〈E〉 for the start and end of the
sentence, respectively, we can define κ(〈S〉,u) = 1 when u seeks no left-side argu-
ments (since there are no tags to the left with which to combine) and κ(t, 〈E〉) = 1

when t seeks no right-side arguments. So κ(〈S〉, np/n) = 1, but κ(〈S〉, s\np) = 0.
If atoms have features associated, then the atoms are allowed to unify if the features
match, or if at least one of them does not have a feature. So κ(npnb, s\np) = 1, but
κ(npnb, s\npconj) = 0. In defining κ, it is also important to ignore possible argu-
ments on the wrong side of the combination since they can be consumed without
affecting the connection between the two. To achieve this for κ(t,u), it is assumed
that it is possible to consume all preceding arguments of t and all following argu-
ments of u. So κ(np, (s\np)/np) = 1. This helps to ensure the associativity dis-

4Again, following Baldridge (2008), we fix σ = 0.95 for our experiments.

62

cussed earlier. Finally, the atom np is allowed to unify with n if n is the argument.
So κ(n, s\np) = 1, but κ(np/n, np) = 0. This is due to the fact that CCGBank
assumes that n can be rewritten as np.

Type-supervised initialization

As above, we want to improve upon Baldridge’s ideas by encoding not just
universal CCG knowledge, but also automatically-induced corpus-specific informa-
tion where possible. To that end, we can define a conditional distribution Ptr(u | t)
based on statistics from the raw corpus and tag dictionary. We use the same ap-
proach as we did above for setting patom (and the definition of φ0

t below): we esti-
mate by evenly distributing raw corpus counts over the tag dictionary entries. As-
sume that C(w1, w2) is the (δ-smoothed) count of times word type w1 was directly
followed by w2 in the raw corpus, and ignoring any words not found in the tag
dictionary:

C(t,u) =
∑

w1∈TD(t), w2∈TD(u)

C(w1, w2)

|TD(w1)| · |TD(w2)|

Ptr(u | t) =
C(t,u)∑

u′∈T C(t,u
′)

Then the alternative definition of the compatibility distribution is as follows:

P tr
κ (u | t) =

{
σ · Ptr(u | t) if κ(t,u)
(1− σ) · Ptr(u | t) otherwise

Our experiments compare performance when π0
t is set using PCAT(u)=PCPLX

(experiment 3) versus our category grammar PCAT (experiments 4–6), and using
PCOMB(u | t) = Pκ as the compatibility distribution (experiments 3–4) versus P tr

κ

(experiments 5–6).

63

3.2.4 Emission prior means (φ0
t)

For each supertag type t, φ0
t is the mean distribution over words it emits.

While Baldridge’s approach used a uniform emission initialization, treating all
words as equally likely, we can, again, induce token-level corpus-specific infor-
mation.5 To set φ0

t , we use a variant and simplification of the procedure introduced
in (Garrette and Baldridge, 2012) that takes advantage of our prior over categories
PCAT.

Assuming that C(w) is the count of word type w in the raw corpus, TD(w) is
the set of supertags associated with word type w in the tag dictionary, and TD(t) is
the set of known word types associated with supertag t, the count of word/tag pairs
for known words (words appearing in the tag dictionary) is estimated by uniformly
distributing a word’s (δ-smoothed) raw counts over its tag dictionary entries:

Cknown(t, w) =

{
(C(w) + δ)/|TD(w)| if t ∈ TD(w)

0 otherwise

For unknown words, we first use the idea of tag “openness” to estimate the likeli-
hood of a particular tag t applying to an unknown word: if a tag applies to many
word types, it is likely to apply to some new word type.

P (unk | t) ∝ |known words w s.t. t ∈ TD(w)|

Then, we apply Bayes’ rule to get P (t | unk), and use that to estimate word/tag
counts for unknown words:

P (t | unk) ∝ P (unk | t) · PCAT(t)

Cunk(t, w) = C(w) · P (t | unk)

5Again, without gold tag frequencies.

64

Thus, with the estimated counts for all words:

Pem(w | t) =
Cknown(t, w) + Cunk(t, w)∑
w′ Cknown(t, w′) + Cunk(t, w′)

Our experiments compare when φ0
t = Pem (experiment 6) versus a uniform

prior (experiments 3–5).

3.3 Posterior Inference

We wish to find the most likely supertag of each word, given the model we
just described and a corpus of training data. Since there is exact inference with these
models is intractable, we resort to Gibbs sampling to find an approximate solution.
At a high level, we alternate between resampling model parameters (φt, πt) given
the current tag sequence and resampling tag sequences given the current model pa-
rameters and observed word sequences. It is possible to sample a new tagging from
the posterior distribution over tag sequences for a sentence, given the sentence and
the HMM parameters using the forward-filter backward-sample (FFBS) algorithm
(Carter and Kohn, 1996). To efficiently sample new HMM parameters, we exploit
Dirichlet-multinomial conjugacy. By repeating these alternating steps and accumu-
lating the number of times each supertag is used in each position, we obtain an
approximation of the required posterior quantities.

Our inference procedure takes as input the transition prior means π0
t , the

emission prior means φ0
t , and concentration parameters απ and αφ, along with the

raw corpus and tag dictionary. The set of supertags associated with a word w will
be known as TD(w). We will refer to the set of word types included in the tag
dictionary as “known” words and others as “unknown” words. For simplicity, we
will assume that TD(w), for any unknown word w, is the full set of CCG categories.
During sampling, we always restrict the possible tag choices for a word w to the
categories found in TD(w). We refer to the sequence of word tokens as x and tags
as y.

We initialize the sampler by setting πt = π0
t and φt = φ0

t and then sampling

65

tagging sequences using FFBS.
To sample a tagging for a sentence x, the strategy is to inductively compute,

for each token xi starting with i = 0 and going “forward”, the probability of gener-
ating x0, x1, . . . , xi via any tag sequence that ends with yi = u. This can be done
efficiently using the forward algorithm, as is typically done for EM on an HMM:

p(yi = u | x0:i) = φu(xi) ·
∑
t∈T

πt(u) · p(yi−1 = t | x0:i−1)

We then pass through the sequence again, this time “backward” starting at i = |x|
and sampling

yi | yi+1 ∼ p(yi = t | x0:i) · πt(yi+1).

The block-sampling approach of choosing new tags for a sentence all at once
is particularly beneficial given the sequential nature of the model of the HMM. In an
HMM, a token’s adjacent tags tend to hold onto its current tag due to the relationships
between the three. Resampling all tags at once allows for more drastic changes
at each iteration, providing better opportunities for mixing during inference. The
FFBS approach has the additional advantage that, by resampling the distributions
only once per iteration, we are able to resample all sentences in parallel. This is
not strictly true of all HMM problems with FFBS, but because our data is divided by
sentence, and each sentence has a known start and end tag, the tags chosen during
the sampling of one sentence cannot affect the sampling of another sentence in the
same iteration.

Once we have sampled tags for the entire corpus, we resample π and φ. The
newly-sampled tags y are used to compute C(w, t), the count of tokens with word
type w and tag t, and C(t,u), the number of times tag t is directly followed by tag
u. We then sample, for each t ∈ T where T is the full set of valid CCG categories:

πt ∼ Dir
(
〈απ · π0

t(u) + C(t,u)〉u∈T
)

φt ∼ Dir
(
〈αφ · φ0

t(w) + C(w, t)〉w∈V
)

It is important to note that this method of resampling allows the draws to

66

num. raw TD TD ambiguity
Corpus tags tokens tokens entries type token

English
CCGBank POS 50

158k 735k
45k 3.75 13.11

CCGBank 1,171 65k 56.98 296.18
Chinese CTB-CCG 829 99k 439k 60k 96.58 323.37
Italian CCG-TUT 955 6k 27k 9k 178.88 426.13

Table 3.2: Supertag statistics for the various corpora used. CCGBank is English,
CCG-CTB is Chinese, and TUT is Italian. The number of tags includes only those
tags found in the tag dictionary (TD). Ambiguity rates are the average number of
entries in the unpruned tag dictionary for each word in the raw corpus. English POS

statistics are shown only for comparison; only CCG experiments were run.

incorporate both the data, in the form of counts, and the prior mean, which includes
all of our carefully-constructed biases derived from both the intrinsic, universal
CCG properties as well as the information we induced from the raw corpus and tag
dictionary.

With the distributions resampled, we can continue the procedure by resam-
pling tags as above, and then resampling distributions again, until a maximum num-
ber of iterations is reached.

3.4 Experiments6

To evaluate our approach, we used CCGBank (Hockenmaier and Steedman,
2007), which is a transformation of the English Penn Treebank (Marcus et al.,
1993); the CTB-CCG (Tse and Curran, 2010) transformation of the Penn Chinese
Treebank (Xue et al., 2005); and the CCG-TUT corpus (Bos et al., 2009), built
from the TUT corpus of Italian text (Bosco et al., 2000). Statistics on the size and
ambiguity of these datasets are shown in Table 3.2.

For CCGBank, sections 00–15 were used for extracting the tag dictionary,
16–18 for the raw corpus, 19–21 for development data, and 22–24 for test data.
For TUT, the first 150 sentences of each of the CIVIL LAW and NEWSPAPER sec-

6All code and experimental scripts are available at: www.github.com/dhgarrette/
2014-ccg-supertagging

67

www.github.com/dhgarrette/2014-ccg-supertagging
www.github.com/dhgarrette/2014-ccg-supertagging

tions were used for raw data, the next sentences 150–249 of each was used for
development, and the sentences 250–349 were used for test; the remaining data,
457 sentences from CIVIL LAW and 548 from NEWSPAPER, plus the much smaller
132-sentence JRC ACQUIS data, was used for the tag dictionary. For CTB-CCG,
sections 00–11 were used for the tag dictionary, 20–24 for raw, 25–27 for dev, and
28–31 for test.

Because we are interested in showing the relative gains that our ideas provide
over Baldridge (2008), we reimplemented the initialization procedure from that
paper, allowing us to evaluate all approaches consistently. For each dataset, we ran a
series of experiments in which we made further changes from the original work. We
first ran a baseline experiment with uniform transition and emission initialization
of EM (indicated as “1.” in Table 3.3) followed by our reimplementation of the
initialization procedure by Baldridge (2). We then experimented with the Bayesian
formulation, first using the same information used by Baldridge, and then adding
our enhancements: using our category grammar in PCAT, using P tr

κ as the transition
compatibility distribution, and using Pem as φ0

t(w).
For each dataset, we ran experiments using four different levels of tag dic-

tionary pruning. Pruning is the process of artificially removing noise from the tag
dictionary by using token-level annotation counts to discard low-probability tags;
for each word, for cutoff x, any tag with probability less than x is excluded. Tag
dictionary pruning is a standard procedure in type-supervised training, but because
it requires information that does not truly conform to the type-supervised scenario,
we felt that it was critical to demonstrate the performance of our approach under
situations of less pruning, including no artificial pruning at all.

We emphasize that unlike in most previous work, we use incomplete tag
dictionaries. Most previous work makes the unrealistic assumption that the tag
dictionary contains an entry for every word that appears in either the training or

testing data. This is a poor approximation of a real tagging system, which will
never have complete lexical knowledge about the test data. Even work that only
assumes complete knowledge of the tagging possibilities for the lexical items in
the training corpus is problematic (Baldridge, 2008; Ravi et al., 2010a). This still

68

makes learning unrealistically easy since it dramatically reduces the ambiguity of
words that would have been unseen, and, in the case of CCG, introduces additional
tags that would not have otherwise been known. To ensure that our experiments are
more realistic, we draw our tag dictionary entries from data that is totally disjoint
from both the raw and test corpora. During learning, any unknown words (words
not appearing in the tag dictionary) are unconstrained so that they may take any tag
that has been seen with any word in the tag dictionary, and are, thus, maximally
ambiguous.

We only performed minimal parameter tuning, choosing instead to stay con-
sistent with Baldridge (2008) and simply pick reasonable-seeming values for any
additional parameters. Any tuning that was performed was done with simple hill-
climbing on the development data of English CCGBank. All parameters were held
consistent across experiments, including across languages. For EM, we used 50 it-
erations; for FFBS we used 100 burn-in iterations and 200 sampling iterations.7 For
all experiments, we used σ = 0.95 for P (tr)

κ and λ = 0.5 for π0
t to be consistent with

previous work, απ = 3000, αφ = 7000, pterm = 0.6, pfwd = 0.5, pmod = 0.8, and
δ = 1000 for patom. These hyperparameters were tuned via a coarse grid-search,
using the development set to evaluate a few values for each hyperparameter. Test
data was run only once, for the final figures.

The final results reported were achieved by using the following training se-
quence: initialize parameters according to the scenario, train an HMM using EM or
FFBS starting with that set of parameters, tag the raw corpus with the trained HMM,
add-0.1 smooth counts from the now-tagged raw corpus, and train a maximum en-
tropy Markov model (MEMM) from this “auto-supervised” data.8

Results are shown in Table 3.3. Most notably, the contributions described
in this chapter improve results in nearly every experimental scenario. We can see
immediate, often sizable, gains in most cases simply by using the Bayesian formu-
lation. Further gains are seen from adding each of the other various contributions of

7Final counts are averaged across the sampling iterations.
8Auto-supervised training of an MEMM increases accuracy by 1–3% on average (Garrette and

Baldridge, 2013). We use the OpenNLP MEMM implementation with its standard set of features:
http://opennlp.apache.org

69

http://opennlp.apache.org

Corpus English Chinese Italian
1. uniform EM 38 26 30
2. init (Baldridge) EM 41 28 32
3. init Bayes 42 37 40
4. PCAT Bayes 42 36 40
5. PCAT, P tr

κ Bayes 50 44 43
6. PCAT, P tr

κ , Pem Bayes 51 49 46

(a) Main results.

Corpus English Chinese Italian
TD cutoff 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

1. uniform EM 77 62 47 64 39 30 51 32 30
2. init (Baldridge) EM 78 67 55 66 43 33 54 36 33
3. init Bayes 74 68 56 65 56 47 52 46 40
4. PCAT Bayes 74 70 59 64 57 47 52 40 39
5. PCAT, P tr

κ Bayes 75 72 61 66 58 49 52 44 41
6. PCAT, P tr

κ , Pem Bayes 80 80 73 69 62 56 53 47 45

(b) Results varying the degree of tag dictionary pruning cutoff, see text.

Table 3.3: Experimental results: test-set per-token supertag accuracies. (1) is uni-
form EM initialization. (2) is a reimplementation of (Baldridge, 2008). (3) is
Bayesian formulation using only the ideas from Baldridge: PCPLX, Pκ, and uniform
emissions. (4–6) are our enhancements to the prior: using our category grammar in
PCAT instead of PCPLX, using P tr

κ instead of Pκ, and using Pem instead of uniform.

70

this chapter. Perhaps most interestingly, the gains are only minimal with maximum
pruning, but the gains increase as the pruning becomes less aggressive — as the
scenarios become more realistic. This indicates that our improvements make the
overall procedure more robust.

3.4.1 Error analysis

Like POS-taggers, the learned supertagger frequently confuses nouns (n) and
their modifiers (n/n), but the most frequent error made by the English (6) experi-
ment was (((s\np)\(s\np))/n) instead of (npnb/n). However, these are both deter-
miner types, indicating an interesting problem for the supertagger: it often predicts
an object type-raised determiner instead of the vanilla np/n, but in many contexts,
both categories are equally valid. (In fact, for parsers that use type-raising as a rule,
this distinction in lexical categories does not exist.)

3.5 Related Work

Ravi et al. (2010a) also improved upon the work by Baldridge (2008) by
using integer linear programming to find a minimal model of supertag transitions,
thereby generating a better starting point for EM than the grammatical constraints
alone could provide. This approach is complementary to the work presented here,
and because we have shown that our work yields gains under tag dictionaries of
various levels of cleanliness, it is probable that employing minimization to set the
base distribution for sampling could lead to still higher gains.

On the Bayesian side, Van Gael et al. (2009) used a nonparametric, infinite

HMM for truly unsupervised POS-tagger learning (Van Gael et al., 2008; Beal et al.,
2001): their model is not restricted to the standard set of POS tags, and may learn a
more fine-grained set of labels. (We will return to this comparison in §4.5 with our
discussion of nonparametric CCG models.)

Finally, we find the task of weakly-supervised supertagger learning to be
particularly relevant given the recent surge in popularity of CCG. An array of NLP

applications have begun using CCG, including semantic parsing (Zettlemoyer and

71

Collins, 2005) and machine translation (Weese et al., 2012). As CCG finds more
applications, and as these applications move to lower-resource domains and lan-
guages, there will be increased need for the ability to learn without full supervision.

3.6 Conclusion and Future Work

Standard strategies for type-supervised HMM estimation are less effective as
the number of categories increases. In contrast to POS tag sets, CCG supertags,
while quite numerous, have structural clues that can simplify the learning problem.
Baldridge (2008) used this formalism-specific structure to inform an initialization
procedure for EM. In this work, we have shown that CCG structure can instead
be used to motivate an effective prior distribution over the parameters of an HMM

supertagging model, allowing our work to outperform Baldridge’s approach, and
to do so in a principled manner that lends itself better to future extensions such as
incorporation in more complex models.

This work also improves on Baldridge’s simple “complexity” measure, de-
veloping instead a probabilistic category grammar over supertags that allows our
prior to capture a wider variety of interesting and useful properties of the CCG for-
malism. This well-defined distribution over the infinite space of CCG categories
also positions our work well for extensions, as we will see with our model in §4.5.

Finally, we were able to achieve further gains by augmenting the univer-
sal CCG knowledge with corpus-specific information that could be automatically
extracted from the weak supervision that is available: the raw corpus and the tag
dictionary. This allows us to combine the cross-linguistic properties of the CCG

formalism with corpus- or language-specific information in the data into a single,
unified Bayesian prior.

Our model uses a relatively large number of parameters, e.g., pterm, pfwd, pmod,
patom, in the prior. Here, we fixed each to a single value (i.e., a “fully Bayesian”
approach). Future work might explore sensitivity to these choices, or empirical
Bayesian or maximum a posteriori inference for their values (Johnson and Gold-
water, 2009).

72

In this work, as in most type-supervised work, the tag dictionary was auto-
matically extracted from an existing tagged corpus. However, a tag dictionary could
instead be automatically induced via multi-lingual transfer (Das and Petrov, 2011)
or generalized from human-provided information as we did in Chapter 2. Again,
since the approach presented here has been shown to be somewhat robust to tag
dictionary noise, it is likely that the model would perform well even when using an
automatically-induced tag dictionary.

73

Chapter 4

Grammar-Informed CCG Parsing

Supervised learning of natural language parsers of various types (context-
free grammars, dependency grammars, categorial grammars, and the like) is by
now a well-understood task with plenty of high-performing models—when training
data is abundant. Learning from sparse, incomplete information is, naturally, a
greater challenge. To build parsers for domains and languages where resources are
scarce, we need techniques that take advantage of very limited kinds and amounts
of supervision.

In this chapter, we extend the intuitions developed for Combinatory Catego-
rial Grammar (CCG) supertagging in Chapter 3. For the supertagger, we developed
a probability distribution over CCG categories (§3.2.2) that captured some of the
intrinsic, cross-lingual properties of the CCG formalism to use as a prior on the
categories chosen by the sequence model. While this method was successful in
improving supertagging performance in weak-supervision scenarios, supertags are
just the start of a full syntactic analysis of a sentence, and—for all but very short
sentences—an HMM is very unlikely to produce a sequence of supertags that can
actually be combined into a complete tree.

In this chapter, we present models for CCG parsing that are designed to take
advantage of the universal properties of CCG that we used to improve supertagging.
We begin by showing how the prior over categories (§3.2.2) can be incorporated into
a standard PCFG parsing model and used to bias the categories of all constituents,
at all levels of the tree, toward simpler, a priori more likely categories for type-
supervised parsing (§4.2) (Garrette et al., 2015). Then we present a novel model
that goes further by extending the standard PCFG to include supertag contexts to
the left and right side of each constituent, allowing the model to exploit the natural

Section §4.2 is based on the following publication: Dan Garrette, Chris Dyer, Jason Baldridge,
and Noah A. Smith. 2015. Weakly-supervised grammar-informed Bayesian CCG parser learning.
In Proc. of AAAI. My co-authors worked with me to develop the ideas underlying this work.

74

associativity of CCG, and allowing us to incorporate the supertagger’s connectivity
bias (§3.2.3), pushing the model toward constituent categories that “fit” with their
contexts (§4.3). Finally, we discuss ways of moving beyond type-level supervision,
evaluating the utility of bracket annotations, a lightweight form of supervision that
provides complementary information (§4.4). At the end of this chapter, we include
a discussion of how Bayesian nonparametric techniques might be employed in type-
supervised parser learning in order to overcome the limitations of a fixed, finite tag
dictionary, by allowing our model explore the full, infinite space of CCG categories
to introduce new categories as they are needed (§4.5).

4.1 Combinatory Categorial Grammar1

Because of their structured nature, CCG categories (unlike the part-of-speech
tags and non-terminals of a standard PCFG) contain information that gives evidence
of their frequencies. In §3.2.2, we developed a category generator that defined a
probability distribution PCAT over the infinite set of CCG categories and used it as
a prior that encouraged more cross-linguistically likely categories. Supertagging
accuracy was improved further by complementing the language-universal knowl-
edge from CCG with corpus-specific information extracted automatically from the
tag dictionary and raw corpus. Counts were estimated from the data then used to
empirically set the parameters of the priors.

There has been much work on statistical CCG parsing since its development,
including early work on learning stochastic grammars by Osborne and Briscoe
(1997), among others, but the development of CCGBank, a corpus of CCG-parsed
newswire sentences (Hockenmaier and Steedman, 2007), has made a wide array
of machine learning approaches possible. Notable examples include generative
models developed by Hockenmaier and Steedman (2002) and log-linear parsing
by Clark and Curran (2007). More recent approaches by Bisk and Hockenmaier
(2013) have included learning simplified CCG representations from POS tags but
without explicit CCG tree supervision.

1We refer the reader to §3.1 for a more general discussion of CCG.

75

Beyond the properties that make it desirable for constructing syntactic parsers,
CCG’s tight connection between syntax and semantics has made it particularly pop-
ular as a tool for semantic parsing (Zettlemoyer and Collins, 2005, inter alia). In
CCG, it is possible to pair each syntactic category with a lambda-calculus expres-
sion specifying the semantic content of the particular constituent. As categories
are combined to construct a syntactic derivation, the corresponding meaning ex-
pressions follow the same paths of combination, finally deriving a logical form
representation that describes the whole sentence. We have also seen CCG used for
machine translation (Weese et al., 2012) and semantic role labeling (Gildea and
Hockenmaier, 2003), among other applications.

4.2 CCG Parsing with Likely Categories

In Chapter 3, we introduced two universal properties of the CCG formalism
that we used to design priors for a CCG supertagger. The first of these was that
some CCG categories are intrinsically more likely than others. We showed that it is
possible to define a prior over the a priori likelihood of a particular category using
a probabilistic grammar that is biased toward “simple” categories, as seen in §3.2.2,
and that this prior allows us to learn better better supertaggers by biasing the model
toward more likely categories.

In this section, we define a parsing model, and extend the principle of prefer-
ring simpler categories to higher-level constituents in the tree, defining priors over
grammar productions that bias the model toward a priori more likely categories
throughout the tree.

Our inputs are unannotated sentences and an incomplete tag dictionary map-
ping some words to their potential categories, and we model CCG trees with a prob-
abilistic context-free grammar (PCFG). The parameters of the PCFG are estimated
using a blocked sampling algorithm based on the Markov chain Monte Carlo ap-
proach of Johnson et al. (2007). This allows us to efficiently sample parse trees
for sentences in an unlabeled training corpus according to their posterior proba-
bilities as influenced by the linguistically-informed priors. This approach yields

76

improvements over a baseline PCFG that uses only uninformative priors. Further, as
a demonstration of the universality of our approach in capturing valuable grammat-
ical biases, we evaluate on three diverse languages: English, Italian, and Chinese
(Garrette et al., 2015).

4.2.1 Generative Model

Our CCG parsing model assumes the following generative process. First, the
parameters that define our PCFG are drawn. We generate a distribution σ over root
categories, a conditional distribution θt over binary branching non-terminal produc-
tions given each category t, a conditional distribution πt over unary non-terminal
productions given each category t, and a conditional distribution µt over terminal
(word) productions given each category t. Each of these parameters is drawn from
a Dirichlet distribution parameterized by a concentration parameter (ασ, αθ, απ, αµ)
and a prior mean distribution (σ0, θ0, π0, µ0

t). By setting each α close to zero, we
can bias learning toward relatively peaked distributions. The prior means, explained
in detail below, are used to encode both universal linguistic knowledge as well as
information automatically extracted from the weak supervision.

Note that unlike a standard phrase-structure grammar where the sets of ter-
minal and non-terminal labels are non-overlapping (part-of-speech tags vs. internal
nodes), a CCG category may appear at any level the tree and, thus, may yield binary,
unary, or terminal word productions. Therefore, we also generate a distribution λt
for every category t that defines the mixture over production types (binary, unary,
terminal) yielded by t. These parameters are generated by draws from a Dirichlet
distribution parameterized by concentration parameter αλ and prior mean distribu-
tion λ0.

Next, the process generates each sentence in the corpus. This begins by
generating a root category s and then recursively generating subtrees. For each
subtree rooted by a category t, with probability determined by λt, we generate either
a binary (〈u,v〉), unary (〈u〉), or terminal (w) production from t; for binary and
unary productions, we generate child categories and recursively generate subtrees.
A tree is complete when all branches end in terminal words.

77

Parameters:
σ ∼ Dirichlet(ασ, σ

0) root categories
θt ∼ Dirichlet(αθ, θ

0) ∀t ∈ T binary productions
πt ∼ Dirichlet(απ, π

0) ∀t ∈ T unary productions
µt ∼ Dirichlet(αµ, µ

0
t) ∀t ∈ T terminal productions

λt ∼ Dirichlet(αλ, 〈λ0(1), λ0(2), λ0(3)〉) ∀t ∈ T production mixture

Sentence:
s ∼ Categorical(σ)

generate(s)
where

function generate(t) :
z ∼ Categorical(λt)

if z = 1 : 〈u,v〉 | t ∼ Categorical(θt)

Tree(t, generate(u), generate(v))
if z = 2 : 〈u〉 | t ∼ Categorical(πt)

Tree(t, generate(u)))
if z = 3 : w | t ∼ Categorical(µt)

Leaf(t, w)

Root prior mean (σ0)

Since σ is a distribution over root categories, we can use PCAT, the probability
of a category as defined above in terms of the category grammar, as its prior mean,
biasing our model toward simpler root categories. Thus, σ0(t) = PCAT(t).

Non-terminal production prior means (θ0 and π0)

Our model includes two types of non-terminal productions: binary produc-
tions of the form “t→ 〈u,v〉”, and unary productions of the form “t→ 〈u〉”. As

78

with the root distribution prior, we would like our model to prefer productions that
yield high-likelihood categories. To provide this bias, we again use PCAT:

θ0(〈u,v〉) = PCAT(u) · PCAT(v)

π0(〈u〉) = PCAT(u)

Terminal production prior means (µ0
t)

Because we model terminal productions separately, we are able to borrow
directly from the supertagger model to define the terminal production prior mean
µ0
t in a way that exploits the dictionary and unlabeled corpus to estimate the dis-

tribution over words for each supertag. Terminal productions in our grammar are
defined as “word given supertag,” which is exactly the relationship of the emission
distribution in an HMM supertagger. Thus, we simply use the supertagger’s emission
prior mean, as defined in §3.2.4, for our terminal productions:

µ0
t (w) = Pem(w | t)

Production type mixture prior means (λ0t)

For our experiments, we use an uninformative prior over production types:
λ0 = 〈1

3
, 1
3
, 1
3
〉 and αλ = 3.

Decoding

In order to parse with our model, we seek the highest-probability parse tree
for a given sentence w:

ŷ = argmaxy P (y | w).

This can be computed efficiently using the well-known probabilistic CKY algorithm.

79

4.2.2 Posterior Inference

Since inference about the parameters of our model using a corpus of unla-
beled training data is intractable, we resort to Gibbs sampling to find an approxi-
mate solution. Our strategy is based on that of Johnson et al. (2007), using a block
sampling approach. We initialize our parameters by setting each distribution to its
prior mean (σ = σ0, θt = θ0, etc.) We then alternate between sampling trees
given the current model parameters and observed word sequences, and sampling
model parameters (σ, θ, π, µ, λ) given the current set of parse trees. To efficiently
sample new model parameters, we exploit Dirichlet-multinomial conjugacy. We
accumulate all parse trees sampled across all sampling iterations and use them to
approximate the posterior quantities.

Our inference procedure takes as input each of the distribution prior means
(σ0, θ0, π0, µ0), along with the raw corpus and tag dictionary. During sampling, we
always restrict the possible supertag choices for a word w to the categories found in
the tag dictionary entry for that w: TD(w). Since real-world learning scenarios will
always lack complete knowledge of the lexicon, we, too, want to allow for unknown
words. Thus, we use incomplete tag dictionaries in our experiments, meaning that
for a word w not present in the dictionary, we assign TD(w) to be the full set of
known categories, indicating maximal ambiguity. It is also possible that the “cor-
rect” supertag for a given word is not present in the tag dictionary, though in these
scenarios we hope that the parse will succeed through a different route.

Our Gibbs sampler, based on the one proposed by Goodman (1998) and used
by Johnson et al. (2007), uses a block sampling approach to sample an entire parse
tree at once. The procedure is similar in principle to the Forward-Filter Backward-
Sampler algorithm used in §3.3 for the HMM supertagger, but sampling trees instead
of sequences. To sample a tree for a sentence w, the strategy is to use the Inside
algorithm (Lari and Young, 1990) to inductively compute, for each potential non-
terminal position (i, j) (spanning words wi through wj−1) and category t, going
“up” the tree, the probability of generating wi, . . . , wj−1 via any arrangement of

80

productions that is rooted by yij = t:

p(wi | yi,i+1 = t) = λt(3) · µt(wi)

+
∑
t→u

λt(2) · πt(〈u〉) · p(wi:j−1 | yij = u)

p(wi:j−1 | yij = t) =∑
t→u

λt(2) · πt(〈u〉) · p(wi:j−1 | yij = u)

+
∑

t→u v

∑
i<k<j

λt(1) · θt(〈u,v〉) · p(wi:k−1 | yik = u) · p(wk:j−1 | ykj = v)

We then pass through the chart again, this time “downward” starting at the
root (y0n) and sampling productions until we reach a terminal word on all branches:

y0n ∼ σt · p(w0:n−1 | y0n = t)

x | yij ∼
〈
θyij(〈u,v〉) · p(wi:k−1 | yik = u) · p(wk:j−1 | ykj = v)

∀ yik, ykj when j > i+ 1,

πyij(〈u〉) · p(wi:j−1 | y′ij = u) ∀ y′ij,

µyij(wi) when j = i+ 1
〉

where x is either a split point k and pair of categories yik, ykj resulting from a binary
rewrite rule, a single category y′ij resulting from a unary rule, or a word w resulting
from a terminal rule.

Resampling the parameters uses the just-sampled parse trees y to compute
Croot(t), the count of trees in which the root category is t, C(t→ 〈u,v〉), the count
of binary non-terminal productions whose category is t that are producing the pair
of categories 〈u,v〉, the count of unary non-terminal productions C(t→ 〈u〉), and
the count of terminal productions C(t → w). We then sample, for each t ∈ T
where T is the full set of valid CCG categories (and V is the full vocabulary of

81

known words):

σ ∼ Dirichlet(〈 ασ · σ0(t) + Croot(t) 〉t∈T)

θt ∼ Dirichlet(〈 αθ · θ0(〈u,v〉) + C(t→〈u,v〉) 〉u,v∈T)

πt ∼ Dirichlet(〈 απ · π0(〈u〉) + C(t→〈u〉) 〉u∈T)

µt ∼ Dirichlet(〈 αµ · µ0
t(w) + C(t→ w) 〉w∈V)

λt ∼ Dirichlet(〈 αλ · λ0(1) +
∑

u,v∈T C(t→〈u,v〉),

αλ · λ0(2) +
∑

u∈T C(t→〈u〉),

αλ · λ0(3) +
∑

w∈V C(t→w) 〉)

These distributions are derived from the conjugacy of the Dirichlet prior to the
multinomial; note that the result selects parameters based on both the data (counts)
and the bias encoded in the prior.

After all sampling iterations have completed, the parameters are estimated
as the maximum likelihood estimate of the pool of trees resulting from all sam-
pling iterations. Dramatic time savings can be obtained by generating and reusing
a chart that compactly stores all possible parses for all possible sentences. This
allows avoiding calculation for subtrees and productions that never participate in a
complete parse.

As a further optimization, we enforce the use of punctuation as phrasal-
boundary indicators, a technique used previously by Ponvert et al. (2011) and Spitkovsky
et al. (2011). This means that when we attempt to parse a sentence (or sample
a parse tree for a sentence), we do not allow constituents that cross punctuation
without covering the whole inter-punctuation phrase. For example, the sentence
“On Sunday, he walked.”, the constituent “Sunday , he” would be disallowed.
Since punctuation does regularly mark a phrasal boundary, this choice has negli-
gible effect on accuracy while reducing runtime and memory use. In cases where a
punctuation-as-boundary requirement (along with the tag dictionary) renders a sen-
tence unparseable according to the CCG rules, we lift the punctuation requirement
for that sentence.

82

4.2.3 Experiments

We evaluated our approach on the three available CCG corpora: English
CCGBank (Hockenmaier and Steedman, 2007), Chinese Treebank CCG (Tse and
Curran, 2010), and the Italian CCG-TUT corpus (Bos et al., 2009). Each corpus was
split into four non-overlapping datasets: a portion for constructing the tag dictio-
nary, sentences for the unlabeled training data, development trees (used for tuning
α, pterm, pmod, and pfwd hyperparameters), and test trees. We used the same splits
as Garrette et al. (2014). Since these treebanks use special representations for con-
junctions, we chose to rewrite the trees to use conjunction categories of the form
(X\X)/X so that additional special rules would not need to be introduced.

We ran our sampler for 50 iterations.2 For the category grammar, we used
pterm=0.7, pmod=0.1, pfwd=0.5. For the priors, we use ασ=1, αθ=100, απ=10,000,
αµ=10,000.3 We trained on 1,000 sentences for English and 750 for Chinese, but
only 150 for Italian since it is a much smaller corpus.

Unlike many CCG parsers, we do not use supertagging as a preprocessing
step during either inference or parsing (Clark and Curran, 2007; Lewis and Steed-
man, 2014). This means that for any word token, there may be a very large number
of potential supertag choices—with as many as 1,300 for words that do not appear at
all in the tag dictionary. As a result, the potential for spurious ambiguity—different
CCG parses that result in the same dependencies—is very high. To limit the amount
of spurious ambiguity, we follow Lewis and Steedman (2014) in allowing only a
small set of generic, linguistically-plausible grammar rules, and adopt their set of
13 unary category-rewriting rules. The set of rules allowed by our parser is given
in Table 4.1. For binary combinations, we allow for forward and backward appli-
cation, as well as rules for combining with punctuation to the left and right. We
further allow for a merge rule since this is seen frequently in the corpora (Clark and

2We experimented with higher numbers of iterations but found that accuracy was not improved
past 50 iterations.

3In order to ensure that these concentration parameters, while high, were not dominating the
posterior distributions, we ran experiments in which they were set much higher (including using the
prior alone), and found that accuracies plummeted in those cases, demonstrating that there is a good
balance with the prior.

83

rule t → 〈 u , v 〉
forward application X X/Y Y
backward application X Y X\Y
right punctuation X X P
left punctuation X P X
merge X X X

(a) Binary rules used by the parser. X and Y represent
any CCG category; P, any punctuation category.

usage t → 〈 u 〉
bare NP np n

type
raising

s/(s\np) np
(s\np)/((s\np)/np) np
(s\np)/((s\np)/pp) pp

reduced
relative
clauses

np\np spss\np
np\np sng\np
np\np sadj\np
np\np sto\np
n\n sto\np

np\np sdcl/np
VP
sentence
modifiers

s/s spss\np
s/s sng\np
s/s sto\np

(b) Unary rules used by the parser. From Lewis and
Steedman (2014).

Table 4.1: All rules used by the parser.

84

Curran, 2007). CCG composition rules are rarely necessary to parse a sentence, but
do increase the overall number of parses, many of which represent the same under-
lying grammatical structures. This choice drastically reduces the time and space
requirements for learning, without sacrifices in accuracy. Allowing the backward

crossed composition rule—the third most-frequent rule in CCGBank—not only dra-
matically increases the time and memory requirements, but also tends to lower the
accuracy of the resulting parser by 1% or more, likely because it increases ambigu-
ity.

CCG parsers are typically evaluated on the dependencies they produce in-
stead of their CCG derivations directly (Bisk and Hockenmaier, 2012; Lewis and
Steedman, 2014). There can be many different CCG parse trees that all represent
the same dependency relationships (spurious ambiguity), and CCG-to-dependency
conversion can collapse those differences. To convert a CCG tree into a dependency
tree, we traverse the parse tree, dictating at every branching node which words will
be the dependents of which. For binary branching nodes of forward rules, the right
side—the argument side—is the dependent, unless the left side is a modifier (X/X)
of the right, in which case the left is the dependent. The opposite is true for back-

ward rules. For punctuation rules, the punctuation is always the dependent. For
merge rules, the right side is always made the parent. The results presented in this
chapter are dependency accuracy scores: the proportion of words that were assigned
the correct parent (or “root” for the root of a tree).

During training, we only use sentences for which we are able to find at least
one parse since we cannot sample a parse tree for a sentence that has no available
parses. However, for testing, we must make extra efforts to find valid parses. To that
end, if we encounter a test sentence that cannot be parsed given the tag dictionary
and CCG rules (either with or without enforcement of a punctuation-as-boundary
requirement), then we fall back to a plan in which additional supertag options are
added for each token. For a word wi, we add the set of tags X\X for all X ∈
TD(wi−1), and Y/Y for all Y ∈ TD(wi+1). SinceX\X and Y/Y represent modifier

categories, the result of these categories is to provide the parser the option of simply
making wi a modifier of one of its immediate neighbors, resulting in wi simply

85

English Chinese Italian
1. uniform 53.38 35.94 58.16
2. PCAT 54.75 40.08 59.21
3. PCAT, Pem 55.69 42.00 60.04

(a) Main results.

English Chinese Italian
0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

1. 56.62 61.30 56.46 34.88 41.24 47.42 60.29 59.91 54.72
2. 57.79 61.93 56.69 41.59 42.86 47.74 58.58 60.76 53.31
3. 60.12 62.11 57.20 43.42 43.84 49.40 59.60 60.02 53.39

(b) Increasing degrees of artificial tag dictionary pruning (see text). The pruning cutoff
is given at the top of each column.

Table 4.2: Experimental results: test-set dependency accuracies. (1) uses uniform
priors on all distributions. (2) uses the category prior PCAT. (3) uses the tag dictio-
nary and raw corpus to automatically estimate category prior and word production
information. Table (a) gives the results obtained when no artificial tag dictionary
pruning was performed; table (b) shows performance as the artificial pruning is
increased.

being assigned as a dependent of that neighboring word. This effectively allows
the parser to ignore inconvenient tokens as it searches for the optimal tree. This is
similar to the “deletion” strategy employed by Zettlemoyer and Collins (2007) in
which words can be skipped.

Baseline

As a baseline, we trained our model with uniform prior mean distributions
(σ0, θ0, π0, µ0

t). The uniform priors do not make any distinction among the relative
likelihoods of different CCG categories or words, and thus do not take advantage of
either the universal properties of the CCG formalism (PCAT), or the initialization in-
formation that can be automatically estimated from the type-supervised data (Pem).

86

Results

The results of our experiments are given in Table 4.2a. We find that the
use of a well-designed category prior (PCAT) achieves performance gains over the
baseline across all three languages. Our results also show that still further gains
can be achieved by using the available weak supervision—the tag dictionary and
unlabeled text—to estimate corpus counts that can be used to influence the priors
on terminal productions (Pem).

The largest gains are in the Chinese data, though the accuracies are lower on
Chinese overall, indicating the difficulty of the Chinese parsing task.

Error analysis

Supertag accuracy degrades roughly 2% for each language from the uni-
form prior to the full prior. Inspection of the errors shows us that this is due
in part to the category prior encouraging simpler categories, e.g., categories like
((s\np)/(s\np))/np being learned as pp/np. It is counter-intuitive that supertagging
accuracy decreases while parsing performance improves, but note that it may be
easier for the parser to recover correct dependencies, using the merge rule, when an
incorrect supertag is simpler.

The most frequent errors under uniform priors involve very complex cate-
gories, like ((sdcl\np)/(sdcl\np))/np in Chinese. When the category prior is intro-
duced, these complex categories vanish from the errors; the most complex common
category error with the category prior in Chinese is (sdcl\np)/np. After bringing the
data-based prior in, we again see more complex categories, plus others that have
high arity, like modifiers of modifiers (np/np)/(np/np). This suggests that good
performance relies on priors that blend theoretical constraints with empirical guid-
ance.

We also trained the parser on gold-standard trees for an upper-bound on
performance for the given training sentences, obtaining 66%, 48%, and 65% for
English, Chinese, and Italian, respectively.

87

Supertag dictionary pruning

Tag dictionaries used in experimental setups are typically extracted from
labeled corpora by finding all word/tag pairs in some set of annotated sentences, as
we saw in Chapter 3. As dictionaries, however, the distinctions between high- and
low-frequency tags are lost, and all tags in the dictionary entry appear equally valid
for a given word. Unfortunately, the inclusion of low-probability tags in this way
tends to cause problems during training by over-representing the likelihoods of tags
that are only rarely applicable, or even tags that are the result of annotation errors
and should not have been included in the dictionary at all.

Traditionally, researchers have avoided this problem by using tag frequency
information to automatically prune the tag dictionary of its low-frequency tags
(Merialdo, 1994; Kupiec, 1992), leading Banko and Moore (2004), among others,
to argue that early successes in type-supervised learning were due, in large part,
to the use of that frequency information that is not available from unlabeled data
alone, undercutting the promises of weakly-supervised learning.

Since it is the goal of this research to develop techniques that can be ap-
plied without artificial data cleaning, we desire models that are robust to noise in
the training data. To see how this noise affects our model, we executed a series
of experiments in which varying degrees of noise were artificially removed. For
different cutoff levels (0.001, 0.01, 0.1), we computed the tag dictionary entry for
word w, as the supertags t where:

TD(w) =
{
t | freq(w,t)∑

t′∈T freq(w,t′) ≥ cutoff
}

Results under pruned conditions are given in Table 4.2b. Table 4.2a can be inter-
preted as results when cutoff = 0.

From the results, we can see that in most scenarios, grammar-informed pri-
ors still provide benefits to the model. More notable, however, is that these priors
provide more value in cases where there is less artificial pruning. This tells us that
our constructed priors are most helpful in the noisier, more difficult, and more real-

istic learning scenarios.

88

When only uniform priors are used, the model is not able to differentiate
a priori between probable and improbable categories. This results in poor perfor-
mance when artificial assistance is not given. However, our category prior, with its
knowledge of the intrinsic properties of the CCG formalism, is able to overcome this
problem, allowing the model to differentiate between likely and unlikely categories
and biasing the model toward better categories even though category frequency in-
formation is not available. Importantly, it also does this without eliminating tags
that (though infrequent) are useful for parsing.

These results support our hypothesis that when supervised data is scarce, it
becomes more important to take advantage of linguistic knowledge.

4.2.4 Conclusions

We have presented a Bayesian approach to CCG parser parameter estima-
tion that can be trained given only a lexicon and raw text. It flexibly incorporates
linguistically-informed prior distributions and naturally accommodates the devia-
tions from pure CCG grammars that have been employed in annotations for exist-
ing CCG corpora, especially CCGBank. The model enhances a standard PCFG by
factoring in prior distributions over categories into both non-terminal and terminal
productions; those priors can be derived from a universal prior distribution, from a
distribution built by combining a tag dictionary with raw text, or both. Our results
show that using both sources for defining these priors leads to better performing
CCG parsers in low-resource scenarios.

In the next section, we present a novel model that is able to capture priors not
just on CCG’s preference for simple categories, but al CCG’s preference for adjacent
categories that are combinable under some CCG rule.

4.3 Supertag-Context Parsing

In §4.2, we introduced a CCG parsing model with priors that encourage the
use of categories throughout the tree that are cross-linguistically more plausible.
In doing so, we were able to incorporate one of the two principles that were the

89

np/n n/n n s\np

The lazy dog sleeps

(a) An HMM supertagger uses a
strong prior on combinability be-
tween adjacent supertags.

np/n n/n n s\np

The lazy dog sleeps

n

(b) Higher-level category n subsumes the
categories of its constituents. Thus, n should
have a strong prior on combinability with its
adjacent supertags np/n and s\np.

Figure 4.1: An example of how the prior on connectivity extends to relationships
between higher-level non-terminal categories and their neighboring supertags.

basis for the supertagger presented in Chapter 3: that some CCG categories are in-
trinsically more likely than others. However, the other principle, that, given the
natural associativity of CCG, adjacent categories are likely to be combinable under
some CCG rule, does not have a straightforward analog in the PCFG model. The
reason for this is that the PCFG generates categories from parent categories, not sib-
lings, and thus does not have probability distributions governing the relationships
of adjacent tags for which we might be able to develop linguistically-informed pri-
ors. Note that while binary productions do model a subset of the adjacent category
pairs, these tags are, according to the grammar, required to be combinable by some
CCG rule, rendering the concept of a prior here moot. Given that our supertagging
experiments showed strong performance gains from these inclusion of these priors
(§3.4), it seems desirable that we would be able to incorporate these ideas into our
parsing model.

In this chapter, we introduce a novel parsing model that adds context pro-

ductions to the PCFG model from §4.2 in order to capture this adjacent-category as-
sociativity property of CCG (§4.3.1). The intuition behind this enhancement is that
since adjacent categories combine with each other to form new categories that de-
scribe larger constituents, if we believe a priori that adjacent supertags are likely to
combine, then it should follow that the categories of these higher-level constituents
are likely to combine with their adjacent supertags as well.

As an example, consider the simple sentence “The lazy dog sleeps”, as

90

shown in Figure 4.1. As with the simple supertagging case, we want our prior
to bias toward connections between each pair of words: The↔lazy↔dog↔sleeps.
Here we can see that the supertags of adjacent words lazy and dog can combine
using forward application to produce the category n, which describes the entire
constituent span “lazy dog”. Since we have produced a new category that subsumes
that entire span, a valid parse must next combine that n with one of the remain-
ing supertags, producing either (The·(lazy·dog))·sleeps or The·((lazy·dog)·sleeps).
Because we know that one (or both) of these combinations must be valid, we will
similarly want a strong prior on the connectivity between lazy·dog and its supertag
context: The↔(lazy·dog)↔sleeps.

This supertag-context approach has similarities to the constituent context
model (CCM) of Klein and Manning (2002), which captures part-of-speech tag con-
text information surrounding a grammatical constituent. With this model, they were
able to show that context information can be beneficial for parser learning. How-
ever, unlike CCM, we do not assume a fixed set of unambiguous pre-terminal-level
categories to serve as context anchors; our model must deal with highly ambiguous
lexicons in which any given token may be associated with as many as 1,300 possi-
ble labels, meaning that there is a very high number of potential context categories
for every constituent.

The addition of these context parameters allows us to provide priors that bias
the model toward adjacent categories throughout the tree that combine with their
contexts, just as we were able to bias our trees to choose cross-linguistically likely
categories at higher levels, thus extending the full set of intuitions from Chapter 3
to a parsing model. In order to estimate the parameters of our model, we also
develop a blocked, Metropolis-Hastings sampler to efficiently sample parse trees for
sentences in the training corpus according to their posterior probabilities (§4.3.2).

4.3.1 Generative Model

As shown in Chapter 3, it is possible to formulate effective priors on se-
quences of CCG supertags based on their internal structure and the intuition that
they should be simple, in conjunction with the tendency for adjacent categories to

91

Aij

Bik Ckj

ti-1 tjti tj-1tk-1 tk

Figure 4.2: The generative process starting with non-terminal Aij , where tx is the
supertag for wx, the word at position x, and “A → B C” is a valid production in
the grammar. We can see that non-terminal Aij generates nonterminals Bik and
Ckj (solid arrow) as well as generating left context ti-1 and right context tj (dashed
arrows); likewise for Bik and Ckj . The triangle under a non-terminal indicates the
complete subtree rooted by the node.

be combinable. In §4.2, we showed that the prior on simple categories can ap-
plied throughout the tree to bias all constituent labels toward simplicity. Here, we
develop a model that continues in this vein by extending the bias toward adjacent
combinability upward to find derivation trees to capture a priori expected regulari-
ties between constituent labels and the (pre-terminal) contexts in which they occur.

To capture combinability beliefs, we recognize that connectivity between
a constituent root and its surroundings is similar to the connectivity bias transi-
tions in an HMM supertagger since the same combinatory rules apply uniformly.
When adjacent categories do combine with each other, they form a new category
that represents the merged constituents. To complete the a CCG derivation, the new
category must then combine with one of its adjacent constituent categories. There-
fore, just as we expect supertags to be combinable with their adjacent supertags, we
also expect higher-level constituent categories to be combinable with adjacent su-
pertags. While these categories will not necessarily need to actually combine with
the adjacent supertags since they may instead combine with higher-level derived
categories, we still expect them to be combinable in the same was as was observed
by Baldridge, given the natural associativity of CCG.

In order to take advantage of this behavior in a CCG parse, we propose a
novel model that extends a standard PCFG to consider the relationship between
each non-terminal category and the supertags directly to the left and right of the

92

constituent’s span. The generative story of our model is shown in Figure 4.3.4

The generative process begins by sampling the parameters: a distribution σ
over root categories, a conditional distribution θt over non-terminal binary branch-
ing productions given category t, a conditional distribution πt over non-terminal
unary branching productions given category t, a conditional distribution µt over
terminal (word) productions given category t, a conditional distribution ψt over left
contexts given category t, and a conditional distribution ξt over right contexts given
category t. We also sample a parameter λt for every category t that the probabilities
of t producing a binary branch, unary rewrite, or terminal word. Next we sample a
sentence. This begins by sampling first a root category s and then recursively sam-
pling subtrees. For each subtree rooted by a category t, we generate a left context
supertag ` and a right context supertag r. Then, we sample a production type z cor-
responding to either a (1) binary, (2) unary, or (3) terminal production. Depending
on z, we then sample either a binary production 〈u,v〉 and recurse, a unary produc-
tion 〈u〉 and recurse, or a terminal word w and end that branch. A tree is complete
when all branches end in terminal words. See Figure 4.2 for a graphical depiction
of the generative behavior of the process. Finally, since it is possible to generate a
supertag context category that does not match the actual category generated by the
neighboring constituent, we must allow our process to reject such invalid trees and
re-attempt to sample.

One additional complication that must be addressed is that left-frontier non-
terminal categories — those whose subtree span includes the first word of the sen-
tence — do not have a left-side supertag to use as context. For these cases, we invent
a special, unique sentence-start symbol 〈S〉 to serve as context. Similarly, we invent
a sentence-end symbol 〈E〉 for the right-side context of right-frontier non-terminals.
These correspond directly to the start and end tags used in the supertagger, and their
“combinability” is treated the same way as well (§3.2.3).

This model can be understood as a context-aware variant of a Bayesian PCFG

4Note that this model is deficient in the sense that the same supertags are generated multiple
times, and sentences with conflicting supertags are not possible. As demonstrated by Klein and
Manning (2002), this fact does not affect the correctness of the model. (Though Smith and Eisner
(2004) showed that correcting deficiency might be a good idea.)

93

Parameters:
σ ∼ Dirichlet(ασ, σ

0) root categories
θt ∼ Dirichlet(αθ, θ

0) ∀t ∈ T binary productions
πt ∼ Dirichlet(απ, π

0) ∀t ∈ T unary productions
µt ∼ Dirichlet(αµ, µ

0
t) ∀t ∈ T terminal productions

λt ∼ Dirichlet(αλ, 〈λ0(1), λ0(2), λ0(3)〉) ∀t ∈ T production type mixture
ψt ∼ Dirichlet(αψ, ψ

0
t) ∀t ∈ T left context productions

ξt ∼ Dirichlet(αξ, ξ
0
t) ∀t ∈ T right context productions

Sentence:
do
s ∼ Categorical(σ)

generate(s)
until the generated tree is valid

where
function generate(t) :

` | t ∼ Categorical(ψt)

r | t ∼ Categorical(ξt)

z ∼ Categorical(λt)

if z = 1 : 〈u,v〉 | t ∼ Categorical(θt)

BinaryTree(t, `, generate(u), generate(v), r)
if z = 2 : 〈u〉 | t ∼ Categorical(πt)

UnaryTree(t, `, generate(u)), r)
if z = 3 : w | t ∼ Categorical(µt)

Leaf(t, `, w, r)

Figure 4.3: The generative story of the supertag-context parsing model.

94

S

t2

w2

A

t1

w1

t0

w0

(a) A standard PCFG tree.

S

〈E〉t2

〈E〉w2t1

A

t2t1

t2w1t0

t0

t1w0〈S〉

〈S〉

〈S〉

(b) The corresponding supertag-context tree.

Figure 4.4: Expansion of a PCFG tree to include left and right contexts.

(Johnson et al., 2007). We next discuss how the prior distributions are constructed
to encode desirable biases, using universal CCG properties.

PCFG parameter prior means (σ0, θ0, π0, µ0
t , λ

0)

For the PCFG parameters, we set the prior means exactly as we did previously
in §4.2.1, capturing the desires to find cross-linguistically-plausible categories as
well as the terminal/emission priors initialized by analysis of the tag dictionary and
raw corpus:

σ0(t) = PCAT(t) for categories t

θ0(〈u,v〉) = PCAT(u) · PCAT(v) for category pairs 〈u,v〉

π0(〈u〉) = PCAT(u) for categories 〈u〉

µ0
t (w) = Pem(w | t) for terminal productions “t→ w”

λ0 = 〈1
3
, 1
3
, 1
3
〉

The root, binary, and unary productions are specified using the category prior PCAT

defined in §3.2.2, while the terminal production prior means Pem(w | t) are set using
the procedure from §3.2.4.

95

Context parameter prior means (ψ0
t and ξ0t)

In order to encourage our model to choose trees in which the constituent
labels “fit” into their supertag contexts, we want to bias our context parameters
toward contexts categories that combine with the constituent label. The right-side
context of a non-terminal category — the probability of generating a category to the
right of the current constituent’s category — corresponds directly to the category
transitions used for the HMM supertagger, as seen in §3.2.1. Thus, the right-side
context prior mean ξ0t can use the same notions of combinability as the supertagger
to similarly bias our model toward context supertags that connect to the constituent
category.

The prior mean of producing a right-context supertag r from a constituent
category t, P right(r | t), is defined so that combinable pairs are given a higher
probability than non-combinable pairs. We further experimented with a prior that
biases toward both combinability and category likelihood by replacing the uniform
treatment of categories with our prior over categories, yielding P right

CAT (r | t). If T is
the full set of known CCG categories:

P right(r | t) =

{
a · 1/|T | κ(t, r)
1/|T | otherwise

P right
CAT (r | t) =

{
a · PCAT(r) if κ(t, r)
PCAT(r) otherwise

where a > 1.
The left-side context represents the equivalent of a “backward” transition.

Distributions P left(` | t) and P left
CAT(` | t) are defined in the same way, but with the

combinability direction flipped, κ(`, t), since the left context supertag precedes the
constituent category.

While the design of the left-context prior can, in principle, be set differently
from the right-context, we leave them identical (though reversed) for our experi-
ments.

96

4.3.2 Posterior Inference

We wish to find the most likely CCG parse, given the model we just de-
scribed, for each sentence in a corpus of training data. Since there is no way to ana-
lytically compute these modes, we resort to Gibbs sampling to find an approximate
solution. Our strategy is based on the approach taken by Johnson et al. (2007). At
a high level, we alternate between resampling model parameters (σ, θ, π, µ, λ, ψ, ξ)
given the current set of parse trees and resampling those trees given the current
model parameters and observed word sequences. To efficiently sample new model
parameters, we exploit Dirichlet-multinomial conjugacy. By repeating these alter-
nating steps and accumulating the number of times each non-terminal category is
used in each position, we obtain an approximation of the required posterior quanti-
ties.

Our inference procedure takes as input each of the distribution prior mean
(σ0, θ0, π0, µ0, ψ0, ξ0), along with the raw corpus and tag dictionary. We refer to the
set of supertags associated with a word w as TD(w). During sampling, we always
restrict the possible tag choices for a word w to the categories found in TD(w). We
refer to the sequence of word tokens as w and a non-terminal category covering the
span i through j − 1 as yij .

While it is technically possible to sample directly from our context-sensitive
model, the high number of potential supertags available for both contexts means that
computing the inside chart for this model is intractable for most sentences. In order
to overcome this limitation, we employ an accept/reject Metropolis-Hastings (MH)
step, the basic idea being that we sample parse trees according to a simpler proposal

distribution that approximates the full distribution and for which direct sampling is
tractable (in our case, the one defined by the PCFG parameters (σ, θ, π, µ, λ)), and
then choose to accept or reject those trees based on the true distribution (defined by
the full set of parameters).

If we refer to the proposal (PCFG-only) distribution as Q, and the true dis-
tribution as P . In our case, the true distribution defines the probability of a tree y
given the full set of model parameters (σ, θ, π, µ, λ, ψ, ξ), while the proposal distri-

97

bution defines the probability of y given only the PCFG parameters (σ, θ, π, µ, λ).
The acceptance distribution A(y′ | y) gives the probability of accepting a new tree
y′ given that the previous tree was y, and is defined standardly as follows:

A(y′ | y) = min

(
1,
P (y′)
P (y)

Q(y)
Q(y′)

)
When the parameters of the relevant distributions are spelled out, and the denomi-
nators reversed, we have:

A(y′ | y) = min

(
1,
p(w, y′ | σ, θ, π, µ, λ, ψ, ξ)
p(w, y′ | σ, θ, π, µ, λ)

· p(w, y | σ, θ, π, µ, λ)
p(w, y | σ, θ, π, µ, λ, ψ, ξ)

)
At this point, it should be clear given the way the two models are defined—the new
model in §4.3.1 and the PCFG model in §4.2.1—that the PCFG model is a subset of
the new model, and that the probability of a tree y under this model is equivalent
to the product of the probability of y under the PCFG and the probability of y given
only the context parameters:

p(w, y | σ, θ, π, µ, λ, ψ, ξ) = p(w, y | σ, θ, π, µ, λ) · p(w, y | ψ, ξ)

Thus, we have:

A(y′ | y) = min

(
1,

@
@
@@

P (y′)
P (y′)

· p(w, y′ | ψ, ξ) ·@@
@@

P (y)
P (y) · p(w, y | ψ, ξ)

)
where p(w, y | ψ, ξ) is defined by:5

p(w, y | ψ, ξ) =
∏

0≤i<j≤n

ψ(yi−1,i | yij) · ξ(yj,j+1 | yij)

Finally, the PCFG parameters cancel in the equation, leaving us with an acceptance

5Note that there may actually be multiple yij due to unary rules that “loop back” to the same
cell; all of these must be included in the product.

98

distribution defined purely in terms of context parameters:

A(y′ | y) = min

(
1,
p(w, y′ | ψ, ξ)
p(w, y | ψ, ξ)

)
So in our MH sampler, we draw trees from the PCFG distribution (an operation we
know can be done efficiently, as it was in §4.2.2), and then decide whether to accept
or reject them based on the contexts.

We initialize the sampler by setting each distribution to its prior mean (σ =

σ0, θt = θ0, etc). We then parse the raw corpus (with probabilistic CKY) using the
initial PCFG parameters to get a full bank of trees for use in the first MH step.

The sampler alternates sampling parse trees for the entire corpus of sen-
tences using the procedure from §4.2.2, then resampling the parameters, then trees
again, and so on. Re-sampling the parameters uses the just-sampled parse trees y to
compute Croot(t), the count of trees in which the root category is t, C(t→ 〈u,v〉),
the count of binary productions whose category is t that are producing the pair of
categories 〈u,v〉, C(t → 〈u〉), the count of unary productions whose category is
t that are producing categories 〈u〉, C(t → w), the count of terminal productions
whose category is t that are producing word w, Cright(t, r), the count of categories t
that have right context supertag r, and Cleft(t, `), the count of categories t that have
left context supertag `. These counts are taken from the trees resulting from the
previous round of sampling: new trees that have been “accepted” by the MH step,
as well as existing trees for sentences in which the newly-sampled tree was rejected.
We then sample, for each t ∈ T where T is the full set of valid CCG categories:

99

σ ∼ Dirichlet(〈ασ · σ0(t) + Croot(t) 〉t∈T)
θt ∼ Dirichlet(〈αθ · θ0(〈u,v〉) + C(t→〈u,v〉) 〉u,v∈T)
πt ∼ Dirichlet(〈απ · π0(〈u〉) + C(t→〈u〉) 〉u∈T)
µt ∼ Dirichlet(〈αµ · µ0

t(w) + C(t→ w) 〉w∈V)
λt ∼ Dirichlet(〈αλ · λ0(1) +

∑
u,v∈T C(t→〈u,v〉),

αλ · λ0(2) +
∑

u∈T C(t→〈u〉),
αλ · λ0(3) +

∑
w∈V C(t→w) 〉)

ψt ∼ Dirichlet(〈αψ · ψ0
t(`) + Cleft (t, `)〉`∈T)

ξt ∼ Dirichlet(〈αξ · ξ0t (r) + Cright(t, r)〉r∈T)

It is important to note that this method of resampling allows the draws to incorpo-
rate both the data, in the form of counts, and the prior mean, which includes all
of our carefully-constructed biases derived from both the intrinsic, universal CCG

properties as well as the information we induced from the raw corpus and tag dic-
tionary.

After all sampling iterations have completed, the final model is estimated
by taking the maximum likelihood estimate of the average over all trees resulting
from each sampling iteration, including trees accepted by the MH steps as well as
the duplicated trees retained due to rejections.

4.3.3 Experiments

In our evaluation we compared our supertag-context approach to the simpler
parsing model presented in §4.2. We evaluated using the same setup. We used En-
glish, Chinese, and Italian corpora using the same data splits.In order to increase the
amount of raw data available to the sampler, we supplemented the English data with
raw, unannotated newswire sentences from the NYT Gigaword 5 corpus (Parker et
al., 2011) and supplemented Italian with the out-of-domain WaCky corpus (Baroni
et al., 1999). For English and Italian, this allows us to use 100k raw tokens for
training (Chinese uses 62k). For Chinese and Italian, for training efficiency, we
used only raw sentences that were 50 words or fewer (note that we did not drop tag

100

dictionary set or test set sentences).
For each language, we executed four experiments. The no-context baseline

used the best model from §4.2, using only the PCFG parameters (σ, θ, π, µ, λ) along
with the category prior PCAT to bias toward more likely categories throughout the
tree, and the terminal production prior Pem estimated from the tag dictionary and
raw corpus. We then evaluated our new supertag-context model, but used uniform
priors for the context parameters (ψ, ξ). Then, we evaluated the supertag-context
model using context parameter priors that bias toward categories that combine with
their contexts (see §4.3.1). Finally, we evaluated the supertag-context model using
context parameter priors that bias toward combinability and bias toward a priori

more likely categories, based on the category grammar.
The development sets were used to tune hyperparameters using grid search.

We used the same hyperparameters across all three languages. For the category
grammar, we used ppunc=0.1, pterm=0.7, pmod=0.2, pfwd=0.5. For the priors, we use
ασ=1, αθ=100, απ=100, αµ=104, αλ=3, αψ=αξ=103.6 For the context prior, we
used a=105. We ran our sampler for 50 burn-in and 50 sampling iterations.7

For each language and level of supervision, we executed four experiments.
The no-context baseline used (a reimplementation of) the best model from §4.2:
using only the non-context parameters (σ, θ, π, µ, λ) along with the category prior
PCAT to bias toward more likely categories throughout the tree, and the terminal
production prior µ0

t (w) estimated from the tag dictionary and raw corpus. We then
added the supertag-context parameters (ψ, ξ), but used uniform priors for those (still
using PCAT for the rest). Then, we evaluated the supertag-context model using con-
text parameter priors that bias toward categories that combine with their contexts:
P left and P right (see §4.3.1). Finally, we evaluated the supertag-context model using
context parameter priors that bias toward combinability and bias toward a priori

6In order to ensure that these concentration parameters, while high, were not dominating the
posterior distributions, we ran experiments in which they were set much higher (including using the
prior alone), and found that accuracies plummeted in those cases, demonstrating that there is a good
balance with the prior.

7We experimented with higher numbers of iterations but found that accuracy was not improved
past 50 iterations.

101

TD corpus size (tokens): 250k 200k 150k 100k 50k 25k
EN no context 60.43 61.22 59.69 58.61 56.26 54.70

context (uniform) 64.02 63.89 62.58 61.80 59.44 57.08
+P left / P right 65.44 63.26 64.28 62.90 59.63 57.86
+P left

CAT / P right
CAT 59.34 59.89 59.32 58.47 57.85 55.77

CH no context 32.70 32.07 28.99
context (uniform) 36.02 33.84 32.55
+P left / P right 35.34 33.04 31.48
+P left

CAT / P right
CAT 35.15 34.04 33.53

IT no context 51.54
context (uniform) 53.57
+P left / P right 52.54
+P left

CAT / P right
CAT 53.29

Table 4.3: Experimental results in three languages, English (EN), Chinese (CH),
and Italian (IT), under varying amounts of tag dictionary input data. Scores are
dependency accuracies: percentage of words labeled with the correct parent word
(or “root”). For each language, four experiments were executed: (1) a no-context
model baseline, directly from §4.2; (2) our supertag-context model, with uniform
priors on context parameters; (3) supertag-context model with priors that prefer
combinability; (4) supertag-context model with priors that prefer combinability and
simpler categories. Results are shown for six different levels of supervision, as
determined by the size of the corpus used to extract a tag dictionary.

102

more likely categories, based on the category grammar (P left
CAT and P right

CAT).
Because we are interested in understanding how our models perform under

varying amounts of supervision, we executed sequences of experiments in which
we reduced the size of the corpus from which the tag dictionary is drawn, thus
reducing the amount of information provided to the model. As this information is
reduced, so is the size of the full inventory of known CCG categories that can be
used as supertags. Additionally, a smaller tag dictionary means that there will be
vastly more unknown words; since our model must assume that these words may
take any supertag from the full set of known labels, the model must contend with a
greatly increased level of ambiguity.

The results of our experiments are given in Table 4.3. We find that the incor-
poration of supertag-context parameters into a CCG model improves performance
in every scenario we tested; we see gains between 2–5% across the board. Adding
context parameters never hurts, and in most cases, using well-constructed priors
based on intrinsic, cross-lingual aspects of the CCG formalism to bias those param-
eters provides further gains. In particular, biasing the model toward trees in which
constituent labels are combinable with their adjacent supertags frequently helps the
model.

However, for English, we found that additionally biasing context priors to-
ward simpler categories using PCAT degraded performance. This is likely due to the
fact that the priors on production parameters (σ, θ, π) are already biasing the model
toward likely categories, and that having the context parameters do the same ends
up over-emphasizing the need for simple categories, preventing the model from
choosing more complex categories when they are needed. On the other hand, this
bias seemed to help in Chinese and Italian.

4.3.4 Conclusions

Because of the structured nature of CCG categories and the logical frame-
work in which they must assemble to form valid parse trees, the CCG formalism
offers multiple opportunities to bias model learning based on universal, intrinsic
properties of the grammar. In Chapter 3 we showed that good CCG supertaggers

103

can be learned from weak supervision by constructing Bayesian priors that encour-
age the use of simpler supertags, as well as supertags that connect with their sur-
rounding tags via some CCG rule. In §4.2 we designed a parsing model that biases
toward simpler categories throughout the tree. In this chapter, we have presented a
novel parsing model that is able to incorporate all of these ideas. By augmenting
our previous parsing model with supertag-context information, we are able to de-
fine priors that bias our model toward trees in which categories logically “fit” into
their contexts.

4.4 Learning with Constituent Constraints

Learning natural language parsers from full supervision is one of the better-
understood and developed NLP tasks (Smith, 2011). However, we still have much to
learn about which types of annotations are most useful in low-data situations. Cre-
ating large-scale treebanks is prohibitively expensive for most languages and do-
mains, so it is important to explore alternative forms of weaker supervision. There-
fore, understanding how different forms of supervision can be used, how effective
they are, and how difficult they are to obtain are all integral when preparing to
train a parser on a new language. Furthermore, different forms of supervision may
be complementary, providing multiple views of the data in ways that benefit each
other, and understanding the trade-offs among sources of supervision may lead to
lower amounts of total annotation effort.

Human annotation is one potentially valuable source of supervision, but
choices related to the ways in which human knowledge is collected can be com-
plex. An annotation task is ideally straightforward for the annotator, efficiently
performed, and produces high value for the end task. Instead of focusing on simply
reducing the amount of fully-annotated data (Hwa, 2000; Steedman et al., 2003) or
using a simplified grammar (Bisk and Hockenmaier, 2013), we consider one of the
simplest annotation types: constituent bracketings, an idea proposed by Pereira and
Schabes (1992). Unlike annotating full parse trees, bracketing can be done quickly
and does not require an expert linguist, meaning lower overall cost and/or higher

104

availability of annotation.
Bracket annotations are advantageous to us because they can be trivially in-

corporated into our existing parsing model, presented in §4.2 (as well as the models
that will be presented in §4.3 and §4.5). Moreover, those models are trained using
type-level supervision in the form of (incomplete) tag dictionaries. Tag dictionary
information is highly complementary to bracketing information, the former provid-
ing information on word types, and the latter providing information at the phrase or
sentence level, making it an excellent fit for our work.

Previous work learning parsers from brackets focused on learning context-
free grammar parsers from gold part-of-speech tags (Pereira and Schabes, 1992;
Hwa, 1999). Here, we instead test their effectiveness in learning Combinatory Cat-
egorial Grammar (CCG) parsers from raw, untagged data (Steedman, 2000; Steed-
man and Baldridge, 2011). We build on the approach of §4.2 for learning CCG

parsers from a partial, type-level lexicon and raw sentences. By adding human-
labeled brackets, we can constrain the search space of their algorithm to focus on
better analyses more quickly. We show, through annotation simulation experiments,
that complete bracketings are unnecessary for good performance and that high-level
brackets (e.g. for sentences) are slightly more useful than low-level brackets (e.g.
for base noun phrases). Finally, we find that 400 human-annotated sentences will
improve parser performance on unlabeled dependencies from 57.8% to 61.6%. The
use of the semi-supervised CCG parser with these annotations successfully brings
together three forms of supervision: linguistically-informed CCG-based priors, in-
complete categorial lexicons (type-level annotation), and partial bracketings (token-
level annotation).

4.4.1 Bracket Annotations and CCG Parsing

In §4.2, we presented a Bayesian model for learning CCG parsers from only
type-level supervision, in the form of tag dictionaries, plus raw sentences. The dic-
tionary provides constraints on the categories that words may take, but says nothing
about how individual tokens should be allowed to interact with neighboring words.
Bracketings, on the other hand, provide information on token relationships, mak-

105

s

np

np/n n

s\np

(s\np)/np np

np/pp pp

pp/np np

the man ate

spaghetti

with cheese

(a) Example derivation with dependencies. In the standard CCG transfor-
mation to dependency parse, each combination produces a dependency,
and the argument of the combination is treated as the dependent (except
when the function is a modifier).

(s)

(np)1

(pp)3

cheesewith

spaghetti

ate(np)2

manthe

(the man) ate (spaghetti (with cheese))

(b) Hierarchical bracketing for the derivation in (a).

Figure 4.5: Example CCG derivation and corresponding dependency tree. In (b),
each bracket is associated with a CCG category for the constituent that it covers.
Base-level constituents are boxed; superscripts show the ordering from high-level
to low-level (see details in §4.4.2).

106

ing the two forms of supervision complementary. Additionally, one of the main
challenging of CCG parser learning is overcoming the high degree of ambiguity
that arises from the lexicon. For instance, the English CCGBank contains over
1,300 lexical categories (Hockenmaier and Steedman, 2007); each token must be
assigned to one of these categories, and unknown words (out-of-vocabulary types)
are allowed to take any of the 1,300. Typically, the learning algorithm must deal
with an extremely large space of possible trees, but bracketing annotations directly
limit that space, making learning both easier and more efficient.

Because the CCG parser can be trained with no brackets, it can also use any
subset of valid bracketings. This allows annotators to provide constraints to certain
aspects of the tree, while leaving others underspecified. For example, they can skip
difficult items and let the learning algorithm handle the complexity, or they can
skip easy brackets that will likely not be very informative for the learner (but which
are numerous and thus take time to annotate). Hwa (1999) explored this question
in detail for a tree insertion grammar parser and found that it was more effective
to label high-level constituents than low-level ones. We replicate this finding, and
we furthermore find differences in the value of giving brackets for different types
of constituents might be more valuable to bracket: noun phrases, or prepositional
phrases, or s-type clauses. Finally, we show that brackets produced by humans lead
to performance consistent with those obtained from gold trees, demonstrating that
the task is indeed easy enough for humans to perform well.

4.4.2 Experiments

We use the setup from §4.2 for our experiments, starting with the best con-
figuration and swapping in bracket-labeled sentences for the raw sentences we used
before. Everything else is held fixed. The application of bracketing information is
straightforward: if the annotation has a bracket covering words i through j, then
there may be no constituent that includes words i−1 and i without j, or j and j+1

without i. Eliminating nodes in the parse chart is both simple and efficient: when
the sampler computes the Inside table, it does not need to consider any eliminated
cells.

107

We evaluate using data from English CCGBank, with the same data splits
as §4.2. We follow the standard CCG parsing evaluation of reporting dependency
accuracy based on the dependency transformation of the model’s output CCG parse
tree. All experiments use the same 1,000 sentences for training. Any annotated data
came from those sentences, meaning that if n sentences contained annotations, then
1000 − n sentences would be used in their unannotated form. Using no annotated
sentences is equivalent to the setup in §4.2.

Since our approach combines both bracketing and tag dictionary information
as constraints, it is possible for these to conflict and make the sentence unparseable.
If an annotation is given for a particular training sentence, and the system is not able
to find a parse that adheres to the annotation, then the annotation is automatically
rejected, and the sentence is used in raw form. This way, the addition of annota-
tions never results in fewer sentences being used for sampling; it can only reduce
the number of potential parses of those sentences. Note that we still count rejected
sentences toward the number of annotated since they still take time to collect. Un-
useable annotations are a reality in this endeavor, and removing them and replacing
them with good annotations would artificially inflate the results and obscure the
amount of effort that was actually expended.

Simulation experiments

We first explore the value of different kinds of bracket annotations by ex-
tracting different sets of brackets from gold-standard trees.

Amount of annotated data

We first varied the number of fully-bracketed sentences. Table 4.4a shows
that, as expected, adding more annotated sentences improves results. We also report
the number of annotated sentences that were rejected when a parse could not be
found that was compatible with the tag dictionary and brackets. These numbers
are low (under 9% at each level), which is reflective of the fact that the brackets,
being from gold parses, should be good. However, they are not zero because the tag

108

sentences accuracy anno.
annotated rejected

0 57.78 0
200 59.36 9
400 59.96 30
600 60.12 51
800 61.57 70

1000 63.11 89

(a) Accuracy as the number of gold fully-
bracketed sentences is increased. Anno-
tations were rejected, and their unanno-
tated forms used, if no conforming parse
could be found for them.

bracket accuracy anno.
coverage rejected

0% 57.78 0
20% 59.01 22
40% 61.90 46
60% 62.04 63
80% 62.31 78

100% 63.11 89

(b) Accuracy as the number of gold
bracket annotations per sentences is in-
creased. In each case, all 1,000 sentences
are annotated, but brackets are only spec-
ified for a percentage of constituents.

Table 4.4: Parser accuracy under varying annotation conditions. (Note that the first
and last rows of (a) and (b) are identical since they both represent either none or all
of the annotations.)

Figure 4.6: Completeness versus ease: full annotation on x% of the training sen-
tences, or x% of the brackets across all of the training sentences. Note that produc-
ing “complete” annotations requirest considerably more effort, meaning that the
success of the “partial” annotation should be considered even more striking.

109

bracket accuracy # occ. anno.
type rejected
none 57.78 — 0
s 60.65 1,738 8
np 60.90 11,349 42
pp 58.80 1,177 4

(a) Accuracy when only specific types of gold
constituents (as determined by their CCG cate-
gories) are bracketed, along with their corpus
frequencies.

bracket accuracy anno.
placement rejected
none 57.78 0
base-level 60.78 32
highest-level 61.83 42

(b) Accuracy when either only gold base-
level brackets are used, or the corre-
sponding number of gold highest-level
brackets.

Table 4.5: Parser accuracy under various bracket data conditions.

dictionary is pulled from a different set of sentences as the test data, and, therefore
not all dictionary entries required for parsing are represented.

Annotation coverage per sentence

An appeal of lightweight bracketing is the ability to create underspecified
annotations that leave many substrings unbracketed. Table 4.4b shows the effect of
using only a given percentage of brackets for each sentence. Note that this strategy
is generally more effective than the full-bracket strategy. E.g., it obtains 62.04%
accuracy compared to 60.12% when using the same proportion of the available
annotations (60%).

This shows that the sampler benefits a lot from having some constraint on
a sentence. Despite the fact that more annotations are being rejected with partial
brackets, the learner is able to fill in the remaining part of the sentence with more
success than it otherwise would. This result is very encouraging because it is very
difficult to provide a complete bracketing for many sentences. Since partial anno-
tations are more effective, we can advise annotators to annotate what comes easily
and move on, rather than struggling with thorny corner-cases.

110

Bracket types

We also want to understand the value of different kinds of brackets. To this
end, we ran experiments in which all training data sentences are partially annotated,
but only with brackets for constituents of particular CCG categories. We evaluated
using only (and all of the) clause (s) brackets, only noun phrase (np) brackets, and
prepositional phrase (pp) brackets.

Table 4.5a clearly shows that s-type brackets provide the highest value. They
are relatively infrequent, but using them has a similar benefit as annotating ten times
as many np brackets. Clauses tend to be fairly high-level, so the sampler is presum-
ably aided by having the sentence broken into large pieces and then just needing to
fill in the smaller-scale structures within those pieces (as well as connecting those
larger pieces to form the full sentence). Prepositional phrases are relatively infre-
quent and have a relatively small benefit. It is unsurprising that np’s have the highest
absolute effect since they comprise more than one-third of all brackets.

High- vs. low-level annotation

We also compared performance when only the lowest-level or highest-level
brackets were given as annotation. We extract the low-level brackets from the base
of the gold parse tree, where a base node is one which has no grandchildren. The
dotted boxes in Figure 4.5b are base-level brackets. Highest-level brackets are
pulled from high-level splits in the tree via a right-to-left breadth-first traversal of
the gold parse tree. This approximates an annotator who recursively breaks a sen-
tence into large constituent pieces. We search right-to-left because English tends
to be right-branching, so larger brackets tend to be found on the right side of the
tree. The traversal ordering of the high-level bracket search can be seen in the
superscripts of the nodes in Figure 4.5b.

There are vastly more higher-level nodes than base-level nodes, so using all
non-base-level brackets would be an unfair comparison against only the relatively
small number of base-level brackets. We thus extract exactly as many high-level
brackets as there are base-level brackets for each sentence.

111

sentences accuracy annotations
annotated rejected

0 57.78 0
200 59.08 15
400 61.57 52

Table 4.6: Accuracy as the number of human-annotated sentences is increased.

Our results show that both forms of bracketing are useful, but using the high-
level brackets has a greater impact, 61.83, than base-level brackets, 60.78, a finding
that is consistent with the results in Table 4.5a.

Human-annotated data

Our ultimate goal is to assess performance using human annotations. For
these, we obtained annotations from NLP-knowledgeable graduate students. Each
was given a description of the task and a set of ten (held-out) bracketed sentences
as a reference. They were instructed to use their own judgment regarding what
brackets to annotate. Because we found that having partial annotations on many
sentences was more valuable than full annotation of fewer sentences, they were
told to focus on brackets they were confident about and pass on anything they found
tricky. They were further advised that problematic annotations might ultimately be
automatically rejected, so if they were unsure about a bracket, it would be preferred
to leave it out. The annotators bracketed 400 sentences at a rate of roughly fifty per
hour.

Table 4.6 shows that the human annotators produced slightly more unparsable
annotations than the simulated gold ones; nonetheless, they are more valuable for
parser learning. With 200 sentences, we obtain results only slightly lower than an
equivalent number of gold-extracted annotations. With 400 annotations, the parser
using human annotations exceeds the performance of a gold-trained parser.

The strong performance under human-annotation is likely do to the fact that
human annotators, when instructed to avoid difficult constructions, naturally tend
to annotate only the most certain constituents. This means the sampler receives

112

strong guidance on high-certainty constructs, while being free to explore various
bracketings where there is more ambiguity, which is desirable when the syntax is
unclear.

4.4.3 Conclusion

Like Hwa (1999), we find that brackets are a cheap and effective form of an-
notation. Like her, we find that high-level brackets are more valuable than low-level
ones, and that partial brackets are more cost-effective than complete annotations.
Importantly, this relieves annotators of the burden of providing complete annota-
tions. We additionally show, through experiments performed with human subjects,
that human-provided annotations can obtain a 4% absolute improvement with just
eight hours of effort.

In order to gain a better understanding of the costs, benefits, and trade-offs
of various forms of parser supervision, much more research remains to be done.
Perhaps most concretely, we should investigate the trade-offs between the size of
the tag dictionary and the amount of bracketing information.

A more significant effort would be to go beyond simple bracketing into addi-
tional, deeper forms of parser supervision. In particular, the Graph Fragment Lan-
guage (GFL) framework makes it fast and easy for annotators to provide not only
partial constituent information, but also partial dependency information (Schneider
et al., 2013). Given the strong relationship between CCG and dependencies, it would
be interesting to explore the complementarity of CCG type-level category informa-
tion, bracketings, and dependencies. The primary advantage to the GFL scheme is
that it makes it very simple for annotators to provide partial annotations. In the
context of a low-resource learning scenario, the ability to provide annotations at a
flexible degree of specificity is extremely desirable. When very little time is avail-
able for data collection, it is critical to get the most out of the amount of time that
annotators may devote to these tasks.

113

4.5 A Future Direction: Infinite CCG Parsing

In Chapter 4, we presented a Bayesian approach to parser learning for CCG.
One key characteristic of this approach is that it was type-supervised, meaning that
it learned from a tag dictionary that maps word types to potential categories. This
approach has a very clear downside: the tag dictionary will inevitably be incom-
plete. Incompleteness comes in two forms: words may not be associated with all
the categories that they should, and there may be categories that are associated
with none of the words at all. Our previous models have nevertheless restricted
themselves to the lexicon of the initial tag dictionary: if word w is associated with
supertags TD(w), thenw will never be assigned a tag outside of TD(w), and no word
will ever receive a label outside of the full set of known supertags

⋃
wTD(w).

To overcome this limitation, we present here a preliminary exploration of
a novel Bayesian nonparametric model that allows for an infinite set of CCG cat-
egories, providing a principled way for our model grow and shrink the lexicon by
“inventing” new CCG categories as needed during sampling, and to lift restrictions
on word types, letting them take any category as a label. Given the nature of CCG

parsing, an infinite category set provides an elegant way to allow for an infinite set
of production rules, making it possible for our model to adapt to novel grammatical
constructions as it explores the data.

We extend the parsing model presented in Chapter 4 by adapting the tech-
niques of Van Gael et al. (2008)’s beam sampler for the infinite hidden Markov
model (iHMM). The iHMM is a nonparametric variation of a hidden Markov model
that allows for an infinite set of tags (Beal et al., 2001). As a sequence model, the
iHMM is appropriate for sequence-based tasks, such as part-of-speech tagging (Van
Gael et al., 2009). In this work, we present a new infinite CCG model in which
we model an infinite category set for the nodes within a probabilistic context-free
grammar (PCFG) tree model instead of a sequence model. In order to perform effi-
cient sampling over an infinite space of CCG derivations, we adapt the beam sampler
developed by Van Gael et al. (2008) to work for PCFG trees.

Unlike Van Gael et al.’s models, which tagged words with opaque, atomic

114

labels, our model remains firmly grounded in the CCG formalism. Each of these
labels, while infinite in number, is a specific CCG category that must interact with
other categories in specific and pre-defined ways, ultimately allowing us to manage
the complexity of the model, without sacrificing the infinite characteristics. More-
over, since we know a priori what these labels mean, we can apply the CCG-specific
priors designed in Chapter 3 that use universal knowledge of how the CCG formal-
ism works to bias the model toward categories that are cross-linguistically more
likely.

4.5.1 Infinite CCG model

In §4.2.1, we presented a Bayesian PCFG model for CCG parsing. While
it had clear benefits, such as the ability to incorporate universal linguistic knowl-
edge about the CCG formalism as priors, the model required a fixed, finite set of
CCG categories, making it overly dependent on the tag dictionary provided as weak
supervision.

In this section, we present a novel, infinite CCG model. This new model takes
a Bayesian nonparametric approach, allowing it to have an infinite category set, and
thus, an infinite set of production rules. The nonparametric model is directly based
off the finite version, and its generative story is identical to the one presented in
§4.2.1, with the single exception that binary productions are now drawn from a
nonparametric Dirichlet process instead of a finite Dirichlet distribution to enable
sampling from an infinite space of possible binary productions:

θt ∼ DP(αθ, θ
0)

In principle, it might also be possible to allow for an infinite set of unary production
rules based on our category generator’s ability to invent new categories to rewrite to.
However, we have chosen to continue to use only the fixed set of 13 linguistically-
plausible unary rules proposed by Lewis and Steedman (2014) (see Table 4.1b).
Doing so considerably cuts down the potentially complexity of the model.

115

We define the prior means for the model the same way as §4.2.1:

σ0(t) = PCAT(t)

θ0(〈u,v〉) = PCAT(u) · PCAT(v)

π0(〈u〉) = PCAT(u)

µ0
t = Pem

λ0 = 〈1
3
, 1
3
, 1
3
〉

Critically, note that the prior for binary productions, θ0, is defined for the cross-
product of infinite category sets. It does this by making use of PCAT, the generative
model presented in §3.2.2 that defines a probability distribution over the infinite
set of CCG categories T . This consideration ensures that the binary production
prior will be applicable as the model grows and invents new categories and new
production rules.

4.5.2 Background: iHMM beam sampler

Van Gael et al. (2008) presented an inference algorithm for the iHMM that
they call beam sampling that is able to efficiently sample tag sequences from the
true posterior even when the tagset is infinite. The beam sampler for the iHMM can
be thought of as an nonparametric variation of the forward-filter backward-sample
(FFBS) algorithm (Carter and Kohn, 1996), the algorithm we used in Chapter 3 for
our supertagger. It works by sampling auxiliary variables that “slice” the space of
possible tag sequences, allowing the forward-filter operation to considering only a
finite space of tag sequences (Neal, 2003).

Given πt(u), the probability of transitioning from tag t to tag u, and φt(w),
the probability of emitting word w from tag t, and tagset T , the FFBS algorithm
samples a tagging for a sentence w using a dynamic program to inductively com-
pute “forward,” for each token wi starting with i = 0, the probability of generating

116

w0, w1, . . . , wi via any tag sequence that ends with yi = u:8

p(yi = u | w0:i) = φu(wi) ·
∑
t∈T

πt(u) · p(yi−1 = t | w0:i−1)

The FFBS algorithm then passes “backward” through the sentence starting at i = |w|
and sampling:

yi | yi+1 ∼ p(yi = t | w0:i) · πt(yi+1)

Since the iHMM allows for an infinite tagset T , it is not possible to simply
sum over all tags to compute

∑
t∈T πt(u). Instead, the beam sampler separates

the forward computation into two phases. First, for each word wi, an auxiliary
transition threshold qi is sampled:

qi ∼ uniform(0, πti−1
(ti))

where ti−1 and ti are the tags assigned to wi−1 and wi in the previously-sampled
tag sequence. This allows us to compute, for each tag u at each position i, the
forward values summing over only the previous tags t such that the probability of
transitioning from t to u, πt(u), is greater than the threshold qi. Assuming that
Ti−1(u) is the set of tags at position i−1 that can possibly transition to u at position
i, and Ti as the set of tags at position i that can possibly be reached by a transition
from some tag at position i− 1,9

p(yi = u | w0:i) = φu(wi) ·
∑

t∈Ti−1(u)

p(yi−1 = t | w0:i−1)

for each u ∈ Ti
where Ti−1(u) = {t | qi < πt(u)}

Notice that the transition probability term πt(u) is no longer included in the sum-
mation; it only appears in the comparison to qi.

8This is the same as the forward calulation in the Forward-Backward algorithm, as used for EM
(Baum, 1972).

9Ti can be thought of as the complete (finite) set of tags that may be used to label token i.

117

This process effectively divides the sampling into two phases. The first
phase, sampling qi, incorporates the transition probabilities from π, while the sec-
ond phase, forward-backward, incorporates the emission probabilities φ; in con-
trast, FFBS takes both probability distributions into account directly in the forward-
backward procedure.

Given the above equation, for each u, assuming that Ti−1(u) is finite, we can
compute p(yi = u | w0:i). But since there are a potentially infinite number of tags u,
we must ensure that we only need to handle a finite subset of them, Ti. However, we
know that for any t at i− 1, there are finitely many u such that qi < πt(u), since if
there were infinitely many such u, then

∑
u πt(u) would be greater than 1 (it would

actually be infinite), making πt an invalid probability distribution. This means that
for any t, there are a finite number of u that are reachable via a non-zero transition.
Given that the sentence must start with y0 = 〈S〉, there will necessarily be finitely
many possibilities for y1, making T1 finite; and from each of those, there are finitely
many possibilities for y2, making T2 finite since it is the union of a finite set of finite
sets; and so on, demonstrating that for any yi, there will be finitely many choices,
so every Ti will be finite. Likewise, we know that every set Ti−1(u) will be finite
since it will necessarily be a subset of Ti−1 (only those tags that may transition to u
at i), and Ti−1 is guaranteed to be finite.

Sets Ti and Ti−1(u) can be computed inductively, starting with T0 = {〈S〉}:

PotentialTransitions(i− 1, i) =
⋃
t∈Ti−1

{〈t, u〉 | qi < πt(u)}

Ti = {u | ∃t.[〈t, u〉 ∈ PotentialTransitions(i− 1, i)]}

and

Ti−1(u) = {t | 〈t, u〉 ∈ PotentialTransitions(i− 1, i)}

Finally, recall that πti−1
(ti) is the probability of the i − 1 to i transition in

the current sequence (the one sampled during the previous iteration). Since every
qi is necessarily less than πti−1

(ti), it will always be the case that every transition
in the current sequence will exceed the full set of q thresholds. This ensures that

118

the full current tag sequence will always be a candidate for resampling, even after
thresholding. Note that this also entails that despite the presence of thresholds
and cutoffs, there will always be at least one full tag sequence that exceeds all
thresholds: the current one.

4.5.3 Beam sampling for the infinite CCG

By analogy to the beam sampler presented by Van Gael et al. (2008) for the
iHMM, in which the FFBS algorithm was augmented with auxiliary variables to slice
through an infinite model space, we designed a beam sampler for the infinite CCG

model. Our sampler is based on the one we presented in §4.2.2 for our finite CCG

model, but it introduces auxiliary slicing variables to handle the infinite space of
binary productions.

The inference procedure still iterates other two alternating phases: given an
initial set of trees, we first sample the model parameters, then sample a new tree for
each sentence based on these new model parameters, then resample the parameters,
and so on.

Sampling parameters

Given prior means and a set of CCG trees, we can resample the model pa-
rameters. We do so in the same manner as we did with the finite model (§4.2.2):
count of occurrences of the various productions, combine them with the priors, and
sample new parameters from Dirichlet distributions. The one exception is that the
binary production parameters are drawn from a Dirichlet process to allow for an
infinite set of potential binary rules:

θt ∼ DP(〈αθ · θ0(〈u,v〉) + C(t→〈u,v〉) 〉u,v∈T)

Note that the result selects parameters based on both the data (counts) and the biases
encoded in the priors.

To efficiently sample infinite distributions, we borrow from the techniques
of Van Gael et al. (2008), adapting them to be applicable to a tree model and to

119

take advantage of the nature of CCG categories. For each infinite distribution θt, we
distinguish between observed and unobserved productions. Observed productions
are those that have counts from the sampled trees, while unobserved productions
are those that are possible but do not appear in the current data.

We reduce the sampling of an infinite distribution to sampling a finite dis-
tribution over observed productions, leaving space for all unobserved productions.
Since a Dirichlet distribution needs a finite set of parameters, we will have one pa-
rameter for each observed production, plus one additional parameter that accounts
for all of the unobserved productions. Thus, for a set of observed productions O,
we will have a |O| + 1 Dirichlet parameters. So if Oθt is the set of category pairs
〈u,v〉 that have been observed as productions from category t, and U θt is the set
of productions that are unobserved, then each of the Dirichlet parameters will look
very much like they did previously: the concentration parameter αθ, times the prior
mean θ0, plus the count observed in the previous iteration’s sampled result. The last
parameter to the Dirichlet will be of a similar form, but its prior production prob-
ability will be the sum of all the prior probabilities for all unobserved productions
(i.e., all of the productions not handled by the previous |O| parameters), meaning
that it is the prior probability of seeing any unobserved production.

θOBSV
t ∼ Dir

(
αθ · θ0(o1) + C(t→ o1),

αθ · θ0(o2) + C(t→ o2),

. . . ,

αθ · θ0(o|Oθt |) + C(t→ o|Oθt |),

αθ ·
∑

u′∈Uθt

θ0(u′)
)

for oi ∈ Oθt . Note that no counts are included in the last sum since unobserved
elements have, by definition, zero counts. Of course, it is not possible to compute
the sum over the full infinite set of unobserved productions U θt , but this value can
be easily computed as 1 −

∑
o′∈Oθt

θ0(o′), and we know that Oθt will always be
finite since we can only have seen a finite number of productions. We invent the

120

pseudo-production z to be the “any-unobserved production” described by this final
parameter, so that θOBSV

t (z) is the probability of producing any unobserved pair from
t.

For observed productions, having sampled θOBSV
t (o) is sufficient. But for un-

observed productions, we must be able to determine the sampled probability θt(u).
To compute these values efficiently, we make use of the fact that we have defined
our model so that we have a complete prior probability distribution over all possi-
ble binary productions (based on the use of the infinite category prior PCAT). We
can use this to extract the probability of a particular production u given the sum
of the probabilities of all unobserved productions θOBSV

t (z) =
∑

u′∈Uθt
θOBSV

t (u′) =

1−
∑

o′∈Oθt
θOBSV

t (o′).10 Using this information, we can define the sampled probabil-
ity of an unobserved production u to be the fraction of θOBSV

t (z) that is proportional
to the fraction of the prior distribution’s unobserved production mass devoted to u:

θUNOB
t (u) = θOBSV

t (z)
θ0(u)∑

u′∈Uθt
θ0(u′)

, for u ∈ Uθt

= θOBSV
t (z)

θ0(u)
1−

∑
o′∈Oθt

θ0(o′)

Thus, for the full sampled distribution, we have:

θt(x) =

θOBSV
t (x) if x ∈ Oθt
θUNOB

t (x) otherwise

Note that for any unseen t, Oθt = ∅, and so it follows from the above that
θt(x) = θUNOB

t (x) = θ0(x), for all x. We likewise assume that in this case, all
t-conditioned distributions default to their prior means (πt = π0, µt = µ0, ...).

One major advantage of this approach of representing a Dirichlet process as
a finite vector whose unobserved tail is divided deterministically is that it allows
sentence sampling to be performed in parallel, further increasing the potential for
computational efficiency. Since all of the observed productions are known ahead of

10This is similar to Algorithm 8 of Neal (2000).

121

time, their probabilities can be sampled up front, before the sentences are resam-
pled. But since we will not know which unobserved productions are needed until
we resample the sentences, sampling these probabilities must wait. If a traditional
approach to Dirichlet process sampling was used, we would have to guarantee that
if an unobserved production’s probability was sampled on one sentence, that the
same probability would be used for that production on all other sentences, thus cre-
ating inter-sentence dependencies that would prevent parallelization. The amount
of probability mass devoted to each unobserved-production tail is known as well,
so in our case we are able to use our fixed category prior to divide the unobserved-
production tail without worrying about interaction with other sentences, knowing
that those sentences are guaranteed to produce the same probabilities.

Sampling threshold variables (q)

By analogy with the iHMM beam sampler, we seek to restrict the sets of
productions that must be examined during sampling to be finite. For the iHMM, this
meant a finite set of potential transitions from each observation. For the parsing
model, as a tree, it will mean a finite set of productions from each cell in the parse
chart.

But if we allow for an infinite category set, then for any category t, we can
find an infinite number of category pairs 〈u,v〉 that can combine to form t. For
example, the category s can be created, among other ways, by forward application

on the pairs 〈s/s, s〉, 〈s/(s/s), (s/s)〉, 〈s/(s/(s/s)), (s/(s/s))〉, etc. Since computing
an inside probability for t requires summing across all potential subtrees that might
form t, it would be necessary to sum over an infinite set.

Just like the iHMM, we employ a strategy of sampling threshold values q and
limiting valid productions to only those that exceed the threshold. To determine the
finite subset of productions valid at each potential node in the tree, we present a
procedure that passes top-down through the tree sampled on the previous iteration
to sample q values and feed downward finite sets of categories.

We note here that while it may be possible to consider unary productions to
also be an infinite set since unary productions produce categories and there are an

122

infinite number of categories, we follow Lewis and Steedman (2014) and others in
allowing only a small, fixed, finite set of linguistically-motivated unary rules, listed
in Table 4.1b. We will refer to this set as Rπ, and the set of unary productions
〈u〉 reachable from t as Rπ

t . As a result, our sampler does not need to worry about
thresholds on unary productions; it can always simply sum across the small set of
relevant unary rules.

To compute finite sets Rθ
ij,t, the set of productions possible from t in cell

(i, j), we execute the following algorithm. Following Van Gael et al. (2008), we
sample threshold values q based on the productions in the tree y sampled on the
previous iteration. However, unlike the iHMM, there is not a one-to-one correspon-
dence between parse chart cells and nodes in y since a parse tree will not have a
node for every span. This is similar to the problem encountered by Blunsom and
Cohn (2010a) for sampling synchronous grammars; we adopt their two-part strat-
egy of sampling based on y when (i, j) is a span in y, and sampling from a Beta
distribution when it is not.11 Assuming that Sy is the set of spans in y, yij is y’s
category at node index (i, j), and Tij is the set of allowed categories for that node
based on the sampled threshold, we present the procedure in Algorithm 1.12

It is important to note that there may be multiple nodes in the (i,j) position
of the tree y due to the fact that unary rules “loop back” to the same cell. But for
the purposes of sampling q thresholds in Algorithm 1, we are only concerned with
nodes that are part of a binary production. Thus, when we write yij , we only want
the category that emits a binary production in the tree. Likewise, we only want the
yik and ykj that result from that binary production.

Of course, it is not actually possible to traverse T in order to iterate for u
and v since T is infinite. We are required to traverse the set of observed binary
productions, since their probabilities are sampled directly from the Dirichlet. But
for the infinite tail of unobserved productions we instead rely on the fact that the
generative model of PCAT gives us a recipe for computing the probabilities. We
can use the definition of PCAT to generate a list of categories u, ordered highest- to

11Following Blunsom and Cohn (2010a), a < 1 and b = 1.
12Note that θt(〈u,v〉) = 0 if there is no CCG rule that can combine u and v to form t.

123

Algorithm 1 Construct a finite parse chart.

1: T0n = {sdcl, np}
2: for span← n downto 1 do
3: for i← 0 to n− span do
4: j = i+ span
5: Tvisited = ∅
6: for t← Tij − Tvisited do
7: Tvisited += t
8: // follow any relevant unary rules
9: Tij = Tij ∪Rπ

t
10: // if non-terminal (binary branch point)
11: if span > 1 then
12: // sample a threshold q
13: if (i, j) ∈ Sy then
14: q ∼ uniform(0, λyij(1) · θyij(〈yik, ykj〉))
15: else
16: q ∼ Beta(a, b)
17: // follow above-q binary productions
18: for u ∈ T , v ∈ T do
19: if λt(1) · θt(〈u,v〉) > q then
20: for k ← i+ 1 to j − 1 do
21: Rθ

ij,t += 〈k, 〈u,v〉〉
22: Tik += u
23: Tkj += v

lowest-probability, allowing us to traverse only as far as necessary until the produc-
tion probability will drop below q. One could also do the same thing for v, listing
all high-probability categories and finding the pairs 〈u,v〉 that can be combined us-
ing some combination rule c ∈ C to form t with total probability above q, a process
would take O(|T |2 × |C|) time. However, because of the nature of CCG, we can
reduce the time complexity by recognizing that for any parent category t and com-
bination rule c, we can infer either child category from the other. For example, if
t = np and u = np/n, then v would be n under Forward Application, or np\(np/n)

under Backward Application, and so on. This means that we need only traverse, for
each high-probability u, the list of combination rules to directly compute each v,

124

yielding a time complexity of O(|T | × |C|).
This algorithm, since it starts at the root, will only generate productions that

can actually be used in complete parse trees; this ensures that the inside algorithm
will not perform unnecessary computation, without requiring an additional pruning
stage such as that used in §4.2.

As we discussed with the iHMM, a finite set Tij guarantees that both Tik and
Tkj will be finite. But since the root node has no higher-level node to guarantee its
finiteness, we simply set T0n = {sdcl, np}, so that there will only be a finite number
of productions from the root.

Like the iHMM beam sampler, this procedure has an additional important
guarantee: there will always be at least one tree available to be sampled after thresh-
olding. Specifically, the previous tree y will always be available. We know this to
be the case because the threshold q sampled for any span (i, j) in Sy will always
be less than the probability of the existing production in y, λt(1) · θyij(〈yik, ykj〉).
For spans not in Sy, we sample from a Beta distribution, but it is not necessary
that q be less than any production probability since that span is not required for y.
Finally, all root, unary, and terminal productions used in y will be available since
these production sets are finite, and thus not thresholded.

Sampling trees

In §4.2.2, we presented a sampler for a CCG model with a finite category set.
We extend that work here to design a novel beam sampler for our nonparametric
model. To do so, we make use of the finiteRθ sets computed above.

Like Johnson et al. (2007), our sampler makes two passes over the tree:
an “upward” pass computing the inside chart, and a “downward” pass to sample
a tree from that chart. The distinction is that, much like the iHMM sampler, our
procedure needs to have only a finite set of productions over which to sum during
the inside computation. By sampling auxiliary threshold variables q, and using
them to constrain theRθ sets as shown above, we are able to define our new inside

125

algorithm, a modification of the algorithm presented in §4.2.2:

p(wi | yi,i+1 = t) = λt(3) · µt(wi)

+
∑
〈u〉∈Rπt

λt(2) · πt(〈u〉) · p(wi:i | yi,i+1 = u)

p(wi:j−1 | yij = t) =∑
〈u〉∈Rπt

λt(2) · πt(〈u〉) · p(wi:j−1 | yij = u)

+
∑
〈k,〈u,v〉〉∈Rθij,t

p(wi:k−1 | yik = u) · p(wk:j−1 | ykj = v)

Rθ
ij,t represents the set of above-the-threshold binary production rules t → 〈u,v〉

where t is in cell (i, j), u is in cell (i, k), v is in cell (k, j). Notice that the λt(1) ·
θt(〈u,v〉) component is not present in the inside calculation (as it was with our
finite-CCG model); this is because, as we saw with the iHMM, the probability of the
binary production has already been incorporated into the sampling of the threshold
q used to selectRθ

ij,t.
From a completed (now-finite) inside chart, we can sample a tree in the

downward direction, respecting the sampled thresholds by followingRθ
ij,t:

y0n ∼ σt · p(w0:n−1 | y0n = t)

x | yij ∼
〈
θyij(〈u,v〉) · p(wi:k−1 | yik = u) · p(wk:j−1 | ykj = v)

∀ 〈yik, ykj〉 ∈ Rθ
ij,yij

when j > i+1,

πyij(〈u〉) · p(wi:j−1 | y′ij = u) ∀ y′ij,

µyij(wi) when j = i+ 1
〉

where x is either a split point k and pair of categories yik, ykj resulting from a binary
rewrite rule, a single category y′ij resulting from a unary rule, or a word w resulting
from a terminal rule.

Decoding

We parse using probabilistic CKY (P-CKY). Since it is necessary to limit the
set of supertags for each token, but we don’t want to use the initial tag dictionary

126

since it doesn’t support any of the new categories that were created during sampling,
we extract a new tag dictionary from the pool of trees resulting from all sampling
iterations.

4.5.4 Performing inference

Since an initial tree for each training sentence is needed in order to sample
q values, we start the inference procedure with the max probability parse of each
sentence in the training corpus, computed using P-CKY with the prior means as
parameters (σ0, θ0, ...). We use an initial tag dictionary to constrain the supertag
set of each token for P-CKY. Once sampling begins, we drop the tag dictionary,
allowing a fully-infinite category set for all words; this allows our lexicon to grow
beyond the categories found in the initial tag dictionary.

After all sampling iterations have completed, the parameters are estimated
as the maximum likelihood estimate of the pool of trees resulting from all sampling
iterations.

4.5.5 Conclusions

In this section, we have presented a novel nonparametric CCG parsing model
that allows for an infinite set of CCG categories, and thus, an infinite set of produc-
tion rules. For this model, we have also designed a novel tree-based beam sampling

inference procedure that efficiently samples from an infinite space of potential CCG

derivations. The flexibility of an infinite category set within the CCG framework
provides a principled way for our model to adapt to new data and new grammatical
constructions, inventing new categories and production rules as needed.

Moreover, our category and production sets, while still infinite, are firmly
grounded in the framework of CCG. This means that our models will always pro-
duce valid derivations that adhere to the rules of CCG. More importantly, it means
that we are able to use the priors defined in Chapter 3 to bias our model toward
the use of categories that are more plausible given the intrinsic, universal, cross-
linguistic properties of the CCG formalism.

127

Finally, though we have described it in the context of CCG, this approach is
generalizable to generic PCFG models. However, doing so would lose many of the
serious efficiency advantages that come from our use of CCG, such as the fact that
when examining potential productions, we only have to iterate over categories for
one side of a branch since we are able to infer its sibling given the small, finite set
of CCG rules.

4.6 Conclusions and Future Work

In this chapter, we have presented work on weakly-supervised CCG parsing
that is able to take advantage of universal properties of the CCG formalism to es-
timate better model parameters under weak supervision in a Bayesian setting. We
have further showed how additional careful exploitation of any available supervi-
sion can lead to further gains.

Because of the structured nature of CCG categories and the logical frame-
work in which they must assemble to form valid parse trees, the CCG formalism
offers multiple opportunities to bias model learning based on universal, intrinsic
properties of the grammar. In §4.2 we saw how priors on root, unary, and binary
productions in a parsing model could be biased toward a priori more likely cate-
gories, as defined by the probabilistic category grammar presented in §3.2.2 that
encourages simpler categories and modifier categories. Subsequently, in §4.3, we
showed how CCG’s preference for adjacent categories that are combinable could be
captured by a novel supertag-context parsing model, incorporating the sequential
relationships that were successfully exploited by the CCG supertagger in Chapter 3.
This allowed us to bias the model toward trees whose categories logically “fit” into
their contexts. For both models, we showed that using the tag dictionary and raw
corpus to estimate relationships between words and supertags to use as priors on
terminal distributions leads to further improvements.

Finally, we showed in §4.4 that exploiting bracket annotations can help guide
a sampler to estimate better parameters in a parsing model. We used oracle simula-
tion experiments to determine what kinds of brackets lead to the best results under

128

constrained time scenarios, and then used the lessons learned to give guidance to hu-
man annoators, who participated in timed experiments to prepare data. Ultimately,
we found that the brackets produced by human annotators are able to compete with
gold bracket information extracted from the supervised corpus. This demonstrates
that collecting bracket annotations is a viable form of supervision.

The idea of incorporating linguistic knowledge into a model via priors is
very appealing when supervised data is scarce. We have shown how knowledge
about the structure of CCG categories can be used, but a more sophisticated model
may be able to additionally make use of knowledge about the relative likelihoods
of various CCG rules. For example, we know that application rules are always
preferred, and that composition rules should only be used when necessary, and in
specific scenarios (Baldridge, 2002). Further, rules like merge should only be used
as a last resort.

Lastly, while a relatively large tag dictionary was used for the experiments
presented here, it may be possible to learn from even less supervision by general-
izing a small dictionary into a large one, as we have shown in possible for type-
supervised part-of-speech tagging in Chapter 2.

We conclude with a final section, §4.5 below, in which we present a novel,
nonparametric, Bayesian CCG parsing model. One of the obvious limitations to
the type-supervised learning shown so far is that any tag dictionary used will nec-
essarily be incomplete, missing not only some of the words, but also some of the
necessary categories associated with known words. However, because the category
generator we designed (§3.2.2) is itself a generative model, we are able to generate
new categories at will while sampling in order to introduce novel categories. This
allows us to assocate new categories with known words, introduce categories that
have never been seen with any word, and introduce finite sets of likely categories
for words unknown words. We also present a novel, efficient sampler for our non-
parametric model based on the beam sampler introduced by Van Gael et al. (2008)
for sampling in an infinite hidden Markov model. We show that this sampler can
be designed to advantage of properties of the CCG formalism to further reduce the
time complexity.

129

Chapter 5

Conclusion

As natural language processing applications move toward new languages
and domains, where resources for training models are less plentiful, the need for
methods that learn models from less supervision becomes more important. In this
dissertation, we have presented work on learning syntactic tagging and parsing
models from various forms of weak supervision. Our work is able to use avail-
able resources to construct inductive biases, and we have demonstrated that these
biases are valuable when training our models.

Our work has drawn on two broad categories of information to construct
our inductive biases. The first is information collected from human annotators. In
Chapter 2, we showed how it is possible to train good part-of-speech (POS) taggers
on supervision that was collected under extremely short time restrictions. Our meth-
ods were able to achieve, with just four hours of guidance, results comparable to
those of systems announced around the same time that required volumes of data that
took years to collect. To accomplish this, we developed techniques for estimating
probability distributions from partial tag dictionaries (mappings from word types to
sets of potential tags) and raw text — but without fully-annotated text — that could
be used for parameter initialization or as a prior on the word-tag relationships in
our models. Further, we designed an approach for automatically generalizing an
extremely small set of annotations into a much larger set of pseudo-annotations,
allowing for better even better estimates. We evaluated these approaches with live
experiments on truly low-resource languages in which we had human subjects an-
notate data under a variety of scenarios, allowing us to compare the relative value
of different kinds of supervision, while being sure to make our comparisons on the
basis of actual annotation effort expended. These studies have made it possible for
us to make specific recommendations to researchers who wish to collect corpora for
new languages.

The other major source of inductive bias is derived from the universal prop-

130

erties of grammar itself. Here, we recognize that, cross-lingually, languages tend
share certain underlying properties. Relevant to us is the tendency for languages to
prefer simpler syntactic analyses when possible. To account for this tendency, we
invoked the minimum description length (MDL) principle, stating that we wanted
our models to learn compact grammars that minimize the number of rules and
word-tag relationships required, or, alternatively, that maximize rule reuse across
sentences.

In order to be able to train tools for syntactic analysis that follow these prin-
ciples, we selected a grammatical formalism and learning framework that would be
able to capture and exploit our prior beliefs about the universal properties of gram-
mar. We chose to work within the framework of Bayesian statistical methods due
to its compatibility with our problem. Parameter inference in a Bayesian model can
be thought of as the combination of two elements: the (unannotated) data, which
the algorithm attempts to describe through the model and its parameter settings,
and the prior, which captures our underlying beliefs about how we think the model
should look. We showed that our problem aligns well to the Bayesian context since
unannotated text is relatively voluminous and easy to obtain, and we can encode
our universal properties of grammar (as well as additional information extracted
from other available annotations) as priors to guide the inference algorithm toward
simpler, more compact grammars. These priors are, therefore, treated as soft con-
straints on learning, meaning that they bias the learner toward simpler models, but
that these biases may be overridden when enough contradictory evidence is found
in the data.

For our grammatical representation, we chose to use the Combinatory Cate-
gorial Grammar (CCG) formalism because we were able to devise a way to encode
the intrinsic, universal, cross-lingual idea of “preferring simpler grammars” using
the structure of CCG categories. In Chapter 3, we showed that it was possible to de-
sign a generative probabilistic grammar over CCG categories, to be used as a prior,
that assigns high probability to simple tags, and geometrically decreases in proba-
bility as categories grow more complex. Further, we were able to design a method
for estimating the likelihood of seeing two categories on adjacent words based on

131

their structures alone. We showed that by exploiting both of these properties for pri-
ors in the Bayesian learning of a CCG supertagger from only incomplete, type-level
(tag dictionary) supervision, we were able to learn models that performed signifi-
cantly better than those trained without the universal biases. We also showed that
it is possible to achieve further large gains by carefully exploiting the weak super-
vision, extracting as much information as possible from the tag dictionary and raw,
unannotated text, as we did previously with POS-tagging.

Since we are ultimately interested in full syntactic parsing, not simply tag-
ging, we next turned our attention to CCG parsing models. In Chapter 4 we showed
that the same prior on CCG categories that encourages categories that are simpler
and more cross-linguistically plausible can be used to encourage simpler categories
at all levels of a parse tree, and experimentally verified that when learning from
incomplete type-level supervision, using this bias toward simplicity allows us to
outperform a model trained without this explicit bias.

In §4.3 we went further, designing a novel model that adds additional pa-
rameters to our previous CCG parsing model for the specific purpose of being able
to incorporate, as an inductive bias, our a priori knowledge that adjacent categories
are likely to be combinable. These additional parameters capture left- and right-side
supertag contexts, making it additionally possible to incorporate priors that encour-
age the use of constituent labels that “fit” into their contexts. Our experiments
demonstrate that the addition of these context parameters improves the inference
algorithm’s ability to find good model parameters under incomplete type-level su-
pervision scenarios, and that using a prior on these parameters that biases them
toward combinability improves results further.

Thinking again about the task of weakly-supervised learning more broadly,
we believe that when supervision is scarce, it is likely that using a variety of kinds
of supervision may prove more valuable by providing different, and complemen-
tary, perspectives on the data. We saw this, for example, in our POS-tagging work
when, for the morphologically-rich language Kinyarwanda, in extremely low an-
notation scenarios, the incorporation of morphological information, extracted auto-
matically by a finite-state transducer, improved our ability to train a model. In §4.4

132

we explored this idea for parsing, and showed that CCG parsing can be improved
by complementing the existing type-level supervision (a tag dictionary) with weak,
partial constituent bracketing information. We executed a series of simulation ex-
periments to assess the value of different bracket annotation collection strategies,
giving us insights into the kinds of guidance that we should give to annotators in
order to build the best parsers with the least effort. Among other results, we found,
interestingly, that partial information on a large number of sentence proved more
valuable to learning than obtaining complete bracketing information on a smaller
number of sentences. We then put those insights to work by having human exper-
imental subjects produce fast, noisy, incomplete bracket annotations for sentences
that were used to train parsers, ultimately demonstrating that human-provided an-
notations provided in a short amount of time can be quite valuable, and provide
results that can compete with bracketing information automatically extracted from
an expertly-built treebank.

5.1 Future Directions

Future work can be classified into three broad categories: work on collecting
better annotations and extracting better information from them, work on designing
better models to make the most of weak annotation or allow for additional inductive
biases, and work on the applications of weakly supervised models.

The first category of future work is that which continues on the path of low-
ering the amount of human input, or the cost of input, required to train these models.
This may take the form of developing methods for using new kinds of supervision
such as dependency annotations or semantic roles. For example, other researchers
have found that information collected following the lightweight Graph Fragment
Language dependency annotation scheme (Schneider et al., 2013) can be valuable
for learning with limited time and funds for annotation (Kong et al., 2014; Mielens
et al., 2015). It may also take the form of work that attempts to wring more value
out of existing annotations, perhaps by developing better generalization techniques
as we saw in particular with our POS work, or by identifying and exploiting addition

133

universal properties of language. Additionally, the Grammar Matrix of Bender et
al. (2002) is a framework for facilitating the efficient documentation of grammatical
information about a language, which could in turn be used to inform parser learn-
ing approaches such as ours by providing grammar-level (as opposed to type- or
token-level) information biases. Most importantly, there is much work to be done
in discovering how different kinds of supervision may interact. By knowing which
sources of data complement each other, which are redundant, how much of each
is needed, and how difficult each is to procure, we can provide clues on how to
optimize data collection to bootstrap NLP models in new domains.

The second category of future work is on the models used to lean from weak
supervision. We have shown in this dissertation that simple, long-standing models
such as hidden Markov models and probabilistic context-free grammars are indeed
able to make good use of weak supervision — as long as it is encoded properly as
a prior and an inference algorithm is used that takes advantage of it. However, we
have also demonstrated that more complex models, such as our supertag-context
model, are able to improve results by capturing additional inductive biases that
simple models may have no way of encoding. In §4.5 we presented ideas for how
to build a nonparametric parsing model that has the unique advantage of being able
to model an infinite space of CCG syntax trees. By allowing for an infinite set
of categories, and thus, an infinite set of production rules, this model is able to
grow and shrink its lexicon, inventing new categories in order to adapt to new data.
To learn the parameters for this model, we develop a new beam sampler that can
sample from the posterior by slicing the infinite space of trees. Importantly, despite
this high degree of flexibility, our model remains grounded in the CCG framework,
which allows us to provide CCG-based priors that keep our model biased toward
probable categories, and thus, simpler grammars. Further work in this direction
may find ways of extending these or other models to be able to capture additional
valuable linguistic biases.

Finally, the third broad category of future work concerns the applications
of these weakly-supervised models. Part-of-speech tags and CCG grammars are
not typically ends in themselves, but are building blocks for more complex NLP

134

tasks. Many high-level NLP applications, as they attempt to move into new lan-
guages or new domains, may benefit from better-performing syntax-learning strate-
gies. For example, machine translation and semantic parsing are both challenging
tasks where grammar is an intermediate representation. To address machine trans-
lation for low-resource languages, or semantic parsing on new domains, it may be
beneficial to be able to learn syntactic parsing models given only minimal amounts
of inexpensive supervision.

135

References

Steven Abney and Steven Bird. 2010. The Human Language Project: Building a
universal corpus of the world’s languages. In Proc. of ACL.

Jason Baldridge and Alexis Palmer. 2009. How well does active learning actually
work? Time-based evaluation of cost-reduction strategies for language documen-
tation. In Proc. of EMNLP.

Jason Baldridge. 2002. Lexically Specified Derivational Control in Combinatory
Categorial Grammar. Ph.D. thesis, University of Edinburgh.

Jason Baldridge. 2008. Weakly supervised supertagging with grammar-informed
initialization. In Proc. of COLING.

Srinivas Bangalore and Aravind K. Joshi. 1999. Supertagging: An approach to
almost parsing. Computational Linguistics, 25.

Michele Banko and Robert C. Moore. 2004. Part-of-speech tagging in context. In
Proc. of COLING.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. 1999. The
WaCky wide web: a collection of very large linguistically processed web-crawled
corpora. Language Resources and Evaluation, 43(3).

Leonard E. Baum. 1972. An inequality and associated maximization technique in
statistical estimation for probabilistic functions of Markov processes. In Oved
Shisha, editor, Inequalities III: Proc. of the Third Symposium on Inequalities,
pages 1–8. New York: Academic Press.

Matthew J. Beal, Zoubin Ghahramani, and Carl Edward Rasmussen. 2001. The
infinite hidden Markov model. In Proc. of NIPS.

Emily M. Bender, Dan Flickinger, and Stephan Oepen. 2002. The grammar matrix:
An open-source starter-kit for the rapid development of cross-linguistically con-
sistent broad-coverage precision grammars. In Proc. of the Workshop on Gram-
mar Engineering and Evaluation at the 19th International Conference on Com-
putational Linguistics.

136

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein.
2010. Painless unsupervised learning with features. In Proc. of NAACL.

Steven Bird. 2011. Bootstrapping the language archive: New prospects for nat-
ural language processing in preserving linguistic heritage. Linguistic Issues in
Language Technology, 6.

Yonatan Bisk and Julia Hockenmaier. 2012. Simple robust grammar induction with
combinatory categorial grammar. In Proc. of AAAI.

Yonatan Bisk and Julia Hockenmaier. 2013. An HDP model for inducing combi-
natory categorial grammars. Transactions of the Association for Computational
Linguistics, 1.

Leonard Bloomfield. 1914. An Introduction to the Study of Language. Henry Holt
and Company.

Leonard Bloomfield. 1933. Language. University of Chicago Press.

Phil Blunsom and Trevor Cohn. 2010a. Inducing synchronous grammars with slice
sampling. In Proc. of NAACL.

Phil Blunsom and Trevor Cohn. 2010b. Unsupervised induction of tree substitution
grammars for dependency parsing. In Proc. of EMNLP.

Phil Blunsom and Trevor Cohn. 2011. A hierarchical Pitman-Yor process HMM
for unsupervised part of speech induction. In Proc. of ACL.

Johan Bos, Cristina Bosco, and Alessandro Mazzei. 2009. Converting a dependency
treebank to a categorial grammar treebank for Italian. In M. Passarotti, Adam
Przepiórkowski, S. Raynaud, and Frank Van Eynde, editors, Proc. of the Eighth
International Workshop on Treebanks and Linguistic Theories (TLT8).

Cristina Bosco, Vincenzo Lombardo, Daniela Vassallo, and Leonardo Lesmo. 2000.
Building a treebank for Italian: a data-driven annotation schema. In Proc. of
LREC.

Glenn Carroll and Eugene Charniak. 1992. Two experiments on learning proba-
bilistic dependency grammars from corpora. Technical report, Brown University.

Christopher K. Carter and Robert Kohn. 1996. On Gibbs sampling for state space
models. Biometrika, 81(3):341–553.

137

Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-best parsing and max-
ent discriminative reranking. In Proc. of ACL.

Ciprian Chelba and Frederick Jelinek. 1998. Exploiting syntactic structure for
language modeling. In Proc. of ACL.

Zhiyi Chi. 1999. Statistical properties of probabilistic context-free grammars. Com-
putational Linguistics.

David Chiang. 2005. A hierarchical phrase-based model for statistical machine
translation. In Proc. of ACL.

Noam Chomsky. 1956. Three models for the description of language. IRE Trans-
actions on Information Theory, 2(3):113–124.

Noam Chomsky. 1965. Aspects of the Theory of Syntax. MIT Press.

Christos Christodoulopoulos, Sharon Goldwater, and Mark Steedman. 2010. Two
decades of unsupervised POS induction: How far have we come? In Proc. of
EMNLP.

Stephen Clark and James R. Curran. 2007. Wide-coverage efficient statistical pars-
ing with CCG and log-linear models. Computational Linguistics, 33.

Stephen Clark. 2002. Supertagging for combinatory categorial grammar. In Proc.
of TAG+6.

Trevor Cohn, Phil Blunsom, and Sharon Goldwater. 2010. Inducing tree-
substitution grammars. Journal of Machine Learning Research.

Michael Collins. 1999. Head-Driven Statistical Models for Natural Language
Parsing. Ph.D. thesis, University of Pennsylvania.

Silviu Cucerzan and David Yarowsky. 2002. Bootstrapping a multilingual part-of-
speech tagger in one person-day. In Proc. of CoNLL.

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-of-speech tagging with
bilingual graph-based projections. In Proc. of ACL-HLT.

Hal Daumé III and Daniel Marcu. 2006. Domain adaptation for statistical classi-
fiers. JAIR, 26.

138

Arthur P. Dempster, Nan M. Laird, and Donald. B. Rubin. 1977. Maximum likeli-
hood from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 39.

Markus Dickinson and W. Detmar Meurers. 2003. Detecting errors in part-of-
speech annotation. In Proc. of EACL.

Weiwei Ding. 2011. Weakly supervised part-of-speech tagging for Chinese using
label propagation. Master’s thesis, University of Texas at Austin.

Dan Garrette and Jason Baldridge. 2012. Type-supervised hidden Markov models
for part-of-speech tagging with incomplete tag dictionaries. In Proc. of EMNLP.

Dan Garrette and Jason Baldridge. 2013. Learning a part-of-speech tagger from
two hours of annotation. In Proc. of NAACL.

Dan Garrette, Jason Mielens, and Jason Baldridge. 2013. Real-world semi-
supervised learning of POS-taggers for low-resource languages. In Proc. of ACL.

Dan Garrette, Chris Dyer, Jason Baldridge, and Noah A. Smith. 2014. Weakly-
supervised Bayesian learning of a CCG supertagger. In Proc. of CoNLL.

Dan Garrette, Chris Dyer, Jason Baldridge, and Noah A. Smith. 2015. Weakly-
supervised grammar-informed Bayesian CCG parser learning. In Proc. of AAAI.

Daniel Gildea and Julia Hockenmaier. 2003. Identifying semantic roles using com-
binatory categorial grammar. In Proc. of EMNLP.

Daniel Gildea. 2004. Dependencies vs. constituents for tree-based alignment. In
Proc. of EMNLP.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel Mills,
Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A. Smith. 2011. Part-of-speech tagging for Twitter: Annotation, features,
and experiments. In Proc. of ACL-HLT.

Yoav Goldberg, Meni Adler, and Michael Elhadad. 2008. EM can find pretty good
HMM POS-taggers (when given a good start). In Proc. of ACL.

Sharon Goldwater and Thomas L. Griffiths. 2007. A fully Bayesian approach to
unsupervised part-of-speech tagging. In Proc. of ACL.

139

Sharon Goldwater. 2007. Nonparametric Bayesian Models of Lexical Acquisition.
Ph.D. thesis, Brown University.

Joshua Goodman. 1998. Parsing inside-out. Ph.D. thesis, Harvard University.

Aria Haghighi and Dan Klein. 2006. Prototype-driven learning for sequence mod-
els. In Proceedings NAACL.

Kazi Saidul Hasan and Vincent Ng. 2009. Weakly supervised part-of-speech tag-
ging for morphologically-rich, resource-scarce languages. In Proc. of EACL.

Julia Hockenmaier and Mark Steedman. 2002. Generative models for statistical
parsing with combinatory categorial grammar. In Proc. of ACL.

Julia Hockenmaier and Mark Steedman. 2007. CCGbank: A corpus of CCG deriva-
tions and dependency structures extracted from the Penn Treebank. Computa-
tional Linguistics, 33(3).

Rebecca Hwa. 1999. Supervised grammar induction using training data with lim-
ited constituent information. In Proc. of ACL.

Rebecca Hwa. 2000. Sample selection for statistical grammar induction. In Proc.
of EMNLP.

Frederick Jelinek, John D. Lafferty, , and Robert L. Mercer. 1990. Basic methods of
probabilistic context-free grammars. Technical report, IBM, Yorktown Heights,
New York.

Mark Johnson and Sharon Goldwater. 2009. Improving nonparameteric Bayesian
inference: Experiments on unsupervised word segmentation with adaptor gram-
mars. In Proc. of NAACL.

Mark Johnson, Thomas Griffiths, and Sharon Goldwater. 2007. Bayesian inference
for PCFGs via Markov chain Monte Carlo. In Proc. of NAACL.

Mark Johnson. 2007. Why doesn’t EM find good HMM POS-taggers? In Proc. of
EMNLP-CoNLL.

Aravind K. Joshi and B. Srinivas. 1994. Disambiguation of super parts of speech
(or supertags): Almost parsing. In Proc. of COLING.

Lauri Karttunen. 2001. Applications of finite-state transducers in natural language
processing. Lecture Notes in Computer Science, 2088.

140

Dan Klein and Christopher D. Manning. 2002. A generative constituent-context
model for improved grammar induction. In Proc. of ACL.

Dan Klein and Christopher D. Manning. 2004. Corpus-based induction of syntactic
structure: Models of dependency and constituency. In Proc. of ACL.

Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta, Archna Bhatia, Chris
Dyer, and Noah A. Smith. 2014. A dependency parser for tweets. In Proc. of
EMNLP.

Julian Kupiec. 1992. Robust part-of-speech tagging using a hidden Markov model.
Computer Speech & Language, 6(3).

Karim Lari and Steve J. Young. 1990. The estimation of stochastic context-free
grammars using the inside-outside algorithm. Computer Speech and Language,
4:35–56.

Yoong Keok Lee, Aria Haghighi, and Regina Barzilay. 2010. Simple type-level
unsupervised pos tagging. In Proc. of EMNLP.

Mike Lewis and Mark Steedman. 2014. A* CCG parsing with a supertag-factored
model. In Proc. of EMNLP.

Shen Li, João Graça, and Ben Taskar. 2012. Wiki-ly supervised part-of-speech
tagging. In Proc. of EMNLP.

Christopher D. Manning. 2011. Part-of-speech tagging from 97% to 100%: Is it
time for some linguistics? In Proc. of CICLing.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2).

Mike Maxwell and Baden Hughes. 2006. Frontiers in linguistic annotation for
lower-density languages. In Proc. of the Workshop on Frontiers in Linguistically
Annotated Corpora.

Bernard Merialdo. 1994. Tagging English text with a probabilistic model. Compu-
tational Linguistics, 20(2).

Jason Mielens, Liang Sun, and Jason Baldridge. 2015. Parse imputation for depen-
dency annotations. In Proc. of ACL.

141

Tom M. Mitchell. 1980. The need for biases in learning generalizations. Technical
report, Rutgers University, New Brunswick, New Jersey.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark Johnson. 2010. Using
universal linguistic knowledge to guide grammar induction. In Proc. of EMNLP.

Radford M. Neal. 2000. Markov chain sampling methods for Dirichlet process
mixture models. Journal of Computational and Graphical Statistics, 9(2):249–
265.

Radford M. Neal. 2003. Slice sampling. Annals of Statistics, 31(3):705–767.

Hermann Ney. 1991. Dynamic programming parsing for context-free grammars
in continuous speech recognition. IEEE Transactions on Signal Processing,
39(2):336–340.

Grace Ngai and David Yarowsky. 2000. Rule writing or annotation: Cost-efficient
resource usage for base noun phrase chunking. In Proc. of ACL.

Miles Osborne and Ted Briscoe. 1997. Learning stochastic categorial grammars.
In Proc. of CoNLL.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. 2011.
English Gigaword Fifth Edition LDC2011T07. Linguistic Data Consortium.

Lisa Pearl and Sharon Goldwater. In press. Statistical learning, inductive bias, and
Bayesian inference in language acquisition. In Jeffrey Lidz, William Snyder, and
Joseph Pater, editors, Oxford Handbook of Developmental Linguistics. Oxford
University Press.

Fernando Pereira and Yves Schabes. 1992. Inside-outside reestimation from par-
tially bracketed corpora. In Proc. of ACL.

Slav Petrov and Dan Klein. 2007. Improved inference for unlexicalized parsing. In
Proc. of NAACL.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald. 2012. A universal part-of-
speech tagset. In Proc. of LREC.

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011. Simple unsupervised gram-
mar induction from raw text with cascaded finite state models. In Proc. of ACL-
HLT.

142

Lance Ramshaw, Elizabeth Boschee, Sergey Bratus, Scott Miller, Rebecca Stone,
Ralph Weischedel, and Alex Zamanian. 2001. Experiments in multi-modal au-
tomatic content extraction. In Proc. of HLT.

Sujith Ravi and Kevin Knight. 2009. Minimized models for unsupervised part-of-
speech tagging. In Proc. of ACL-AFNLP.

Sujith Ravi, Jason Baldridge, and Kevin Knight. 2010a. Minimized models and
grammar-informed initialization for supertagging with highly ambiguous lexi-
cons. In Proc. of ACL.

Sujith Ravi, Ashish Vaswani, Kevin Knight, and David Chiang. 2010b. Fast, greedy
model minimization for unsupervised tagging. In Proc. of COLING.

Jorma Rissanen. 1995. Modeling by shortest data description. Automatica,
14(5):465–658.

Emmanuel Roche and Yves Schabes. 1995. Deterministic part-of-speech tagging
with finite-state transducers. Computational Linguistics, 21(2).

Nathan Schneider, Brendan O’Connor, Naomi Saphra, David Bamman, Manaal
Faruqui, Noah A. Smith, Chris Dyer, and Jason Baldridge. 2013. A frame-
work for (under)specifying dependency syntax without overloading annotators.
In Proc. of the 7th Linguistic Annotation Workshop & Interoperability with Dis-
course.

Stuart M. Shieber and Xiaopeng Tao. 2003. Comma restoration using constituency
information. In Proc. of NAACL.

John Sinclair. 1992. The automatic analysis of corpora. In Jan Svartvik, editor,
Directions in Corpus Linguistics (Proceedings of Nobel Symposium 82). Mouton
de Gruyter, Berlin.

Noah A. Smith and Jason Eisner. 2004. Annealing techniques for unsupervised
statistical language learning. In Proc. of ACL.

Noah A. Smith and Jason Eisner. 2005. Contrastive estimation: Training log-linear
models on unlabeled data. In Proc. of ACL.

Noah A. Smith. 2006. Novel Estimation Methods for Unsupervised Discovery of
Latent Structure in Natural Language Text. Ph.D. thesis, Johns Hopkins Univer-
sity.

143

Noah A. Smith. 2011. Linguistic Structure Prediction. Synthesis Lectures on
Human Language Technologies. Morgan and Claypool, May.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. 2011. Punctuation:
Making a point in unsupervised dependency parsing. In Proc. of CoNLL.

Mark Steedman and Jason Baldridge. 2011. Combinatory categorial grammar. In
Robert Borsley and Kersti Borjars, editors, Non-Transformational Syntax: For-
mal and Explicit Models of Grammar. Wiley-Blackwell.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen Clark, Rebecca Hwa, Julia
Hockenmaier, Paul Ruhlen, Steven Baker, and Jeremiah Crim. 2003. Bootstrap-
ping statistical parsers from small datasets. In Proc. of EACL.

Mark Steedman. 2000. The Syntactic Process. MIT Press.

Amarnag Subramanya, Slav Petrov, and Fernando Pereira. 2010. Efficient
graph-based semi-supervised learning of structured tagging models. In Proc.
of EMNLP.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim Nivre.
2013. Token and type constraints for cross-lingual part-of-speech tagging. In
Transactions of the ACL.

Partha Pratim Talukdar and Koby Crammer. 2009. New regularized algorithms for
transductive learning. In Proc. of ECML-PKDD.

Kristina Toutanova and Mark Johnson. 2008. A Bayesian LDA-based model for
semi-supervised part-of-speech tagging. In Proc. of NIPS.

Daniel Tse and James R. Curran. 2010. Chinese CCGbank: Extracting CCG deriva-
tions from the Penn Chinese Treebank. In Proc. of COLING.

Jurgen Van Gael, Yunus Saatci, Yee Whye Teh, and Zoubin Ghahramani. 2008.
Beam sampling for the infinite hidden Markov model. In Proc. of ICML.

Jurgen Van Gael, Andreas Vlachos, and Zoubin Ghahramani. 2009. The infinite
HMM for unsupervised PoS tagging. In Proc. of EMNLP.

Aline Villavicencio. 2002. The acquisition of a unification-based generalised cat-
egorial grammar. Ph.D. thesis, University of Cambridge.

144

Paul Viola and Mukund Narasimhan. 2005. Learning to extract information from
semi-structured text using a discriminative context free grammar. In Proc. of
SIGIR.

Sean Wallis. 2007. Annotation, retrieval and experimentation. In A. Meurman-
Solin and A.A. Nurmi, editors, Annotating Variation and Change. Varieng, Uni-
versity of Helsinki, Helsinki.

Jonathan Weese, Chris Callison-Burch, and Adam Lopez. 2012. Using categorial
grammar to label translation rules. In Proc. of WMT.

Wilhelm Wundt. 1900. Völkerpsychologie: eine Untersuchung der Entwicklungs-
gesetze von Sprache, Mythus und Sitte. Band II: Die Sprache, Zweiter Teil. W.
Engelmann, Leipzig.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha Palmer. 2005. The Penn Chi-
nese TreeBank: Phrase structure annotation of a large corpus. Natural Language
Engineering, 11(2):207–238.

Luke S. Zettlemoyer and Michael Collins. 2005. Learning to map sentences to
logical form: Structured classification with probabilistic categorial grammars. In
Proc. of UAI.

Luke S. Zettlemoyer and Michael Collins. 2007. Online learning of relaxed CCG
grammars for parsing to logical form. In Proc. of EMNLP.

145

	Chapter Introduction
	Syntactic Analysis
	Statistical Approaches
	Weakly-Supervised Learning
	Minimal input from annotators
	Universal grammar
	Combining the universal with the empirical

	This Dissertation

	Chapter Minimally-Supervised POS Tagging
	Background
	Setting up a Realistic Training Scenario
	HMM Learning
	Token-supervised training
	Type-supervised training

	Data
	Data sources
	Annotation-collection tasks
	Annotated data

	Morphological finite-state transducers
	Generalizing the Annotations
	Annotation expansion with label propagation
	Removing annotation noise with model minimization

	Tagger Training
	Experiments
	Evaluating the pipeline
	Weighted vs. unweighted minimization
	Types versus tokens
	Mixing type and token annotations
	FST development
	The effect of more raw data
	Correcting existing annotations
	Error analysis

	Related Work
	Conclusions and Future Work

	Chapter Grammar-Informed CCG Supertagging
	CCG and Supertagging
	Grammar-informed supertagger learning

	Model
	Transition prior means (0t)
	Unigram category generator (Pcat(u))
	Bigram category generator (Pcomb(u t))
	Emission prior means (0t)

	Posterior Inference
	Experiments
	Error analysis

	Related Work
	Conclusion and Future Work

	Chapter Grammar-Informed CCG Parsing
	Combinatory Categorial Grammar
	CCG Parsing with Likely Categories
	Generative Model
	Posterior Inference
	Experiments
	Conclusions

	Supertag-Context Parsing
	Generative Model
	Posterior Inference
	Experiments
	Conclusions

	Learning with Constituent Constraints
	Bracket Annotations and CCG Parsing
	Experiments
	Conclusion

	A Future Direction: Infinite CCG Parsing
	Infinite ccg model
	Background: ihmm beam sampler
	Beam sampling for the infinite ccg
	Performing inference
	Conclusions

	Conclusions and Future Work

	Chapter Conclusion
	Future Directions

	References

