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Phosphorus speciation in municipal biosolids for efficient phosphorus 
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Supervisors:  Kerry Kinney and Lynn Katz 

 

Phosphorus is a required element for industrialized crop production. Our ability to 

produce phosphorus fertilizers has allowed humanity to sustain its population. The current 

sources of phosphorus are apatite sedimentary deposits geographically concentrated in four 

countries (Vaccari 2009). Recent reports have suggested that these resources will be 

exhausted by the end of this century and that the limited geographical distribution of 

phosphorous deposits may prove to be a source of political conflict in the future (Smil 

2000, Cordell et al. 2009, Vaccari 2009).  

 To avoid these conflicts, the potential for spent phosphorus recovery and reuse must 

be explored. One promising source stream for phosphorus recovery is from municipal 

wastewater biosolids. Current methods of phosphorus recovery from these solids only 

target 10% of the total phosphorus in the biosolids.  To recover greater quantities of 

phosphorus from biosolids, we must understand the phosphorus speciation within, and be 

able to predict the most effective recovery method for biosolids generated from 

conventional activated sludge, chemical phosphorus removal or enhanced biological 

phosphorus removal (EBPR).   
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In order to understand the speciation of these three types of biosolids, nine 

municipal wastewater treatment plants were sampled. The results showed that in biosolids 

post-anaerobic digestion and gravity thickening a large portion of the phosphorus is present 

as particulate orthophosphate and polyphosphate and requires a process that targets these 

species.  

Comparison of the speciation of conventional biosolids to the speciation of 

biosolids from chemical phosphorus removal and EBPR showed that energy intensive 

technologies such as the Stuttgart process and KREPRO can recover significant quantities 

of phosphorus from all types of biosolids. Commercial technologies (AIRPREX) only 

recovered significant quantities of phosphorus when used only with EBPR biosolids. 

Finally, a life cycle impact assessment was performed to assess eutrophication and 

green-house gas potential under various scenarios of phosphorus recovery.  The results 

showed that scenarios with chemical or biological phosphorus removal plants typically had 

a lower eutrophication potential than those with conventional activated sludge. Even 

though treatment plants with biological and chemical phosphorus removal require more 

energy and chemicals to operate, the global warming potentials were lower than for 

conventional activated sludge scenarios. 
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Chapter 1: Introduction 

MOTIVATION: 

Phosphorus and nitrogen are two vital elements required for plant growth and food 

production. Our ability to recover these nutrients from natural sources and produce 

fertilizers has allowed us to sustain the current world’s population. In 1913 Carl Bosch was 

able to scale to an industrial capacity a process developed a few years earlier by Fritz Haber 

to synthesize ammonia from nitrogen and hydrogen present in air (Haber-Bosch 

process)(Smil 1997). The ammonia produced by the Haber-Bosch process was used, 

among other purposes, for the manufacture of synthetic fertilizers (Erisman et al. 2008). 

After the invention of the Haber-Bosch process the population of the world exploded (Smil 

1997, Smil 1999). Estimates suggests that the Haber-Bosch process is responsible for 

supporting 27% of the world’s population over the past century (Erisman et al 2008). As a 

result, humanity over the past century became dependent on synthetic fertilizers containing 

nitrogen, phosphorus and potassium (Erisman et al. 2008, Cordell and White 2011).  

Phosphorus, as opposed to nitrogen, is not present in air and to this day phosphate 

rock deposits are the only readily available source of primary phosphorus (Cordell et al. 

2009, Cordell and White 2011). These deposits are the product of millions of years of 

mineralization and tectonic uplift which, by definition, makes phosphate rock a non-

renewable resource (Smil 2000). The majority of phosphate rock deposits are located in 

Morocco, China, the US and South Africa (Fixen 2008, Cordell et al. 2009, Vaccari 2009). 

These countries control 45%, 21%, 7%, and 5%, respectively of the world’s phosphorus 
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reserves (Fixen 2008, Vaccari 2009). Despite its control over 7% of the world’s phosphate 

rock reserves, the US is still the largest individual importer of phosphate rock (Jasinski 

1999, Cordell et al. 2009, Smit and Bindraban 2009, Vaccari 2009). Highly populated 

countries in Asia have to import large quantities of phosphorus and now account for about 

half of the consumption of phosphorus fertilizers (Schoumans et al. 2015). The high 

demand for phosphorus and the concentration of phosphate rock mines in a few geographic 

locations could prove to be a source of political conflict in the future as the availability of 

phosphate rock decreases. Some researchers estimate that, under current conditions, the 

world’s phosphate production will peak in 2033 and will be exhausted by the end of the 

century (Smil 2000, Cordell et al. 2009, Cordell and White 2011). 

After mining, the phosphate rock undergoes additional treatment to make it soluble 

and readily available for growing crops (Smit and Bindraban, 2009). The mined 

phosphorus then makes its way through the food chain and ultimately ends up in municipal 

sewer systems. According to different estimations, 20 -30% of mined phosphorus is wasted 

as sewage globally (Shimamura et al. 2003, Brunner 2010). Once in the wastewater 

treatment plant, phosphorus is removed from the liquid phase in the sedimentation and 

activated sludge processes. Dueñas et al. (2003) reported the removal of up to 70% 

phosphorus from influent wastewater in treatment plants without phosphorus removal 

processes and Barnard (1984) reported up to 99% phosphorus removal in plants with 

biological phosphorus removal processes. All the removed phosphorus is concentrated into 

the biosolids which are usually disposed via landfilling of dewatered or incinerated solids 

(Cornel and Schaum 2009, Hong et al. 2009, Blotcher et al. 2012). 
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There are many options available to reuse the phosphorus present in biosolids. The 

most successful options to date are direct land application, and recovery via inorganic 

precipitation (Coats et al. 2011). Land application is a method in which anaerobically 

digested biosolids are mixed with topsoil to replenish lost nutrients. Municipalities such as 

the City of Austin sell composted biosolids for fertilizing purposes. The major drawback 

of land application is the low nitrogen to phosphorus mass ratio (N:P2O5) in the biosolids. 

Usually plants need more nitrogen than phosphorus to grow. A mass N: P2O5 ratio between 

3 and 5 is considered optimum for plant growth, but biosolids have a N:P2O5 ratio of 

approximately 1 (Yuan et al. 2012). Imbalanced biosolids can produce run-off with high 

concentrations of phosphorus that contribute to the eutrophication of natural water bodies 

(Maguire et al. 2000a & b, Schroder et al. 2008). Some states limit the amount of total 

phosphorus that can be applied to land and these regulations have made the application of 

biosolids unsustainable at some sites. Other drawbacks of reusing phosphorus by direct 

application of biosolids are the bulkiness of the product. Moreover, shipping biosolids from 

cities, where the sewage is produced and treated, to farms is a logistical challenge and a 

high energy burden. 

The second option for recovery of phosphorus is via inorganic precipitation, most 

commonly as struvite. Struvite is a solid crystal that is produced when equal moles of 

magnesium (Mg2+), ammonium (NH4
+) and orthophosphate (PO4

3-) are present under 

alkaline conditions (Liu et al. 2013). Municipal biosolids are ideal candidates for struvite 

formation since they are rich in both phosphate and ammonium. This technology utilizes 

either the liquid portion of the biosolids separated during thickening/dewatering (known as 
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supernatants or sidestreams) or the bulk pre-dewatering biosolids as a source of ammonium 

and phosphate. The supernatant or sludge is passed through a reactor in which pH is 

increased to 9 and the Mg2+ concentration is controlled to reach a molar Mg2+:PO4 ratio of 

1.05:1 (Liu et al. 2013). Struvite crystals form in the reactor, precipitate and are collected 

(Battistoni et al. 2001, Shimamura et al. 2003, Liu et al. 2013, Maaβ et al. 2014). Struvite 

precipitation from biosolids has been extensively studied (Battistoni et al. 2001, Doyle and 

Parsons et al. 2002, Shimamura et al. 2003, Shimamura et al. 2008, Pastor et al. 2010), and 

different variations of the previously described technology are available in the market 

today (Liu et al. 2013, Cullen et al. 2013, Maaβ et al. 2014, Schoumans et al. 2015).  

Although this technology has been successfully implemented around the world, the major 

drawback is that only the dissolved orthophosphate present in the biosolids is targeted for 

recovery. The phosphorus present as particulate phosphates cannot be recovered.  

Shortcomings of the current recovery technologies can be solved by targeting the 

appropriate species of phosphorus for a particular type of biosolids for recovery. Targeting 

a more abundant species of phosphorus in the biosolids will increase valuable inorganic 

phosphates recovery and in turn will promote a more balanced N: P2O5 ratio in the 

biosolids for direct land application. The knowledge of the speciation of phosphorus in 

liquid and solid fractions of municipal biosolids collected from various processes within a 

treatment plant will provide a rational approach for selection of appropriate target 

phosphorus species and technologies for its recovery.  Moreover, phosphorus speciation 

and recovery data need to be incorporated into a life-cycle analysis to assess the potential 
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eutrophication and global warming benefits associated with replacing fertilizers sourced 

from phosphorus mines with phosphorus recovered from wastewater treatment plants.   

APPROACH: 

Phosphorus can be present as orthophosphates, polyphosphates or organic 

phosphates in wastewater: (Sawyer et al. 2003, Tchobanoglous et al. 2004), and all of these 

forms can be found either in the dissolved phase or in the particle phase. The goal of this 

dissertation research was to couple detailed measurements of phosphorous speciation in 

biosolids from conventional and advanced wastewater treatment plants in the US with P-

recovery technology data and life cycle analyses to identify the most effective and least 

environmentally-harmful phosphorus recovery and reuse strategies for wastewater 

treatment plants in the U.S.  

This research focused on achieving four objectives necessary to understand 

phosphorus speciation in typical wastewater treatment processes and to identify the most 

suitable technologies for phosphorus recovery and reuse. The first two of the four 

objectives address phosphorus speciation within conventional activated sludge wastewater 

treatments plants.  

Objective 1. Determine the effect of anaerobic digestion on the speciation of phosphorus 

in biosolids generated from conventional activated sludge wastewater treatment plants. 

There is a need to understand the effects of anaerobic digestion on phosphorus 

speciation in conventional biosolids. Optimizing anaerobic digestion for methane 

production has been well researched but its role in the speciation of phosphorus in the 
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digested biosolids is still unknown. Several investigators have monitored the dissolved 

orthophosphate and total phosphorus concentrations in biosolids before and after digestion 

of enhanced biological phosphorus removal biosolids (EBPR). However, there is a need to 

understand how the particulate orthophosphates, polyphosphates and organic phosphates 

species change during anaerobic digestion as recovery of phosphorus from these biosolids 

depends on the speciation.  Moreover, information about the speciation of conventional 

activated sludge biosolids before and after anaerobic digestion is lacking in the current 

published literature. 

Objective 2. Understand the effect of gravity thickening on phosphorus speciation in 

biosolids generated from conventional activated sludge wastewater treatment plants. 

A second question addressed in this research focuses on how gravity thickener 

operation affects the speciation of phosphorus in biosolids. The residence time of biosolids 

in gravity thickeners (1 day) is sufficiently long that it may affect phosphorous speciation. 

Two published studies suggest that gravity thickening of biosolids enhances the 

orthophosphate concentration in the liquid phase of thickened solids (Marti et al. 2008 a, 

b). However, only gravity thickening of EBPR biosolids was studied and the effects of 

gravity thickening on phosphorus speciation in conventional biosolids are still unknown. 

Objective 3. Use the phosphorous speciation data collected in this study and phosphorus 

recovery technology performance data published in the literature to estimate phosphorus 

recovery and the N:P2O5 ratio in biosolids generated from conventional and advanced 

wastewater treatment plants. 
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Three different phosphorus recovery technologies were examined. The AIPREX 

technology developed in Berlin targets dissolved orthophosphates, and published recovery 

estimates were based on plants with EBPR. The Stuttgart technology targets both dissolved 

and particulate orthophosphates and was developed to recover phosphorus from chemically 

treated biosolids. Thirdly, the KREPRO process targets polyphosphates and 

orthophosphates and was also developed to treat chemically treated biosolids. Objective 3 

will be accomplished by utilizing the results of previous research quantifying the estimated 

P recovery from these technologies in conjunction with the data collected in this 

dissertation on phosphorus speciation in biosolids. Specifically, the speciation of 

phosphorus in biosolids generated in conventional, EBPR and chemically-enhanced 

wastewater treatment plants was used to estimate the percentage of the total phosphorus 

that can be recovered and the N:P2O5 that will be achieved after P-recovery via the 

AIRPREX, KREPRO and Stuttgart technologies. 

Objective 4. Determine the life cycle and environmental (global warming and 

eutrophication) impacts from recovering phosphorous from wastewater treatment plant 

biosolids. 

There is a need to quantify the environmental impact of recycling phosphorus from 

wastewater treatment plants as a function of the type of wastewater treatment plant and P-

recovery technology employed.  Three types of wastewater treatment plants were 

considered: (1) conventional activated sludge plants (2) treatment plants that incorporate 

enhanced biological phosphorous removal (EBPR) and (3) treatment plants that 

incorporate chemical P removal processes. For each of these types of WWTPs, three 
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phosphorus recovery technologies were considered (AIRPREX, Stuttgart Process and 

KREPRO). Phosphorus recovery technologies such as the Stuttgart and KREPRO 

processes can recover significantly more phosphorus than commercial technologies such 

as AIRPREX but they require more energy and chemicals. Recovering higher quantities of 

phosphorus from biosolids will generate biosolids with higher N:P2O5 ratios with less 

potential to leach phosphorus into receiving waters. 

As discussed previously, the current scientific literature does not provide complete 

answers to the questions identified above. The objectives listed above have been designed 

to provide a more thorough understanding of phosphorus speciation in WWTP biosolids 

and to identify conditions for improved phosphorus recovery and reuse. 

 The first two objectives are addressed in Chapter 3, the third objective is discussed 

in Chapter 4 and the final objective is discussed in Chapter 5 of this dissertation.  
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Chapter 2: Literature Review 

Optimization of phosphorus recovery from wastewater treatment plants requires an 

understanding of the distribution and speciation of phosphorus in the liquid and solid 

streams as well as an understanding of the capabilities of current technologies for recovery 

of each species. The following literature review begins by providing a summary of the 

phosphorus species present in municipal wastewater and biosolids. Wastewater and 

biosolids treatment processes that may have an impact on phosphorus speciation are 

discussed as it is expected that phosphorus will not only be transferred between liquid and 

solid phases but that speciation will change within each phase during treatment. Finally, 

current options for recovery and reuse of phosphorus from municipal biosolids are 

reviewed within the context of recovery of the various phosphorus species, potential for 

reuse and the associated environmental and technical challenges. Throughout the review, 

knowledge gaps that require further research are highlighted.  

 PHOSPHORUS SPECIES IN WASTEWATER 

Phosphorus species within the biosolids can be difficult to quantify. That is why 

phosphorus species are typically measured by extraction techniques coupled with 

colorimetry. In wastewater systems, scientists usually extract phosphorus species using 

methods established by the American Public Health Association (APHA). The extracted 

phosphorus is grouped into orthophosphate, polyphosphates or organic phosphates and any 

of these can be present in the particulate or dissolved phase (Tomson and Vignona 1984, 

Parsons and Smith 2001, Tchobanoglous et al. 2004). This speciation method was selected 
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to be used in the present study because it is largely utilized in the published literature to 

determine phosphorus in wastewater and wastewater biosolids (Munch and Barr 2001, 

Dueñas et al. 2003, Shimamura et al. 2008, Pastor et al. 2008, Zeng et al. 2010 and others). 

Also, the materials and equipment required for the extraction methods utilized in this study 

are portable. This is very necessary for plants with EBPR biosolids since polyphosphate 

hydrolysis occurs quickly after biosolids going anaerobic (Romanski et al.1997). 

Moreover, the extraction methods are similar to the phosphorus recovery technologies 

being studied (Hansen et al. 2000, Güney et al. 2008, Sartorius et al. 2012, Antakyali et al. 

2013). Soil scientists on the other hand utilize a method established by Psenner et al. (1984) 

and group phosphorus into water soluble phosphorus (water extraction), phosphate bound 

to iron (Bicarbonate Dithionite extraction), phosphate bound to aluminum (NaOH 

extraction), phosphate bound to calcium carbonate, magnesium (e.g., apatite and 

struvite)(HCl extraction) and organic phosphates (persulfate digestion) (Uhlmann et al. 

1990). Polyphosphates are grouped in this case with apatite and struvite phosphorus 

(Uhlmann et al. 1990). Only a few techniques such as X-ray absorption fine structure 

(XAFS) and X-ray absorption near-edge structure (XANES) have been used to determine 

specific concentrations of individual phosphorus species in biosolids and manures. 

However these measurements require sophisticated equipment that cannot be utilized on 

the field.  

Dueñas et al (2003) investigated the removal of phosphorus in wastewater treatment 

plants (WWTPs) in Spain. As illustrated by Figure 1, most of the particulate phosphorus 

in the influent to WWTPs is removed by primary clarification (Dueñas et al 2003). A 
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portion of the dissolved phosphorus is then captured in the particulate phase during 

biological treatment or by chemical treatment and removed from the wastewater during 

secondary clarification (Dueñas et al 2003). Phosphorus in the biosolids is mostly in the 

particulate phase (Cullen et al. 2013) but some phosphorus is present in the liquid phase 

and can be separated from the biosolids by thickening and dewatering. Parsons and Smith 

(2001) and Dueñas et al (2003) reported that close to 50% of the total phosphorus found in 

the influent to typical domestic wastewater treatment plants is in the form of 

orthophosphate with the remainder as polyphosphates (35%) and organically bound 

phosphates (15%). However, the speciation of the dissolved and particulate phosphorus in 

the biosolids produced by primary and secondary clarification is still largely unknown.  
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Orthophosphate 

Orthophosphates are a group of phosphorus species that make up the phosphoric 

acid system and include H3PO4, H2PO4
-, HPO4

2-, and PO4
3-. These species are the only 

bioavailable form of phosphorus and the only species that form solid minerals (Nriagu, 

1984, Zeng et al. 2010, Doyle and Parsons 2002). Orthophosphates can form over 30 

different compounds and their precipitation is governed by pH (Nriagu 1984, Stumm and 

Morgan, 1995). The most common solids that form in wastewater and wastewater biosolids 

are hydroxyapatite (HAP) [Ca10(PO4)6(OH)2], brushite [Ca(HPO4)•2H2O], strengtite 

[FePO4•2H2O], vivianite [Fe3(PO4)2•8H2O], variscite [AlPO4] and magnesium struvite 

[MgNH4PO4] (Tomson and Vignona 1984, Wild et al. 1997, Marti et al. 2008a). The 

formation of potassium struvite has been reported in the literature but only under low 

Figure 1. Fate of particulate and dissolved phosphorus in a wastewater treatment plant. 
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ammonium concentrations which is not the case in typical municipal wastewaters (Marti 

et al. 2008a, Mehta and Batstone 2013). The occurrence of one phosphorus solid versus 

the other depends on the concentration of each individual ion as well as the pH and redox 

conditions of the solution (Wild et al. 1997, Mehta and Batstone 2013). 

The production of phosphoric fertilizer involves the dissolution of sedimentary 

phosphate rock formed of particulate orthophosphates (Hydroxyapatite, fluoroapatite and 

chloroapatite) with sulfuric acid (Wood and Cowie 2004, Fixen 2008, Nieminen 2010). 

The reaction of sulfuric acid with phosphate rock produces orthophosphoric acid fertilizer 

that can be converted into polyphosphate fertilizer by heat treatment (Jensen 2007). It has 

been demonstrated that for farming applications there is no difference between using 

orthophosphate or polyphosphate fertilizer (Jensen 2007, Rhem 2013). 

Polyphosphates 

Polyphosphates are molecules formed by two or more phosphorus atoms sharing 

an oxygen atom (Tchobanoglous et al. 2004, Rao et al. 2009). In other words, 

polyphosphates are a combination of two or more orthophosphates. One of the most 

biologically important polyphosphates molecules is ATP, which serves as an energy source 

for microorganisms (Rao et al. 2009). Polyphosphates are very stable in drinking water 

over a range of pH levels and temperatures (Rao et al. 2009). Due to their stability, 

polyphosphates were used in synthetic detergents. Polyphosphates were later banned from 

their use in detergents to avoid excessive phosphorus discharges to natural streams.  
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Even though polyphosphates are stable in “clean” water, they are easily 

transformed to orthophosphates in the presence of bacterial enzymes (Snoeyink and 

Jenkins 1980, Kuroda et al. 2002); the widespread availability of these enzymes in soils is 

the reason that polyphosphates make excellent fertilizers. In EBPR plants, wastewater is 

alternated between anaerobic and aerobic conditions to stimulate bacteria into assimilating 

dissolved orthophosphate (liquid-phase) in large quantities and producing particulate 

polyphosphate within the cell (solid-phase) (Kuroda et al. 2002, Kodera et al. 2013). A 

detailed explanation of the EBPR process is provided later in this section. 

 

Organic Phosphate 

Organic phosphates are phosphorus molecules that have been incorporated into 

organic material including within microbial cells. Organic phosphates are present primarily 

in the cell membrane as phospholipids and in the DNA as the bond between base pairs 

(Madigan et al. 2009). Organic phosphates are not a significant fraction of the total 

phosphorus in domestic wastewater, but are significant in wastes rich in microorganisms 

such as wastewater biosolids and some industrial wastewaters (Tchobanoglous et al. 2004). 

Most organic phosphates are part of the bacterial cells (Shimamura et al. 2008) and thus it 

is likely that most will be in the solid phase of biosolids. 

In the natural environment, the transformation among species of phosphorus sustains 

aquatic life. Orthophosphates in natural environments are utilized by algae and aquatic 

plants for their growth. The organic phosphates in the algal biomass is eventually 
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decomposed by microorganisms that store energy in the form of polyphosphates (Madigan 

et al. 2009). When microorganisms utilize the stored energy, orthophosphates are released 

to solution, replenishing the available orthophosphate pool for algae growth (Madigan et 

al. 2009, Sundby et al. 2012). 

CONDITIONS THAT IMPACT PHOSPHORUS SPECIATION IN MUNICIPAL BIOSOLIDS 

Municipal biosolids are formed during sedimentation of particles in wastewater 

treatment plants. Dueñas et al. (2003) reported that more than 90% of the particulate 

phosphorus in wastewater can be removed via sedimentation; the collected biosolids are 

then typically sent to solids processing facilities and ultimately to a landfill. In the last 50 

years there has been an increasing interest in removing phosphorus from wastewater 

effluents to prevent algal blooms (Marti et al. 2008, Tchobanoglous et al. 2004). Future 

limitations on phosphorus discharges permitted for wastewater treatment plant effluents 

will increase the mass of phosphorus that is removed via the biosolids. In 1996, the USEPA 

established a recommended concentration limit of 0.05 mg/L for total phosphorus that 

enters lakes and 0.1 mg/L for total phosphorus that enters flowing waters (Litke 1999). 

Since this is just a recommended limit, states are free to choose their regulatory limits 

which can vary significantly (Litke 1999). For, example the Wisconsin Department of 

Natural Resources has established the limit for total phosphorus discharge at 1 mg/L for 

point sources and total phosphorus effluent limits; and, phosphorus limits for the 

Everglades area in Florida are as low as 0.01 mg/L (NR 217 2012, Mayer et al. 2013, Blair 
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et al. 2015). In contrast, states such as Iowa, Kansas and Nebraska (to name a few) have 

no phosphorus limits in place for discharges over 1 MGD (EPA 2016). 

  In this section the wastewater characteristics and treatment processes that may 

affect phosphorus speciation in municipal biosolids are reviewed. 

Wastewater Treatment Plant Influent Effects 

The principal wastewater influent characteristic that affects the removal of 

phosphorus in municipal biosolids is the concentration of cations, specifically the 

concentrations of Ca, Mg, Al and Fe. One of the principal cation sources in the wastewater 

treatment plant influent is rainfall runoff, especially in locations with soluble geology. The 

contribution of rainfall runoff also depends on the permeability of the sewer system. Older 

cities in the US (i.e., New York, Chicago, and Philadelphia) have combined sewers in 

which domestic and industrial discharges are mixed with rainfall runoff and treated before 

discharge (Burm and Vaughan 1966). In contrast, separate sewers carry only domestic and 

industrial discharges. However, separate sewers are not completely sealed and infiltration 

is possible (Tchobanoglous et al. 2004). 

Alkalinity Source for Wastewater Treatment Effects 

Another major source of cations in municipal biosolids are the salts used for 

supplemental alkalinity required to achieve the removal of organics and nutrients in the 

activated sludge process (Tomson and Vignona 1984, Droste 1997, Tchobanoglous et al. 

2004). In some wastewater treatment plants, operators need to supply extra alkalinity in the 

form of NaHCO3, MgOH, lime [Ca(OH)2], or limestone [CaCO3] (Tomson and Vignona 
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1984, Liu and Koenig 2002). The choice of additional alkalinity can have an impact on the 

phosphorus species found in biosolids because, as opposed to sodium, magnesium and 

calcium easily form precipitates with orthophosphates. Calcium ions alone, can 

significantly decrease the dissolved orthophosphate concentrations when present in the 

biosolids at concentrations above 100 mg/L (de-Bashan and Bashan 2004). The addition 

of sodium bicarbonate however, can produce minor inhibition of hydroxyapatite (HAP) 

formation at neutral pH, and produce major inhibition when coupled with Mg (Cao and 

Harris 2008).  

Phosphorus Removal Processes Effects 

Phosphorus removal processes in wastewater can be divided between chemical and 

biological processes. Chemical removal of phosphorus is still the most popular process due 

to its simple operation and effectiveness (Morse et al. 1998, de-Bashan and Bashan 2004). 

Chemical phosphorus removal consists of dosing wastewater with salts that react with 

orthophosphates and precipitate during sedimentation (Tomson and Vignona 1984). Iron 

salts and alum are the most commonly used reagents to chemically remove phosphorus 

from wastewater. Lime is also used when additional alkalinity is required (Tomson and 

Vignona 1984, Droste 1997). These salts can be added during primary, secondary, and even 

tertiary treatment (Tomson And Vignona 1984). The chemical dosage can significantly 

affect the speciation of phosphorus in the biosolids generated in each process. Studies 

suggest that utilizing biosolids generated from chemical phosphorus removal for recovery 

is challenging since the majority of the orthophosphates are bound to iron or aluminum as 
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insoluble salts (de Bashan and Bashan 2004, Cornel and Schaum 2009). This matter will 

be further discussed later in this section and will be further studied in the light of 

phosphorus speciation in the subsequent chapters. 

In addition to chemical precipitation approaches, a range of enhanced biological 

phosphorus removal (EBPR) treatment processes can also be employed at wastewater 

treatment plants to recover phosphorus. EBPR processes utilize a group of microorganisms 

known as phosphorus accumulating organisms (PAOs) that under alternating anaerobic and 

aerobic conditions store high quantities of phosphorus in the form of polyphosphate (Morse 

et al. 1998). PAOs such as Acinetobacter spp. can store polyphosphates at levels up to 30% 

of their dry weight (Parsons and Smith 2008). PAOs consume polyhydroxybutyrate (PHB) 

and orthophosphates under aerobic conditions to produce polyphosphates, which are stored 

inside their cell wall (de Bashan and Bashan 2004). Under anaerobic conditions PAOs 

utilize their stored polyphosphates as a source of energy to consume volatile fatty acids 

(VFAs), producing polyhydroxybutyrate (PHB) and orthophosphates (Fuhs, et al. 1975, 

Parsons and Smith 2008). When aerobic conditions are returned, these microorganisms 

consume more orthophosphates than they previously released.  This process can achieve 

phosphorus removals from wastewater influents of greater than 90% (Morse et al. 1998, de 

Bashan and Bashan 2004). The phosphorus trapped in the solid phase of the biosolids can 

be released into the liquid phase as dissolved orthophosphate by allowing the biosolids to 

go anaerobic (Liao et al. 2003, de Bashan and Bashan 2004). This process is known in the 

literature as polyphosphate hydrolysis and will be discussed in this and the following 

chapters. 
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EFFECT OF BIOSOLIDS TREATMENT PROCESSES ON PHOSPHORUS SPECIATION 

As stated previously, biosolids accumulate during sedimentation of particles present 

in wastewater, and these biosolids usually require further treatment before final disposal. 

Some of the most common treatment processes are thickening, anaerobic digestion and 

dewatering. In this section the potential effects of these processes on phosphorous 

speciation will be reviewed in the light of the available literature.  

Thickening 

Thickening is a sedimentation process that increases the solids content of the 

biosolids obtained from primary or secondary clarifiers. Solids concentrations can be as 

high as 15%, depending on the thickening process; higher values would lead to issues with 

pumping the solids (Tchobanoglous et al. 2004, Turovskiy and Mathai 2006, Sanin et al. 

2011). This process is typically done to optimize the use of space in downstream anaerobic 

digesters (Tchobanoglous et al. 2004). The most common methods of thickening are 

gravity settling, air-flotation, centrifugation, belt thickening, and rotary drums (Droste 

1997, Tchobanoglous et al. 2004). The effluents from thickening can be utilized for 

phosphorus recovery via struvite precipitation (Cullen et al. 2013). 

Gravity thickeners 

These thickeners are similar to clarifiers where larger particles are allowed to settle 

and water exits over weirs (Tchobanoglous et al. 2004, Turovskiy and Mathai 2006, Sanin 

et al. 2011). Gravity thickeners have a higher bottom slope than clarifiers to avoid 
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anaerobic decomposition (Turovskiy and Mathai 2006). Gravity thickeners usually work 

best for primary biosolids since their high initial solids content [2-7%] require less 

thickening (Turovskiy and Mathai 2006, Droste, 1997). Although some authors report that 

this method is being used for secondary and mixed biosolids (Turovskiy and Mathai 2006, 

Pastor et al 2008), the low density of secondary sludge biosolids makes it difficult to 

effectively  thicken them by gravity (Sanin et al. 2011) 

The mixing of primary and secondary sludge can be a key factor that affects 

phosphorus speciation in the biosolids. Pastor et al. (2008) reported that mixing secondary 

and primary sludge for thickening promoted the hydrolysis of polyphosphates into 

orthophosphates due to the high concentration of VFAs in the primary sludge. Gravity 

thickeners are a good option when hydrolysis of polyphosphates is required due to the high 

retention time of these reactors (Turovskiy and Mathai 2006). 

Dissolved air-flotation. 

This method consists of introducing high pressure air into a tank containing 

biosolids in order to make particles float to the surface, from where they are removed by a 

skimmer (Turovskiy and Mathai 2006). This process works better for thickening secondary 

biosolids since particles in primary biosolids are too heavy to float (Tchobanoglous et al. 

2004, Sanin et al. 2011). Hydraulic detention times in dissolved air-flotation thickeners are 

lower than in gravity thickeners (5-16 hours in gravity thickeners vs. 30 minutes in 

dissolved air-flotation)[Turovskiy and Mathai 2006, Sanin et al. 2011]. Lower retention 
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times than in gravity thickeners as well as the aeration process could prevent the hydrolysis 

of polyphosphates in the thickener. 

Centrifugation. 

Thickening by centrifugation is done by applying a centripetal force of 500 to 3000 

times that of gravity to separate particles from liquid (Turovskiy and Mathai 2006). Since 

primary sludge contain heavy particles that can damage centrifugation systems, these are 

usually utilized only for secondary sludge (Tchobanoglous et al. 2004, Turovskiy and 

Mathai 2006) However, several studies have reported centrifugation of primary and mixed 

sludge biosolids (Sanin et al. 2011). Centrifugation thickeners are very expensive to 

operate, maintain, and purchase but require less space than other systems (Turovskiy and 

Mathai 2006). Typically, centrifugation does not require biosolids conditioning, but 

sometimes inorganic polymer is used intermittently to improve performance 

(Tchobanoglous et al. 2004). Thickening by centrifugation is fast, thus hydrolysis of 

polyphosphates is not expected. Nevertheless, the addition of inorganic polymers may have 

an effect on the orthophosphate concentration in the biosolids supernatant. 

Belt thickening 

Belt thickeners consists of a large conveyor belt with a porous bottom that allows 

water to percolate through (Turovskiy and Mathai 2006, Sanin et al 2011). Belt thickening 

can be done on primary, secondary, and mixed biosolids (Turovskiy and Mathai 2006), and 

this choice can have an effect on the speciation of phosphorus in the biosolids. Belt 
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thickeners are not very energy intensive but require conditioning of the biosolids with a 

flocculant (Turovskiy and Mathai 2006, Sanin et al 2011). 

Conditioning is a process to improve the separation of solid and liquid phases of 

the biosolids. Conditioning is typically done by the addition of organic or inorganic 

chemicals to the biosolids (Turovskiy and Mathai 2006, Sanin et al. 2011). Inorganic 

conditioning agents such as ferric chloride, ferrous sulfate, aluminum chloride, and lime 

can drastically change the phosphorus speciation in the biosolids. Organic polymers are 

long hydrophilic molecules that promote aggregation of particles in the biosolids and have 

become the conditioner of choice for belt and rotary thickeners (Turovskiy and Mathai 

2006). Although there have been studies investigating the effect of organic conditioners on 

methane generation during anaerobic digestion (Gossett et al. 1978, Chu et al. 2003), their 

effect on the speciation of phosphorus in the biosolids has not been thoroughly studied. 

Rotary drum 

This system is similar to belt thickeners but instead of a conveyor belt, a circular 

rotating chamber with a permeable wall is utilized to improve the release of the water 

(Tchobanoglous et al. 2004, Turovskiy and Mathai 2006). Conditioned biosolids are 

required for this system as in the case of belt thickeners (Turovskiy and Mathai 2006). 

Anaerobic Digestion 

Anaerobic digestion is a biological process widely used to reduce the volume and 

stabilize biosolids. Anaerobic digestion is one of the oldest wastewater treatment processes, 

and it is utilized for streams with both high and low organic loading (Tchobanoglous et al. 
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2004, Turovskiy and Mathai 2006, Sanin et al. 2011). In anaerobic digestion, organic 

matter is decomposed by bacteria without the biomass increase observed in aerobic 

treatment (Droste, 1997, Tchobanoglous et al. 2004). Another important advantage of 

anaerobic digestion is that the production of useful methane gas usually makes anaerobic 

digestion an energy positive process (Turovskiy and Mathai 2006). 

In the following subsection, the chemical and biological processes that occur during 

anaerobic digestion will be described and their potential effects on phosphorus speciation 

will be identified. 

 Steps in anaerobic digestion. 

Anaerobic digestion is a processes with three identifiable steps that occur 

simultaneously. These steps are performed by a heterogeneous microbial community 

(Tchobanoglous et al 2004, Turovskiy and Mathai 2006). The first step of anaerobic 

digestion is hydrolysis. In this step large polymer molecules and particulate materials are 

solubilized by extracellular enzymes into smaller molecules that are more readily 

consumed (Tchobanoglous et al. 2004, Turovskiy and Mathai 2006). It has been reported 

that hydrolysis can become a rate limiting step in anaerobic digestion especially if the 

biosolids contain high portions of organic solids and extracellular polymeric substances 

(EPS) [Eastman and Ferguson 1981, Li and Noike 1992, Gavala et al. 2003, Appels et al. 

2008, Carrere et al. 2010]. The biggest source of organic solids and EPS in municipal 

biosolids is the secondary biosolids from the waste activated sludge process (Li and Noike 

1992). Muller (1999) and Carrere et al. (2010) showed that primary biosolids are easily 
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biodegradable compared to secondary biosolids due to EPS formed under long retention 

times. Digesting biosolids with low degradability means that some cells remain intact at 

the end of the process and the organic phosphates accumulated in these cells is not released.  

The second step of anaerobic digestion is acidogenesis or fermentation. During this 

step the products of hydrolysis are transformed into volatile fatty acids, hydrogen and 

carbon dioxide by anaerobic and facultative bacteria (Tchobanoglous et al. 2004, 

Turovskiy and Mathai 2006).  

The third step of anaerobic digestion is methanogenesis. This step is carried out by 

obligate anaerobic archaea that utilize the volatile fatty acids produced during acidogenesis 

and generate methane (Tchobanoglous et al. 2004, Turovskiy and Mathai 2006). The 

methanogens and acidogens work symbiotically. The methanogens consume the products 

of fermentation while maintaining the partial pressure of H2 low enough for acidogenesis 

to continue.  

Solids and Hydraulic Retention Time 

Solids retention time (SRT) is the average time that a solid particle spends in the 

reactor while the hydraulic retention time (HRT) is the volume of the reactor divided by 

the volume of biosolids removed per day (Droste 1997, Tchobanoglous et al. 2004, 

Turovskiy and Mathai 2006). When the process does not employ a recycle flow, the SRT 

and HRT are equal. 

Methanogens are slow growers and very sensitive to environmental conditions, 

especially pH (Turovskiy and Mathai 2006). If the SRT is not adequate, methanogens do 
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not grow in enough numbers to control the VFA concentration and the pH can decrease to 

inhibitory levels. Over accumulation of VFAs can affect phosphorus speciation in two 

different ways. First, low pH allows orthophosphates to stay in solution instead of 

precipitating. Secondly, as previously stated VFAs promote the hydrolysis of 

polyphosphates. 

Temperature 

Temperature is the parameter that determines the rate at which the microorganisms 

carry out the digestion steps. Anaerobic digestion can operate in mesophilic ranges (30-38 

ºC) or thermophilic ranges (50-57 ºC) (Droste 1997, Tchobanoglous et al. 2004). Typically 

mesophilic digesters are preferred since the energy required to maintain a stable 

temperature is significantly lower (Tchobanoglous et al. 2004). However, better solids 

destruction and methane yields have been reported with thermophilic digesters (Angelidaki 

et al. 2003, Gavala et al. 2003, Climent et al. 2007). The increased performance reported 

in the literature suggests a higher conversion of organic phosphates into orthophosphates. 

Moreover, temperature increases the solubility of phosphate molecules (Stumm and 

Morgan 1995) and thus higher dissolved phosphates are expected in thermophilic digesters. 

 

 pH and Alkalinity 

As discussed previously, methanogens are very sensitive to pH. The optimum pH 

is 7 and values below 6.8 have been reported to be difficult to correct (Tchobanoglous et 

al. 2004). In order to maintain an adequate pH, it is necessary to provide an alkalinity 
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between 60 – 120 meq/L (Tchobanoglous et al. 2004). As discussed previously the choice 

of alkalinity can drastically affect the phosphorus speciation in the biosolids. 

Dewatering 

Dewatering is the process of removing most of the water from the biosolids to 

reduce the volume and decrease costs of disposal (Tchobanoglous et al. 2004, Turovskiy 

and Mathai 2006). The most common methods for dewatering are centrifugation, belt filter 

press dewatering and natural drying. 

Centrifugation and belt filter press dewatering are similar to their thickening 

counterparts, but produce solids with over 15% solids content (Tchobanoglous et al. 2004, 

Turovskiy and Mathai 2006). Dewatering by natural drying is the use of sunlight, 

temperature, and drainage to remove water from biosolids (Turovskiy and Mathai 2006). 

Natural drying requires large land areas to deposit the biosolids and due to regulations it 

can only be applied using stabilized biosolids. Phosphorus does not volatize (Smil 2000), 

thus all of the phosphorus is likely to stay in the dewatered biosolids or the drained water. 

Although the drained water from the drying beds is not being considered for phosphorus 

recovery in the current literature, based on the performance of drying beds it likely that this 

is a stream rich in phosphorus (Uggetti et al. 2009, Vincent et al. 2011). 

PHOSPHORUS RECOVERY ALTERNATIVES 

Many researchers (Battistoni et al. 2001, Shimamura et al. 2003, Shimamura et al. 

2008, Marti et al. 2008a, Marti et al. 2008b, Cordell et al. 2009, Bradford-Hartke et al. 

2012) have proposed different alternatives to recover and reuse the phosphorus trapped 
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within the municipal biosolids. The most developed and prevalent alternatives in the 

literature are land application and inorganic precipitation. Both methods are described in 

the following subsections. 

Land Application 

Land application of human excreta has been utilized as a fertilizer for centuries 

(Cordell and White 2011), but the use of wastewater treatment plant generated biosolids 

for soil conditioning only dates back to 1927 (Epstein 2003). The modern definition of land 

application according to Tchobanoglous et al. (2004) is “the spreading of biosolids on or 

below the soil surface and this may be on agricultural land, forest land, disturbed land and 

dedicated disposal land.” 

As stated in previous sections, biosolids are rich in both nitrogen and phosphorus. 

When biosolids are applied to the soil, the phosphorus is solubilized by bacteria, thus 

making it readily available for plants (Yuan et al. 2012). The solubility of the phosphorus 

present in the biosolids is treatment process dependent as discussed in previous sections. 

Penn and Sims (2002) and Maguire et al. (2000 a & b) demonstrated that the phosphorus 

present in biosolids from EBPR processes are more soluble than the phosphorus present in 

biosolids from wastewater plants that incorporate chemical removal. 

There are many limitations for reusing phosphorus present in biosolids via land 

application. The first limitation is the regulations imposed on land application practices. 

The utilization of biosolids in land application requires these to be classified as Class A or 

Class B biosolids (Tchobanoglous et al. 2004). Class A biosolids are those with a fecal 
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coliform most probable numbers less than 1000/g of total solids. Class A biosolids have no 

restrictions over where they can be applied (Epstein 2003, Tchobanoglous et al. 2004). 

Class B biosolids are those with fecal coliform most probable numbers less than 2 million/g 

of total solids. These class B biosolids are limited as to the location and on what crops they 

can be applied (Epstein 2003, Tchobanoglous et al. 2004). Class B biosolids are also 

regulated for heavy metals for land application (Epstein, 2003). The majority of treatment 

plants in the US produce class B biosolids though anaerobic digestion (Viau and Peccia 

2009) since class A biosolids require a composting process that some municipalities cannot 

afford. 

Another limitation to the land application of biosolids is the imbalance of the 

nitrogen to phosphorus ratio (N:P2O5). In the agricultural literature this ratio is expressed 

as the mass of nitrogen as N to the mass of P as P2O5 (diphosphorus pentoxide). Plants 

usually require a N:P2O5 of 3-5 while municipal solids usually have a N:P2O5 close to 1 

(Yuan et al. 2012). This imbalance leads to soils with excessive concentrations of 

phosphorus. This phosphorous excess can solubilize and contaminate bodies of water. 

Some states regulate the amount of phosphorus that can be applied to soils (Maguire et al 

2000 a & b, Penn and Sims 2002) and the imbalance can lead to plots of land where 

biosolids application is banned (Schober and Sims 2003). 

The final limitation to the reuse of phosphorus through land application is 

expensive transportation and risk management costs (Yuan et al. 2012). In large countries, 

like the US, farmlands are located far away from sewage treatment plants and in order to 

reuse the phosphorus trapped in the biosolids, the biosolids have to be transported 
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considerable distances. These biosolids are bulky, produce strong odors and contain 

pathogens and substances that need to be contained and managed (Yuan et al. 2012). 

Despite these limitations, land application of biosolids cannot be avoided 

completely and has to be a part of an integral solution to reuse phosphorus. However, the 

quantities of phosphorus applied to the land have to be reduced for this practice to continue.  

Inorganic precipitation 

Phosphorus recovery via precipitation technologies has been extensively studied 

especially in countries with little access to phosphate rock. The commercially available 

technologies typically precipitate struvite. Struvite is a crystal that forms when equal molar 

concentrations of ammonium, magnesium and phosphate (Equation 1) are present under 

slightly alkaline conditions (Liu et al. 2013). In some wastewater treatment plants, struvite 

is considered a nuisance as it clogs pipes and pump appurtenances (Marti et al. 2008b), but 

over the past decade there has been renewed interest in struvite from the fertilizer industry. 

Struvite has been identified to be present in the natural fertilizer guano and it can be 

delivered to soils in high quantities without burning the roots of plants (Bridger et al., 1962; 

Parsons and Smith, 2008). Struvite also has a low solubility which prevents it from washing 

out as runoff (Bridger et al., 1962; Parsons and Smith, 2008).  

𝑀𝑔2+ + 𝑁𝐻4
+ + 𝐻𝑃𝑂4

2− + 𝑂𝐻− + 5𝐻2𝑂 →  𝑀𝑔𝑁𝐻4𝑃𝑂4・6𝐻2𝑂 (1) 

Many reactor configurations have been studied for struvite crystallization. Two of 

the most developed at full-scale are the liquid fluidized bed reactor shown in Figure 1a 

commercialized by OSTARA (Liu et al. 2013) and the AIRPREXTM sludge crystal 
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precipitation reactor  (Figure 1b) developed by CNP (Maaβ 2014). The Ostara process 

utilizes the sidestream water separated from the biosolids by thickening/dewatering and 

supplies air to control pH by stripping the carbon dioxide. The AIRPREX TM system utilizes 

the bulk biosolids before dewatering as a phosphorus and ammonium source and also 

utilizes air to strip carbon dioxide and control pH. Both processes require chemicals to 

supply magnesium. Small struvite crystals or silica sand particles are sometimes added at 

the top of the reactor to promote nucleation (Battistoni et al. 2001). The optimal pH for 

struvite crystallization is between 8 and 9 (Shimamura et al. 2008; Iqbal et al. 2008, Pastor 

et al. 2010, Liu et al. 2013). When additional pH control is required NaOH, and Ca(OH)2 

can be utilized (Shimamura et al. 2003, Liu et al. 2013). Calcium hydroxide can reduce 

struvite yield but sodium hydroxide is more expensive. Since magnesium addition is 

usually required MgOH can be efficient as both pH control and Mg supply (Liu et al. 2013). 

Figure 2. a) Fluidized bed reactor utilized to precipitate struvite crystals (adapted from: 

Parsons and Smith, 2008) b) Sludge crystal precipitation reactor (adapted 

from cnp-tech.com - AirprexTM ). 

b) a) 
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Phosphorus recovery through commercial struvite precipitation technologies can 

resolve many of the limitations of direct land application. Struvite has been proven to be 

an effective supply of phosphorus to agricultural fields without producing harmful runoff 

(Bridger et al. 1962, Parsons and Smith 2008, Liu et al. 2013). Also, since it is an inorganic 

crystal it can be washed and transported without the risk of exposing humans to harmful 

pathogens. Finally, struvite can be used as a phosphorus supply for applications other than 

agriculture. 

Despite being a promising technology, commercial struvite recovery also has some 

limitations. The principal disadvantage of this product is that the main source of 

phosphorus for struvite precipitation is orthophosphate dissolved in the liquid fraction of 

the biosolids. That means that all the particulate phosphorus remaining in the solid’s cake 

remains untouched. This is the reason why some authors claim that biosolids generated 

from chemical phosphorus removal plants are not suitable for recovery via struvite 

precipitation (de Bashan and Bashan 2004). Utilizing struvite precipitation to recover 

phosphorus from EBPR biosolids is more common since the phosphorus trapped in the 

solid phase of the biosolids can be effectively released into the liquid phase by allowing 

the biosolids to go anaerobic (Liao et al. 2003, de Bashan and Bashan 2004). The principal 

disadvantage of implementing EBPR processes in wastewater systems is the operational 

complexity involved and higher energy demand compared to chemical processes (Morse 

et al. 1998). 

 As reported by Cullen (2013) from a pilot study of the first struvite recovery plant in 

the US, most of the phosphorus in the biosolids produced by sedimentation is in the solid 
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phase and remains in the solid phase. To overcome this issue, we must understand the 

speciation of phosphorus in the biosolids. 

To increase phosphorus recovery from municipal biosolids, some researchers have 

developed technologies that target more abundant species of phosphorus for precipitation. 

The Stuttgart process, developed in Germany, targets particulate and dissolved 

orthophosphate by decreasing the pH of the biosolids to 2 (Antakyali et al. 2013). At this 

pH over 98% of the orthophosphate is dissolved (Güney et al. 2008). The biosolids are then 

dosed with citric acid to complex mainly iron, aluminum and calcium to a lesser extent to 

inhibit precipitation. The solids are dewatered and the produced supernatants are used to 

precipitate struvite. (Antakyali et al. 2013).  

The KREPRO process is another technology of recovery of phosphorus that targets 

particulate and dissolved species of phosphorus in the biosolids. In this case, KREPRO 

consists of acidifying biosolids to pH 2 and then heating to 140 ºC for 30 minutes inside a 

pressurized vessel (Hansen et al. 2000). The biosolids are then dewatered and the 

phosphorus in the produced supernatants is precipitated as ferric phosphate. Hultman 

(1999) and Karlsson (2001) reported a recovery of 60 to 75% of the total phosphorus 

present in the biosolids. Hansen et al. (2000) showed that the recovered phosphorus is 

available for plant growth. 

LIFE CYCLE IMPACT ASSESSMENT (LCIA) 

Process based life cycle impact assessment is a method to account for the economic, 

energy, and environmental burden of a given process or product (Hong et al. 2009). To 
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develop a LCA, a set of scenarios that will be compared against each other are first defined. 

Next, the energy, fuel and raw material requirements as well as harmful emissions for the 

scenarios are obtained either by experimentation, modeling or through literature research. 

These values are known as life cycle inventory (LCI). The LCI is then normalized by an 

arbitrary functional unit selected by the investigator. Once normalized, one can compare 

the environmental burden or energy requirements across scenarios. 

Several researchers (Lundin et al. 2000, Hospido et al. 2005, Foley et al. 2007, Hong 

et al. 2009, Coats et al. 2011, Linderholm et al. 2012, Jossa and Remy 2015) have 

completed LCIA studies on methods for removing phosphorus from wastewater as well as 

technologies to recover the phosphorus from the biosolids produced. Foley et al. (2007) 

focused on the environmental burden that activated sludge processes have on the local and 

global environment. They analyzed eight different scenarios where activated sludge (AS) 

was utilized to treat different target chemicals (for COD, nitrogen or phosphorus removal). 

The functional unit utilized was the treatment of 10 million L/d of raw domestic 

wastewater. These scenarios were modeled using a biological simulation software package 

to obtain the life cycle inventory [LCI] (fuel, energy and chemical usage, atmospheric 

emissions and transportation costs). The impacts of these LCI were then divided into 

damage categories such as carcinogens, global warming potential (GWP), land occupation, 

ozone layer depletion, and mineral extraction as specified by the IMPACT 2002+ model 

(Joliet et al. 2003). The environmental burden index (EBI) was also calculated for each 

category. Foley et al. (2007) concluded that although biological phosphorus removal is 

beneficial for the local environment by reducing eutrophication of streams, it is detrimental 
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to the global environment because of its energy intensity. Coats et al. (2011) also compared 

different treatment processes for phosphorus removal (chemical and biological) but only 

compared the global warming impact of using one technology versus the other instead of 

calculating the EBI. 

 Hong et al. (2009) investigated the impacts of landfilling versus agricultural use of 

dewatered biosolids. They showed that anaerobic digestion, despite producing global 

warming gasses such as CO2 and methane, is very effective at reducing the solid 

concentration in the biosolids. Less energy is then required to transport and land apply 

biosolids after anaerobic digestion.  

Linderholm et al. (2012) investigated the global warming potential (GWP) generated 

by different alternatives to reuse phosphorus present in municipal biosolids for agricultural 

purposes in Sweden. Direct land application of biosolids as well as the use of precipitated 

struvite, and phosphorus from incinerated biosolids were studied and compared to 

commercial fertilizer triple superphosphate (TSP) in their investigation. The GWP 

generated per 1 kg of P delivered to farmlands was calculated for each scenario.  

Linderholm et al. (2012) concluded that direct land application of sewage sludge is the 

option with the least GWP followed by struvite precipitation. These results could be 

different in larger countries such as the United States where the distances of travel from 

treatment plant to farmlands are longer and phosphorus requirements are higher. It is 

important to note that Linderholm et al. (2012) recognized that the greatest drawback with 

large-scale struvite precipitation is the large percentage of phosphorus left in the biosolids. 

The alternatives considered in this study were not compared using eutrophication potential. 
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Linderholm et al. (2012) only stated that phosphorus emissions from wastewater treatment 

plants are likely to be larger than emissions from TSP production. They did not investigated 

the likelihood of TSP leaching higher quantities of phosphorus than struvite when used for 

agricultural purposes. 

 Lundin et al. (2004) and Jossa and Remy (2015) compared commercially available 

technologies (AIRPREX, Pearl, Struvia) with harsher technologies of phosphorus recovery 

(Stuttgart Process, KREPRO, Bio-con, Gifhorn Process). Lundin et al. (2004) came to the 

conclusion that the types of phosphorus present in the biosolids can significantly impact 

the feasibility of a particular recovery technology. For instance, they suggested that the 

KREPRO technology would be more effective at recovering phosphorus from biosolids 

generated in EBPR plants as compared to biosolids generated in plants employing chemical 

phosphorus removal. However, their study examined only the biosolids generated from 

chemical phosphorus removal methods. Jossa and Remy (2015) compared commercial 

phosphorus recovery technologies (AIRPREX, Struvia and Pearl Ostara) with acid 

leaching technologies (Stuttgart Process and Gifhorn Process) using EBPR-B or Chem-P-

B as the phosphorus feed. Jossa and Remy (2015) found that the main factor that that affects 

GWP and eutrophication potential is the type of phosphorus removal employed at the 

wastewater treatment plant. Scenarios that represented the recovery of phosphorus from 

biosolids produced at plants employing chemical phosphorus removal had greater GWP 

and eutrophication potential than scenarios that represented the recovery of phosphorus 

from biosolids produced at EBPR plants. Jossa and Remy (2015) also concluded that 
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wastewater effluents from treatment plants are reduced after phosphorus recovery starts 

their operation since phosphorus returns from dewatering are lower.  

Despite the number of LCIA studies published to date, the previous studies have 

generally focused on the impacts of recovery phosphorus from biosolids generated at 

chemical phosphorus removal and EBPR treatment plants. A comprehensive analysis of 

the global warming and eutrophication impacts of phosphorus recovery that includes 

municipal biosolids generated from conventional activated sludge WWTP has not been 

performed. Conventional activated sludge (AS) is the most popular form of secondary 

treatment in the United States. According to the EPA only 3% of the wastewater discharges 

in the US are required to meet total phosphorus limits (EPA, 2016). In addition, the effects 

of nutrient runoff after farmland application of commercial fertilizers, struvite and 

dewatered biosolids have not yet been included in these previous analyses.  
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Chapter 3: Phosphorus speciation in thickened and anaerobically 

digested municipal biosolids 

INTRODUCTION 

Modern agriculture relies heavily on the manufacture of synthetic fertilizers from 

phosphorus and nitrogen. The ability to efficiently deliver nitrogen and phosphorus 

containing fertilizers to crops has allowed the world’s population to increase steadily. In 

1798 Thomas Malthus published, “Essay on the Principle of Population,” in which he 

raised concerns about the ability for humankind to survive as food production grew 

arithmetically and human populations grew exponentially. In 1913, Carl Bosch changed 

these relationships by scaling an industrial process developed by Fritz Haber (Haber-Bosch 

process) to synthesize ammonia from nitrogen and hydrogen in air (Smil 1997). The 

ammonia produced by the Haber-Bosch process was used, among other purposes, for the 

manufacture of synthetic fertilizers (Erisman et al.2008). Since the invention of the Haber-

Bosch process, food production has been able to match population growth (Smil 1997, Smil 

1999). Estimates suggest that the Haber-Bosch process is responsible for supporting 27% 

of the world’s population over the past century (Erisman et al 2008) as humanity has 

become dependent on synthetic fertilizers containing nitrogen, phosphorus and potassium 

(Erisman et al. 2008, Cordell and White 2011). 

Phosphorus, as opposed to nitrogen, is not present in air. The current sources of 

phosphorus for fertilizer production are apatite sedimentary deposits (phosphate rock) 

(Cordell et al. 2009, Cordell and White 2011). These deposits are the product of thousands 
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of years of sedimentation and tectonic uplift, which makes phosphate rock a non-renewable 

resource by definition (Smil 2000). Moreover, some researchers estimate that these 

deposits are to be exhausted by the end of this century (Smil 2000, Cordell et al. 2009, 

Cordell and White 2011). These phosphate rock deposits are also geographically 

concentrated in Western Sahara/ Morocco, China, the US and South Africa. These 

countries control 45%, 21%, 7%, and 5%, respectively of the world’s phosphorus reserves 

(Fixen 2008, Vaccari 2009). It has been suggested that this geographical concentration of 

such an important resource may prove to be a serious source of political conflict in the 

future, especially as countries without direct access to phosphate mines, such as India, 

increase in population. (Vaccari 2009). 

After mining, phosphate rock is processed to produce commercial fertilizers. The 

production of phosphoric fertilizer involves dissolution of the phosphate rock with sulfuric 

acid to produce predominantly particulate orthophosphates (Hydroxyapatite, fluoroapatite 

and chloroapatite) (Wood and Cowie 2004, Fixen 2008, Nieminen 2010). The reaction of 

sulfuric acid with phosphate rock produces orthophosphoric acid (48% phosphorus as 

P2O5) that can be converted into orthophosphoric fertilizer or it can be heated to produce 

polyphosphate fertilizer (75% phosphorus as P2O5 with 1:1 ratio of orthophosphate to 

polyphosphate)(Jensen 2007). It has been demonstrated that for farming applications there 

is no difference between using orthophosphate or polyphosphate fertilizer (Jensen 2007, 

Rhem 2013). Polyphosphate hydrolyzes and readily forms available orthophosphate by soil 

enzymatic activity when water is applied (Jensen 2007). 



 39 

After its manufacture, orthophosphate or polyphosphate-based fertilizers are 

applied to farmland soils where the phosphorus is absorbed by plants and subsequently 

makes its way up the food chain until it is consumed and excreted by humans. Some 

estimates suggest that between 20 to 30% of the total mined phosphorus ends up in 

municipal sewer systems as a mixture of particulate and dissolved phosphorus (Shimamura 

et al. 2003, Brunner 2010). The sewage is then conveyed to wastewater treatment plants 

where the wastewater and solids are treated via sedimentation and biological treatment 

processes.  

Depending on the design of the wastewater treatment plant, from 70 to 99% of the 

phosphorus in the influent is removed from the liquid phase and concentrated in the 

biosolids (Barnard 1984, Dueñas et al. 2003). These biosolids are typically processed by 

anaerobic digestion followed by landfilling, incineration or direct land application of the 

remaining biosolids.  Nearly half of the biosolids produced in the US are wasted by 

landfilling or incineration (Figure 3) (NEBRA, 2007) with the remainder discharged via 

direct land application. Biosolids for direct land application are first dewatered and then 

mixed with topsoil from agricultural fields to replenish lost nutrients. A major disadvantage 

of using direct land application for phosphorus reuse is the low concentration of nitrogen 
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relative to the phosphorus concentration (Korboulewsky et al. 1989, Yuan et al. 2012, Shaw 

et al. 2014). Phosphorus accumulation over time in the soil and treated fields prevents 

further amendment with wastewater biosolids (Maguire et al. 2000 a & b, Maguire et al. 

2001). 

To improve phosphorus reuse and reduce the quantities of biosolids that are used 

directly as soil amendments, many researchers (Shimamura et al. 2003, Berg et al. 2003, 

de-Bashan and Bashan 2004, Shimamura et al. 2008, Cordell et al. 2009, Mehta and 

Batstone 2013, Hultman et al. 2014 and others) have promoted the recovery of phosphorus 

in an inorganic form that can be readily stored and transported. The most common 

technology implemented to date involves the recovery of dissolved orthophosphate via 

struvite crystallization (Coats et al. 2011). Struvite crystallization is achieved by 

precipitating the orthophosphate (PO4
3-) present in the liquid fraction of the biosolids 

Figure 3. Disposal methods for biosolids produced in the 

United States (NEBRA 2007) 
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together with magnesium (Mg2+) and ammonium (NH4
+) under alkaline conditions (Liu et 

al. 2013). The struvite precipitant formed is an inorganic crystal with low water solubility 

that can be used as a slow release fertilizer. This technology has been extensively studied 

(Battistoni et al. 2001, Doyle and Parsons et al. 2002, Shimamura et al. 2003, Shimamura 

et al. 2008, Pastor et al. 2010) and commercially developed by Ostara and CNP Inc. among 

others companies. The major drawback associated with the current technology is that only 

the dissolved orthophosphate species is targeted for recovery and the phosphorus present 

in the particulate phase of the biosolids cannot be recovered.  

For instance, application of the Ostara Pearl in 2011 to recover phosphorus from 

dewatering supernatants at the Durham advanced wastewater treatment plant was only 

minimally successful. 73% of the total phosphorus present in the municipal biosolids tested 

were not recovered by this process (Cullen et al. 2013). The Ostara Pearl process, which 

consists of increasing the pH of dewatering supernatants to a value close to 8 and dosing 

with magnesium to precipitate struvite, is not capable of extracting or dissolving 

phosphorus from many solids. The Durham plant utilized both biological and chemical 

phosphorus removal and it is likely that most of the phosphorus remained in the particulate 

solid phase after dewatering either bound to the chemicals used for phosphorus removal or 

within bacteria utilized for biological phosphorus removal. The low overall recovery at the 

Durham plant highlights one of the most significant criteria for evaluating P recovery 

technologies and is the focus of this research; selection of a P recovery technology should 

be based on matching the predominant P species in the biosolids of interest with 

phosphorus recovery technologies that target those phosphate species. 
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Determining the particular phosphorus species in the water or solid phases of 

biosolids is challenging because most rapid and economically-feasible analytical 

techniques cannot differentiate between all the species potentially present (i.e., ferric 

phosphates, apatite, aluminum phosphates, pyrophosphates, metaphosphates, ADPs, ATPs 

etc.). As a result, phosphorus speciation is typically defined operationally by the technique 

used to extract and analyze the phosphorus. One of the most common and standardized 

phosphorus speciation techniques (Standard Method 4500-P) separates and quantifies the 

orthophosphate, polyphosphate and organic phosphate constituents in a sample (APHA, 

2012). These three phosphate fractions can be found in the dissolved and particulate phases 

throughout wastewater treatment plants (Sawyer et al. 2003, Tchobanoglous et al. 2004).  

This method of phosphorus speciation is utilized by most environmental regulatory 

agencies, treatment plant operators as well as by researchers investigating phosphorus 

recovery technologies. 

The concentration of each phosphorous species in the biosolids is affected by the 

presence or absence of a phosphorus removal process (e.g., enhanced biological 

phosphorus removal or chemically enhanced phosphorus removal) at wastewater treatment 

plants as well as the particular biosolids process employed (e.g., dissolved air flotation vs 

gravity thickening). For example, it has been established that anaerobic digestion of 

biosolids produced exclusively by enhanced biological phosphorus removal increases the 

dissolved orthophosphate concentration in the biosolids via polyphosphate hydrolysis 

(Latimer et al. 2012). While transformation of phosphorus species within gravity thickeners 
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has not been investigated, gravity thickeners do operate under anaerobic conditions (Marti 

et al. 2008a, Pastor et al. 2008) that could promote hydrolysis of polyphosphates for EBPR 

or even conventional activated sludge biosolids (where no targeted phosphorus removal 

process is included). The vast majority of the studies that have investigated the recovery of 

phosphorus from wastewater biosolids (Hansen et al. 2000, Kuroda et al. 2002, Liao et el. 

2003, Güney et al. 2008, Petzet and Cornel 2009, Marti et al. 2010, Rittmann et al. 2011, 

Cullen et al. 2013 and many others) have focused on biosolids generated from plants that 

incorporate either biological (EBPR) or chemical phosphorus removal (Chem-P). Indeed, 

studies investigating P recovery in biosolids generated in conventional activated sludge 

(AS) plants is absent from the published literature.  

Conventional AS is the most common form of secondary treatment in the United 

States since only about 3% of wastewater treatment plant discharge permits include 

phosphorus limits (EPA, 2016). However, there are no published studies identifying the 

optimal location for phosphorus recovery (i.e., waste activated sludge [WAS], thickened 

sludge or digested sludge) or the appropriate phosphorus species that should be targeted to 

achieve maximum recovery. It has been suggested in the literature that the best location in 

a treatment plant to recover phosphorus via commercial technologies (i.e., AIRPREX, 

Ostara Pearl) is after anaerobic digestion because polyphosphate accumulated by bacteria 

hydrolyzes under anaerobic conditions, thereby increasing dissolved orthophosphate 

concentrations (Petzet and Cornel 2009, Marti et al. 2008, Marti et al. 2010). However, 

anaerobic digestion experiments with conventional AS biosolids performed by the author 
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(Fig 4.) showed that the recoverable phosphorus species (dissolved orthophosphate) for 

struvite precipitation actually decreases after anaerobic digestion.  

Figure 4.  Dissolved orthophosphate concentrations in conventional activated sludge 

biosolids undergoing anaerobic digestion in laboratory scale batch reactors. 

Thickened biosolids were obtained from Hornsby Bend Biosolids Treatment 

plant, Austin, Tx and incubated under anaerobic conditions at 35 ºC. The 

baseline sample consisted of anaerobically digested biosolids obtained from 

the same wastewater treatment plant. 

OBJECTIVES 

 

The overall hypothesis driving this research is that the most suitable location for 

collecting biosolids for P recovery (WAS, thickened sludge or digested sludge) is the one 

that maximizes the concentration of the target phosphorus species for a particular 
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phosphorus recovery technology. Assessment of this location for biosolids generated in 

conventional AS wastewater treatment plants requires an understanding of how the 

speciation of  phosphorus changes within different wastewater treatment processes, 

particularly those where anaerobic conditions are favored (i.e., gravity thickening and 

anaerobic digestion). The specific objectives of the current research study are to: (1) 

determine if the hydrolysis of polyphosphates observed in anaerobic digestion of biosolids 

generated in EBPR wastewater treatment plants also occurs in biosolids generated in 

conventional activated sludge plants, and (2) if the hydrolysis of polyphosphates also 

occurs during gravity/dissolved air flotation thickening of conventional activated sludge. 

To this end, biosolids from five conventional activated sludge treatment plants in Texas 

were analyzed to determine the phosphorus speciation before and after anaerobic digestion 

and thickening. In addition, two treatment plants with EBPR served as a basis for 

comparison of polyphosphate hydrolysis during thickening and digestion. 

MATERIALS AND METHODS 

Facilities sampled: 

Biosolids and water samples were collected from seven different municipal 

wastewater/biosolids treatment facilities identified in Table 1. Five of these facilities were 

conventional activated sludge plants and two utilized EBPR.   
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Table 1. Characteristics of the wastewater treatment plants sampled. 

Code 
 Phosphorus 

Removal 
Thickening Digestion 

Digester 

HRT 

(days) 

Average 

flow 

(MGD)a 

AS1 No Removal Gravity (Separate) No - 54 

AS2 No Removal DAF (Separate) Anaerobic 23 100 

AS3 No Removal Gravity (Separate) No - 5.8 

AS4 No Removal Gravity (Comingled) Anaerobic 45 1.25 

AS5 No Removal Belt (Comingled) Anaerobic 48 16 

EBPR1 
Biological 

Removal 

Rotary Press 

(Comingled) 
Anaerobic - 37 

EBPR2 
Biological 

Removal 

Rotary Press 

(Comingled) 
No - 1.5 

a MGD: Million gallons per day 

The first four conventional activated sludge treatment plants (AS-1 to AS-4) 

employed configurations shown in Figure 5(a-d). The waste activated sludge (WAS) or 

comingled biosolids (primary biosolids + WAS) were thickened by gravity (AS1-Fig5a, 

AS3-Fig5c and AS4-Fig5d) or via DAF (AS2-Fig 5b). Two of these facilities (AS2-Fig 5b 

and AS4-Fig5d) anaerobically digested their thickened biosolids. AS5 (Fig 5e) is a 

biosolids processing facility. It receives conventional AS biosolids from AS1 and another 

wastewater treatment plant that employs the same treatment processes as AS1. The 

influents are mixed, thickened by belt filter press, anaerobically digested and dewatered. 

EBPR1 (Fig 6a) is a treatment plant that utilizes an anaerobic and anoxic process 

prior to the aerobic activated sludge tank for the removal of nitrogen and phosphorus (A2O 

process). Both primary and WAS biosolids are mixed, dewatered and anaerobically 
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digested. EBPR 2 (Fig 6b) is a 1.5 million gallon per day plant that operates an A2O process 

for removal of nitrogen and phosphorus. EBPR2 only produces WAS biosolids that are 

thickened and stored in a steel container before disposal. The treatment plant operators 

estimate that the biosolids are stored for 1 day on average before they are discarded. 

  

a) b) 

c) 

e) 

d) 

Figure 5. Flow diagrams for the conventional activated sludge wastewater treatment 

plants sampled. a) AS1, b)AS2, c)AS3, d)AS4 and e)AS5 
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Figure 6. Flow diagram of the wastewater treatment plants with enhanced biological 

phosphorus removal. a) EBPR1 and b) EBPR2 

Since biosolids produced at EBPR wastewater treatment plants are known to 

undergo polyphosphate hydrolysis during anaerobic digestion, changes in speciation after 

thickening and anaerobic digestion of conventional activated sludge biosolids will be 

compared to changes occurring in an EPBR biosolids.  Consequently, it will be possible to 

assess the likelihood that polyphosphate hydrolysis also occurs for conventional AS plants. 

Sampling regime: 

Wastewater and biosolid samples were obtained from the influent and effluents of 

each of the processes shown in Figures 5 and 6. The samples were collected in 250 mL 

acid washed HDPE bottles on three different days. Whenever the samples were collected 

with a “dipping cup”, the cup was rinsed three times with the stream of interest. If the 

a b
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sample was taken from a pump, the sampling pipe line was flushed before collecting the 

sample.  

AS1 and AS5 were sampled in the months of February, April and May of 2015 

(average maximum ambient temperature of 79º F and average minimum temperature of 59 

ºF) and AS2, AS3, AS4, EBPR1, EBPR2, were collected in the months of October, 

November and December of 2015 (76 ºF Average max ambient temperature and 55 ºF 

Average min average temperature). The samples were immediately refrigerated after 

collection.  

Phosphorus Analysis: 

Before analysis, a small fraction of each sample was filtered through 0.45 micron 

filter paper (reinforced cellulose Millipore RW03, Millipore Corp., Billerica, MA). The 

original sample was used to measure the total concentrations of each species and the filtrate 

was used to measure the dissolved concentrations of each species. The particulate fraction 

was calculated from the difference between the total and the dissolved fractions.  

Dissolved orthophosphates were measured by the ascorbic acid method (Standard 

Methods 4500-P 2012). Total orthophosphates (dissolved + particulate) were measured 

using the same method, but the particulate orthophosphates were dissolved by acidifying 

the sample to pH 2 prior to analysis. Experiments by Güney et al. (2008), Zoppoth (1999), 

Hansen et al. 2000, Antakyali et al. 2013 reported that at pH 2, 98% to 99% of the total 

orthophosphate in municipal biosolids dissolves. Tests in our laboratory using a synthetic 

solution simulating concentrations of phosphorus, carbonate, iron, magnesium, ammonia 
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and calcium similar to those in the municipal biosolids at the local wastewater treatment 

plant confirmed the dissolution of all the particulate orthophosphate into dissolved 

orthophosphate at pH 2 (Table 2). Three 10 mL aliquots from the synthetic solution were 

centrifuged and the supernatant analyzed for dissolved orthophosphate. Subsequently, 

three more aliquots from the synthetic solution were acidified from pH 7 to pH 2 with 11N 

H2SO4. After acidification the aliquots were centrifuged and the supernatant was analyzed 

for dissolved orthophosphate. 

Table 2. Results from orthophosphate dissolution of a synthetic wastewater solution.  

Sample 

P Concentration 

in centrifuge 

supernatant 

(mmol/L) 

Standard 

Deviation 

% 

Recovery 

Raw Sample 

Orthophosphate 
0.01 0.005 0.04% 

Acidified Sample 

Orthophosphate 
27.1 0.3 100% 

Theoretical 

Orthophosphate 
27.0 - - 

 

 When the treatment plant of interest was located further than 30 miles from the 

authors’ laboratory at the University of Texas campus (plants AS2, AS3, AS4, EBPR1 and 

EBPR2), total and dissolved orthophosphate were measured using the Hach PO-19 

orthophosphate test kit and a portable spectrometer. Reagents used in the Hach test kit are 

chemically identical to those used in the laboratory (Hach, 2015) but a separate calibration 

curve was obtained for the portable spectrophotometer. 
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In order to measure organic and polyphosphates, the acid hydrolyzable phosphates 

(polyphosphates + orthophosphates) and total phosphorus (organic phosphates + 

polyphosphates + orthophosphates) were determined. Acid hydrolyzable phosphates were 

converted into orthophosphates by adding 11 M H2SO4 to a sample and heating to 120 ºC 

for 30 minutes (Standard Methods 4500-P 2012). Total phosphorus was determined by 

converting all phosphorus into orthophosphates by adding potassium persulfate and 11 M 

H2SO4 to a sample and heating to 120 ºC for 30 minutes (Standard Methods 4500-P 2012). 

After the samples were cooled at room temperature, they were neutralized with NaOH and 

measured for orthophosphates by the ascorbic acid method (Standard Methods 4500-P 

2012). 

The method detection limits (MDL) were 0.05, 0.05 and 0.06 mg/L as P for the 

orthophosphate, acid-hydrolyzable phosphorus and total phosphorus methods respectively 

obtained from measuring 7 replicates of a phosphate standard (0.2 mg/L) (USGS, 2016). 

A standard sample and a blank sample were run with each sample measurement.  

Due to the time involved in processing (filtering, acidification, neutralization, and 

analysis) and measurement of each species of phosphorus, a single measurement was 

performed for each sample. However, for quality control purposes, triplicate extractions 

and analyses as well as spiked recoveries were conducted for selected samples. The relative 

standard deviation (RSD) obtained from triplicate orthophosphate analyses for each 

extraction method is reported in Table 3. Also, the average spiked recovery for each 

extraction method is reported in Table 3.  
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Table 3.  Relative standard deviation obtained from triplicate measurements and results 

from spiked recovery tests. 

Measurement 
RSD 

(%) 

Spiked 

Recovery 

(%) 

Dissolved Orthophosphate 3  102 ± 7 

Total Orthophosphate 5 100 ± 9 

Total Acid Hydrolyzable 5  98 ± 6 

Total Phosphorus 4  93 ± 11 

Cations: 

The dissolved concentrations of calcium, magnesium and potassium were measured 

by inductively coupled plasma-optical emission spectrometer (ICP-OES, Varian 710-ES, 

USA) as described by EPA method 6010B (EPA, 1996). Samples were first filtered through 

a 0.45 micron filter paper. MDLs for calcium, magnesium and potassium were 0.005, 0.005 

and 0.1 mg/L respectively. These MDLs were determined from measuring 7 replicates of 

a calcium magnesium and potassium standard solution (0.01, 0.01 and 0.5 mg/L 

respectively)(USGS, 2016). 

pH, total and volatile solids analysis 

The pH for each sample was measured with a Cole-Parmer double junction 

electrode and an Orion920A pH meter. The meter was calibrated before each use with three 

buffers (pH 4.0, 7.0 and 10.0). When the sampling site was located more than 30 miles 

away from the laboratory at The University of Texas campus, the pH was measured on site. 
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Total and volatile solids were measured gravimetrically using an adapted form of Standard 

Methods 2540 B and 2540 E (Standard Methods, 2012). 

Statistical Analysis 

The average concentration and standard deviations of each phosphorus species measured 

over three days before and after anaerobic digestion and thickening were computed. These 

average concentrations were compared using the one-sided Student’s t-test with a 

significance level of α = 0.05 (Helsel and Hirsh 1994). A null-hypothesis is considered to 

be rejected if the p-value is lower than or equal to the significance level (0.05). 

The Student’s t-test can only be used if the sampled data is normally distributed. 

To assume normality for our data, historical total phosphorus data from The City of Austin 

(Appendix A) as well as published data in Takiguchi et al. (2003) were tested using the 

D’agostino-Pearson normality test. The results showed the total phosphorus concentrations 

in both wastewater influents (City of Austin) and EBPR waste activated sludge (Takiguchi 

et al. 2003) are normally distributed. Thus, it is reasonable to assume normality for our 

collected data.   

The data collected in the current study exhibited the same level of variability 

observed in other published studies based on comparisons of relative standard deviations 

(Lawler and Singer 1984, Takiguchi et al. 2003, Dueñas et al. 2003, and Danesh et al. 

2008). This comparison was done to ensure that the variability observed in the phosphorous 

data in this study is in line with the variability observed in previously published studies 

conducted over extended periods of time (2 weeks to a 1 year). The relative standard 
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deviations (RSD) of the measured phosphorus (orthophosphate, polyphosphate and organic 

phosphorus) data in this study ranged from 10% to 57% and the RSDs for data published 

in the literature ranged from 11% to 82% (see Table 26, Appendix A). 

RESULTS & DISCUSSION 

The results from this research focus on characterizing the speciation of phosphorus 

in the four anaerobic digestion systems sampled and the six thickeners. The data were used 

to test hypotheses addressing differences between pre- and post- digested and thickened 

biosolids. The null hypothesis in each case was that the means were equal (i.e., there was 

no difference between pre- and post- samples in a particular phosphorus biosolids fraction). 

Anaerobic Digestion: 

Many researchers have reported increases in dissolved orthophosphate in EBPR biosolids 

after anaerobic digestion (Takiguchi et al. 2003, Marti et al. 2008, Mehta and Batstone 

2013). The increase in dissolved orthophosphate is attributed to polyphosphate hydrolysis 

by phosphate accumulating bacteria (Accumulibacter and Acinetobacter) in the biosolids 

(Hrenovic et al. 2009, Yuan et al. 2012, Kodera et al. 2013). Figure 7 provides a comparison 

of dissolved (Figure 7a) and particulate (Figure 7b) orthophosphate levels in samples from 

EBPR1 and each of the conventional treatment plant anaerobic digestion systems 

normalized by the grams of dry solids fed to their corresponding digester. As expected, 

there was a significant increase (p < 0.01 from Table 3) in both dissolved and particulate 

orthophosphate for EPBR1 following digestion. In addition, there was a decrease in both 
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the polyphosphate concentration (p = 0.03) and in the organic phosphorus after anaerobic 

digestion (p = 0.03). 

Figure 7.  Phosphorus speciation before and after anaerobic digestion at the different 

treatment plants sampled. a) Dissolved orthophosphate, b) particulate 

orthophosphate, c) polyphosphate and d) organic phosphorus. 

Concentrations expressed as mg P per g dry solids fed to anaerobic digester. 

The red error bars represent a range and the black error bars represent 

standard deviations. 
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Table 3. Student’s t-test for the comparison of phosphorus concentrations before and after 

anaerobic digestion.  

 
Dissolved Orthophosphate 

^ 

Particulate          

Orthophosphate ^ 
Polyphosphate ^^ Organic Phosphorus ^^ 

 
p 

value 

Reject null-
hypothesis with 

0.05 significance 

level? 

p 

value 

Reject null-
hypothesis with 

0.05 significance 

level? 

p 

value 

Reject null-
hypothesis with 

0.05 significance 

level? 

p 

value 

Reject null-

hypothesis with 

0.05 
significance 

level? 

AS4 0.05 Yes 0.38 No <0.01 Yes 0.41 No 

AS5 0.17 No 0.03 Yes 0.31 No 0.01 Yes 

EBPR1 <0.01 Yes <0.01 Yes 0.03 Yes 0.03 Yes 

AS2 t-test was not computed due to the small sample size. ^ The hypothesis tested in these cases was that 

concentrations increase after digestion. ^^ The hypothesis tested in these cases was that concentrations decrease after digestion. 

 

Conventional AS biosolids are also likely to contain phosphate accumulating 

bacteria, but at lower concentrations. Thus, the hydrolysis of polyphosphates may occur, 

but if so, to a lower extent, and the dissolved concentrations of orthophosphate should 

remain the same or increase slightly after digestion. Indeed, the concentration of 

polyphosphate prior to digestion and dissolved orthophosphate concentration after 

digestion in EPBR1 are significantly higher than the corresponding concentrations from 

the conventional AS systems. Comparison of the pre- and post- digestion orthophosphate 

concentrations showed varying trends among the three conventional AS plants. Only in 

plant AS4 was there a significant increase in the average dissolved orthophosphate 

concentration (Fig 7a) following anaerobic digestion (p=0.05). In contrast, increases in 

particulate orthophosphate pre- and post-digestion were observed for all digesters except 

for AS4. Thus, it is possible that higher quantities of phosphorus could be recovered by 

targeting total orthophosphates. 
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Since dissolved orthophosphate concentrations remain relatively constant before 

and after digestion, an increase in particulate orthophosphate could result from hydrolysis 

of polyphosphate or from degradation of organic phosphorus into dissolved orthophosphate 

and subsequent precipitation to a particulate orthophosphate phase. Figure 7c shows a 

decrease in polyphosphate concentrations after anaerobic digestion at plants AS4 (p=0.01). 

However, for AS2 and AS5 the polyphosphate concentrations remain statistically the same. 

Organic phosphorus concentrations on the other hand, showed a significant decrease for 

AS2 and AS5. This suggests that for AS2 and AS5 the increase in orthophosphate 

concentration is due to organic phosphorus degradation, and for AS4 the increase is due to 

polyphosphate hydrolysis.  

In order to further confirm that polyphosphate hydrolysis indeed occurs in AS4, the 

concentration of dissolved potassium before and after digestion was examined (Figure 8). 

Potassium is a counter-ion for polyphosphate hydrolysis. This means that potassium is 

released from phosphorus accumulating bacteria to the solution together with 

orthophosphate during polyphosphate hydrolysis (Jardin and Popel 1994, Marti et al. 

2008b, Pastor et al. 2008). Figure 8 shows that for anaerobic digestion where 

polyphosphate hydrolysis was statistically confirmed (AS4 and EBPR2) the dissolved 

potassium concentration increases the most after anaerobic digestion which is an indication 

of polyphosphate hydrolysis. For AS2 and AS5 the potassium concentration only increases 

slightly which suggests that some polyphosphate hydrolysis occurs, but the levels are not 

enough to be statistically confirmed. 
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Figure 8. Dissolved potassium concentrations before and after anaerobic digestion. Red 

error bars represent ranges and not standard deviations. 

The literature addressing phosphorus recovery technologies typically focus on recovery 

of dissolved orthophosphate after anaerobic digestion (Shimamura et al. 2003, Shimamura 

et al. 2008, Rittmann et al. 2011, Sartorius et al. 2012, Mehta and Batstone 2013). However, 

these results suggest that there is no benefit in performing anaerobic digestion for the 

recovery of dissolved phosphorus because most of the orthophosphate is in the particulate 

fraction after digestion. These results also suggest that in order to recover greater quantities 

of phosphorus from anaerobically digested conventional AS biosolids, the use of a 

technology that targets particulate orthophosphate is most appropriate. 
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Thickening: 

Experiments by Marti et al. (2008) showed that during gravity thickening of EBPR 

biosolids, there is an increase in dissolved orthophosphate due to polyphosphate 

hydrolysis. It was hypothesized that the anaerobic conditions that occur during gravity 

thickening will promote the same hydrolysis in AS biosolids. In addition, due to the lower 

pH (Table 4) in gravity thickeners than in anaerobic digesters, it was hypothesized that the 

phosphorus would not form particulate orthophosphates and would remain dissolved. To 

investigate these hypotheses, the speciation of phosphorus before and after gravity 

thickening was determined and compared to the phosphorus speciation in EBPR biosolids 

and AS biosolids thickened by dissolved-air flotation (DAF) and belt presses. DAF 

thickeners utilize high pressure air bubbles to remove particles for suspension (Turovskiy 

and Mathai 2006) and in doing so maintain aerobic conditions. Thus, no hydrolysis of 

polyphosphates is expected in these thickeners. Belt thickeners have a solids loading rate 

(SLR) between 700 and 1100 kg of dry solids/m2-h whereas DAF and gravity thickeners 

have a SLR between 2-200 kg of dry solids/m2-h (Turovskiy and Mathai 2006). Having a 

higher SLR means belt thickening is a faster process and the biosolids have less opportunity 

to become anaerobic and release phosphorus. Thus, hydrolysis is not expected to occur in 

the belt thickener. The storage tank in the EBPR2 wastewater treatment plant was used as 

a proxy for gravity thickening, since it is estimated that sludge remains inside the steel tank 

for about a day. These conditions are suitable to develop anaerobic conditions and 

hydrolysis is expected to occur. 
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Table 4. Summary of pH measurements pre- and post- anaerobic digestion and gravity 

thickening. 

  pH 

Plant Pre-Thickening Post-Thickening Digested 

AS1 6.71 ± 0.17 6.47 ± 0.14 - 

AS2 6.75 ± 0.04 6.54 ± 0.05 7.23 ± 0.03 

AS3 6.87 ± 0.07 6.29 ± 0.27 - 

AS4 6.77 ± 0.11 6.35 ± 0.21 6.74 ± 0.01 

AS5 5.9 ± 0.1 6.0 ± 0.5 7.79 ± 0.06 
            Red values represent ranges and not standard deviations 

Figure 9a summarizes the dissolved orthophosphate concentrations pre- and post- 

thickening at each of the five conventional AS treatment plants investigated in this study 

normalized by gram of dry solids. The EBPR2 WAS biosolids stored in the steel tank, 

released significant quantities of dissolved orthophosphate as expected (p =0.04). In 

addition, a decrease in polyphosphates was observed for EBPR2, however, the standard 

deviations pre- and post- storage prevented statistical confirmation of the results (p=0.1) 

(Table 5). In contrast, the hydrolysis would not be expected across the DAF thickener as it 

should be an aerobic system. No apparent difference in polyphosphate concentrations was 

observed; however, it appears that orthophosphate increase while organic phosphorus may 

have decreased. This is consistent with potential biochemical oxidation of the organic 

matter within the biosolids. Experiments by Butler et al. (1997) showed a significant 

reduction of COD and BOD across DAF thickeners. There were only two samples to this 

system and results cannot be statistically validated. 
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Figure 9. Phosphorus speciation pre- and post- thickening of the biosolids collected from 

five conventional AS wastewater treatment plants and one EBPR wastewater 

treatment: a) Dissolved orthophosphate, b) particulate orthophosphate, c) 

total polyphosphate and d) total organic phosphates. Concentrations 

expressed as mg P per g dry solids. Red error bars are range, the rest are 

standard deviations. 
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Table 5. Student’s t-test for the comparison of phosphorus concentrations before and after 

thickening.  

 Orthophosphate ^ 
Particulate Ortho 

Phosphorus ^ 

Particulate  

Polyphosphate ^^ 

Particulate Organic 

Phosphorus ^^ 

 
p 

value 

Reject null-

hypothesis 

with 0.05 

significance 

level? 

p 

value 

Reject null-

hypothesis 

with 0.05 

significance 

level? 

p 

value 

Reject null-

hypothesis 

with 0.05 

significance 

level? 

p 

value 

Reject null-

hypothesis 

with 0.05 

significance 

level? 

AS1 0.09 No 0.15 No 0.22 No 0.23 No 

AS3 <0.01 Yes 0.29 No 0.44 No 0.39 No 

AS4 0.4 No 0.01 Yes 0.07 No 0.11 No 

AS5 0.45 No 0.20 No 0.39 No 0.19 No 

EBPR2 0.04 Yes 0.31 No 0.10 No 0.02 Yes 
AS2 t-test was not computed due to the small sample size. ^ The hypothesis tested in these cases was that 

concentrations increase after thickening. ^^ The hypothesis tested in these cases was that concentrations decrease after thickening. 

 

Gravity thickeners that only treat WAS (AS1 and AS3) yielded increased dissolved 

orthophosphate concentrations (Figure 9a). However, the statistical tests were only able to 

confirm this result for AS3 (p<0.01). For the AS4 gravity thickener, the concentration of 

dissolved orthophosphate remains the same after thickening (Figure 9a). 

 The particulate orthophosphate concentrations (Figure 9b) are the same before and 

after thickening for all treatment plants except for AS4 where it increases significantly 

(p=0.01). At AS4, both primary and secondary sludge are mixed before gravity thickening. 

Experiments by Pastor et al. (2008) suggest that the volatile fatty acids (VFA) of primary 

sludge promotes faster hydrolysis of polyphosphates, and also faster precipitation of 

orthophosphate. Primary biosolids contain higher concentrations of dissolved calcium than 

secondary biosolids (Figure S3 – Appendix B) which promotes precipitation of the released 
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orthophosphate. Effectively, in Figure 9c it appears that for AS4 there is a decrease in 

polyphosphate similar to the decrease in EBPR2. This further suggests hydrolysis of 

polyphosphates in gravity thickener AS4. However, these results were not supported by 

the statistical tests (p=0.07). In thickener AS1, there is also a decrease in average 

polyphosphate concentration but the standard deviation before thickening is too large to 

draw an accurate conclusion. To further examine the possible link between anaerobic 

conditions and differences in phosphorus speciation in thickeners it is necessary to consider 

variations in hydraulic residence times (HRTs) (Table 6). 

 Table 6. Hydraulic residence time for the gravity thickeners sampled. 

  HRT (days) 

AS1 1 

AS2 0.6 

AS3 0.3 

AS4 0.9 

AS5 Minutes 

EBRP2 1 * 

                                         *Estimate by operators 

AS4 and AS1 have the longest HRT. Thus, we can hypothesize that the longer 

HRTs in gravity thickeners of conventional activated sludge biosolids can decrease 

polyphosphate concentrations due to anaerobic conditions discussed previously.  

Finally, the organic phosphorus remains the same after gravity thickening (Figure 

9d). There is an observable decrease in organic phosphorus for AS2, AS4, and EBPR2; 

and, only in EBPR2 was there a statistical reduction (p=0.02) after thickening. This would 

indicate some degradation of the organic matter inside the steel storage tank. As expected, 
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for the belt thickener at AS5 there were no significant increases or decrease on any of the 

phosphorus species.  

These results however, do not mean that pre-thickened biosolids are as suitable for 

recovery of phosphorus via technologies that target dissolved orthophosphate as post-

thickened biosolids. It is important to consider the concentration of phosphorus per liter of 

solution shown in Figure 10. Commercial recovery technologies require a minimum 

concentration of 10 mg/L as P to operate and a threshold for economic feasibility between 

20 and 30 mg/L as P (OSTARA 2009, Nieminen 2010). Without thickening, only AS5 

biosolids would be over the 10 mg/L concentration suitable for phosphorus recovery and 

all of the pre-thickened biosolids would be under the 20 mg/L feasibility threshold. After 

thickening, all of the biosolids are over the 10 mg/L limit and only AS4 is under the 

feasibility threshold. Thickeners, are thus effective at removing water from the biosolids 

and therefore increasing the dissolved orthophosphate concentration on a per liter basis. ‘ 
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Figure 10. Dissolved orthophosphate concentrations before and after thickening in mg/L 

as P. Red error bar is a range, the rest are standard deviations. 

CONCLUSIONS 

After sampling five wastewater treatment plants with varied characteristics and 

operations, it is possible to state the following conclusions regarding the effect of anaerobic 

digestion and thickening on phosphorus speciation. 

 Anaerobic digestion is not as effective at increasing the dissolved orthophosphate 

concentrations of conventional AS biosolids compared to EBPR biosolids. 

Recovery technologies that target dissolved orthophosphate would work as well on 

undigested as digested AS biosolids. 
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 Particulate orthophosphate concentrations do increase in AS biosolids after 

anaerobic digestion just as they do for EBPR biosolids. Technologies that target 

total orthophosphate for recovery would be more appropriate for conventional AS 

treatment plants than those that target dissolved orthophosphate.  

 Polyphosphate hydrolysis was observed only in one of the conventional activated 

sludge digesters sampled (AS4). Dissolved potassium, however, would indicate 

some polyphosphate hydrolysis occurred in all conventional activated sludge 

digesters although to a lesser extent for AS2 and AS5 than for AS4. 

 Gravity thickeners that only treat WAS increase the dissolved orthophosphate 

concentrations slightly. The gravity thickener that treats comingled primary and 

secondary sludge (AS4) appears to promote faster polyphosphate hydrolysis and 

precipitation of orthophosphate.  

 Statistically there should not be any difference in the dissolved orthophosphate 

concentration between pre-thickened and post-thickened conventional activated 

sludge biosolids. However, thickening is necessary to achieve a per liter basis 

concentration for precipitation to occur and for economic feasibility of technologies 

that target dissolved orthophosphate for recovery. 
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Chapter 4: Using phosphorus speciation in municipal biosolids to select a 

phosphorus recovery technology 

INTRODUCTION 

Sedimentary apatite rock, known as phosphate rock, is the main source of 

phosphorus supplying the world’s fertilizer industry. Phosphate rocks are obtained from 

massive deposits formed by thousands of years of oceanic sedimentation and tectonic uplift 

(Smil 2000). This makes phosphate rock a non-renewable resource by definition (Smil 

2000). Recent estimates suggest that these deposits will be exhausted by the end of the 

century (Smil 2000, Cordell et al. 2009, Cordell and White 2011). Moreover, the 

geographic concentration of these deposits (78% of the deposits are located in just 4 

countries) indicates that phosphorus may become limiting in some regions of the world and 

a significant political issue in the near future. Therefore, it is important to investigate and 

develop renewable sources of phosphorus.  

Wastewater treatment plant biosolids are a promising source for phosphorus 

recovery because they contain high concentrations of phosphorus. After mining, phosphate 

rock is incorporated into commercial fertilizers that are spread onto farmlands. The 

phosphorus in the crops moves up the food chain, is consumed by humans and ultimately 

excreted into our sewer systems. It is estimated that between 20-30% of the phosphorus 

mined annually ends up in sewage (Shimamura et al. 2003, Brunner 2010). Sewage is then 

conveyed into wastewater treatment plants where between 70 -99% of the phosphorus is 

removed and incorporated into the biosolids (Barnard 1984, Dueñas et al. 2003). These 
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estimates suggest that if 100% of the phosphorus in the biosolids could be recovered, then 

between 14% - 30% of the total phosphorus mined annually could be reused. These 

percentages correspond to approximately 2.1 to 4.5 million metric tons of phosphorus 

reused a year (Cordell et al. 2009).  

Unfortunately, current technologies for phosphorus recovery are far from achieving 

100% efficient recovery or reuse. In the US, slightly less than 50% of the phosphorus 

contained within in biosolids is wasted to landfills or as incineration ash (NEBRA 2007).  

The remaining 50% is reused through land application as shown in Figure 11.  In direct 

land application, biosolids are dewatered, transported to agricultural lands and mixed with 

topsoil to replenish lost nutrients.  

 

 A major disadvantage of direct farmland application of biosolids is the low nitrogen 

to phosphorus ratio present in the biosolids (Korboulewsky et al. 1989, Yuan et al. 2012, 

Figure 11. Disposal methods for biosolids produced in the 

US. (NEBRA 2007) 
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Shaw et al. 2014). The ideal N:P2O5 (mass basis) ratio for plant growth should be between 

3 and 5, but biosolids have a N:P2O5  closer to 1 or less (Maguire et al. 2001, Elliot et al. 

2002, Chinault and O’Connor 2008, Yuan et al. 2012). The application of excessive 

phosphorus in biosolids can lead to an over accumulation of phosphorus in the soil. Some 

states limit the amount of phosphorus that can be present in the soil. In such cases, direct 

land application can become unsustainable for some sites (Maguire et al. 2001). Another 

shortcoming of direct land application is the bulkiness of the material which creates 

logistical issues for transporting dewatered biosolids from cities to farmlands. 

Many researchers (Shimamura et al. 2003, Berg et al. 2003, de-Bashan and Bashan 

2004, Shimamura et al. 2008, Cordell et al. 2009, Mehta and Batstone 2013, Hultman et 

al. 2014 and others) have investigated the use of biosolids for inorganic precipitation of 

struvite, calcium phosphates or ferric phosphates.  The only commercially available process 

for inorganic recovery of phosphorus to date is struvite crystallization from dewatering 

supernatants or post-digestion bulk biosolids (Coats et al. 2011, Sartorius et al. 2012).  

Struvite crystallization consists of precipitating orthophosphate (PO4
3-) present in 

the liquid portion of the biosolids together with magnesium (Mg2+) and ammonium (NH4
+) 

under alkaline conditions (Liu et al. 2013). The struvite precipitate is recommended for use 

whenever a slow-release fertilizer is required (Table 7). This technology has been studied 

extensively (Battistoni et al. 2001, Doyle and Parsons et al. 2002, Shimamura et al. 2003, 

Shimamura et al. 2008, Pastor et al. 2010), but its major drawback is that only the dissolved 

orthophosphate species can be recovered from the waste stream. The phosphorus present 

in the particulate phase of the biosolids cannot be recovered. Cullen et al. 2013 reported 
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that over 73% of the total phosphorus in the biosolids cannot be recovered using struvite 

precipitation technology.  

Table 7. Solubility and N:P2O5 ratio of struvite, ferric phosphate and triple 

superphosphate (a commercial fertilizer).  

 
Water Soluble 

(% of TP) 

Citrate 

soluble 

(% of TP) 

Mass Ratio 

N:P2O5 
Reference 

Struvite 0.23 45 0.1 – 0.2 

Cabeza et al. 

2011, Li and Zhao 

et al. 2003 

Ferric 

Phosphate 
0 100 0 : 1 

ECCO 2001, 

Odegaard et al. 

2002 

Triple 

Superphosphate 
18 100 0 : 1 

Cabeza et al. 2011 

O’Connor et al. 

2004 

 

To overcome the limitations associated with struvite recovery, investigators are 

developing technologies to recover other phosphorus species present in the biosolids. 

Phosphorus species are typically defined in these applications by the technique used to 

extract and analyze the phosphorus. One of the most common and standardized phosphorus 

speciation techniques (Standard Method 4500-P) separates and quantifies the 

orthophosphate, polyphosphate and organic phosphates constituents in a solid or liquid 

phase sample (APHA, 2012). These three phosphate fractions are found in the dissolved 

and particulate phases throughout wastewater treatment plants (Sawyer et al. 2003, 

Tchobanoglous et al. 2004). In addition, this method of phosphorus speciation is utilized 
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by most environmental regulatory agencies, treatment plant operators as well as by 

researchers investigating phosphorus recovery technologies for biosolid streams. 

Technologies such as the Stuttgart Process target total orthophosphate species by 

decreasing the pH in the sludge with sulfuric acid, prior to dewatering. At pH 2, virtually 

all the particulate orthophosphate is dissolved into the liquid phase (Güney et al. 2008, 

Antakyali et al. 2013). The supernatants from the dewatering process are pumped into a 

stirred tank where citric acid is added to prevent iron and aluminum phosphate 

precipitation. The pH is then increased to 8.5 with magnesium hydroxide and sodium 

hydroxide in order to precipitate struvite. (Antakyali et al. 2013). Long term laboratory 

experiments indicate that 60% of the total phosphorus in the biosolids could be recovered 

as struvite through the Stuttgart Process (Antakyali et al. 2013,). Despite successful trials, 

there is only one published report that describes a full scale implementation of the Stuttgart 

process (Jossa and Remy 2015). 

Another potential phosphorus recovery technology is the KREPRO process 

developed in Sweden. This technology targets total polyphosphate as well as total 

orthophosphate (acid hydrolyzable phosphorus). The technology consists of acidification 

of biosolids to pH 2 followed by heating to over 100 ºC inside a pressurized vessel for 30 

minutes. The particulate polyphosphate and particulate orthophosphate are dissolved into 

the liquid phase of the biosolids to form dissolved orthophosphate. The sludge is then 

dewatered and the supernatant moved into a stirred tank where iron is added for 

precipitation. The pH is increased to 3 to allow ferric phosphate precipitation while 

preventing precipitation of calcium or magnesium phosphates. Investigators have reported 
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that between 60 to 75% of the total phosphorus present in the biosolids can be recovered 

with this technology (Hultman 1999, Karlsson 2001).  

The phosphorus recovery results presented in the published literature usually report 

percentages of dissolved phosphorus recovered and in some cases percentages of total 

phosphorus recovered (see Table 8). The percent recovery values shown in Table 8 are 

likely to vary from plant to plant depending on whether a wastewater treatment plant 

incorporates chemical phosphorus recovery (e.g., ferric chloride addition) or enhanced 

biological phosphorus recovery. The efficacy of the phosphorus recovery technologies 

described above (e.g., AIRPREX, Stuttgart process and KREPRO) for conventional 

activated sludge biosolids has not been evaluated. 

Table 8. Phosphorus recovery estimates reported in the published literature for the 

AIRPREX, Stuttgart and KREPRO technologies. 

P recovery 

Technology 

Recovery from 

biosolids (%) 

Type of P removal 

at WWTP 
Reference 

AIRPREX 86 - 98 % DOP EBPR 
Stumpf et al. 2009, 

Nieminen 2010 

Stuttgart Process 60-67% TP Chem-P Removal 
Güney et al. 2008, 

Antakyali et al. 2013 

KREPRO 60-75% TP 
EBPR with Chem-

P Removal 

Karlsson 2001, 

Hultman 1999 

DOP= Dissolved orthophosphate, TP= total phosphate 

As evident in Table 8, the quantity of phosphorus that can be recovered from 

municipal biosolids varies substantially. The recoverability of phosphorus from biosolids 

appears to depend on the phosphorus removal process employed at the treatment plant 
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(Jossa and Remy 2015, Lundin et al. 2004) as well as on the speciation of the phosphorus 

present in the biosolids.   

To date, the effect of phosphorus speciation present in the biosolids and 

supernatants generated from a range of wastewater treatment plants has not been evaluated. 

Furthermore, the research on phosphorus recovery has focused mainly on biosolids from 

wastewater treatment facilities with enhanced biological phosphorus removal (EBPR) or 

chemical phosphorus removal (e.g., Chem-P). Plants with conventional activated sludge 

(AS) are the most common in the US and thus must be considered in the analysis in order 

to identify the most suitable phosphorus recovery technology for the range of wastewater 

treatment plants now in use. Moreover, a potential improvement in the suitability of 

dewatered biosolids (after phosphorus recovery) for farmland application (measured by 

N:P2O5 ratio) has not been researched. Therefore, the objective of this study is to evaluate 

the potential phosphorus recovery achievable via three commercially available 

technologies (AIRPREX, Stuttgart Process and KREPRO) as a function of the type of 

wastewater treatment plant being considered (e.g., AS, EBPR or Chem-P). To this end, the 

phosphorus speciation present in biosolids and dewatering supernatants collected from nine 

wastewater treatment plants were determined. The measured speciation data was then used 

to estimate the potential recovery of phosphorus via the AIRPREX, Stuttgart and KREPRO 

technologies. In addition, the N:P2O5 ratio of the treated biosolids was predicted for each 

type of wastewater treatment plant and phosphorus recovery technology examined.  
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MATERIALS AND METHODS 

Wastewater treatment plants sampled: 

Primary, secondary, thickened, digested and dewatered biosolids as well as 

thickener and dewatering supernatants were collected from nine wastewater treatment 

plants in Texas. A summary of the unit processes sampled at each treatment plant is 

presented in Table 9. Treatment plants are given a code to maintain anonymity and are 

grouped by the type of phosphorus removal incorporated into each wastewater treatment 

plant (e.g., no additional removal in conventional activated sludge plants (AS), chemical P 

removal via aluminum or ferric precipitation (Chem-P) or enhanced biological phosphorus 

removal (EBPR)). 

The flow diagrams for the first five wastewater treatment plants are shown in Figure 

12. AS1 thru 4 (Figure 12 a-d) do not have any type of phosphorus removal in place. AS1 

treats about 54 million gallon per day (MGD) and does not process the biosolids on site. 

Instead, gravity thickened waste activated biosolids and primary biosolids are pumped to 

plant AS5. At Plant AS5 (16 MGD) (Figure 12e), the biosolids are mixed with biosolids 

from another conventional municipal wastewater treatment plant which does not 

incorporate phosphorus removal into the process. The solids are then thickened, 

anaerobically digested (48 day HRT), dewatered and land applied. The supernatants from 

thickening and dewatering are sent into an artificial aerated lagoon for final treatment. 

Plant AS2 (Figure 12b) treats approximately 100 MGD and operates two different types of 

thickeners - dissolved air flotation (DAF) for secondary biosolids and gravity thickeners 
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for primary biosolids. The supernatants from both thickeners are returned to the headworks. 

The thickened biosolids are anaerobically digested and then dewatered. The supernatant 

from dewatering is pumped back to the headworks whereas the dewatered cake is used for 

direct land application. 
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Figure 12. Flow diagrams for the conventional activated sludge wastewater treatment 

plants sampled in this study: a) AS1, b) AS2, c) AS3, d) AS4, e) AS5 

Wastewater treatment plant AS3 (Figure 12c) is significantly smaller in capacity 

(5.8 MGD) than the other three plants. AS3 does not have primary clarifiers and thus their 

biosolids are composed of waste activated sludge (WAS) only. The WAS is thickened by 

gravity and then dewatered for direct land application. The supernatants from thickening 

and dewatering are pumped back to the headworks. AS4 (Figure 12d) treats 1.25 MGD and 

a) b) 

c) 

e) 

d) 
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operates with primary and secondary clarifiers. AS4 mixes both primary and secondary 

biosolids before gravity thickening. The thickened solids are anaerobically digested and 

then dewatered for direct land application. The supernatants from both thickening and 

dewatering are pumped back to headworks.  

Treatment plant Chem1 (Figure 13a) treats 48 MGD and produces primary 

biosolids and secondary biosolids from biological nitrogen removal and chemical 

phosphorus removal (precipitation via ferric chloride). The secondary biosolids are belt 

thickened and subsequently mixed with the primary solids for dewatering. The biosolids 

cake is trucked out to a landfill whereas the supernatants from belt thickening and 

dewatering are pumped to the headworks. Chem2 (Figure 13b) treats 2.5 MGD and only 

produces secondary biosolids from biological nitrogen removal and chemical phosphorus 

removal. Chem2 uses both ferric chloride and aluminum sulfate for phosphorus 

precipitation. The waste secondary biosolids are dewatered by a belt filter press and trucked 

to a landfill. The supernatants are pumped to the headworks.  

EBPR1 with an average flowrate of 37 MGD, produces biosolids from primary 

clarification and biosolids from enhanced biological phosphorus removal. The primary 

biosolids are thickened by gravity and then mixed with the EBPR secondary biosolids for 

thickening via rotary drum. The thickened solids are then anaerobically digested and 

subsequently dewatered for land application. The supernatants from thickening and 

dewatering are sent back to the headworks.  
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Figure 13. Flow diagrams for the wastewater treatment plants with chemical (a Chem-P1 

& b Chem-P2) and biological phosphorus removal (c & d) 

Finally, EBPR2 treats about 1.5 MGD and only produces secondary biosolids from 

biological phosphorus removal. The wasted solids are thickened by rotary drum thickening 

and then stored inside a steel container. Every day the container is emptied into a cistern 

truck and the solids are hauled to a solid’s processing facility. The supernatants from 

thickening are pumped to the headworks.  

Sampling regime: 

Influents and effluent samples were collected from each unit process shown in 

Figures 10 and 11 on three different days. AS1 and AS5 were sampled in February, April 

and May of 2015 (average maximum ambient temperature of 79 ºF and average minimum 

d) 

b) a) 

c) 
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temperature of 59 ºF) and AS2, AS3, AS4, EBPR1, EBPR2, Chem1 and Chem2 were 

sampled in October, November and December 2015 (average maximum ambient 

temperature of 76 ºF and average minimum temperature of 55 ºF). Due to a mild winter 

season, there was little variation in ambient temperatures in Texas for the year 2015. The 

samples were collected in 250 mL acid-washed HDPE bottles. The samples were 

immediately refrigerated after collection.  

Phosphorus analysis: 

Prior to analysis, samples were filtered through 0.45 micron filter paper (reinforced 

cellulose Millipore RW03, Millipore Corp., Billerica, MA). The filtrate was used to 

determine the dissolved phosphorus species present in the liquid phase and the unfiltered 

sample was used for determining total phosphorus species in the liquid and solid phases. 

The particulate concentrations were determined indirectly by calculating the difference 

between the measured total and dissolved concentrations of each phosphorus species. 

Orthophosphate was measured by colorimetry using the ascorbic acid method 

(Standard Methods 4500-P 2012). Biosolid samples were acidified to pH 2 prior to 

determination of total orthophosphate (dissolved + particulate) in order to dissolve all the 

particulate orthophosphates (Hultman 1999, Hansen et al. 2000, Antakyali et al. 2013). 

Experiments by Zoppoth (1999) and Güney et al. (2008) reported that at pH 2, >98% of 

the total orthophosphate in the municipal biosolids is dissolved. In order to confirm these 

reported results, tests were conducted in the current study using a solution that simulates 

the  phosphate, calcium, iron, magnesium, ammonia, and carbonate ion concentrations 
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present in municipal wastewater biosolids. Three 10 mL aliquots from the synthetic 

solution were centrifuged and the supernatant analyzed for dissolved orthophosphate. 

Subsequently, three additional aliquots from the synthetic solution were acidified from pH 

7 to pH 2 with 11N H2SO4. After acidification the aliquots were centrifuged and the 

supernatant was analyzed for dissolved orthophosphate. The tests confirmed the 

dissolution of all the particulate orthophosphate present in the synthetic solution (Table 

10).  

Table 10. Results from orthophosphate dissolution experiments with a synthetic 

wastewater solution. 

Sample 

P Concentration 

in centrifuged 

supernatant 

(mmol/L) 

Standard 

Deviation 

% 

Recovery 

Raw Sample 

Orthophosphate 
0.01 0.005 0.04% 

Acidified Sample 

Orthophosphate 
27.1 0.3 100% 

Theoretical 

Orthophosphate 
27.0 - - 

 

Dissolved and total orthophosphate concentrations were measured within 2 hours 

of sample collection except when the treatment plant being sampled was located more than 

30 miles from the analytical laboratory. For these samples, the total and dissolved 

orthophosphates as well as pH were measured on site. Orthophosphate on site was 

measured with a Hach PO-19 test kit. The reagents used for orthophosphate determination 

via the Hach kit are identical to those used in the laboratory (Hach, 2015).  
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To measure poly and organic phosphates, acid hydrolyzable (ortho + poly 

phosphorus) and total (organic + poly + ortho phosphorus) phosphorus species had to be 

converted into orthophosphate. Acid hydrolyzable phosphorus was converted to 

orthophosphate by acid digestion. The sample was acidified with 11 M sulfuric acid and 

then heated to 120 ºC for 30 minutes (Standard Methods 4500-P 1998). Total phosphorus 

was converted to orthophosphate by persulfate digestion. The sample was acidified with 

11 M sulfuric acid, then 0.6 g of potassium persulfate was added. The sample was then 

heated to 120 ºC for 30 minutes (Standard Methods 4500-P 1998). After heating, the 

samples were allowed to cool to room temperature and neutralized with NaOH. 

Orthophosphate was then determined by the ascorbic acid method.  

The method detection limits (MDL) for orthophosphate, acid-hydrolyzable and 

total phosphorus were 0.05, 0.05, 0.06 mg/L as P respectively. MDLs were obtained from 

measuring 7 replicates of a phosphate standard (0.2 mg/L) (USGS, 2016). 

This speciation method was selected for use in the present study because it is a 

standard procedure to determine phosphorus in wastewater and wastewater biosolids 

(Munch and Barr 2001, Dueñas et al. 2003, Shimamura et al. 2008, Pastor et al. 2008, Zeng 

et al. 2010 and others). Moreover, the extraction methods are similar to the phosphorus 

recovery technologies being studied (Hansen et al. 2000, Güney et al. 2008, Sartorius et al. 

2012, Antakyali et al. 2013). 
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pH, total and volatile solids: 

pH was determined using a double junction Cole-Parmer pH probe and an ORION 

920A pH meter. Total and volatile solids were measured gravimetrically using a modified 

Standard Method 2540 B and 2540 E (Standard Methods, 1998). 

RESULTS AND DISCUSSION 

Previous research (Chapter 3) examined speciation within the five conventional 

activated sludge plants and two EBPR plants to assess the impact of anaerobic digestion 

and thickening on speciation in conventional activated sludge systems relative to EPBR 

systems. This study expands the evaluation of phosphorus speciation in wastewater 

treatment operations to two additional treatment plants utilizing chemical phosphorus 

removal and the dewatering side streams from the nine treatment plants listed in Table 9. 

Based on the measured phosphorus speciation in this work and technology performance 

data from published literature for three phosphorus recovery technologies (AIRPREX, 

Stuttgart Process and KREPRO), phosphorus recovery was estimated based on the 

speciation. Finally, increases in the N: P2O5 biosolids ratio were also estimated in order to 

assess whether the phosphorus recovery technologies studied would be expected to 

improve the suitability of dewatered biosolids for farmland application. 
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Phosphorus speciation of undigested and digested biosolids 

Figure 14 summarizes the phosphorus speciation within thickened biosolids (Figure 

14a) and digested biosolids (Figure 14b) collected from the sampled WWTPs. Substantial 

variability was observed in the P measurements even at plants of similar design (e.g., 

conventional activated sludge systems). This result reflects the inherent differences in the 

design and operation of different wastewater treatment plants, an outcome that is not 

surprising given the variability in biosolids handling practices observed for plants AS1 

through AS4 (Figures 12 and 13). This variability has also been observed and reported by 

other authors measuring phosphorus at full scale wastewater treatment plants (Lawler and 

Singer 1984, Szpyrkowicz 1995, Dueñas et al. 2003, Danesh et al. 2008). Despite this 

inherent variability, however, significant differences were observed in the phosphorus 

speciation of municipal biosolids produced at the different types of wastewater treatment 

plants (AS, Chem-P and EBPR). The total phosphorus concentrations present in undigested 

EBPR (30 mg/g ± 12) and Chem-P biosolids (29 mg/g ± 5) were on average twice the levels 

measured in undigested conventional activated sludge biosolids (15 mg/g ± 6). A two-sided 

Student’s t-test with a significance level of α = 0.05 was performed to assess the 

significance of the observed differences and the results are presented in Table 11. Indeed, 

the difference in total phosphorus concentrations between AS and EBPR (p=0.03) and 

between AS and Chem-P-B (p<0.01) are statistically significant. Also, undigested 

conventional activated sludge biosolids contain slightly higher concentrations of dissolved 

orthophosphates compared to EBPR (p<0.01) and Chem-P (p<0.01) undigested biosolids. 

EBPR plants and chemical phosphorus removal plants are designed to incorporate the 
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dissolved phosphorus present in raw wastewater into the particulate phase to be removed 

via sedimentation (Tchobanoglous et al. 2004). Therefore, higher total phosphorus 

concentrations and lower dissolved orthophosphate concentrations are expected in 

undigested biosolids from EBPR and Chem-P plants relative to the undigested biosolids 

generated at AS plants.  

 

Figure 14. Phosphorus speciation for a) undigested biosolids and b) digested biosolids in 

three different wastewater treatment plant types 
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Table 11. Results of hypothesis testing of mean phosphorus concentrations from different 

types of wastewater treatment plants. 

Testing was performed on the hypothesis that the means are equivalent using a Student’s t-test at a significance level 

with α = 0.05.  

 

With respect to the particulate phase, undigested biosolids derived from wastewater 

plants with chemical phosphorus removal had a higher particulate orthophosphate 

concentration compared to both EBPR (p=0.07) and AS (p=0.1) treatment plants, although 

Reject Ho?/ 

p value 

Ortho  

Phosphorus 

Particulate 

ortho  

phosphorus 

Poly 

Phosphorus 

Organic 

phosphates 
Total 

Undigested EBPR 

Biosolids vs 

Undigested AS 

biosolids 

Yes / 

p<0.01  

No /  

p = 0.9 
Yes /  

p=0.05 
No / p=0.9 

Yes / 

p<0.03 

Undigested AS 

biosolids vs 

Undigested Chem 

biosolids 

Yes / 

p<0.01  
No/ p=0.1 

Yes/ 

p<0.01 
No / p=0.9 

Yes/ 

p<0.01 

Undigested EBPR 

biosolids vs 

Undigested Chem 

biosolids 

No / p=0.7 
No / 

p=0.07 
No/ p=0.7 No / p=1 

No / 

p=0.8 

Digested EBPR 

biosolids vs 

Digested AS 

biosolids 

Yes / 

p<0.01 

No / 

p<0.01 
No/ p=0.09 No / p=0.8 

Yes / 

p=0.01 

Undigested AS vs 

Digested AS 
No/ p=0.9 No/ p=0.07 

No/ p = 

0.24 
Yes/ p<0.01 

No/ 

p=0.8 

Undigested EBPR 

vs Digested EBPR 
Yes/ 

p<0.01 

Yes/ 

p<0.01 

Yes/ 

p<0.03 
Yes/ p<0.01 

No/ 

p=0.88 
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their differences were not statistically significant. This is not surprising given that 

aluminum or iron phosphate precipitation captures orthophosphate. However, the 

difference in the average concentration of particulate orthophosphate compared to AS and 

EBPR was not as high as expected. It appears that orthophosphate precipitation is not the 

primary mechanism for P removal in the Chem-P plants studied. Figure 14(a) shows that a 

significant portion of the phosphorus is also removed biologically and stored as 

polyphosphates which may be an unintended consequence of incorporating biological 

nitrogen removal processes at these plants. Nitrogen removal in the Chem-P plants studied 

was achieved using a modified Ludzack-Ettinger process. This process consists of an 

anoxic zone before the aerobic reactor (Tchobanoglous et al. 2004). The anoxic zone in 

both plants consisted of a series of three completely mixed reactors. It is likely that some 

fraction of these reactors operate under anaerobic (absence of oxygen & nitrate) instead of 

anoxic (absence of oxygen only) conditions. Phosphate accumulating bacteria (PAO) 

(Accumulibacter, Acinetobacter and others) when exposed to alternating anaerobic and 

aerobic conditions, can assimilate significant quantities of dissolved phosphorus as 

polyphosphate (Tchobanoglous et al.  2004, Hrenovic et al. 2009, Yuan et al. 2012,). Hence 

the significant quantities of polyphosphates observed in Figure 14a for the Chem-P 

biosolids as well as for the EBPR biosolids. 

These polyphosphates in the biosolids can hydrolyze and form dissolved and 

particulate orthophosphate in anaerobic digestion (Liao et al. 2005, Marti et al. 2008a). 

EBPR biosolids contain significantly greater concentrations of polyphosphate than AS 

biosolids (p=0.05) and, as a result, the dissolved orthophosphate concentration increases 
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significantly for EBPR biosolids (p<0.01) after digestion, but it remains approximately the 

same for conventional AS (p=0.9). An increase in particulate orthophosphate as well as a 

significant decrease in organic phosphorus was observed for both the EBPR (p<0.01) and 

AS biosolids (p<0.01) after anaerobic digestion. It is likely that the degradation of organic 

phosphorus is the source for the increase in particulate orthophosphate after anaerobic 

digestion of AS municipal biosolids whereas for EBPR biosolids the increase in 

orthophosphate is a combination of a decrease in both polyphosphates and organic 

phosphates. There are no anaerobic digesters in the chemical removal treatment plants 

sampled; therefore, the possibility of polyphosphate hydrolysis for this type of biosolids 

could not be examined. 

Phosphorus speciation in thickening and dewatering sidestreams 

 

Several authors suggest the use of thickening and dewatering sidestreams for 

phosphorus recovery (Baur et al. 2011, Cullen et al. 2013, Sharp et al. 2013) as opposed to 

using the bulk biosolids (liquid + solids). Figure 15a shows the phosphorus speciation in 

thickening sidestreams and Figure 15b shows the speciation in dewatering sidestreams 

sampled for this study. Supernatants from the sampled AS sand EBPR thickeners have 

concentrations lower than 20 mg/L which according to Ostara (2009) and Nieminen (2010) 

is the minimum required concentration for struvite recovery to be economically feasible. 

The supernatants from the belt thickener in plant Chem1 is the only one that meets these 

minimum requirements. 
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Figure 15. Phosphorus speciation in a) thickening and b) dewatering supernatants 

Sidestreams from dewatering of AS and EBPR biosolids have greater 

concentrations of dissolved orthophosphate than their corresponding thickening 

sidestreams. This is likely because these biosolids have been through anaerobic digestion 

and the phosphorus stored as polyphosphate and the organic phosphorus have been 

released. Also, dewatering usually achieves greater water removal from the biosolids by 

using flocculation polyelectrolytes. These polymers can be cationic, anionic or nonionic. 

Depending on the electrolyte they can neutralize the charge or bridge particles to increase 

dewatering (Sanin et al. 2011). These electrostatic interactions might have an impact on 

the orthophosphate concentrations in the sidestreams. It has been observed (Nieminen 

2010, Petzet and Cornel 2012, Shaw et al. 2014) that high concentrations of dissolved 

orthophosphate within the biosolids decrease dewaterability of biosolids; although, a 

mechanism to support phosphate induced water retention has not been well established 

(Bergmans 2011). Treatment plants usually compensate by dosing higher quantities of 
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polyelectrolyte (Nieminen 2010, Petzet and Cornel 2012, Shaw et al. 2014). Therefore, we 

can hypothesize that high concentrations of polyelectrolytes used for dewatering inhibit 

phosphate-induced water retention, and thus produce higher concentrations of phosphorus 

in the liquid sidestreams. Testing this hypothesis will require further observation and 

experimentation. 

Considerable variability was observed in the sidestream phosphorus concentrations 

measured at the plants that have incorporated chemical phosphorus removal. The standard 

deviations are greater than the average values (Figure 15b). However, if we separate data 

from plants Chem1 and Chem2 (Figure 16), the variability decreases. Dewatering 

supernatants from plant Chem1 have high concentrations of dissolved orthophosphate 

while concentrations in supernatants from Chem2 are significantly lower. Chem2 plant 

treated their wastewater to a lower effluent concentration than Chem1 (<0.05 mg/L P for 

Chem2 vs 0.12 ± 0.03 mg/L P for Chem1). This indicates that Chem2 adds greater 

quantities of ferric and aluminum for phosphorus removal than Chem1, and these 

chemicals are more successful at creating stable particulate phases that do not dissolve 

during dewatering.  
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Figure 16. Phosphorus speciation of the dewatering sidestreams for the two chemical 

phosphorus removal wastewater treatment plants investigated 

Relating phosphorus speciation with phosphorus recovery 

 

Using the biosolids phosphorus speciation data collected in this study and the 

phosphorus recovery efficiencies reported in the literature for the AIRPREX, Stuttgart 

process and KREPRO technologies, it is possible to estimate the phosphorus recovery 

potentially achievable for each biosolid examined in this study (sample calculations in 

Appendix B). The AIRPREX recovery technology consists of a large batch reactor where 

sludge is aerated to strip CO2 and increase the pH to over 8 (Stumpf et al. 2009). 

Magnesium chloride is supplied to maintain a molar Mg:PO4 ratio of 1.05:1 and precipitate 

struvite (Stumpf et al. 2009, Uysal, 2010, P-Rex 2015). Stumpf et al. (2009) and Nieminen 

(2013) reported a 90% to 98% recovery of the dissolved orthophosphate present in the 
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biosolids. Thus, for our calculations, it was assumed that the AIRPREX technology would 

recover 90% of the dissolved orthophosphate species (target species for AIRPREX) present 

in each of the sampled biosolids (Table 12). No other species of phosphorus are expected 

to be recovered by the AIRPREX technology. Thus, in order to obtain an estimate of the 

potential recovery, the possible recovery from the target species (Table 11) was multiplied 

by the concentration of the target species within the biosolids of interest (Figure 14). 

Table 12. Possible recovery from the target species. 

Recovery 

Technology 
Target P Species 

Possible 

recovery 

from the 

target species 

(%) 

Reference 

AIRPREX 
Dissolved 

Orthophosphate 
90 Stumpf et al. 2009 

Stuttgart Total Orthophosphate 98 Güney et al. 2008 

KREPRO 
Polyphosphate + 

Orthophosphate 
90 Karlsson (2001) 

 

The Stuttgart recovery technology consists of several batch steps. First, the pH in 

the biosolids is decreased to pH 2 with sulfuric acid. At this pH, all of the phosphorus 

bound to calcium, magnesium, aluminum, and iron is dissolved into the liquid phase 

(Güney et al. 2008). The biosolids are then dewatered and the liquid portion (sidestream) 

is transferred into a stirred batch reactor where citric acid is added as a complexing agent 

to prevent precipitation of phosphorus with aluminum and iron. Subsequently, magnesium 

hydroxide and sodium hydroxide are added to increase the pH and supply magnesium for 
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struvite precipitation (Antakyali et al. 2013). It has been demonstrated that 98% of the 

phosphorus dissolved (at pH 2) can be recovered through the Stuttgart process (Güney et 

al. 2008, Antakyali et al. 2013). This phosphorus recovery technology is identical to our 

method for determination of total orthophosphate (dissolved + particulate orthophosphate) 

in which we achieved 100% dissolution of particulate orthophosphates. Thus, we assumed 

that 98% of the total orthophosphate species (target species for Stuttgart) measured in each 

of the sampled biosolid can be recovered though the Stuttgart process (Table 12). This 

estimate was used to calculate a potential recovery as described previously for the 

AIRPREX process. 

Finally, the KREPRO technology also consists of a series of batch processes in 

which the biosolids are first acidified to pH 2 with sulfuric acid. The biosolids are then 

heated to just over 100 ºC at a pressure of 3.6 bar for 30 minutes to hydrolyze the 

polyphosphates into orthophosphates (Hansen et al. 2000). The biosolids are then cooled 

and dewatered. The sidestream from dewatering (liquid portion) is utilized for ferric 

phosphate precipitation at pH 2.8. Hansen et al. (2000) estimated that 90% of the 

phosphorus dissolved in the dewatering supernatant can be recovered by ferric phosphate 

precipitation. Also, Karlsson (2001) demonstrated that the KREPRO technology could 

recover 60 to 75% of the total phosphorus present in digested and undigested biosolids 

generated at plants with enhanced chemical phosphorus removal. This recovery technology 

is similar to our method for determination of acid hydrolyzable phosphorus 

(Orthophosphates + Polyphosphates) described previously. Moreover, the phosphorus 

speciation data collected in the current study indicates that acid hydrolyzable phosphorus 
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accounts for 60 to 80% of the total phosphorus before digestion and between 78 and 89% 

of the total phosphorus after digestion (Figure 14). This range falls within the recovery 

reported by Karlsson (2001). Therefore, it was assumed that 90% of the acid hydrolyzable 

phosphorus (target species for KREPRO) present in the sampled biosolids can be recovered 

via the KREPRO process (Table 12). The assumption was then used to calculate the 

potential for phosphorus recovery as described previously. 

Predicted phosphorus recovery & N:P2O5 ratios: 

To obtain a representative estimate of the N:P2O5 ratios before phosphorus 

recovery, the pertinent published literature was consulted since total nitrogen was not 

measured in the collected samples. Eighteen different references provided the data 

necessary to obtain N:P2O5  ratios of biosolids from conventional AS, EBPR and 

chemically enhanced phosphorus removal treatment plants (Maguire et al. 2001, 

Tchobanoglous et al. 2004, US EPA 1979, Penn and Sims 2002, Wang et al. 2010, 

Chinnault and O’Connor 2008, Vincent et al. 2011, Schroder et al. 2008, Uysal et al. 2010, 

Kroiss et al. 2008, Debosz et al. 2002, Bolzonella et al. 2012, Salsabil et al. 2009, Sarkar 

et al. 2005, Batziaka et al. 2008, Liao et al. 2005, Elliot et al. 2002 and Chinault 2007). 

Based on the potential recovery of phosphorus achievable (described previously) for each 

P recovery technology, the moles of phosphorus recovered via the AIRPREX, Stuttgart 

and KREPRO technologies as well as the nitrogen recovered via AIRPREX and Stuttgart 

technologies were subtracted from the concentrations reported in the previously mentioned 

studies and a new N:P2O5 ratio was obtained (sample calculations in Appendix B). Since 
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N:P2O5 before phosphorus recovery was obtained from the literature, we limit our 

discussion to the statistical significance of differences in ratios and not the absolute N:P2O5 

values. The significance of the increase in N:P2O5 after phosphorus recovery was tested by 

a one-sided Student’s t-test with a critical α of 0.05. The resulting predictions of potential 

phosphorus recovery for AIRPREX, Stuttgart and KREPRO and the predicted N:P2O5 of 

the biosolids generated are presented in Tables 14 – 16, respectively. 

As shown in Table 13, it is estimated that approximately 15% of the total 

phosphorus present in the digested EBPR biosolids can be recovered via the AIRPREX 

technology. Only 5% of the phosphorus can be recovered when utilizing undigested EBPR 

biosolids. In contrast, using undigested conventional activated sludge (AS - 9.5% of TP) 

appears to improve recovery of phosphorus via the AIRPREX technology compared to 

using digested AS (7.8% of TP). The explanation for this difference in conventional AS 

processes is the high fraction of the P in the orthophosphate particulate phase. Although 

some organic phosphorus is converted into orthophosphate after anaerobic digestion, the 

majority of orthophosphates are present in the particulate phase which cannot be recovered 

via the AIRPREX technology (Figure 14). The biosolids from chemical phosphorus 

removal have very low predicted recovery through the AIRPREX technology which is 

expected since iron phosphate solids are relatively stable. 
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Table 13. Predicted phosphorus recovery and N: P2O5 ratios present in biosolids treated 

with the AIRPREX phosphorus recovery technology. 

  AIRPREX (Struvite) 

  AS EBPR Chem 

 
Undigested 

Biosolids 

Digested 

Biosolids 

Undigested 

Biosolids 

Digested 

Biosolids 

Undigested 

Biosolids 

Predicted TP recovered 

(%) 
9.5 ± 4.6 7.8 ± 5.3 5.1 ± 2.6 15 ± 2.4 2.0 ± 1.6 

Kg of P recovered per 

metric ton of Dry Solids 
1.3 ± 0.6 1.2 ± 0.1 1.0 ± 0.6 4.3 ± 0.2 0.5 ± 0.5 

N/P2O5 Ratio Before 

Recovery 
1.3 ± 0.4 a 1.1 ± 0.6b 0.94 ± 0.46c 0.78 ± 0.28c 1.0 ± 0.4d 

N/P2O5 Ratio After 

Recovery 
1.5 ± 0.2 1.1 ± 0.6 0.98 ± 0.02 0.88 ± 0.02 1.0 ± 0.01 

Is N: P2O5 increase 

significant? (t-test) 
No/ p = 0.1 No/ p=1 No/ p=0.8 No/ p=0.6 No/ p=1 

sMaguire et al. 2001, Chinault 2007; b Penn and Sims 2002, Chinault and O’Connor 2008, Schroder et al. 2008, Uysal 

et al. 2010, Batziaka et al. 2008, Elliot et al. 2002; c Wang et al. 2010, Salsabil et al. 2009, Chinault 2007;  d Maguire et 

al. 2001, Penn and Sims 2002, Debosz et al. 2002. 

 

 

Recovery via AIRPREX technology does not increase the N:P2O5 ratio significantly 

in the spent biosolids. Struvite also removes nitrogen and thus prevents the N:P2O5 ratios 

from increasing significantly with the AIRPREX technology. 

Data presented in Table 14 shows that the Stuttgart process significantly improves 

the predicted potential for P recovery from all types of biosolids compared to the recovery 

with the AIRPREX technology. With the Stuttgart recovery technology, the predicted 

recovery from digested AS biosolids is now greater than the recovery from undigested 

biosolids because this technology captures the particulate orthophosphate formed during 

anaerobic digestion. For the chemical phosphorus removal biosolids, there is also 

improvement when compared to the performance with the AIRPREX technology since the 
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orthophosphate that was bound to aluminum and iron during chemically enhanced 

phosphorus removal is released at pH 2. 

Table 14. Predicted phosphorus recovery and N: P2O5 ratios present in biosolids treated 

with the Stuttgart Process phosphorus recovery technology. 

  Stuttgart Process (Struvite) 

  AS EBPR Chem 

  
Undigested 

Biosolids 

Digested 

Biosolids 

Undigested 

Biosolids 

Digested 

Biosolids 

Undigested 

Biosolids 

Predicted TP 

recovered (%) 
31 ± 11 50 ± 20 24 ± 14.5 69 ± 11 19 ± 8.8 

Kg of P recovered 

per metric ton of 

Dry Solids 

4.5 ± 2.0 8.8 ± 6.3 4.6 ± 3.1 19.7 ± 1.1 5.1 ± 2.0 

N/P2O5 Ratio 

Before 
1.3 ± 0.4 a 1.1 ± 0.6b 0.94 ± 0.46c 0.78 ± 0.28c 1.0 ± 0.4d 

N/P2O5 Ratio After 2.0 ± 0.4 2.8 ± 2.6 1.2 ± 0.3 2.3 ± 0.9 1.2 ± 0.1 

Is N: P2O5 increase 

significant? (t-test) 
Yes/ 

p<0.01 

Yes/  

p<0.01 
No/ p=0.3 Yes/ p<0.01 No/ p=0.5 

sMaguire et al. 2001,  Chinault 2007; b Penn and Sims 2002, Chinault and O’Connor 2008, Schroder et al. 2008, Uysal 

et al. 2010, Batziaka et al. 2008, Elliot et al. 2002; c Wang et al. 2010, Salsabil et al. 2009, Chinault 2007;  d Maguire et 

al. 2001, Penn and Sims 2002, Debosz et al. 2002. 

 

The N: P2O5 ratios increase significantly after the recovery of phosphorus with the 

Stuttgart technology except for undigested EBPR biosolids and undigested Chem-P 

biosolids. High quantities of phosphorus are present in the polyphosphate form for these 

two biosolids and thus they cannot be recovered by the Stuttgart technology. 

 Finally, using the KREPRO technology, over 50% of the phosphorus could be 

recovered for all types of biosolids (see Table 15). This process targets polyphosphates as 

well as orthophosphates present in the biosolids. For EBPR there is greater recovery with 

digested biosolids than with undigested biosolids since part of the organic phosphorus 
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degrades during anaerobic digestion and forms orthophosphate. For the same reason, 

digested AS biosolids achieves greater recovery than undigested AS biosolids with the 

KREPRO technology. It is predicted that over 70% of the total phosphorus present can be 

recovered from Chem-P WWTPs biosolids utilizing the KREPRO technology. This 

technology takes advantage of the phosphorus bound as polyphosphate in the biosolids 

which are a significant fraction of the phosphorus in biosolids from sampled plants with 

chemical phosphorus removal. 

Table 15. Predicted phosphorus recovery and N: P2O5 ratios present in biosolids treated 

with the KREPRO phosphorus recovery technology. 

  KREPRO (Ferric Phosphate) 

  AS EBPR Chem 

 
Undigested 

Biosolids 

Digested 

Biosolids 

Undigested 

Biosolids 

Digested 

Biosolids 

Undigested 

Biosolids 

Predicted TP 

recovered (%) 
55 ± 12 61 ± 18 62 ± 7.4 81 ± 8 72 ± 18 

Kg of P recovered 

per metric ton of 

Dry Solids 

8.4 ± 4.5 11 ± 7.2 12 ± 3.5 23 ± 2.0 21 ± 5.8 

N/P2O5 Ratio Before 1.3 ± 0.4 a 1.1 ± 0.6b 0.94 ± 0.46c 0.78 ± 0.28c 1.0 ± 0.4d 

N/P2O5 Ratio After 3.4 ± 1.5 3.5 ± 1.9 2.6 ± 0.6 4.8 ± 2.6 5.2 ± 3.4 

Is N: P2O5 increase 

significant? (t-test) 
Yes/ p<0.01 

Yes/ 

p<0.01 
Yes/ p<0.01 Yes/ p<0.01 

Yes/ 

p<0.01 
sMaguire et al. 2001, Chinault 2007; b Penn and Sims 2002, Chinault and O’Connor 2008, Schroder et al. 2008, Uysal 

et al. 2010, Batziaka et al. 2008, Elliot et al. 2002; c Wang et al. 2010, Salsabil et al. 2009, Chinault 2007;  d Maguire et 

al. 2001, Penn and Sims 2002, Debosz et al. 2002. 

 

With the KREPRO technology, the predicted N: P2O5 ratios of the spent biosolids 

increases significantly regardless of the phosphorus removal processes employed at the 

wastewater treatment plant. This is important if the spent biosolids are to be utilized for 
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farmland application. However, additional research is required to determine the effects that 

spent biosolids generated from the KREPRO phosphorus recovery technology will have 

on crops following land application of the treated biosolids. 

CONCLUSIONS: 

The phosphorus speciation of municipal biosolids determined in this study was utilized 

to compute estimated phosphorus recoveries from different types of biosolids. This same 

approach can be followed in the future to obtain estimates for phosphorus recovery for a 

given treatment plant in lieu of expensive pilot tests. The most significant findings of this 

work include the following:  

 Biosolids from wastewater treatment plants that incorporate chemical phosphorus 

removal and enhanced biological phosphorus removal contain greater quantities of 

phosphorus than biosolids from conventional activated sludge plants.  

 The dominant species observed in biosolids collected from plants with chemical 

phosphorus removal were polyphosphates, and not particulate phosphorus as intuition 

would suggest. This is presumably due to anaerobic zones (absence of oxygen & 

nitrate) within the reactors intended for anoxic (absence of oxygen only) operation. 

 After digestion, the highest concentration (mg-P/g of dry solids) of phosphorus was 

present as particulate orthophosphate in biosolids generated at EBPR plants and 

conventional AS treatment plants. 

 Sidestreams from the sampled thickeners were determined to be unsuitable for 

phosphorus recovery via struvite precipitation, except for thickening sidestreams from 
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chemical phosphorus removal plant #1 (Chem1), based on the low orthophosphate 

concentrations. All sidestreams from dewatering are suitable for phosphorus recovery 

via struvite precipitation, except for dewatering sidestreams from chemical 

phosphorus removal plant #2 (Chem2).   

 Using the AIRPREX phosphorus recovery technology, there is a potential to recover 

between 2% to 15% of the total phosphorus depending on the type of phosphorus 

removal used at the wastewater treatment. However, there was no significant change 

in N:P2O5 ratio of the spent biosolids after phosphorus recovery (Table14). 

 The P recovery predicted for the Stuttgart phosphorus recovery technology appears to 

be higher than that for the AIRPREX technology. Also, it is predicted that the Stuttgart 

technology will increase the N:P2O5 ratio of undigested and digested AS biosolids as 

well as digested EBPR biosolids. 

 With the KREPRO technology, the recovery potential is predicted to be greater than 

50% for all types of biosolids. Also, the N:P2O5 ratio is predicted to increase for 

biosolids generated by AS, EBPR and chemical phosphorus removal treated with this 

technology.  

Although technologies such as Stuttgart and KREPRO are predicted to be more 

effective at recovering phosphorus than the commercially available AIRPREX, the 

economic and environmental feasibility of these approaches needs to be examined further 

since factors such as the chemical demand (acids, magnesium, ferric) and energy 

requirements may limit their full-scale application. 
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Chapter 5: Life cycle impact assessment of phosphorus recovery 

technologies from conventional and phosphorus removal wastewater 

treatment plants 

Acronym definition 

AS-B = Biosolids generated in conventional activated sludge wastewater plant 

EBPR-B = Biosolids generated in enhanced biological phosphorus removal plant 

Chem-P-B = Biosolids generated in plant incorporating chemical phosphorus removal  

FLA = Farmland application 

L = Landfill disposal 

C = Compost  

A = AIRPREX phosphorus recovery technology 

SP = Stuttgart phosphorus recovery technology 

K = KREPRO phosphorus recovery technology 

TSP = triple superphosphate 

A2O = Anaerobic-Anoxic-Oxic phosphorus removal 

 

INTRODUCTION: 

The management, recycle and reuse of phosphorus is becoming a necessity as the 

world’s population grows and high quality phosphorus mines are being depleted (Cordell 

et al. 2009, Cordell et al. 2011). Several researchers (Hansen et al. 2000, Donnert et al. 

2002, Takiguchi et al. 2004, de-Bashan and Bashan 2004, Cordell et al. 2009, Bradford et 

al. 2012 and others) have investigated a variety of technologies for the recovery and reuse 
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of phosphorus from wastewater biosolids. The oldest and most common technology of 

phosphorus reuse is direct land application of dewatered or composted biosolids. Direct 

land application recycles all the phosphorus present in the dewatered biosolids, although 

there is a debate about how much of the phosphorus can actually be used by plants (Lu et 

al. 2012). This largely depends on the type of phosphorus species of phosphorus present in 

the biosolids ultimately determined by the type of removal process at the treatment plant 

(Lu et al. 2012). Recently developed technologies for phosphorus recovery target a 

particular species of dissolved or particulate phosphorus with the objective of separating 

the phosphorus present in the biosolids into an inorganic stream (Sartorius et al. 2012, 

Atienza-Martinez et al. 2014). These inorganic products are available for plant uptake 

(indicated by citrate solubility) (Hansen et al. 2000, Cabeza et al. 2011, Talboys et al. 

2015), but their percent water solubility is less than commercial fertilizers [See Table 16]. 

A low percent water solubility yields a slow release of nutrients which can deter farmers 

from using these types of fertilizers; however, a lower water solubility also lowers the 

potential for phosphorus to leach into surface waters (Chinault & O’Connor 2008, Rahman 

et al. 2011, Cabeza et al. 2011). Most commercially-available technologies (i.e., Ostara 

Pearl, Struvia, AIRPREX) for inorganic P recovery target dissolved orthophosphates 

present in the dewatering supernatant or within the bulk biosolid phase with the objective 

of precipitating struvite. Harsher technologies such as the “Stuttgart Process” and 

KREPRO utilize strong acids and thermal hydrolysis, respectively, to solubilize particulate 

forms of phosphorus and thus achieve a much greater recovery (Sartorius et al. 2012). 

These harsh technologies however, have high energy and chemical demands that have 
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generally limited their utilization to pilot scale tests (Hansen et al. 2000, Sartorius et al. 

2012). 

Table 16. Phosphorus solubility of inorganic phosphates species as compared to 

commercial fertilizer (e.g., triple superphosphate (TSP)). 

  
Water Soluble 

(% of TP) 

Citrate soluble 

(% of TP) 
Reference 

Struvite 1 45 Cabeza et al. 2011,  

Ferric Phosphate 0 100 

ECCO 2001, 

Odegaard et al. 

2002 

Ca(H2PO4) [Triple 

Superphosphate] 
90 100 

Cabeza et al. 2011 

O’Connor et al. 

2004 

 

Beyond the direct environmental implications of phosphorous recovery, numerous 

studies (Lundin et al. 2004, Hospido et al. 2005, Murray et al. 2008, Hong et al. 2009, 

Linderholm et al. 2012, Jossa and Remy 2015) have applied life cycle analysis to assess 

indirect environmental impacts. Hong et al. 2009 and Murray et al. 2008 focused their 

studies on the global warming potential and energy use of landfilling versus agricultural 

use of dewatered, composted, dried or incinerated conventional biosolids. Despite the high 

global warming potential associated with methane generation and heating requirements, 

Hong et al. 2009 showed that anaerobic digestion of biosolids is very effective in lowering 

overall environmental impacts by reducing the mass of solids that need to be discarded.  

Linderholm et al. (2012) performed a life cycle intensity analysis (LCIA) to 

compare options for supplying phosphorus to Swedish farms. They investigated the use of 

mined phosphorus for commercial fertilizer (as triple superphosphate (TSP)), direct 
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farmland application of biosolids, struvite phosphorus from wastewater biosolids and ash 

from incinerated biosolids. Linderholm et al. (2012) concluded that direct farmland 

application of dewatered and anaerobically digested biosolids had a lower global warming 

potential (GWP) than the other options because less energy is consumed in the process.  

The study also found that the energy demand required to supply 1 kg of P from commercial 

fertilizers to farms in Sweden is much lower than that the required to supply 1 kg of P from 

recovered struvite. The eutrophication potential of the different options was not considered 

and Linderholm et al. (2012) only noted that phosphorus discharges from wastewater 

treatment plants are likely to be larger than the discharges associated with TSP production.  

They did not investigate the likelihood of TSP leaching higher quantities of phosphorus 

than struvite when used for agricultural purposes. In some parts of the US (the Great Lakes, 

Chesapeake Bay, the Everglades and others) (Maguire et al. 2001, Schober and Sims 2003), 

the eutrophication effects are a pressing concern and thus these effects were considered in 

the present LCIA study. 

LCIA studies by Lundin et al. (2004) and Jossa and Remy (2015) compared 

commercially available technologies (AIRPREX, Pearl, Struvia) for phosphorus recovery 

with harsher technologies of phosphorus recovery (Stuttgart Process, KREPRO, Bio-con, 

Gifhorn Process). Lundin et al. (2004) concluded that the speciation of phosphorus in the 

biosolids can affect the feasibility of a given recovery process. For instance, the authors 

suggested that switching from biosolids generated in a wastewater plant that incorporates 

chemical phosphorus removal (Chem-P-B) to biosolids generated in an enhanced 

biological phosphorus plant (EBPR-B) would enhance the feasibility of technologies such 
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as acid thermal hydrolysis (KREPRO). Jossa and Remy (2015) compared commercial 

phosphorus recovery technologies (AIRPREX, Struvia and Pearl Ostara) with acid 

leaching technologies (Stuttgart Process and Gifhorn Process) using EBPR-B or Chem-P-

B as the phosphorus feed. Scenarios that used Chem-P-B for phosphorus recovery had 

greater global warming and eutrophication potentials than did the scenarios involving 

EBPR-B. However, the energy required for the wastewater treatment operations were not 

considered. EBPR operations are more energy intensive than chemical phosphorus removal 

operations and this could possibly change the GWP results. Jossa and Remy (2015) also 

found that recovering phosphorus from municipal biosolids decreased the phosphorous 

concentrations in wastewater effluents from EBPR plants but not Chem-P plants and thus 

decreased the eutrophication potential for scenarios involving EBPR-B only. 

While research to date has investigated the GWP and eutrophication effects of 

utilizing harsher technologies of phosphorus recovery for EBPR and Chem-P generated 

biosolids, missing in these previous analyses is an investigation of the LCIA impacts 

associated with recovering phosphorous from biosolids generated at conventional activated 

sludge wastewater treatment plants. As opposed to European countries, conventional 

activated sludge (AS) is the most popular form of secondary treatment in many states 

within the United States including Texas. According to the USEPA, only 1% of wastewater 

dischargers in Texas have total phosphorus discharge limits and are required to meet 

phosphorous removal limits (EPA, 2016). Activated sludge biosolids (AS-B) contain less 

total phosphorus than EBPR-B and Chem-P-B, but as noted by Lundin et al. (2004) and 

Jossa and Remy (2015), the phosphorous speciation may be more important than the total 
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quantity of phosphorus present. The present study will fill this void and compare the GWP 

and eutrophication impacts of fertilizing Texas farmlands with commercially available 

fertilizer to the impacts associated with recovering phosphorus from AS-B, EBPR-B and 

Chem-P-B via three P recovery technologies: (1) struvite precipitation (AIRPREX), (2) 

acid leaching/struvite precipitation (Stuttgart process) and (3) acid thermal 

hydrolysis/ferric phosphate precipitation (KREPRO). To provide a basis for comparison, 

direct farm land application of dewatered biosolids as well composted biosolids followed 

by farm land application will be considered.   

SCOPE AND METHODOLOGY: 

This study estimates the life cycle impacts of producing and spreading 1 kilogram 

of phosphorus as P on agricultural farmland (LCA functional unit). The study area selected 

for this analysis is Texas, U.S. This selection influences the required travel distances from 

phosphorus mining grounds to fertilizer manufacture plants as well as distances from 

fertilizer manufacture and wastewater treatment plants to farmlands. Other geographical 

assumptions such as electricity mix, fuel mix, means of transport for materials are 

representative of the whole US. Our system boundary (Figure 16) includes the mining and 

manufacture of phosphorus fertilizer, wastewater treatment of sewage, composting, three 

phosphorus recovery technologies, farm land fertilization and landfill discard of spent 

biosolids. The packaging of fertilizers, capital infrastructure, wastewater collection 
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systems and production of food, beverages and other human consumption products are 

excluded.  

We model structural uncertainty in phosphorous removal, recovery, and fate by 

defining 24 LCI scenarios that consist of all combinations of biosolids P source (i.e., 

biosolids from activated sludge plants (AS-B), as well as biosolids from plants that 

incorporate chemically enhanced P removal (Chem-P-B) and enhanced biological 

phosphorous phosphorus removal, EPBR-B), P-recovery technology (AIREPEX, Stuttgart 

Process, KREPRO, composting or none of these), and fate (farm land application or 

landfill).  

Figure 16. Processes involved in the supply of phosphorus for farm applications considered 

in this study. 
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The LCIA of each of the phosphorous recovery options from wastewater treatment plants 

were compared to a final scenario that represents the current baseline conditions for 

phosphorus supply to farmlands: the mining of virgin phosphorus to manufacture 

commercial triple superphosphate (TSP) fertilizer followed by farmland application. A 

summary of the scenarios considered for this study is presented in Table 17.  
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Table 17. Twenty-five phosphorus recovery scenarios considered in this study. 

 Source of Phosphorus 

 AS-B Chem-PB EBPR-B Mining 

Dewatered Biosolids 

Direct Farm Land 

Application 

(1) AS-B/FLA (2) Chem-P-B/FLA (3) EBPR-B/FLA (25) TSP/FLA 

Compost + Farm 

Land Application 
(4) AS-B/C/FLA (5) Chem-P-B/C/FLA (6) EBPR-B/C/FLA - 

AIRPREX recovery + 

Farm Land 

Application 

(7) AS-B/A/FLA (8) Chem-P-B/A/FLA (9) EBPR-B/A/FLA - 

AIRPREX recovery + 

Landfill 
(10) AS-B/A/L (11) Chem-P-B/A/L (12) EBPR-B/A/L - 

Stuttgart Process 

Recovery + Farm 

Land Application 

(13) AS-B/SP/FLA (14) Chem-P-B/SP/FLA (15) EBPRB/SP/FLA - 

Stuttgart Process 

Recovery + Landfill 
(16) AS-B/SP/L (17) Chem-P-B/SP/L (18) EBPR-B/SP/L - 

KREPRO + Farm 

Land Application 
(19) AS-B/K/FLA (20) Chem-P-B/K/FLA (21) EBPR-B/K/FLA - 

KREPRO + Landfill (22) AS-B/K/L (23) Chem-P-B/K/L (24) EBPR-B/K/L - 

FLA= farm land application, C= Compost, A=AIRPREX, SP=Stuttgart Process, K=KREPRO, L = Landfill 

Phosphorus Recovery Description and Assumptions:  

The AIRPREX technology consists of a large batch reactor where sludge is aerated 

to strip CO2 and increase the pH to over 8 (Stumpf et al. 2009). Magnesium chloride is 

supplied to maintain a molar Mg:PO4 ratio slightly over 1:1 and precipitate struvite (Stumpf 
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et al. 2009, Uysal, 2010). Particles in the reactor are not removed until they reach a certain 

size, thus ensuring that phosphorus recovered is crystallized struvite and no other type of 

particles (Stumpf et al. 2009) 

The Stuttgart technology consists of several batch steps. First the pH in the 

biosolids is decreased to pH 2 with sulfuric acid. At this pH all of the phosphorus bound to 

calcium, magnesium, aluminum and iron are dissolved in to the liquid phase (Güney et al. 

2008). The biosolids are then dewatered and the liquid portion (sidestream) is transferred 

into a stirred batch reactor where citric acid is added to prevent precipitation of phosphorus 

with aluminum and iron. Subsequently, magnesium hydroxide and sodium hydroxide is 

added to increase the pH and supply magnesium for struvite precipitation (Antakyali et al. 

2013).  

Finally, the KREPRO technology, is another series of batch processes in which the 

biosolids are first acidified to pH 2 with sulfuric acid. Then the biosolids are heated to over 

just over 100 ºC and at a pressure of 3.6 bar for 30 minutes (Hansen et al. 2000). The 

biosolids are then cooled and dewatered. The sidestream from dewatering (liquid portion) 

is utilized for ferric phosphate precipitation at pH 2.8.  

Inventory.   

The inventory is a list of materials, known as inputs, which are required to operate 

a certain process or to manufacture an item (i.e., electricity, heat, fuel, raw materials, etc.). 

It also lists the emissions and co-products, known as outputs of the process (i.e., CO2, 

phosphorus, nitrogen, struvite, biosolids, etc.). The inventory lists the amount of each 
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material needed for the process and the emitted by the process divided by 1 kg of 

phosphorus, the chosen functional unit. 

On average, most U.S. land-applied triple superphosphate (TSP) product is 

manufactured with a mixture of 56% domestic ore and 44% imported ore from Morocco 

(Mullins and Evans 1990, Vaccari, 2009). Transportation distances to Texas from Morocco 

(ocean freight) and Tampa, FL (rail / truck) are summarized in Table 18. Other life cycle 

inventory data summarized in Table 18 were obtained from Nemecek and Kagi (2007) and 

Linderholm et al. (2012). 

Table 18. Inventory data for the production of commercial triple superphosphate (TSP). 

Values are normalized per kg of P produced. 

 Amount Reference 

Input:   

Phosphorus Ore at Fertilizer Plant (kg) 3.4 Nemecek and Kagi 2007 

Phosphoric Acid 70% (kg) 2.2 Nemecek and Kagi 2007 

Natural Gas (m3) 0.086 Nemecek and Kagi 2007 

Electricity (MJ) 30 Linderholm et al. 2012 

Transport ocean (km) 8600 Estimate/Sea-Distances.org 

Transport Rail (km) 1500 Estimate/Google Maps 

Transport truck (km) 80 Estimate/Google Maps 

Outputs:   

Hydrogen Fluoride (kg) 0.00024 Nemecek and Kagi 2007 

Heat (MJ) 6.2 Nemecek and Kagi 2007 

Carbon Dioxide (kg) 1.5 Linderholm et al. 2012 

Phosphorus (kg) 0.010 Nemecek and Kagi 2007 

 

GPS-X (Hydromantis, Version 6.4), a wastewater process simulation, optimization 

and management tool, was used to simulate phosphorous removal from municipal 

wastewater and obtain energy requirements for the operation of wastewater treatment 
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plants as well as nitrogen and phosphorus releases into the environment. Concentrations of 

the influent wastewater constituents such as phosphorus, nitrogen, pH, BOD and others 

were obtained from historical data (City of Austin, 2016) from the Walnut Creek and South 

Austin Regional wastewater treatment plant located in Austin, TX (Appendix A).  

Separate GPS-X simulations were performed assuming either conventional 

activated sludge, EBPR, or Chem-P removal in order to treat 13 million gallons a day of 

raw sewage (MGD). The average flowrate was selected to mimic the average flowrate of a 

single treatment “train” at Walnut Creek wastewater treatment plant in Austin, Tx (Paul, 

2015). The conventional activated sludge plant was designed to meet the 1 day average of 

BOD (10 mg/L), TSS (15 mg/L) and NH4 (2 mg/L as N) limits set for the local utility (City 

of Austin, 2016). The design consisted of a pumping station, aerated grit chambers, primary 

clarification, activated sludge, secondary clarification with waste and return sludge pumps, 

sand filter, chlorination/de-chlorination, gravity thickener, anaerobic digester and 

dewatering as displayed in Figure 17. The supernatant water from thickening and 

dewatering processes was returned to the primary clarifier and the methane produced by 

digestion was burned for electricity generation. 
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Figure 17. Flow diagram of the 13 MGD wastewater treatment plants modeled in GPS-X. 

The treatment processes highlighted in blue and green are exclusive to the 

EBPR and Chem P plants respectively.  

The wastewater treatment plants with enhanced biological phosphorus removal 

(EBPR) and chemical (ferric chloride) phosphorus removal were designed to achieve daily 

average wastewater effluent concentrations of < 1, 2, and 20 mg/L of total phosphorus, 

ammonia and total nitrogen, respectively (TCEQ 2005, WMARSS 2008, TCEQ 2012, City 

of Austin 2016). These requirements were selected by reviewing permits for treatment 

plants with nitrogen limits as well as recommendations by the Texas Commission on 

Environmental Quality (TCEQ).  

The wastewater treatment plant with chemical phosphorus removal was designed 

with the same unit processes as the conventional activated sludge plant but with slight 

modifications as shown in Figure 17. Phosphorus was removed from the effluent by 
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precipitation via ferric chloride addition before secondary clarification. Nitrogen limits 

were achieved by adding an anoxic completely mixed reactor after primary clarification 

and increasing the length of the activated sludge process. Pumping rates of return activated 

sludge were also increased. The nitrification process to remove ammonia consumed natural 

alkalinity in wastewater and soda ash was required to maintain an adequate pH in the 

anaerobic digester. 

Biological removal of phosphorus was achieved via the anoxic-anaerobic-oxic 

(A2O) process (Tchobanoglous et al. 2004), which was implemented by adding anaerobic 

and anoxic completely mixed reactors after primary clarification. Higher pumping rates of 

return activated sludge were required to achieve the selected limits. Similarly as in 

chemical phosphorus removal, soda ash was required before anaerobic digestion. Other 

miscellaneous energy requirements to operate the treatment plants such as lighting, 

chlorine mixers, heating of anaerobic digesters, bar screens, and filtering were calculated 

according to a study by Burton (1996). The life cycle inventories for phosphorous removal 

in wastewater treatment plants are shown in Table 19. 
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Table 19. Inventory data for the treatment of wastewater and production of biosolids for 

all recovery technologies (land application, composting, AIRPREX etc.). 

Values are normalized by kg of P in the digested sludge.  

  Amount per biosolid source 

  AS-B Chem-P-B EBPR-B 

Input:    

Electricity (kw-h) 61 36 23 

Electricity Generated (kw-h) -4.8 -1.7 -1.0 

Chlorine Gas (kg) 1.7 0.80 0.47 

Soda Ash (kg) - 7.3 4.4 

Sulfur Dioxide (kg) 0.30 0.10 0.085 

Ferric Chloride (kg) - 6.1 - 

Output:    

CO2 (kg) 49 17 11 

BOD (kg) 0.53 0.30 0.22 

Phosphorus 1.2 0.0069 0.043 

Ammonia (kg) 0.32 0.029 0.028 

Nitrite (kg) 6.55 0.20 0.19 

Nitrate (kg) 0 1.0 0.57 

 

The inventory for the phosphorus recovery technology operations (AIRPREX, 

Stuttgart process and KREPRO), direct land application, composting and landfill disposal 

(shown in Table 20) was obtained from the published literature and the technology vendor 

manuals (Hansen et al. 2000, Suh and Rosseaux 2001, Linderholm et al. 2012, Jossa and 

Remy 2015, P-Rex 2015). The inventory published was modified to match the functional 

unit selected using unit conversions, data from GPS-X modeling or actual data shown in 

Chapter 3 and Chapter 4. For estimates of phosphorus runoff from soils after land 

application, the formula that relates water soluble phosphorus in dewatered biosolids with 

phosphorus leaching developed by Alleoni et al. 2008 was used. This inventory does not 

include long-life capital infrastructure requirements such as land use, additional reactor 
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construction, pump purchases etc. The application of struvite, compost and dewatered 

biosolids to farmlands displaces the use of some nitrogen fertilizer. Thus, the GWP and 

eutrophication potential required for nitrogen fertilizer manufacture was subtracted from 

scenarios that included farmland application of biosolids, compost farm land application 

or struvite land application. 

After building the inventory, the 25 scenarios identified in Table 17 were coded in 

SimaPro (PRé sustainability, Version 7) and compared used the TRACI 2.1 method. This 

method was developed by the US Environmental Protection Agency (US EPA) and uses 

life cycle inventories coded into SimaPro (for example an X amount of phosphorus 

discharged by a wastewater treatment plant) to compute a life cycle impact which in this 

case is the eutrophication potential in kg of N equivalents (kg of N/ kg of P) and global 

warming potential in kg of CO2 equivalents (kg of CO2/kg of P). This computation is 

necessary in order to accurately compare the impact of ammonia releases versus those of 

phosphorus, or nitrates. 

Table 20. Inventory data for the phosphorus recovery technologies studied. a The values 

are normalized by 1 kg of P recovered. b The values are normalized by 1 kg 

of P land applied. 

  AS-B CHEM-P-B EBPR-B Reference 

Inputs:     

AIRPREXa     

Electricity (kw-h) 10 10 10 CNP 2015 

MgCl2  (kg) 15 15 15 CNP 2015 

Stuttgart Processa     

Electricity (kw-h) 17 14 2.4 
Jossa and Remy 

2015 
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  AS-B CHEM-P-B EBPR-B Reference 

Sulfuric Acid 78% (kg) 32 26 4.4 
Jossa and Remy 

2015 

Citric Acid 50% (kg) 17 18 3.1 
Jossa and Remy 

2015 

Mg(OH)2 (kg) 3.7 5.2 0.9 
Jossa and Remy 

2015 

NaOH 50% (kg) 11 10 1.7 
Jossa and Remy 

2015 

KREPROa     

Electricity (kw-h) 48 22 11 
Hansen et al. 

2000 

Sulfuric Acid 78% (kg) 21 9.5 5.0 
Hansen et al. 

2000 

Mg(OH)2 (kg) 1.2 0.6 0.3 
Hansen et al. 

2000 

Ferric Chloride (kg) 40 19 10 
Hansen et al. 

2000 

Composta     

Electricity (kw-h) 3.0 1.2 1.3 
Suh & Rosseaux 

2001 

Diesel (kg) 0.83 0.34 0.35 
Suh & Rosseaux 

2001 

Land Applicationb     

Electricity (kg) 5.8 2.3 2.5 
Hospido et al. 

2005 

Diesel (kg) 0.072 0.029 0.031 
Hospido et al. 

2005 

Landfilla     

Transport (t-km) 

[AIRPREX] 
160 340 27 

Linderholm et al. 

2012 

Landfilla     

Transport (t-km) [Stuttgart 

Process] 
26 36 6 

Linderholm et al. 

2012 

Transport (t-km) 

[KREPRO] 
21 9.5 5.0 

Linderholm et al. 

2012 

Output:     

Struvite [AIRPREX & 

Stuttgart] b     

N fertilizer displaced (kg) 0.18 0.18 0.18 
Linderholm et al. 

2012 

 

Table 20. Continued. 
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  AS-B CHEM-P-B EBPR-B Reference 

P (kg) [runoff] 0.010 0.010 0.010 
Alleoni et al. 

2008 

N (kg) [runoff] 0.0087 0.0087 0.0087 
Rahman et al. 

2011 

Ferric Phosphate 

[KREPRO]b     

N fertilizer displaced (kg) 0 0 0  

P (kg) [runoff] 0 0 0 Estimate 

N (kg) [runoff] 0 0 0  

Land Application 

[Composted Solids]b     

N fertilizer displaced (kg) 1 0.30 0.40 
Linderholm et al. 

2012 

P (kg) [runoff] 0.011 0.011 0.026 

Brandt et al. 

2004 and 

Chinault & 

Alleoni et al. 

2008 

N (kg) [runoff] 0.17 0.056 0.071 
Knowles et al. 

2011 

Methane (kg) 0.320 0.130 0.130 
Hospido et al. 

2005 

Land Application 

[Dewatered Solids]b     

N fertilizer displaced (kg) 1.0 0.30 0.40 
Linderholm et al. 

2012 

P (kg) [runoff] 0.013 0.012 0.10 
Alleoni et al. 

2008 

N (kg) [runoff] 0.17 0.056 0.071 
Knowles et al. 

2011 

Methane (kg) 0.32 0.13 0.13 
Hospido et al. 

2005 

Landfillb     

Methane (kg) [AIRPREX] 2.6 5.5 0.4 Hong et al. 2009 

Methane (kg)[Stuttgart 

Process] 
0.41 0.58 0.09 Hong et al. 2009 

Methane (kg) [KREPRO] 0.33 0.15 0.08 Hong et al. 2009 

 

Table 20. Continued. 
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All phosphorus recovery technologies decrease the phosphorus concentrations in 

dewatering sidestreams that are ultimately returned to the headworks (Jossa and Remy 

2015).  The phosphorus and nitrogen concentrations in these sidestream were manually 

decreased in the GPS-X model to account for this effect. It is possible that decreasing the 

phosphorous concentrations of the sidestream returned to the headworks will, in turn, 

reduce the phosphorus recovered in the sewage biosolids. However, this possibility was 

not considered in the current analysis.   

RESULTS AND DISCUSSION: 

Eutrophication potential and global warming potential of each of the constructed 

scenarios were evaluated separately and measured in terms of equivalent kg of N and 

equivalent kg of CO2 respectively. Contributions from each individual process (i.e., 

treatment plant operation effluents, run-off from farmland application, electricity for 

wastewater treatment, chemical supply etc.) were separated in order to identify the largest 

contributor. The eutrophication potential (Figure 18a) from conventional fertilizer triple 

superphosphate + farmland application (TSP/FLA) of 4 kg of N equivalents per kg of P is 

provided as a baseline for comparison of the other scenarios. 99% of the eutrophication 

potential of the TSP/FLA scenario is associated with run-off from farmlands. 

The most noticeable observation from the results presented in Figure 18 is that 

phosphorous recovery from biosolids generated in a conventional activated sludge 

wastewater treatment plant are significantly greater than wastewater plants with EBPR or 

chemical phosphorous removal, regardless of the recovery technology, but for several of 
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the scenarios, lower eutrophication potentials are predicted for conventional activated 

sludge compared to the baseline TSP case. Conventional activated sludge has a much larger 

contribution to eutrophication from the AS wastewater effluents than either EPBR or 

CHEM-P. These values reflect the difference in the ability to capture P within the 

wastewater treatment plants; AS treatment simulation effluents achieved a 4 mg/L P daily 

average effluent versus the 0.6 and 0.06 mg/L achieved by EBPR and Chem-P plants 

respectively. 
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Figure 18. Eutrophication potential (measured as equivalent kg of N) for each of the 25 

modeled scenarios. a) Commercial fertilizer scenario, direct land application 

or compost + land application scenarios (No phosphorus recovery) b) 

AIPREX phosphorus recovery scenarios, c) Stuttgart phosphorus recovery 

scenarios d) KREPRO phosphorus recovery scenarios. 

Another important factor influencing the eutrophication potentials is the amount of 

phosphorus originally captured in the digested biosolids that is ultimately delivered to 

farmland soils via each scenario (the efficiency of recovery of each process). Table 21 
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summarizes the amount of phosphorus present in the digested biosolids that is delivered to 

farmlands in an inorganic form or in biosolids form via each of the modeled scenarios. The 

greater the amount of phosphorus that ultimately is delivered to farmlands, the lower the 

eutrophication potential. For example, scenario (7) AS-B/AIRPREX/Farmland 

Application produces an eutrophication potential of 2.9 kg of N equivalents and scenario 

(10) AS-B/AIRPREX/Landfill produces an eutrophication potential of 30 kg of N 

equivalents. In both scenarios, the same amount of phosphorus is contained within the 

digested biosolids after wastewater treatment (TP = 16 mg as P/g of dry solids). After 

recovery of phosphorus via AIRPREX, 7.8% of the TP is in struvite form while 64% of the 

TP is still within the biosolids. However, in scenario (7) AS-B/A/FLA both struvite (7.8% 

of TP = 1.3 mg/g) and biosolids (64% of TP = 10 mg/g) are delivered to farmlands, on the 

other hand, in scenario (10) AS-B/A/L only struvite is delivered to farmlands (7.8% of TP 

= 1.3 mg/g).  

Another way to think about this would be in terms of phosphorus demand. For 

instance, if a hypothetical farm requires 1 kg of phosphorus to fertilize their crops 

(regardless if it is contained in biosolids or struvite). In scenario (7) AS-

B/AIRPREX/Farmland Application, 90 kg of digested biosolids would be necessary to 

supply this demand. Conversely, for scenario (10)AS-B/A/L, 800 kg of digested sludge 

would be required to supply this demand since only struvite is used for agricultural 

purposes and the phosphorus contained in the biosolids are wasted to the landfill. 

Producing 10 times more digested sludge in turn increases eutrophication potential. 



 123 

Table 21. The percentage of total phosphorus present in digested biosolids that is 

delivered to Texas farmlands in an inorganic form (struvite or ferric 

phosphate) or as biosolids. 

Scenario 
Recovery 

Technology 

Disposal of spent 

biosolids 

Total P in 

Digested 

Biosolids 

(mg/g) 

Percentage of total P 

delivered to farmland 

Inorganic 

(%) 

Biosolids 

(%) 

(1)AS-B/FLA None Land Application 16 ± 7  0 64 

(2)Chem-P-B/FLA None Land Application 29 ± 5 0 48 

(3)EBPR-B/FLA None Land Application 29 ± 5 0 86 

(4)AS-B/C/FLA None Land Application 16 ± 7  0 64 

(5)Chem-P-B/C/FLA None Land Application 29 ± 5 0 48 

(6)EBPR-B/C/FLA None Land Application 29 ± 5 0 86 

(7)AS-B/A/FLA AIRPREX Land Application 16 ± 7  7.8 64 

(8)Chem-P- B/A/FLA AIRPREX Land Application 29 ± 5 2.0 48 

(9)EBPRB/A/FLA AIRPREX Land Application 29 ± 5 15 86 

(10)AS-B/A/L AIRPREX Landfill 16 ± 7  7.8 0 

(11)Chem-P-B/A/L AIRPREX Landfill 29 ± 5 2.0 0 

(12)EBPR-B/A/L AIRPREX Landfill 29 ± 5 15 0 

(13)ASB/SP/FLA Stuttgart Land Application 16 ± 7  50 50 

(14)Chem-P-B/SP/FLA Stuttgart Land Application 29 ± 5 19 81 

(15)EBPR-B/SP/FLA Stuttgart Land Application 29 ± 5 69 31 

(16)AS-B/SP/L Stuttgart Landfill 16 ± 7  50 0 

(17)Chem-P-B/SP/L Stuttgart Landfill 29 ± 5 19 0 

(18)EBPR-B/SP/L Stuttgart Landfill 29 ± 5 69 0 

(19)AS-B/K/FLA KREPRO Land Application 16 ± 7  61 39 

(20)Chem-P-B/K/FLA KREPRO Land Application 29 ± 5 72 28 

(21)EBPR-B/K/FLA KREPRO Land Application 29 ± 5 81 19 

(22)AS-B/K/L KREPRO Landfill 16 ± 7  61 0 

(23)Chem-P-B/K/L KREPRO Landfill 29 ± 5 72 0 

(24)EBPR-B/K/L KREPRO Landfill 29 ± 5 81 0 
FLA= farm land application, C= Compost, A=AIRPREX, SP=Stuttgart Process, K=KREPRO, L = Landfill 

Scenarios ASB/A/L and Chem-PB/A/L, which have the lowest amount of total 

phosphorus in digested biosolids delivered to farmlands (Table 21), also have the highest 

eutrophication potential per kg P delivered (Figure 18b). For the same reason, other 
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scenarios that utilize landfilling as the final disposal option have higher eutrophication 

potentials than those with farm land application as the final destination. The only 

exceptions to this trend are scenarios that utilize EBPR-B because high quantities of 

phosphorus are recovered in the biosolids using any of the three P recovery technologies 

(e.g., AIRPREX, Stuttgart Process or KREPRO) and thus the majority of this phosphorus 

is delivered to the farmland. 

The direct application of biosolids or composted biosolids to farmlands (Figure 

18a) represents the current operation of over half the treatment plants in the US (NEBRA, 

2007). The model results indicate that with the exception of the EBPR plants, 

eutrophication impacts of the P released via wastewater effluents are greater than the 

impacts of the runoff containing phosphorus and nitrogen that are generated from the land 

applied biosolids. The Chem-P-B scenarios summarized in Figure 18a have lower 

eutrophication impacts than the other two P-removal alternatives because the phosphorus 

present in these biosolids is tightly bound by the iron and will not leach into streams when 

applied to farmlands (Soon and Bates 1982, Maguire et al. 2001, O’Connor et al. 2004, 

Rittman et al. 2011). Finally, it is important to note that in Figure 18a only the scenarios 

utilizing AS-B have higher predicted eutrophication potentials than the commercial triple 

superphosphate (TSP) scenario.  

P Recovery Scenarios Coupled to Farmland Application (FIG 18 b, c, d left-half): 

An examination of the combination of AIRPREX with direct land application of 

spent biosolids (Figure 18b left-half), reveals a eutrophication benefit of using AIRPREX 
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relative to the P-recovery options in Figure 18a (direct land application or composting 

followed by land application). The reason for this result is that dewatered supernatants 

contain dissolved phosphorus (Chapter 4, GPS-X simulation – Appendix B). By utilizing 

the AIRPREX process before dewatering, dissolved phosphorus is removed and less 

phosphorus is returned to the headworks of the treatment plant which decreases the 

phosphorous concentration in the wastewater effluent. However, for the Chem-P-B 

biosolids (Figure 18b – left-half), the eutrophication potential after the AIRPREX process 

remains almost the same relative to direct land application of Chem-P-B. A very small 

amount of the total phosphorus is actually recovered from the Chem-P-B sludge by 

AIRPREX (2.0%, Chapter 4) so there is no eutrophication benefit of using AIRPREX on 

biosolids produced at WWTPs that incorporate chemical phosphorus removal. A similar 

trend is observed when the Stuttgart process is coupled with farm land application (Figure 

18c – left-half). The eutrophication potential is reduced relative to the scenarios in Figures 

3a except for scenario Chem-PP-B/SP/FLA.  

For scenarios with KREPRO paired with farmland application of spent biosolids 

(Figure 18d – left) the decrease in eutrophication potential is minimal and the advantage of 

these scenarios over the Stuttgart Process scenarios (Figure 18c) will depend on the GWP 

and economics of recovering greater quantities of phosphorus. All scenarios coupled with 

farmland application produced lower eutrophication potentials than the conventional 

fertilizer TSP scenario (TSP/FLA – Figure 18d). 

As noted above, the effects of decreasing phosphorus and nitrogen concentrations 

in dewatering sidestreams are complex. Return flows can be a significant portion of the 
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influent nutrient load to a wastewater treatment plant (Lawler and Singer 1985). Thus, 

decreasing nutrient concentrations in sidestreams can also decrease the total phosphorus 

concentration in the biosolids and this in turn decrease efficiency of recovery.  This 

complexity was not incorporated in the LCIA model for this study but should be considered 

for future studies.   

P Recovery Scenarios Coupled with Landfill Disposal (FIG 18 b, c, d right-half): 

  Switching from farmland application to landfill disposal increases the 

eutrophication potential of the scenarios ASB/SP/L and Chem-P/SP/L greatly because 50% 

and 81% of the total biosolids phosphorus contained in the biosolids produced in the 

wastewater treatment plant is wasted to the landfill respectively. Thus, more struvite has to 

be produced to cover a hypothetical demand of phosphorus. The one exception is 

EBPRB/SP/L because almost 70% of the phosphorus is recovered via the Stuttgart 

technology when EBPR-B is used.  

The eutrophication potential for scenario Chem-P-B/K/L (Figure 18d – right-half) 

improves significantly from scenario Chem-P-B/SP/L (Figure 18c – right-half). The reason 

for this result is that for Chem-P-B, the P recovery quadruples when switching from the 

Stuttgart process to KREPRO (P-recovery increases from 19% to 72%, Chapter 4) thus, 

less digested biosolids are required to meet a 1kg demand.  

The majority of scenarios modeled in this LCIA have a lower eutrophication 

potential than using TSP as a source for phosphorus in farmlands. The exceptions are 
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typically scenarios that involve conventional activated sludge wastewater treatment plants 

that discharge higher concentrations of phosphorus in their effluents.  

It is important to note that all the costs of recovering phosphorus (energy, 

chemicals, manpower) are generally assumed by the wastewater treatment plant, and 

reducing the eutrophication potential may not be of direct benefit to the utility in terms of 

economic compensation. This however, may not be true in some areas of the US where 

eutrophication problems are of significant concern (e.g., Chesapeake Bay, Tar-Pamlico 

river basin, Mississippi basin at the Gulf of Mexico). Amendments to the Clean Water Act 

in 1987 allow States to design nutrient management plans on a “watershed-by-watershed 

basis” instead of a “discharger-by-discharger” basis (Letson 1992). In other words, the sum 

of all the nutrient discharges per day within a particular watershed has to be lower than the 

maximum amount a water body can receive and still maintain water quality standards (i.e., 

the total maximum daily load or TMDL). TMDLs have to be met regardless of whether if 

discharges occur at point sources or non-point sources. States allocate portions of the 

TMDL to point sources and non-point sources within a given watershed, but they are 

allowed to trade amongst each other their “unused” portion of the TMDL (Sadler et al. 

2014). This means that if a treatment plant invests energy and chemicals in recovering 

phosphorus from wastewater biosolids, it can recover the investment by trading the nutrient 

discharge it reduced with other discharge sources in the watershed. For example, nutrient 

recovery scenario 19 (AS-B/K/FLA in Table 17) requires economic investment to cover 

the cost of chemicals for phosphorus precipitation, energy for thermal hydrolysis and acids 

for pH control. However, the eutrophication potential is reduced compared to Scenario 1 
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(AS-B/FLA). The nutrient reduction can then be sold to farmers with nutrient rich runoff 

and, in this way, the economic feasibility of phosphorus recovery can be improved. 

Although nutrient trading can make phosphorus recovery more attractive to some utilities, 

the GWP of these technologies would still need to be addressed.  

Global Warming Potential 

The results presented in Figure 19 show that even though the manufacture of triple 

superphosphate requires mining and transport of raw materials across the Atlantic, this 

process has less of a predicted GWP than all the other scenarios examined. The reason for 

this result is that the raw material, in this case phosphate rock, is a more concentrated source 

of orthophosphate than wastewater biosolids. Phosphate rock has a 30% P2O5 

concentration of orthophosphate (Villalba et al. 2008), whereas AS-B, Chem-PB and 

EBRPR-B have concentrations of 2.1, 1.2, 4.6 % P2O5 respectively (Chapter 4). Thus, 

minimum processing (energy + chemicals) is required to release phosphorus from 

phosphate rock and produce fertilizers (i.e., greater quantities of commercial fertilizer per 

unit energy input). It is important to note that the GWP does not address the fact that as 

phosphate rock reserves deplete they also decrease in quality (Cornell and White 2011) and 

thus more energy and chemicals will be required to produce the same amount of 

phosphorus in the future.  
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Figure 19. Global warming impact results (measured as equivalent kg of CO2) for the 25 

scenarios examined in this study. a) Commercial fertilizer, direct land 

application or compost + land application scenarios (No phosphorus 

recovery) b) AIPREX phosphorus recovery scenarios, c) Stuttgart 

phosphorus recovery scenarios d) KREPRO phosphorus recovery scenarios. 

 

The global warming impact of electricity generation is the process that contributes 

the most to the overall GWP predicted for the direct and compost land application scenarios 
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(Figure 19a). This impact decreases when Chem-P-B and EBPR-B are used as the 

wastewater treatment process instead of AS-B. Similarly, as observed for the 

eutrophication impacts for each scenarios, the main factor that controls the global warming 

results is the amount of total phosphorus originally present in the digested biosolids that 

are delivered to farmlands (Table 21).  

P Recovery Scenarios Coupled with farmland application (FIG 19 b, c, d left-half) 

Scenarios that combine AIRPREX and farm land application of the spent biosolids 

(Figure 19b – left-half) seem to decrease global warming potential (GWP) relative to the 

direct land application (or composting followed by land application) scenarios presented 

in Figure 19a. The AIRPREX process takes advantage of the dissolved orthophosphate that 

otherwise would be returned to the wastewater treatment without using high quantities of 

chemicals or energy. In addition, the phosphorus remaining inside the spent biosolids can 

be utilized for farm land application.  

The results from scenarios employing the Stuttgart Process (Figure 19c – left-half) 

show that the GWP increases, when compared to the direct land application and compost 

land application scenarios depicted in Figure 19a. The exception is EBPR-B/SP/FLA 

where the GWP is predicted to decrease slightly. The main contribution to the GWP in 

these scenarios is the electricity required for wastewater treatment and the material 

requirements for citric acid production (needed in the Stuttgart process). This means that 

in order to recover greater quantities of P in the inorganic form through the Stuttgart 

process, it is necessary to increase the GWP impact over that generated by the currently 



 131 

available methods of direct farmland application and composting. It is important to note 

that the LCI of citric acid required for the Stuttgart process was based on pilot tests 

recovering phosphorus from Chem-PB (Antakyali et al. 2013). It is likely that AS-B and 

EBPR-B will have a much lower citric acid LCI than what it was used in this study, but the 

current LCI gives us a good starting point for comparison.  

Similar results as those described for the Stuttgart Process can be observed for the 

KREPRO scenarios (Figure 19d – left-side). The difference is that the production of Iron 

(III) chloride used for precipitation of phosphorus replaces the citric acid GWP observed 

with the Stuttgart technology. Again, it should be noted that the LCI were obtained from 

pilot tests of phosphorus recovered from Chem-PB (Hansen et al. 2000) and they will 

possibly be slightly lower for AS-B and EBPR. These results suggests that to reduce the 

GWP of the Stuttgart and  KREPRO technologies , it would be worthwhile to develop  

sustainable chelating sources (for example Aspergillus Niger derived citric acid, Dhillon et 

al. 2011) and precipitation chemicals (for example Tobermorite from wastes generated in 

the construction industry, Berg et al. 2003).  

P Recovery scenarios coupled with landfill disposal (FIG 19 b, c, d right-half): 

For scenarios that dispose biosolids to a landfill (Figure 19 b, c, d – right-half), the 

GWP increases significantly due to the low quantities of phosphorus recovered from 

digested biosolids (struvite and ferric phosphate) that are ultimately delivered to farmlands 

(Table 21). Scenarios with AIRPREX recovery + landfill disposal produce the highest 

GWP from all landfill scenarios. As P-recovery is increased by advanced recovery 
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technologies, such as the Stuttgart and KREPRO technologies, the GWPs decrease 

significantly. These results suggest that for treatment in municipalities where landfill 

disposal is the only option, the recovery technologies with the highest phosphorus recovery 

would be more appropriate for taking advantage of the energy imputed during wastewater 

treatment. Indeed, none of the scenarios with landfill disposal produce GWPs lower than 

direct farmland application or compost + farmland application scenarios shown in Figure 

19a.  

Additional research is still required to confirm that land application is still possible after 

harsh technologies such as the Stuttgart Process and KREPRO. The biosolids will have a 

more balanced N:P2O5 ratio as shown in Chapter 4, but the impact of citric acid, sulfuric 

acid and other chemicals on plant uptake requires further research. 

CONCLUSIONS: 

The study presented in this paper performed a comprehensive life cycle assessment 

of the current state of phosphorus recovery (direct farmland application, compost + land 

application and AIRPREX) as well as more advanced recovery technologies still under 

development (KREPRO and Stuttgart Process). The recovery of phosphorus from 

conventional activated sludge was considered for the first time in an LCIA. Also for the 

first time, eutrophication potential due to phosphorus run-off from applied biosolids to 

farmlands was considered. After completing the impact assessment of the 25 constructed 

scenarios, the following conclusions can be drawn:   
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 The wastewater effluent is the biggest source of eutrophication potential for all 

scenarios except for commercial fertilizers + land application (TSP/FLA) where 

runoff from farmlands is the greatest source.  

 The energy used for wastewater treatment and recovery processes as well as the 

chemicals associated with the recovery technologies were the largest source of 

global warming potential (GWP) in all scenarios. 

 When using conventional activated sludge biosolids (AS-B) as a source of 

phosphorus for recovery, all three phosphorus recovery technologies (AIRPREX, 

Stuttgart process and KREPRO) coupled with land application have lower 

eutrophication potentials than direct or compost farmland application scenarios. 

However, AIRPREX + land application is the only option that decreases GWP 

from compost and direct land application. 

 If EBPR-B is the source of phosphorus, the best option is to use the Stuttgart 

process with land application. Even though the KREPRO process can recover over 

80% of the total phosphorus versus the 70% recovered by the Stuttgart technology 

(Chapter 4), the energy requirements and use of ferric chloride to precipitate 

phosphorus yield slightly higher GWPs. These results might vary if a better 

estimation for the LCI of citric acid is obtained. 

 The use of landfills for disposing spent biosolids after phosphorus recovery is not 

a viable option for reducing GWP or eutrophication potential. 

 The TSP/FLA scenario had a very high impact on eutrophication due to its water 

solubility which means a large portion of the phosphorus manufactured is lost to 
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runoff. However, its solubility is precisely the reason why it is preferred for high 

yield farming. More research is required to find a balanced wastewater derived 

product that has lower water solubility than TSP but high plant uptake.  TSP 

production has the lowest GWP because the source of phosphorus is highly 

concentrated. Still, the results in this study do not address the issue of depleting a 

non-renewable resource or reflect the impact of a change in phosphorus rock 

quality and economic dynamics of one commodity (phosphorus) versus the other 

(energy). These questions should be answered in future studies employing a 

different inventory. 
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Chapter 6: Conclusions 

The main goal of this research was to determine and understand phosphorus 

speciation in different types of municipal wastewater treatment biosolids in order to 

evaluate recovery and reuse strategies. To this end, nine wastewater treatment plants were 

sampled and the speciation within the biosolids was determined using a speciation protocol 

that distinguishes orthophosphate, polyphosphate and organic phosphorus in liquid and 

solid phases. The effects of thickening and anaerobic digestion on the speciation of 

phosphorus within biosolids generated at conventional activated sludge was examined in 

Chapter 3. By employing the data collected on phosphorus speciation in both biosolids and 

sidestreams from a range of wastewater treatment plants and technology performance 

information from published literature, phosphorus recovery and N: P2O5 biosolids ratios 

were estimated for three different recovery technologies in Chapter 4. Finally in Chapter 

5, a life-cycle analysis was performed to determine the environmental impact of 25 

different combinations of wastewater treatment, process recovery technology and end use 

or disposal option.  

The main conclusions from Chapters 3 and 4 address phosphorus speciation of 

biosolids and sidestreams for a range of treatment plant configurations, P recovery from 

application of different technologies to these biosolids, and suitability for land application:  

 Biosolids generated from wastewater treatment plants that incorporate chemical 

phosphorus removal (Chem) or enhanced biological phosphorus removal (EBPR) 

contain greater quantities of phosphorus (per gram of dry solids) than biosolids 

generated from conventional activated sludge plants (AS).  
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 The dominant phosphorus species in the biosolids generated from plants with chemical 

phosphorus removal were polyphosphates and not particulate phosphorus as intuition 

would suggest.  

 After digestion, the highest concentration of phosphorus was in the particulate 

orthophosphate species for biosolids generated from EBPR plants as well as for 

biosolids generated from conventional AS treatment plants. 

 Despite substantial variability observed in the orthophosphate concentration of 

thickening sidestreams, it is possible to conclude that sidestreams from the thickeners 

are not suitable for recovery of phosphorus.  They do not exceed the required dissolved 

concentration for economic feasibility (20 mg/L). The exception were sidestreams 

from plant chemical phosphorus removal plant #1. 

 Using the AIRPREX phosphorus recovery technology, there is a potential to recover 

between 2% and 15% of the total P present in the biosolids, although the level of P 

recovery possible will depend on the type of phosphorus removal processes used at the 

wastewater treatment plant. However, regardless of the type of wastewater treatment 

plant, there is no significant change in the N:P2O5 ratio of the spent biosolids after 

phosphorus recovery. 

 The recovery potential using the Stuttgart phosphorus recovery technology is higher 

than for the AIRPREX technology. There were significant increases in the N:P2O5 ratio 

of undigested and digested AS biosolids as well as digested EBPR biosolids for the 

Stuttgart technology which enhances its suitability for land application.   
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 With the KREPRO technology, the recovery potential is greater than with the other 

two technologies (50% for all types of biosolids). Also, there is a significant increase 

of the N:P2O5 ratio for all spent biosolids.  

Technologies such as Stuttgart and KREPRO are in theory better alternatives than the 

commercially available AIRPREX; however, the environmental feasibility of these 

approaches may limit their application. The life cycle impact assessment performed in 

Chapter 5 compared the global warming potential (GWP) and eutrophication impacts of 

fertilizing Texas farmlands with commercially available fertilizer (baseline case) to the 

impacts associated with recovering phosphorus from selected wastewater biosolids and the 

three P recovery technologies described above. To provide a basis for comparison, direct 

farm land application of dewatered biosolids as well composted biosolids followed by farm 

land application was considered. The LCIA analysis in Chapter 5 produced the following 

conclusions: 

 Wastewater effluents discharges to water bodies are the largest source of 

eutrophication potential of all the processes studied. 

 The energy used for wastewater treatment and recovery processes as well as the 

chemicals associated with the recovery technologies were the largest sources of 

GWP in all scenarios. 

 All three recovery technologies (AIRPREX, Stuttgart process and KREPRO) 

coupled with land application have lower eutrophication potentials than direct (or 

compost) farmland application when utilizing AS-B as a phosphorus source. 
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 If EBPR biosolids are available for phosphorus recovery, the best overall option in 

terms of both GWP and eutrophication potential is to use the Stuttgart process and 

dispose of the biosolids via land application. Even if the KREPRO can recover higher 

quantities of phosphorus, the energy requirements of thermal hydrolysis and the 

manufacture of ferric chloride make this process less desirable in terms of its impact 

on global warming potential.  

 Land application of both ferric phosphate and struvite produce less eutrophication than 

application of commercial triple super phosphate (TSP). TSP is more water soluble 

than struvite and ferric phosphate which increases its eutrophication potential.  

 Production of TSP has a very low global warming potential since the source of 

phosphorus (phosphate rock) is highly concentrated. 

Results from this doctoral work serve as a starting point for employing phosphorus 

speciation to select phosphorus recovery technologies that are matched to specific 

wastewater and biosolids treatment processes.  The research also provides a LCIA tool that 

can be used to quantify the impacts of global warming and eutrophication for different 

wastewater treatment, P recovery and disposal or reuse scenarios. As phosphorus sources 

are depleted, the footprint of various scenarios are likely to change, especially with respect 

to energy utilization and global warming potential.   
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RECOMMENDATIONS FOR FUTURE WORK 

 

The work presented in this dissertation provides a framework for further research 

utilizing phosphorus speciation for process and technology selection. The findings of this 

research highlight a number of avenues for future research that could be combined with the 

results presented here to validate the conclusions and refine the LCIA. As more data are 

available on speciation of P within different thickening processes and varying digester 

operating parameters, statistical analysis of these larger data sets can be used to corroborate 

or invalidate the findings from this work. Future research should also verify the 

assumptions made regarding the P recovery technologies, especially for the technologies 

that have not been applied at field scale.  In addition, other novel technologies should be 

compared within the LCIA framework.    

Several specific recommendations for selecting additional treatment options to study 

include plants employing chemical phosphorus removal without biological nitrogen 

removal, different EBPR configurations and thermal hydrolysis.  It is possible that higher 

concentrations of particulate orthophosphate and lower concentrations of polyphosphates 

will be observed in the absence of nitrogen removal so including plants without nitrogen 

removal is a high priority.   

The effects of polyelectrolytes on the phosphorus speciation of dewatering & 

thickening sidestreams also requires further study. CNP-tech (Hamburg, Germany) the 

company in charge of the commercialization of the AIRPREX process claim a reduction 

of dewatering polyelectrolyte when using their technology of phosphorus recovery (CNP, 
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2016). However, no published literature is available to date that explains the mechanism 

by which dissolved orthophosphate inhibits sludge dewatering. 

 Finally, the effects of spent biosolids from the KREPRO and Stuttgart technologies on 

crop growth needs to be evaluated. Both the KREPRO and Stuttgart technologies utilize 

strong acids and chemicals for the recovery of phosphorus. These may have an impact on 

plant uptake of phosphorus within the spent biosolids. 
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Appendix A 

CHAPTER 3 

Table 22. Summary of phosphorus concentrations before and after anaerobic digestion of 

the sampled treatment plants. 

 Day 1 Day 2 Day 3 

 Undigested Digested Undigested Digested Undigested Digested 

 Dissolve Orthophosphate (mg/g) 

AS2 1.28 1.03 0.67 1.03 - - 

AS4 0.97 1.19 0.67 1.07 0.89 1.64 

AS5 1.94 1.28 0.82 0.12 0.74 0.36 

EBPR1 0.6 3.01 1.11 3.48 1.89 3.68 

 Particulate Orthophosphate (mg/g) 

AS2 3.9 9.42 3.34 9.53 - - 

AS4 2.78 3.22 3.07 3.16 3.05 2.14 

AS5 2.49 5.13 0.47 3.83 3.14 5.35 

EBPR1 3.1 10.82 1.97 11.16 1.13 10.62 

 Total Polyphosphate (mg/g) 

AS2 6.23 4.49 5.32 0 - - 

AS4 1.76 0.48 2.46 0.93 2.5 0.36 

AS5 3.59 4.65 5.1 4.68 6.4 4.3 

EBPR1 10.78 4.21 8.65 3.05 16.08 4.76 

 Total Organic phosphates (mg/g) 

AS2 2.34 1.35 4.79 0.96 - - 

AS4 4.05 6.15 5.67 4.7 3.38 3.07 

AS5 3.65 2.32 5.4 0.19 4.7 1.8 

EBPR1 6.44 2.6 7.46 0 4.04 3.93 
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Table 23. Summary of the Potassium, Calcium and Magnesium concentrations before and 

after digestion. 

 Day 1 Day 2 Day 3 

 Undigested Digested Undigested Digested Undigested Digested 

 Dissolved Potassium (mg/L) 

AS2 54 69 30 61   

AS4 20 128 18 120 22 130 

AS5   52 80 52 77 

EBPR1 16 128 15 128 14 136 

 Dissolved Calcium (mg/L) 

AS2 78 104 66 104   

AS4 26 120 22 104 36 128 

AS5   426 241 419 192 

EBPR1 82 83 96 88 110 84 

 Dissolved Magnesium (mg/L) 

AS2 26 30 12 27   

AS4 4 25 3 30 6 24 

AS5   96 78 105 76 

EBPR1 6 42 6 40 5 99 
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Table 24. Summary of phosphorus concentrations before and after thickening for the 

sampled treatment plants. 

 Day 1 Day 2 Day 3 

 
Pre-

Thickening 
Post- 

Thickening 
Pre-

Thickening 
Post- 

Thickening 
Pre-

Thickening 
Post- 

Thickening 

 Dissolved Orthophosphate (mg/g) 

AS1 0.67 1.18 1.49 1.63 0.97 2.26 

AS2 0.94 2.93 0.78 1.15 - - 

AS3 0.9 1.69 0.76 1.67 0.89 1.92 

AS4 0.8 0.97 0.83 0.67 0.81 0.89 

AS5 0.92 1.83 1.15 0.82 1.16 0.74 

EBPR2 0.90 6.88 0.60 4.21 1.10 3.16 

 Particulate Orthophosphate (mg/g) 

AS1 3.07 3.04 2.3 3.34 3.43 4.91 

AS2 5.68 6.59 7.26 5.79 - - 

AS3 1.4 1.49 2.6 1.56 1.39 1.57 

AS4 2.06 2.78 2.21 3.07 2.5 3.05 

AS5 4.0 2.5 2.2 0.5 2.7 3.1 

EBPR2 3.6 0.3 3.1 3.2 2.0 3.4 

 Total Polyphosphate (mg/g) 

AS1 19.48 6.27 3.78 3.13 4.43 3.36 

AS2 13.57 13.1 9.69 10.48   

AS3 3.06 3.3 2.89 4.78 5.64 4.03 

AS4 2.9 1.76 5.14 2.46 3.36 2.5 

AS5 2.44 0.18 3.01 5.1 8.7 6.4 

EBPR2 9.22 9.52 10.78 4.32 7.48 3.77 

 Total Organic phosphates (mg/g) 

AS1 1.92 20.43 7.77 5.11 6.47 4.81 

AS2 5.29 1.72 5.66 5.82   

AS3 6.46 5.7 2.61 2.12 5.69 5.46 

AS4 5.86 4.05 9.8 5.67 5.08 3.38 

AS5 1.06 3.83 4.93 5.4 3.91 4.7 

EBPR2 9.33 4.55 6.44 5.66 7.48 3.77 
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Table 25. Summary of the dissolved calcium and magnesium concentrations before and 

after thickening. 

 Day 1 Day 2 Day 3 

 Undigested Digested Undigested Digested Undigested Digested 

 Dissolved Calcium (mg/L) 

AS1   138 24 65 35 

AS2 55 78 55 66   

AS3 14 22 12 26 12 35 

AS4 27 26 26 22 30 36 

AS5   459 426 405 419 

EBPR2 86 123 124 105 129 160 

 Dissolved Magnesium (mg/L) 

AS1   18 162 16 77 

AS2 8 26 7 12   

AS3 3 7 2 5 2 8 

AS4 3 4 2 3 4 6 

AS5   79 96 98 105 

EBPR2 4 27 13 30 10 40 
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Table 26. Comparison of relative standard deviations of the phosphorus data collected in 

this study versus phosphorus data published in the literature. 

Reference type of biosolids Analyte RSD% 

This Study Thickened Undigested Dissolved Orthophosphate 44 

This Study Thickened Undigested Particulate Orthophosphate 33 

This Study Thickened Undigested Particulate Polyphosphate 23 

This Study Thickened Undigested Particulate Organic Phosphorus 31 

This Study Thickened Digested Dissolved Orthophosphate 34 

This Study Thickened Digested Particulate Orthophosphate 10 

This Study Thickened Digested Particulate Polyphosphate 55 

This Study Thickened Digested Particulate Organic Phosphorus 57 

Lawler and Singer 1984 Digester Supernatants Total Phosphorus 68 

Dueñas et al. 2003 Dewatering Supernatants Total Phosphorus 40 

Dueñas et al. 2003 Dewatering Supernatants Particulate Orthophosphate 82 

Dueñas et al. 2003 Dewatering Supernatants Dissolved Orthophosphate 38 

Danesh et al. 2008 Waste Activated Sludge Dissolved Orthophosphate 51 

Takiguchi et al. 2003 Waste Activated Sludge Total Phosphorus 11 
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CHAPTER 4: 

Table 27. Summary of the dissolved and particulate orthophosphate concentrations for all 

the sampled biosolids before and after digestion. 

  

Dissolved Orthophosphate 
(mg/g) 

Particulate Orthophosphate 
(mg/g) 

  Undigested Digested Undigested Digested 

AS1 

Day 1 1.2  3.0  

Day 2 1.6  3.3  

Day 3 2.3  4.9  

AS2 

Day 1 2.9 1.9 6.6 17.3 

Day 2 1.2 1.9 5.8 17.5 

Day 3     

AS3 

Day 1 1.7  1.5  

Day 2 1.7  1.6  

Day 3 1.9  1.6  

AS4 

Day 1 1.0 1.2 2.8 3.2 

Day 2 0.7 1.1 3.1 3.2 

Day 3 0.9 3.0 3.1 4.0 

AS5 

Day 1 1.8 2.1 2.5 3.5 

Day 2 0.8 0.2 0.5 5.5 

Day 3 0.7 0.5 3.1 7.9 

CHEM1 

Day 1 0.3  1.7  

Day 2 0.2  4.3  

Day 3 1.5  6.3  

CHEM2 

Day 1 0.2  4.2  

Day 2 0.9  5.6  

Day 3 0.6  5.3  

EBPR1 

Day 1 0.7 4.7 3.3 17.2 

Day 2 0.6 4.6 3.1 14.8 

Day 3 0.3 5.0 3.1 14.5 

EBPR2 

Day 1 0.9  3.6  

Day 2 0.6  3.1  

Day 3 1.1  2.0  
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Table 28. Summary of the total polyphosphate and organic phosphates concentrations for 

all the sampled biosolids before and after digestion. 

  Polyphosphate (mg/g) Organic phosphates (mg/g) 

  Undigested Digested Undigested Digested 

AS1 

Day 1 6.3  20.4  

Day 2 3.1  5.1  

Day 3 3.4  4.8  

AS2 

Day 1 13.1 8.2 1.7 2.5 

Day 2 10.5 0.0 5.8 1.8 

Day 3     

AS3 

Day 1 3.3  5.7  

Day 2 4.8  2.1  

Day 3 4.0  5.5  

AS4 

Day 1 1.8 0.5 4.1 6.2 

Day 2 2.5 0.9 5.7 4.7 

Day 3 2.5 0.7 3.4 5.7 

AS5 

Day 1 0.2 0.5 3.8 4.3 

Day 2 5.1 6.5 5.4 0.1 

Day 3 6.4 6.2 4.7 2.7 

CHEM1 

Day 1 26.6  0.2  

Day 2 23.3  8.2  

Day 3 20.3  3.5  

CHEM2 

Day 1 15.5  10.8  

Day 2 5.6  11.8  

Day 3 14.8  0.2  

EBPR1 

Day 1 47.4 6.5 0.0 4.0 

Day 2 23.9 4.0 5.1 0.0 

Day 3 23.0 6.5 6.7 5.4 

EBPR2 

Day 1 9.2  9.3  

Day 2 10.8  6.4  

Day 3 7.5  7.5  
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Table 29. Summary of the phosphorus concentrations in thickening and dewatering 

supernatants. 

  Orthophosphate (mg/L) Polyphosphates (mg/L) 
Organic phosphates 

(mg/L) 

  Thickening Dewatering Thickening Dewatering Thickening Dewatering 

AS1 

Day 1 8.8  0.6  0.3  

Day 2 5.0  2.0  2.9  

Day 3 7.5  0.5  0.0  

AS2 

Day 1 12.3 46.7 11.3 4.3 6.0 5.2 

Day 2 45.8 31.5 1.6 2.0 20.4 6.1 

Day 3       

AS3 

Day 1 4.8 32.8 0.0 7.2 0.8 13.2 

Day 2 5.3 31.3 2.2 4.5 6.1 20.2 

Day 3 7.5 27.9 2.3 8.2 3.8 8.2 

AS4 

Day 1 7.4 39.9 0.8 4.2 3.3 10.2 

Day 2 6.3 35.3 1.7 8.4 3.0 14.1 

Day 3 6.5  0.8  2.2  

AS5 

Day 1 14.2 15.5 5.4 1.6 13.4 5.0 

Day 2 17.0 7.8 7.7 5.3 18.7 4.3 

Day 3 20.4 21.1 4.6 3.4 10.3 4.6 

CHEM1 

Day 1 41.8 60.8 10.8 1.7 7.4 5.4 

Day 2 90.6  6.7  0.5  

Day 3 23.9 30.5 7.8 1.8 7.5 4.1 

CHEM2 

Day 1  14.5  10.0  0.0 

Day 2  0.9  0.5  1.0 

Day 3  1.5  4.9  20.9 

EBPR1 

Day 1 7.4 24.1 0.0 13.7 1.9 0.5 

Day 2 9.8 41.7 0.0 0.2 0.2 0.2 

Day 3 8.9 38.4 0.2 18.2 0.2 0.2 

EBPR2 

Day 1       

Day 2 2.6  0.0  0.0  

Day 3 2.3  0.0  0.1  
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Table 30. Nitrogen to Phosphorus ratios used for the calculations in Chapter 4. 

Source Treatment 
P2O5 

% 
N % Ratio 

Maguire et al. 2001 Conventional Undigested 4.8% 5% 1.0 

Maguire et al. 2001 Conventional Digested 5.5% 4% 0.7 

Maguire et al. 2001 Chem-P Undigested 2.5% 2% 0.8 

Maguire et al. 2001 Chem P Undigested 2.7% 4% 1.3 

Maguire et al. 2001 Chem-P Digested 6.6% 4% 0.6 

Maguire et al. 2001 Chem-P Digested 4.8% 5% 1.1 

Maguire et al. 2001 Chem-P Digested 6.9% 5% 0.7 

Maguire et al. 2001 Chem-P Digested 5.5% 5% 0.9 

Tchobanoglous Primary Sludge 2% 3% 1.6 

Tchobanoglous Digested Primary Sludge 2.5% 3% 1.2 

Own Measurements Conventional Undigested 18.4% 32% 1.7 

Own Measurements Conventional Digested 21.2% 31% 1.5 

US EPA (1979) Conventional WAS 7.0% 6% 0.9 

Penn and Sims 2002 BNR 4.1% 5% 1.2 

Penn and Sims 2002 Conventional digested 4.3% 5% 1.1 

Penn and Sims 2002 Chem-P Undigested 1.9% 4% 1.8 

Penn and Sims 2002 
Chem-P Aerobically 

digested 
3.3% 5% 1.5 

Penn and Sims 2002 Chem-P Undigested 3.3% 5% 1.5 

Penn and Sims 2002 Chem-P Undigested 1.6% 2% 1.4 

Penn and Sims 2002 Chem-P Digested 5.6% 5% 0.9 

Penn and Sims 2002 Chem-P Digested 4.4% 3% 0.6 

Wang et al. 2010 BNR- WAS Undigested 8.5% 8% 0.9 

Wang et al. 2010 BNPR - WAS Undigested 18.7% 7% 0.4 

Chinault and O’Connor 2008 Conventional Digested 4.6% 5% 1.2 

Chinault and O’Connor 2008 Bio N- Digested 5.3% 6% 1.1 

Chinault and O’Connor 2008 BPR Digested 6.0% 6% 1.0 

Vincent et al. 2011 Conventional WAS 4.3% 5% 1.2 

Schroder et al 2008 Conventional Digested 8.8% 2% 0.2 

Uysal et al. 2010 Conventional Digested 3.5% 4% 1.2 

Kroiss et al 2008 Not specified 2.0% 1% 0.7 

Kroiss et al 2008 Not specified 4.5% 7% 1.4 

Debosz et al. 2002 Chem P Digested 6.8% 3% 0.5 

Bolzonella et al2012 WAS 4.4% 8% 1.7 

Salsabil et al 2009 BPR WAS 20.1% 12% 0.6 
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Sarkar et al. 2005 BPR DIGESTED 8.0% 6% 0.7 

Batziaka et al. 2008 Conventional Digested 1.8% 4% 2.4 

Liao et al. 2005 BPR 6.6% 4% 0.6 

Liao et al. 2005 BPR 7.0% 4% 0.6 

Liao et al. 2005 BPR 21.8% 9% 0.4 

Liao et al. 2005 BPR 21.5% 9% 0.4 

Elliot et al. 2002 Conventional Digested 6.2% 5% 0.8 

Elliot et al. 2002 BPR 6.8% 6% 0.9 

Elliot et al. 2002 BPR 7.1% 7% 0.9 

Chinault 2007 BPR Undigested 4.6% 7% 1.5 

Chinault 2007 BPR Undigested 5.3% 7% 1.3 

Chinault 2007 Conventional Undigested 3.9% 4% 1.1 
 

Table 31. Phosphorus recovery efficiencies obtained from the published literature. 

 
Recovery 
Efficiency 

Source 

AIRPREX 
90% of dissolved 
orthophosphate 

Stumpf et al. 2009 

Stuttgart 
Process 

60 % of total 
phosphorus 

Antakyali et al. 
2013 

KREPRO 
75 % of the total 

phosphorus 
Karlsson 2001 
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Table 32. Summary of the phosphorus recovery potential calculated for the different 

technologies of phosphorus recovery using undigested municipal biosolids. 

  
Phosphorus Recovery Potential          

(% of total phosphorus) 

  AIRPREX 
Stuttgart 
Process 

KREPRO 

AS1 

Day 1 3% 13% 31% 

Day 2 11% 37% 55% 

Day 3 13% 46% 62% 

AS2 
Day 1 11% 38% 84% 

Day 2 4% 29% 67% 

AS3 

Day 1 20% 51% 49% 

Day 2 6% 11% 49% 

Day 3 4% 25% 62% 

AS4 

Day 1 13% 26% 48% 

Day 2 11% 22% 51% 

Day 3 13% 26% 52% 

AS5 

Day 1 9% 38% 52% 

Day 2 5% 31% 47% 

Day 3 8% 39% 59% 

EBPR1 

Day 1 3% 27% 63% 

Day 2 7% 13% 74% 

Day 3 9% 52% 64% 

EBPR2 

Day 1 4% 19% 54% 

Day 2 3% 17% 62% 

Day 3 5% 16% 55% 

Chem1 

Day 1 1% 7% 89% 

Day 2 1% 12% 69% 

Day 3 4% 24% 80% 

Chem2 

Day 1 0% 14% 58% 

Day 2 3% 27% 46% 

Day 3 3% 27% 89% 
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Table 33. Summary of the potential mass recovered by the different technologies of 

phosphorus recovery utilizing undigested municipal biosolids. 

  Mass recovered (kg of P/metric ton 
of dry solids) 

  AIRPREX Stuttgart 
Process 

KREPRO 

AS1 Day 1 1.1 4.1 9.4 

Day 2 1.5 4.9 7.3 

Day 3 2.0 7.0 9.5 

AS2 Day 1 2.6 9.3 20.4 

Day 2 1.0 6.8 15.7 

AS3 Day 1 1.6 4.2 4.0 

Day 2 0.7 1.3 5.7 

Day 3 0.7 3.8 9.3 

AS4 Day 1 1.5 3.1 5.8 

Day 2 1.5 3.2 7.3 

Day 3 1.7 3.4 6.8 

AS5 Day 1 0.9 3.7 5.0 

Day 2 0.6 3.7 5.6 

Day 3 0.8 3.9 5.8 

EBPR1 Day 1 0.3 2.9 6.6 

Day 2 1.7 3.0 17.2 

Day 3 1.9 10.8 13.3 

EBPR2 Day 1 0.8 4.4 12.3 

Day 2 0.5 3.6 13.0 

Day 3 1.0 3.0 10.6 

Chem1 Day 1 0.3 1.9 25.7 

Day 2 0.2 4.4 25.0 

Day 3 1.3 7.6 25.3 

Chem2 Day 1 0.1 4.3 18.1 

Day 2 0.8 6.4 11.0 

Day 3 0.5 5.8 18.7 
 

 

 

 



 153 

Table 34. Summary of the estimated nitrogen to phosphorus ratio to be achieved after 

phosphorus recovery through the discussed technologies when utilizing 

undigested biosolids. 

  N:P2O5 Ratio after recovery 

  AIRPREX 
Stuttgart 
Process 

KREPRO 

AS1 

Day 1 1.3 1.5 1.9 

Day 2 1.4 1.9 2.9 

Day 3 1.5 2.2 3.4 

AS2 
Day 1 1.4 2.0 7.9 

Day 2 1.4 1.8 4.0 

AS3 

Day 1 2.1 3.3 3.3 

Day 2 1.8 1.9 3.3 

Day 3 1.8 2.2 4.4 

AS4 

Day 1 1.5 1.7 2.5 

Day 2 1.4 1.6 2.7 

Day 3 1.5 1.7 2.7 

AS5 

Day 1 1.4 2.0 2.7 

Day 2 1.4 1.8 2.5 

Day 3 1.4 2.0 3.2 

EBPR1 

Day 1 1.0 1.2 2.5 

Day 2 1.0 1.0 3.7 

Day 3 1.0 1.7 2.6 

EBPR2 

Day 1 1.0 1.1 2.0 

Day 2 1.0 1.1 2.5 

Day 3 1.0 1.1 2.1 

Chem1 

Day 1 1.0 1.1 9.4 

Day 2 1.0 1.1 3.3 

Day 3 1.0 1.3 5.0 

Chem2 

Day 1 1.0 1.1 2.4 

Day 2 1.0 1.3 1.8 

Day 3 1.0 1.3 9.2 
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Table 35. Summary of the phosphorus recovery potential calculated for the different 

technologies s of phosphorus recovery using digested municipal biosolids. 

  
Phosphorus Recovery Potential   

(% of total phosphorus) 

  AIRPREX 
Stuttgart 
Process 

KREPRO 

AS2 
Day 1 6% 63% 83% 

Day 2 8% 90% 82% 

AS4 

Day 1 18% 53% 52% 

Day 2 1% 22% 44% 

Day 3 3% 47% 76% 

AS5 

Day 1 10% 39% 40% 

Day 2 10% 42% 47% 

Day 3 8% 39% 59% 

EBPR1 

Day 1 13% 66% 79% 

Day 2 18% 81% 90% 

Day 3 14% 61% 75% 
 

Table 36. Summary of the potential mass recovered by the different technologies of 

phosphorus recovery utilizing digested municipal biosolids. 

  

Mass recovered                             
(kg of P/metric ton of dry 

solids) 

  AIRPREX 
Stuttgart 
Process 

KREPRO 

AS2 
Day 1 1.7 18.8 24.6 

Day 2 1.7 19.0 17.4 

AS4 

Day 1 1.8 5.3 5.2 

Day 2 0.2 5.5 11.1 

Day 3 0.5 8.1 13.0 

AS5 

Day 1 1.1 4.3 4.4 

Day 2 1.0 4.1 4.6 

Day 3 1.1 5.2 7.9 

EBPR1 

Day 1 4.2 20.9 25.1 

Day 2 4.1 19.0 21.1 

Day 3 4.5 19.1 23.4 
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Table 37. Summary of the estimated nitrogen to phosphorus ratio to be achieved after 

phosphorus recovery through the discussed technologies when utilizing 

digested biosolids. 

  N:P2O5 Ratio after recovery 

  AIRPREX 
Stuttgart 
Process 

KREPRO 

AS2 
Day 1 1.2 2.6 6.3 

Day 2 1.2 9.1 6.3 

AS4 

Day 1 1.3 2.1 2.3 

Day 2 1.1 1.4 2.0 

Day 3 1.1 1.9 4.6 

AS5 

Day 1 1.2 1.7 1.8 

Day 2 1.2 1.8 2.1 

Day 3 1.2 1.7 2.7 

EBPR1 

Day 1 0.9 1.9 3.7 

Day 2 0.9 3.3 7.8 

Day 3 0.9 1.7 3.1 
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CHAPTER 5: 

Table 38. Influent characteristics of Walnut Creek wastewater treatment plant. 

 Walnut Creek 

Date Alkalinity Ammonia BOD TSS TKN TP 

 
mg/L as 
CaCO3 

mg/L as 
N mg/L mg/L 

mg/L as 
N 

mg/L as 
N 

1st Q 07  16.7178 159.6829 181.3333  5.422308 

2nd Q 07  16.80714 144.8315 192  5.103846 

3rd Q 07  17.98145 143.1807 220.4444  6.140769 

4th Q 07  21.69672 200.3165 299.4457  7.339231 

1st Q 08 205 22.26885 209.8471 235.8022 47.58 8.04923 

2nd Q 08 245.84 22.64127 183.8148 262.8352 43.26667 7.20385 

3rd Q 08 214.875 25.87143 172.1705 191.1087 46.82857 7.49357 

4th Q 08 212.087 23.615 159.2588 214.8043 44.01667 6.88923 

1st Q 09 204.7826 24.09836 169.5393 202.9667 45.66667 6.405385 

2nd Q 09 204.92 22.73594 176.3708 205.1209 38.83846 6.683077 

3rd Q 09 202.5385 22.47937 178.3372 201.8791 38.59231 6.113846 

4th Q 09 224.0833 17.69754 171.022 187.4348 37.23077 4.310769 

1st Q 10 231.5417 15.83417 168.4545 175.4667 34.26923 3.931538 

2nd Q 10 231.24 20.78594 183.4819 208.5934 46.64615 5.334615 

3rd Q 10 243.5 20.85641 168.9022 199.4348 40.01538 5.593158 

4th Q 10 252.8261 25.58305 199.8293 205.837 43.93077 5.171538 

1st Q 11 225.9583 26.33175 249.8202 212.4444 44.8 5.324615 

2nd Q 11 260.5357 26.49063 227.954 273.3626 48.31818 5.136154 

3rd Q 11 214.75 24.48 162.2857 168.3636  4.590769 

4th Q 11 389.22 29.55 192.98 330.91 42.2846 4.22538 

1st Q 12 374.08 27.29 198.27 360 42.3538 4.38923 

2nd Q 12 388.38 28.45 191.6292 420.0659 45.1538 4.69385 

3rd Q 12 401.1 26.55   43.82  

4th Q 12 338.7 26.8     

1st Q 13 472.94 30.08 252.22 489.02 43.83 6.8 

2nd Q 13 379.01 28.71 210.97 343.34  5.8 

3rd Q 13  29.3     
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Table 39. Influent characteristics of South Austin Regional wastewater treatment plant. 

 South Austin Regional 

Date Alkalinity Ammonia BOD TSS TKN TP 

 
mg/L as 
CaCO3 

mg/L as 
N mg/L mg/L 

mg/L as 
N 

mg/L as 
N 

1st Q 07 240 18.08955 209.1647 209.1647 33.24545 6.233333 

2nd Q 07 243.3333 17.66517 281.2683 281.2683 40.95833 7.009231 

3rd Q 07 262.3333 18.66522 204.5432 204.5432 44.38182 5.943333 

4th Q 07 233 24.47174 204.85 204.85 45.72 6.992308 

1st Q 08 265.6667 26.85495 269.8721 269.8721 81.66364 7.089231 

2nd Q 08 260 25.04607 261.48 261.48 51.5 7.045 

3rd Q 08 274.5 29.23375 199.0926 199.0926 41.54545 7.403077 

4th Q 08 261.6667 31.53516 228.6552 228.6552  6.772308 

1st Q 09 244.7778 29.18222 238.9821 238.9821  8.227692 

2nd Q 09 256.6667 30.37692 264.6429 264.6429  6.336923 

3rd Q 09 270.3333 30.51957 202.0708 202.0708  5.556923 

4th Q 09 235.3333 26.52717 184.7882 184.7882  5.961538 

1st Q 10 255 26.95955 193.5125 193.5125  5.738462 

2nd Q 10 275 27.94318 226.5119 226.5119  6.863636 

3rd Q 10 256.6667 28.02717 187.5529 187.5529  6.775385 

4th Q 10 240 31.68681 291.9425 291.9425  6.163077 

1st Q 11 261 28.82444 311.5758 311.5758  6.209231 

2nd Q 11 296.8667 30.73444 244.0123 244.0123 45.33333 6.624615 

3rd Q 11 268.2222 33.76977 230.6769 230.6769 49.95455 7.244615 

4th Q 11 273.6667 31.47826 409.6625 409.6625 57.63333 10.32923 

1st Q 12 273.6667 26.03913 231.2937 231.2937 38.73846 5.769231 

2nd Q 12 274.1667 26.73 226.2278 226.2278 42.82 5.84 

3rd Q 12 326 27.57     

4th Q 12 256.33 33.44     

1st Q 13 264.33 32.04     

2nd Q 13 276.69 30.44 243.1 243.1 46.88 7.33 
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Table 40. Water, solid and gas outputs from the wastewater treatment plants modeled in 

GPS-X. 

 Outputs 

 
Conventional 

AS 
EBPR 

Chem P 
Removal 

 Wastewater Effluent 

Flow (m3/d) 48000 48000 48000 

TSS (mg/L) 0.9 0.9 1.4 

BOD (mg/L) 2.2 3.2 2.6 

Ammonia 
(mg/L as N) 

1.3 0.4 0.3 

Nitrite (mg/L 
as N) 

27.7 2.8 1.8 

Nitrate 
(mg/L as N) 

0 8.5 9.1 

Phosphate 
(mg/L as P) 

5.1 0.6 0.06 

  Digested Biosolids 

TP (kg/day) 202 712 431 

TN (kg/day) 757 625 626 

  Digester Gas 

Volume 
(m3/d) 

5300 4400 4000 

CO2 (%) 38 44 38 

CH4 (%) 61 56 61 
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Table 41. Materials and energy requirements to operate the wastewater treatment plants 

designed in GPS-X. 

 Material & Energy Requirements Source 

 
Conventional 

AS 
EBPR 

Chem P 
Removal 

 

Chlorine 
(gal/day) 

340 340 340 GPS-X 

Sulfur Dioxide 
(kg/day) 

60 60 60 GPS-X 

Ferric Chloride 
(kg/day) 

  2614 GPS-X 

Sodium 
Bicarbonate 5% 
purity (kg/day) 

 2500 2500 GPS-X 

Electricity (kw-h/day) (kw-h/day) (kw-h/day)  

Pumping 2433 2433 2433 GPS-X 

Primary 
Clarifier 

11 11 11 GPS-X 

Activated 
Sludge 

5448 9396 8711 GPS-X 

Secondary 
Clarification 

583 583 583 GPS-X 

Filter 482 482 482 Burton 1996 

Chlorine Mixing 35 35 35 Burton 1996 

Thickening 8.8 8.8 8.8 GPS-X 

Digestion 1790 1790 1790 Burton 1996 

Dewatering 443 443 443 Burton 1996 

Screens 2.3 2.3 2.3 Burton 1996 

Grit Chambers 169 169 169 Burton 1996 

Lighting and 
Operations 

920 920 920 Burton 1996 
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Table 42. Percent water extractable phosphorus for the sampled biosolids. 

  

Percent Water 
Extractable 

Phosphorus (%) 

AS3 Day 1 2% 

 Day 2 3% 

 Day 3 3% 

AS4 Day 1 3% 

 Day 2 3% 

AS5 Day 2 9% 

 Day 3 7% 

EBPR2 Day 1 16% 

 Day 2 29% 

 Day 3 31% 

Chem1 Day 1 8% 

 Day 3 4% 

Chem2 Day 2 1% 

 Day 3 2% 
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Figure 20. Phosphorus leaching from soils amended with 5.6 g of P from biosolids by 

surface runoff or groundwater leaching. Adapted from Alleoni et al. 2008. 
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Appendix B 

SUPPLEMENTAL FIGURES 

 

Figure S1. Phosphorus speciation of conventional AS undergoing batch anaerobic 

digestion as a function of incubation time. 
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Figure S2. pH of conventional AS undergoing batch anaerobic digestion as a function of 

incubation time. 
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Figure S3. Dissolved calcium concentration in primary and secondary biosolids of 

conventional AS wastewater treatment plants. 

PREDICTED PHOSPHORUS RECOVERY SAMPLE CALCULATION (AS4 + AIRPREX)  

𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑜𝑟𝑡ℎ𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑖𝑛 𝐴𝑆4 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 =  15.6 (
𝑚𝑔

𝐿
) 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑖𝑎 𝐴𝐼𝑅𝑃𝑅𝐸𝑋

= 90% 𝑜𝑓 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑜𝑟𝑡ℎ𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑣𝑖𝑎 𝐴𝐼𝑅𝑃𝑅𝐸𝑋 (𝑚𝑎𝑠𝑠/𝑣𝑜𝑙) = 0.9 ∗ 15.6 (
𝑚𝑔

𝐿
)

= 14 (
𝑚𝑔 𝑃

𝐿 𝑜𝑓 𝑠𝑙𝑢𝑑𝑔𝑒
) 

𝑇𝑜𝑡𝑎𝑙 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (𝑇𝑃)𝑖𝑛 𝐴𝑆4 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 = 173 (
𝑚𝑔

𝐿
) 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
14 (

𝑚𝑔
𝐿 )

173 (
𝑚𝑔

𝐿 )
∗ 100 = 8.1% 
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The same procedure was repeated for all AS WWTPs and an average recovery and standard 

deviation computed. 

PREDICTED N:P2O5 RATIO SAMPLE CALCULATIONS (AS4 + AIRPREX) 

Calculating N:P2O5 before recovery 

First convert g P to g of P2O5: 

𝑇𝑃 𝑖𝑛 𝐴𝑆 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 = 15 (
𝑔 𝑃

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) (𝑈𝑦𝑠𝑎𝑙 𝑒𝑡 𝑎𝑙. 2010) 

𝑇𝑃 𝑖𝑛 𝐴𝑆 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 =
15 (

𝑔 𝑃
𝑘𝑔

)

31 (
𝑔 𝑃

𝑚𝑜𝑙 𝑜𝑓 𝑃
)

∗
1

2
(

𝑚𝑜𝑙 𝑜𝑓 𝑃2𝑂2

𝑚𝑜𝑙 𝑜𝑓 𝑃
)

=
0.25  𝑚𝑜𝑙 𝑜𝑓 𝑃2𝑂2

𝑘𝑔
 

𝑇𝑃 𝑖𝑛 𝐴𝑆 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 (𝑔 𝑃2𝑂5/𝑘𝑔) = 0.25
𝑚𝑜𝑙 𝑜𝑓 𝑃2𝑂2

𝑘𝑔
∗ 142 (

𝑔 𝑜𝑓 𝑃2𝑂2

𝑚𝑜𝑙
) 

𝑇𝑃 𝑖𝑛 𝐴𝑆 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 (𝑔 𝑃2𝑂5/𝑘𝑔) = 35.4 g/kg 
Then compute the N:P2O5 ratio 

 

𝑇𝑁 𝑖𝑛 𝐴𝑆 𝑑𝑖𝑔𝑒𝑠𝑡𝑒d 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 = 41 (
𝑔

𝑘𝑔
) (𝑈𝑦𝑠𝑎𝑙 𝑒𝑡 𝑎𝑙. 2010) 

𝑁: 𝑃202 =
41

35.4
(

𝑔
𝑁
𝑘𝑔

𝑔
𝑃2𝑂2

𝑘𝑔

) = 1.2 

The same process was repeated for all conventionally digested AS references found 

and the N:P2O5 was estimated to be 1.1 ±  0.6  

 

Calculating N:P2O5 after recovery 

Compute the moles of P removed by the chosen technology  

 

𝑇𝑃 𝑖𝑛 𝐴𝑆4 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 13.3 (
𝑔 𝑜𝑓 𝑃

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) 

 

𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐴𝐼𝑅𝑃𝑅𝐸𝑋 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 13.3 (
𝑔 𝑜𝑓 𝑃

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) ∗ 8.1% 
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= 1.08 (
𝑔 𝑜𝑓 𝑃

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) 

𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐴𝐼𝑅𝑃𝑅𝐸𝑋 𝑖𝑛 𝑚𝑜𝑙 =
1.08

31
(

𝑔 𝑜𝑓 𝑃
𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠

𝑔 𝑜𝑓 𝑃
𝑚𝑜𝑙

)

= 0.035
𝑚𝑜𝑙 𝑃

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
 

 

Then compute the nitrogen content (TN) before phosphorus recovery using the 

N:P2O5 ratio previously determined 

𝑇𝑃 𝑖𝑛 𝐴𝑆4 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 =
13.3 (

𝑔 𝑜𝑓 𝑃
𝑘𝑔

)

31 (
𝑔

𝑚𝑜𝑙 𝑜𝑓 𝑃
)

=
0.43  𝑚𝑜𝑙 𝑜𝑓 𝑃

𝑘𝑔
 

 

𝑇𝑃 𝑖𝑛 𝐴𝑆4 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 =
1

2
∗ 0.43

𝑚𝑜𝑙 𝑜𝑓 𝑃2𝑂5

𝑘𝑔
∗ 142 (

𝑔 𝑜𝑓 𝑃2𝑂5

𝑚𝑜𝑙
) 

𝑇𝑃 𝑖𝑛 𝐴𝑆4 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 = 30.5
g of P2O5

kg
 

𝑇𝑁 𝑖𝑛 𝐴𝑆4 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

= 30.5 ( 
g of P2O5

kg
) ∗  1.1 (

𝑔 𝑜𝑓 𝑁
𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠

𝑔 𝑜𝑓 𝑃2𝑂5
𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠

) = 33.5 (
𝑔 𝑜𝑓 𝑁

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) 

𝑇𝑁 𝑖𝑛 𝐴𝑆4 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑜𝑠𝑜𝑙𝑖𝑑𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝑚𝑜𝑙)

= 33.5  (
𝑔 𝑜𝑓 𝑁

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) ∗

𝑚𝑜𝑙

14 𝑔
= 2.4 (

𝑚𝑜𝑙

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) 

 

Compute the TN and TP after phosphorus recovery 

 

Given that struvite removes nitrogen as well as phosphorus in a 1:1 N/P molar ratio 

𝑇𝑁 𝑖𝑛 𝐴𝑆4 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = (2.4 − 0.035 (
𝑚𝑜𝑙

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
)) ∗ 14

𝑔

𝑚𝑜𝑙
 

= 33.1 (
𝑔 𝑜𝑓 𝑁

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) 



 167 

 

Calculate the TP after phosphorus recovery 

 

𝑇𝑃 𝑖𝑛 𝐴𝑆4 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = (13.3 − 1.08) (
𝑔 𝑜𝑓 𝑃

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) 

= 12.22 (
𝑔 𝑜𝑓 𝑃

𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) 

Convert to P2O5 

𝑇𝑃 𝑖𝑛 𝐴𝑆4 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  
12.22 (

𝑔 𝑜𝑓 𝑃
𝑘𝑔 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠

)

31 (
𝑔

𝑚𝑜𝑙 𝑜𝑓 𝑃
)

∗
1

2
∗ 142 (

𝑔 𝑜𝑓 𝑃2𝑂5

𝑚𝑜𝑙
) 

= 28 (
𝑔 𝑜𝑓 𝑃2𝑂5

𝑘𝑔 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑙𝑖𝑑𝑠
) 

 

 

Finally, compute the new N:P2O5 ratio 

𝑁: 𝑃205 =
33.5

28
(

𝑔
𝑁
𝑘𝑔

𝑔
𝑃2𝑂2

𝑘𝑔

) = 1.19 

The same process was repeated for all treatment plants and the averages computed. 
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