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Abstract: State-of-the-art approaches for sarcasm detection in social media combine lexical

clues with contextual information surrounding the potentially sarcastic posting including

author information. This article presents detailed methods for performing contextualizing

sarcasm detection on Twitter, including data extraction, feature engineering and classification

model settings. I reproduce the state-of-the-art results reported by Bamman and Smith

(2015).
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1. Introduction

In recent years, the data generated from social media becomes more significant for

companies and government. Data mining and analysis in blogs, postings and messages

can foster great insights of social media users. These technologies can greatly improve the

competitive advantage of companies, enhance the products and services and help decision

making.

One obstacle for social media analysis is recognizing figurative language, such as sarcasm

or irony. Sarcasm can be viewed as a special case of irony where the positive literal meaning

is perceived as an indirect insult [3]. Sarcasm requires some shared knowledge between

speaker and audience; it is a profoundly contextual phenomenon [1]. This master report is

intended to reproduce the the sarcasm detection model and experiments reported in the

recent work of Bamman and Smith, 2015.

Twitter is an online social networking service that enables users to send and read short

140-character messages called “tweets”. Many natural language processing tasks choose

Twitter as the data source and conduct text mining on tweets, e.g., sentiment analysis,

corpus annotation, linguistic pre-processing, information extraction and opinion mining.

From a business and government point of view there is an increasing need to interpret and

act upon information from large-volume social media streams, such as Twitter.

Sarcasm on Twitter is difficult to detect. Twitter users frequently use slang, emoticon,

such as “: )” 1, hash tags and other jargon. Users are restricted by the 140 character

limit of tweets which further complicates the matter. Traditional approaches rely on lexical

clues of text. Work by Kreuk and Caucci indicate that sarcastic utterances often contain

lexical indicators (such as interjections and intensifiers) and other linguistic markers (such

as nonveridicality and hyperbole) that signal their irony.[4]

However, relying solely on intrinsic features of text is not always sufficient to recognize

1 the emoticon means smile
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sarcasm. Wallace et al.(2014) provided empirical evidence that humans can recognize sarcastic

posts better when they are provided additional context surrounding the statements.[10]

State-of-the-art methods for automatic sarcasm detection now rely on the contextualizing

information surrounding the text. Sarcasm requires some shared knowledge between speaker

and audience; it is a contextual phenomenon[1] [9].

In this report, I describe the re-implementation of a recent method for automatic

sarcasm detection due to Bamman and Smith. This method combines lexical and contextual

information to achieve robust classification performance. I will describe this method in

detail and summarize my evaluation of my re-implementation.

In Section 2 I introduce the data I used in experiments. Then I present the data

extraction and crawling from Twitter in Section 3. I discuss data processing and storage in

Section 3. After preparing all the data needed, I present the detailed “features engineering”

of this model in Section 4, which cost much time in my experiments. In Section 5, I will

discuss the experimental setup and present the results. Section 6 concludes the report.
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2. Data

Twitter provides rich text data and a wealth of contextualizing information. Millions of

people tweet everyday. It is therefore a great source to conduct natural language processing

experiments.

Figure 1 and Figure 2 show two illustrative examples of sarcastic tweets on Twitter

Figure 1: A sarcastic tweet. The speaker is clearly not welcoming allergy season back

Figure 2: A second sarcastic tweet. This speaker actually expresses frustration on Jiffylube

I chose tweets as my data source and conducted experiments to evaluate the model

proposed by Bamman and Smith (2015). I use the same tweets in their experiments and

the tweet list is provided by Bamman. This list contains In all 19534 tweets, around half

sarcastic tweets, while the other half non-sarcastic tweets. However, tweets are diminishing

with time goes, because users may quit Twitter, protect their accounts from viewing by

public or delete tweets. After data crawling, I finally collected 17926 tweets.

The labels of tweets are inferred from self-declaration of sarcasm, e.g., a tweet is marked

as sarcastic if it contains the hashtag #sarcasm or #sarcastic and non-sarcastic otherwise.

This is an efficient way of collecting ‘labeled’ data, but may introduce some noise.

In addition, I also collected the historical(past) tweets of each author. The historical

tweets in Bamman and Smith’s corpus are also disappearing, and the dataset I finally acquire
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is thus not the exact same as the original dataset in Bamman and Smith’s experiment. This

is in part because I do not have access to the Twitter “Gardenhose”2, so these data are

scraped directly from the Twitter web pages. Twitter limits the volume of historical tweets

written by one author that can be viewed by the public. Therefore I could only obtain around

850 tweets per user. Furthermore, the historical tweets of each author I collected were posted

after they wrote the sarcastic tweet. Thus the historical tweets I collected may be different

from those in Bamman and Smith’s dataset. However, it is reasonable to assume that the

historical tweets I collect also qualitatively represent the same characteristics, preferences

and past behaviors of the author as those collected by Bamman.

2“Gardenhose” is the access to 10% of the public tweets. Users pay Twitter to get this access.
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3. Data Extraction and Processing

3.1. Data Crawling

In this experiment, most tweets were collected using Python web crawlers and a few

were collected from Twitter stream API. I define three different data crawling approaches:

• Static web crawler

• Dynamic web crawler

• Public Twitter stream API

The static web crawler scrapes static web pages and extracts text from the HTML

markup. For example, I extracted these fields about the author from his/her Twitter web

site: author’s name, the number of accounts he/she is following, the number of accounts

following the author, the profile description, the time zone, and his/her duration on Twitter.

The Python package “beautiful soup4” and “requests” support all the functions of static

web crawling.

The dynamic web crawler focuses on the data sent from the Twitter server. When I

interact with a website, e.g., scroll down the page to view more tweets from a user, JavaScript

will detect my activity and send a request to the server. Then my browser will receive a

response from the server containing all of the data I need, e.g., the tweets I would like to

view, the followers’ names, or the historical tweets. On Twitter, their server will send back

a JSON file back after my browser send the request. JSON is an open-standard format that

uses human-readable text to transmit data objects consisting of attribute-value pairs. With

the help of a JSON parser, I can extract needed information without manual effort. As long

as the dynamic web crawler could simulate a browser, e.g., sending request and receiving

response, I could parse the JSON data and convert them to meaningful data. This approach

makes it feasible to collect historical tweets of users and who they are following.

The public Twitter Stream API makes it efficient to collect public tweets. Twitter

provides an interface to developers using its API. Free accounts can extract 1 percent of all

5



public tweets, which comprises tweets in many languages. It is necessary to collect many

public tweets randomly from Twitter when building a tweet dataset. The Twitter API works

well in this scenario. However, free accounts will face a time limit rate problem when one

tries to extract the historical tweets from one user. This problem will harm the speed of the

crawler.

Anyone using these data crawling approaches will inevitably encounter the IP block.

Twitter will block an IP of a crawler if it sends request to the server too frequently. This

mechanism prevents the server from being attacked by DDOS. Two ways of overcoming the

IP block are: 1. distribute the crawler across multiple machines, and 2. Set a random stop

time after send k requests.

In my work, I deploy crawlers on five computing nodes in the computing clusters of

TACC (Texas Advanced Computing Center). The crawlers will stop for a random number

of seconds every time it sends 50 requests to the server, which assures no blocks happen.

3.2. Data Processing

The raw tweet and contextualizing data are difficult to use: tweets are written in various

languages and length; and each author has a different timezone, which is hard to categorize. I

normalize all tweets and process other data. I remove tweets not written in English, retweets,

and tweets that contain fewer than three words. URLs and user mentions are replaced. The

hashtag #sarcastic and #sarcasm in the Sarcastic tweets are also removed.

For the profile data, like timezone, I use Google geocoder package to map different

locations to a similar area. Numbers in Twitter are displayed in string, e.g., “22K” or “2

Million”, and they need to be converted to numeric type.

All the data are stored into a database and the tweet IDs are used as the unique key for

each tweet.
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4. Feature Engineering

In this chapter, I introduce how to extract features for the machine learning model.

Machine learning is a method used to devise complex models and algorithms that lend

themselves to prediction. In machine learning and pattern recognition, a feature is an

individual measurable property of a phenomenon being observed. The concept of “feature”

is related to the explanatory variable used in statistical techniques such as linear regression.

“Feature engineering” is the process of using domain knowledge of the data to create features

that make machine learning algorithms work.

It is an important procedure in machine learning and natural language processing to

extract features from the data. This step is laborious but crucial for machine learning. Here

I derive all of the features defined by Bamman and Smith (2015) in their original paper. The

description of each feature is concise, but it is difficult to extract the features in practice.

Below I explain each feature both in theory and practice.

For the sake of convenience and to avoid confusion, I will name the tweet I want to

classify as sarcastic or not as the “target tweet”, the Twitter user who posted the tweet as

“author”, the user who responded to, or was mentioned in the target tweet as “audience”,

and the tweet to which the target tweet responded as “original tweet”.

The features used in this experiment are divided into four classes:

• Tweet Features

• Author Features

• Audience Features

• Response Features
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4.1. Tweet Features

Tweet features represent the lexical and grammatical information of the target tweet. I

can generate all the tweet features using only the tweet text, which reflect the literal meaning

of the tweet. I explain all the features in this class above.

Bag of Words. The Bag of Words presentation is a simplifying representation used

in natural language processing and information retrieval. In this model, a text (such as

a sentence or a document) is represented as the bag (multiset) of its words, disregarding

grammar and even word order but keeping multiplicity3. I extract binary indicators for

the unigrams and bigrams in the target tweet. English stop words, e.g., ‘I’, ‘and’, ‘is’, are

removed from the Bag Of Words. Python library Scikit-learn provides function to generate

these features, represented by a huge binary sparse matrix.

Brown Cluster Unigrams and bigrams. Brown Clustering is a form of hierarchical

clustering of words based on the contexts in which they occur. The intuition behind the

model is an n-gram model, i.e. one in which we use indicators to encode words that occur[5].

Brown Clustering reduces the high dimensionality of the BoW model. I map each word in

the 1000 non-overlapping clusters using the Brown Clusters of Owoputi et al., which group

words used in similar context into the same cluster.[6] The 1000 clusters can be found on

the website of TweetNLP4. By mapping unigrams and bigrams generated in the BoW to the

Brown Clusters, I generate a smaller matrix, with 1000 columns.

Unlabeled dependency bigrams, lexicalized and Brown Clusters. Dependency

is the notion that linguistic units, e.g., words, are connected to each other by directed links.

Dependency parsing is a syntactic analysis that aims to understand the dependency relation

in the sentence or document.

I use TweeboParser similar to Bamman and Smith’s experiment. This parser can also

be found on the website of Carnegie Mellon University TweetNLP. After the TweeboParser

3https://en.wikipedia.org/wiki/Bag-of-words_model
4http://www.cs.cmu.edu/~ark/TweetNLP/
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parses one tweet, it generates pairs of words.

For a sentence like “the dog runs”, with unlabeled dependencies between “the − > dog”

and “dog − > runs”, the binary lexicalized features would be:

“the − > dog”: 1

“dog − > runs”: 1

Then we can map these binary lexicalized features to the Brown Cluster. Suppose “the”

− > brown cluster #0, “dog” − > brown cluster #120, “runs” − > brown cluster #101,

then binary brown cluster features would be:

“#0 − > #120”: 1

“#120 − > #101”: 1

Then we can run all tweets through the TweeboParser and generate these features.

Part of speech. Part of speech represents the category of words which have similar

grammatical properties. Part of speech includes nouns, verbs, adjectives, adverbs, pronouns,

prepositions, conjunctions, interjections, and sometimes numerals, articles or determiners.

I apply the part of speech tagger of Owoputi.[6] Carnegie Mellon University TweetNLP

also provides a Java-based tokenizer and part-of-speech tagger for tweets. After training

the tweets using their model, I calculate the density of all part of speech taggers including

absolute count and ratio. These features can reflect the “lexical density” of the tweets.

Pronunciation features. Twitter users have specific writing styles, e.g., RT (Retweet),

CHK (Check) and IIRC (If I recall correctly). To capture these language phenomena, I

count the number of words that only have alphabetic characters but no vowels, and the

words with more than three syllables. For this I use a regular expression.

Capitalization features. Capitalization is another language phenomena on Twitter.

Users always show their emotions with capitalized words, e.g., “NO WAY” or “WTF”. I

count the number of words that begin with caps and the number in all caps. The number of

part of speech tags with at least initial caps are also extracted as a feature. This feature

can also be identified using a regular expression.
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Figure 3 shows a sarcastic tweet with capitalized words

Figure 3: A sarcastic tweet. “LOL” mean laugh out loud.

Tweet whole sentiment. Sentiment analysis is a significant part of understanding

language. The apparent sentiment of a sarcastic tweet is usually different from its hidden

meaning, i.e. critics might disparage a work by commending it sarcastically. I include several

features that use of sentiment analysis. The first is the numeric value of the tweet determined

by Stanford Sentiment Analysis[7]. This analyzer generates five values, representing “very

negative”, “negative”, “neutral”, “positive” and “very positive”.

Another feature I include is the phrase-based sentiment ratio. Stanford Sentiment

Analysis tries to determine the sentiment value of each non-terminal node in the parse tree

of a sentence. I count the value of each node and calculate the fraction of different types of

sentiment.

These features reflect the overall sentiment and sentiment distribution among the tweet

itself. Stanford CoreNLP provides a Java based module to analyze sentences5. However it is

slow because it uses neural network model. Therefore I use a distributed system to generate

these features.

Tweet word sentiment. This feature is based on a word-level sentiment analysis. The

sentiment strength of each word is estimated by the emotion scores of Thelwall[8]. The

emotion effect of each word is mapped with the dictionaries of Warriner[11]. The maximum,

minimum word sentiment/emotion score and the distance between the max and min are

extracted.

5http://stanfordnlp.github.io/CoreNLP/
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SentiStrength is a Java based module that can estimate the strength of positive and

negative sentiment in short texts. It reports 11 values from -5 to 5, which range from

extremely negative to extremely positive. I generate all the word-level sentiment scores

using it.

Warriner provides a list of 14,000 English lemmas that measure the emotion scores of

words. By mapping the word in one tweet, I can refer all the effective scores. Then I build

the features using the max value, min value and the distance between them.

Intensifier. Binary indicator for whether the tweet contains any intensifiers. Wikipedia

provides 50 intensifiers to which I can map the word in the target tweet[12]. For instance,

these intensifiers contain “amazingly”, “crazy”, “really”, “wicked” and “super”.

4.2. Author Features

Author features capture information about the author of the tweet, including historical

data and the profile of the author. This class of features capture contextualizing information

surrounding the target tweet. Knowing the author better can help the model determine

whether he/she would likely post sarcastic tweets. One common idea is that the author

may post negative tweets of an entity before, but the target tweet shows an inverse attitude

or emotion to the entity. Then there may be a greater possibility that the target tweet is

sarcasm.

The contextualizing features are as follows:

Author historical salient terms. Here TF-IDF score determines the feature. TF-IDF

is short for“term frequency-inverse document frequency”. It is a statistic that is intended

to reflect how important a word is to a document in a collection or corpus. The TF-IDF

value increases proportionally to the number of times a word appears in the document, but

is offset by the frequency of the word in the corpus, which helps to adjust for the fact that

some words appear more frequently in general[13].

The TF-IDF score can be calculated using formulas below. N is the total number of
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documents in the corpus, ft,d is the raw count of word t occurring in document d, tf(t, d) is

the term frequency score, idf(t,D) is the inverse document frequency score, and tfidf(t, d,D)

is the TF-IDF score

tf(t, d) = 0.5 + 0.5 ∗ ft,d
max{ft′,d : t′ ∈ d}

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D)

For each author, top 100 terms in their historical tweets with the highest TF-IDF scores

are identified. After collecting all the top 100 terms, binary indicators are created for each

author based on all the terms.

Author historical topics. Historical topic features are inferred under LDA with 100

topics over all tweets, where each document consists of up to 1000 words, similar to Bamman

and Smith’s setting .[1] Each user’s topic proportions are collected as features.

LDA, short for Latent Dirichlet Allocation, is a generative statistical model that allows

sets of observations to be explained by unobserved groups that explain why some parts of

the data are similar[2].

I used the Python LDA package to train the model, setting the number of iterations to

8006. This feature estimates the topic preference of the author.

Profile information. This feature contains several fields from the user profile of the

author, including number of accounts the author is following, number of accounts who follow

the author, total number of tweets, author’s duration on Twitter, the average number of

posts per day, author’s timezone, and whether or not the author is verified by Twitter.

Author historical sentiment. The distribution of sentiment in the historical tweets is

modeled using word-level dictionaries, which are applied to tweet-level sentiment similar to

the“tweet word sentiment feature”. I also use the Stanford Sentiment Analysis to estimate

6https://pypi.python.org/pypi/lda
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the sentiment of each historical tweet and get the overall distribution of each author. These

features represent the overall sentiment status of the author.

Profile unigrams. Twitter users always write a paragraph to describe himself or herself.

The unigrams of this profile description are extracted as features.

4.3. Audience Features

Audience features encode information about the addressee of the tweet (the user to

whom the predicted tweet is responding), including historical data, profile of the addressee

and the communication between addressee, and the author of target tweet.

Audience historical topics, historical salient terms, profile information, pro-

file unigrams. These features are similar to“Author historical topic”, “Author historical

salient terms” and features in Author Features, but here I extract the feature from the

historical tweets and profile information of the audience.

Author/Audience Interactional topics. This feature measures the similarity of

historical topics of the audience and author. A topics matrix is generated by taking the

element-wise product of the author and audience’s historical topic distribution. Similar

topics will result in larger value in the distribution.

Historical communication between author and audience. This feature measures

the degree of familiarity of author and audience. I extract the rank of the audience in

author’s @-mention list, and also whether or not there have been mutual @-mention messages

in the historical tweets of both, the number of messages sent from the author to the audience

are extracted into this feature. Using a regular expression, I match these rules and search in

the historical tweets of author and audience.

4.4. Response Features

Response Features consider the interaction between the target tweet and the tweet that

it is responding to. The original tweet is usually talking about a similar subject as the target
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tweet.

Pairwise Brown features between the original message and the response. This

feature captures the interaction between the target tweet and the original tweet. I model

the ‘Brown cluster unigrams and bigrams’ of the original tweet as described earlier. I also

introduce binary indicators of pairwise Brown features between all terms in the two tweets.

Unigram features of original message. This feature encodes the ungirams of the

original tweet using Bag of Words. Binary indicators of all unigrams are extracted as

features.
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5. Experimental Setting

The experimental methodology is similar to that in Bamman and Smith’s way.[1] Some

tweets in my dataset are missing fields. I remove these tweets. My final tweets dataset

contains 11,457 tweets, 6550 are sarcastic tweets and 4907 are non-sarcastic.

For a classification model, I use binary Logistic Regression to predict whether a tweet

is sarcastic or not. L2 regularization is applied to prevent over-fitting. In the fields of

machine learning, we always introduce an additional regularization term to the general

loss function. This method attempts to introduce a penalty for over-fitting and improve

generalization. Regularization can be used to learn simpler models, induce models to be

sparse, and introduce group structure into the learning problem.

To assess performance, I performed tenfold cross-validation. The data are split into 10

folds and I tune the L2 parameter with 1/10 data, train the model with 8/10 data, and

evaluate the model with held-out 1/10 data. This process is repeated across the 10 folds.

All the features mentioned in the feature engineering are extracted from the data. Nu-

merical features scaled between 0 and 1. Categorical features are normalized by binarization,

e.g., each categorical feature with m possible values into m binary features, with only one

active.

I use accuracy for evaluation of models, since the dataset is roughly balanced.

15



6. Result and Conclusion

To compare the performance of different features, I consider 6 combinations and use the

Bag of Words model as the baseline. Here are the accuracy results of different combinations,

also shown in Figure 4.

• Bag of Words (baseline): 69.1%

• Tweet Features: 73.3%

• Tweet Features + Response Features: 75.7%

• Tweet Features + Audience Features: 75.3%

• Tweet Features + Author Features: 77.6%

• Tweet Features + Author Features + Audience Features + Response Features: 78.3%

Figure 4: predict accuracy
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Combining all features can produce the best accuracy 78.3%. Tweet features can be

viewed as the lexical and grammatical clues in tweets. Other feature sets can be understood

as surrounding contextualizing information. Author features improve the greatest accuracy

over the tweet only. This means the historical tweets and profile information can be viewed

as the best contextualizing indicators of sarcasm.

However, collecting historical tweets data is very expensive in both human and compute

time. It is not practical to use all historical data of one author to predict whether or not

his/her tweet is sarcastic. I suggest using less contextualizing information of the author,

especially the data that can be collected easily and fast. For instance, the profile information

of the author and the response features are relatively effective and costs less. The features

extracted from the historical tweets, especially the salient terms and topic distributions,

improve the model enormously. I suggest the model only extract the historical tweets around

the target tweet. From intuition, these surrounding tweets posted in closer time would

probably emphasize the similar object more often. Meanwhile, random sampling from the

historical tweet can also both generate the topic distribution and reduce cost.

Sarcasm detection in social media relies heavily on contextualizing information.
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