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Abstract 

 

1,400 Years of Biomass Burning, Climate Variability, and 

Environmental Change on Ometepe Island, Lake Nicaragua 

 

 

 

 

Shiri Avnery, M.A. 

The University of Texas at Austin, 2007 

 

Supervisor:  Robert Dull 

 
This study examines the relationship between short-term climate variability, 

paleo-fires, and anthropogenic sources of environmental change over the past 1,400 years 

on Ometepe Island, located in the tropical dry forests of southwestern Nicaragua.  

Macroscopic charcoal, loss on ignition, and magnetic susceptibility records were 

reconstructed from a lake sediment core, and statistical wavelet analyses were performed 

to contextualize natural fire regimes in this under-investigated tropical biome.  Results 

from this project suggest that fire regimes on Ometepe Island respond to high frequency 

(sub-centennial scale) climate variations potentially due to the 11- and 22-year sunspot 

cycles and/or the El Niño Southern Oscillation, with dominant periodicities of ~7, 14, and 

24 years.  Results additionally support regional paleoenvironmental analyses by 

providing evidence of anthropogenic environmental impacts between ~600 and 1500 

A.D. with a drastic decline after European contact, as well as evidence of widespread 

drought conditions between 800 - 1000 A.D. and 1150 – 1300 A.D. 
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Chapter 1:  Introduction 

OVERVIEW 

The climate of the Earth is shaped by the composition and chemistry of the 

atmosphere.  While it has long been known that the production of atmospheric gases 

occurs through various biological processes including photosynthesis, respiration, 

nitrification, and methanogenesis (Bowen, 1979; Griffin, 1979; Crutzen et al., 1986; 

Levine, 1991), research over the past few decades has identified another important 

biological phenomenon with profound and long-term effects on atmospheric 

composition: global biomass burning (Crutzen et al., 1979; Delmas, 1982; Delany et al., 

1985).  Global biomass burning (GBB) refers to the burning of the world’s living and 

dead vegetation across different regions of the world, contributing a significant amount of 

greenhouse gases and pollutants to the atmosphere (Crutzen et al., 1979, Delmas, 1982; 

Delany et al., 1985; Anderson et al., 1988)—including as much as 40% of gross carbon 

dioxide and 38% of tropospheric ozone emissions annually (Andreae et al., 1996).  These 

emissions in turn influence the climate system by changing the balance of incoming and 

outgoing solar radiation in the atmosphere, and by altering the albedo of earth surfaces at 

broad spatial scales.  In addition, biomass burning contributes to the destruction of ozone 

and the production of acid rain (Anderson et al., 1988), affects the biogeochemical 

cycling of nitrogen, carbon, and water (Detwiler and Hall, 1988; Lobert et al., 1990; 

Levine, 1991), and perturbs the overall stability and composition of ecosystems around 

the world (Cunningham, 1963; Chandler et al., 1983; Goldammer, 1990; Debano et al., 

1998).  For these reasons, biomass burning is an important driver of global environmental 

change that must be understood by both scientists and policy-makers alike (Andrasko; 

1991; Levine et al., 1995; Natural Resource Committee, 1999).   
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Although natural fires have existed since the evolution of land plants 

approximately 350-400 million years ago (Andreae, 1991), measurements of charcoal in 

dated lake sediment cores have shown a clear relationship between rates of burning and 

human settlement over the last 1.5 million years in many parts of the world (e.g., Pyne, 

1982, Brain and Sillen, 1988; Pyne, 1997).  Corollary pollen records documenting a shift 

in vegetation from pyrophobic to pyrotolerant species demonstrate the significant 

ecological impact of anthropogenic biomass burning (e.g. Johansson, 1963; Haberle 

1998a; Haberle, 1998b; Larson and MacDonald, 1998; Haberle and Ledru, 2001; Dull, 

2004a; Dull, 2004b).  While human-induced fires have served a number of purposes 

throughout history, including forest clearing for agricultural use; pest, insect, and weed 

control; preservation of savannas and grazing pastures; hunting; nutrient mobilization; 

cooking and heating; and various other reasons (Lewis, 1973; Goldammer, 1988; Crutzen 

and Andreae, 1990; Pyne, 1998; Doolittle, 2000), the extent of anthropogenic burning has 

drastically increased over the past 100 years.  Researchers suggest that up to 90% of fires 

worldwide now have anthropogenic sources, with this value expected to rise as human 

populations continue to grow (Levine et al., 1999).  Recent quantitative studies 

documenting the geographic distribution of global fires indicate that most contemporary 

burning takes place in developing countries of the tropics at a rate more frequent and at 

greater spatial scales than previously estimated (Crutzen and Andreae, 1990; Hao et al., 

1990; Andreae, 1991; Levine, 1995).  

Because of the important contribution of tropical biomass burning to global 

environmental change, understanding fire regimes—the frequency, intensity, and types of 

fires—in tropical ecosystems is vital to our understanding of present-day climate 

variability (Levine et al., 1995).  In order to contextualize current fire regimes, 

researchers have become increasingly interested in understanding historic burning 
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patterns and their environmental implications (Haberle et al., 1998; Natural Resource 

Committee, 1999; Haberle, 2001).   While some studies have examined biomass burning 

in rainforests (Cochrane et al., 1999; Nepstad et al., 1999) and savannas (Scott, 1977; 

Roberts, 2000; Saarnak, 2001), one biome that has received relatively little attention in 

the published literature is tropical dry forest (TDF).  This is true despite the fact that 

tropical dry forests are the most threatened forest formation globally, and home to the 

highest human population densities worldwide  (Janzen, 1988).   

In Central America, over 79% of people live in the TDF biome where fire is a 

common disturbance mechanism: seasonal droughts lead to desiccated fuel loads that 

provide favorable conditions for wildfire outbreaks at the end of the dry months (Murphy 

and Lugo, 1986).  Although ignition sources are believed to be primarily anthropogenic, 

fire propagation potential is greatly influenced by the severity of annual drought 

conditions (Haberle, 2001).  One mechanism known to affect meteorological 

conditions—and consequently, fire frequency and propagation—is the El Niño Southern 

Oscillation (ENSO), which causes widespread drought every 2-7 years in many parts of 

the world (Glantz, 1987; Glantz, 2001; Haberle, 2001).  During an El Niño event, the 

surface water of the Pacific Ocean becomes warmer and alters trade wind patterns, which 

in turn influences temperature and precipitation regimes over many tropical locations.  

On longer timescales, variations in solar activity have been proposed to generate severe 

and synchronous drought in North America, South America, and the African Sahel at 

decadal- and centennial-scales (Hodell et al., 1995; Hodell et al., 2001; Van Buren, 2001; 

Schimmelmann et al., 2003; Haug et al., 2003).   

The largest expanse of Central American tropical dry forest stretches across 

Nicaragua’s southern Pacific coast (Sabogal, 1992), which currently experiences 

devastating ENSO-induced drought during El Niño (negative) phases of the Southern 
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Oscillation (Glantz, 2001; Haberle, 2001), as well as a recent surge in fire activity 

(Koonce and Caban-Gonzalez, 1990; Natural Resource Committee, 1999).  Although this 

region facilitates the study of historic fire regimes in tropical dry forests and their relation 

to short-term climate variability, few investigations exist (Suman, 1991)—particularly at 

a temporal resolution that fosters analysis of interannual- to interdecadal-scale changes in 

fire frequencies.  The sole published study from Nicaragua’s Pacific coast is based on 

two low resolution marine sediment cores located ~100 km offshore (Suman, 1991); 

these records additionally span only the past 300-500 years and therefore do not 

adequately contextualize historic biomass burning in the country’s Pacific lowlands.  The 

lack of paleo-fire research from Central American’s largest country leaves a significant 

spatial gap in paleoecological data that must be filled (Koonce and Caban-Gonzalez, 

1990; Horn and Sanford, 1992; Haberle, 2001).  Understanding natural patterns of fire 

occurrence in the Nicaraguan TDFs will facilitate management and preservation of this 

endangered forest biome. 

In this study, I present a high resolution, 1,400-year record of biomass burning, 

sediment organic content, and watershed erosion reconstructed from a lake sediment core 

in Laguna Charco Verde, located on Ometepe Island within Lake Nicaragua (Fig. 1).  

The Laguna Charco Verde drainage basin is primarily covered by tropical dry forest, 

mirroring the adjacent mainland forest ecology of the Nicaragua Pacific lowlands.  The 

data presented in this project are the first records of paleoenvironmental change 

recovered from within Lake Nicaragua, with an average sedimentation rate of 0.62 

cm/year (1.60 years/cm); the Charco Verde data are thus unique in both location and 

resolution. 

Using wavelet time-frequency analyses of reconstructed paleoenvironmental 

proxies in conjunction with regional climate records (Thompson et al., 1984; Hoyt and 
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Schatten, 1998; Stahle et al. 1998; Reimer et al., 2004) and archeological surveys (Lange, 

1984; Haberland, 1986; Lange et al., 1992), I aim to identify both natural and 

anthropogenic sources of change in the fire record in order to document historic burning 

frequencies and their possible sources.  Specifically, I attempt to relate natural 

periodicities within the fire record to paleo-ENSO events and/or variations in solar 

energy output, as well as to identify periods of prominent anthropogenic burning over the 

past 1,400 years.  Wavelet transforms (e.g. Daubechies, 1992; Mallat, 1998) are a 

powerful means of analysis due to their ability to localize in time the different 

periodicities likely associated with human land use dynamics verses those of many 

climate mechanisms (Stanley et al., 2000; Keitt and Urban, 2005; Keitt and Fischer, 

2006).  While wavelets have been utilized in a variety of geophysical applications over 

the last decade (Kumar and Foufoula-Georgiou, 1993; Gamage and Blumen, 1993; Weng 

and Lau, 1994; Lau and Weng, 1995; Kumar et al., 1994; Baliunas et al., 1997; Fligge et 

al., 1999; Jevrejeva et al., 2003; Grinsted  et al., 2004; Barrucand et al., 2006), they have 

not yet been employed to isolate natural signals in proxy records that may otherwise be 

obfuscated by anthropogenic activity.  The macroscopic charcoal record, a proxy for 

historic fire frequencies, is one such indicator in which natural and human sources of 

change are greatly intertwined.  I additionally conduct wavelet analysis on two other 

paleoenvironmental proxies—loss on ignition and magnetic susceptibility—in order to 

examine potential correlations between fire, fuel load, and erosion at various scales.   

Because no baseline procedure for this wavelet application exists, a major goal of 

my study is to determine the best methodology for analyzing paleoproxy datasets, 

including the use of different wavelet functions and various preprocessing techniques.  

With this in mind, I seek to answer the following research questions about biomass 

burning and environmental change on Ometepe Island: 
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1) How do fire frequencies in Ometepe’s tropical dry forests change over the past 

1,400 years? 

2) How is fire related to other indicators of environmental change on Ometepe 

Island? 

3) How is the local record of biomass burning on Ometepe related to global short-

term climate variability, specifically: 

a.   The El Niño Southern Oscillation at interannual scales; and 

b.   Fluctuations in solar activity at decadal and centennial scales? 

4) How is the record of biomass burning related to anthropogenic activity and/or 

indigenous demographics as inferred from archeological surveys on Ometepe 

Island? 

This study will thus provide insight into historic climate patterns and their affect 

on fire regimes and environmental change on Ometepe Island, thereby contextualizing 

current patterns of biomass burning in Nicaragua’s Pacific lowland tropical dry forests.  

 

ENVIRONMENTAL SETTING 

Ometepe Island (11o0’24”N, 85o0’30”W) presents an opportunity to document the 

relationship between biomass burning, natural climate variability, and anthropogenic 

activity in a region where such analyses do not currently exist.  The island has an area of 

276 km2 and consists of two stratovolcanoes joined by a narrow isthmus: the active 

Volcan Concepción (elevation 1,610 m) and the extinct/dormant Volcan Maderas 

(elevation 1,394 m) (Ometepe Biological Field Station, 2004).  Ometepe formed in the 

late Quaternary when the regional axis of volcanism jumped southwestwards from the 

Tertiary volcanic range, depositing volcanic materials above a 1-km thick sequence of 

flat, lacustrine mudstones (van Wyk de Vries, 1996; Borgia and van Wyk de Vries, 
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2003).  Although major eruptions have not been recorded at Maderas, volcanic activity 

from Concepción has been documented in 1883-1887 (active volcanism), 1908-1910, 

1921, and 2007 (occasional ash emission), and 1948-1972 (fumarolic conditions) (Lange 

et al., 1992).  Due to prevailing wind directions, tephra deposits dominate the western 

portions of Concepción, while lava primarily covers the eastern cone; dominant easterly 

winds also have generally precluded tephra deposition from ancient Maderas eruptions on 

Volcan Concepción (Borgia and van Wyk de Vries, 2003).  Ometepe is primarily covered 

by patches of tropical dry forest and agricultural plots, with a cloud forest at the peak of 

Volcan Maderas.  Mean annual temperatures range between 23ºC and 28ºC, and annual 

precipitation varies from 750 mm to 2500 mm with most rain falling during the 

pronounced wet season (May through October) (Berman et al., 2003; van Wyk de Vries, 

2003).   

Bimodal (wet and dry) seasonality in Central America is caused by the migration 

of the Intertropical Convergence Zone (ITCZ), an area of low pressure that forms where 

the northeast trade winds meet the southeast trade winds near the equator.  The ITCZ 

migrates toward the area of most intense solar heating, moving towards the southern 

hemisphere from September through February and reversing direction for the northern 

hemisphere summer.  Perturbations in ITCZ movement occur during El Niño events, 

during which the ITCZ is deflected south toward unusually warm sea surface 

temperatures in the tropical Pacific (Koonce and Caban-Gonzalez, 1990; Glantz, 2001).  

The lack of moist air over Central America during El Niño summer months results in 

severe drought in many parts of the region (Haug et al., 2003).  Ometepe Island’s dry 

season is thus exacerbated during El Niño years, which produce prolonged dry conditions 

at time scales of 2-7 years that result in greater burning potential due to desiccated fuel 

loads (Koonce and Caban-Gonzalez, 1990; Glantz, 1994; Glantz, 2001).  Drought 
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conditions may also have the opposite effect on fire frequencies, however: extended 

periods of reduced precipitation may diminish the abundance of natural vegetation and 

agricultural crops, thereby critically reducing fuel loads and burning potential.   

Fluctuations in solar energy output, which in turn affect sea surface temperatures 

and ITCZ migration, may also generate regional drought conditions.  Research has 

suggested that synchronous drought across the Americas and parts of Africa on time 

scales of ~200 years—possibly caused by the ~206-year Suess cycle in solar activity—

may have played a role in the collapse of the Maya civilization in the Yucatan Peninsula 

(Hodell et al., 1995; Hodell et al., 2001; Van Buren, 2001; Schimmelmann et al., 2003; 

Haug et al., 2003).  Because the sun’s energy output fluctuates at high frequencies in 

addition to centennial scales (e.g., the 11- and 22-year Schwabe and Hale periodicities, 

respectively), variations in solar activity may also influence Central American climate 

and the fire regimes of Nicaragua’s tropical dry forests.   Climate variability at ENSO- 

and solar activity-relevant time scales are investigated in this project in order to 

document possible short-term climate forcing of fire regimes.   

 

CULTURAL HISTORY 

Ometepe Island has been inhabited by indigenous communities that practiced 

agricultural activities—including the use of fire as a land management tool—for 

thousands of years (Haberland, 1986).  The island is located within the “Greater Nicoya 

Archaeological Subarea” (Norweb, 1964), a region encompassing northwestern Costa 

Rica and Pacific Nicaragua and identified by a distinctive and common ceramic tradition 

among disparate indigenous communities.  Positioned between the Mayan cultures to the 

north and the Intermediate Area traditions to the south, the cultural affinity of the Greater 

Nicoya has long been debated (Willey, 1966; Baudez, 1970; Stone, 1977; Lange 1984; 
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Lange et al., 1992): should the Greater Nicoya be considered a subregion of Mesoamerica 

or the Intermediate Area societies, or do the Nicoya stand apart from their northern and 

southern neighbors?  Recent research has postulated that the latter position is most likely 

correct, with the imperial civilizations largely “neglecting” the Greater Nicoya “transition 

zone” due to a lack of opportunity for natural resource exploitation (Lange et al., 1992).  

Although the Greater Nicoya subarea did not exist as one unified tradition, research 

suggests that large local populations and a strong cultural authority were able to preserve 

Nicoyan autonomy (Lange, 1984; Haberland, 1986; Lange et al., 1992).   

Original settlement of Ometepe Island between 2000-1500 B.C. is thought to have 

been facilitated by the island’s highly fertile soils, which fostered intensive agricultural 

activity for at least three millennia prior to Spanish arrival.  Changes in climate and 

volcanic hazards likely affected the cultural development and population of Ometepe’s 

indigenous communities, which evolved through time with sporadic migrations from the 

mainland (Haberland, 1986; Lange et al., 1992).  Archeologists working on Ometepe 

have identified nine cultural phases of settlement and subsistence on Ometepe Island that 

can be combined into four larger periods, summarized in Table 1 (Haberland, 1986; 

Lange et al., 1992).  Overall, the abundance of human artifacts on the western side of the 

island suggests historically greater occupation and land use on Volcan Concepción than 

on Volcan Maderas (Haberland, 1986).  The following description of archeological 

findings on Ometepe Island is summarized from Haberland (1986) and Lange et al. 

(1992). 

The earliest phase of human occupation on Ometepe Island has been identifies by 

subsistence activities along the base of Volcan Concepción.  Ometepe’s inhabitants 

during the Dinarte (2000 – 500 B.C.) and Angeles (500 – 200 B.C.) phases are believed 

to have engaged in farming, hunting, and fishing; these two phases, split by a volcanic 
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eruption around 500 B.C, represent the first greater period of cultural development on 

Ometepe Island.  The second period of development is comprised of the Sinacapa (200 

B.C. – 1 A.D.), Mantiel (1 A.D. – 500 A.D.), and San Roque (500 A.D. – 950 A.D.) 

phases.  The Sinacapa Phase marks the earliest record of settlement on Maderas, as well 

as the first material evidence of maize cultivation with the findings of molcajetes (mortar 

and pestle) and manos (groundstones).  Archaeological evidence also suggests an influx 

of new settlers to the island with the introduction of three new ceramic traditions.  Faunal 

remains consistent with fishing and hunting activities are present during the Mantiel 

phase, which ended with volcanic activity and partial abandonment of the island.  The 

San Roque Phase is characterized by a rise in the numbers of manos and metates, faunal 

remains, and turtle bones, suggesting the return of the island’s population.  Primary 

burials throughout the island also peaked during the San Roque Phase, representing the 

pinnacle of cultural development on Ometepe Island.   

The third period of prehistoric occupation on Ometepe is comprised of the Gato 

(1000 A.D. – 1200 A.D.), La Paloma (1100 A.D. – 1300 A.D.), and San Lazaro (1300 

A.D. – 1400 A.D.) phases.  An increase in groundstones, as well as the presence of 

mainland ceramic traditions, suggests the influx of new migrants to the island during this 

time.  The San Lazaro Phase is identifiable by only one survey site located on a series of 

old beach gravels at the southern flank of Concepción, signifying a drop in Lake 

Nicaragua water levels that may have contributed to the lack of San Lazaro artifacts.  The 

Santa Ana phase (1400 A.D. - 1550 A.D.) is last pre-Conquest period on Ometepe Island, 

with new ceramic traditions suggesting the arrival of migrants from the Atlantic coast of 

lower Central America before Spanish contact in 1522.   

Ometepe was annexed via settlement by Spanish conquistadors at the end of the 

16th century.  The island was hard hit by pirates through the late 17th century, who 
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erected settlements on Ometepe’s shores and clashed with indigenous populations—local 

communities are believed to have moved to higher elevations on the volcanoes to avoid 

European contact.  Today, the most important villages on Ometepe are Moyogalpa and 

Altagracia, with an economy is based upon tourism, livestock, and the production of 

export crops such as coffee, cotton, and bananas (Parker, 1964).   

 

PROJECT SUMMARY 

The physical geography and cultural history of Ometepe Island facilitates the 

examination of historic climate variability, anthropogenic activity, and their affect on fire 

regimes and environmental change, thereby contextualizing current patterns of biomass 

burning in Nicaragua’s Pacific lowland tropical dry forests.  This study is organized into 

four chapters.  Chapter I provided an introduction to the project in relation to the 

existing body of related literature, and detailed the environmental setting and cultural 

history of Ometepe Island.  Chapter II explores the literature that informs this study in 

depth, including the fields of paleoclimatology, paleoecology, and geophysical wavelet 

applications.  Chapter III details he methods employed in this project—the macroscopic 

charcoal proxy and wavelet power and coherency analyses—and provides an overview of 

project results.  Chapter IV discusses the significance of proxy record reconstructions 

and wavelet analyses, relating project results to the broader scientific community, as well 

as summarizing specific conclusions presented by this study.   
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 Chapter 2:  Literature Review  

The scientific literature informing this study incorporates three important research 

fields that examine Earth’s environmental history.  Paleoclimatology investigates 

prehistoric climate at various time scales using a variety of proxy evidence.  Through 

documenting the relationship between fire frequencies and short-term climate variability 

in southwestern Nicaragua, I investigate local biomass burning patterns as they relate 

global interannual, interdecadal, and centennial climate forcing mechanisms, specifically 

ENSO and variations in solar energy output.  The relationship among organisms, 

including humans, and their past environment is explored by investigations in 

paleoecology.  Through multiple proxies, this project provides a high-resolution analysis 

of anthropogenic environmental modification (sediment organic content, erosion, and 

biomass burning) in southwestern Nicaragua, a region where detailed environmental 

histories do not exist.  I also provide the first account of the relationship between the 

Nicoya indigenous community and environmental change in southwestern Nicaragua 

through the comprehensive comparison of fire frequencies, paleovegetation abundance, 

erosion, climate variation, and archeological surveys from Ometepe Island.  Finally, 

wavelet analysis of geophysical data is a rapidly growing methodology for the 

examination of environmental time series.  I apply wavelet transforms to paleoproxy 

datasets in order to document natural forcing in records potentially obfuscated by 

anthropogenic activity, thereby contributing a novel application of wavelet techniques to 

this body of literature.   
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1. PALEOCLIMATOLOGY 

In the early 1830s, Charles Lyell’s advocacy of the principle of 

uniformitarianism, the idea that the same geological process operating today also did so 

in the distant past (Lyell, 1830-1833), fundamentally changed how scientists viewed the 

Earth.  The acceptance of uniformitarianism implied that slow-moving processes over 

millions of years were the primary shapers of Earth’s surface, as opposed to originating 

instantaneously at some point in the relatively recent past (as purported by the principle 

of catastrophism).  The recognition that the planet was more than a few thousand years 

old generated corollary questions about Earth’s historical climate at time scales greater 

than ever previously conceived, thus leading to the birth of paleoclimatology as a 

scientific discipline.  The field of paleoclimatology was further advanced after the 

occurrence of two major scientific developments in the early nineteenth and twentieth 

century, respectively: 1) The acceptance that one or more “ice ages” existed in the past, 

where a massive polar ice sheet blanked large portions of Europe and North America 

(Agassiz, 1840); and 2) that such ice ages are caused by slight changes in Earth’s orbital 

parameters: eccentricity, tilt, and precession (Milankovitch, 1938).  Subsequent twentieth 

century research has shown that the Pleistocene Epoch (approximately 1.65 million years 

– 10,000 years before present (B.P.)) featured 18 expansions of ice over Europe and 

North America (Imbrie and Imbrie, 1980).   

One of the most important advances of the last few decades is the discovery that 

the Earth’s climate has varied rapidly and repeatedly on sub-glacial time scales (Denton 

and Karlen, 1973; Broecker et al., 1988; Dansgaard et al., 1993; Bond et al., 1993; Bond 

and Lotti, 1995; Bond et al., 1997; Alley et al., 2003).  Historically perceived as a 

relatively static period in Earth’s climate history, the Holocene Epoch (~10,000 years 

B.P. through the present) is now viewed as remarkably dynamic: evidence of the 8,200 
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year cold event, the Medieval Warm Period (800-1200 AD), and the Little Ice Age 

(1250-1850 AD) from Eurasia and North America particularly document high frequency 

climate fluctuations (Boyle and Keigwin, 1987; Broecker et al., 1990; Stuiver et al., 

1995).  Although the drivers of these centennial-scale climate events are still being 

debated, researchers have invoked fluctuations in the sun’s energy output on timescales 

from days to millennia as a potential, if partial, cause.  Important periodicities and quasi-

periodicities in solar activity include cycles of approximately 11, 22, 55, 88, 208, 232, 

and 400-500 years (Rind, 2002; Moussas et al., 2005).  

On yet shorter time scales, the discovery of the El Niño Southern Oscillation 

(ENSO), or the disruption of Earth’s ocean-atmosphere system every 2-7 years that 

causes drastic disturbances in weather patterns across the globe, affixes yet another 

element of complexity to Earth’s climate system.  While ENSO events were seen as a 

largely local phenomenon for much of the 20th century restricted to the Peruvian Pacific 

coast, the global incidence and severity of the 1972-73 El Niño triggered an upsurge of 

scientific research into present and historic ENSO cycles (Glantz, 1994; Glantz, 2001; 

Haberle, 2001; Caviedes, 2001).  Severe, synchronous droughts in various regions around 

the world are one of the most prevalent and devastating characteristics of today’s ENSO 

regime (Glantz, 2001).  These droughts have been linked to increased global fire activity 

that endangers property, affects forest ecology (Koonce and Caban-Gonzalez, 1990; 

Debano et al., 1998; Siegert and Hoffmann, 2002), and causes the release of massive 

amounts of greenhouse gases into the atmosphere (Crutzen et al., 1979; Delmas, 1982; 

Delany et al., 1985; Andreae and Crutzen, 1990; Andreae, 1996; van der Werf, 2004).  

Using the derived natural periodicities within the record of biomass burning as a 

proxy for severe drought frequencies on Ometepe Island, I will document natural climate 

variability in southwestern Nicaragua.  This record is compared to regional- and 
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hemispheric-scale proxies of ENSO and solar activity in order to investigate the temporal 

correlations between natural forcing mechanisms, precipitation anomalies, and fire 

activity on Ometepe Island.   

 

2. PALEOECOLOGY 

 Paleoecologists attempt to use various proxy data to define the structure and 

function of past ecosystems and to document their evolution through time.  While the 

roots of paleoecology naturally coincide with insights into Earth’s dynamic climate, the 

discipline was propelled forward in the mid-1900s with the discovery that fossil pollen 

from different layers of buried sediments was an accurate and feasible means of 

reconstructing historic changes in vegetation (von Post, 1946).  Over the past century, the 

comparison of Quaternary fossil pollen assemblages from lake sediment cores with 

modern compositions (palynology) has allowed paleoecologists to infer and reconstruct 

the makeup of different vegetation communities around the world (e.g. Ikuse, 1956; 

Heusser, 1971; Birks and Gordon, 1985; Faegri and Iverson, 1989; Moore et al., 1991; 

Knapp et al., 2000).   When analyzed in conjunction with other paleoenvironmental 

indicators such as the macroscopic charcoal, loss-on ignition (LOI) and magnetic 

susceptibility (MS) proxies—documenting historic fires, vegetation abundance, and 

watershed erosion, respectively—histories of regional environmental change through 

time may be produced in detail (Dean, 1974; Mullings, 1977; Dearing, 1999; Heiri et al., 

1999; Sandgren and Snowball, 2001).  An overview of these paleoenvironmental proxies 

is provided at the end of this section.  

As the development of paleoecology coincided with a growing number of 

paleoclimate records, researchers began to analyze environmental variability in the 

context of climate change through time (e.g. Horn and Sanford, 1992; Brenner et al., 
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1993; Hodell et al., 1995; Sluyter, 1997; Leyden et al., 1998; Behling and Colinvaux, 

2000; Hodell et al., 2001; Neff et al., 2005).  Although these analyses provide excellent 

regional investigations into historic ecosystem evolution and response to climate 

dynamics, such studies are inherently limited to local or regional scales usually 

determined by the size of the lake drainage basin from which the sediment cores were 

extracted.  The advent of supercomputers in the 1970s, however, facilitated the 

application of climate models to problems of paleoecology, thus allowing paleoecologists 

to map vegetation across the globe since the last glacial maximum at various snapshots 

through time and with a multitude of climatic parameters (COHMAP members, 1988).  

Such terrestrial models continue to require regional, paleoproxy analyses in order to 

validate model results and to provide more detailed examinations of vegetation change at 

shorter temporal and smaller spatial scales (Birks and Gordon, 1985; Horn and Sanford, 

1992; Haberle, 2001; Natural Resource Committee, 1999).   

In the past few decades, environmental histories have become increasingly 

analyzed in the context of archeological and anthropological records of human land use 

activities.  Investigators continue to debate the degree of modification that native peoples 

may have exerted on their landscape (Sauer, 1956; Stewart, 1956; Denevan, 1992; Vale, 

2002).  Did the earliest European settlers find an undisturbed wilderness—a “pristine 

landscape”—largely untouched by the “ecological Indian” (Sale, 1990), or had Native 

Americans already left a profound and pervasive environmental footprint—a “humanized 

landscape”—via their agricultural, clearing, burning, and other actions (Lewis, 1973; 

Pyne, 1998; Doolittle, 2000)?  Although fire is a natural disturbance agent in many 

ecosystems (Kellman and Meave, 1997; DeBano et al., 1998; Cochrane et al., 1999), 

some have argued that the alteration of fire frequencies and magnitudes by anthropogenic 

activity may have had profound impacts on the landscape, including the modification of 
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natural vegetation communities (Sauer, 1956; Stewart, 1956; Koonce and Caban-

Gonzalez, 1990; Sampaio et al., 1993; Dull, 2004b;), overall vegetation abundance 

(Nepstad et al., 1999; Laurance and Williamson, 2001), and increased erosion (Meyer et 

al., 1992; Pierce et al., 2004).  Records of historic fire frequencies are thus integral to our 

understanding of the human-environment relationship and our ability to assess 

anthropogenic environmental impacts through time and space. 

Paleoecological research in Central America to date has focused on pollen and 

charcoal reconstructions from lake sediment cores in Mexico (Hodell et al., 1995; 

Sluyter, 1997; Leyden et al., 1998; Hodell et al., 2001; Hodell et al., 2005; Neff et al., 

2005), Guatemala (Brenner et al., 1993), El Salvador (Brenner et al., 1990; Dull, 2004a; 

Dull, 2004b), Panama (Bush, 1994; Behling and Colinvaux, 2000), Costa Rica (Horn and 

Sanford, 1992; Horn, 1993; Clement and Horn, 2000; League and Horn, 2000; 

Anchukaitis and Horn, 2005), and the Nicaraguan Pacific Basin (Suman, 1991), but 

researchers have yet to explore the largest Central American lacustrine environment, 

Lake Nicaragua.  Furthermore, historical fire regimes have not been adequately explored 

in the tropical dry forest biome, the most endangered tropical biome globally and home to 

the highest human population densities worldwide (Murphy and Lugo, 1986; Janzen, 

1988).  Current studies additionally do not provide a temporal resolution that fosters 

analysis of ecological variability driven by sub-centennial scale climate change.   

Through the evaluation of fire frequencies over the past 1,400 years and 

comparison to proxy evidence of watershed erosion and vegetation abundance, this study 

will provide a historical perspective on the disturbance regime on Ometepe Island.  

Further comparison to climate records and archeological surveys will provide insight into 

the relationship between ecological disturbance, short-term climate variability, and broad 

trends in indigenous demographics through time.   
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Overview of Paleoproxies 

Macroscopic Charcoal 

Charcoal is produced by the incomplete combustion of organic matter; charcoal 

particles embedded in lake sediments were produced during different fires and deposited 

via eolean or hydrologic processes from local or regional sources.  The amount of 

charcoal found in a sediment core is therefore a function of the characteristics of the fire, 

the amount of available biomass (fuel), and the processes of charcoal transport (Whitlock 

and Larson, 2001).  In a well dated core where the method of charcoal production, 

transport, and deposition have been carefully investigated, the quantification of charcoal 

particles in contiguous sediment strata can be used to determine historical variations in 

fire intensity and frequency in a watershed area.  While researchers may utilize different 

sized charcoal particles in their analyses of fire regimes, this investigation quantifies 

macroscopic charcoal (>150 µm) particles from sieved sediments, as the larger size of 

these particles generally improves the accuracy of determining a fire source area and time 

of deposition (Whitlock and Larson, 2001).   

Loss on Ignition 

The percentage of organic matter in lakebed sediments through time is a proxy for 

overall vegetation abundance in a watershed (Dean, 1974).  High sediment organic 

content suggests a relatively stable climate conducive to vegetation growth with few 

erosional episodes, while low sediment organic content suggests landscape instability and 

increased erosion caused by natural and/or anthropogenic disturbance.  The loss-on-

ignition proxy is determined by weighing sediment before and after subjecting the 

material to temperatures at which organic carbon will combust, where sample size, 



 19

exposure temperature and time, and measurement techniques are held constant for all 

samples (Heiri et al., 1999).   

Magnetic Susceptibility 

Lakebed sediments are comprised primarily of inorganic minerals eroded and 

transported from the surrounding watershed (Sandgren and Snowball, 2001).  These 

minerals can be classified based upon their response to magnetism, or their “magnetic 

susceptibility” (Mullings, 1977; Sandgren and Snowball, 2001).  Magnetic susceptibility 

data is used as a proxy for environmental instability, specifically as an indicator of 

relative rates of erosion.  A stable environment suitable for vegetation growth will yield a 

lower ratio of inorganic to organic matter in lakebed sediments (low magnetic response) 

than will a highly variable environment in which erosion is a dominant force on the 

landscape (high magnetic susceptibility values) (Dearing, 1999).   

 

3. WAVELET ANALYSIS OF GEOPHYSICAL DATA 

Wavelet transform analysis is rapidly becoming a common technique for 

analyzing nonstationary time series, where variations of power are localized at different 

frequencies through time.  Wavelets were developed to overcome shortcomings of the 

Fourier transform, which decomposes a signal using a constant resolution at all 

frequencies and cannot provide localized information regarding dominant modes of 

variation in a time series.  The use of the multiresolution technique (Mallat, 1989) in 

which a time series is analyzed with different resolutions at multiple scales and 

decomposed into time-frequency space facilitates the localization of both the primary 

frequencies in a signal as well as their temporal evolution.   
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Wavelet transformation analysis is conducted by repeatedly performing the 

convolution operation of a time series and a “mother” wavelet as the wavelet function is 

translated (shifted) through the record by parameter τ and scaled (dilated or compressed) 

by parameter s.  The translation parameter describes the temporal location of the wavelet 

function as it is moved through the signal, while the scale parameter, defined by 

frequency-1, either dilates or compresses a signal and thus identifies high and low 

frequencies throughout the time series (Foufoula-Georgiou, 1993; Kumar and Foufoula-

Georgiou, 1994; Torrence and Compo, 1998).  While numerous mother functions exist, 

each must meet two conditions in order to be “admissible” as a wavelet: 1) the mean of 

the wavelet must be zero; and 2) the wavelet must be localized in time and frequency 

space (Farge, 1992).  Choosing a mother wavelet for the transformation of a time series is 

based upon multiple characteristics associated with that function, including its shape, 

width (e-folding time of the wavelet amplitude), complex or real components, and 

orthogonal verses nonorthogonal wavelet basis (Kumar and Foufoula-Georgiou, 1993; 

Torrence and Compo, 1998).  

Wavelet coherency is the “wavelet domain equivalent” (Maraun and Kurths, 

2004) of the correlation function (the normalized wavelet cross spectrum), measuring the 

linear relation between two processes with respect to time and scale.  A value of one 

implies a perfect linear relation, while a value less than one indicates that either a perfect 

linear relation is disturbed by noise, or that the relationship is non-linear.  Because 

nonzero values of coherency may still arise even when two time series are unrelated, 

significance tests must be performed to estimate the probability distribution of coherency 

under H0, the null hypothesis (no relationship) (Kumar and Foufoula-Georgiou, 1993; 

Torrence and Compo, 1998; Maraun and Kurths, 2004).  Wavelet coherency analysis thus 
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provides a robust statistical measure of the covariance between two signals at various 

times and scales that are not necessarily apparent in time series data.   

Within geophysics, applications of wavelet techniques include the detection of 

energy cascades and coherent structures in the atmosphere; remotely sensed 

hydrometeorological and geological variables for data compression; seismic wave 

propagation and structure analysis; detection of scale-specific community and population 

dynamics; and space-time analysis of various climate indices, among others (e.g. Gamage 

and Blumen, 1993; Weng and Lau, 1994; Kumar et al., 1994; Baliunas et al., 1997; 

Torrence and Compo, 1998; Fligge et al., 1999; Grinsted  et al., 2004; Keitt and Urban, 

2005; Keitt and Fischer, 2006).  In wavelet applications to climate studies in particular, 

researchers attempt to identify dominant forcing mechanisms in direct and/or proxy 

datasets at multiple scales (e.g. Kumar and Foufoula-Georgiou, 1993; Lau and Weng, 

1995; Jevrejeva et al., 2003; Barrucand et al., 2006).  Wavelets are a powerful tool in 

such analyses, as common features in the time-frequency characteristics of two time 

series may be identified despite large differences in time series fluctuations due to local 

conditions (Lau and Weng, 1995; Torrence and Compo, 1998; Barrucand et al., 2006).  

Researchers are thus able to attribute variations in time series data to external forcing 

mechanisms at both high and low scales, including orbital and solar cycles, ENSO events, 

and/or other weather and climate anomalies.   

In addition, because many climate mechanisms have a different time-frequency 

signature than human activity (e.g., anthropogenic burning is not believed to mirror the 

exact periodicities of climate cycles), wavelet analysis of paleoenvironmental proxies 

may help extricate natural from anthropogenic sources of change in time series data when 

the two contribution sources are intertwined.  High wavelet power, indicating similarity 

between the time series data and the cyclic wavelet mother function, may suggest periods 



 22

of strong climate forcing, while periods of low power may indicate signal dominance by 

less-periodic anthropogenic disturbance.  The utilization of wavelet techniques for this 

purpose is a novel application that may serve as a model for future analyses of 

paleoproxy data with a combination of natural and anthropogenic contributions to time 

series variability.   

 

SUMMARY 

This project makes significant contributions to the fields of paleoclimatology, 

paleoecology, and wavelet analysis of geophysical data.  Through the construction and 

comparison of records of biomass burning, loss on ignition, magnetic susceptibility, and 

regional climate proxies, this study documents the historic relationship between drought, 

fire, and environmental change in the tropical dry forests of southwestern Nicaragua.  

This study additionally provides a high-resolution environmental history of an 

endangered ecosystem requiring a historical perspective on natural disturbance and 

anthropogenic environmental impacts.  In addition, the utilization of wavelet transform 

analysis to extract natural periodicities from paleoproxy records is a wavelet application 

that has yet to be utilized in paleoecological and paleoclimatological research, and may 

serve as a model for future analyses.  
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Chapter 3:  Methods and Results 

METHODS 

This project reconstructs the fire history of Ometepe Island through the analysis 

of a lake sediment core extracted in July, 2004 by the research team of Dr. Robert Dull 

(University of Texas at Austin).  The core measures 6.38 meters in length and was taken 

from Laguna Charco Verde, located at the southern base of Volcan Concepción at an 

elevation of 30 m (Fig. 1).  The core was split and analyzed for stratigraphy, inclusions, 

and color and sub-sampled at 2-cm intervals at the Quaternary Paleoecology Laboratory 

at the University of Texas at Austin.  Radiocarbon (14C) dates were obtained for six 

samples from the Keck-CCAMS laboratory at the University of California at Irvine in 

order to construct an accurate, high-resolution core chronology.  Radiocarbon years were 

converted to years AD via the CALIB program (Stuvier et al., 1998).  

Charcoal analysis was performed every 2-cm on 1.25 cc of sediment from the 

Charco Verde core.  In order to facilitate the breakdown of highly cohesive clay particles 

around charcoal fragments, samples were soaked for 24 hours in a 5% sodium 

hexametaphosphate deflocculant solution.   Each sample was then rinsed with distilled 

water through a 150µm sieve, and charcoal particles were counted from the >150µm 

fraction at 20X magnification; charcoal counts were converted to charcoal concentrations 

(particles per cc).  In order to mitigate the effects of potentially spurious peaks in the 

charcoal record, charcoal accumulation rates (CHAR), calculated as charcoal 

concentration per cm2 per year, were additionally computed.  However, while the 

averaging affect of CHAR calculations was desirable for time series comparisons, 

charcoal accumulation rates were undesirable for wavelet analysis because they reduce 
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the magnitude and resolution of charcoal fluctuations.  Wavelet analyses were therefore 

employed on the charcoal concentration data rather than charcoal accumulation rates.    

The macroscopic charcoal data were compared to loss on ignition and magnetic 

susceptibility analyses, also performed at a 2-cm resolution.  The loss-on-ignition (LOI) 

proxy is determined by weighing sediment before and after subjecting the material to 

temperatures at which organic carbon will combust, where sample size, exposure 

temperature and time, and measurement techniques are held constant for all samples 

(Heiri et al., 1999).  In this study, organic content was measured every 2 cm by percent 

dry weight loss on ignition after 2 hours in a 550˚ C in a Barnstead Thermolyne furnace.  

Magnetic susceptibility (MS) readings were taken every 2 cm for the Charco Verde core 

using a Barrington MS2 magnetic susceptibility meter and a Barrington MS2B magnetic 

susceptibility sensor.  The average of three magnetic susceptibility readings was 

documented and recorded as volume magnetic susceptibility (k).   

This project implemented wavelet transform analyses to determine the dominant 

frequencies, localized in time, embedded within the charcoal, LOI, and MS proxy 

records.  Paleoproxy time series and wavelet power spectra were then compared to 

wavelet transformation of four regional climate records: two paleoproxy records of short-

term climate variability were used in order to facilitate comparisons over the entire time 

series, and two reconstructions of direct indicators of ENSO and sunspot cycles were 

compared over their respective periods of record.  The long-term climate proxies utilized 

by this study include: 1) Quelcayya ice core snow accumulation rates, a proxy for paleo-

ENSO cycles years over ~1300 years (Thompson et al., 1984); and 2) North American 

∆14C concentrations, a multi-millennia proxy for variations in solar energy output 

(Reimer et al., 2004).  The Charco Verde records were additionally compared to the 

following short-term climate indicators: 1) the experimental dendroclimatic 
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reconstruction of winter Southern Oscillation Index (SOI) over the period 1706-1997 

A.D. (Stahle et al., 1998); and 2) annual average group sunspot number (SN), a 

reconstruction of sunspot cycles, over the period 1610-1995 A.D (Hoyt and Schatten, 

1998).  Comparisons were made through wavelet coherency analyses in order to quantify 

the relationship between regional climatic oscillations and environmental change at 

Ometepe Island through time, and two types of significance tests were performed: a 

point-wise test that examines every data point against H0 of no correlation, and an area-

wise test that also accounts for the size and geometry of coherent patches.  The latter test 

is considered to be more conservative, as it eliminates possible spurious peaks caused by 

the problem of multiple testing (Maraun and Kurths, 2004).  Both tests were performed 

on all wavelet analyses undertaken in this project (e.g., both wavelet power and 

coherency) at a significance level of 0.05; wavelet power and coherency peaks are 

therefore considered significant at the 95% confidence level.   

A major goal of this study was to determine the best methodology for extracting 

climate signals from paleoproxy records, as wavelets have not yet been used in this 

capacity in current published literature.  As a preliminary analysis, this project examined 

three mother wavelets (Daubechies, Difference of Gaussian (DOG), and Morlet) in order 

to document any significant discrepancies that arose due to the use of different wavelet 

functions.  The Morlet and DOG functions are continuous wavelet transforms (CWTs), 

which operate at every scale from a minimum value given by the Nyquist criterion (2ω 

radians, where ω is the highest frequency in the signal) (Kumar and Foufoula-Georgiou, 

1994).  By contrast, the Daubechies wavelet is a discrete wavelet transform (DWT), 

where calculations are made only on a set of scales and positions based on powers of two 
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(dyadic) using the Mallat algorithm1 up to the 2n value closest to half the length of the 

time series (Mallat, 1989).   

All three wavelets tested identified the periodicities at similar scales and temporal 

locations, with the only significant differences lying in the resolution of peak wavelet 

power.  The Morlet wavelet transform was chosen as superior due to its ability to localize 

time and frequency both sufficiently and relatively evenly.  The Charco Verde and 

regional climate proxy data were thus analyzed by the Morlet transform in three ways in 

order to determine the best way to extract natural periodicities and to document any 

discrepancies arising from different preprocessing procedures: 1) as raw time series data; 

2) after preprocessing with a bandpass filter of 2-32 years, which concentrates wavelet 

power at the higher frequencies of interest; and 3) and after bandpass filtering log-

transformed time series data, which reduces heteroskedasticity that may bias wavelet 

results.  Data was interpolated at a constant time-step of 1 year for each time series in 

order to account for differences in sedimentation rates throughout the core.  All analyses 

were implemented using the R statistical software package (Ihaka and Gentleman, 1996) 

with modified code from supporting packages Rwave (Carmona et al., 1998) and Sowas 

(Maraun and Kurths, 2004).   

Appendices A1-A3 contain the wavelet power spectra of the charcoal, LOI, and 

MS data, respectively, after analysis as 1) raw time series; 2) bandpass filtered at 2-32 

years, and 3) bandpass filtered (2-32 years) log-transformed data.  Appendices B1-B3 

illustrate results for wavelet coherency analyses between the charcoal - LOI, charcoal - 

MS, and MS - LOI records as 1) raw time series, and 2) bandpass filtered at 2-32 years 

(log-transformed data produced the same results in coherency analyses).  Appendices C1-

                                                 
1 The Mallat algorithm decomposes the signal with successive lowpass and highpass filters, where the high 
pass filter produces detailed information and the lowpass filter produces coarse information at each level of 
analysis. 
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C4 document wavelet coherency analyses between the charcoal record and each regional 

climate reconstruction used in this project (Quelcayya snow accumulation, SOI, ∆14C, 

and group sunspot number) after processing as: 1) raw time series; 2) bandpass filtered at 

2-32 years, and 3) bandpass filtered (2-32 years) log-transformed data.  As evident in 

Appendix A, significant wavelet peaks primarily occurred at scales less than ~64 years 

with the most prominent periodicities at less than ~32 years, thus precluding analysis of 

centennial-scale climate change in the Charco Verde records.  Preprocessing by a 2-32 

year bandpass filter successfully increased wavelet power at the interannual and decadal 

scales of interest, but this procedure did not reduce the heteroskedastic bias in the time 

series data (evident by local concentration of wavelet power at higher scales as a response 

to overall time series trends).  Log transformation of the original time series data reduced 

this bias, concentrating power at low scales and eliminating spurious peaks resulting from 

unequal data variance.  This methodology was thus chosen as superior, and all 

subsequent analyses are implemented using the log-transformed, 2-32 year bandpass 

filtered wavelet results.   

 

RESULTS 

Time Series Data 

Table 2 details radiocarbon sampling and age calibration results, while Fig. 2 

illustrates the age-depth relationship of the Charco Verde lake sediment core.  The time 

period of analysis spans the past 1423 years, corresponding with a core bottom age of 581 

A.D.  Sedimentation rates vary between 0.23 and 1.91 cm/year (0.52 - 4.35 years/cm), 

with an average sedimentation rate of 0.62 cm/year (1.60 years/cm) and a corresponding 

mean sampling resolution of 3.20 years.  The highest frequency capable of extraction by 
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wavelet analysis thus ranges between 1.04 and 8.70 years, with an average of 6.40 years; 

this frequency corresponds with the upper range of ENSO variability. 

Figure 3 illustrates the fluctuations in a) charcoal accumulation rates (CHAR), b) 

charcoal concentrations, c) loss on ignition (LOI), and d) magnetic susceptibility (MS) at 

Charco Verde over the period of record.  CHAR is at its highest value (440 

particles/cc/year) at 581 A.D., and falls by approximately an order of magnitude between 

581 and 900 A.D. and again at ~1500 A.D., where CHAR variability additionally 

dwindles with values <~10 particles/cc/year (Fig. 3a; note the log scale).  These changes 

in charcoal accumulation rates are mirrored by raw charcoal concentration values (Fig. 

3b).  Macroscopic charcoal concentrations range from 6-781 particles/cc and significantly 

vary throughout the core at both fine and coarse scales; highest values occur between 

1100-1300 A.D and 581-700 A.D., with continuous charcoal depletion (<30 particles/cc) 

after ~1500 A.D (Fig. 3b).   Both the charcoal and CHAR results indicate periods of 

increased burning between 581-800 A.D. followed by a reduction in fire activity until 

~1100 A.D., when charcoal values reach their peak and subsequently decline after 1300 

A.D. 

The LOI and MS time series indicate an expectedly inverse correlation, with low 

sediment organic content (~5%) and high erosion (MS values > ~100 k) persisting from 

581-1000 A.D (Figs. 3b-c).  At this point, the magnetic susceptibility data values drop 

and remain low throughout the record (< ~45 k), with the least magnetic responses 

occurring between 1000-1150 A.D. and 1300-1400 A.D (values of 5-10 k; Fig. 3d).  LOI 

values, by contrast, experience a rapid rise to 30% organic content at 1000 A.D. with 

sustained values through 1100 A.D.  The proxy remains relatively stable from 1000-1750 

A.D., when LOI rapidly rises and falls through a 100-year period (up to 58% organic 

content) before returning to stable values at approximately 1850 A.D. (Fig. 3c).   
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Wavelet Transform Analysis 

Charco Verde Wavelet Power Spectra 

Figure 4 illustrates wavelet power spectra (WSP) for each log-transformed and 

bandpass-filtered time series; wavelet power peaks for each Charco Verde proxy are 

summarized in Table 3.  Figures are zoned by Ometepe archeological horizons 

(Haberland, 1986) to indicate long-term trends in indigenous demographics and cultural 

development.  The charcoal WSP displays high power after ~1500 A.D. at scales of 2-8, 

10-17, and 21-28 years.  Particularly noteworthy is the prevalence of power at ~7-, 11-, 

and 22-year periodicities corresponding with the upper end of ENSO variability and two 

prominent sunspot cycles, thus suggesting a relationship between short-term climate 

forcing and fire regimes in the Ometepe TDFs.  Peak power at a scale of ~15 years may 

correspond with variability within or the interference between these forcing mechanisms.  

Additionally significant peaks occur at 800-1000 A.D. at a scale of 10-14 years, 750-850 

A.D. at 2-8 years, and 600-775 A.D. at 21-31 years.  The LOI WSP (Fig. 4b, Table 3) 

demonstrates periods of high wavelet power at similar, climate-relevant scales: from 

1940-1980 A.D at a scale of 8-12 years, 1600-1800 A.D. at 8-13 years, 1300-1400 A.D. 

at 2-32 years (with peak concentration between 10 and 22 years), 800-1000 A.D. at 11-16 

and 22-32 years, 750-850 A.D. at 2-10 years, and 590-650 A.D. at 14-20 years.  In 

contrast to the charcoal and LOI records, however, the magnetic susceptibility WSP 

indicates fewer significant peaks (Fig. 4c, Table 3): 1750-1850 A.D. at scales of 10-13 

and 16-22 years, 850-1000 A.D. at 19-32 years, and 750-850 A.D. at 2-32 years (with 

peak concentration at 6-11 years).    
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Charco Verde Wavelet Coherence 

Figure 5 illustrates wavelet coherency analyses between the proxy records: a) 

charcoal - LOI; b) charcoal - MS; and c) MS - LOI.  Wavelet coherency peaks for each 

Charco Verde proxy are summarized in Table 4.  Because each environmental proxy is a 

function of numerous local conditions, coherent peaks within these data suggest a 

common forcing mechanism driving variations at similar times and scales.  Particularly 

notable are the covariances between each record at 1) 581-700 A.D. at scales of 2-7 

years, 2) 850-900 A.D. at 2-7 and 10-12 years, 3) 1025-1150 A.D. at 2-6 and 7-11 years, 

and 4) 1300-1350 A.D at 2-7 years.  The charcoal and LOI records are also continuously 

coherent after ~1500 A.D. at scales of 2-7 years, with additional peaks at 2-11 and 18-22 

years between 1750 and1850 A.D (Fig. 5a).  Coherency between the charcoal - MS and 

the LOI - MS proxies generally does not exceed a scale of 7 years after ~1400 A.D. (Figs. 

5b-c).   

Comparison to ENSO Reconstructions 

Time series and WSP results over the period of record of the Quelcayya ice core 

(1256-1984 A.D.) are illustrated in Figure 6, while wavelet coherency results between 

Quelcayya snow accumulation and Charco Verde a) charcoal, b) LOI, and c) MS are 

depicted in Figure 7.  Peak wavelet power and coherencies are summarized in Tables 3 

and 4, respectively.  The Quelcayya WSP indicates significant power at ENSO 

frequencies throughout the record, as well as concentrations of power centered around 22 

years at 1600-1700 A.D., 1300-1400 A.D., 900-1100 A.D., and 775-850 A.D.; the 

Quelcayya record may thus also respond to variations in solar activity in addition to 

ENSO forcing.  Although the Quelcayya ice core data demonstrate limited covariance 

with the Charco Verde proxies at the 95% confidence level, coherent peaks exist 

throughout each proxy at ENSO-relevant scales (Figs. 7a-c).  In particular, coherency 
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between the Quelcayya and charcoal record (Fig. 7a) indicate continuous covariance after 

approximately 1500 A.D. at scales of 5-7 years.  Coherency at sunspot-relevant scales is 

also present to a limited extent in each proxy, with significant peaks occurring 

sporadically throughout the LOI and MS records. 

Figure 8 illustrates time series and WSP results over the period of record of the 

winter SOI reconstruction (1706-1977 A.D.), while wavelet coherency results between 

the SOI and Charco Verde a) charcoal, b) LOI, and c) MS are depicted in Figure 9.  The 

dominant periodicity band within the SOI ranges from 3-4 years, yet prominent power 

peaks are also evident between 2-3 years, 6-9 years, and 11 yrs.  Wavelet coherency 

results reveal limited significant covariance between the Charco Verde proxies and 

winter SOI.  This could be largely due to limitations in the frequency resolution of the 

proxy records, which are limited to ~6 yrs on average while dominant SOI variability 

occurs every 3-4 years.   

Comparison to Solar Activity Reconstructions 

Figure 10 illustrates the ∆14C time series data over the period analyzed and 

corresponding WSP results; Table 3 summarizes wavelet power peaks.  High wavelet 

power is evident at scales of sunspot variability (11 and 22 years) throughout the record.  

Wavelet coherency analyses between the radiocarbon record and the charcoal, LOI, and 

MS proxies (Figs. 11a-c, Table 4) reveal statistically significant peaks at two primary 

periodicity bands: 3-7 years and 10-12 years, thus demonstrating covariance at 

frequencies of both ENSO and solar activity.  Particularly noteworthy are coherency 

peaks after ~1500 A.D., which correlate to the Quelcayya - charcoal results (Fig. 7a).  

The ∆14C - charcoal covariance plot (Fig. 11a) indicates additional peaks of significance 

at 1200-1300 A.D. and 900-950 A.D. at scales of 3-5 and 10-12 years, respectively, while 

the ∆14C - LOI results (Fig. 10b) suggest significant covariance at ENSO-relevant scales 
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between 1300-1350, 1200-1250, and 800-850 A.D.  By contrast, the ∆14C - MS plot (Fig. 

10c) indicates relatively consistent covariance at sunspot-relevant scales of 10-14 years 

prior to ~1200 A.D., with limited ENSO-scale coherency.  These results suggest a 

possible relationship between fire regimes and droughts induced by fluctuations in solar 

activity, where the effects of biomass burning are also evident in the sediment organic 

content and erosion proxies.    

Figure 12 illustrates time series and WSP results over the period of record of the 

group sunspot number (SN) reconstruction (1610-1995 A.D.), while wavelet coherency 

results between SN and Charco Verde a) charcoal, b) LOI, and c) MS are depicted in 

Figure 13.  The sunspot data reveal an expectedly strong wavelet power band at ~11 

years throughout the record, with the exception of periods sustained reductions in sunspot 

numbers and solar energy output (e.g., the Maunder Minimum at 1650-1720 A.D.).  The 

strongest wavelet power peak occurs in the past 50 years, when sunspot activity and solar 

energy output is known to be relatively high.  Wavelet coherency results between SN and 

the Charco Verde proxies do not indicate periods of sustained covariance.  Sporadic 

coherency peaks significant at the 95% confidence level are present, however, 

particularly at 1820-1850 in the SN – charcoal plot (Fig. 13a).  The SN – magnetic 

susceptibility plot additionally illustrates significant covariance between 1780-1800 A.D. 

at a scale of 6-7 years, and 1960-1975 at a scale of 7-10 years (Fig. 13c).   
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Chapter 4: Discussion, Conclusions, and Implications 

 DISCUSSION 

Sources of Macroscopic Charcoal Fluctuations 

In addition wildfire frequency, temporal fluctuations in the charcoal proxy may 

reflect changes in the erosional and depositional processes that transport charcoal 

material and/or changes in fuel load (Whitlock and Larsen, 2001).  The charcoal record 

must therefore be compared to other paleoenvironmental proxies that may provide insight 

into whether charcoal variations are due to changes in fire frequencies or to auxiliary 

factors.  Magnetic susceptibility (MS) and loss on ignition (LOI) data provide evidence of 

erosional activity and fuel accumulation, respectively, where high values in both records 

may suggest a natural cause of augmented charcoal concentration.  As evident in Figs. 

3c-d, the MS and LOI records are not well correlated to charcoal concentrations.  If 

charcoal accumulation at Charco Verde was primarily a function of erosion rates as 

opposed to an overall escalation in burning activity, the charcoal and MS records would 

be expected to co-vary.  Similarly, if a rise in charcoal-producing biomass generated 

elevated charcoal values, peaks in the LOI record would correspond to higher charcoal 

concentrations.  Notably, these correlations do not occur in the Charco Verde sediments.  

From 581-950 A.D., magnetic susceptibility exhibits a variable, yet increasing trend 

while charcoal concentrations, although elevated, generally decline.  Additionally, MS 

rapidly decreases and retains low values after 950 A.D., where charcoal concentrations 

increase to their maximum values and remain elevated until ~1300 A.D.  The LOI record 

demonstrates relatively low organic content at depths of prominent charcoal peaks, with 

highest values occurring at 1750-1850 A.D. where charcoal values are at their nadir.  

High LOI levels at 1000-1200 A.D., indicating increased vegetation cover and more 
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charcoal production, may be partially responsible for the coeval charcoal climax; 

however, LOI rapidly declines at 1100 A.D. when charcoal reaches its zenith.  The LOI 

record thus suggests that natural changes in vegetation abundance alone cannot produce 

the variations in charcoal concentrations.  The lack of correlation between both MS and 

LOI reconstructions with the charcoal record largely discounts fuel load or erosion as the 

primary control of charcoal variations, thereby implicating anthropogenic or natural 

burning as the principal cause of charcoal fluctuations on Ometepe Island.   

 

Significance of Proxy Record Covariance 

Wavelet coherency results must be understood in the context of correlation 

analyses between drastically different proxy records, which respond to environmental 

forcing at different times and scales.  In addition, the proxies themselves represent 

paleoenvironmental conditions of different scales: while the Charco Verde proxies record 

primarily watershed-level events, the Quelcayya ice core record documents local changes 

in snow accumulation in the Peruvian Andes—this region of the world may also 

experience a different response to ENSO forcing than that of lower Nicaragua.  The ∆14C 

reconstruction records hemispheric changes in atmospheric radiocarbon isotopic 

composition, while the SOI and sunspot records are globally averaged and reconstructed 

indices.  Thus, although two records may be driven by the same climate mechanism, local 

auxiliary factors that also contribute to proxy fluctuations may obfuscate the primary 

forcing signal.  Furthermore, the relationships between regional climate variability and 

local fire regimes are likely better approximated by a non-linear function; the attempt to 

measure linear covariance between such time series may therefore lead to erroneously 

low statistical significances.  Despite these difficulties, the existing significant wavelet 

coherency peaks between the Charco Verde proxies and the long-term ENSO and sunspot 
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proxies reveal results that provide evidence of global climate forcing of local 

environmental conditions.   

Periods of high coherency in wavelet covariance analyses isolate times within the 

records that respond to the same forcing mechanism—natural or anthropogenic—at the 

same scales.  Particularly notable are the covariances between each Charco Verde proxy 

at 1) 581-700 A.D., 2) 850-900 A.D., 3) 1025-1150 A.D., and 4) 1300-1350 A.D., which 

correspond with four significant periods in the charcoal time series record: 1) a period of 

high initial charcoal values and variability; 2) a period of sustained, diminished charcoal 

values (the lowest pre-Conquest charcoal concentrations); 3) the record’s peak charcoal 

values; and 4) the period of most rapid and severe charcoal decline. When considered 

with the charcoal WSP results, where significant power is notably absent between ~1000-

1500 A.D. at the period of greatest overall time series variability, the charcoal record 

appears to record three phases of natural verses anthropogenic dominance: a period of 

combined anthropogenic and climatic influence from 581 A.D. becomes dominated by 

anthropogenic activity at 1000 A.D., which finally transitions into a naturally-forced 

record at ~1500 A.D.  Covariance between the Charco Verde proxies before 1000 A.D. 

and after ~1500 A.D. is thus likely due to natural forcing, while that in between these two 

periods may be attributed to anthropogenic modification of the landscape.   

The strong wavelet power at scales of ~7, 14, and 24 years in the charcoal record 

after ~1500 A.D. may therefore be indicative of the natural fire regime within the 

Ometepe tropical dry forests, which becomes prominent when the anthropogenic burning 

signal is diminished.  With contiguous wavelet power significant at the 95% confidence 

level (Fig. 4a), the lack of coherency between the charcoal proxy and the short-term 

climate records (SOI and SN) (Figs. 9 and 13) does not preclude climate forcing.  By 

contrast, low coherency may be due to the different response times of fire regimes to 
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changes in meteorological conditions, or to frequency resolution limitations in the 

charcoal record.  This is particularly evident in Figs. 14 and 15, which illustrate the 

respective wavelet power spectra for the Charco Verde proxies between 1706-1977 and 

1610-1995, the time periods of record of the SOI and sunspot indicators.  Statistically 

significant fire cycles at 6-8 and 11-22 years over the entire 250 and 400 year periods 

(Figs. 14b and 15b, respectively) suggest possible climate forcing of fire frequencies, 

where lack of wavelet coherency may be due to the slightly different scales of dominant 

variability in the SOI (~3-4 years; Fig. 14a) and SN (~11 years; Fig. 15a) records.  The 

fire regime within the tropical dry forests of Ometepe Island may thus be influenced by 

droughts induced by ENSO and/or fluctuations in solar energy output, with scales of 

response that are not precisely correlated with the scales of climatic variation.  Prominent 

wavelet power at scales of 11 and 22 years is also present in the LOI record from 1700-

1850 (Figs. 14c, 15c), as well as at 11 and 22 years throughout the period 1610-1995 in 

the magnetic susceptibility record (Fig. 15d).  This contiguous and significant wavelet 

power at scales of sunspot variability may provide additional evidence of drought cycles 

on Ometepe Island, where erosion rates exhibit a more direct response to the local 

hydrologic balance than biomass burning.   

 

Summary of Natural verses Anthropogenic Sources of Environmental Change on 
Ometepe Island 

Early to middle San Roque Phase (581-800 A.D.) 

The analysis of the Charco Verde environmental proxies in conjunction with 

archeological surveys provides insight into the relationship between ancient Ometepe 

societies and their environment.  Nine cultural phases identified by Haberland (1986) are 

present during the time period of record, beginning with the San Roque Phase.  High 
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charcoal concentrations, low sediment organic content, and high magnetic susceptibility 

values during this phase (Figs. 4a-c) suggests that the Ometepe population actively 

burned their landscape for agricultural and other purposes, decreasing natural vegetation 

abundance and increasing regional erosion rates.  These findings corroborate the 

archeological description of the San Roque Phase as the pinnacle of cultural development 

on Ometepe Island.  Despite the prevalence of anthropogenic burning, evidence of strong 

climate forcing potentially caused by variations in solar activity is additionally present: 1) 

a prominent wavelet power peak in the charcoal record between 590-750 A.D. at a scale 

of ~22-32 years; 2) Charco Verde proxy record coherence between 581-700 A.D.; and 3) 

significant coherence between the Charco Verde proxies and the ∆14C record between 

581-600 A.D. (Fig. 4a, Table 3).  This contention is supported by Quelcayya ice core 

time series data, which demonstrate the occurrence of a severe, 32-year drought in the 

late 6th century followed by a 40-year period of increased precipitation, in turn followed 

by dry conditions (Thompson et al., 1985).   

San Roque - Gato Phase Transition (750 - 950 A.D.) 

Although charcoal concentrations steadily decline through the late San Roque 

Phase and may suggest that a period of increased precipitation curtailed fire frequencies, 

wet conditions are not consistent with the Charco Verde proxies: high erosion rates 

combined with extremely low sediment organic content are not representative of a wet 

environment.  Rather than a consequence of a higher precipitation, declining charcoal 

concentrations at 750-950 A.D. may be caused by reduced anthropogenic burning due to 

the onset of drought, in turn leading to a reduction in Ometepe Island’s agricultural 

capacity.  Hodell et al. (1995, 2001, 2005) suggest that the period 800-1000 A.D. was the 

driest of the middle to late Holocene in the Yucatan Peninsula, a drought that may have 

contributed to the collapse of the Classic Maya and surrounding populations.  Ancient 
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Puebloan Mesa Verde reservoirs in Colorado (Van West, 1991), multiple paleoclimate 

records from California (Schimmelmann, 2003), and reduced snow accumulation at 

Quelcayya (Thompson et al., 1985; Fig. 6) additionally indicate drought cycles between 

800-1000 A.D., thus demonstrating the severity and extent of dry conditions through this 

period.  Evidence of similar, coeval climate events in the Charco Verde proxies include: 

1) peak wavelet power at scales of 2-5, 5-8, and 10-15 years between 750-1000 A.D. 

(Fig. 4a, Table 3); 2) charcoal, LOI, and MS record covariance between 850-900 A.D. at 

scales of 2-11 years. (Fig. 5, Table 4); and 3) Quelcayya - charcoal and ∆14C - charcoal 

covariance at scales of 2-7 and 10-12 years between 800-1000 A.D. (Figs. 7a and 11a, 

Table 4).  When analyzed in conjunction with declining charcoal concentrations, high 

erosion rates, and the lowest organic content values of record, these results provide 

evidence of Ometepe Island indigenous community response to widespread and 

prolonged drought caused by short-term climate variability, where burning declined 

because of reduced agricultural activities and/or total island population. 

Gato Phase (950-1200 A.D.) 

The Gato Phase of Ometepe cultural development beginning between 900-950 

A.D. is delineated by new ceramic traditions that suggest an influx of settlers to the island 

and a recovery of island populations.  Charcoal concentrations begin to rise precisely at 

the onset of this phase and steadily increase to their zenith, suggesting greater indigenous 

burning activities.  However, correspondence of peak charcoal concentrations with 

multiple regional climate records indicating sporadic drought conditions between 1130-

1180 A.D. (Van West, 1991; Hodell, 2005) and 1240-1300 A.D. (Thompson et al., 1985; 

Van West, 1991) suggest that although the charcoal signal may be dominated by 

anthropogenic burning (e.g., no wavelet power peaks), dry conditions continued to affect 

local fire regimes.  These regional dry periods additionally correspond with significant 
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peaks in the ∆14C - charcoal wavelet coherency results at 2-7 years, as well as peaks in 

the Quelcayya - charcoal coherency at sunspot-relevant scales (Figs. 7a and 11a, Table 

4).  Despite the absence of significant wavelet power in the charcoal record, ENSO 

and/or fluctuations in solar activity thus appear to have continued to influence the fire 

regime on Ometepe Island during the Gato Phase.    

La Paloma and San Lazaro Phases (1200-1400 A.D.) 

Charcoal concentrations experience their most rapid decline during the transition 

between the La Paloma and San Lazaro Phases at 1300 A.D., and remain relatively low 

during the latter period of cultural development.  Archeological data indicate that Lake 

Nicaragua water levels during the San Lazaro fluctuated significantly, and evidence of 

climate forcing is demonstrated by wavelet power between 1300-1400 A.D. centered on a 

scale of 10-20 years in the LOI record.   

Santa Ana Phase (1400-1550 A.D.) and European Contact 

The Santa Ana phase, or the final pre-Conquest phase of cultural development on 

Ometepe Island, is again characterized by an influx of indigenous migrants by 

archeological surveys.  However, decreased charcoal concentrations combined with high 

wavelet power at ENSO- and sunspot-relevant scales suggest the transition to a naturally-

dominated proxy record that becomes primarily reflective of climate forcing after 

Spanish arrival (~1522 A.D.).  Coherency results between the charcoal and Quelcayya 

records demonstrate peak covariance at ENSO frequencies that appear precisely at the 

time of European contact, remaining contiguous through the length of the record (Fig. 

7a).  Coherency peaks between the ∆14C and Charco Verde proxies at both ENSO and 

sunspot scales additionally become continuous during this period, with results significant 

at the 95% confidence level (Fig. 11).  The cessation of indigenous burning activities 
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upon European arrival is likely responsible for the sudden coherency increase between 

the proxy records (Suman, 1991), as the response of the Ometepe fire regime to ENSO 

and/or sunspot cycles is able to dominate fluctuations in the charcoal record at this time 

(Figs. 14, 15).    

 

CONCLUSIONS  

In this study, I examined the relationship between short-term climate variability, 

paleo-fires, and anthropogenic sources of environmental change over the past 1,400 years 

on Ometepe Island.  Macroscopic charcoal, loss on ignition, and magnetic susceptibility 

records were reconstructed from the Charco Verde lake sediment core, and statistical 

wavelet analyses were performed to contextualize natural fire regimes in this under-

investigated tropical biome.  Wavelet analysis proved a successful means to extricate 

natural from anthropogenic sources of environmental change evidenced in paleoproxy 

data.  Results from this project suggest that fire regimes on Ometepe Island respond to 

high frequency (sub-centennial scale) climate variations potentially due to the 11- and 22-

year sunspot cycles and/or severe ENSO events, and support regional paleoenvironmental 

analyses by providing evidence of anthropogenic environmental impacts between ~600 

and 1500 A.D. with a drastic decline after European contact.  Possible evidence of 

widespread drought conditions between 800 - 1000 A.D. and 1150 – 1300 A.D. is 

additionally present in both the time series data and wavelet power spectra.   

Specific results from this study include the following: 

1. Wavelet transform analysis is an effective means to investigate sources of data 

fluctuations in paleoenvironmental proxies through identifying nonstationary signals that 

correspond to various climate mechanisms.  Unlike Fourier analyses that assume constant 

frequencies throughout the period of analysis, wavelet transforms localize multiple 
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forcing mechanisms via their different frequency signatures.  Prolonged periods of low 

wavelet power suggest the dominance of human activity on proxy data variations, while 

high wavelet power is indicative of climate forcing.  Wavelet power and coherency peaks 

were most evident after preprocessing by a 2-32 year bandpass filter of log-transformed 

data.   

2. Wavelet results suggest natural fire cycles at scales of ~7, 14, and 24 years in 

the tropical dry forests of Ometepe Island.  These periodicities are particularly evident 

when charcoal fluctuations are analyzed within the post-Contact timeframe (e.g., after 

~1500 A.D.; Figs. 14, 15).  The natural fire regime of Ometepe Island may thus be 

influenced by climate mechanisms at interannual and decadal scales. 

3. Wavelet analysis of the Charco Verde proxies indicate that fire regimes and 

environmental change initially dominated by a mixed climatic-anthropogenic signal 

transitioned to that dominated by anthropogenic environmental impacts—especially 

increased burning activity—at ~1000 A.D.  Anthropogenic dominance persisted until 

~1500 A.D. when the arrival of Europeans likely decimated indigenous populations, thus 

reducing biomass burning and other land use activities.  These results are supported by 

preliminary pollen data from the Charco Verde core, as well as by similar finding in 

regional paleoecological studies.     

4. Wavelet coherency analyses identify periods of covariance between two time 

series at various scales, thus suggesting a common forcing mechanism—natural or 

anthropogenic—in driving data changes.  Results between the Charco Verde and the 

regional climate proxies (Quelcayya and ∆14C) indicate periods of covariance throughout 

the record, particularly after European contact at ~1500 A.D.  High coherency with both 

the Quelcayya and ∆14C record post-European contact is likely a function of natural 

dominance of the proxy signals once anthropogenic impacts were diminished, thus 
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revealing the effect of ENSO events and solar cycles on fire regimes.  Although the 

Quelcayya, SOI, and SN coherency peaks are not always statistically significant at the 

95% confidence level, these results remain important when considered in conjunction 

with the different lag times and distinct response magnitudes that obfuscate proxy record 

covariance—even when forced by the same climate mechanism.  

5. Although wavelet power in the Charco Verde proxies is low through the period 

1500-1000 A.D., evidence of climate forcing of fire regimes—where the climate cycles 

are likely obscured by frequent anthropogenic burning—exists in the charcoal and LOI 

records.  Temporal correlation between peak charcoal concentrations and regional 

climate proxies indicating coeval droughts in the southwestern U.S. and northern South 

America occur between 1130-1180 A.D. and 1240-1300 A.D (Thompson et al., 1985; 

Hodell et al., 2001; Van Buren, 2001; Schimmelmann et al., 2003).  A peak in LOI 

wavelet power from 1300-1400 A.D. at scales of 2-32 years corresponding with 

archeological records of fluctuating water levels in Lake Nicaragua provides additional 

evidence of natural sources of environmental change during this time.    

6. Significant wavelet power prior to ~1000 A.D. is likely due to particularly strong 

climate forcing that manifests itself against a backdrop of anthropogenic activity.  This 

finding is supported by regional investigations identifying the periods 550-590 A.D. and 

800-1000 A.D. as especially dry, where the latter dry spell may have contributed to the 

collapse of the Maya and other civilizations due to severe water deficits (Hodell et al., 

1995; Hodell et al., 2001; Van Buren, 2001; Schimmelmann et al., 2003; Haug et al., 

2003).  A steady reduction in charcoal concentrations, an increase in erosion rates, and 

extremely low sediment organic content through this period may indicate that Ometepe 

indigenous communities were also affected by drought conditions, which severely 

curtailed their agricultural capacity.  When considered with wavelet power and coherency 
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results from the Charco Verde and regional climate proxies, this study suggests that 

climate forcing of regional drought has occurred on sub-centennial timescales on 

Ometepe Island, thus invoking ENSO and/or high frequency variations in solar activity as 

a potential source. 

 

IMPLICATIONS  

The charcoal record suggests that fire frequencies on Ometepe Island decreased 

through the San Roque Phase, reaching a pre-Conquest minimum at ~900 A.D. and 

subsequently rising through the Gato Phase, with peak values occurring at ~1150 A.D.  

Charcoal concentrations then decline almost an order of magnitude through the La 

Poloma and San Lazaro phases (1200-1400 A.D.), with low fire frequencies during the 

island’s post-Contact history.  These results indicate that contemporary burning in the 

tropical dry forests of Ometepe Island is almost an order of magnitude lower than during 

the peak of indigenous community cultural development (Haberland, 1986).  

Environmental disturbance on the island also appears to have primarily occurred through 

the San Roque Phase (~600-1000 A.D.), with high magnetic susceptibility and low loss 

on ignition values indicating increased rates of erosion on a landscape with less natural 

vegetation.  This analysis is supported by preliminary pollen work from the Charco Verde 

lake sediment core, where abundant maize (Zea), weed (Asteraceae), and grass (Poaceae) 

pollen suggest a highly disturbed landscape due to agriculture during this time; weed and 

grass pollen are subsequently replaced by lowland tropical tree species (Ficus and 

Urticales) after ~1500 A.D.    

Suman (1991) similarly documented a decrease in charcoal concentrations and 

landscape disturbance in Nicaragua after ~1500 A.D., attributing this phenomenon to an 

essential cessation of burning activities when European contact decimated local 
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indigenous populations.  Denevan (1961) suggests that the Nicaraguan native population 

was reduced to 5% of its pre-Conquest value—from ~600,000 to ~30,000 people—upon 

the arrival of the Spanish in 1522 A.D.  The Spanish introduced cattle to Central 

America, and heavy grazing combined with indigenous population decline may account 

for decreased charcoal concentrations on Ometepe Island (Johannessen, 1963; Suman, 

1991).  Although populations in rural Central America have increased dramatically 

through the last two centuries (International Institute for Environment and Development, 

1987), a lack of corresponding fire activity on Ometepe Island may be due to 1) modern 

production of export crops such as coffee, cotton, and bananas that do not require regular 

burning (Parker, 1964); and 2) livestock management techniques that do not heavily 

depend on the use of fire (Suman, 1991).  Paleoecological analyses of lake sediments in 

Guatemala, Costa Rica, and El Salvador additionally document similar environmental 

histories, with the highest concentrations of charcoal and disturbance pollen species 

occurring from 200-900 A.D. and decreased fire frequencies and environmental 

disturbance post-European contact (Tsukada and Deevey, 1967; Brenner et al., 1990; 

Dull, 2004a, Dull, 2004b; Anchukaitis and Horn, 2005).   

The successful application of wavelets to the paleoproxy records used in this 

study (macroscopic charcoal, loss on ignition, and magnetic susceptibility) provides a 

new methodology for the analysis of historical environmental records that have both 

natural and anthropogenic contributions.  Wavelet results of the charcoal reconstruction 

indicate natural fire cycles at ~7, 14, and 24 years that may be attributable to short term 

climate forcing, particularly ENSO events and/or fluctuations in solar activity on decadal 

scales.  Unfortunately, the resolution of the charcoal record precluded analysis at scales 

less than 6 years on average; with higher resolution, ENSO covariance measures may 

have been stronger as evident by the dominant ~4-year frequency in both the SOI (Fig. 
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14a) and Quelcayya (Fig. 7) records.  Despite the lack of statistical covariance with the 

ENSO reconstructions, the strong wavelet power at climate-relevant scales in the 

charcoal record—particularly after anthropogenic activity is diminished at ~1500 A.D. 

(Figs. 14 and 15)—is suggestive of a natural fire regime in Ometepe’s tropical dry forest 

that responds to short term climate variability.   

The results of this study will contribute to the scientific community’s 

understanding of the dynamics of TDF fire regimes, and will help improve forest 

management and preservation initiatives on Ometepe Island and southwestern Nicaragua.  

These results will be bolstered by future work from the Charco Verde lake sediment core 

that is currently underway, including the reconstruction of high resolution pollen samples 

and stable carbon isotopes δ13C in order to document changes in vegetation and lake 

levels over the past 1,400 years.  Additionally underway is a large-scale coring initiative 

within Lake Nicaragua, where these paleoecological records will be compared to those of 

Charco Verde in both time and frequency space in order to provide robust evidence of 

tropical dry forest fire regimes, short term climate variability, and environmental change 

in southwestern Nicaragua on a regional scale.  A lake sediment core from the top of 

Volcan Maderas on Ometepe Island (Fig. 1) has additionally been analyzed for charcoal, 

loss on ignition, and magnetic susceptibility; however, chronology issues within this core 

must be rectified before comparisons can be made to the Charco Verde records. 
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Table 1: Cultural history of indigenous communities on Ometepe Island from 2000 
B.C. 

Cultural Phase Duration Settlement and Subsistence Activities 

Dinarte Phase 2000 – 500 B.C. Farming, hunting, fishing on Volcan 
Concepción; no evidence of maize agriculture 

Angeles Phase 500 – 200 B.C. Same activities as above; phases separated due to 
volcanic eruption 

Sinacapa Phase 200 B.C – 1 A.D. 
Earliest record of settlement of Volcan Maderas, 
increased island population, and maize 
cultivation  

Mantiel Phase 1 – 500 A.D. 
Evidence of continued farming, hunting, fishing; 
increased volcanic activity leads to partial 
abandonment of Ometepe 

San Roque Phase 500 – 950 A.D. 

Evidence of increased maize agriculture and 
hunting, introduction of primal burials; pinnacle 
of cultural development on Ometepe Island, 
correspondence with Greater Nicoya 
development 

Gato Phase 1000 – 1200 A.D. New ceramic traditions indicate influx of settlers 

La Paloma Phase 1200 – 1300 A.D. Same ceramic tradition as above 

San Lazaro Phase 1300 – 1400 A.D. Significant fluctuation in Lake Nicaragua water 
levels 

Santa Ana Phase 1400 – 1550 A.D. 

Last pre-Conquest phase of indigenous activities; 
new ceramic traditions indicate influx of 
immigrants from Atlantic coast of lower Central 
America 

Post-Spanish Contact 1550 A.D. – Present 

Indigenous population decline; clashes between 
local populations and European settlers; current 
economy based upon tourism, livestock, and 
agriculture 
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Table 2: Radiocarbon sampling and age calibration results. 

Sample ID Depth 
(cm) 

UCIAMS 
Number 

Age - Median 
Probability ±  

Error 
(14C Years B.P.) 

Lower - Upper 
1σ Range 

(Years A.D.) 

Lower - Upper 
2σ Range  

(Years A.D.) 

Calibrated Age - Median 
Probability  

(Years A.D.) 

Charco Verde 314 314 32318 705 ± 25 1274 - 1292 1264 - 1301 1284 
Charco Verde 372 372 11792 865 ± 25 1163 - 1212 1151 - 1225 1183 
Charco Verde 421 421 32319 1010 ± 15 1013 - 1027 993 - 1030 1018 
Charco Verde 498 498 11793 1190 ± 20 811 - 848 777 - 888 835 
Charco Verde 586 586 11794 1230 ± 20 788 - 819 765 - 876 789 
Charco Verde 622 622 32320 1420 ± 15 622 - 648 606 - 653 633 

 

 

Table 3: Summary of time and scale of wavelet power maxima in proxy records 
analyzed. 

Proxy Record Time Period of Peak  
Wavelet Power (Years A.D.) 

Scale of Peak  
Wavelet Power (Years) 

1500 - 2004 2-8, 10-17, 21-28 
800 - 1000 10-14 
750 - 850 2-8 

Charco Verde Macroscopic 
Charcoal 

600 - 775 21-31 
1940 - 1980 8-12 
1600 - 1800 8-13 
1300 - 1400 2-32 (highest power at 10-22) 
800 - 1000 11-16, 22-32 
750 - 850 2-10 

Charco Verde LOI 

590 - 650 14-20 
1750 - 1850 10-13, 16-22 
850 - 1000 19-32 Charco Verde MS 
750 - 850 2-32 (highest power at 6-11) 

Throughout record 2-7 
1600 - 1700 18-28 
1300 - 1400 20-28 
900 - 1100 16-32 

Quelcayya Ice Core Snow 
Accumulation 

775-850 21-28 
800 - 2004 20-32 
1250 - 1350 15 - 22 ∆14C (Northern Hemisphere) 
1600 - 2004 7 - 22 
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Table 4: Summary of time and scale of wavelet coherency maxima of proxy records 
analyzed. 

 

Proxy Records Time Period of Peak  
Wavelet Power (years A.D.) 

Scale of Peak  
Wavelet Power (years) 

1500 - 2004 2-7 
1750 - 1850 2-11, 18-22 
1300 - 1350 2-7 
1025 - 1150 2-6, 7-11 
850 - 900 2-7, 11 

Charco Verde Macroscopic 
Charcoal - LOI 

581 - 700 2-7 
1900 - 1925 2-5 
1300 - 1350 2-7 
1025 - 1150 2-6, 7-11 
850 - 900 2-7, 11 

Charco Verde Macroscopic 
Charcoal - MS 

581 - 700 2-7 
1300 - 1350 2-7 
1025 - 1150 2-6, 7-11 
850 - 900 2-7, 11 Charco Verde MS - LOI 

581 - 700 2-7 
1500 - 2004 2-3, 5-7 
1650 - 1750 10-12 
1200 - 1350 6-8, 10-22 
900 - 1000 5-7 

Quelcayya - Charco Verde 
Macroscopic Charcoal 

850 - 900 10-22 
1500 - 2004 5-7, 7-12 
1200 - 1300 2-4, 10-13 
900 - 950 10-12 

∆14C - Charco Verde 
Macroscopic Charcoal 

590 - 600 2-7 
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Figure 1: Site map depicting 
Ometepe Island and Laguna Charco 
Verde within southwestern 
Nicaragua.  Laguna Charco Verde is 
located within a peninsula on the 
southern side of Volcan 
Concepción, marked by the filled 
black circle.    

 

Figure 2: Depth-age (calibrated in 
years A.D.) relationship of the 
Charco Verde lake sediment core.  
Error bars mark the one-sigma 
median probability range.  

Age (Years A.D.)
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Figure 3: Time series results of the 
Charco Verde lake sediment core: 
A) charcoal accumulation rates 
(CHAR, note the log scale); B) 
macroscopic charcoal 
concentrations; C) loss on ignition; 
and D) magnetic susceptibility.  
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Figure 4: Wavelet power spectra (top) 
and time series (bottom) plots of the 
Charco Verde paleoproxies: A) 
macroscopic charcoal; B) loss on 
ignition; and C) magnetic 
susceptibility.  Bandpass filtered series 
from 2-32 years (blue dashed line) of 
log-transformed data are plotted with 
the unfiltered time series data (black).  
Significant wavelet power peaks at the 
95% confidence level are delineated by 
1) point-wise (thin black lines) and 2) 
area-wise testing (thick black lines), 
where the latter significance test is 
considered more conservative (Maraun 
and Kurths, 2004).  
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Figure 5: Wavelet coherency plots of 
the Charco Verde paleoproxies: A) 
macroscopic charcoal – loss on 
ignition; B) macroscopic charcoal – 
magnetic susceptibility; and C) 
magnetic susceptibility – loss on 
ignition.  Significant wavelet power 
peaks at the 95% confidence level are 
delineated by 1) point-wise (thin black 
lines) and 2) area-wise testing (thick 
black lines), where the latter 
significance test is considered more 
conservative (Maraun and Kurths, 
2004).  
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Figure 6: Wavelet power spectrum (top) and 
time series (bottom) plot of Quelcayya ice 
core snow accumulation (Thompson et al., 
1984).  Periods of low snow accumulation 
are indicative of regional drought.  
Significant wavelet power peaks at the 95% 
confidence level are delineated by 1) point-
wise (thin black lines) and 2) area-wise 
testing (thick black lines), where the latter 
significance test is considered more 
conservative (Maraun and Kurths, 2004).  

Figure 7: Wavelet coherency plots of 
Quelcayya ice core snow accumulation 
(Thompson et al., 1984) and Charco Verde 
proxies: A) Quelcayya – macroscopic 
charcoal; B) Quelcayya – loss on ignition; 
and C) Quelcayya – magnetic susceptibility.  
Significant wavelet power peaks at the 95% 
confidence level are delineated by 1) point-
wise (thin black lines) and 2) area-wise 
testing (thick black lines), where the latter 
significance test is considered more 
conservative (Maraun and Kurths, 2004).  
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Figure 8: Wavelet power spectrum (top) and 
time series (bottom) plot of reconstructed 
winter SOI (Stahle et al., 1998).  Negative 
excursions of the SOI indicate El Niño 
events.  Significant wavelet power peaks at 
the 95% confidence level are delineated by 1) 
point-wise (thin black lines) and 2) area-wise 
testing (thick black lines), where the latter 
significance test is considered more 
conservative (Maraun and Kurths, 2004).  

Figure 9: Wavelet coherency plots of 
reconstructed winter SOI (Stahle et al., 1998) 
and Charco Verde proxies: A) SOI – 
macroscopic charcoal; B) SOI – loss on 
ignition; and C) SOI – magnetic 
susceptibility.  Significant wavelet power 
peaks at the 95% confidence level are 
delineated by 1) point-wise (thin black lines) 
and 2) area-wise testing (thick black lines), 
where the latter significance test is 
considered more conservative (Maraun and 
Kurths, 2004).  
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Figure 10: Wavelet power spectrum 
(top) and time series (bottom) plot of 
northern hemisphere radiocarbon (∆14C) 
(Reimer et al., 2004).  Periods of lighter 
isotopic composition suggest increased 
solar energy output.  Significant wavelet 
power peaks at the 95% confidence 
level are delineated by 1) point-wise 
(thin black lines) and 2) area-wise 
testing (thick black lines), where the 
latter significance test is considered 
more conservative (Maraun and Kurths, 
2004).  

Figure 11: Wavelet coherency plots of 
northern hemisphere radiocarbon (∆14C) 
(Reimer et al., 2004) and Charco Verde 
proxies: A) ∆14C – macroscopic charcoal; 
B) ∆14C – loss on ignition; and C) ∆14C – 
magnetic susceptibility.  Significant 
wavelet power peaks at the 95% 
confidence level are delineated by 1) 
point-wise (thin black lines) and 2) area-
wise testing (thick black lines), where the 
latter significance test is considered more 
conservative (Maraun and Kurths, 2004).  
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Figure 12: Wavelet power spectrum (top) 
and time series (bottom) plot of group 
sunspot number (Hoyt and Schatten, 1998).  
High sunspot numbers indicate greater solar 
energy output.  Significant wavelet power 
peaks at the 95% confidence level are 
delineated by 1) point-wise (thin black 
lines) and 2) area-wise testing (thick black 
lines), where the latter significance test is 
considered more conservative (Maraun and 
Kurths, 2004).  

Figure 13: Wavelet coherency plots of group 
sunspot number (SN) (Hoyt and Schatten, 
1998) and Charco Verde proxies: A) SN– 
macroscopic charcoal; B) SN – loss on 
ignition; and C) SN – magnetic susceptibility.  
Significant wavelet power peaks at the 95% 
confidence level are delineated by 1) point-
wise (thin black lines) and 2) area-wise testing 
(thick black lines), where the latter 
significance test is considered more 
conservative (Maraun and Kurths, 2004).  
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Figure 14: Wavelet power spectra over 
the time period 1706-1977 A.D. for A) 
reconstructed SOI (Stahle et al., 1998); 
B) macroscopic charcoal; C) loss on 
ignition; and D) magnetic 
susceptibility.  Significant wavelet 
power peaks at the 95% confidence 
level are delineated by 1) point-wise 
(thin black lines) and 2) area-wise 
testing (thick black lines), where the 
latter significance test is considered 
more conservative (Maraun and 
Kurths, 2004).  
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Figure 15: Wavelet power spectra over 
the time period 1610-1995 A.D. for A) 
group sunspot number (Hoyt and 
Schatten, 1998); B) macroscopic 
charcoal; C) loss on ignition; and D) 
magnetic susceptibility.  Significant 
wavelet power peaks at the 95% 
confidence level are delineated by 1) 
point-wise (thin black lines) and 2) 
area-wise testing (thick black lines), 
where the latter significance test is 
considered more conservative (Maraun 
and Kurths, 2004).  
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Appendix A1: Macroscopic Charcoal Wavelet Power Spectra 
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Appendix A2: Loss on Ignition Wavelet Power Spectra 



 61

Appendix A3: Magnetic Susceptibility Wavelet Power Spectra 
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Appendix B1: Macroscopic Charcoal – Loss on Ignition Wavelet 
Coherency Spectra 
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Appendix B2: Macroscopic Charcoal – Magnetic Susceptibility Wavelet 
Coherency Spectra 
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Appendix B3: Magnetic Susceptibility – Loss on Ignition Wavelet 
Coherency Spectra 
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Appendix C1: Macroscopic Charcoal – Quelcayya Snow Accumulation 
Wavelet Coherency Spectra 
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Appendix C2: Macroscopic Charcoal – SOI Wavelet Coherency Spectra 
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Appendix C3: Macroscopic Charcoal – ∆ 14C Wavelet Coherency 
Spectra 
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Appendix C4: Macroscopic Charcoal – Sunspot Reconstruction Wavelet 
Coherency Spectra 
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Appendix D – Paleoproxy Data 

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on 
Ignition 

Magnetic 
Susceptibility 

2 61 - 17 22 
4 32 7 17 23 
6 52 11 16 19 
8 93 20 16 23 

10 75 16 16 16 
12 38 8 17 13 
14 78 17 17 17 
16 145 31 16 19 
18 38 8 15 16 
20 20 4 19 17 
22 20 4 20 11 
24 20 4 25 13 
26 17 4 27 5 
28 35 8 24 4 
30 43 9 22 5 
32 43 9 22 6 
34 35 8 23 9 
36 17 4 22 9 
38 43 9 21 9 
40 23 5 21 10 
42 6 1 20 13 
44 38 8 19 12 
46 38 8 18 13 
48 14 3 21 15 
50 32 7 19 14 
52 55 12 19 13 
54 26 6 20 12 
56 69 15 19 14 
58 61 13 20 14 
60 12 3 20 14 
62 35 8 19 11 
64 49 11 19 11 
66 17 4 19 8 
68 46 10 19 7 
70 38 8 27 10 
72 29 6 31 10 
74 61 13 25 13 
76 14 3 34 11 
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Appendix D – Paleoproxy Data 

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on 
Ignition 

Magnetic 
Susceptibility 

78 17 4 26 8 
80 49 11 38 8 
82 67 14 28 6 
84 32 7 43 6 
86 35 8 40 6 
88 32 7 33 8 
90 49 11 41 10 
92 26 6 58 10 
94 23 5 52 6 
96 52 11 44 8 
98 78 17 37 6 
100 6 1 54 9 
102 32 7 29 11 
104 23 5 23 12 
106 9 2 31 23 
108 46 10 23 15 
110 41 9 28 14 
112 17 4 29 15 
114 67 14 24 19 
116 119 26 18 22 
118 55 12 19 17 
120 49 11 18 12 
122 78 17 18 7 
124 14 3 17 12 
126 43 9 14 16 
128 101 22 16 17 
130 12 3 16 9 
132 32 7 18 9 
134 46 10 14 27 
136 17 4 13 22 
138 43 9 14 36 
140 81 18 16 27 
142 43 9 18 19 
144 20 4 18 15 
146 69 15 17 12 
148 55 12 16 18 
150 64 14 16 30 
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Appendix D – Paleoproxy Data 

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on 
Ignition 

Magnetic 
Susceptibility 

152 78 17 17 20 
154 96 21 17 25 
156 116 25 18 16 
158 124 27 16 24 
160 67 14 16 17 
162 58 13 16 20 
164 49 11 16 20 
166 75 16 15 25 
168 98 21 18 26 
170 136 29 17 20 
172 78 17 15 30 
174 119 26 18 25 
176 87 19 14 26 
178 130 28 14 29 
180 96 21 16 38 
182 81 18 15 31 
184 116 25 18 28 
186 64 14 14 28 
188 55 12 14 28 
190 165 36 16 24 
192 93 20 16 20 
194 98 21 16 21 
196 52 11 17 26 
198 93 20 17 19 
200 156 34 17 18 
202 101 22 17 17 
204 203 44 18 20 
206 177 38 19 22 
208 26 6 17 17 
210 168 36 11 18 
212 109 24 20 21 
214 49 11 19 17 
216 104 23 17 22 
218 100 22 14 27 
220 159 34 15 41 
222 133 29 14 47 
224 130 28 12 40 
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Appendix D – Paleoproxy Data  

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on 
Ignition 

Magnetic 
Susceptibility 

226 72 16 14 23 
228 75 16 18 20 
230 101 22 15 32 
232 113 24 14 27 
234 26 6 18 21 
236 150 33 17 24 
238 43 9 17 24 
240 156 34 13 22 
242 58 13 14 32 
244 96 21 14 23 
246 127 28 13 20 
248 72 16 9 33 
250 107 23 14 33 
252 67 14 12 37 
254 58 13 11 42 
256 107 23 12 54 
258 139 30 12 53 
260 200 43 14 42 
262 221 48 16 27 
264 243 53 15 23 
266 229 50 16 14 
268 266 58 18 11 
270 292 63 21 0 
272 203 44 18 2 
274 258 56 17 2 
276 197 43 16 2 
278 168 36 17 3 
280 203 44 20 3 
282 260 56 19 3 
284 321 70 19 2 
286 243 53 19 2 
288 232 50 18 3 
290 220 48 18 4 
292 182 40 18 4 
294 203 44 16 9 
296 188 41 16 8 
298 162 35 16 9 
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Appendix D – Paleoproxy Data  

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on 
Ignition 

Magnetic 
Susceptibility 

300 168 36 16 11 
302 153 33 17 10 
304 165 36 17 13 
306 177 38 17 12 
308 203 44 17 17 
310 194 42 18 15 
312 232 50 20 11 
314 564 162 19 11 
316 506 145 18 14 
318 570 164 18 14 
320 466 134 19 16 
322 446 128 18 18 
324 527 151 16 21 
326 396 114 15 26 
328 414 119 13 33 
330 475 136 12 36 
332 498 143 13 38 
334 530 152 13 29 
336 449 129 13 38 
338 483 139 13 36 
340 420 120 12 39 
342 463 133 12 33 
344 495 142 13 34 
346 463 133 12 33 
348 405 116 12 36 
350 423 121 12 38 
352 732 210 12 41 
354 637 183 12 32 
356 622 179 12 36 
358 614 176 12 28 
360 620 178 14 32 
362 600 172 13 34 
364 559 161 13 42 
366 538 154 14 32 
368 519 149 15 31 
370 504 145 13 33 
372 744 108 16 35 
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Appendix D – Paleoproxy Data  

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on 
Ignition 

Magnetic 
Susceptibility 

374 587 85 16 37 
376 764 111 17 27 
378 541 79 16 31 
380 640 93 17 29 
382 593 86 17 27 
384 651 95 18 24 
386 700 102 21 24 
388 781 114 35 27 
390 425 62 24 21 
392 255 37 19 22 
394 402 59 19 23 
396 272 40 23 21 
398 420 61 24 22 
400 200 29 28 12 
402 226 33 32 11 
404 388 56 33 9 
406 368 53 26 10 
408 205 30 26 5 
410 145 21 33 6 
412 148 21 30 4 
414 150 22 30 4 
416 243 35 31 5 
418 205 30 32 7 
420 232 49 31 7 
422 220 47 31 8 
424 232 49 29 6 
426 281 60 32 8 
428 165 35 27 14 
430 136 29 14 33 
432 217 46 10 60 
434 200 43 10 68 
436 182 39 13 50 
438 278 59 8 46 
440 188 40 8 44 
442 205 44 6 55 
444 237 51 8 59 
446 119 25 10 54 
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Appendix D – Paleoproxy Data 

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on 
Ignition 

Magnetic 
Susceptibility 

448 153 33 11 59 
450 269 57 8 30 
452 156 33 7 55 
454 226 48 7 62 
456 237 51 6 62 
458 217 46 6 92 
460 226 48 5 76 
462 179 38 4 80 
464 58 12 2 139 
466 72 15 1  
468 119 25 1 112 
470 122 26 2 168 
472 113 24 1 161 
474 122 26 2 119 
476 90 19 1 153 
478 107 23 1  
480 116 25 2 112 
482 93 20 1 150 
484 72 15 1 137 
486 182 39 1 136 
488 81 17 1 122 
490 148 31 2 149 
492 211 45 3 124 
494 241 51 3 157 
496 279 59 4 173 
498 301 288 4 100 
500 229 219 4 81 
502 182 174 4 145 
504 194 185 4 87 
506 168 161 3 114 
508 171 163 2 97 
510 223 213 3 89 
512 289 277 3 69 
514 240 230 3 103 
516 124 119 2 94 
518 185 177 3 82 
520 356 340 4 81 
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Appendix D – Paleoproxy Data 

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on 
Ignition 

Magnetic 
Susceptibility 

522 301 288 5 115 
524 260 249 4 89 
526 353 338 4 109 
528 214 205 4 116 
530 321 307 4 113 
532 211 202 4 131 
534 310 296 4 103 
536 341 327 4 78 
538 324 310 4 67 
540 240 230 4 81 
542 266 255 4 109 
552 270 258 6 85 
554 269 257 6 67 
556 388 371 6 74 
558 269 257 6 103 
560 150 144 5 81 
562 156 149 5 126 
564 177 169 5 135 
566 208 199 5 65 
568 205 197 6 82 
570 226 216 4 91 
572 179 172 6 76 
574 275 263 6 85 
576 240 230 6 73 
578 197 188 6 92 
580 460 440 6  
582 200 191 6 89 
584 197 188 6 104 
586 347 332 5 95 
588 263 30 6 75 
590 272 31 6 89 
592 434 50 5 72 
594 379 44 5  
596 359 41 5 51 
598 318 37 5 81 
600 197 23 4 62 
602 156 18 5  
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Appendix D – Paleoproxy Data 

Depth        
(cm) 

Total Macroscopic 
Charcoal (Particles/cc) 

Charcoal 
Accumulation Rates 
(Particles/cc/year) 

Loss on Ignition Magnetic 
Susceptibility 

604 353 41 5  
606 142 16 4 73 
608 150 17 4 118 
610 373 43 4 157 
612 208 24 5 133 
614 330 38 6 118 
616 605 70 6 95 
618 344 40 6 138 
620 304 35 6 108 
622 573 66 7 145 
624 272 31 7 93 
626 260 30 7 120 
628 420 48 7 81 
630 648 75 6 98 
632 463 53 7 62 
634 582 67 6 53 
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