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Computational Methods for Parameter

Estimation in Climate Models

Alejandro Villagran∗, Gabriel Huerta†, Charles S. Jackson‡ and Mrinal K. Sen§

Abstract. Intensive computational methods have been used by Earth scientists
in a wide range of problems in data inversion and uncertainty quantification such
as earthquake epicenter location and climate projections. To quantify the uncer-
tainties resulting from a range of plausible model configurations it is necessary
to estimate a multidimensional probability distribution. The computational cost
of estimating these distributions for geoscience applications is impractical using
traditional methods such as Metropolis/Gibbs algorithms as simulation costs limit
the number of experiments that can be obtained reasonably. Several alternate
sampling strategies have been proposed that could improve on the sampling effi-
ciency including Multiple Very Fast Simulated Annealing (MVFSA) and Adaptive
Metropolis algorithms. The performance of these proposed sampling strategies
are evaluated with a surrogate climate model that is able to approximate the
noise and response behavior of a realistic atmospheric general circulation model
(AGCM). The surrogate model is fast enough that its evaluation can be embed-
ded in these Monte Carlo algorithms. We show that adaptive methods can be
superior to MVFSA to approximate the known posterior distribution with fewer
forward evaluations. However the adaptive methods can also be limited by inad-
equate sample mixing. The Single Component and Delayed Rejection Adaptive
Metropolis algorithms were found to resolve these limitations, although challenges
remain to approximating multi-modal distributions. The results show that these
advanced methods of statistical inference can provide practical solutions to the cli-
mate model calibration problem and challenges in quantifying climate projection
uncertainties. The computational methods would also be useful to problems out-
side climate prediction, particularly those where sampling is limited by availability
of computational resources.

Keywords: Parametric Uncertainties, Inverse Problems, Simulated Annealing, Adap-
tive Metropolis, Climate Models

1 Introduction

Monte Carlo inversion techniques were first used by Earth scientists more than 30 years
ago as a method to estimate the parameters of computer models that simulate real,
physical systems. Given randomly selected parameter values the best computer model
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results were tested for its fit to the observed data and then the model was accepted or
rejected to finally make predictions about the physical system of interest. As more com-
putational power became available, Monte Carlo methods have shown to be important
in the analysis of nonlinear inverse problems where simple gradient descent algorithms
fail and multi-modality of the cost function results in multiple possible solutions.

Monte Carlo techniques can be divided as sampling methods and as optimization
methods. Monte Carlo sampling is useful where calculus-based methods fail to search an
optimal solution and characterize uncertainty. The Metropolis algorithm and the Gibbs
sampler are the most widely used Monte Carlo samplers for this purpose. Monte Carlo
optimization methods are powerful tools when searching for global optimal solutions
amongst numerous local optima. Simulated annealing and genetic algorithms have
shown their strengths in this respect.

One area of paramount importance for having more quantitative approaches to
evaluating parametric uncertainties in Earth sciences is prediction of global warm-
ing. Models referenced by the Intergovernmental Panel on Climate Change (IPCC)
Third Assessment Report (TAR3) (McCarthy et al. (2001)) predict that global tem-
peratures are likely to increase by 1.1 to 6.4◦C (2.0 to 11.5◦F) between 1990 and
2100. The uncertainty in this range comes from both the difficulty in predicting the
amount of future greenhouse gas emissions and uncertainties regarding climate sensitiv-
ity. There has been limited progress in understanding and quantifying sources of this
uncertainty. What has been done stems mainly from the analysis of multiple model
responses to similarly applied forcings (e.g. Gates et al. (1999); Joussaume and Taylor
(2000); Meehl et al. (2000)). The 2001 IPCC report, in its assessment of current re-
search needs, calls for “a much more comprehensive and systematic system of model
analysis and diagnosis, and a Monte Carlo approach to model uncertainties associated
with parameterizations” (Section 8.10, McAvaney et al. (2001)). There has been some
recent progress along these lines including work with models of reduced complexity
(Forest et al. (2000, 2001, 2002)) and perturbed physics ensembles with a general circu-
lation model (Allen (1999); Murphy et al. (2004); Stainforth et al. (2005); Collins et al.
(2006); Jackson et al. (2008)).

A large disparity exists among various climate models in their prediction of global
mean surface air temperature when atmospheric CO2 is doubled compared to present
concentrations. There is an overwhelming number of reasons why these differences
could exist. Although each climate model has been optimized to reproduce observa-
tional means, each model contains slightly different choices of model parameter values
as well as different parameterizations of under-resolved physics. Multi-model systems
could be more reliable than single-model systems. In this matter, Tebaldi et al. (2005)
propose a Bayesian statistical model that combines information from a multi-model en-
semble of atmospheric ocean general circulation models (AOGCM) and observations to
determine the probability distribution of future climate change. Barnett et al. (2006)
use multiple versions of the HadAM3 GCM to quantify the uncertainty in changes in
extreme event frequency in response to doubled CO2. Collins et al. (2006) also compare
multi-model ensembles of models from the AR 4 (Parry et al. (2007)) with the predic-
tions using the HadCM3 to quantify uncertainties in transient climate change using a
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perturbed physics approach in which modeling uncertainties are sampled systematically
by perturbing uncertain parameters. Lopez et al. (2006) develop a Bayesian statistical
model to produce probabilistic projections of regional climate change using observations
and ensembles of GCMs. Kettleborough et al. (2007) discuss a method for estimating
uncertainty in future climate change using Monte Carlo Sampling.

A range of model hierarchies have been used to quantify the sources and impacts
of climate modeling uncertainties: general circulation models, models of reduced com-
plexity, and surrogate or emulator models. General circulation models are the most
demanding computationally and simulate the detailed interactions among the atmo-
spheric, oceanic, land surface, and sea ice components of the climate system and are
usually developed by national model development centers such as the Hadley Center and
their version 3 coupled Atmosphere-Ocean system (HadCM3) and the National Cen-
ter for Atmospheric Research and their version 3 Community Climate System Model
(CCSM3). As an example of the typical computational expense of these models, it takes
16 processors of a computational cluster 24 hours to simulate 10 years of climate. This
expense has motivated some researchers to consider models of reduced complexity where
one or more spatial dimensions of a climate model are eliminated (e.g. Forest et al.
(2000, 2001, 2002) ). The present work uses a surrogate climate model that mimics the
equilibrium space-time response of an Atmospheric GCM to changes in multiple model
parameters from a set of previously run experiments to test different sampling strategies
for quantifying parametric uncertainties.

However, the computational algorithms studied in this paper can be applied in gen-
eral to find posterior distributions in any statistical inference problem. The methods
used are in no way standard for the current state of the art within the climate liter-
ature. By applying adaptive methods we can approximate the posterior probability
distribution (PPD) of the climate model parameters with few forward evaluations. The
results obtained not only could be used to improve the calibration of a climate model
but also to test the strength of scientific inferences from observational data. Moreover,
the strategically chosen samples could also serve as the basis for creating a statistical cli-
mate emulator model on which other, more standard MCMC sampling strategies could
be used for generating accurate measures of the posterior distribution.

In Section 2, we will review some details on the computer climate model proposed by
Jackson and Broccoli (2003). In Section 3, we mention some computational algorithms
used to solve inverse problems. In Section 4, we present a comparison between Multiple
Very Fast Simulated Annealing (MVFSA) and adaptive methods for the climate model.
Finally, Section 5 provides some conclusions.

2 Climate Model

Milankovitch (1941) proposed that variations in the Earth’s orbit cause climate vari-
ability through a local thermodynamic response to changes in insolation. The Earth’s
orbital geometry parameters (obliquity, longitude of perihelion and eccentricity) are as-
tronomical factors that influence the timing and intensity of the seasons. The properties
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of the solar forcing result from variations in the obliquity of the Earth’s spin axis rela-
tive to the plane of the Earth’s orbit about the Sun, precession of the Earth’s spin axis,
and the eccentricity (non-circularity) of the Earth’s orbit. The obliquity varies on a
time cycle of about 40,000 yrs. This changes the geographical distribution of insolation
on both a seasonal and annual mean basis. When obliquity is high, the summer and
annual mean high latitudes receive more insolation, while less is received elsewhere. The
Earth’s spin axis completes one precessional cycle in about 20,000 yrs. The precession
effect acts to increase insolation during the season the Earth is at its closest approach
to the Sun (the perihelion). Because insolation is greater for all latitudes at perihelion,
the precessional forcing is in phase globally for any given time of year. Unlike obliquity,
precession does little to alter the geographical distribution of annual mean insolation.
Variations in eccentricity, occurring on approximately 100,000 year time scales, has a
small influence on annual mean insolation. Their main effect is to modulate the strength
of the precessional forcing.

Jackson and Broccoli (2003) take advantage of the short equilibration time (10 years)
of an atmospheric general circulation model (AGCM), land surface model and a static
mixed-layer ocean model, which includes a thermodynamic model of sea ice to derive
the equilibrium climate response to accelerated variations in Earth’s orbital configu-
ration over the past 165,000 years. By fitting a time series structure of the evolution
of each orbital component with the model output, they can estimate an amplitude for
each component. This amplitude represents the sensitivity of the region and season to
changes in that orbital component.

The sensitivity of surface air temperature to obliquity forcing Ao,ijk and precessional
forcing Ap,ijk can be defined for particular latitudes i, longitudes j, and seasons k.
They correspond to the climate model’s response to the seasonally and latitude varying
changes in insolation due to a given unit change in orbital parameter values. They
are derived from an ordinary multiple least squares fitting procedure between modeled
variations in climate found within a climate model integration of the past 165,000 years
forced only by changes in Earth’s orbital geometry and two basis functions representing
the known temporal variations in obliquity and precession. In particular, the obliquity
basis function Ao,ijkΦ′(t) consists of an unknown sensitivity Ao,ijk and the time series
of obliquity variations Φ′(t) over the past 165 kyrs. The precessional basis function
Ap,ijke(t)cos(φp,ijk −λ(t)) consists of an unknown sensitivity Ap,ijk , an unknown phase
angle of response φp,ijk , the time series of eccentricity e(t), and the time series of the
longitude of the perihelion λ(t). The time series e(t), λ(t), and Φ′(t) are known from
orbital mechanics and were used as input values in the AGCM which calculates the
changes in insolation as a function of latitude and season for each year of the experiment.

The least squares fitting procedure provides estimates of Ao,ijk , Ap,ijk , and φp,ijk

that best represent the climate model’s response to the time evolving changes in orbital
forcing. Let Tijk(t) represent the variations in surface air temperature with respect to
the 165 kyr mean for a given region and season represented by,

Tijk(t) = Ao,ijkΦ′(t) + Ap,ijke(t)cos(φp,ijk − λ(t)) + Rijk(t) (1)
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The fitting procedure described above also allows one to construct a surrogate cli-
mate model using the estimated latitude, longitude, and seasonal obliquity and preces-
sional forcing sensitivities. Figure 1 gives a comparison of the ability of the surrogate
climate model with imposed time variations in Earth’s orbital geometry to reproduce
the AGCM’s response of the annual mean air termperature in Antarctica averaged from
70◦ S to 90◦ S and separated into its obliquity, precessional, and residual components.
This is done by averaging together the sensitivities of all latitude, longitude, and seasons
for this region and estimating the response by imposing the changes in the obliquity
and precessional components.

We will use this surrogate climate model to test sampling strategies as a follow-
on study to Jackson et al. (2004), which considers the same surrogate model as in this
paper but mostly compares Multiple Very Fast Simulated Annealing (MVFSA) with the
Metropolis/Gibbs and Grid search algorithms. One of the main goals of our paper is to
evaluate factors affecting the efficiency and accuracy of alternate sampling strategies to
the MVFSA and Gibbs/Metropolis algorithms.

We denote the Earth’s orbital geometry parameters and their physical range as
obliquity, Φ ∈ (22◦, 25◦), eccentricity, e ∈ (0, 0.05) and longitude of perihelion, λ ∈
(0◦, 360◦). The observed data is a 3D array dobs,ijk which represents the observed
surface temperature anomalies with respect to the long term 165 kyrs mean at latitude
i, longitude j, and season k. The grid spacing is approximately 4.5◦ latitude by 7.5◦

longitude, then the latitude can take I = 40 different values, and the longitude J = 48.
The season takes K = 12 values, which are selected days throughout the year. Each
value of k would apply for that season for all time t over the past 165,000 years. The
observed data are simulated using Φ = 22.625, e = 0.043954, and λ = 75.93, as ideal
values for the climate model. We approximate the data using the relationship, dobs,ijk =
gijk(m) + ηijk , where m = (Φ, e, λ) is the vector of parameters. In this paper, gijk(m)
denotes the surface air temperature anomaly as a funcion of the parameters that define
the Earth’s orbital geometry. The term ηijk is a Gaussian error with estimated variance
given by Bijk , this array represents the variance of the observations at each grid point.
This variability comes from the 1,500 year integration of the model itself, but with
the appropriate seasonal and climatological averages (i.e. 10 year means of particular
seasons). Typically, in Earth science models the observational uncertainties are assumed
as Gaussian, see Jackson et al. (2004), Tebaldi et al. (2005) and Lopez et al. (2006).

The surrogate climate model is defined as follows,

gijk(m) = Âo,ijkΦ′ + eÂp,ijkcos(φ̂p,ijk − λ) + R̂ijk (2)

where Φ′ = Φ − Φo is the deviation of obliquity from its 165,000 year mean (Φo =

23.3515◦), φ̂p,ijk is the phase of the response to precessional forcing and R̂ijk are the
residuals averaged over time obtained from (1). This term is added to represent the
effects of internal variability on 10 year seasonal means. Repeated experiments of the
climate model will cycle through 1 of 150 possible values of R̂ijk that come from a

1,500 year long control integration of the AGCM. Âo,ijk and Âp,ijk are the sensitivity of
temperature to changes in obliquity and precession obtained via the time series fitting
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procedure in (1).

The cost function or misfit function is a measure of the deviation generated from
the observed data and the data generated from the model. The cost function can be
defined in many ways, for instance for the climate model considered here,

E(m) =
1

2

I
∑

i=1

J
∑

j=1

K
∑

k=1

B−1
ijk(dobs,ijk − gijk(m))2 (3)

In general, we can have N different sets of observations. On the climate model studied
here there is just one field, surface air temperature anomalies. However, other fields
may be used, such as seasonal and annual mean surface air temperature, precipitation,
winds, and clouds at different latitudes. Other representations of E(m) are still under
investigation.

The likelihood function takes the form, L(dobs|m, S) ∝ exp{−SE(m)} where dobs

represents the vector of all the data observations.. The parameter S is connected to
Bijk according to Jackson et al. (2004) as a scaling factor. S performs the function of
weighing the significance of model-data differences. Large values of S would imply small
errors between the data and the model and would result in highly peaked probability
distributions. To illustrate this, we fixed S = 47 based on the expertise and initial
knowledge given in Jackson et al. (2004) as an appropriate value for this parameter. To
gain some initial insight of the likelihood function for the surrogate climate model, we
can plot the profile likelihood for each parameter. Since we already know the optimal
values for the simulation study about this model (Φ = 22.625, e = 0.043954, λ =
75.93), we fix two parameters at their optimum value and we evaluate the third one
using a 20,000 point grid evaluation. Figure 2 shows the profile likelihoods for each
parameter, Φ, e and λ for two different values of S. Due to internal variability, the
climate model can take a range of likelihood values for any given combination of orbital
parameter values. This scatter from internal variability (noise term in equation 2) is
seen within Figure 2 as the thin vertical lines that follow the broader scale variations
in likelihood values. These broad scale variations reflect the smoothly evolving changes
in climate that accompany changes in orbital geometry.

3 Computational Approaches

3.1 Metropolis/Gibbs

Geman and Geman (1984) consider that a Gibbs distribution π can be uniquely deter-
mined by

π(xs|xr , r 6= s) =
π(ω)

∑

xs∈∆ π(ω)
s ∈ S, ω ∈ Ω.

Where S = {s1, ..., sN} is a set of sites and Ω = {ω = (xs1
, ..., xsN

)| xsi
∈ ∆, 1 ≤ i ≤

N} is the set of all possible configurations. In geosciences, Sambridge and Mosegaard
(2002), uses the right side of this formula to define the Gibbs sampler algorithm while
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Gelfand and Smith (1990) proposed to use the left side to iteratively sample the full con-
ditionals of each parameter. The Gibbs sampler is a version of an importance sampling
technique that improves the efficiency of the calculation by sampling model parameter
sets from the Gibbs distribution which is, in effect, equivalent to the desired poste-
rior probability distribution (PPD). This approach requires the parameter space to be
subdivided into a number of equally spaced intervals.

The Metropolis-Hastings (M-H) algorithm (Hastings (1970)) is a variation of the
Metropolis scheme (Metropolis et al. (1953)), which requires a probability function q as
a proposal. This proposal or jump distribution affects the way in which new models are
accepted. The rule is to accept a new model m(k+1) with probability,

α(m(k), m(k+1)) = min

(

1,
π(m(k+1))q(m(k+1), m(k))

π(m(k))q(m(k), m(k+1))

)

.

Another version of the Metropolis algorithm proposed by Sen and Stoffa (1996) is the
Multiple Metropolis Simulated Annealing (METSA). This method is started from sev-
eral independent initial points to improve the sampling of π. At every point, candidates
are drawn at random. The acceptance/rejection rule is affected by using a cooling
schedule T on P = exp(−∆E/T ), where ∆E = E(m(k+1))−E(m(k)). Adding T allows
to sample regions of the parameter space with high density.

3.2 Multiple Very Fast Simulated Annealing (MVFSA)

One may use the temperature parameter within the Metropolis algorithm to take ad-
vantage of the well known features of stochastic optimizers from Simulated Annealing
(Kirkpatrick et al. (1983)) and the Very Fast Simulated Annealing (Ingber (1989)) to
locate the global minimum in the cost function E(m) by very slowly lowering the tem-
perature parameter. Ingber (1989) propose the selection of model parameters given a

current selection m
(k)
i within VFSA so that m

(k+1)
i = m

(k)
i + yi(m

max
i − mmin

i ), yi is
generated according to a Cauchy distribution which is dependent on the cooling sched-
ule at iteration k, Tk = Toexp(−α(k − 1)1/d). The scalars mmax

i and mmin
i are the

maximum and minimum values that the parameter i can take. The acceptance crite-
rion for successive model selections is the same as for the Metropolis algorithm. Also
Sen and Stoffa (1996) and Jackson et al. (2004) argue that one may allow for numer-
ous repetitions of the minimization procedure to strike a balance between estimating a
multidimensional PPD and finding the global minimum. This is known as the MVFSA
algorithm which has the following features:

• Optimization: Take advantage of the well known characteristics of stochastic
optimizers from Simulated Annealing (SA) and VFSA.

• Multiple: Instead of using a single initial value as SA or VFSA, we can use
“multiple” initial values over the parameter space.

• Sampling: For each single initial value, propose a new candidate using a random
walk combined with a random number sampled from a Cauchy distribution that
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is dependent on the cooling schedule. Acceptance of the proposed value is similar
to a Metropolis step.

• Flexibility: Two additional parameters such as moves/temperature and ntarget
add flexibility to the VFSA algorithm to control sampling efficiency for a specified
number of dimensions.

Although MVFSA sampling is based on stochastic optimization, the PPD derived
through the MVFSA algorithm is broader than what may be obtained through the
Metropolis/Gibbs sampler as a result of the multiple independent initial values over the
parameter space.

3.3 Adaptive Methods

The computational effort of evaluating the cost function in climate models has made the
Metropolis/Gibbs traditional schemes useless in this context. On the other hand, the
MVFSA algorithm provides fast, approximate but biased answers to solve the problem
of mapping the multidimensional PPD. In order to reach a balance between efficiency
and precision we consider the use of adaptive methods.

One of the issues with the Metropolis or the Metropolis-Hastings algorithm is the
choice or tuning of an effective proposal distribution to keep acceptance rates at a
40 − 60% level. Alternatively Haario et al. (1999) suggested a method called Adaptive
Proposal (AP) that basically updates the proposal distribution with the knowledge we
have so far learned about the target distribution. Furthermore Haario et al. (2001)
proposed a variation of the AP algorithm called Adaptive Metropolis (AM) which is a
non-Markovian algorithm but has ergodic properties.

The AM has two versions, one called Single Component Adaptive Metropolis (SCAM)
and the full component version (FAM). Haario et al. (2004) applied the SCAM algo-
rithm to a 90 dimension inversion problem about gas profiles (GOMOS) in a success-
ful way. Another powerful variant is called Delayed Rejection Adaptive Metropolis
(DRAM) that combines the Delayed Rejection scheme (Tierney and Mira (1999)) with
the AM.

SCAM

Let π denote the density of our target distribution, typically a PPD which we can
evaluate up to a normalizing constant. The sequence m(0), m(1), ... denotes the full states
of the process, that is, we consider a new state updated as soon as all the d components

of the state have been separately updated. We denote mi,k−1 = (m
(0)
i , ..., m

(k−1)
i ) as

the sampled vector for the i-th parameter up to state k − 1. The adaptive scheme is

done through the variance equation V
(k)
i = sdV (mi,k−1) + sdε, where V (mi,k−1) =

1
k−1

∑k−1
r=0(m

(r)
i − mi)

2, mi = 1
k

∑k−1
r=0 m

(r)
i , sd is a positive constant and 0 < ε < 1.

When updating on the i-th parameter m
(k)
i at state k, we apply a one dimensional
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Metropolis step:

• Sample zi ∼ N(m
(k−1)
i , V

(k)
i )

• Accept the candidate point zi with probability

min

(

1,
π(m

(k)
1 , ..., m

(k)
i−1, zi, m

(k−1)
i+1 , ..., m

(k−1)
d )

π(m
(k)
1 , ..., m

(k)
i−1, m

(k−1)
i , ..., m

(k−1)
d )

)

in which case we set m
(k)
i = zi, and otherwise m

(k)
i = m

(k−1)
i .

In the case of the climate model described previously, we generated samples from the
posterior distribution of interest π(m, S|dobs) using a two step scheme. We considered
flat priors on all the orbital forcing parameters and since S can be thought of as a
precision parameter, we choose a Gamma(α0, β0) distribution as a prior for S. The
hyperparameters α0 = 552.25 and β0 = 11.75 were fixed by expertise to provide a prior
mean E(S) = 47 and a prior variance V ar(S) = 4. This issue will be discussed in
Section 4.3. Therefore π(m|S, dobs) is sampled according to the SCAM algorithm and
as a second step, we sample from π(S|m, dobs) which is a Gamma distribution with
parameters α∗ = α0 and β∗ = β0 + E(m(k)).

When the parameters of the target function are highly correlated the SCAM can
suffer from poor mixing. A remedy to this problem is to rotate the proposal distribution
during the early stage of the sampling (i.e. during the burn-in period). The rotation
can be done by computing the covariance matrix of the chain so far detected and then
computing the eigenvalues of this matrix. We sort the eigenvalues from the largest to
the smallest and we use this ordering to define sampling directions for the parameters
in the SCAM algorithm.

FAM

Suppose that at time t−1 we have sampled the states m(0), ..., m(t−1) where m(0) is the
initial state and is a vector of dimension d. Then a candidate point z is sampled from
the proposal distribution qt(·|m(0), ..., m(t−1)), which now may depend on the whole
history. The candidate z is accepted with probability,

α(m(t−1), z) = min

(

1,
π(z)

π(m(t−1))

)

,

in which case we set m(t) = z, and otherwise m(t) = m(t−1).

The proposal distribution qt(·|m(0), ..., m(t−1)) employed in the FAM algorithm is a
multivariate Gaussian distribution with mean at the current point m(t−1) and covariance
matrix Ct. The matrix Ct is computed using the sampled covariance matrix of the
parameters up to iteration t. The crucial aspect regarding the adaptation is how the
covariance of the proposal distribution depends on the history of the chain. In the
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FAM algorithm this is handled by setting Ct = sdCt−1 + sdεId after an initial period,
where sd is a positive constant that depends only on the dimension d and ε > 0 is a
constant that we may choose very small but positive. The role of ε is to ensure that Ct

does not become singular. As a basic choice for the scaling factor sd we can adopt the
value sd = (2.4)2/d as in Gelman et al. (1996). In difference to the SCAM algorithm
all parameters are sampled at once in the FAM scheme. The AM chain defined above
simulates properly the target distribution π regardless of the initial distribution. For a
detailed proof of this result, see Haario et al. (2001).

DRAM

Haario et al. (2006) combine the ideas of Delayed Rejection (DR) and Adaptive Metropo-
lis to improve the efficiency of MCMC algorithms. The general idea of DR is that upon
rejection for the M-H algorithm, instead of advancing time and retaining the current
position, a second stage move is proposed. The acceptance probability of the second
stage candidate is computed so that reversibility of the Markov chain relative to the
distribution of interest is preserved. The process of delaying rejection can be iterated
for a fixed or random number of stages. The DR can be also considered as a way of
mixing different proposals to allow the sampler to explore the parameter space more
efficiently.

There is a number of different strategies to combine DR and AM. One idea is to use
DR only for the burn-in period and discard the part of the chain where DR has been
used. These iterations can be thought as an automatic burn-in period. In this paper,
we implemented DRAM in the following way. We updated the first stage proposal
covariance matrix Ct for a very short number of iterations via AM exclusively. After
this point, if a proposed value z∗ under AM is rejected, we then compute a second stage
proposal Vt = hCt where h is a specified constant. Then, we propose a new point from
a multivariate normal distribution with mean vector z∗ and covariance matrix Vt. The
best results with the climate model were achieved when h ≤ 0.01.

4 MVFSA and Adaptive Methods in Climate Model

We now compare the five different computational techniques presented in Section 3 in
the context of the climate model described in Section 2. One of our goals is to provide
alternatives to traditional algorithms such as the Gibbs sampler and the Metropolis-
Hastings that have little chance to succeed in a climate model inverse problem either
because they need several forward evaluations, or because of the difficulty to find a good
proposal distribution.

One of the main concerns on climate models is the time spent in performing forward
evaluations. We did several runs of 100,000 iterations to estimate the time in seconds
that every method uses to make one forward evaluation for the climate model. We found
there is no significant difference among FAM, METSA and MVFSA which only require a
single model evaluation for each iteration. DRAM is slower than these three algorithms
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because of the delayed rejection and possible use of multiple model evaluations per
iteration. SCAM is three times slower than FAM as the number of model evaluations
equals the dimension of the parameter space d = 3.

We looked at the bivariate scatter plots of the samples from the different methods
corresponding to each orbital parameter. For the adaptive methods, we use a burn in
period of 20,000 iterations while in the case of MVFSA and METSA there is no burn in
period and their sampling design is based on multiple independent starting points over
the parameter space. These scatter plots reveal that all methods sample the regions
of the parameter space where the optimum is located. However, the dispersion of the
samples based on the Simulated Annealing methods is higher than the one from adap-
tive methods. While the adaptive methods use one single point and adapt themselves
to reach the target distribution, the MVFSA and METSA need to start at different
independent initial points to collect all the information that they require to estimate
the PPD.

4.1 Root Mean Square (RMS) Probability Error

Besides assessing the time that each method uses to make forward evaluations of the
climate model we consider an empirical measure of convergence for any proposed algo-
rithm. For every parameter θ, the RMS probability error is defined as follows:

RMSi(θ) = ||Prob
(θ)
i − Prob(θ)

π ||

where i goes from 0 to the maximum number of iterations and ||·|| denotes the Euclidean

norm. Prob
(θ)
i is a vector that contains the frequencies to plot a histogram using the

samples generated from a specific method (FAM, SCAM, DRAM, MVFSA or METSA)

at iteration i. Prob
(θ)
π is a vector of frequencies from the target distribution π based on

the same bins used for Prob
(θ)
i . Since we do not have available the actual frequencies

based on π, we replace them by those obtained with the whole sample simulated from
the FAM since this algorithm has ergodic properties. RMS has the desired property
that it goes to zero as i goes to infinity when the method being used converges to the
target distribution. The RMS also provides a measure of how fast an estimated PPD
from the samples of any particular method stops changing over iterations.

In Figure 3, we show that every method provides a PPD centered on the target value
of obliquity, Φ = 22.625. MVFSA and METSA provide a distribution with long tails
due to their design based on multiple initial values and Simulated Annealing compared
to the distribution of obliquity obtained with FAM, SCAM and DRAM. A goal for
climate models is to estimate properly the uncertainty about parameters of interest.
For instance, we consider the estimation of the 97.5% quantile for every parameter.
In Figure 3, we also show the estimated 97.5% quantile per iteration and for all the
methods. The quantile estimation via MVFSA and METSA is at a value of 24.2, while
with the other methods the estimated quantile is at 23.

One comment in Sen and Stoffa (1996) and Jackson et al. (2004) is that MVFSA is
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preferred over Metropolis/Gibbs algorithms because of the reduction in the number of
forward evaluations and the time needed to estimate the PPD. In the middle graphs of
Figure 3, we can see that DRAM and SCAM have the lowest RMS up to iteration 30,000,
after which FAM has the minimum RMS value. The RMS values of MVFSA converge
as quick or quicker than those of DRAM and SCAM but they do not reach zero. One
concern with the RMS as a measure to compare how fast the algorithms converge to
the target distribution, is that it is presented as a function of the iterations. This could
be misleading since it does not consider that every method requires a different number
of model evaluations to make one iteration. To overcome this issue we propose to look
at the RMS as a function of time. In this case DRAM fairs better than SCAM within
the first hundreds of seconds. Perhaps the most surprising aspect of these results is the
slow convergence rate of FAM. One would have expected FAM to be fast, similar to the
DRAM and SCAM results, since it integrates information about previous samples to
generate an improved proposal distribution. We hypothesize that the calibration of the
covariance matrix for the proposal distribution in this problem is particularly difficult
because of the need to restrict orbital forcing parameter values to a particular range.
We suspect that the DRAM algorithm is able to overcome this problem by adding a
second stage proposal with more precision which allows us to improve the mixing at
the beginning of the algorithm. It is not entirely clear to us why SCAM was able to
perform so well relative to FAM. However, SCAM handles one parameter at each stage
and therefore it is simpler to deal both with the parameter physical restrictions and
with the correlation among parameters.

For the Longitude of Perihelion parameter, Figure 4 shows similar results as de-
scribed for the previous Figure. In this case DRAM and SCAM converge as fast to an
answer compared to MVFSA and METSA. The estimated 97.5% quantile via MVFSA
and METSA is now 3 times greater than the same estimated quantile for the other
methods. In Figure 5, for the Eccentricity parameter, FAM and SCAM have some
differences on the estimation of the PPD, this is because the FAM uses as a proposal
distribution a multivariate normal density which could lead into many rejections of new
candidates points due to the physical restrictions on the orbital forcing parameters. On
the other hand, the estimated PPD under DRAM is similar to the one obtained via
SCAM. For the Eccentricity parameter, there are no differences on the estimation of
the 97.5% quantile. However, this is not the case for the estimation of the 2.5% quantile
as we can see from the box plots at the bottom of the Figure.

We looked at the sample autocorrelation function (ACF) of each parameter for all
the algorithms that are being considered. This is a well known way to assess how every
algorithm is mixing along iterations, the smaller the autocorrelations the better the
method is moving across the parameter space. We noticed that FAM has the worst
autocorrelations, this is no surprise since the algorithm is sampling all the parameters
at once from a multivariate Gaussian distribution and the physical restrictions on each
parameter make difficult to achieve acceptances that satisfy the restrictions. By using
DRAM, we reduce the autocorrelations of the FAM but they are not as good as the
autocorrelations of SCAM. In fact, SCAM is very efficient in terms of chain mixing
even though it is the slowest one in computer time spent per forward evaluation. The
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adaptive methods have acceptance rates at around 45%. METSA and MVFSA are
similar in terms of autocorrelation, their autocorrelation function values are not so large
because the sampling design on these algorithms is based on multiple initial points that
are not connected to each other along the iterations.

4.2 Appraisal of a few forward evaluations on the surrogate climate
model

Even though the surrogate climate model used in this paper is cheap enough to make
forward evaluations without consideration of the execution time, climatologists have an
interest in making inferences about models that may take hours to days to execute a
single iteration of a stochastic sampler. In these cases one may only have a limited num-
ber of samples to work with. Looking for an algorithm that is efficient to sample from
becomes a mandatory task. From a statistical standpoint, a statistical climate model
or emulator can avoid computational limitations as shown in Sansó et al. (2008). De-
pending on the problem characteristics, this may not always be an easy task especially
if the region of acceptability is a small fraction of the parameter space volume. There-
fore, inefficient samplers fail to capture the most important regions. We considered
a Gaussian spatial model to approximate the surface of the surrogate climate model
parameters but we did not obtain good results. We believe this was a result of not
having enough information or understanding about the climate model characteristics
to formulate a statistical version. Also, stationary models are limited for the output
arising from our surrogate model. Therefore, there will likely continue to be a need for
efficiently sampling schemes to achieve good inferences with few evaluations. We chose
only 500 forward evaluations for testing all the sampling strategies presented in this
paper.

In Figure 6, we see that based on 500 iterations MVFSA and METSA sample var-
ious points over the parameter space, but a few hundreds iterations are not enough to
establish a pattern on the bivariate plots. On the other hand, SCAM and DRAM show
a very good concentration of the samples. These bivariate plots look much alike the
scatter plots we get using the entire run from the adaptive methods. The behavior of
the FAM algorithm although disappointing, is expected since the proposal cannot be
easily tuned with a small number of iterations. There is no burn-in period considered
in the samples of FAM, DRAM and SCAM used to produce this Figure.

In Table 1, we compare the uncertainty estimation of the parameters and the mini-
mum values of the cost function. The performance of SCAM and DRAM are remarkable
since they not only find a minimum cost with few forward evaluations, but they also
provide acceptable estimates of the 95% credible intervals of the orbital forcing param-
eters. The 95% credible intervals for the methods based on Simulated Annealing are
not informative at all because they practically covered the entire parameter space.

In Figure 7, we compare the estimation of the marginals using 500 iterations to the
estimation made with 100, 000 samples from the FAM. With only 500 iterations, FAM
does a poor job estimating the marginals while DRAM and SCAM seem to do a very
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Method E(m∗) Φ2.5% Φ97.5% λ2.5% λ97.5% e2.5% e97.5%

FAM 0.8411 22.6817 22.7813 0.2248 3.4413 0.0101 0.0331
SCAM 0.1912 22.1644 23.1309 60.6625 91.5434 0.0312 0.0495
DRAM 0.1943 22.1665 22.9816 62.7528 141.1550 0.0113 0.0491
MVFSA 0.2019 22.1595 24.5072 18.3329 311.9383 0.0089 0.0482
METSA 0.2029 22.0631 24.2744 38.6806 353.6220 0.0029 0.0481

Table 1: Comparative estimation after 500 forward evaluations. E(m∗) is the minimum
of the cost function, Φ is the Obliquity, λ is the Longitude of Perihelion and e is the
Eccentricity.

good job for Longitude of Perihelion and Eccentricity. For Obliquity the estimation is
acceptable. The factor h on the second stage proposal for DRAM is producing a large
impact compared to AM for the results based with only a few iterations. MVFSA and
METSA present a lot of mass on the tails in comparison to the results of the FAM
with 100,000 iterations. From a practical standpoint, the main problem with FAM is its
difficulty to tune up the covariance matrix from the proposal distribution in a parameter
space where there are physical restrictions. There are different strategies to combine
both the delayed rejection and the adaptive Metropolis algorithms. The strategy that
achieves best results for the climate model is to implement the AM for a short number
of iterations to compute the covariance matrix Ct of the first state proposal distribution
and then construct the matrix Vt = hCt which it has more precision given that we
selected h ≤ 0.01. Vt is used in the second stage proposal. By doing this, we allow
DRAM the chance to take two different steps: (first stage) one that allows global moves
to sample along the parameter space and (second stage) another step that allows to
sample with more precision from points in the parameter space where the posterior
distributions have more density.

Using a small number of forward evaluations we have gained appreciation of how
well the computational methods presented in this paper work in this context. The
main strengths and weaknesses of every sampling scheme has been emphasized. While
Simulated Annealing based sampling schemes present a very good tool to optimize the
problem, SCAM and DRAM reach the balance between sampling and optimization with
few iterations.

4.3 Relevance of the parameter S

As mentioned in Section 2, the parameter S performs the function of weighing the
significance of model-data differences and was included in our inferences of parametric
uncertainty. S has its own prior probability distribution that provides information
about observational and other uncertainties that are hard to quantify within the metric
of model skill E(m) such as correlations among a suite of observations. In Figure 8, we
can see what happens if we use a non-informative prior on S, our results only reflect the
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form of the likelihood function of each parameter when we set S = 1. In our case, the
prior mean value of S is elicited to be 47, a number much larger than 1 which reflects
the fact that many surface temperature points are highly correlated. This correlation
increases the ability to detect the effects of Earth’s orbital geometry on observations of
surface air temperature and sharpens the PPD around the correct orbital configuration.

Our results are consistent with the findings of Sansó et al. (2008) where they use an
emulator of their climate model based on a Gaussian process. They use the MIT 2D
climate model that controls the large-scale response of the climate system to external
forcings. In that paper, the authors find that when they use non-informative priors on
the climate model parameters they obtain vague posteriors. Since S is used to assist on
the optimization process of the cost function of the climate model, we may think that
it has a positive support. A convenient form for a prior on S is the Gamma probability
distribution. The simplicity of this assumption makes possible to sample directly from
the full conditional P (S|m, d). More on the interpretation and the motivation of this S
parameter can be found in Jackson et al. (2008).

5 Conclusions

Sen and Stoffa (1996) stated that traditional methods such as Metropolis or Gibbs sam-
pler were not sufficiently practical for finding inversion solutions due to their high cost in
terms of the time required making forward evaluations and the amount of tuning these
algorithms need. MVFSA and METSA were proposed as algorithms to overcome these
problems. Indeed they provide approximate and fast answers to estimating the PPD.
These methods share the same design based on multiple independent initial starting
values, cooling schedule and a Metropolis acceptance rule for new candidates. Adding
multiple initial points to these algorithms helps to provide more information about the
parameter space similar to a grid point search. They differ in the proposal distribution
since MVFSA uses a Cauchy distribution dependent on the cooling schedule to sample
candidates from high density regions while METSA uses a random walk proposal and
the temperature cooling schedule is present only in the acceptance/rejection step. How-
ever, by its design MVFSA has biases estimating the tails of the PPD of the climate
model parameters. Annan and Hargreaves (2007) noted that we can consider of either
MVFSA or METSA as sophisticated heuristic methods to estimate the PPD.

The series of adaptive methods proposed by Haario et al. (1999, 2001, 2004, 2005)
are setting a breakthrough in Monte Carlo methods by introducing adaptive schemes
that are successful in finding the target distribution not only in theory but also in
practice despite the fact that these are non Markovian algorithms.

Compared to FAM, DRAM, or SCAM, which all provided nearly identical estimates
of the marginal PPD, marginals derived from MVFSA and METSA sampling had similar
modes, but with broader 95% credible intervals. For instance, for the Longitude of
Perihelion (λ = 75.93) parameter, the 95% posterior credible interval using the FAM
scheme is (60.291, 90.676) compared with (23.274, 280.675) that was obtained using
MVFSA. The inclusion of the parameter S in the estimation process provides prior
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information about the significance of model differences with the target observations.

As we stated at the beginning of the paper, the main goals of this work were to
compare sampling efficiencies and accuracies among different proposed methods for
estimating parametric uncertainties. The DRAM and SCAM sampling algorithms are
particularly effective on both of these accounts. In terms of the RMS criterion, the
adaptive methods were as efficient as MVFSA to reach convergence, but without its
sampling biases.

The decision to choose either the full component version (FAM) or the single com-
ponent version (SCAM) of the adaptive methods should be based on the problem at
hand. FAM has great speed but also needs to calibrate the covariance matrix of the
parameters of interest. As we observed this could be a drawback in parameter spaces
with physical restrictions. We propose to employ DRAM when such problem exists and
obtained substantial improvements on the results. On the other hand, SCAM does not
have to deal with inversion of covariance matrices but it pays a price regarding compu-
tational time as soon as the dimensionality of the problem increases. As a caveat, the
results obtained from the methods used in this paper only apply to non-linear inverse
problems with unimodal posteriors. Finding a good proposal distribution to sample
from is difficult even for adaptive methods when the posterior distribution of interest
has multiple modes. Ongoing work is being done to develop computational methods
that have a balance between sampling a multi-modal PPD and reducing the cost in
making forward evaluations in climate models.

In terms of efficiency of estimation and ensemble generation in climate modeling,
a statistical emulator is a computationally efficient approximation to a complex com-
puter model as mentioned in Annan and Hargreaves (2007) and depicted in Sansó et al.
(2008). Although, we share the same goals as Sansó et al. (2008) our problem is differ-
ent since we are making evaluations directly on the climate model and not based on a
statistical emulator.

One can use the results obtained in in this paper to suggest how with relatively few
model integrations one may draw inferences of how observational data may constrain
uncertain model parameters or physical hypotheses about how nature works. The po-
tential applications are broad and may prove invaluable for problems that are currently
limited by computational requirements of the forward model or inordinately large data
volumes.
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Figure 1: AGCM response of annual and zonal mean lowest level temperature (Kelvin
degrees) from 70◦ S to 90◦ S (over Antarctica) to known continuous changes in Earth’s
orbital geometry for the past 165 thousand years (e(t), λ(t), and Φ′(t) are known time
series). Panel (a) shows the model response (in gray) with least squares fitted solution
(black curve) given by equation (1). The least squares fitted solution includes an obliq-
uity component (b), and precessional component (c). The residual between the least
squares fitted solution and the AGCM is shown in panel (d).
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Figure 2: Likelihood for orbital forcing parameters. Left column: S=1. Right column:
S=47.
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Figure 3: Comparison for Obliquity parameter. Top left: PPD estimation. Top right:
Ergodic quantile estimation (97.5%). Middle left: RMS as function of iterations. Middle
right: RMS as function of time (seconds). Bottom: Box plots of the samples from
different methods.
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Figure 4: Comparison for Longitude of Perihelion parameter. Top left: PPD estima-
tion. Top right: Ergodic quantile estimation (97.5%). Middle left: RMS as function of
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Figure 5: Comparison for Eccentricity parameter. Top left: PPD estimation. Top
right: Ergodic quantile estimation (97.5%). Middle left: RMS as function of iterations.
Middle right: RMS as function of time (seconds). Bottom: Box plots of the samples
from different methods.
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Figure 6: Bivariate scatter plots of orbital forcing parameters with just 500 iterations.
First column: FAM. Second column: SCAM. Third column: DRAM. Fourth column:
MVFSA. Fifth column: METSA.
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Figure 7: Histograms with just 500 iterations (black bars). PPD Estimated using
100,000 iterations from the FAM algorithm (red line). First column: FAM. Second col-
umn: SCAM. Third column: DRAM. Fourth column: MVFSA. Fifth column: METSA.
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Figure 8: First row: Estimated PPD using an adaptive method. Using the S parameter
(solid line) and using a non-informative prior (dotted line). Second row: Box plots of
posterior samples.


