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Particle Learning for General Mixtures

Carlos M. Carvalho∗, Hedibert F. Lopes†, Nicholas G. Polson‡ and Matt A. Taddy§

Abstract. This paper develops particle learning (PL) methods for the estimation
of general mixture models. The approach is distinguished from alternative particle
filtering methods in two major ways. First, each iteration begins by resampling
particles according to posterior predictive probability, leading to a more efficient
set for propagation. Second, each particle tracks only the “essential state vector”
thus leading to reduced dimensional inference. In addition, we describe how the
approach will apply to more general mixture models of current interest in the
literature; it is hoped that this will inspire a greater number of researchers to
adopt sequential Monte Carlo methods for fitting their sophisticated mixture based
models. Finally, we show that PL leads to straightforward tools for marginal
likelihood calculation and posterior cluster allocation.

Keywords: Nonparametric, mixture models, particle filtering, Dirichlet process,
Indian buffet process, probit stick-breaking

1 Introduction

Mixture models provide a flexible and intuitive framework for inference. The practical
utility of such models is derived from separation of the full model, conditional on latent
allocation of observations to mixture components, into a set of distribution functions
that are analytically manageable and of a standard form. In addition, the predictive
probability function is, even for models with an infinite number of mixture components,
often available and offers a workable sampling model for both new observations and the
associated latent mixture allocation.

Many different methods are available for fitting general mixture models. Commonly
used approaches are EM-type algorithms, Markov chain Monte Carlo (MCMC) and
variational Bayes (VB) optimization. Examples in the literature include, among oth-
ers, Escobar and West (1995), Richardson and Green (1997), MacEachern and Müller
(1998), Stephens (2000), and Blei and Jordan (2006). Additional sampling alternatives
appear in Chopin (2002), Del Moral, Doucet and Jasra (2006), Jasra, Stephen and
Holmes (2007) and Fearnhead and Meligkotsidou (2007). The relative merit of these
techniques is dependent on the data analysis setting of interest: EM will find modal
clusters fairly efficiently, but is difficult in high dimensions and leads only to point esti-
mates. MCMC is able to provide a complete picture of the posterior distribution, but
the time-consuming Markov Chain must be re-run to update for every addition to the
batch of observations. Finally, variational Bayes methods are robust in high-dimensional
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large dataset applications, but provide only an approximation to the posterior that is
of unknown quality.

Without attempting to supplant any of these existing techniques in their respective
strengths, this article develops an efficient framework for sequential sampling from the
posterior distribution for general mixture models. Advantages of such an approach in
on-line inference settings include: (i) uncertainty is updated practically instantly as new
information arrives, (ii) a filtering process makes explicit the information gained as time
progresses, and (iii) marginal data likelihood estimates are easily obtained from sequen-
tial predictive densities. In particular, we adapt the particle learning (PL) approach
of Carvalho, Johannes, Lopes, and Polson (2010) and Lopes, Carvalho, Johannes and
Polson (2010) to general mixtures. A general framework is introduced for applying the
PL resample/propagate procedure at each “time” point (i.e., given a new observation)
to provide a sequential particle approximation to the posterior. Use of the proposed
methodology is then illustrated in density estimation problems, as well as for latent
feature and dependent nonparametric mixture models.

Ours is not the first application of sequential Monte Carlo sampling to mixture
models. The most sophisticated methodology can be cast within a general particle
filtering framework presented by MacEachern, Clyde, and Liu (MCL; 1999), which
builds on earlier work by Kong, Liu, and Wong (1994). Although other authors have
suggested improvements (e.g., Fearnhead (2004) describes a more efficient sampling
step), MCL algorithms form the basis for the existing state of the art. The distinction
is subtle between their framework and the PL approach introduced herein; indeed,
MCL algorithm S2 involves the same probabilistic calculations as the corresponding
application of our PL approach, with major differences only in the order of operations
and what information is tracked as a “particle”. However, despite demonstration by
MacEachern et al of the utility of these algorithms, the methodology has not been as
widely adopted and applied as one would expect. This could be due in some part to
presentation of the material: the general methods are derived in terms of a somewhat
narrow class of mixture models, and structural advantages of the most useful algorithms
are perhaps not highlighted in such a way as to ease application in alternative settings.
But, at the same time, the PL approach is able to alleviate some real practical limitations
of MCL; the way that this is achieved can be explained through two major differences
between the frameworks.

The first difference is related to pre-selection of particles. The MCL particle method
utilizes a standard sequential importance sampling approach, where the propagation
of states is carried out before an importance reweighting of particles. In contrast, PL
always resamples particles first, proportional to the predictive probability of a new ob-
servation. In this regard, PL can be interpreted as an Auxiliary Particle Filter (Pitt
and Shephard 1999) version of MCL. Liu and Chen (1998) discuss the potential advan-
tages of re-sampling first in the context of dynamic systems where only state variables
are unknown – we take this discussion further by explicitly applying it to general mix-
tures models where we need to deal with uncertainty about both states and parameters
defining the model.
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The second difference is related to the information PL tracks over time. The
MacEachern et al. framework attempts to track a smoothed distribution of latent allo-
cations of each observation to a mixture component. This relies on repeated importance
sampling reweightings of the allocation vector, which has length equal to the present
number of observations. The dimension of this target of inference grows rapidly in time,
leaving the procedure more susceptible to unbalanced weights and particle degeneracy.
In contrast, PL tracks only the sufficient information for filtering defined by the essential
state vector that allows for the computation of the resampling and propagating steps.
Observation allocation (and the implied clustering) is deferred to the end of the filtering
process and it is obtained through a backwards particle smoothing algorithm.

In addition to presenting an algorithm that is able to improve upon MCL in these
two ways, this article aims to show applicability of the PL framework to a very general
class of mixture models. We thus provide, in Section 1, a generic formulation of the PL
approach to a broad class of mixture specifications, beyond the standard finite or Dirich-
let process mixture models. Section 2 details algorithms for density estimation through
both finite (2.1) and infinite (2.2) mixture models, including the widely used Dirichlet
process mixture model. Section 3 derives algorithms for two alternative applications
of nonparametric mixture-based models: latent feature modeling through the Indian
buffet process (3.1) and probit stick-breaking models for dependent random measures
(3.2). The list of applications described herein is not meant to be exhaustive but rather
to provide a set of examples that demonstrate the applicability and generality of PL.
Since the steps required by our generic approach are fairly simple and intuitive, this
should facilitate the wider use of sequential particle methods in fitting general mixtures.
Finally, Section 4 contains three examples of the PL mixtures algorithm applied to sim-
ulated data. Section 4.1 involves a simple finite mixture model of Poisson densities, and
uses the PL technique for marginal likelihood estimation to determine the number of
mixture components. Section 4.2 presents density estimation through a Dirichlet pro-
cess mixture of multivariate normals, with the PL fit algorithm applied to up to 12500
observations of 25 dimensional data. The multivariate normal mixtures are extended
to nonparametric regression in Section 4.3, where we illustrate sequential learning for
the full underlying random mixing distribution. The article concludes in Section 5 with
summary and discussion of the contributions of this PL mixtures framework.

1.1 The General PL Framework for Mixtures

The complete class of mixture models under consideration is defined by the likelihood
p(yt+1|kt+1, θ), a transition equation p(kt+1|kt, θ) with kt = {k1, . . . , kt}, and parameter
prior p(θ). This general formulation can be naturally represented as a state-space model
of the following form

yt+1 = f(kt+1, θ) (1)
kt+1 = g(kt, θ) (2)

where (1) is the observation equation and (2) is the evolution for states kt+1. Note that
this structure establishes a direct link to the general class of hidden Markov models,
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which encompasses a vast number of widely used models. In this, the kt states refer to
a latent allocation of observations to mixture components.

In order to describe the PL algorithm, we begin by defining Zt as an “essential state
vector” that will be tracked in time. Assume that this vector is sufficient for sequential
inference; that is, it allows for the computation of:

(a) the posterior predictive p(yt+1|Zt),
(b) the posterior updating rule p(Zt+1|Zt, yt+1),

(c) and parameter learning via p(θ|Zt+1).

Given an equally weighted particle set
{
Z(i)
t

}N
i=1

which serves to approximate the pos-

terior p (Zt|yt), the generic particle learning update for a new observation yt+1 proceeds
in two steps:

Resample Z(i)
t ∝ p(yt+1|Z(i)

t ) → Propagate Z(i)
t+1 ∼ p(Zt+1|Z(i)

t , yt+1). (3)

This process can be understood by re-writing Bayes’ theorem as
p
(
Zt|yt+1

)
∝ p (yt+1|Zt) p

(
Zt|yt

)
(4)

p
(
Zt+1|yt+1

)
=

∫
p(Zt+1|Zt, yt+1)dP

(
Zt|yt+1

)
, (5)

where P(·) refers throughout to the appropriate continuous/discrete measure. Thus,
after resampling the initial particles with weights proportional to p(yt+1|Zt) we have
samples from p(Zt|yt+1). These samples are then propagated through p(Zt+1|Zt, yt+1),

leading to updated particles
{
Z(i)
t+1

}N
i=1

approximating p(Zt+1|yt+1). The method is
summarized by the following algorithm.

PL for general mixture models

1. Resample: Generate an index ζ ∼ MN(ω, N) where

ω(i) =
p
(
yt+1|Z(i)

t

)

∑N
i=1 p

(
yt+1|Z(i)

t

)

2. Propagate:
Z(ζ(i))
t+1 ∼ p

(
Zt+1|Z(ζ(i))

t , yt+1

)

3. Learn:

p(θ|yt+1) ≈ 1
N

N∑

i=1

p(θ|Zt+1)
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The following examples explicitly define the essential state vector and the elements
needed to implement the general algorithm described above. These examples are further
explored in Section 4.

Example 1: Finite Mixtures of Poisson Densities. An m component mixture of Poisson
densities is defined as

p(yt) =
m∑

i=1

pjPo(yt; θ?j ), (6)

where E(yt|kt = i) = θ?i . We complete the model with conjugate priors π(θ?j ) =
ga(αj , βj), for j = 1, . . . ,m, and π(p) ∼ Dir(γ). The form of the conditional pos-
terior given yt, given the latent allocation kt, is completely defined by nt, the num-
ber of samples in each component, and sufficient statistics st = (st,1, . . . , st,m), where
st,j =

∑t
r=1 yr1[kr=j]. This leads to the following definition of the essential state vec-

tor to be tracked in time Zt = {kt, st,nt}. We can then straightforwardly obtain the
predictive for yt+1 as

p(yt+1|Zt) =
m∑

kt+1=j=1

∫ ∫
pjp(yt+1|θ?j )p(θ?,p)d(θ?,p)

=
m∑

kt+1=j=1

Γ (st,j + yt+1 + αj)
Γ (st,j + αj)

(βj + nt,j)
st,j+αj

(βj + nt,j + 1)st,j+yt+1+αj

1
yt+1!

(
γj + nt,j∑m
i=1 γi + nt,i

)
.

Propagating kt+1 is done according to

p(kt+1 = j|Zt, yt+1) ∝ Γ (st,j + yt+1 + αj)

Γ (st,j + αj)

(βj + nt,j)
st,j+αj

(βj + nt,j + 1)st,j+yt+1+αj

(
γj + nt,j∑m
i=1 γj + nt,i

)
.

Given kt+1, Zt+1 is updated by the recursions st+1,j = st,j+yt+11{kt+1=j} and nt+1,j =
nt,j+1{kt+1=j}, for j = 1, . . . ,m. Finally, learning about θ? conditional on Zt+1 involves
sampling from an update gamma posterior for each particle.

Example 2: DP Mixtures of Multivariate Normals The d-dimensional DP multivariate
normal mixture (DP-MVN) model has density function (Escobar and West 1995)

f(yt;G) =
∫

N(yt|µt,Σt)dG(µt,Σt), and G ∼ DP (α,G0(µ,Σ)), (7)

with given concentration parameter α and conjugate centering distribution

G0 = N(µ;λ,Σ/κ) W(Σ−1; ν,Ω),

where W(Σ−1; ν,Ω) denotes a Wishart distribution such that E[Σ−1] = νΩ−1 and
E[Σ] = (ν − (d + 1)/2)−1Ω. This model specification leads to an essential state vec-
tor Zt = {kt, st,nt,mt} where st is the conditional sufficient statistics for each unique
mixture component, nt is the number of observations assigned to each component and
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mt is the number of current components. st is defined by ȳt,j =
∑
r:kr=j yr/nt,j and

St,j =
∑
r:kr=j(yr− ȳt,j)(yr− ȳt,j)′ =

∑
r:kr=j yry

′
r − nt,j ȳt,j ȳ′t,j . The predictive density

for resampling is

p(yt+1|Zt) =
α

α+ t
St(yt+1; a0, B0, c0) +

mt∑

j=1

nt,j
α+ t

St (yt+1; at,j , Bt,j , ct,j) (8)

where the Student’s t distributions are parametrized by a0 = λ, B0 = 2(κ+1)
κc0

Ω, c0 =

2ν − d + 1, at,j = κλ+nt,j ȳt,j

κ+nt,j
, Bt,j = 2(κ+nt,j+1)

(κ+nt,j)ct,j

[
Ω + 1

2Dt,j

]
, ct,j = 2ν + nt,j − d + 1,

and Dt,j = St,j + κnt,j

(κ+nt,j) (λ− ȳt,j)(λ− ȳt,j)′. Propagating kt+1 is done such that

for j = 1, . . . ,mt, p(kt+1 = j) ∝ nt,j
α+ t

St(yt+1; at,j , Bt,j , ct,j) (9)

and p(kt+1 = mt + 1) ∝ α

α+ t
St(yt+1; a0, B0, c0).

Finally Zt+1 is updated as follows: If kt+1 = mt + 1, mt+1 = mt + 1 and st+1,mt+1 =
[yt+1, 0]. If kt+1 = j, nt+1,j = nt,j + 1, ȳt+1 = (nt,j ȳt,j + yt+1)/nt+1,j and St+1,j =
St,j + yt+1y

′
t+1 + nt,j ȳt,j ȳ

i′
t,j − nt+1,j ȳt+1,j ȳ

i′
t+1,j . The remaining sufficient statistics are

the same as at time t.

1.2 Allocation

The filtering process for Zt does not carry kt, the vector of allocation indicators. How-
ever, it is straightforward to obtain smoothed samples of kt from the full posterior,
through an adaptation of the particle smoothing algorithm of Godsill, Doucet, and
West (2004).

The particle set {Z(i)
t }Ni=1 provides a filtered approximation to the posterior distri-

bution p(Zt|yt) form which draws from the full posterior distribution of the allocation
vector, p(kt|yt), can be obtained through the backwards update equation

p(kt|yt) =
∫

p
(
kt|Zt, yt

)
dP(Zt|yt) =

∫ t∏

r=1

p (kr|Zt, yr)dP(Zt|yt). (10)

From (10), we can directly approximate p (kt|yt) by sampling, for each particle Z(i)
t and

for r = t, . . . , 1, kr with probability p (kr = j|Zt, yr) ∝ p (yr|kr = j,Zt) p (kr = j|Zt),
where j represents each component available in each particle. In the mixture of Poisson
example, p (yr|kr = j,Zt) is the density of a Poisson-Gamma for the j component eval-
uated at yr and p (kr = j|Zt) is equal to nj/n, which is clearly done independently for
each observation. In general, the conditional independence of the mixture models that
leads to the factorization in (10) provides an algorithm for posterior allocation that is of
order O(N). This property is not shared by the original proposal of Godsill et al. (2004)
where the recursive nature of the dynamic models considered leads to an algorithm of
order O(N2).
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1.3 Marginal Likelihoods

In addition to parameter learning and posterior allocation, PL provides a straightfor-
ward mechanism for calculation of the marginal data likelihood associated with a given
model specification. This third major inferential tool will be useful in Bayesian model
comparison procedures, based either on Bayes factors or posterior model probabilities.
A sequential marginal likelihood formulation holds that p(yt) =

∏t
r=1 p(yr|yr−1). The

factors of this product are naturally estimated at each PL step as

p(yt|yt−1) =
∫

p(yt|Zt−1)dP(Zt−1|yt−1) ≈ 1
N

N∑

i=1

p(yt|Z(i)
t−1). (11)

Thus, given each new observation, the marginal likelihood estimate is updated accord-
ing to p(yt) = p(yt−1)

∑N
i=1 p(yt|Z(i)

t−1)/N . This approach offers a simple and robust
sequential Monte Carlo alternative to the traditionally hard problem of approximating
marginal predictive densities via MCMC output (see. e.g., Basu and Chib 2003; Chib
1995; Chib and Jeliazkov 2001; Han and Carlin 2001).

The following sections will carefully discuss definition of Zt and exemplify application
of this general PL mixtures strategy in a variety of models.

2 Density Estimation

In this section, we consider density estimation under the class of models characterized
by density functions of the form, f(y;G) =

∫
k(y; θ)dG(θ).

There are many possibilities for the prior on G, including the simple finite dimen-
sional models leading to a finite mixture models specification. The most common mod-
els, including the very popular Dirichlet process (DP; Ferguson 1973), are based on the
stick-breaking construction for an infinite set of probability weights. Other priors of this
type include the beta two-parameter process (Ishwaran and Zarepour 2000) and kernel
stick-breaking processes (Dunson and Park 2008). Pólya trees (e.g. Paddock et al. 2003)
provide an alternative where the distribution is built through a random partitioning of
the measurable space. We refer the reader to Walker, Damien, Laud, and Smith (1999)
or Müller and Quintana (2004) for more complete overviews of the major modeling
frameworks.

The fundamental requirement in the definition of Zt is its ability to allow an “evolu-
tion” represented by (5) and analytical evaluation of the predictive in (4). Fortunately,
the predictive distribution is central in the development of many nonparametric prior
models. Since it is possible to constrain a sequence of distributions p(yt+1|y1, . . . , yt) so
as to obtain exchangeability for the associated sequence yt (see, e.g., Regazzini 1998),
the predictive probability function can be used to develop probability distributions over
yt through use of de Finetti’s representation theorem. Many common nonparamet-
ric priors, including the Dirichlet process (Blackwell and MacQueen 1973) and, more
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generally, beta-Stacy processes (Walker and Muliere 1997), Pólya trees (Muliere and
Walker 1997), and species sampling models (Perman et al. 1992) can be characterized
in this way. More recently, Lee, Quintana, Müller, and Trippa (2008) propose a general
approach to defining predictive probability functions for species sampling models, and
argue the flexibility of this model class. Thus, our central use of the predictive prob-
ability function fits very naturally within common Bayesian nonparametric modeling
frameworks.

In what follows, we are motivated by models where the prior on the mixing distribu-
tion is defined via a species sampling model (Pitman 1995) that guarantees almost surely
discrete realizations of G. Making a parallel to (1) and (2), an informal formulation of
the collapsed state-space model is

E [f(yt+1;G)|Zt] =
∫

k(yt+1; θ)dE [G(θ)] (12)

E [dG(θ)|Zt] =
∫
dG(θ)dP (dG(θ)|Zt) . (13)

In general, the number of measurable point masses induced by this discrete mixture can
be infinite, such that the number of mixture components associated with any observed
dataset is random. With t observations allocated to mt mixture components, (13) can
be re-expressed as

E [dG(θ)|Zt] = p0dG0(θ) +
mt∑

j=1

pjE[δθ?
j
|Zt], (14)

with θ?j the parameters for each of the mt components. This leads to the posterior
predictive function

p (yt+1|Zt) =
∫

k(y; θ)E (dG(θ)|Zt)

= p0

∫
k(yt; θ)dG0(θ) +

mt∑

j=1

pj

∫
k(yt; θ?j )dP(θ?j |Zt). (15)

The following two sections detail particle learning algorithms for the finite mixture
model and Dirichlet process mixture model, both of which lead to predictive probability
functions of this type. However, from the above discussion and a few examples described
in Section 3, it should be clear the ideas extend to more general nonparametric mixture
priors designed around a workable predictive probability function.

2.1 PL for Finite Mixture Models

The density function corresponding to a mixture model with a finite number m of
components is written

p(y|θ?,p) =
m∑

j=1

pjk(y; θ?j ), (16)
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where p = (p1, . . . , pm) such that
∑m
j=1 pj = 1 is the mixture component probability

vector and θ? = {θ?1 , . . . , θ?m} is the set of component specific parameters for the density
kernel k(·; θ). This is clearly a special case of (12) where the random mixing distribution
degenerates at m distinct atoms. Equivalently, this implies that the density representa-
tion can be written as E (dG(θ)|Zt) =

∑m
j=1 pjδθ?

t
, so that the quantity of interest is the

joint posterior distribution p(θ?,p|y). The model is completed with independent prior
distributions π(θ?;ψθ) and π(p;ψp). The hyper-parameters, ψ = {ψθ, ψp}, may also be
treated as random and assigned prior distributions. In this case, ψ is included in the
essential state vector and it is resampled off-line (after the propagation step) from its
full conditional. In particular, posterior inference for random prior parameters is based
upon the posterior distributions p(ψθ|θ?) and p(ψp|p), conditionally independent of the
data yt.

Given a vector of t observations, yt = (y1, . . . , yt), that are assumed to have been
sampled i.i.d. with density as in (16), the standard approach to inference is to break
the mixture through the introduction of a latent allocation vector kt = (k1, . . . , kt)
such that p(yt|kt,θ?) = k(yt; θ?kt

). Introduction of the latent allocation vector leads
to conditionally independent posterior distributions p(θ?|kt, yt) and p(p|kt). When
π(θ?) =

∏m
j=1 π(θ?j ), as is standard, the posterior for mixture component parameters

separates into p(θ?|kt, yt) =
∏m
j=1 p(θ?j |{yr : kr = j}). In many settings, conditionally

conjugate priors are chosen such that sampling from these distributions is straight-
forward. Regardless, posterior sampling will rely upon this conditional independence
structure and it is clear that basic inference for mixture models lies in posterior draws
for kt. All else proceeds conditional upon these sampled latent allocations.

The posterior information that is available given kt can be summarized by the num-
ber of observations allocated to each component, nt = (nt,1, . . . nt,m), and the condi-
tional sufficient statistics for the mixture component parameters, st = (st,1, . . . st,m),
such that nt,j and st,j are sufficient for θ?j given yt. We can therefore define Zt =
(kt, st,nt) as our state vector. Posterior inference for each “time” t+ 1 thus leads to a
sequence of updated posteriors,

p(kt+1, st+1,nt+1|yt+1) =
∫

p(kt+1, st+1,nt+1|st,nt, yt+1)dP(st,nt|yt+1). (17)

After going through all samples (t = T ), completed filtering provides an estimate of the
posterior for (sT ,nT ), and the conditional independence structure of mixture models
leads to straightforward Rao-Blackwellized sampling from

p(θ?,p|yT ) =
∫

p(θ?,p|sT ,nT )dP(sT ,nT |yT ). (18)

It is important to notice that p(kt+1, st+1,nt+1|st,nt, yt+1) = p(kt+1|st,nt, yt+1),
by virtue of deterministic mappings

st+1,kt+1 = S(st,kt+1 , yt+1) and nt+1,kt+1 = nt,kt+1 + 1, (19)

where information for components j 6= kt+1 remains the same and S is determined by
the mixture kernel. Thus the target integrand in (17) is the product of a posterior full
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conditional for kt+1 and the predictive term p(st,nt|yt+1) ∝ p(yt+1|st,nt)p(st,nt|yt).
It should be clear that this is exactly the representation in (4) and (5) so that we can
develop a version of general algorithm presented in Section 2.

Before moving on, we note that implementation of PL always relies on availability
of the predictive and “propagation” distributions. In the finite mixture set-up these are
supplied by p (yt+1|st,nt), p (kt+1|st,nt, yt+1) and the deterministic recursions in (19).
The latter can always be obtained as kt+1 is a discrete variable, and the former will
be available directly whenever π(θ?j ) is conjugate for k(y; θ?j ) and π(p) is conjugate for
multinomial data. However, despite our focus on sufficient statistics, the uncertainty
update in (17) is valid even in models without full conditional conjugacy. In such
situations, st,j may just be the data subset {yr : kr = j}. Regardless, it will be possible
to obtain a version of (17) through the introduction of a set of auxiliary variables in
Zt, possibly a function of θ? or p, sampled conditional on st and nt. In fact, one can
think of the members of Zt as general information states, containing both conditional
sufficient statistics and any auxiliary variables; that is, whatever is required to evaluate
the posterior predictive and sample from the full conditional. We exemplify this notion
at the end of DP mixture of multivariate normals example (Section 4.2) where we discuss
a situation in which hyperparameters are learned and the concentration parameter α is
unknown.

Given a set of particles
{
n

(i)
t , s

(i)
t

}N
i=1

approximating p (nt, st|yt) and a new obser-
vation yt+1, the PL algorithm for finite mixture models updates the approximation to
p
(
nt+1, st+1|yt+1

)
using the following resample/propagation rule.

Algorithm 1: PL for finite mixture models

1. Resample: Generate an index ζ ∼ MN(ω, N) where

ω(i) =
p
(
yt+1|(st,nt)(i)

)
∑N
i=1 p

(
yt+1|(st,nt)(i)

)

2. Propagate:

kt+1 ∼ p
(
kt+1|(st,nt)ζ(i), yt+1

)

st+1 = S
(
s
ζ(i)
t , kt+1, yt+1

)

nt+1,kt+1 = n
ζ(i)
t,kt+1

+ 1, nt+1,j = n
ζ(i)
t,j for j 6= kt+1

3. Learn:

p(p,θ?|yt) =
1
N

N∑

i=1

p
(
p,θ?|(st,nt)(i)

)
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Once again, if p(kT |yT ) is of interest, samples can be directly obtained from the
backwards uncertainty update equation

p(kT |yT ) =
∫

p
(
kT |sT ,nT , yT

)
p
(
sT ,nT |yT

)
d(sT ,nT )

=
∫ T∏

t=1

p (kt|sT ,nT , yt)p
(
sT ,nT |yT

)
d(sT ,nT ). (20)

From this, we can directly approximate p
(
kT |yT

)
by sampling, for each particle and

each observation, kt with probability p (kt = j|sT ,nT , yt) proportional to

p (yt|kt = j, sT ) p (kt = j|nT ) .

2.2 PL for Nonparametric Mixture Models

Discrete nonparametric mixture models have, since the early work of Ferguson (1974)
and Antoniak (1974), emerged as a dominant modeling tool for Bayesian nonparametric
density estimation (see also Ferguson 1983; Lo 1984). Unlike in finite mixture models,
the number of unique mixture components is random. For this reason, both mt and θ?t
now depend upon the “time” t. Analogously to the finite setting, the posterior infor-
mation that is available conditional on kt (and implicitly mt) can be summarized by
nt = (nt,1, . . . , nt,mt), the number of observations allocated to each unique component,
and st = (st,1, . . . , st,mt), the conditional sufficient statistics for the component param-
eters. The state vector to be tracked by PL can then be defined as Zt = (kt,mt, st,nt).

The standard approach to inference is to use a collapsed Gibbs sampler that cy-
cles through draws of p(kt|n(−t)

T , s
(−t)
T ,m

(−t)
T , yt), where n(−t)

T and s(−t)
T denote each

respective set with the tth element removed, for t = 1, . . . , T , and m
(−t)
T is the implied

number of distinct components. In the case of DP mixture models, this algorithm has
been detailed in Escobar and West (1995). Extension to the case of conditionally non-
conjugate kernel models is described by Bush and MacEachern (1996), and Neal (2000)
provides an overview of more state-of-the-art versions of the algorithm. Furthermore,
Ishwaran and James (2001) describe sampling for truncated G approximations that can
be utilized whenever it is not possible to marginalize over unallocated mixture compo-
nents (note that these approximations can be fit with the finite mixture PL approach
of Section 2.1).

Our framework extends to infinite mixture models in a very straightforward man-
ner, and particle learning for nonparametric mixture models proceeds through the two
familiar steps:

Resample (st,nt,mt) ∝ p(yt+1|st,nt,mt)→ Propagate kt+1 ∼ p(kt+1|st,nt,mt, yt+1).

Indeed, PL will apply to any nonparametric mixture where the two steps described
above are available either analytically or approximately. The filtered posterior for
(sT ,nT ,mT ) can be used for inference via the posterior predictive density p(y|sT ,nT ,mT ),
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which is a Rao-Blackwellized version of E[f(y;G)|yT ] for many nonparametric priors (in-
cluding the DP). Alternatively, since p(G|yT ) =

∫
p(G|sT ,nT ,mT ) dP(sT ,nT ,mT |yT ),

the filtered posterior provides a basis for inference about the full random mixing distri-
bution.

To make the presentation more concrete we concentrate on a PL framework for
Dirichlet Process mixtures, the most commonly used nonparametric prior for random
mixture models. The DP characterizes a prior over probability distributions and is
most intuitively represented through its constructive definition (Perman et al. 1992): a
random distribution G generated from DP(α,G0(ψ)) is almost surely of the form

dG(·) =
∞∑

l=1

pl δϑl
(·) with ϑl

iid∼ G0(ϑl;ψ), pl = (1−
l−1∑

j=1

pj)vl (21)

and vl
iid∼ beta(1, α) for l = 1, 2, . . .

where G0(ϑ;ψ) is the centering distribution function, parametrized by ψ, and the se-
quences {ϑl, l = 1, 2, . . .} and {vk : l = 1, 2, ...} are independent. The discreteness of
DP realizations is explicit in this definition.

The DP mixture model for yt is then f(yr;G) =
∫

k(yr; θ)dG(θ) for r = 1, . . . , t,
where G ∼ DP(α,G0). Alternatively, in terms of latent variables, the hierarchical
model is that for r = 1, . . . , t, yr

ind∼ k(yr; θr), θr
iid∼ G and G ∼ DP(α,G0). Recall

from definitions above that θ?t = {θ?1 , . . . , θ?mt
} is the set of mt distinct components in

θt, kt is the associated latent allocation such that θt = θ?kt
, nt = (nt,1, . . . , nt,mt

) is the
number of observations allocated to each unique component, and st = (st,1, . . . , st,mt)
is the set of conditional sufficient statistics for each θ?j .

Two properties of the DP are particularly important for sequential inference. First,
the DP is a conditionally conjugate prior: given θt (or, equivalently, θ?t and nt), the
posterior distribution for G is characterized as a DP(α+ t, Gt0) where,

dGt0(θ;θ?t ,nt) =
α

α+ t
dG0(θ) +

mt∑

j=1

nt,j
α+ t

δ[θ=θ?
j ]. (22)

Second, this Pólya urn density dGt0 is also E[ dG|θt ] =
∫
dG(θ)dP(G|θ?t ,nt), and

provides a finite predictive probability function for our mixture model: p(yt+1|θt) =∫
k(yt+1; θ)dGt0(θ).

As always, we focus on sequential inference for conditional sufficient statistics. Sim-
ilar to the version for finite mixtures, the uncertainty updating equation is

p(st+1,nt+1|yt+1) ∝
∫

p(st+1,nt+1|st,nt,mt, yt+1)p(yt+1|st,nt,mt)dP(st,nt,mt|yt),
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with posterior predictive density

p(yt+1|nt, st) =
∫∫∫

k(yt+1; θ)dG(θ)dP(G|θ?t ,nt)dP(θ?t |nt, st) (23)

=
∫

k(yt+1; θ)
[∫

dGt0(θ;θ?t ,nt)dP(θ?t |nt, st)
]
.

By virtue of a deterministic mapping,

p(st+1,nt+1,mt+1|st,nt,mt, yt+1) = p(kt+1|st,nt,mt, yt+1).

From the argument in (23), p(kt+1 = j|st,nt,mt, yt+1) is proportional to

nt,j

∫
k(yt+1; θ?j )dPr(θ?j |st,j , nt,j) for j = 1, . . . ,mt and (24)

α

∫
k(yt+1; θ)dG0(θ) if j = mt + 1.

With (23) and (24) defined, a particle learning approach is straightforward. Assuming
that current particles {(nt, st,mt)(i)}Ni=1 approximate the posterior p(st,nt,mt|yt), the
algorithm for updating posterior uncertainty is summarized as Algorithm 2, below.

The resample and propagate steps should look familiar, as they are a straightforward
extension of the steps in Algorithm 1. The third step here, estimation, presents only
one possible type of inference; Section 4.3 describes and illustrates inference about G
conditional on a filtered set of particles. However, in many situations, density estima-
tion is the primary goal of DP mixture modeling, and step 3 shows that the filtered
particle set immediately provides a posterior sample of density estimates through the
predictive probability function. Note that this is just a Rao-Blackwellized version of
the standard Pólya urn mixture that serves as a density estimator: p (E[f(y;G)]|yt) =∫

p (E[f(y;G)]|st,nt,mt) dP(st,nt,mt|yt), and p (E[f(y;G)]|st,nt,mt) =
∫

p(y|θ?t ,nt)
dP(θ?t |st,nt,mt). Finally, note that if either α or ψ are assigned hyperpriors, these can
be included in Zt and sampled off-line for each particle conditional on (nt, st,mt)(i) at
each iteration. This is of particular importance in the understanding of the generality
of PL and it is described clearly in Section 4.2.
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Algorithm 2: PL for DP mixture models

1. Resample: Generate an index ζ ∼ MN(ω, N) where

ω(i) =
p
(
yt+1|(st,nt,mt)(i)

)
∑N
i=1 p

(
yt+1|(st,nt,mt)(i)

)

2. Propagate:

kt+1 ∼ p
(
kt+1|(st,nt,mt)ζ(i), yt+1

)
,

st+1 = S (st, kt+1, yt+1). For j 6= kt+1, nt+1,j =
nt,j .

If kt+1 ≤ mt, nt+1,kt = nt,kt + 1 and mt+1 = mt.

Otherwise, mt+1 = mt + 1 and nt,mt+1 = 1.

3. Estimation:

p
(
E[f(y;G)]|yt

)
=

1
N

N∑

i=1

p
(
y|(st,nt,mt)(i)

)

3 Other Nonparametric Models

3.1 Latent Features Models via the Indian Buffet Process

Latent feature models attempt to describe an object yt using a set of latent features.
For data YT = {y′1, y′2, . . . , y′T }, where each yt is a p-dimensional column vector, these
models assume that YT ≈ ZTB where ZT is a T × k matrix indicating which latent
features are present in each object and B is a k × p matrix defining how these features
are expressed. Typically, k is much smaller than p so that the goal of finding a lower di-
mensional representation for YT is achieved. This is, of course, a traditional framework
in statistical data analysis as it is essentially a factor model.

This is a very popular tool in machine learning where there exists a great focus on
models derived from processes defined over infinite binary random matrices where k
does not have to be specified a priori and instead can be learned from the data. This
is accomplished with the use of nonparametric Bayesian tools that assume k = ∞ a
priori but guarantees it to be finite and smaller than T a posteriori. Perhaps the most
popular approach in this class of models is the Indian Buffet Process put forward by
Griffiths and Ghahramani (2006). Similarly to the Dirichlet process, the IBP can be
formulated through a sequential generative scheme which in turn makes it suitable to
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be solved with PL. In a nutshell, imagine an Indian restaurant where costumers arrive
one by one and head to the buffet. The first costumer selects a number of Po(α) of
dishes. The tth costumer will select dishes proportionally to its popularity so far with
probability nt,j

t where nj is the number of costumers that have sampled the jth dish.
Then, the same costumer, chooses a number Po(α/t) of new dishes. This is can be easily
re-interpreted a Pólya urn scheme where dishes represent latent features and costumers
represent observations (or objects).

To make this discussion more concrete, we focus on the infinite linear-Gaussian
matrix factorization model of Griffiths and Ghahramani (2006):

YT = ZTB + E (25)

where E is a T × p matrix of independent normal errors eij ∼ N(0, σ2). Assume further
that the prior for each element of B is N(0, σ2σ2

b ) and ZT is a T × k matrix of binary
features. Without loss of generality, assume knowledge of both σ2 and σ2

b . This is a
simplified version of models used to analyze image data where each object is an image
containing p pixels that are to be modeled via a smaller number of latent features.

By stating that ZT arises from an IBP (with parameter α) we can simply recast (25)
as a state-space model where each row of ZT is a state and the transition p(zt+1|ZT )
follows from the IBP generative process as described above.

Define the essential state vector Zt = (mt, st,nt) where mt is the number of current
latent features, nt is the number of objects allocated to each of the currently available
latent features and st is the set of conditional sufficient statistics for B. Before evaluating
the posterior predictive for yt+1 it is necessary to propose a new number m∗ of potential
new features (dishes) per particle. From the definition of the IBP it follows that for
each particle i, m(i)

∗ ∼ Po(αt ) in turn defining a mt + m∗ latent feature model. The
posterior predictive necessary to re-sample the particles can be evaluated via

p (yt+1|Zt,m∗) ∝
∑

zt+1∈C
p (yt+1|zt+1, st) p (zt+1|Zt) (26)

where the set C is defined by all 2mt possible configurations of zt+1 where the final m∗
elements are fixed at one. Notice that the terms inside of the summation sign are both
available in close form. First, with the conditionally conjugate structure of the model,
it is possible to evaluate the likelihood marginally on B. Further, the prior for zt+1 is
simply a product of independent probabilities each defined proportionally to nt,j/t.

Propagating Zt+1 forward is also very simple. First, draw for each particle the
configuration for zt+1 from

p (zt+1|Zt, yt+1) ∝ p (yt+1|zt+1, st, ) p (zt+1|Zt)

and update nt+1,j = nt,j + 1 if zt+1,j = 1, st = S (st, yt+1, zt+1), and mt+1 = mt +m∗.
Once again, S(·) is a deterministic function based on standard Gaussian updates.
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3.2 Dependent Nonparametric Mixture Models

The PL mixtures approach can also be adapted to simulation for dependent DP mix-
tures, as introduced by MacEachern (2000). In the setting that you have multiple
mixture densities, fs(y) =

∫
k(y;θ)dGs(θ) for some index s = 1, . . . , S (e.g., discrete

time or spatial locations), the dependent DP mixture model holds that each dGs is
realized

∑∞
l=1 plsδϑls

(θ) – that is, as in (21) but now with possible dependence across
s-values for the kernel parameters or the stick-breaking weights. In the most common
formulation of this framework, stick-breaking weights are constant in s and the com-
bined kernel parameters ϑl = {ϑl1 . . . ϑlS} are drawn jointly from a dim(θ)×S dimension
centering distribution G0(ϑ). In posterior simulation for such ‘single-θ’ models, one is
able to treat everything as a standard DP mixture model for density estimation over the
expanded dim(y) × S observation space; refer to Gelfand et al. (2005) for an example
of this approach. Hence, the techniques developed in Section 2.2 apply directly.

In addition, a number of different approaches have recently been proposed for the
construction of dependent nonparametric mixture models with correlated stick-breaking
weights (see, e.g., Griffin and Steel 2006; Rodriguez and Dunson 2009). Although these
models tend to be more difficult to fit through MCMC than the single-θ type schemes,
it is often possible to develop fairly straightforward PL simulation strategies. One
successful approach is outlined in (Taddy 2010), where PL was used in mean-inference
for discrete-time autoregressive stick-breaking mixtures. In this framework, a series of
correlated mixing distributions, Gt for t = 1, . . . , T , are marginally distributed as a DP
but with stick-breaking proportions that are drawn from an autoregressive time series
of beta random variables. In detail, the model is as in (21) except that each series of
stick-breaking weights, vl = [vl1 . . . vlT ] is modeled as a Beta Autoregressive Process
(introduced by McKenzie 1985). Section 3.2 of Taddy (2010) details the PL algorithm
for this model. In contrast with the algorithms of 2.2, it is not possible to integrate
over all of the stick-breaking weights, and a finite number of these weights must be
included in the particle set. Interestingly, through some careful steps to avoid particle
degeneracy, the author shows that it is possible to use PL to sample and make inference
about the mixture weights themselves (e.g., see Figure 7 of the Taddy’s paper).

To further illustrate use of PL with these types of models, we will sketch the al-
gorithm for a probit stick-breaking framework proposed by Rodriguez and Dunson
(2009). Here, mixture weights are built through probit transformations of underly-
ing latent variables, allowing for the introduction of spatial and temporal dependence
structure. In particular, the discrete-time model is defined as, for t = 1, . . . , T , yt+1 ∼∫

k(yt+1|θ)dGt+1(θ) and E [dGt+1(θ)|Zt+1] = w0,t+1dG0(θ) +
∑mt

j=1 wj,t+1δθ?
t

where
wj,t+1 = Φ(αj,t+1)

∏
r<j (1− Φ(αr,t+1)), αj,t+1 = At+1ηt+1, ηj,t+1 = Bt+1ηj,t+νj,t+1,

and νj,t ∼ N(0,Wt). We assume knowledge of the parameters defining the dynamic
linear model (West and Harrison 1997) {At,Bt,Wt} for all t. By appropriately defining
these quantities one can embed a variety of different behaviors in the evolution of the
non-parametric distribution, including trends, periodicity, autoregression, etc.

To illustrate the use of PL we work with dependent probit-stick breaking priors with
latent Markov structure. These are models for distributions that evolve in discrete time.
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The model is defined as, for t = 1, . . . , T ,

yt+1 ∼
∫

k(yt+1|θ)dGt+1(θ)

E [dGt+1(θ)|Zt+1] = w0,t+1dG0(θ) +
mt∑

j=1

wj,t+1δθ?
t

where wj,t+1 = Φ(αj,t+1)
∏
r<j (1− Φ(αr,t+1)), αj,t+1 = At+1ηt+1, ηj,t+1 = Bt+1ηj,t+

νj,t+1, and νj,t ∼ N(0,Wt). We assume knowledge of the parameters defining the
dynamic linear model (West and Harrison 1997) {At,Bt,Wt} for all t. By appropriately
defining these quantities one can embed a variety of different behaviors in the evolution
of the non-parametric distribution, including trends, periodicity, autoregression, etc.

What makes the above representation very attractive is the fact that we can effec-
tively work with the probit link defining the stick-breaking weights by the commonly
used data augmentation trick where

w∗j,t+1 = 1(zj,t+1 < 0)
∏

r<j

1(zr,t+1 > 0) (27)

such that

zj,t+1 = At+1ηj,t+1 + εj,t+1 (28)
ηj,t+1 = Bt+1ηj,t + νj,t+1 (29)

with εj,t+1 ∼ N(0, 1). This facilitates the posterior sampling of such models and it is
also useful for sequential inferences via PL.

Define the essential state vector Zt = (Ht,mt,St) where Ht is the collection of mt

current instances of ηt and, as usual, St is the set of conditional sufficient statistics for
θ (here again, we assume conjugate kernels). The predictive distribution can be defined
as

p (yt+1|Zt) =
mt∑

kt+1=1

p (yt+1|kt+1,St) p (kt+1|Zt)+p (kt+1 = mt + 1)
∫

p (yt+1|θt) dG0(θ)

where kt+1 is an indicator or the mixture component and

p (kt+1 = l|Zt) = Φ
(
− At+1Bt+1ηl,t

A′t+1Wt+1At+1 + 1

)∏

r<l

[
1− Φ

( −At+1Bt+1ηr,t
A′t+1Wt+1At+1 + 1

)]
.

Propagating Zt forward starts by sampling the allocation kt+1 with probability

p (kt+1 = l|Zt, yt+1) ∝
{

p (yt+1|kt+1 = l,St) p (kt+1 = l|Zt) for l = 1, . . . ,mt

p (kt+1 = mt + 1)
∫

p (yt+1|θt) dG0(θ) .

Next, with kt+1 in hand, both mt+1 and St+1 are deterministically updated. The final
propagation step involves sampling Ht+1. Here’s where the data augmentation step
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described above becomes relevant. By sampling zj,t+1 for all j, (28) and (29) turn
into a simple dynamic linear model, with straightforward updates for the posterior
p (ηj,t+1|zj,t+1). From (27) we see that kt+1 = j leads to zj,t+1 > 0 and zr,t+1 < 0 for
all r < j and therefore the data augmentation variables can be generated from

p (zl,t+1|kt+1) =
{

N
(
At+1Bt+1ηt,A′t+1Wt+1At+1 + 1

)
1(zl,t+1 > 0) for l = kt+1

N
(
At+1Bt+1ηt,A′t+1Wt+1At+1 + 1

)
1(zl,t+1 < 0) for l < kt+1

.

4 Examples

4.1 Finite Mixture of Poisson Densities

We start with an application of PL in a Poisson finite mixture model as described
in Example 1 of Section 1. Figure 1 shows the simulated data and inferred predictive
densities obtained by PL, alongside Bayes factors for the number of mixture components,
calculated through the marginal likelihood estimation procedure of Section 1.1. The
central panel displays the true predictive distribution as well as inferred versions of it
with m set to 2, 3 and 4. This shows that predictive estimates from PL are very similar
to the ones obtain by traditional MCMC methods and, in this particular case, also very
close to the truth. In addition, the right hand side of Figure 1 shows a simulation study
where Bayes factors for choosing between m = 3 or m = 4 are repeatedly computed via
different methods. The data is always the same and the variation arises from the Monte
Carlo variation incurred by each algorithm. In the graph, “MCMC” stands for fitting the
model using a traditional data augmentation Markov chain Monte Carlo scheme followed
by the use of the methods proposed in Basu and Chib (2003). It is important to highlight
that this methodology requires the use of a sequential importance sampling and, in this
example MCL was used. The boxplot on the right hand side refers to the direct use of
MCL. A few things are relevant in this example. First, and perhaps most importantly,
PL is the method with the smallest variation. In particular, notice that both PL and
MCL agree on average but MCL is significantly more volatile. Second, we note that
even though the data was generated using m = 4, it looks hard to reject that m could be
3. Both sequential methods point, on average, to a parsimonious choice by saying the 3
or 4 are essentially indistinguishable. In this example, the MCMC approach seems too
confident about m = 4 which raises, in our view, concerns regarding potential biases
from using correlated samples in the approximation of marginal likelihoods. Sequential
schemes offer a direct Monte Carlo approximation and PL provides improvements over
MCL in delivering estimates with smaller variance.

4.2 The DP Mixture of Multivariate Normals

We now focus on the DP mixture of multivariate Normals from Example 2 in Section
1. Four datasets were simulated with dimension (d) of 2, 5, 10, and 25, and of size d
times 500. In each case, for t = 1, . . . , T = 500d, the d-dimensional yt was generated
from a N(µt,AR(0.9)) density, where µt

ind∼ Gµ and AR(0.9) denotes the correlation
matrix implied by an autoregressive process of lag one and correlation 0.9. The mean
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distribution, Gµ, is the realization of a DP(4, N(0, 4I)) process. Thus the simulated
data is clustered around a set of distinct means, and highly correlated within each
cluster. Note that this data is similar to that used in the simulation study of Blei and
Jordan (2006), but that we have the size of the dataset change with dimension so the
posterior does not become unreasonably diffuse. The DP-MVN model in (7), with fixed
parametrization α = 2, λ = 0, κ = 0.25, ν = d + 2, and Ω = (ν − 0.5(d + 1))I, was fit
to this data. As an illustration, Figure 2 shows the data and bivariate density estimate
for d = 2 and PL fit with N = 1000 particles. Here, and in the simulation study below,
density estimates are the mean Rao-Blackwellized posterior predictive p(y|sT ,nT ,mT );
hence, the posterior expectation for f(y;G). Marginal estimates are just the appropriate
marginal density derived from the mixture of Student’s t distributions in (8).

For the full simulation study, the PL algorithm with N = 500 particles was fit
ten times to random re-orderings of the different datasets. For comparison, we also
fit the same DP-MVN model with 1000 iterations (including 500 burn-in) of a Rao-
Blackwellized collapsed Gibbs sampler MCMC cycling through draws of

p(kt|n(−t)
T , s

(−t)
T ,m

(−t)
T , yt).

The numbers of particles and iterations were chosen to lead to similar computation
times, thus providing a baseline for inference without having to assess convergence of
the Markov chain. PL and Gibbs studies were coded in C++ and run simultaneously in
the background on a Mac Pro with 2× 3.2 GHz Quad-Core Intel Xeon processors and
4GB memory.

Noting that Quintana and Newton (2000) regard the Gibbs sampler as a gold stan-
dard for these types of conditionally conjugate mixture models, we further optimized the
Gibbs sampler by having it based on conditional sufficient statistics and building sequen-
tially the following initial state: each observation yt is added to the model sequentially,
allocated such that kt corresponds to the maximal probability from (9) above. This
ensures that the Gibbs chain is starting from a location with high posterior probability
(as for PL, the data is randomly reordered for each of the ten runs). Since the MCMC
repeatedly performs the propagation step of PL, conditional on all but one observation,
and it is initialized in an optimal filtered state, we expect that it will outperform any
sequential algorithm. Indeed, the connection between Gibbs sampling and PL propa-
gation helps to explain why our method works: for each particle, the propagation of
uncertainty is the sequential version of a Gibbs step. Thus, while it is unreasonable to
expect PL to do better than Gibbs, we want to be able to obtain sequential inference
that does not degenerate in comparison.

PL fit results for d = 2 are shown in Figure 2 and results for d = 25 are presented in
Figure 4. In each case, while there is clear evidence of Monte Carlo error, this is to be ex-
pected with only 500 particles and the posterior predictive density estimates are consis-
tent with the data. The results in 25 dimensions are very encouraging: even after 12,500
observations of high-dimensional data, the marginal density estimates are very accurate.
Marginal density plots for the other datasets, and for the Gibbs sampler, look very sim-
ilar. In order to formally compare PL to the Gibbs sampler, we recorded the mean log
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predictive density score on 100 left-out observations for each dataset. That is, for each
posterior sample of sT , nT , and mT , we record

∑100
j=1 log

[
1
N

∑N
i=1 p

(
ỹj |(st,nt,mt)(i)

)]
,

where ỹj is a member of the validation set and N = 500 for both PL and Gibbs.

The results of this comparison are shown in Figure 3. Although Gibbs is consis-
tently better, the difference between the two methods does not appear to be widening
significantly with increased dimension and time. This behavior is mirrored for the aver-
age number of allocated mixture components, an indicator of efficiency of the mixture
fit. Such performance does not rely on any of the common add-on particle rejuvena-
tion schemes. Due to the accumulation of error that will occur whenever there are
not enough particles to capture fat-tail activity, we can only expect performance to be
improved if the algorithm is populated by conditional sufficient statistics sampled in
a previous analysis (as opposed to being populated with a single sufficient statistic).
And even in 25 dimensions, the uncertainty update for a new observation requires an
average of only 10 seconds (including prediction time, while sharing processors with the
Gibbs sampler). As such, PL will be able to provide on-line inference for high-frequency
high-dimensional data, possibly after deriving initial particles from a posterior fit pro-
vided by MCMC or (for very large training sets) variational methods. Furthermore,
although the Gibbs sampler is able to outperform in terms of predictive ability, the 500
Gibbs observations are correlated while the 500 PL observations are (up to the particle
approximation) independent. Finally, we note that the program used in this study ex-
ecutes in a standard sequential manner, even though major computational gains could
be made by taking advantage of the inherently parallel nature of PL.

Learning Hyper-Parameters. Note that we can also assign hyperpriors to the param-
eters of G0. In this case, a parameter learning step for each particle is added to
the algorithm. This entails an expansion of the essential state vector to now in-
clude particles of λ and Ω. Assuming a W(γΩ,Ψ−1

Ω ) prior for Ω and a N(γλ,Ψλ)
prior for λ, the sample at time t is augmented with draws for the auxiliary variables
{µ?j ,Σ?j}, for j = 1, . . . ,mt, from their posterior full conditionals, p(µ?j ,Σ

?
j |st,nt) =

N(µ?j ; at,j ,
1

κ+nt,j
Σ?j )W(Σ?−1

j ; ν + nt,j ,Ω +Dt,j). The parameter updates are then

λ ∼ N


R(γλΨ−1

λ + κ

mt∑

j=1

Σ?−1
j µ?j ), R


 and Ω ∼W

(
γΩ +mtν,R

−1
)
, (30)

where R−1 =
∑mt

j=1 Σ?−1
j + Ψ−1

Ω .

Similarly, if we wish to learn about the concentration parameter α from an usual
gamma hyperprior, the essential state vector is further augmented to include particles
for α and the auxiliary variable method from Escobar and West (1995) can be used in
the learning step. Figure 5 shows prior to posterior learning for α in a d = 1 simulation
study. Hyperparameter are harder quantities to estimate and it is important to monitor
the performance of the sequential inference by looking at the variability in the particle
set – this issue might be particularly relevant when very vague, non-informative priors
are used. As things start to deteriorate, i.e., the effective sample size starts to decrease,
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Gibbs-like conditional updates for each particle are an attractive alternative to replenish
the particle set. A careful discussion of issues associated with the decay in PL’s particle
approximation appears in the discussion section of Lopes et al. (2010).

The ability to augment the essential state vector allow the user of PL to deal with a
variety of non conjugate model specifications as well as deal with the problem of learning
hyperparameters of complex mixture models.

4.3 Inference about the Random Mixing Distribution

All of the inference in Section 4.2 is based on the marginal posterior predictive, thus
avoiding direct simulation of the infinite dimensional random mixing distribution. In
some situations, however, it is necessary to obtain inference about the actual posterior
for the random density f(y;G), and hence about G itself, rather than about E[f(y;G)].
For example, functionals of the conditional density f(x, y;G)/f(x;G) are the objects of
inference in implied conditional regression (e.g., Taddy and Kottas 2009), and Kottas
(2006) describes inference for the hazard function derived from f(y;G). The standard
approach to sampling G is to apply a truncated version of the constructive definition
in (21) to draw from DP(α+ t, Gt0(θ;nt,θ?t )), the conjugate posterior for G given θ?t
and nt (refer to Gelfand and Kottas (2002) for truncation guidelines and posterior
consistency results). The approximate posterior draw GL ≡ {pl, ϑl}Ll=1 is built from
i.i.d. point mass locations ϑl∼Gt0(ϑl;nt,θ?t ), defined as in (22), and the probability
vector p = (p1, . . . , pL) from the finite stick- breaking process pl = vl(1 −

∑l−1
j=1) for

l = 1, . . . , L, with vl ∼ beta(1, α+ t) and vL = 1.

As in the finite mixtures case, we are able to Rao-Blackwellized inference and sample
the parameters of interest (in this case, GL), conditional on each sampled set of sufficient
statistics. In particular,

p(GL|st,nt,mt) = p(p,ϑ|st,nt,mt) =

∫
p(p,ϑ|θ?t ,nt)dP(θ?t |nt, st,mt) (31)

= sbL(p; beta(1, α+ t))

∫ L∏

l=1

dGt0(ϑl;θ
?
t ,nt)dP(θ?|nt, st,mt)

= sbL(p; beta(1, α+ t))

L∏

l=1

[
α

α+ t
dG0(ϑl) +

mt∑

j=1

nt,j
α+ t

pθ?
j
(ϑl|nt,j , st,j)

]
,

where pθ?
j
(·|nt,j , st,j) is the posterior full conditional for θ?j given (nt,j , st,j). For ex-

ample, in a draw from the posterior for GL in the DP-MVN model of Section 4.2,
the component locations ϑl = [µl,Σl] are sampled i.i.d. from p(ϑl|kl = j, nt,j , st,j) =
N(µl; at,j ,

1
κ+nt,j

Σl)W(Σ−1
l ; ν + nt,j ,Ω + Dt,j) with probability nt,j/(α + t) for j =

1, . . . ,mt, and from G0(µl,Σl) = N(µl;λ,Σl/κ) W(Σ−1
l ; ν,Ω) with probability α/(α+t),

and component weights are just drawn according to the appropriate stick-breaking con-
struction.

We illustrate this approach with the conditional inference that results from an ap-
plication to data generated such that xt ∼ N(0, 1), yt = 0.3 + 0.4xt + 0.5 sin(2.7xt) +
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1.1(1 + x2
t )
−1 + εt, where εt ∼ N(0, σ2

t ) such that σt = 0.5 with probability Φ(xt) and
σt = 0.25 with probability 1 − Φ(xt). This data corresponds to a nonlinear mean plus
heteroskedastic additive error, and was previously used as test function in Taddy and
Kottas (2009). The joint distribution of x and y is modeled as arising from DP-MVN
of Section 4.2, with the added parameter learning of equation (30), parametrized by
α = 2, ν = 3, κ = 0.1, γλ = 0, Ψλ = 1.5I, γΩ = 3, and ΨΩ = 0.1I. After applying
PL with N = 1000 particles to filter the posterior, truncated approximations GL with
L = 300 were drawn as in (31), and given these draws conditional inference follows the
techniques detailed in Taddy and Kottas (2009). In particular, the conditional density is
available at any location (x, y) as

∑L
l=1 plN (x, y;µl,Σl) /f(x;GL), and the conditional

mean at x is E [Y |x;GL] =
∑L
l=1 plN(x;µxl , σ

x
l )
[
µyl + ρxyl (σxl )−1(x− µxl )

]
/f(x;GL),

where f(x;GL) =
∑L
l=1 plN(x;µxl , σ

x
l ), µ = (µx, µy), and Σ is partitioned with di-

agonal (σx, σy) and off-diagonal ρxy. Figure 6 shows the results of our analysis, and it
appears that the Rao-Blackwellized GL sample is able to capture the conditional rela-
tionship (even at the boundaries). As a final remark, it is appealing that, as opposed
to blocked-Gibbs schemes, we only need to draw GL after obtaining a filtered posterior
for conditional sufficient statistics, thus allowing us to choose the truncation L based on
properties of the posterior (and providing a Rao-Blackwellized version of the approach
in Gelfand and Kottas (2002)).

5 Conclusion

We have proposed a new estimation method for general mixture models. A vast body
of empirical and theoretical evidence of the robust behavior of the resample/propagate
PL procedure in states space models appear in Carvalho et al. (2010) and in more
general contexts in Lopes et al. (2010) and the following discussion. Additionally, con-
ditioning on sufficient statistics for states and parameters whenever possible creates a
Rao-Blackwellized filter with more uniformly distributed resampling weights. Finally,
PL does not attempt to approximate the ever increasing joint posterior distribution for
kt. It is self evident that any importance sampling approximation to the entire vector
of allocations will eventually fail, due to the curse of dimensionality, as t grows. But
we show that this is an irrelevant target, since the allocation problem can be effectively
solved after filtering relevant sufficient information. Finally, we include an efficient
framework for marginal likelihood estimation, providing a valuable tool for real-time
sequential model selection.

The approach is easy to understand, simple to implement, and computationally fast
(standard implementation of PL for mixtures is available in the R package Bmix). The
framework is especially appealing in the large class of nonparametric mixture priors
where the predictive probability function is either available analytically or possible to
approximate. To enable understanding, we have focused on a limited set of concrete
models, while pointing to a more general applicability available with little change to the
algorithm. It is thus hoped that this article will facilitate a wider adoption of sequential
particle methods in nonparametric mixture model applications.
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Figure 1: Poisson Mixture Example. Data, Densities, and Bayes Factors.

4.2 The DP Mixture of Multivariate Normals

The d dimensional DP multivariate normal mixture (DP-MVN) model has density function

f(yt;G) =
�

N(yt|µt,Σt)dG(µt,Σt), and G ∼ DP (α, G0(µ,Σ)), (27)

with conjugate centering distribution G0 = N(µ;λ,Σ/κ) W(Σ−1; ν,Ω), where W(Σ−1; ν,Ω) denotes

a Wishart distribution such that E[Σ−1] = νΩ−1 and E[Σ] = (ν − (d + 1)/2)−1Ω. Conditional

sufficient statistics for each unique mixture component (the st,j) are ȳt,j =
�

r:kr=j yr/nt,j and

St,j =
�

r:kr=j(yr−ȳt,j)(yr−ȳt,j)� =
�

r:kr=j yry
�
r − nt,j ȳt,j ȳ

�
t,j . PL for this model is a straightforward

application of Algorithm 2. The initial sufficient statistics are deterministically n1 = 1 and s1 =

{y1, 0}, such that the algorithm is populated with N identical particles. Conditional on existing

particles {(nt, st)i}N
i=1, uncertainty is updated through the familiar resample/propagate approach.

Resample: By an application of (19) the predictive probability function for resampling is

p(yt+1|st,nt, mt + 1) =
α

α+ t
St(yt+1; a0, B0, c0) +

mt�

j=1

nt,j

α+ t
St (yt+1; at,j , Bt,j , ct,j) (28)

where the Student’s t distributions are parametrized by a0 = λ, B0 = 2(κ+1)
κc0

Ω, c0 = 2ν − d + 1,

at,j = κλ+nt,j ȳt,j

κ+nt,j
, Bt,j = 2(κ+nt,j+1)

(κ+nt,j)ct,j

�
Ω+ 1

2Dt,j

�
, ct,j = 2ν+nt,j −d+1, and Dt,j = St,j + κnt,j

(κ+nt,j)
(λ−

20

Figure 1: Poisson Mixture Example. Top panel: data from a m = 4 mixture
of Poisson. Bottom left panel: density estimates from PL (red/dashed line), MCMC
(Blue/bars) and the true density (black/solid line). Bottom right panel: MC study of
Bayes factors for comparing m = 3 vs. m = 4.
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Figure 2: DP-MVN Example. Data and density estimates for PL fit with 1000
particles (Top) and each of ten PL fits with 500 particles (Bottom), to a random ordering
of the 1000 observations of 2 dimensional data generated as in Section 4.2.
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Figure 3: DP-MVN Example. Results from the simulation study in Section 4.2.
The left plot shows average log posterior predictive score for validation sets of 100
observations, and the right plot shows the posterior averages for mT , the total number
of allocated mixture components. In each case, boxplots illustrate the distribution over
ten repetitions of the algorithm. Red (light grey) boxplots correspond to PL, and the
blue (dark grey) correspond to Gibbs.
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Figure 4: DP-MVN Example. Data and marginal density estimates for the DP-
MVN model fit to 12,500 observations of 25 dimensional data. The colors represent
mean posterior estimates for each of ten PL fits, with 500 particles, to a random ordering
of the data.
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Figure 5: Histogram approximation to the posterior for the concentration parameter α
in a DP mixture of univariate normals (applied to to the well studied Galaxy Data).
The dotted line refers to the prior α ∼ Ga(0.5, 0.25).
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Figure 6: Regression Example. Data and conditional inference for the example of
Section 4.3. The left panel shows the filtered posterior mean estimate for the conditional
density f(x, y;GL)/f(x;GL), and the right panel shows the posterior mean and 90%
interval for the mean E[y|x;GL].


