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The chemical structures and concentrations of an organism’s natural products are dependent upon its

genome and environmental factors. Examples are the complex metabolite solutions resulting from

plant and fermentation processes. Here, we describe sensor arrays composed of supramolecular

ensembles that undergo indicator displacement and discriminate selected flavonoids and mixtures

thereof: wine varietals. Changes in UV-vis absorbance upon indicator displacement in the array were

analyzed using pattern recognition protocols. The flavonoids were differentiated in terms of structure

and concentration, while red wines were generally classified by varietals, even from different vintners.

The technique highlights the power of differential sensor arrays to classify mixtures by metabolite

distribution, even when the natural products are not known.
Introduction

Complex mixtures are ubiquitous in many fields of chemistry and

biology, and hence, complex mixture analysis is common in

pharmaceutical sciences, medical diagnostics, the food industry,

as well as environmental sciences. For instance, progress in drug

discovery depends highly on the ability to effectively determine

bioactive compounds,1 detect toxicity,2 determine protein

targets,3,4 identify biomarkers,5 and perform metabolic

profiling6–9 in complex mixtures. Sample authentication and

quality assurance of medicine,10 as well as food samples such as

wines,11 artificial sweeteners,12 energy drinks,13 honey,14 and even

olive oil,15,16 require complex mixture analysis. Analyses in these

cases employ classical analytical techniques, such as HPLC, mass

spectrometry, electrochemistry, UV-vis spectrometry, as well as

hyphenated modes of these analytical methods.

Various analyses of complex mixtures have also involved

differential or array sensing,17–24 which is gaining interest as an

alternative approach to traditional, one-dimensional chemical

analysis. The technique is inspired by the senses of taste and

smell, where arrays of sensors create specific patterns of signals.17

The beauty of differential sensing stems from the fact that the

individual sensors of the array need not be specific, but should

instead be cross reactive and able to interact variably with the

analytes. Differential sensing is employed in electronic noses,19,25

which are used in the analysis of gaseous analytes or aromas, and

electronic tongues,26–29 for the analysis of liquid samples. These
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sensor arrays employ a variety of sensor–analyte responses such

as electrochemical and optical signal transduction mechanisms,

depending on the type of sensor employed: conducting

polymers,27 chemoresistive metal oxides, and optical fibers.28

Other types of sensor arrays employ chemosensors,30 which also

have varying signal transduction mechanisms. Such arrays have

been employed as physically addressable sensors in solution,31–34

in immobilized wells or pits,35–40 or as receptors mixed all

together in one solution (dynamic combinatorial libraries).41–47 It

is clear that the power of differential sensing derives from

a combination of various types of sensors that can take advan-

tage of a range of response mechanisms.

Wine is a complex mixture of natural products arising from

grape and fermentation, giving wine its interesting organoleptic

property.48 Numerous factors contribute to its chemical diver-

sity.49 The metabolites found in wine are dictated not only by the

grape’s genomic properties, but also by the strain of yeast used in

fermentation. Viticultural practices, the environment where the

grapes are grown, and oak cooperage50 can also contribute to the

compounds found in wine. One of the major components of red

wines is a group of polyphenolic compounds derived mainly from

the skin of the grape called tannins, which are oligomers of

flavonoids and nonflavonoids.51 Their structures are primarily

dictated by the grape’s biochemistry, making this class of

compounds diagnostic for differences among wine varietals.48

Further, because not all tannins in red wines have been charac-

terized, wine represents an excellent test-bed to prove the principle

of differential sensing in complex mixtures consisting of subtly

different and unknown analyte structures, and thereby demon-

strates the partial fingerprinting of an organism’s metabolome.

Previous studies on discrimination and analysis of wines apply

chemometric analysis of data from IR,52–54 GC-MS,55 and

NMR56 as well as data from analyses using electronic noses,57–60

electronic tongues,61–65 and a combination of these methods.66,67

The sensor arrays used in electronic noses and tongues mostly

employed sensing elements that use electrochemical methods,

and involve fabrication of electrodes. Also, sample preparation
Chem. Sci., 2011, 2, 439–445 | 439
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such as solid phase extraction prior to the analysis of wines is

required to avoid the effects of water and ethanol.60 Herein, we

present how an array of peptidic, colorimetric sensors discrimi-

nates flavonoids, which are hydrolysates of tannins found in

wines. We then evaluate the array of chemosensors by classifying

red wine varietals and red wines of the same varietals from

different vintners (not necessarily of different origins) to illus-

trate fingerprinting similar metabolites that stem from a common

genome. We use differential sensing that employs physically

addressable supramolecular ensembles of metals, indicators, and

peptides as sensing elements that function via indicator

displacement in solutions under ethanolic conditions; hence,

a laborious sample preparation other than filtration is also not

required. Moreover, the basis of discrimination is the differential

binding of analytes to arrays of sensors, rather than the analytes’

structural properties as measured by spectroscopy or

electrochemistry.
Results and discussion

Our group routinely uses sensors and sensing ensembles made of

fully designed and combinatorially derived receptors,35–37,68–70

coupled with indicator displacement assays71–73 for discrimi-

nating various analytes. In this study, the individual sensing

ensembles in the arrays were ternary complexes of commercially

available colorimetric indicators, metal ions, and histidine-rich

peptides of random sequence or previously known sequences
Fig. 1 (A) Binding isotherms from the titration of 1 : 1 CP complex with

peptides 1 to 10. (B) Indicator displacement of 12 using peptide–CP

complexes. (C) Binding curves from the titration of peptide–CP

complexes with 12. (* DAbs – change in absorbance at 444 nm).

440 | Chem. Sci., 2011, 2, 439–445
(1–10, Fig. 1A).74–77 Upon addition of a flavonoid or wine to the

ensemble, the indicator is displaced, resulting in a change of

color.
Construction and optimization of sensing ensembles

The sensing ensembles were optimized individually by obtaining

binding curves from the titration of a solution of the metal and

the indicator with a solution of a peptide. Both solutions were

buffered by HEPES at pH 7.4. For the optimization of ensembles

containing Cu(II) and pyrocatechol violet (PCV) (this metal–

indicator pair is referred to as CP from hereon), a 1 : 1 solution

of CP was titrated with a solution of a peptide (Fig. 1A).

The peptides showed variable binding stoichiometries and

affinities. From these binding curves, the compositions of the

sensing ensembles were determined. Ternary complexes of

peptide–metal–indicator will exist at half an equivalence of the

amount of peptide that it takes to completely displace the indi-

cator from CP. Hence, these specific ratios of peptide–metal–

indicator (ESI†, Table S4) were used in the indicator displace-

ment assays and eventually, in the array sensing of flavonoids

(vide infra). The ternary complexes of peptides with CP, as well as

the binary 1 : 1 CP complex alone, were used in indicator

displacement assays using flavonoid 12. Saturation was seen

upon addition of 12 to each of the sensing ensembles (Fig. 1C).

Other flavonoids were also tested and as expected, differences in

the extent of displacement were seen among the different

ensembles (ESI†, Fig. S15, S16).
Discrimination of flavonoids

To evaluate the ability of arrays of sensing ensembles described

to discriminate analytes, flavonoids 11 to 15 (Fig. 2A) were

analyzed using an array composed of ternary complexes of

peptides 3 to 10 with CP.78 The 1 : 1 complex of CP (no peptide)

was also included in this array (referred to as array X). The

flavonoids were evaluated at two concentrations: 0.060 and

0.12 mM (eight replicates each). The concentrations of Cu(II) and

PCV were constant while that of the peptides varied according to

the ratios obtained from the optimization experiments (ESI†,

Table S4). Changes in the absorbance values at the lmax of PCV

at pH 7.4 (444 nm) for each member of the sensor array upon

addition of the flavonoids were recorded, pooled, and analyzed

using principal component analysis (PCA), which gives a statis-

tical summary of the response data.79 A PCA score plot shows

groupings in the observations, and captures decreasing amounts

of variance in each succeeding dimension. A loading plot

expresses the relative contributions of the original variables to

the model. In the analysis of our data, the observations are the

flavonoids, while the variables are the individual sensing

ensembles, which give different values of change in absorbance at

444 nm. The resulting score plot (Fig. 2B) showed discrimination

of flavonoids tested at the two aforementioned concentrations.

The first principal component, F1, separated the flavonoids of

the same identity primarily according to concentration. The basis

of separation along F2, on the other hand, was not definitive,

although concentration also played a small part. We also

observed that the substituted flavonoids 11 and 15 were classified

in opposite areas along F2, while in general, underivatized
This journal is ª The Royal Society of Chemistry 2011
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Fig. 2 (A) Structures of flavonoids 11 to 15. (B) PCA score plot and (C)

loading plot of the spectroscopic data from the displacement of array X

by 11 to 15 at 0.06 (a) and 0.12 (b) mM. Points on the loading plot are

individual members of array X, represented by peptide number.
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flavonoids were classified in between the derivatized flavonoids

along this axis. Flavonoids 12 and 14 have very similar structures

and were only differentiated along F1.

According to the loading plot (Fig. 2C), the flavonoids that are

found on the right side of the score plot (Fig. 2B) displaced PCV

in all the sensing ensembles to a higher extent than those flavo-

noids found on the left side of the score plot. On the other hand,

the loading plot indicated that peptides 4, 5, 6, 7, and 8 did not

vary significantly in response to the flavonoids while 3 and the set

of 9 and 10 were significantly different.

Fig. 3 LDA plots of spectroscopic data from the analysis of (A) different

wine varietals: Beaujolais ( ), Zinfandel ( ), Pinot Noir ( ), Shiraz (C),

Merlot ( ), Cabernet Sauvignon ( ); (B) different Shiraz wines: Shiraz

Ba (B), Shiraz Rw (>), Shiraz Ma (-), Shiraz RT (O), Shiraz St (C);

and other wine varietals: Beaujolais ( ), Zinfandel ( ), Pinot Noir ( ),

Merlot ( ), Cabernet Sauvignon ( ), using sensor array Y.
Discrimination of red wine varietals

The successful differentiation of the flavonoids by a statistical

pattern recognition of the responses from our array of sensors
This journal is ª The Royal Society of Chemistry 2011
encouraged us to turn our attention to wines, which are known to

contain relatively high concentrations of flavonoids (about

100 mg L�1 or 0.2 mM),51 comparable to the concentrations used

in the previous analysis of flavonoids. Although wines contain

other types of polyphenols, and other compounds that can

potentially bind to our sensing ensembles, individual examples of

commercially obtained wines of different varietals were analyzed

using a similar sensor array. Using peptidic ensembles of 1 : 1 CP

with peptides 1 to 9 (array Y),80 different red wine varietals (Pinot

Noir, Zinfandel, Beaujolais, Cabernet Sauvignon, Shiraz, and

Merlot)81 were analyzed by a method similar to that used for the

flavonoids. However, prior to the determination of changes in

absorbance of the sensing ensembles of array Y at 444 nm upon

addition of the wines, the concentration of wines to use was first

determined. At pH 7.4, the anthocyanins in wine, which are

responsible for its red color, essentially do not absorb at or

around 444 nm.82 This was ascertained nevertheless by obtaining

the absorbance spectra at pH 7.4 of the different wines in the

visible range (ESI†, Fig. S17).

An indicator displacement assay was performed with a wine

varietal (Merlot),83 using 1 : 1 CP as the sensing ensemble. The

corresponding binding curve obtained (ESI†, Fig. S18) showed

that at 1.0% (v/v) wine, there was partial displacement of PCV.

The assays of different wines using array Y were then performed

at 1.0% (v/v) wine concentration. At this concentration, the wine

has minimal contribution to the absorbance of the mixture with

the sensing ensemble. However, all absorbance readings during
Chem. Sci., 2011, 2, 439–445 | 441
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Fig. 5 LDA plot of the response from different wine varietals Beaujolais

( ), Pinot Noir ( ), Shiraz (C), Merlot ( ), Cabernet Sauvignon ( )

and different brands of Zinfandel wines BS ( ), BT ( ), C ( ), R ( ),

and SV ( ) with array Z.
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the assays were corrected for the absorbance of the wines. PCA

of the absorbance data obtained from array Y at 444 nm with

different wine varietals did not show satisfactory discrimination

(ESI†, Fig. S20). Linear discriminant analysis (LDA) was then

performed on this data set. Compared to PCA, LDA is a super-

vised pattern recognition protocol, which by virtue of the algo-

rithm, improves clustering. Although complete classification was

still not found (Fig. 3A), we used this same array to analyze

different brands of one wine varietal, Shiraz.84 The data from this

assay were combined with the data obtained from the analysis of

different wine varietals. Scores belonging to Shiraz were found

mostly in one area of the LDA plot (Fig. 3B) and therefore, even

this unoptimized array showed the potential to cluster together

a varietal.

The effect of other metal–indicator pairs in the array was

explored in an attempt to increase the diversity of the array as

a means to improve the discrimination of the wines. Metal–

indicator pairs explored in the past by our group, Ni(II)–bro-

mopyrogallol red (BPR) and Cu(II)–chromeazurol S (CAS)

complexes (referred to as NB and CC, respectively), were mixed

with peptides 3 and 8, which were randomly chosen among the

available peptides. Optimal concentration ratios of the metal–

indicator pairs with the peptides were then determined as before

(ESI†, Table S4). Array Z, composed of six peptidic ensembles,

was used to analyze the same set of wine varietals as those used

for Array Y, but at three different wavelengths: 430, 444, and
Fig. 4 UV-vis response using array Z: (A) LDA score plot of UV-vis

responses from different wine varietals: Beaujolais ( ), Zinfandel ( ),

Pinot Noir ( ), Shiraz (C), Merlot ( ), Cabernet Sauvignon ( ). (B)

Corresponding variable correlation plot: first numbers correspond to the

peptide, letters are the metal–indicator pairs, and last numbers corre-

spond to the wavelengths at which the absorbance was taken.

442 | Chem. Sci., 2011, 2, 439–445
560 nm, which are the corresponding lmax of the indicators at pH

7.4. LDA plots of the spectroscopic data showed excellent

discrimination of the wine varietals (Fig. 4A). The loading plot

from the analysis showed a widely differential set of sensing

ensembles, as they are found in all the quadrants of the plot

(Fig. 4B).

As our final test for whether our approach can classify wines of

the same varietals, different brands of Zinfandel85 instead of

Shiraz were analyzed together with the other five varietals. The

LDA plot showed clustering of most of the Zinfandel wines, but

with separation of the other wine varietals (Fig. 5). The

discriminant scores of the varietals were increasingly distinct

compared to the discriminant scores using array Y (Fig. 3B). The

exceptions to the clustering of the Zinfandels were SV and BT

(Fig. 5), although it can be seen that both of these wines were

only different in either F1 or F2 relative to the discriminant

scores of the other Zinfandels. We speculate that these outlying

Zinfandels arise from differences in viticultural practices.
Conclusions

In summary, we have shown that a simple array of peptides,

metals, and indicators can fingerprint wines, and with some

outliers classify them by their varietal irrespective of the vintner.

Our approach targeted the various flavonoids, even though the

exact structures and concentrations of the flavonoids were not

known. In this manner, a single signature for the broad group of

metabolites was derived, and that signature was found to

generally correlate with the varietal, which in turn means it is

correlated to the genome of the grape. Such an analysis of a class

of metabolites bodes well for analogous metabolite finger-

printing in other complex mixtures.
Experimental

General information

All materials for Fmoc solid phase peptide synthesis such as

Fmoc-L-amino acids, PyBOP or HBTU, and pre-loaded Wang

resins were used without further purification. Reagent grade
This journal is ª The Royal Society of Chemistry 2011
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N,N-dimethylformamide, trifluoroacetic acid, piperidine, and

N,N-diisopropylethylamine, thioanisole, triisopropyl silane,

CAS (68%), PCV, and BPR were also used without purification.

Gossypin, 30,40-dihydroxyflavone, and 50,60-dihydroxyflavone

were purchased from Indofine while (�)-epigallocatechin gallate

and quercetin dihydrate were obtained from Sigma-Aldrich.

Deionized water was used in all assays. Wines were all purchased

from the local grocery store, HEB. Stock solutions of wines were

prepared by filtering the wines through 45 mm filter disks and

dissolving the filtered wines in 50 mM HEPES in 1 : 1 ethanol–

water pH 7.4 to make 6% (v/v) solutions. Statistical analyses were

done using XLSTAT (PCA and LDA).
Synthesis, purification, and characterization of peptides

Syntheses of peptides were done using an automated peptide

synthesizer (Prelude by Protein Technologies, Inc.), starting with

the appropriate pre-loaded Wang resins. Coupling reactions used

5 eq. of Fmoc-L-amino acid, 5 eq. of PyBOP or HBTU, and

10 eq. of DIPEA, relative to 1 eq. of pre-loaded resin. The crude

products were analyzed by reverse phase HPLC, using a Waters

YMC� ODS-AQ C18 column (4.6 � 150 mm, 5 mm) at a flow

rate of 1 mL min�1, linear gradient of 5 to 90% B (A: 0.1% TFA

in water; B: 0.1% TFA in acetonitrile) for 10 min (ESI†, Fig. S1–

S10). A few peptides were deemed appropriate to use for the

succeeding assays after HPLC analysis showed a relatively pure

sample. Otherwise, the peptides were purified by solid phase

extraction and preparative HPLC using a Waters

Symmetry300� C18 column (19 � 150 mm, 5 mm). Yields and

MS spectra of peptides were obtained (ESI†, Table S1).
Construction of peptide–metal–indicator ensembles

Binding assays between the metal ion and the indicator were

done prior to the optimization of the sensing ensemble (peptide–

metal–indicator complexes). For example, for Cu(II) and PCV

(ESI†, Table S1), 2.0 mL of 0.075 mM PCV in 50 mM HEPES (in

1 : 1 ethanol–water (v/v), pH 7.4) in a septum-capped glass

cuvette (Starna cells) was titrated in increments of at least 5 mL,

using a 10 mL microsyringe, with a solution of 0.75 mM CuSO4,

and 0.075 mM PCV in the same buffer. The spectra at 380 to

750 nm of the solution were obtained after each titration. The

absorbance values at the maximum wavelength of final solution

in the cuvette, 624 nm, were obtained and the changes in

absorbance at this wavelength were determined at each titration.

A binding curve, the plot of the change in absorbance at 624 nm

against the ratio of the concentrations of Cu(II) and PCV, was

obtained to determine the ratio of Cu(II) to PCV to be used in the

subsequent binding assays with peptides.

To determine the concentration ratios of peptides to metal–

indicator pairs, binding assays with peptides were done. A

solution of the metal–indicator complex in 50 mM HEPES (in

1 : 1 ethanol–water (v/v), pH 7.4) was titrated with a solution of

peptide, which also contained the metal–indicator complex in the

same HEPES buffer (ESI†, Table S3). The spectra of the solution

were obtained at each titration. The changes in absorbance at the

wavelength of maximum absorbance of the indicator at pH 7.4

(444 nm for PCV, 430 nm for CAS, and 560 nm for BPR) were

obtained and plotted against the ratio of the concentration of the
This journal is ª The Royal Society of Chemistry 2011
peptide to that of the metal–indicator complex. The ratio at half

saturation point was chosen as the optimal concentration of the

species in the ensemble, for use in the succeeding metal-com-

plexing indicator displacement assays (ESI†, Table S4).
Indicator displacement assays of flavonoids using a single

peptide–metal–indicator ensemble

To examine the displacement of indicators from the ternary

ensembles by standard flavonoids, indicator displacement assays

were done, which were performed in cuvettes or well plates.

While holding the concentrations of all species in the ternary

ensemble (ESI†, Table S4) constant, the concentrations of the

flavonoids were varied from 0 to 1.5 mM. This range was

adjusted according to how strongly the flavonoids displaced the

indicators from the sensing ensemble.
Discrimination of flavonoids with an array of peptidic sensing

ensembles

The spectroscopic data for the discrimination of flavonoids were

obtained at 0, 0.060, and 0.12 mM flavonoids, following the

optimal concentrations of all components of the sensing

ensemble (ESI†, Table S4). The array of sensing ensembles was

composed of PCV–Cu(II) and PCV–Cu(II) complexed with

peptides 3 to 10 (array X). The well plate reader was blanked with

50 mM HEPES in 1 : 1 ethanol–water (v/v), pH 7.4. The differ-

ences in absorbance values of the assay mixtures with and

without flavonoids at 444 nm were calculated. Seven repetitions

were done. The spectroscopic data were then analyzed by PCA.
General procedure for the assays of wines with peptidic sensor

arrays Y and Z

Following the optimal composition of the sensing ensembles

(ESI†, Table S4), assays with wines were done at 50 mM HEPES,

pH 7.4, in 1 : 1 ethanol–water (v/v) using 96-well plates. The well

plate reader was blanked with the same buffer. Absorbance

values of assay mixtures were obtained at 444 nm for arrays using

only PCV–Cu (array Y) and at 444, 430, and 560 nm for the

arrays that included PCV–Cu(II), CAS–Cu(II) and BPR–Ni(II)

(array Z). Eight repetitions were done in each assay. The

differences in absorbance values between the assay mixture with

1% wine (v/v) and that of 1% wine (v/v) in 50 mM HEPES pH

7.4, in 1 : 1 ethanol–water (v/v) were calculated and the data were

analyzed by PCA and LDA.
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