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Success of bank marketing campaign is predicted with customer fea-

tures, campaign information and economic attributes. To predict whether

or not clients will subscribe long-term deposit, logistic regression is applied

with backward variable selection and principal components analysis. Random

forests and stochastic gradient boosting, as members of classification trees,

are also built as comparisons. Based on visualization and quantitative predic-

tive performance, gradient boosting (AUC = 0.791) is slightly better than the

other two models. Variable importance from 3 models remains consistent for

most variables. Social and economic attributes, such as euribor3m, are among

top important variables.
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Chapter 1

Introduction

In bank industry, forecast plays an important role such as detecting

credit fraud to reduce financial loss. Predicting client behavior, on the other

hand, will bring profit. Based on features of clients and marketing campaign, a

bank need to foresee whether or not clients would subscribe long-term deposits.

This can be summarized as a two-class classification problem.

In terms of predicting marketing success, accuracy is obviously impor-

tant. From marketing perspective, another key issue is that science insights are

applicable for business to understand and put into action. The two sides above

require both good model predictive performance and model interpretability.

Unlike classical statistical models, some data-mining models allow more flex-

ibility and complexity but su↵er from lack of interpretability like ’black-box’.

In this report, we try to explore two di↵erent models (random forests and

stochastic gradient boosting) to discuss two aspects of classification models

and their comparisons.

This report implements logistic regression as classical statistical model

for binary outcome issue. It is popular for its ability to produce probability

estimate, which is flexible to make classification by setting threshold. With
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coe�cient estimates, it is also easy to use odds ratio to facilitate business

decisions directly. Classification trees, as a type of relatively novel method

compared to logistic regression, are popular because of ensemble idea to re-

duce forecast variance and mimic human decision process. Random forests and

gradient boosting are brought up as tree-based models to achieve good perfor-

mance. In addition, variable importance will be explored to complement lack

of interpretability. Three models will be compared with quantitative measure

(e.g. area under ROC curve) and information about featues will be generated

during model fitting for marketing suggestions.
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Chapter 2

Literature Review

Moro, Cortez and Rita(2014) propose four data mining models to fore-

cast telemaketing success - logistic regression, decision tree, neural network

and support vector machine. The four models are tested against the most

recent data with rolling window scheme by area under receiver operating char-

acteristic curve and lift cumulative curve. Neural Network gives the best

performance with AUC = 0.8. Support Vector Machine ranks the second best.

Logistic regression has the lowest AUC.

Vajiramedhin and Suebsing (2014) suggest data balancing technique

for prediction on the same data set. It focuses on proper random sampling

for data split so that response labels in training data and test data remains

consistent. AUC improves by 4.6% after applying data balancing method.

Prediction for bank telemarketing falls into classification problems and

models besides those mentioned above can be explored to either improve the

interpretability or potential forecast accuracy. Decision tree becomes popular

for its learning ability and more interpretable than ’black-box’ methods. How-

ever, it su↵ers from overfit and unstable results. Random Forest and Gradient

Boosting are two methods based on decision tree. They both generate smaller

3



but multiple trees to control tree depth to prevent overfit and reduce variance.

Variable importance will be extracted to understand ensemble of trees. Logis-

tic regression is also implemented as a classical model for comparison whose

interpretability is further discussed.
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Chapter 3

Methdology

3.1 Data Pre-processing

Telemarketing dataset is an open dataset in University of Irvine Ma-

chine Learning Repository named ’Bank Marketing’. Data are collected from

2008 to 2013 from a Portuguese retail bank with 41188 observations. Fea-

tures of clients and campaign with additional economic attributes serve as 20

predictor variables.

Response variable is whether or not the client will purchase the long-

term deposit, i.e., ”yes” or ”no”. Duration represents last contact duration

and response will be known at the end of the call which highly influences the

response. As primary objective is to predict success rate, this variable should

be discarded.

Literally, there is no missing data. Random forests and gradient boost-

ing can deal with missing values but logistic regression cannot. After looking

into variables in details, factors education, job, marital, housing, loan and de-

fault have ’unknown’ level. These also cause categorical predictors to have

sparse and unbalanced distribution. Logistic regression is much more sensi-

tivie to this kind of variables than random forests and gradient boosting do.
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We would expect logsitic regression performs better after near-zero variation

perdictors discarded or near-zero volume levels removed. Hence, data pre-

processing is initiated to improve performance.

Default denotes whether the client has credit, which has 3 observations

as ”yes”, 32588 as ”no” and 8597 as ”unknown”. ”Unkown” in default can

reveal some hidden information when clients leave that question blank and it is

not as askew as the other five. Thus, ”unknwon” level in default is kept while

”unknown” in other 5 predictors will be treated as missing values. The number

of complete cases is 38245 and still reserves 92.9% of the original dataset.

Imputation is not necessary in this case as it could also result in uncertainty.

Observations with level ”unknown” will be removed to ensure data quality.

New Dataset with 38245 observations, 19 predictors and 1 response variable

will be utilized for model training and test.

To prevent overfitting, we split 38245 observations into training data(80%)

and test data(20%). As response variable ”yes” only takes a small proportion,

data partition by function createDataPartition is applied to ensure balanced

response in training data and test data. That is to say, random sampling is

within each response class to ensure equivalent class distribution.

3.2 Classification Trees

3.2.1 Introduction to Classification Trees

Tree-based models are made up of nested if-then statements. Predic-

tors are used to bipartition the data and final data space will be divided into

6



many di↵erent-sized rectangular regions. If we look at a tree upside-down from

root to leaves, each split is like a branch. It visually shows the approach to re-

cursive binary splitting. It is greedy because best split is made at each step by

looking for the predictor giving largest improvement. Tree-based methods can

be used for classification as well as regression. We will focus on classification

trees since the problem of interest is two-class problem.

Classification models generate a continuous valued prediction between

0 and 1 regarded as the probability of a sample belongs to class one. Then

a prediction class is made according to certain threshold which will create a

discrete category for predicted response. The threshold highly impacts the

result and will be discussed further in classification evaluation.

The purpose of classification trees is partitioning data in a way that

places samples into smaller and relatively homogeneous buckets. Homogeneity

here,equivalent as purity, means large proportion of samples in terminal node

coming from same class. As misclassification mislead us to focus more on

accuracy other than purity, there are two major measures to define purity:

Gini index(Breiman et al. 1984) and cross-entropy. Gini index for a node is

as

p1(1� p1) + p2(1� p2) (3.1)

where p1, p2 are probability of Class 1 and 2, respectively. Obviously, they

sum up to 1. It is minimized at p1 = 0 or p1 = 1, where all samples in the

node belongs to one class. When random splitting is made, i.e., p1 = p2 = 0.5,
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Gini index is maximized. The aim of trees is to increase purity so best split is

choosing predictors that can decrease the index by largest degree.

The tree-growing process described above will stop until number of

samples in node falls below certain minimum node size in practical. Once

we have a full-grown tree, overfitting comes out as the hurdle to have good

performance on test data. There is a trade-o↵ between complexity of tree and

goodness of fit on test data. Therefore, pruning depth of tree (complexity) is

required. Depth and other parameters will go through tuning process before

final predictive model is built.

Classification trees have many advantages. First, if-then conditions like

human decision-making are easy to interpret visually and implement. It can

also deal with many types of variables regardless of categorical, continuous

or askew. In perspective of model specification, it works well even though

users do not specify the relationship between response and predictors. On the

other hand, it tends to give sub-optimal result if high-dimensional rectangulars

cannot delineate the relationship very well. This disadvantage and advantage

of not specifying relationship are like two sides of a coin. In addition, it is

sensitive to data changes. A slight change in the data can reshape construction

of the tree.

To substantially improve predictive performance of classification trees,

bagging is introduced as averaging over multiple trees to reduce variance. A

general term to describe combination of models is ensemble. In brief, bagging

generates B boostrap samples to build B decision trees. The majority vote from

8



B trees acts as the final prediction as it appears more commonly. Bagging fits

model based on boostrap samples so observations not used in a given bagged

tree are out-of-bag (OOB) samples. These remaining samples will be used to

calculate OOB error.

3.2.2 Random Forests

Random Forests provides an improvement on bagging since it decorre-

lates the trees to a certain degree. As all predictors are taken into account at

every split, the bagged trees are not completely independent. Trees, though

coming from di↵erent boostrap samples, may share similar constructure due

to the underlying relationship between response and predictors.This is called

tree correlation and will prevent bagging from further improvement. Introduc-

ing randomness into tree learning process is proposed and Dietterich (2000)

suggested using a random sample of top m predictors from P original predic-

tors. Breiman (2001) proposed to randomly pick k predictors at each split

and named the new method with random forests. The number of randomly

selected predictors is referred to as mtry. Commonly mtry is set to be approx-

imate square root of the total number of predictors mtry ⇡
p
P but evenly

spaced values between 2 and P can be tried.

The tweaks on algorithm give improvement in two aspects. As trees are

built on boostrap samples and random draws are taken from predictors, tress

are more independent and thus reducing variance. Unlike simply selecting

the best predicor to improve purity at each partition, many predicotrs can be
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taken into consideration. That is, almost all predictors have the chance to be

the one defining a split. Considered from a local predictors bucket, predictors

have fewer competitors and higher chance to get selected. This supports bias

reduction.

Compared to bagging, random forests is also welcomed for more e�cient

computation. Both methods can be implemented in parallel computing. In

addition, random forests only needs to make choice from a subset of original

predictors for best split. Although it may require more trees for ensemble, it

outperforms bagging in computational time.

Algorithm 1 Random Forests algorithm

1: Select the number of trees to build, m
2: for i = 1 to m do
3: Generate a boostrap sample from original data
4: Train a tree model on this sample
5: for each split do
6: Randomly select mtry(< P ) predictors from originals
7: Select the best predictor from mtry predictors and
8: Partition the data
9: end for
10: Use tree model stoping criteria to determin when a tree is complete
11: end for

Random forests has the following properties:

• As member of tree-based models, types of predictors are flexible.

• The model is relatively not very sensitive to mtry.
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• Out-of-bag measures are available for accuracy, confusion matrix, speci-

ficity and sensitivity.

3.2.3 Gradient Boosting

Boosting was originally developed for classification problems starting

from AdaBoost algorithm and then evolved to stochastic gradient boosting

(Friedman et al., 2000). The idea of boosting came from learning theory where

multiple weak classifiers are combined or boosted to produce an ensemble of

classifiers. Adaboost, as implementation of learning theory, aims at training

(boosting) weak learners into strong learners. Friedman discovered the con-

nection of Adaboost algorithm to statistical ideas, such as logistic regression

and loss functions. Boosting is further viewed as an additive model minimiz-

ing exponential loss. Then, statistical concepts are generalized to develop a

more adaptable method ”gradient boosting machines” to solve di↵erent kinds

of problems.

Given a loss function, gradient boosting picks a weak learner (e.g., clas-

sification trees) and develop an additive model to minimize the loss function.

Gradient is calculated, which is residual in classification. Model is built to fit

the gradient while minimizing loss function. Model follows last model one by

one to fit residuals left from last model. All models are then combined to give

final output.

First requirement for boosting is a weak learner. As for models with

tuning parameters, we can always have a relative strong or weak learner by
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adjusting parameters. Trees can be a perfect one since its depth highly influ-

ence the performance. That is, if we restrict the complexity of trees to be very

small, these trees are able to serve as candidate for weak learners. Second, for

generating additive model, trees are easy to add and generate prediction. Last

but not least, trees are computationally e�cient. As a result, trees are perfect

weak learners for boosting.

As mentioned above, tree depth is a tuning parameter. Another param-

eter for simple boosting is interaction depth, which is also known as number

of iterations. It is named with ”interaction” since predictors used in the sub-

sequent tree can be considered as interaction with all previous predictors.

Gradient boosting has over-fitting drawback since it always tends to

pick optimal learner at every step. To prevent this greedy strategy from over-

fitting, learning rate is introduced to control. This kind of shrinkage is often

denoted by symbol �. Small learning rate is better to apply but also time-

consuming as each step is tiny. Choosing a proper value for � is also balancing

the trade-o↵ between computation time and model performance.

Inspired by boosting algorithm, using boostrap samples not only reduce

variation but also saves computation time. Stochastic gradient boosting is

evolved by adding random sampling. Naturally, bagging fraction also becomes

a tuning parameter. That is, how many percentage of training data should be

used at each tree, default at 0.5.

One way to model event probability as stochastic gradient boosting is

12



similar to logistic regression, by

bpi =
1

1 + exp[�f(x)]
, (3.2)

where domain of f(x) is (�1,1). In logistic regression, f(x) is a

linear combination of predictor variables. To initialize f0, we calculate sample

proportion of class p for sample log odds log bp
1�bp .

In bank telemarketing problem, Bernoulli distribution is appropriate to

describe two-class probability. The algorithm for stochastic gradient boosting

is shown below.

Algorithm 2 Stochastic Gradient Boosting algorithm for 2-class classification

1: Initialize all predictions to sample log-odds as f (0)
i = log bp

1�bp
2: for iteration j = 1 to M do
3: Compute gradient (i.e. residual) zi = yi � bpi
4: Randomly sample training data
5: Train a tree on the random sample with residuals as outcomes
6: Compute the terminal node estimates of Pearson residuals:

7: ri =
1/n

nP
i
(yi�bpi)

1/n
nP
i

bpi(1�bpi)

8: Update the current model using fi = fi + �f
(j)
i

9: end for

Summarized from the algorithm, we need to tune 3 parameters. Thus,

a tuning parameter grid is constructed as combinations of di↵erent number

of trees M, interaction depth and shrinkage rate �. We will pick optimal

combination to fit gradient boosting for training data.

Comparing algorithm of Random Forests to Stochastic Gradient Boost-

ing, there are two similarities. Trees are used as base learners though weak

13



learners for boosting. Final result is based on multiple trees (i.e. ensemble).

However, significant di↵erences make them two separate methods. In random

forests, trees are independently generated and created to be fully grown. All

trees will be given same weight in account of final prediction. In boosting,

trees are dependent on past ones and supposed to have small depth as weak

learners. Earliy trees will receive more consideration for final prediciton. An-

other di↵erence coming from independence of trees in random forests is that

trees can be built in parallel and less time required.

3.3 Logistic Regression

3.3.1 Introduction to Logistic Regression

To estimate probability of event, subscription of deposit in this situa-

tion, sample proportion is the maximum likelihood estimate (MLE). Subscrip-

tion is also a↵ected by many other factors such as customer occupation. Thus,

event probability p is a function of those factors. Based on linear regression,

transformation of p can be described as a linear combination of factors. This

is the general idea behind logistic regression. Similarly, it has an intercept as

well as slope parameters for each term. In common linear regreesion, response

variable y can take value on (�1,1) whereas probability is within (0,1). To

restrain fitted probability within reasonable range, log odds of the event rate

replaces the common y for response.

We first introduce odds as ratio of probability of event rate over proba-

bility of nonevent rate. To quantify predictive ability of a predictor, odds ratio

14



is a common method. Suppose we have odds of Monday in day of week as �1

and odds of other non-Mondays in day of week as �2. The ratio of the odds

�1
�2

denotes that odds of subscription when last contact on Monday is �1
�2

times

larger than odds of non-Mondays. Odds ratio of Monday over non-Mondays is

�1
�2
. Given high odds ratios, we would expect predictors to have larger impact

on classification.

Recall event probability p, odds of p is p/(1�p). Log odds of p regresses

on predictors:

log
p

1� p
= �0 + �1x1 + ...+ �PxP . (3.3)

Here, P = 19 is number of predictors. By transforming back to p, we

have:

p =
1

�0 + �1x1 + ...+ �PxP
.

Plot of event probability is a sigmoidal function and p is constrained

within (0,1). When factor levels are not significant, we will combine some fac-

tor levels to increase model fitting. For numerical variables, we also categorize

them to make more sense for significance. Hosmer and Lemeshow Goodness

of Fit test is used to test model fit. Original hypothesis is model fits the data

very well and we would not reject the original hypothesis if p-value > 0.05.

3.3.2 Backward Variable Selection

When some levels in a categorical predictor is not significant, we still

keep the predictor. Backward variable selection is a method to remove numer-

15



ical variables or categorical variables that none of the levels is significant.

Backward selection starts with the full set of predictors and sequentially

deletes the smallest-impact predictor in the model. We drop the candidate

variable with smallest Z-score. If all predictors in the model have significant

Z-score (i.e. p-value < 0.05), backward selection stops. Note that backward

selection is applicable only when number of observations is larger than number

of predictors. Function step in R is used with option ”backward”.

3.3.3 Principal Components Analysis

Sometimes variables have strong correlation (i.e. multicollinearity) and

it gives rise to high variance of estimates. Principal components analysis

(PCA) produces linear combinations of variables in sequence. These prin-

cipal components have maximal variance and are mutually independent. In a

hyperplane, vectors in represent of the principal components are perpendicular

to each other.

To obtain principal components, center variables to zero and scale them

to have unit variance. Hence, we will not put more loading on a variable

simply becuase of its large volume. By solving singular value decomposition

of X(x1, ..., xq), we obtain q principal components.

For first principal component Z1 of a set of features, it is the normal-

ized linear combination of features which has largest variance. By normalized,

it means that loadings on all features sum up to 1. Second principal compo-

nent is the one has second largest variance and independent of first principal

16



component. First principal component:

Z1 = �11X1 + �21X2 + ...+ �q1Xq

where
P2

j=1 �
2
j1 = 1. We select top q⇤ principal components and replace origi-

nal set of features with them. To determine how many components to choose,

proportion variance explained by chosen ones usually add up to 80% or above.
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3.4 Model Interpretation and Predictive Performance
Evaluation

3.4.1 Variable Importance

For classification trees, variable importance can be extracted by 2 dif-

ferent measures. The general idea is that for each single tree and each pre-

dictor, improvement in the predictive objective because of that predictor is

aggregated. Then improvements are aggregated over trees for that predictor

in ensemble to give an overall variable importance.

One method is obtained by permuting out-of-bag data. Prediction er-

ror on OOB data is stored for each tree. Then permute each predictor and

calculate the same thing. The di↵erence between the unpermuted errors and

permuted ones will be averaged over all trees and divided by standard variation

of the di↵erences.

Another measure is using Gini index to calculate total purity increase

from splitting, averaged over all trees. Recall impurity measure Gini index

p1(1� p1)+ p2(1� p2). In each split, samples are sorted by predictor variables

and split will be made at the midpoints of predictors. The optimal split is try

to decrease Gini index as much as possible. As for binary response, a two-way

contigency table is represented for a split in Table 3.1.

Prior to the split,

Gini(prior to split) = 2(
n1+

n
)(
n2+

n
).

After the split, Gini index is first generated in each new node and then weighted

18



Table 3.1: Split illustration

Class 1 Class 2
branch 1 n11 n12 n+1

branch 2 n21 n22 n+2

n1+ n2+ n

by sample proportion. Simplified Gini(after split) would be:

Gini(after split) = 2[(
n11

n
)(
n12

n+1
) + (

n21

n
)(
n22

n+2
)].

In random forests, within each tree (Gini(prior to split) - Gini(after

split)) is aggregated for each predictor based on split criteria. Then it is

aggregated over all trees in the forest. The larger the sum, the more important

the predictor variable is. As for boosting, it works in the similar manner.

Tree-based models, especially ensemble of trees, usually su↵er from lack

of interpretability. Variable importance will reveal more visibility about the

model and provide insights for business. We will compare variable impor-

tance by two di↵erent measures to see how they align. In addition, variable

importance from random forests and gradient boosting will also be examined

together. To give it further evaluation, variable significance given by logistic

regression can also give a hint about impact of predictors. In logistic regres-

sion, Z statitic and p-value are indicators of significance. Variables making a

di↵erence in classification trees and logistic regression may reveal interesting

insights.
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3.4.2 Predictive Performance Evaluation

When implementing diversified models, approach to measure predic-

itive performance is important for model comparisons. Logistic regression

model is favored because of simplicity. Classification trees are favored since

they allow more flexibility about model hypothesis and better performance.

Due to di↵erent procedures, (e.g. variable selection in backward logistic and

boostrap samples from random forests) finding unbiased way to evaluate mod-

els and suggest preferred models will be discussed in the following ways.

3.4.2.1 Confusion Matrix

For a two-class problem, the outcome can be summarized as ”event”

and ”nonevent”, where event refers to result of interest. Event in this case is

client will buy the long-term deposit in bank marketing problem. A common

method is confusion matrix. A 2 ⇥ 2 cross-tabulation is a good choice for

decribing performance. Values on the diagonal means number of cases that

have been correctly classified, whereas o↵-diagonal values denotes number of

those not.

Table 3.2: Confusion matrix

Predicted
Observed

Event Nonevent

Event TP FP
Nonevent FN TN
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True Positive(TP) = samples with event and predicted to have the event

False Positive(TP) = samples without event and predicted to have the event

3.4.2.2 Accuracy Rate and Kappa Statistic

An intuitive method based on confusion matrix would be overall ac-

curacy rate. It indicates by how much predictions agree with observations.

With definitions from table, overall accuracy rate is TP+TN
TP+FP+FN+TN . This is

straightforward but would bias us to weight di↵erent types of errors equally.

In bank telemarketing, the cost of erroneously not contacting a highly possi-

ble client is likely to be higher than incorrectly contacting a nearly impossible

client. Moreover, we need no-information rate (e.g. 50% for random guess)

as baseline for measurement. For example, if response ”yes” has very low fre-

quency, it is safe to predict all samples to have response ”no” with a small

enough accuracy rate. One type of no-information rate is the percentage of

most majority class in training data.

Combining accuracy rate with no-information baseline, Kappa statistic

is developed as

Kappa =
O � E

1� E

where O is observed accuracy and E is expected accuracy. Value of Kappa

statistic range from -1 to 1; Kappa = 0 denotes no agreement between ob-

servations and predictions. The larger Kappa is, the more evidence supports
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good performance of predictive models. Kappa values between 0.3 and 0.5

denotes moderate agreement.

3.4.2.3 ROC Curve

For two-class cases, additional statistics can be added to evaluate the

model. Sensitivity is the percentage of event predicted correctly for samples

having the event, i.e. true positive rate. Similarly, specificity is defined as the

percentage of nonevent predicted correctedly for samples not having the event.

Sensitivity =
Number of TP

Number of (TP + FN)
= true positive rate

Specificity =
Number of TN

Number of (TN + FP)
= 1 - false positive rate

Obviously, there is a trade-o↵ between sensitivity and specificity of the

model. If more positive predictions are made, then sensitivity will increase

and specificity will decrease. In bank marketing, contacting more clients that

will not subscribe long-term deposit is acceptable for business. Since there is

a trade-o↵, it is important to carefully choose an e↵ective threshold for con-

tinuous prediction output within (0,1) to determine class prediction. Receiver

operating characteristic (ROC) curve is generated to evaluate the trade-o↵

and can be summarized into one single value.

For logistic regression model, the default threshold for probability is

50%. In problem of interest, decreasing the threshold will capture more clients

willing to subscribe the deposit but at the meantime incorporating more clients

that not. ROC curve is created by illustrating (1 - specificity, sensitivity)
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combination for each possible threshold. That is, plot true-positive rate against

false-positive rate. A good ROC curve has steep trajectory for left part of the

curve. A baseline for comparion is 45� diagonal line. Curve above that line

means increasing rate of sensitivity is larger than decreasing rate of specificity,

which is a good sign.

ROC curve is helpful for determining a propriate threshold. Moreover,

it further proposes a quantitative measurement for model performance. A

perfect ROC curve would be a horizontal line from (0,1) to (1,1), under which

the area is 1. A random guessing with no model would be a 45� diagonal line,

under which the area is 0.5. An e↵ective predictive model will exhibit a ROC

curve between the two types mentioned above with area within (0.5,1). Area

under ROC curve is termed as AUC. Even for di↵erent predictors or models,

AUC is an easy assessment of model as well as model comparison. The more

the curve is shifted toward (0,1), the better the model is. To translate it into

AUC: the larger the AUC, the better the model is. Confidence interval can

also be calcuated for AUC. Sometimes we focus on partial ROC curve if event

of interest cares more about a specific part.

3.4.2.4 Lift Charts

When ordered by event probability, we would expect to see samples

with events are ranked higher than those without events. Here comes the idea

of lift charts. They first rank samples with their event probability and then

generate cumulative event rate as more samples are taken. In a perfect world,
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the m highest ranked samples would be m samples with events. By randomly

selecting samples, lift is the number of samples with events detected.

Lift charts are constructed first by applying predictive model to test

data and obtain estimated event probability. Then order the samples by the

classification probability obtained in first step. For each unique classification

rate, select samples with estimated probability under that threshold. Within

samples selected, calculate the true proportion of events as baseline event rate.

To obtain percentage of events detected, divide classification rate by baseline

event rate.

Lift chart plots cumulative lift against cumulative percentage of sam-

ples, which indicates e�ciency of targeting clients in marketing scenario. Like

ROC curve, reference line is also the 45� diagonal line. In addition, it applies

to di↵erent models and can be used to compare models. Like AUC, area under

lift charts is an alternative way to measure model performance.
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Chapter 4

Model Implementation and Comparison

4.1 Model Implementation

4.1.1 Random Forests

As shown in Algorithm 1, Number of predictors to select at each split

mtry is an important parameter. This distinguishes random forests from other

tree-based ensembles. Number of trees to build m is another parameter to

tune. As random forest is unlikely to overfit as other classification trees, mtry

will be the primary tuning target and m the secondary.

We adopt function tuneRF in R package randomForest to tune mtry

with 1000 trees. The optimal mtry is chosen by smallest OOB error (Table

4.1). As OOB error reaches the lowest point at mtry = 2, number of predictors

tried at each split is set as 2. The same result when number of trees is 500.

Table 4.1: Tuning mtry for random forests

mtry 1 2 4 8
OOB Error 0.1008 0.0990 0.1016 0.1071

With optimal mtry, number of trees to grow is tuned at (1000, 1500,

2000, 3000) and respective OOB errors are (9.96%, 9.97%, 9.95%, 9.95%).

Number of trees is set as 3000. Implementing function randomForest to train-
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ing data, we obtain random forests model and corresponding variable impor-

tance for bank marketing data. With predict function, labels for test data are

predicted and combined with real labels for accuracy rate, ROC curve and

lift chart. Model performance evaluation of three models will be discussed

together in Section 4.2.

4.1.2 Gradient Boosting

As shown in Algorithm 2, three parameters - di↵erent values of it-

erations M, interaction depth and shrinkage rate � - need tuning. Com-

binations of M = (500,1000,1500,2000,3000), interaction depth = (1,2) and

� = (0.01, 0.05, 0.1) are explored using train function to discover optimal pa-

rameter combination. 200 boostrap samples are generated during tuning and

out-of-bag fraction is 0.5. Accuracy and Kappa are obtained to choose optimal

model in Table 4.2.

Interaction depth 1 means only 1 predictor variable will be used to

define partition at each node. Depth at 1 or 2 often is adequate if number of

trees is large enough. The more interactions, more complicated the trees are.

Shrinkage rate (i.e. learning rate) defines the discount for each learning step.

With increasing learning rate, learning step is bigger but at risk of missing

the optimal value in between. On the other hand, if learning rate decreases,

predictions will move slowly and number of trees needs to increase by inverse

proportion.

When interaction depth is held at 1 and shrinkage rate is relatively
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Table 4.2: Tuning parameters for stochastic gradient boosting

Interaction depth Shrinkage rate � Number of trees Accuracy Kappa
1 0.01 500 0.8992 0.2666
1 0.01 1000 0.8994 0.2727
1 0.01 1500 0.8996 0.2770
1 0.01 2000 0.8997 0.2807
1 0.05 500 0.8996 0.2838
1 0.05 1000 0.8997 0.2934
1 0.05 1500 0.8998 0.2985
1 0.05 1500 0.9003 0.2998
1 0.05 2000 0.8998 0.3016
1 0.05 2000 0.9003 0.3028
1 0.05 3000 0.9002 0.3068
1 0.1 500 0.9000 0.2956
1 0.1 1000 0.9000 0.3028
1 0.1 1500 0.8998 0.3058
1 0.1 2000 0.8998 0.3109
2 0.01 1000 0.8999 0.2818
2 0.01 3000 0.9006 0.3149
2 0.05 1000 0.9005 0.3250
2 0.05 3000 0.8992 0.3349
2 0.1 500 0.9003 0.3246
2 0.1 1000 0.8997 0.3316

large (0.1), 500 trees often give better accuracy rate and Kappa. That less

trees are required because learning step is very big . When shrinkage rate is

relatively small (0.05 or 0.01), either with interaction depth 1 or 2, more trees

is always preferrable in terms of high accuracy and large Kappa.

As we discussed in Subsection 3.4.2.2, accuracy as a standard will bias

us to value more about misclassification other than node impurity for clas-

sification trees. To reduce bias, Kappa statistic incorporates no-information
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rate as baseline. Therefore, Kappa statistic is used to determine the optimal

boosting model with largest value. To fit training data, interaction depth (tree

depth) is set as 2, which allows 2 predictors at each node to define a rule for

split. Shrinkage � = 0.05 and number of iterations (number of trees) M =

3000.

Function gbm in R package gbm is applied to build stochastic gradi-

ent boosting with optimal parameters above to training data. It specifies 3

cross-validation folds and Bernoulli distribution because of 2-class response.

The same way as random forests, labels for test data are predicted and com-

bined with real labels for accuracy rate, ROC curve and lift chart. Model

performance evaluation of three models will be discussed together in Section

4.2.

4.1.3 Logistic Regression

Besides attributes of client and campaign, 5 social and economic con-

text attributes are included to predict subscription. These are employment

variation rate, consumer price index, consumer confidence index, Euribor 3-

month rate and number of employees. Among them, first attribute is likely

to highly correlates to the last one. Two consumer indices may have a strong

relationship. Correlation visulation is shown in Figure 4.1.

Three pairs - employment variation rate with consumer price index,

Euribor 3-month rate and number of employees - have strong correlaions above

0.8. This suggests us to use PCA to resolve multicollinearity and reduce
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Figure 4.1: Correlation visualization for 5 social and economic variables

dimension. PCA output is summarized below. PC1 - PC5 denotes principal

components generated in sequence.

Table 4.3: PCA summary for social and economic attributes

PC1 PC2 PC3 PC4 PC5
Standard deviation 1.8659 0.9862 0.7139 0.15916 0.10411

Proportion of Variance 0.6963 0.1945 0.1019 0.00507 0.00217
Cumulative Proportion 0.6963 0.8909 0.9928 0.99783 1.00000

Cumulative variance proportion of top 3 components reaches 99.28%.

They will replace the original 5 attributes in the model for logistic regression.

In addition to data pre-processing, binning some predictors is applied

to generate more significance and interpretability. For example, we would not

expect a 32-year-old man behave totally di↵erent than a 33-year-old man when
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it comes to subscription of bank deposit. We categorize age as ’Young’(below

25), ’Adult’(25-60) and ’Senior’(60 above); compaign as ’contact <= 3’ and

’contact> 3’; pdays as ’new client’ and ’previous client’; previous as ’no contact

before’, ’contact once before’ and ’contact more than once before’; month into

four seasons; job as ’o�ce job’, ’physical worker’, ’flexiable worktime job’,

’student’ and ’retired’.

Fit glm to data with recategorized predictors, we found many predictors

insignificant. We then apply backward selection to remove predictors having

limited impact on outcome. Variables marital, education, loan, previous are

removed. Hosmer and Lemeshow Goodness of Fit test shows Chi-square =

22.3969 with p-value 0.004231. This indicates the logistic regression after

backward selection does not fit the data very well.

To improve model fitting, we rebin day of week into ’Monday’ and ’non-

Monday’ as non-Mondays are significantly di↵erent than Monday. Similarly,

recategorize job as ’not working’ and ’working’; default into ’unknown’ and

’known’; month as ’Spring & Fall’ and ’Summer & Winter’. Again fit logistic

regression without interactions using glm and perform a backward selection.

Variables housing, pdays are no longer in the model. However, we still reject

Goodness of Fit test with p-value 0.0072.

Then two-way interactions are added into the model to allow more

nonlinearity. Almost all model terms are significant so no need to perform

selection. It also passes Goodness of Fit test with p-value 0.25. This is the

final logistic model. Predictions on test data are made and compared with
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those from classification trees in the following section.

From final logistic model, we extract first order results in Table 4.4. As

coe�cient of contact(telephone) is 1.30720 greater than 0 so contacting clients

via telephone will have much more chance of success. The same way with

contact, compaigning on non-Mondays is more likely to get positive response.

If previous marketing campaign is successful or nonexistent, it is more likely

to win this contact than when previous outcome is failure. This makes sense

considering client loyalty and targeting. Senior compared to young people are

easy to subscribe bank deposit may be due to more savings. Adult is less

unlikly to buy than young people since financial burden can be largest for this

group of people. It also suggests that campaigning during Summer and Winter

is better.

4.2 Model Interpretation and Comparison

4.2.1 Variable Importance Interpretation

Variable importance from random forests and gradient boosting can be

directly obtained after model fit. Two types of variable importance in random

forests are given using varImpPlot. Measured by mean decrease accuracy and

mean decrease Gini give similar results. Age, job, euribor3m are among top

5 important variables in both ways. Five social and economic attributes have

strong or moderate impact on outcome. This indicates that general economic

situation will a↵ect personal decision on investment. Marital, loan, default,

housing have relatively less impact on outcome. Since Gini index focuses more
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Table 4.4: First-order coe�cient estimates of logistic regression

Coe�cients Estimate Standard Error Z value
Intercept -2.42943 0.26775 -9.073

default(unknown) -0.32355 0.06707 -4.824
contact(telephone) 1.30720 0.30899 4.230

day of week(non-Monday) 0.37213 0.07091 5.248 3
poutcome(nonexistent) 0.64674 0.07702 8.397
poutcome(success) 1.32441 0.24240 5.464

PC1 0.48655 0.03080 15.795
PC2 0.42876 0.11372 3.770
PC3 0.10389 0.11689 0.889

age(Adult) -0.12301 0.09221 -1.334
age(Senior) 0.27996 0.14450 1.937

campaign(contact > 3) -1.27904 0.25508 -5.014
pdays(previous client) -0.77422 0.22757 -3.402

month(Summer & Winter) 0.82584 0.18375 4.494
job(other jobs) -0.35926 0.08593 -4.181

on node purity, the right plot in Figure 4.2 will be used for comparison in the

following.

Gradient boosting also measures variable relative importance (Figure

4.3) but di↵erent than random forests in details. Though we cannot compare

the importance scores from two models, two rankings also provide some con-

sistency. Both nr.employed and euribor3m rank the top 2 important variables

but in opposite order. Both top 1 important variables are far more important

than others. As it is discovered in correlation matrix before logistic regression,

2 variables have correlation above 0.9. It is not surprising to see they switch

ranks in di↵erent models like substitutes. Job, pdays, age, poutcome rank

moderately strong in both models. However, month is not as important as it
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Figure 4.2: Variable importance for random forests with two measures

is in boosting. Marital, housing, default are least important in both models.

Logistic regression does not provide direct variable importance but Z-

score can serve as an indicator for variable importance (Table 4.4). The larger

the Z-score, the more significant the variable is. Coe�cient estimates are not

reliable since it is against baseline level and not comparable between vari-

ables. Z-value is the standardized version of coe�cient estimate. Z value is

given at level of categorical variable but not category as a whole so rough

comparison to classification trees is summarized. Not surprisingly, PC1 with

Z-value 15.795 is the most important variable. This is in alignment with two

tree-based models where all original attributes rank strong or moderate impor-
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Figure 4.3: Variable relative importance for gradient boosting

tant. Marital, housing are removed by backward selection and also rank low

in random forests and gradient boosting. Month is recategorized into season

in logistic regression and become significant unlike the orignal variable in tree-

based models. Poutcome, day of week are among top 3 significant variables

in logistic regression. They are also moderately important variables in other

2 models. Compaign in 2 models is not as important as it is in regression.

Overall, variable importance remain consistent among 3 models though

models deal with variables in di↵erent ways. Social and economic variables are

among top important variables in 3 models. Marital, housing, loan are least

important in all models.
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4.2.2 Predictive Performance Comparison

Accuracy rate is plot against cuto↵ of classification for 3 models in

Figure 4.4. As cuto↵ is increasing, random forests first reaches the plateau

around cuto↵ 0.36 and then gradient boosting around 0.4. It takes longer for

logistic regression to stablize. In addition, there is a jump in accuracy rate at

cuto↵ 0.18 and 0.19.

ROC curve is a good visualization for model performance and area

under ROC curve (AUC) is a good quantitative evaluation for model perfor-

mance. In Figure 4.5, RF, GBM and LR represent random forests, gradient

boosting model and logistic regression respectively. Values in the parentheses

are corresponding AUC. By looking at ROC curves, it is a litte di�cult to

distinguish them except that RF curve falls below when false positive rate >

0.2. GBM curve is above LR curve by a tiny amount. In the part where cuto↵

< 0.2, 3 curves overlap with each other. However, gradient boosting has the

largest value AUC 0.791, then LR 0.788 and RF 0.777. There is approximate

0.11 di↵erence in between.

Lift charts delineate the e↵ectiveness to capture positive reponse. It is

correlated to business cost to reach targeted cutomers in marketing compaign.

Pattern for 3 lift charts exhibit similar to ROC curves: GBM is slightly better

than LR and RF, and RF falls below in the right part.

Overall, 3 models have similar predictive model performance in terms

of ROC curves and lift charts. Best AUC 0.791 is given by gradient boost-
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Figure 4.4: Test accuracy for three models

ing, which is close to AUC 0.794 provided by best model Neural Network[10].

Logistic regression after PCA and backward selection not only gives good pre-
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Figure 4.5: ROC curves for three models

Figure 4.6: Lift charts for three models
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dictions but also provide more actionable business insights such as better to

compaign on non-Monday. Random forests and gradient boosting as tree-

based ensembles get rid of overfitting by tuning number of trees and other

parameters, and generate good results because of more flexibility.
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Appendix

Variable Description

Variable Description Type
Age age of client Numerical
Job type of client’s job Categorical
Marital client’s marital status Categorical
Education highest education level of client Categorical
Default Does client has credit? Categorical
Housing Does client has housing loan? Categorical
Loan Does client has personal loan? Categorical
Contact contact type of client Categorical
Month month of last contact with client Categorical
Day of Week day of the week for last contact Categorical
Duration duration of contact Numerical
Campaign number of contacts performed during this campaign Numerical
Pdays number of days from last contact in a previous campaign Numerical
Previous number of contacts performed before this campaign Numerical
Poutcome outcome of previous campaign Categorical
Emp.var.rate employment variation rate Numerical
Cos.price.idx consumer price index Numerical
Cons.conf.idx consumer confidence index Numerical
Euribor3m Euribor 3 month rate Numerical
Nr.employed number of employees Numerical
y Does the client subscribe a deposit? Categorical
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