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The focus of this dissertation is the study of two enzymes, DXR and HppE.  DXR 

catalyzes the first committed step in the MEP pathway, which is the pathway most 

eubacteria, archeabacteria, algae, and the plastids of plants use for the biosynthesis of 

isoprenoid.  Since mammals utilize the mevalonate pathway and isoprenoids are 

essential for survival, all enzymes in the MEP pathway are excellent antibiotic 

targets.  One antibiotic that has promise in the fight against malaria is the natural 

product fosmidomycin, whose antibiotic activity is due to its ability to bind and 

inhibit DXR.  With a deeper understanding of DXR’s catalyzed reaction, it will be 

possible to design a more sophisticated and potent antibiotic.  To probe the 

mechanism of DXR, two fluorinated substrate analogues, 3F-DXP and 4F-DXP, and 

a fluorinated product analogue, FCH2-MEP were designed and analyzed as possible 

substrates or inhibitors.  To further analyze the mechanism of DXR, a 2° [2H]-KIE 

study was conducted using the equilibrium perturbation method.  
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The second enzyme this dissertation examines is HppE, which catalyzes the final 

step in the biosynthesis of the antibiotic, fosfomycin.   Fosfomycin is a clinically 

useful antibiotic for the treatment of limb-threatening diabetic foot infections and 

urinary tract infections.  Chemically speaking, HppE is unique for two reasons.  First, 

HppE’s epoxidation differs from Nature’s standard method of epoxide formation by 

alkene oxidation, where the epoxide oxygen is derived from molecular oxygen.  For 

HppE, the epoxide is formed through the dehydrogenation of a secondary alcohol; 

thus the epoxide oxygen is derived from the substrate.  Second, HppE is a unique 

member of the mononuclear non-heme iron-dependent family of enzymes.  HppE 

differs from all other mononuclear non-heme iron-dependent enzymes by requiring 

NADH and an external electron mediator for turnover but not requiring α-KG, pterin, 

ascorbate, or an internal iron-sulfur cluster.  After a study was published on the 

activity of zinc-reconstituted HppE from Streptomyces wedmorensis, the proposed 

iron and NADH dependent mechanism of HppE was reevaluated and was 

reconfirmed.  The HppE from Pseudomonas syringae (Ps-HppE) was also purified 

and was characterized biochemically and spectroscopically.  The results of [2H] and 

[18O]-KIE studies on Ps-HppE are also reported.  
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Chapter 1: Background and Significance 

1.1. THE IMPORTANCE OF ISOPRENOIDS 

Terpenoids are a large family of natural products comprised of over 35,000 

distinct compounds.1  They are widely distributed in nature and are rich in vital biological 

activities, including light harvesting pigments,2 growth hormones,3 and signal 

transduction.4  The terpenoid building block is a 5-carbon unit known as isoprene (1), 

which derives from either isopentenyl diphosphate (IPP, 2) or dimethylallyl diphosphate 

(DMAPP, 3), see Figure 1-1.  Despite the wide variety of terpenoid structures, they all 

consist of a multiple of five carbons.  This allows terpenoids to be classified based on 

their five carbon multiplicity.  For example, monoterpenes have 10 carbons; 

sequiterpenes have 15 carbons; diterpenes have 20 carbons; and sesterterpenes have 25 

carbons. A few examples of the various types of terpenoid structures are presented in 

Figure 1-2.   

 

O P

O

O

OH

P

OH

OH

O

O P O P OH

OH

OOH

O

Isoprene (1) Isopentenyl diphosphate (2)

Dimethylallyl diphosphate (3)  
Figure 1-1: Isoprenoid building blocks. 
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O HO

H3C CH3

CH3H3C

Camphor (4)

OH

Patchouli alcohol (5) Lanosterol (6)

β−Carotene (7)  
Figure 1-2: Examples of terpenoids. 

 

1.1.1. Mevalonate Pathway. 

While conducting labeling studies in the 1960’s to investigate the biosynthesis of 

cholesterol, Bloch and Lynen discovered the mevalonate pathway for isoprenoid 

biosynthesis.5,6  They determined that every carbon of cholesterol is derived from acetate, 

and after detailed analysis, the biosynthetic pathway shown in Figure 1-3 was 

established.  The pathway begins with the Claisen condensation of two molecules of 

acetyl-CoA (7) to form acetoacetyl-CoA (8).  A third acetyl-CoA reacts with the 

acetoacetyl-CoA through an aldol condensation reaction, followed by removal of one of 

the CoA’s by hydrolysis to yield (3S)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) (9).  

HMG-CoA is then reduced with NADPH by HMG-CoA reductase to produce 

mevalonate (10), which in humans is the rate-limiting step in the mevalonate pathway.7  

Inhibitors to HMG-CoA reductase, such as pravastatin, are widely prescribed drugs for 

lowering cholesterol levels.8  Mevalonate is then phosphorylated twice at the primary 

hydroxyl group to add the pyrophosphate functional group, and the secondary hydroxyl 
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group is activated by phosphorylation.  Subsequent dehydration and decarboxylation in a 

concerted process yields IPP (2).  The final enzyme in the pathway is IPP isomerase, 

which catalyzes the isomerization of IPP (2) to DMAPP (3). 

 

SCoA

O SCoA

O

HSCoA
SCoA

OO SCoA

O

HSCoA CO2
- COSCoA

HO

2 NADPH

2 NADP+
HSCoA

OH

HO

CO2
-

3 ADP, Pi 3 ATP

OP2O6
3-OP2O6

3-

CO2

DMAPP (3) IPP (2) Mevalonate (10)

Acetyl-CoA (7) Acetoacetyl-CoA (8) HMG-CoA (9)

 
Figure 1-3: Mevalonate-dependent pathway for isoprenoid biosynthesis. 

 

1.1.2. Discovery of the MEP Pathway. 

For many years, it was believed that all organisms utilize the mevalonate pathway 

for the biosynthesis of the isoprenoid building blocks, IPP and DMAPP.  However, in 

1993 a pathway independent of mevalonate was discovered in the labs of Rhomer and 

Arigoni.9-11  Rhomer’s discovery arose by observing that the labeling pattern in 

hopanoids using various [13C1]glucose isotopomers and [13C]acetate isotopomers as 

precursors was inconsistent with what the mevalonate dependent pathway predicted.9  

Similar observation was also made by Arigoni and researchers in their labeling studies on 

ginkgolide formation in seedlings of the Ginkgo biloba and on ubiquinone biosynthesis in 
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E. coli.10,11  After further investigations by them and a few others, the pathway depicted 

in Figure 1-4 has been established as the non-mevalonate pathway for the synthesis of 

IPP (2) and DMAPP (3) in selected sources.  Since 2C-methyl-D-erythritol 4-phosphate 

(14, MEP) is the product of the first committed step of the pathway, this pathway is 

commonly referred as the MEP pathway.  Since the MEP pathway is absent in mammals 

but is essential for many pathogens, including Plasmodium falciparum12 and 

Mycobacterium tuberculosis,13 all enzymes in this pathway are potential antibiotic 

targets.14   
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Figure 1-4: MEP pathway for isoprenoid biosynthesis. 

 

1.1.2.1. 1-Deoxy-D-Xylulose 5-Phosphate Synthase (DXS). 
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Figure 1-5: The DXS reaction. 

 

The first step in the MEP pathway is catalyzed by 1-deoxy-D-xylulose 5-

phosphate (DXP) synthase (DXS).  In the reaction, pyruvate (11) condenses with 

glyceraldehydes-3-phosphate (G3P, 12) to produce DXP (13), see Figure 1-5.  The DXS 

reaction is thiamine pyrophosphate (TPP) dependent, and the proposed mechanism is 

depicted in Figure 1-6. 
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Figure 1-6: Mechanism for DXS. 

 

The reaction begins with the nucleophilic attack of the ylid carbon of the 

thiazolium ring on to the carbonyl carbon of pyruvate, followed by decarboxylation.  The 

resulting carbanion (12), stabilized thought resonance into the thiazolium ring, does 

nucleophilic addition at the carbonyl of G3P (12).  The TPP adduct (22) is then cleaved 



 6

in a retroaldol-like manner to yield DXP (13) and TPP.  As mentioned above, the first 

committed product of the pathway is MEP and not DXP, which is due to DXP also being 

used in the biosynthetic pathways of thiamine and pyridoxal.15,16 

 

1.1.2.2. 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase (DXR). 
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Figure 1-7: The DXR reaction. 

 

The first committed reaction of the MEP pathway is catalyzed by DXP 

reductoisomerase (DXR).17  During this reaction, DXP (13) undergoes rearrangement to 

MEP with the concomitant oxidation of the reduced nicotinamide adenine dinucleotide 

phosphate (NADPH) to NADP+, see Figure 1-7.  It is has been shown that DXP first 

rearranges to an aldehyde intermediate, and the reaction is driven forward by the 

reduction of the aldehyde intermediate by NADPH.18  As shown in Figure 1-8, there are 

two proposed mechanisms for the DXR reaction, an α-ketol rearrangement and a 

retroaldol/aldol rearrangement.  The α-ketol rearrangement (route A) is similar to the 

mechanism catalyzed by ketol acid reductoisomerase, a key enzyme in the biosynthesis 

of branched chain amino acids.19  This reaction is initiated by the deprotonation of the C-

3 hydroxyl group followed by a 1,2-migration to yield the aldehyde intermediate (23).  

The second mechanism proceeds with a retroaldol/aldol rearrangement to produce the 

same intermediate, methylerythrose phosphate (23, route B).  Here the enzyme first 

catalyzes the cleavage of the C3-C4 bond through a retroaldol mechanism to yield a 

three-carbon (24) and a two-carbon phosphate (25) intermediate.  These intermediates 
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then condense through an aldol reaction to form a new C-C bond in 23, which is 

subsequently reduced by NADPH.  To distinguish between these two proposed 

mechanisms is a primary focus of this thesis research. 
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Figure 1- 8: Proposed mechanisms for DXR. 

 

1.1.2.3. IspD, IspE and IspF. 
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Figure 1-9: The IspD reaction. 

The third step in the pathway is the cytidylynation of MEP (14) by IspD to yield 

4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol (15, CDP-ME), see Figure 1-9.20  The 

reaction is believed to proceed through an associative mechanism with nucleophilic 

attack of the phosphate of MEP on the α-phosphate of cytidine 5’-triphosphate (CTP) to 

yield the pentacoordinate phosphate intermediate (27), see Figure 1-10.  Depending on 
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the lifetime of this intermediate, it might technically be the transition state in the reaction.  

Upon the collapse of this pentacoordinate phosphate intermediate, pyrophosphate and 

CDP-ME (15) are formed.  However, a disociative mechanism is also possible, where the 

pyrophosphate group breaks away from CTP before the nucleophilic attack by MEP, 

leaving the α-phosphate group of CTP as a metaphosphate.  The metaphosphate 

intermediate would then undergo nucleophilic addition by the phosphate of MEP to 

generate CDP-ME. 
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Figure 1-10: Proposed IspD mechanism. 

 

The forth step in the MEP pathway is the phosphorylation of the C2-hydroxyl 

group of CDP-ME (15) by ATP, catalyzed by IspE, to generate 2-phospho-4-(cytidine 

5’diphospho)-2-C-methyl-D-erythritol (16, CDP-ME2P), see Figure 1-11.21,22  IspE 

likely proceeds through a similar associative mechanism as IspD. 
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Figure 1-11: The IspE reaction. 

 

The fifth enzyme in the pathway, IspF, catalyzes the cyclization of CDP-ME2P 

(16) to generate 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (17, MECDP) and the 

release of cytidine monophosphate (CMP), see Figure 1-12.23,24  IspF is believed to 

proceed with an associative mechanism as IspD and IspE. 
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Figure 1-12: The IspF reaction. 

 

1.1.2.4. IspG. 
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Figure 1-13: The IspG reaction. 

 

The sixth step in the pathway is catalyzed by IspG, and it converts MECDP (17) 

to 4-hydroxy-2-methylbut-2-enyl 1-phosphate (18, HMBPP), see Figure 1-13.25  
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Sequence analysis revealed the presence of three conserved cysteine residues (C270, 

C273 and C306).  When each of these residues were separately mutated to serine, the 

resulting IspG had no activity.26  UV/vis and Mössbauer spectroscopy studies showed 

that these three cysteine residues are ligands of a [4Fe-4S] cluster.27  Since IspG contains 

a [4Fe-4S] cluster, several mechanisms involving radical chemistry have been proposed.  

To date, there is no real experimental evidence to distinguish and/or eliminate any of the 

proposed mechanisms.  However, a theoretical investigation has been performed in which 

the energies of the proposed intermediates in the different mechanisms were calculated to 

see which mechanism is most probable.28  This study best supports the mechanism 

depicted in Figure 1-14.  The mechanism begins with the heterolytic cleavage of the C-O 

bond of MECDP (17), probably through the aid of an active site general acid to form the 

tertiary C3 carbocation intermediate (28).  An external reductase then channels a single 

electron through the [4Fe-4S] cluster to reduce the carbocation to a C3-radical (29).  This 

is followed by a second single electron transfer through the [4Fe-4S] cluster to reduce 29 

to a carbanion (30).  The carbanion intermediate then undergoes dehydration to yield 

HMBPP (18) as the product. 
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Figure 1-14: A Proposed IspG mechanism implicated by a theoretical study. 
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1.1.2.5. IspH. 
 

OP2O6
3-

OH

Me
Me OP2O6

3-

Me

OP2O6
3-

Me
IspH

DMAPP (3)

IPP (2)18
 

Figure 1-15: The IspH reaction. 

 

The final reaction in the MEP pathway is the reductive deoxygenation of HMBPP 

(18) catalyzed by IspH to yield IPP (2) and DMAPP (3), see Figure 1-15.29  Through 

characterization by UV/vis and EPR spectroscopy, it was determined that, like IspG, 

IspH also contains a [4Fe-4S] cluster.30,31  Different mechanisms have been proposed for 

IspH, yet there are no studies to date that can differentiate between the different proposed 

mechanisms.  The mechanism displayed in Figure 1-16, which utilizes similar chemistry 

as IspG, is however the most probable.30  The mechanism begins with the elimination of 

the C4-hydroxyl group, possibly assisted through an iron of the [4Fe-4S] cluster acting as 

a Lewis acid catalyst, to produce the carbocation intermediate (31).  Two single electron 

transfers mediated by the [4Fe-4S], would reduce the carbocation intermediate ultimately 

to a carbanion species (33).  This carbanion intermediate can then be protonated at C3 to 

make IPP (2) or at C1 to make DMAPP (3) in final ratio of 6:1 (IPP:DMAPP) for the E. 

coli enzyme.29 
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Figure 1-16: Proposed mechanism  for IspH. 

 

1.2. FOSFOMYCIN 

1.2.1. Antibiotic activity of fosfomycin. 

Bacteria live in hypotonic environments.  To protect themselves against this 

enviroment, they are surrounded by rigid cell walls to prevent them from swelling and 

bursting due to the osmotic pressure.  Part of the rigidity of the cell wall derives from the 

peptidoglycan framework that encases the cell, which consists of covalently linked 

polysaccharide and polypeptide chains.  As seen in Figure 1-17, the peptidoglycan is 

found in Gram-positive and Gram-negative bacteria; however, the exact structure of the 

peptidoglycan of each differs. 
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Figure 1-17: Peptidoglycan structures for Gram-positive (A) and Gram-negative (B) 

bacteria. 

 

As can be seen in two peptidoglycan structures in Figure 1-17, both Gram-

positive (A) and Gram-negative (B) bacteria have the same three carbon linker, displayed 

in red, that connects the polysaccharide and polypeptide chains.  These three carbons 

derive from phosphoenolpyruvate (34, PEP), and they are transferred to uridine 

diphosphate-N-acetylglucosamine (35, UDP-GlcNAc) to form enolpyruvyl-UDP-N-

acetylglucosamine (37, EP-UDP-GlcNAc).  This reaction is catalyzed by MurA and is the 

first committed step of the peptidoglycan biosynthetic pathway.32  The proposed 

mechanism of MurA is shown in Figure 1-18.33  The reaction begins with nucleophilic 

addition of the C3-hydroxyl group of UDP-GlcNAc to the C2 of PEP, which is assisted 

by the protonation of PEP by Cys115.  The resulting tetrahedral (36) intermediate breaks 

down to give the product 37 by the deprotonation of C3 and elimination of inorganic 

phosphate. 
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Figure 1-18: Proposed mechanism for MurA. 
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Figure 1-19: Inactivation mechanism of MurA by fosfomycin. 

 

The antibiotic fosfomycin (38) inactivates MurA by acting as a PEP analogue, 

and the proposed mechanism for the inactivation is depicted in Figure 1-19.34  MurA 

catalyzes the nucleophilic ring opening of the epoxide by Cys115, which results in a 

stable covalent adduct (39) and inactive enzyme. 
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1.2.2. Fosfomycin Biosynthetic Pathway. 
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Figure 1-20: Fosfomycin biosynthetic pathway. 

 

1.2.2.1.        The initial steps of the Fosfomycin Biosynthesis: Fom1, Fom2 and FomC. 

Fosfomycin is a natural product that is made by several species of Pseudomonas 

and Streptomyces,35,36 and its biosynthetic gene cluster from Streptomyces wedmorensis, 

Streptomyces fradiae and the partial cluster from Pseudomonas syringae have been 

isolated.37-39  The entire biosynthetic pathway has been elucidated and is presented in 

Figure 1-20.  The pathway begins with Fom1, a PEP mutase, which converts PEP (34) to 

phosphonopyruvic acid (40, PnPy) through the proposed mechanism depicted in Figure 

1-21.40  This product belongs to a growing family of C-P bond containing natural 

products, many of which have interesting biological activities.41  The reaction is believed 

to proceed through a dissociative mechanism that is initiated by the cleavage of the P-O 

bond to form a metaphosphate (44) and an enolate (45) intermediate.  The enolate 

intermediate then rotates around the C1-C2 bond, which aligns C3 to react with the 

metaphosphate ion to form the new C3-P bond in 40.  This reaction is reversible, with the 
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equilibrium favoring PEP over PnPy greater than 500 to 1.42  To drive the reaction 

forward, PnPy (40) is decarboxylated to phosphonoacetaldehyde (41, PnAA) by the PnPy 

decarboxylase, Fom2.43  The third step of the pathway is the reduction of the carbonyl of 

PnAA (41) by the alcohol dehydrogenase, FomC, to hydroxylethylphosphonate (HEP).44 
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Figure 1-21: Proposed mechanism for Fom1. 

 

1.2.2.2. Fom3: A new methyl transferase.  

The fourth step in the biosynthetic pathway is the methylation of HEP (42) to (S)-

2-hydroxypropylphosphonic acid (43, (S)-HPP) by Fom3.44  Through labeling studies, it 

is known that the methyl groups is derived from methylcobalamin (MeCbl).45  Sequence 

analysis of Fom3 revealed the presence of a cobalamin binding motif and predicted the 

enzyme to be a member of the radical-SAM (S-adenosyl methionine) family of proteins.39  

A mechanism for Fom3 has been proposed based on known chemistry of radical-SAM 

proteins.44  The mechanism begins with the reductive cleavage of the C5’-S bond in SAM 

to generate methionine and 5’-deoxyadenosyl radical (see 48).  The adenosyl radical 

abstracts a C2 hydrogen atom from HEP (42) producing the C2 radical intermediate (see 

49), which would react with the methyl group of MeCbl (see 50).  In order to begin the 

following turnover, Fom3 has to be reactivated by reducing the [4Fe-4S] cluster, 
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recharging the cobalamin to MeCbl, and binding a new SAM (see 46).  This does differ 

from the standard radical-SAM proteins where the [4Fe-4S] and the SAM are regenerated 

at the end of the reaction cycle so that the enzyme is ready for the following turnover.46 
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Figure 1- 22: Proposed mechanism for Fom3. 

 

1.2.2.3. HppE:  A novel non-heme iron dependent enzyme. 

The final step in the biosynthetic pathway is the epoxidation of (S)-HPP (43) to 

fosfomycin (38).  This reaction is catalyzed by Fom4, which has been named (S)-HPP 

epoxidase (HppE).  The mechanistic analysis of HppE is the second primary focus of this 

dissertation research.  The reaction catalyzed by HppE is an epoxidation reaction; 

however, it differs from Nature’s standard strategy for epoxide formation.  In nature, 

most epoxide rings are generated via oxidation of the corresponding alkenes by either 
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heme-dependent cytochrome P450s47,48 or non-heme iron-dependent monooxygenases.49  

A general P450 olefin epoxidation mechanism is shown in Figure 1-23.  A reactive 

oxygen species known as Compound 1 (51) oxidizes the olefin by a single electron to 

form a new C-O bond (see 52).  The iron-oxygen bond is then cleaved homolytically, and 

through oxygen rebound the epoxide ring is formed.50  The non-heme iron dependent 

olefin epoxidation occurs by the same mechanism, except the reactive species is an 

iron(IV)-oxo species.51 
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Figure 1-23: P450 olefin epoxidation. 

 

Previous isotope labeling experiments with HppE demonstrated that no oxygen 

atom from O2 is incorporated into fosfomycin.  Instead, the oxygen atom of the epoxy 

ring in fosfomycin (38) is derived from the secondary hydroxyl group of (S)-HPP 

(43).52,53  Thus the conversion of (S)-HPP to fosfomycin by HppE is effectively a 

dehydrogenation reaction, not an oxygenation reaction. 

HppE is a unique member of the mononuclear non-heme iron dependent enzymes.  

This family of enzymes is categorized into two groups, iron(II) and iron(III) dependent 

enzymes.51  The iron in iron(III) enzymes is ferric in the resting state, while the iron(II) 

enzyme’s iron is ferrous in the resting state of the enzymes.  The significance of this 

difference is that iron(III) can not bind and activate molecular oxygen, while iron(II) can.  

The role of the iron in iron(III) enzymes is to activate the substrate through a single 

electron oxidation, generating a substrate radical and ferrous iron.  The substrate radical, 
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which now has a doublet spin state, can react with molecular oxygen, which has a triplet 

spin state.  An example of an iron(III) enzyme are lipoxygenases, whose mechanism is 

depicted in Figure 1-24.  Lipoxygenases catalyze the oxidation of unsaturated fatty acids 

to produce fatty acid hydroperoxides at 1,4-pentadienyl positions.  The bulk of the 

mechanistic analysis on lipoxygenases has been conducted on soybean lipoxygenase.  

The physiological substrate of soybean lipoxygenase is linoleic acid, 9,12-(Z,Z)-

octadecadienoic acid (55), which is converted to 13-(S)-hydroperoxy-9,11-(Z,E)-

octadecadienoic acid (58, 13-(S)-HPOD).54  The   reaction proceeds via an initial rate-

limiting hydrogen abstraction by the FeIII-OH cofactor to generate a substrate radical (56) 

and   FeII-OH2.55  The substrate radical rapidly reacts with molecular oxygen and the 

equivalent of a hydrogen atom is transferred back to the peroxo intermediate (57) to 

produce the hydroperoxide product (58) and to regenerate the resting ferric-hydroxide 

state of the non-heme iron center. 
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Figure 1-24: Proposed mechanism for lipoxygenases. 

 

Iron(II) enzymes, which includes HppE, bind and activate oxygen.  The reactive 

oxygen species typically carries out a two electron oxidation of the substrate.  Iron(II) 
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enzymes catalyze a wide variety of reactions, including hydroxylation of aliphatic C-H 

bonds, epoxidation of C-C double bonds, cis-dihydroxylation of arene double bonds, 

heterocyclic ring formation, and oxidative aromatic ring cleavage.56  Despite the broad 

range of reaction types, all iron(II) enzymes share the same structural motif known as the 

2-His-1-carboxylate facial triad.  The name of this motif derives from the active site iron 

being bound by three endogenous protein ligands arranged at the vertices of one 

triangular face of an octahedron.  Two of the ligands are histidines, and the other is either 

an aspartate or a glutamate.  The three remaining coordination sites are available for 

exogenous ligands, such as solvent molecules, the substrate/co-substrate, and molecular 

oxygen.  The iron is usually six-coordinated in the resting state and relatively unreactive 

towards molecular oxygen.  It is after substrate/co-substrate binding that the iron changes 

to five-coordinated, which provides a coordination site for binding of O2.  The 

substrate/co-substrate binding generally increases the binding affinity of O2.  With O2 

binding taking place only after the binding of substrate and/or co-substrate also greatly 

enhances the coupling of the reduction of O2 to the oxidation of the substrate.  This 

binding event brings together the substrate and activated oxygen together in close 

proximity for the ensuing reaction.51 

The reactive oxygen species generated in the reaction can be either Fe(III)-

superoxide (Fe(III)-OO•), Fe(III)-hydroperoxide (Fe(III)-OOH) or Fe(IV)-oxo 

(Fe(IV)=O), with Fe(IV)-oxo being the most reactive and widely used.51  To date there is 

no direct evidence of a mononuclear non-heme iron dependent enzyme that utilizes 

Fe(III)-superoxide as the reactive species; however, it is widely accepted that the reactive 

species for the first oxidation reaction catalyzed by isopenicillin N synthase (IPNS) is 

Fe(III)-superoxide.57  There are no reported mononuclear non-heme iron dependent 

enzymes which use Fe(III)-hydroperoxide as the reactive species despite its involvement 
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in flavin-dependent hydroxylases.58  In contrast, it is well documented for mononuclear 

non-heme iron dependent enzymes that utilize Fe(IV)-oxo as the reactive species.  The 

list includes the α-ketoglutarate (α-KG) dependent TauD59 and CytC3,60 tyrosine 

hydroxylase,61 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO).62  

The IPNS reaction begins with the binding of the substrate, δ-(L-α-aminoadipoyl)-

L-cysteinyl-D-valine (60, ACV).63,64  The thiolate group of ACV coordinates to the iron 

to produce a five-coordinate iron site, leaving the sixth site open for oxygen binding.  

Molecular oxygen then binds to the iron(II) at the vacant coordination site, where it is 

reduced by an inner-sphere electron transfer from iron(II) to yield Fe(III)-superoxide (see 

61).  It also has been demonstrated through calculations that the coordination of the 

thiolate enhances the binding of O2 by stabilizing Fe(III)-superoxide.57  The reactive 

species for the first oxidative ring closure to form the β-lactam ring is believed to be 

Fe(III)-superoxide; however, this has not been experimentally verified.  The Fe(III)-

superoxide is proposed to abstract a hydrogen atom from the cysteine β-carbon to form 

the substrate radical (62) and Fe(III)-hydroperoxide.  The intermediate is further oxidized 

by a second single electron transfer to the iron to form the thioketone (63) and Fe(II)-

hydroperoxide.  The O-O bond of the peroxide is then cleaved heterolytically to generate 

Fe(IV)-oxo and hydroxide, which abstracts the valine N-H proton.  Concerted with 

Fe(IV)-oxo formation, the valine nitrogen performs a nucleophilic attack on the cysteine 

β-carbon to form the β-lactam ring (64).  The strong oxidant, Fe(IV)-oxo, can now 

abstract the unactivated hydrogen atom from the valine β-carbon (see 64).  Similar in 

fashion to the oxygen rebound mechanism of cytochrome P450 reaction, the resulting 

substrate radical (65) reacts with the thiolate to close the thiazolidine ring (66) with 

concurrent homolytic cleavage of the Fe-S bond. 
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Figure 1-25: Proposed mechanism for IPNS. 

 

The oxygen activation mechanism depicted in Figure 1-26 to generate the 

reactive Fe(IV)-oxo is shared by believed all known α-KG dependent enzymes.51  The six 

coordinated Fe(II) center begins the reaction to bind α-KG by displacing two ligands (see 

68).  At this stage, the iron is still six coordinated and is relatively unreactive toward 

molecular oxygen.  The substrate then binds to the active site but does not coordinate to 

the iron (see 69).  When this occurs, a water ligand dissociates leaving a coordination site 

open for oxygen binding.  By limiting oxygen binding to after the substrate binds reduces 

the uncoupled reactions.  Once molecular oxygen now binds to the open coordination 

site, it is reduced to Fe(III)-superoxide (70).  This activates the distal oxygen for 

nucleophilic attack at the α-keto carbon.  The resulting bridged intermediate (71) is 
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believed to undergo a concerted decarboxylation of α-KG and a heterolytic cleavage of 

the O-O bond, forming the Fe(IV)-oxo reactive species (72).  The reactive Fe(IV)-oxo 

abstracts a hydrogen atom from the substrate (see 73), and the substrate radical is either 

then hydroxylated, as in TauD, or chlorinated, as in CytC3, in a rebound mechanism (see 

74).51,60 
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Figure 1-26: Proposed mechanism for α-KG dependent enzymes. 

 

A second type of iron(II) enzymes whose reactive species has been verified to be 

Fe(IV)-oxo are the pterin-dependent aromatic amino acid hydroxylases, specifically 

tyrosine hydroxylase.61  As the case for the α-KG enzymes, when tyrosine binds to the 

active site of tyrosine hydroxylase (75), it does not coordinate to the iron (see 76).  

However, binding of tyrosine triggers the release of a water ligand to change the iron 

from six coordinated to five coordinated, which produces a vacant coordination site for 

binding of molecular oxygen.  When oxygen binds in the active site, it first reacts with 



 24

the iron to form Fe(III)-superoxide before forming a putative Fe(II)-O-O-pterin adduct 

(77).65  The peroxy-adduct then cleaves heterolytically to form 4a-hydroxypterin and 

Fe(IV)-oxo (see 78).61  The Fe(IV)-oxo does not perform hydrogen atom abstraction, but 

instead facilitates the electrophilic attack of the aromatic ring to generate a carbocation 

intermediate (79), which is then deprotonated to give the hydroxylated product. 
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Figure 1-27: Proposed mechanism for tyrosine hydroxylase. 

 

A third type of iron(II) enzyme where the reactive species has been determined to 

be Fe(IV)-oxo is ACCO, which oxidatively breaks down ACC into ethylene, hydrogen 

cyanide and CO2.66  ACCO does not utilize α-KG or reduced pterin for the reductive 

activation of O2; instead, ascorbate plays the reductant role.  The substrate binding order 
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has not been fully deduced, but it is believed that ascorbate and ACC bind before O2 (see 

82 and 83).67  When O2 binds to the ferrous center, Fe(III)-superoxide forms (see 84), 

which is reduced by a single electron transfer from ascorbate to generate Fe(III)-

hydroperoxide (see 85).  A second single electron transfer from ascorbate and cleavage of 

the O-O bond produces the reactive species, Fe(IV)-oxo (see 86).62  The Fe(IV)-oxo then 

performs a single electron oxidation of the amine to form a cation amine radical (87), 

which subsequently breaks down in a manner yet to be determined to yield ethylene, 

HCN and CO2 (see 88). 
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Figure 1-28: Proposed mechanism of ACCO. 
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HppE is unique with respect to all other mononuclear non-heme iron-dependent 

enzymes regarding the required components for activity.  The HppE reaction is 

independent of ascorbate, α-KG, pterin, or an internal iron-sulfur cluster.  Instead, the 

HppE reaction requires two external electrons from NAD(P)H to complete the four 

electron reduction/activation of O2 ; the other two electrons are supplied by (S)-HPP (43).  

An external reductase is required to mediate single electron transfer into the iron active 

site; however, a putative HppE reductase is yet to be discovered.  For in vitro activity 

assays of HppE, a promiscuous reductase from a separate biosynthetic pathway, such as 

CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3), or a chemical 

electron mediator, such as flavin mononucleotide (FMN), are substituted for the putative 

HppE reductase. 

The mechanism of HppE epoxidation has been proposed to parallel the alkane 

hydroxylation catalyzed by cytochrome P45048 and non-heme iron-dependent 

oxygenases.51,68  The reaction likely begins with hydrogen abstraction from the C-1 

position of 43 by an activated oxygen species.  In a manner similar to the oxygen rebound 

mechanism for cytochrome P450s, the C-1 centered radical intermediate can then cyclize 

to form fosfomycin (38) and the reduced iron center.  As shown in Figure 1-29, the 

reactive oxygen species can be one of three species.  One of them is Fe(III)-superoxide 

(91), which forms upon dioxygen binding to the ferrous iron center (90), similar to what 

has been proposed for the initial H-atom abstraction in isopenicillin N synthase 

(IPNS).57,64  The Fe(III)-superoxide species can be reduced by one electron and 

protonated to form Fe(III)-hydroperoxide (93), which can also abstract the C-1 hydrogen 

atom.  The Fe(III)-hydroperoxide species can be further reduced by a second single 

electron transfer with concurrent cleavage of the O-O bond to form Fe(IV)-oxo (94), as 
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described above for the α-KG dependent enzymes59,60 and for ACCO.62  This reactive 

species clearly can abstract the hydrogen atom. 
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Figure 1-29: Proposed mechanisms for HppE with (S)-HPP (43). 

 

The HppE reaction is stereo- and regiospecific.69  When HppE reacts with (S)-

HPP (43), the C1 pro-R hydrogen atom is abstracted in the course of fosfomycin 

production.  When (R)-HPP (97) is substituted for (S)-HPP (43), the C2 hydrogen atom is 

abstracted and a new ketone product is produced, 2-oxopropylphosphonic acid (105).  As 
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depicted in Figure 1-30, the proposed mechanisms for the reaction with (R)-HPP mirror 

those proposed for the fosfomycin producing reaction. 
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Figure 1-30: Proposed mechanism of HppE with (R)-HPP (97). 

 

1.3. THESIS STATEMENT 

  The focus of this dissertation is the study of two enzymes, DXR and 

HppE.  DXR catalyzes the first committed step in the MEP pathway, which is the 
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pathway most eubacteria, archeabacteria, algae, and the plastids of plants use for the 

biosynthesis of isoprenoid.  Since mammals utilize the mevalonate pathway and 

isoprenoids are essential for survival, enzymes in the MEP pathway are excellent 

antibiotic targets.  Every year there are around 300 million new malaria infections and 

1-3 million deaths as a result of the disease, which is caused by the parasite 

Plasmodium falciparum.  One antibiotic that has promise in the fight against malaria 

is the natural product fosmidomycin, which has been demonstrated to cure mice 

infected with malaria.12  Fosmidomycin’s antibiotic activity is due to its ability to 

bind tightly and inhibit DXR.  With a deeper understanding of DXR’s catalyzed 

reaction, it will be possible to design a more sophisticated and potent antibiotic.  

Chapter 2 describes the design and inhibition analysis of two fluorinated substrate 

analogues, 3F-DXP and 4F-DXP, and a fluorinated product analogue, FCH2-MEP.  

The synthetic schemes for the substrate analogues were designed by Dr. Alexander 

Wong, and they were synthesized by Dr. Wong with the assistance of Ms. Vidusha 

Devasthali.  In order to complete the investigation, more 3F-DXP was required, 

which I started and Dr. Gang Dong completed.  The product analogue, FCH2-MEP, 

was synthesized by Dr. Xiaotao Pu.  Chapter 3 described a 2° [2H]-KIE study, which 

was conducted by the equilibrium perturbation method.  The labeled DXP analogues 

for the study were synthesized by Dr. Xiaotao Pu.    

The second enzyme this dissertation examines is HppE, which catalyzes the final 

step in the biosynthesis of the antibiotic, fosfomycin.   Fosfomycin (38) is a clinically 

useful antibiotic70 for the treatment of limb-threatening diabetic foot infections71 and 

lower urinary tract infections.  It has been shown to be effective against 

ciprofloxacin-resistant E. coli,72 as well as methicillin-resistant73 and vancomycin-

resistant74 strains of Staphylococcus aureus.  Chemically speaking, HppE is unique 
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for two reasons.  First, HppE’s epoxidation differs from Nature’s standard method of 

epoxide formation by alkene oxidation, where the epoxide oxygen is derived from 

molecular oxygen.47-49  For HppE, the epoxide is formed through the dehydrogenation 

of a secondary alcohol; thus the epoxide oxygen is derived from the substrate.  

Second, HppE is a unique member of the mononuclear non-heme iron-dependent 

family of enzymes.  HppE differs from all other mononuclear non-heme iron-

dependent enzymes by requiring NADH and an external electron mediator for 

turnover but not requiring α-KG, pterin, ascorbate, or an internal iron-sulfur cluster.  

In Chapter 4, the proposed iron and NADH dependent mechanism of HppE from 

Streptomyces wedmorensis is reevaluated after a study is published on the activity of 

zinc-reconstituted HppE.  This investigation was conducted in collaboration with Dr. 

Feng Yan.  Chapter 5 describes the purification, biochemical and spectroscopic 

characterization of the HppE from Pseudomonas syringae (Ps-HppE), and the results 

of [2H] and [18O]-KIE studies on Ps-HppE are also reported.  The EPR experiments 

were conducted in collaboration with Prof. Aimin Liu at the University of Mississippi 

Medical Center in Jackson, Mississippi.  The deuterium labeled compounds for the 

[2H]-KIE studies were synthesized by Dr. Sung-Ju Moon.  The bond dissociation 

energies were calculated by Dr. Steven O. Mansoorabadi, and the [18O]-KIE studies 

were conducted in collaboration with Dr. Liviu M. Mirica in the lab of Prof. Judith P. 

Klinman at the University of California at Berkeley.   
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Chapter 2: Mechanistic Investigations of DXR with Fluorinated 
Analogues 

2.1. INTRODUCTION 

Terpenoids are a large family of natural products comprised of over 35,000 

distinct compounds.1  They are widely distributed in nature and are rich in biological 

activities, including light harvesting pigments,2 growth hormones,3 and signal 

transduction.4  The terpenoid building block is a 5-carbon unit known as isoprene, which 

has long been established to be derived from acetate via the mevalonate pathway.5  

However, a new isoprene biosynthetic pathway has recently been discovered in 

eubacteria, archeabacteria, algae, and in the plastids of plants where the isoprenoid unit is 

formed independently of mevalonate.6-8  This non-mevalonate pathway operates in 

eubacteria, archeabacteria, algae, and the plastids of plants but is absent in mammals.4-6 

The initial precursors of the pathway are pyruvate and glyceraldehyde-3-

phosphate, which condense to form 2-C-1-deoxy-d-xylulose-5-phosphate (DXP, 1).9,10  

DXP is also required for the biosynthesis of the pyridoxal ring of vitamin B6 and is 

incorporated into the thiazole ring of vitamin B1.11-13  Therefore, the conversion of DXP 

to methyl-D-erythritol 4-phosphate (MEP, 2) catalyzed by DXP reductoisomerase (DXR) 

comprises the first committed step of the non-mevalonate pathway (MEP pathway).14   
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Figure 2-1: Reaction catalyzed by DXR. 
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Since this pathway is absent in mammals but is essential for many pathogens, 

including Plasmodium falciparum15 and Mycobacterium tuberculosis,16 all enzymes in 

this pathway are potential antibacterial targets.17  This has been demonstrated by the 

action of the antibiotic fosmidomycin (3),18,19 which inhibits isoprenoid biosynthesis by 

binding to DXR.20,21  In clinical trials, fosmidomycin has been shown to clinically and 

parasitologically cure patients after 7 days of treatment.22  As the design of a more 

specific inhibitor for this enzyme depends on a detailed understanding of its mode of 

action, we have taken effort to investigate the mechanism of the DXR catalyzed 

reaction.23 
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Figure 2-2: Structure of fosmidomycin (3). 

 

The reaction catalyzed by DXR is the isomerization of DXP (1) to 

methylerythrose phosphate (4), followed by the reduction of the aldehyde by NADPH 

yielding MEP (2).  As shown in Figure 2-3, there are two plausible mechanisms for the 

rearrangement step catalyzed by DXR.  The first mechanism is an α-ketol rearrangement 

(route A), which is similar to the mechanism catalyzed by ketol acid reductoisomerase, a 

key enzyme in the biosynthesis of branched chain amino acids.24  In route A, 

deprotonation of the C-3 hydroxyl group followed by a 1,2-migration to yield the 

aldehyde intermediate, methylerythrose phosphate (4), is the key step in the mechanism.  

The second mechanism proceeds through a retroaldolization/aldolization to produce the 

same intermediate, methylerythrose phosphate (4, Scheme 2, route B).  Here the enzyme 

first catalyzes the cleavage of the C3-C4 bond through a retroaldol reaction to yield a 

three carbon (5) and a two carbon phosphate intermediates (6); these intermediates then 



 41 

condense through an aldol reaction to form a new C2-C4 bond and the aldehyde 

intermediate. 
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Figure 2-3: Proposed mechanisms for DXR. 

 

The Escherichia coli enzyme, the specific DXR studied herein, has been shown to 

proceed via an ordered mechanism in which NADPH binds before DXP, and NADP+ is 

released after the discharge of MEP.25  However, a random mechanism has recently been 

determined for the Mycobacterium tuberculosis enzyme.16  Due to the significant 

differences in Km of the substrates in the forward and reverse reaction, a preferred order 

of binding exists in the latter case rendering its mechanism effectively similar to that of 

the E. coli enzyme.  Early studies have also established that the C-1 pro-S hydrogen in 

MEP (2) is derived from H-3 of DXP (1),26,27 and the hydride transfer from NADPH is 

pro-S specific.16,26,28  In addition, several crystal structures of DXR from various 

organisms  have been determined.29-34  Despite the advances made thus far in 

understanding of the catalytic properties of DXR, it remains elusive whether catalysis is 

best described by route A or route B.  In an attempt to gain more insight into this 
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intriguing catalysis, two fluorinated substrate analogues were prepared, 3F-DXP (7) and 

4F-DXP (8), and were examined for their competence as substrates or inhibitors upon 

incubation with DXR. 
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Figure 2-4: Structures of 3F-DXP (7) and 4F-DXP (8). 

 

A key difference between the two proposed mechanisms is the involvement of the 

two hydroxyl groups. The C3-hydroxyl group is essential for catalysis in both 

rearrangement mechanisms.  If this hydroxyl group is replaced by a fluorine (such 7) no 

chemistry can take place according to the α-ketol rearrangement. In contrast, this 

compound can still undergo the initial retroaldol reaction in the retroaldol/aldol 

rearrangement but will not be able to catalyze the subsequent aldol condensation to form 

the new C2-C4 bond.  Due to the expected endergonic nature of the initial retroaldol 

reaction, the equilibrium would favor the DXP analogue, resulting in no observable 

chemistry.  The two mechanisms differ significantly in the involvement of the C4-

hydroxyl group in the rearrangement reaction.  For the α-ketol rearrangement, the C4-

hydroxyl group has no direct role in catalysis.  Thus, when this hydroxyl group is 

replaced by a fluorine (8), the rearrangement reaction and the following reduction 

reaction should still proceed to generate the corresponding product.  In the 

retroaldol/aldol rearrangement reaction, the C4-hydroxyl group is crucial for the initial 

retroaldol reaction.  During the cleavage of the C3-C4 bond, the C4-hydroxyl group is 

believed to be deprotonated in order to neutralize the resulting C4-carbocation.  When the 
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C4-hydroxyl group is removed, the inability to stabilize the resulting C4-carbocation will 

prevent the reaction from taking place. 

To further probe this interesting reaction, we envisioned that a fluoromethyl 

analogue of MEP, a phosphate mono-((2S,3S)-3-fluoromethyl-2,4-dihydroxy-3-methyl-

butyl) ester (FCH2-MEP, 9), may be a DXR inactivator whose mode of action could also 

shed light on the catalytic mechanism of DXR.  Thus far, all of the inhibitors that have 

been tested for DXR are either DXP (1) or fosmidomycin (3) analogues.25,35-42  

Interestingly, while the DXR reaction is reversible, there are no report of MEP (2) 

analogues as inhibitors for this enzyme.25  There is also no compound known to 

irreversibly inactivate DXR in a mechanistically relevant manner.  To explore this new 

avenue for elucidating the mechanism of DXR and for controlling its catalyzed reaction, 

compound 9 was designed as a possible MEP-based suicide inhibitor.  If DXR proceeds 

via the α-ketol rearrangement mechanism (Scheme 2, route A), compound 9 may simply 

act as a competitive inhibitor against MEP (2) when the DXR reaction is run in the 

reverse direction (2 → 1).  The primary alcohol would be oxidized by NADP+ to the 

aldehyde intermediate, and then no further chemistry would be able to take place.  In 

contrast, if a retroaldol/aldol mechanism (Scheme 2, route B) is followed, compound 9 

may covalently modify DXR and irreversibly inactivate its activity.   

The possible scenarios of inactivation of DXR by 9 are depicted in Figure 2-5.  

When the reaction is run in the DXP (1) formation direction, FCH2-MEP (9) will be first 

oxidized to the corresponding aldehyde (10), which then proceeds through the same 

retroaldol mechanism, as MEP would, to cleave the C2-C3 bond.  Because the 

subsequent aldol condensation cannot occur in this case, the resulting 4-C fragment 11 

may instead undergo fluoride elimination to yield the Michael acceptor 13.43  As shown 

in path A, this intermediate may trap an active site nucleophile resulting in the inactive, 
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covalently modified enzyme, 14.44  Alternatively, a 1,4-reduction of 13 by NADPH 

(generated in situ) to give 15 followed by aldol condensation with 12 could generate 16 

(path B),45 which, in equilibrium with 15 and 12, may be released as the turnover 

product(s). 
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Figure 2-5: Proposed inactivation mechanism of FCH2-MEP. 

 

Herein, we present our investigation of 3F-DXP (7) and 4F-DXP (8), which led to 

the conclusion that both are not substrates of DXR but instead are slow-binding 

inhibitors.  Also reported is the characterization of action of FCH2-MEP (9).  This 

compound was found not to be an inactivator of DXR but a weak inhibitor.  To 

investigate the binding of these inhibitors, a FRET binding assay was developed that can 

be readily modified for high-throughput inhibitor screening. 
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2.2. MATERIALS AND METHODS 

2.2.1. GENERAL. The pET24(+) vector and the overexpression host strain 

Escherichia coli BL21(DE3) were purchased from Novagen Inc. (Madison, WI).  Cloned 

DNA polymerase Pfu and GeneClean DNA purification kits were obtained from 

Stratagene (La Jolla, CA) and Bio 101 Inc. (La Jolla, CA), respectively.  Primers used in 

PCR amplification were customarily prepared by Integrated DNA Technologies, Inc. 

(Coralville, IA) and used without further purification.  Restriction endonucleases were 

purchased from Invitrogen (Carlsbad, CA).  All electrophoretic reagents were obtained 

from Bio-Rad (Hercules, CA).  Culture media were products of Difco (Detroit, MI), and 

the Ni-NTA agarose resin was purchased from Qiagen (Valencia, CA).  Fosmidomycin 

was acquired from Toronto Research Chemicals (North York, ON Canada).  All 

chemicals were purchased from Sigma-Aldrich (St. Louis, MO), or Fisher Scientific 

(Pittsburgh, PA).  DXP and MEP were made through enzymatic synthesis as 

published,46,47 except were purified by cellulose chromatography using water and THF as 

the solvent system.  The concentrations of DXP and MEP were determined through a 

published DXR assay.25 

 

2.2.2. CLONING, OVER-EXPRESSION AND PURIFICATION OF DXR. The E. coli 

DXR was cloned into the pET24(+) vector by Ms. Vidusha Devasthali so that the enzyme 

was expressed with a C-terminal hexa-histidine tag.  This resulting plasmid was used to 

transform E. coli BL21(DE3).  An overnight culture of the recombinant strain grown in 

Luria-Bertani (LB) medium supplemented with kanamycin (50 μg/mL) at 37 oC was used 

to inoculate a 1 L culture of the same medium and antibiotic.  These cultures were 

incubated at 37 oC until the OD600 reached 0.45, followed by induction with 1.0 mM 

isopropyl β-D-thiogalactoside (IPTG) and 3.5 h of additional incubation at 37 oC.  The 
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cells were harvested by centrifugation (6000g, 10 min).  Purification of this C-terminal 

His6-tagged protein by Ni-NTA agarose resin was performed at 4 °C according to the 

procedures recommended by the manufacturer, except the elution buffer was 100 mM 

imidazole.  The concentrated purified protein was aliquotted, flash frozen in 30% 

glycerol, and stored at – 80 °C. 

 

2.2.3. CLONING, OVEREXPRESSION AND PURIFICATION OF DXS. DXS was 

required for the enzymatic synthesis of DXP, and it was amplified from isolated E. coli 

genomic DNA by polymerase chain reaction (PCR) using the forward primer (DXS-1): 

5'-GGGAAACATATGAGTTTTGATATTGCC-3', and the reverse primer (DXS-2): 5'-

GCGCTC-GAGTGCCAGCCAGGCCTT-3'.  The PCR-amplified DNA fragment was 

digested with NdeI and XhoI, and ligated into the NdeI/XhoI sites of the transcription 

vector, pET24(+), that had been treated with CIAP to give a recombinant plasmid.  This 

plasmid was used to transform E. coli BL21(DE3).  An overnight culture of the 

recombinant strain grown in Luria-Bertani (LB) medium supplemented with kanamycin 

(50 μg/mL) at 37 oC was used to inoculate a 1 L culture of the same medium.  The culture 

was incubated at 37 oC until the OD600 reached 0.55, followed by induction with 0.5 mM 

IPTG and 3.5 h of additional incubation at 37 oC.  The cells were harvested by 

centrifugation (6000g, 10 min).  Purification of this C-terminal His6-tagged protein by Ni-

NTA agarose resin was performed at 4 °C according to the procedures recommended by 

the manufacturer. The concentrated purified protein was aliquotted, flash frozen, and 

stored at – 80 °C. 

 

2.2.4. ACTIVE SITE TITRATION OF DXR. The concentration of active DXR was 

determined via active site titration using NADPH as the titrant.  The FRET signal used in 
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these studies is from an active site tryptophan (Trp212) and the bound NADPH.  A 2 mL 

100 mM Tris•HCl (pH 7.6) solution containing 2 mM MgCl2 and 3.13 μM DXR (based 

on Bradford assay) was titrated against a 400 μM NADPH solution.  The binding of 

NADPH to DXR was monitored by the increase in fluorescence of NADPH upon binding 

to the active site.  The titration measurements were conducted with the Fluorolog-3 from 

Horiba Jobin Yvon (Edison, NJ).  The excitation and emission wavelengths were 340 and 

458 nm, respectively; and the excitation and emission slit widths were set at 1 and 5 nm, 

respectively.  To correct for the background fluorescence of free NADPH, a control 

titration without DXR was performed and subtracted from the titration with DXR.  This 

data was then fit, using Grafit 5.0.1, to Equation 2-1 with Fo, ∞F , Eo and KD as 

parameters, where Fo is the starting fluorescence, ∞F  is the final fluorescence, Eo is the 

total DXR concentration, and So is the total NADPH concentration. 

 
Equation 2-1 

( ) ( )o
o

ooDooDoo
o FF

E
SEKSEKSE

FF −⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −++−++
+= ∞2

42

 

 

This fit led a DXR concentration of 1.85 ± 0.23 μM, which was then used to 

determine the stock DXR concentration.  This fit also allowed us to deduce a KD of 0.45 

± 0.15 μM for NADPH, which is very similar to its reported Km of 0.5 μM.25 

 

2.2.5. 3F-DXP AND 4F-DXP INHIBITION STUDY. Enzyme assays were performed at 37 

°C following a literature procedure.25  The reaction mixture contained 200 μL of 

degassed 100 mM Tris•HCl buffer (pH 7.6), 1 mM MgCl2, 1 mg/mL bovine serum 

albumin (BSA), 0.15 mM NADPH, 23 nM DXR, and varied concentrations of DXP.  The 
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reaction was initiated by the addition of DXR followed by monitoring the rate of NADPH 

consumption at 340 nm (ε340 = 6.22 mM-1•cm-1).  The kcat and Km for DXP were 

determined to be 21.3 s-1 and 200 μM, respectively, which differ from the literature 

values of 107 s-1 and 115 μM.25  The low activity is believed to be due to the presence of 

the C-terminal His6 tag, where the literature values are for the non-tagged enzyme.  For 

the inhibition studies, varied amounts of inhibitor were added to the above reaction 

mixture minus the DXR, and the resulting solution was incubated at 37 °C in a quartz 

cuvette for 15 min.  The inhibitor concentrations were determined by NMR by comparing 

the integration of the C-1 methyl signal of 3F-DXP and 4F-DXP to that of a methanol 

internal standard of known concentration.  The rate of NADPH consumption was plotted 

as the rate of formation of NADP+, and the plot was fitted to Equation 2-2, where νi is 

the initial velocity, νss is the steady-state velocity, and kobs is the rate constant going from 

νi to νss.48   
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To determine the respective steady-state Ki values, the νss values from Equation 

2-2 were fit to the equation for competitive inhibition, Equation 2-3. 
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2.2.6.  ASSAYS TO INVESTIGATE SLOW-BINDING INHIBITION. Assays were carried 

out at 24 °C in degassed and N2 saturated 100 mM Tris•HCl buffer (pH 7.6) containing 2 

mM MgCl2, 1 mg/mL BSA, 0.1 mM DTT, 150 μM NADPH, and 975 μM DXP, with 

varying concentrations of inhibitor (0.0-1.46 mM for 3F-DXP and 0.0-7.8 μM for 

fosmidomycin).  The presence of 0.1 mM DTT in the assay mixture enhanced the 

linearity of the reaction curve when no inhibitor was present.  The reactions were 

initiated by the addition of enzyme to a final concentration of 25 nM.  The reaction was 

followed by monitoring the rate of NADPH consumption at 340 nm. 

The rate of NADPH consumption was plotted as the rate of NADP+ formation, 

and the plot was fitted to Equation 2-2.48  To obtain the rates constants for the initial 

inhibition simulations, the plot of kobs versus inhibitor concentration was fitted to 

Equation 2-4 for a one-step binding model and to Equation 2-5 for a two-step binding 

model, where I is the concentration of inhibitor, S is the concentration of DXP, Ki is the 

inhibition constant for the initial binding complex, Km,s is the Km for DXP, and k6 and k-6 

are the rate constants of the forward and reverse reactions associated with the step of 

inhibitor binding to the NADPH•DXR complex (see kinetic model below). 
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Using the information deduced from graphical analysis of the inhibition behavior 

of 3F-DXP and fosmidomycin, their slow binding nature was further studied by the 

global simulations of the progress curves to a one-step and a two-step binding 

mechanism.  The initial simulations were performed using the Z-lab program on the 

family of progress curves recorded at different inhibitor concentrations to deduce the 

starting rate constants.  These rate constants were then used to globally fit the family of 

progress curves to determine the errors in the rate constants using Dynafit, and to 

evaluate which binding model yields a better fit.49  The kinetic mechanism in Figure 2-6 

was used for the simulations, except for the omission of the seventh step, a 

conformational change, when the one-step binding model was considered.  Both the 

ordered substrate binding mechanism with NADPH binding before DXP, similar to that 

of the E. coli DXR,25 and a random substrate binding mechanism, analogous to that 

concluded for the M. tuberculosis enzyme,16 were used for the simulations. The 

simulations produced similar results irrespective to whether substrate binding is ordered 

or random; thus for simplification, only the simulations based on an order substrate 

binding mechanism is described herein. 
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DXR + NADPH DXR  NADPH                    (1)

DXR  NADPH  DXP          (2)DXR  NADPH + DXP

DXR  NADP  MEP             (3)DXR  NADPH  DXP

DXR  NADP + MEP           (4)DXR  NADP  MEP

DXR + NADP                     (5)DXR  NADP

DXR  NADPH  I                 (6)DXR  NADPH + I

DXR  NADPH  I*               (7)DXR  NADPH  I

k1

k-1
k2

k-2
k3

k-3
k4

k-4
k5

k-5
k6

k-6
k7

k-7  
Figure 2- 6: Kinetic mechanism used for computer simulations. 

 

In the simulations, it was assumed that substrate binding and product release are 

not significantly rate-limiting. The rate constants for steps 1 through 5 were fixed in the 

simulations, and the rate constants for steps 6 and 7 were allowed to float.  Since the rate 

constants for steps 1 through 5 are not explicitly known, their values were approximated 

based on experimentally determined parameters.  The ratio of rate constants for substrate 

and product binding/dissociation were set to their determined Kd (step 1, 0.5 μM) or Km 

(step 2, 200 μM; step 4, 200 μM; step 5, 25 μM) values for steps 1, 2, 4 and 5.  The 

forward and reverse rate constants for step 3 were set to the determined kcat values for the 

forward (8.15 s-1) and reverse reactions (6.47 s-1) at 24°C.  The concentration of DXP was 

fixed at 975 μM.  The concentrations of DXR and NADPH were allowed to locally float. 

 

2.2.7. FCH2-MEP INACTIVATION ANALYSIS. To test if FCH2-MEP could 

inactivate DXR, 500 nM DXR was incubated at room temperature for 16 h in 100 mM 
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Tris•HCl buffer (pH 7.6) containing 2 mM MgCl2, 1 mg/mL BSA, 300 μM NADP+, and 

1.8 mM FCH2-MEP.  An identical solution mixture without FCH2-MEP was incubated 

for 16 h as a control.  An aliquot (10 μL) of each incubation mixture was assayed for 

activity by adding it to a solution (190 μL) of 150 μM NADPH, 285 μM DXP, 2 mM 

MgCl2, and 1 mg/mL BSA in 100 mM Tris•HCl buffer, pH 7.6.  The concentration of 

MEP was determined as previously described. 

 

2.2.8. TEST FOR FLUORIDE ELIMINATION BY 19F NMR. To determine if DXR 

could catalyze the elimination of a fluoride ion from FCH2-MEP (9), 10 mM FCH2-MEP 

was mixed in a NMR tube with 2 mM MgCl2, and 10 mM NADP+ in 100 mM Tris•HCl 

buffer in D2O (pD 7.8).  The 19F NMR spectrum of this sample was recorded.  DXR was 

then added to the mixture to a final concentration of 60 μM, and the solution was 

incubated at room temperature for 15 h.  The 19F NMR spectrum of this sample was 

recorded at the end of incubation. 

 

2.2.9. TEST OXIDATION OF FCH2-MEP BY NADP+. To determine if DXR can 

carry out the initial oxidation of the primary hydroxyl group of FCH2-MEP (9) to 

generate the aldehyde intermediate (10), the formation of NADPH upon mixing FCH2-

MEP, NADP+, MgCl2 and DXR was investigated.  A solution of 8.5 mM FCH2-MEP, 1 

mM NADP+, 2 mM MgCl2 and 1 mg/mL BSA in 100 mM Tris•HCl buffer pH 7.6 was 

placed in a cuvette, and the absorbance of the solution at 340 nm was determined.  DXR, 

with a final concentration of 77 μM, was then added to the cuvette, and the solution was 

monitored at 340 nm for the production of NADPH. 

 



 53 

2.2.10. FCH2-MEP INHIBITION STUDIES. The assays were run at 25 °C in degassed 

and N2 saturated 100 mM Tris•HCl buffer (pH 7.6) containing 2 mM MgCl2, 1 mg/mL 

BSA, and 400 µM NADP+, 96 μM MEP, and at varying concentrations of FCH2-MEP (9, 

0-2.9 mM).  The reactions were initiated by the addition of enzyme to a final 

concentration of 50 nM. All reactions were monitored by following the rate of production 

of NADPH at 340 nm.  The concentrations of MEP and DXR were determined as 

previously described. 

 

2.2.11. FRET BINDING ASSAY. The FRET signal used in these studies is the same 

signal in the active site titration studies.  For the FRET titration assays, the excitation 

wavelength was set at 280 nm, and the emission was set to 444 nm with slit widths of 1 

and 3 nm, respectively.  Temperature was set to 25 °C by using an electronic temperature 

controller.  The ligands were titrated into a 2 mL solution of 5 μM DXR, 10 μM NADPH 

and 2 mM MgCl2 in 100 mM Tris•HCl pH 7.6.  The solution was stirred during the entire 

titration with a micro stirbar.  The data for the ligands that produced a change in the 

FRET signal upon binding was fit to the Equation 2-1 to determine the respective Kd. 

For the stopped-flow experiment, one syringe was loaded with 50 μM DXR, 10 

μM NADPH and 2 mM MgCl2 in degassed and N2 saturated 100 mM Tris•HCl buffer 

(pH 7.6), and the other syringe was loaded with 365 μM DXP and 2 mM MgCl2 in the 

same Tris buffer.  The excitation wavelength was set at 280 nm, and a cutoff filter was 

used to block the emissions of wavelengths shorter than 360 nm.  The slit widths were 3 

nm for both excitation and emission.  The temperature was set to 24 °C.   

 

2.2.12. SYNTHESIS OF FLUORINATED ANALOGUES. The 3F-DXP (7) and 4F-DXP 

(8) were first synthesized by Dr. Alex Wong, who was assisted by Ms. Vidusha 
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Devasthali, and their schemes are displayed in Figures 2-7 and 2-8, respectively.  For the 

slow-binding experiments, more 3F-DXP was needed, so I repeated the first two-thirds of 

the synthesis, and Dr. Gang Dong completed the 3F-DXP synthesis.  The synthesis of 

FCH2-MEP (9) was completed by Dr. Xiaotao Pu and was synthesized as described in 

Figure 2-9. 
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Figure 2-7: Synthetic scheme for 3F-DXP (7). 
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Figure 2-8: Synthetic scheme for 4F-DXP (8). 
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Figure 2-9: Synthetic scheme for FCH2-MEP (9). 

 

2.3. RESULTS AND DISCUSSION 

2.3.1. ANALYSIS OF 3F-DXP AND 4F-DXP AS POSSIBLE SUBSTRATES OF DXR.

 When 3F-DXP (0 to 5 mM) was incubated with 150 nM DXR in the presence 

2mM MgCl2 and 150 μM NADPH in 100 mM Tris pH 7.6, no turnover was observed 
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based on the lack of NADPH oxidation.23  Under the same conditions, 4F-DXP was 

tested as a possible substrate of DXR, and it too failed to be turned-over by DXR.23  

Therefore, the substitution of either the C3-hydroxyl group or the C4-hydroxyl of DXP 

with fluorine results in the loss of activity with respect to DXR.   

These observations are consistent with two independent studies, in which 3-

deoxy-DXP and 4-deoxy-DXP were examined as possible substrates of E. coli DXR.50,51  

It was determined that both are not substrates but mixed-type inhibitors for DXR with Kis 

of 800 μM and 120 μM, respectively.50  Since the KM for DXP was determined in that 

study to be 97 μM, the Ki for 4-deoxy-DXP is similar in magnitude to the KM for DXP, 

yet the Ki for 3-deoxy-DXP is eight-fold higher than the KM for DXP.  The high Ki for 3-

deoxy-DXP and the fact that both analogues exhibit mixed-type inhibition, not standard 

competitive inhibition, raised questions regarding how these analogues bind to DXR.  If 

the removal of a hydroxyl groups prevents proper binding, one may not be able to draw 

any conclusions to the mechanism of DXR based on these studies.  Interestingly, a 

separate analysis of 3-deoxy-DXP and 4-deoxy-DXP with DXR from Synechocystis 

PCC6803 indicated that both analogues are competitive inhibitors with Kis of 150 and 30 

μM, respectively.51  The Ki for 3-deoxy-DXP is roughly equal to their measured KM for 

DXP, while the Ki for 4-deoxy-DXP is roughly six-fold lower than DXP’s KM.  This 

implies that for the DXR from Synechocystis PCC6803, both hydroxyl groups are not 

important for binding but are crucial for chemistry.  This conclusion is in favor of the 

retroaldol/aldol mechanisms over the α-ketol mechanism for the rearrangement reaction 

catalyzed by DXR.  To determine how the substitution of fluorine for each hydroxyl 

group affects binding, the ability of mode of inhibition of 3F-DXP and 4F-DXP was 

determined. 
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2.3.2. Inhibition Analysis of 3F-DXP and 4F-DXP. 
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Figure 2-10: Non-linear progress curves with 3F-DXP (A) and 4F-DXP (B). 

 

As seen in Figure 2-10, both 3F-DXP and 4F-DXP are inhibitors of DXR.  

Interestingly, these nonlinear progress curves are characteristic of slow-binding 

inhibition.52  For slow-binding inhibitors, the nonlinear progress curves result from initial 

weak inhibition which slowly converts to strong, steady-state level of inhibition. 

When the mode of inhibition for 3F-DXP was analyzed for the steady-state phase 

(νss determined from Equation 2-2) of the reaction curve, it was determined from the 

Dixon plot in Figure 2-11 to exhibit competitive inhibition.   To determine the Ki of 3F-

DXP, the νss versus [3F-DXP] curves for each DXP concentration were fitted separately 

to the standard equation for competitive inhibitors, Equation 2-3, which yielded a Ki of 

126 ± 21 μM.  The pattern for 4F-DXP appears to be the same, but due to its moderate 

instability, there was too much noise between the curves to determine for sure.  When the 

steady-state phase for each DXP concentration was analyzed separately, and assuming 

competitive inhibition, a Ki of 224 ± 65 μM was determined for 4F-DXP; due to the 

moderate instability of 4F-DXP, this value represents the upper limit of the true Ki. 
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Figure 2-11: Dixon plot of 3F-DXP steady-state phase of inhibition (▲) 100 μM DXP, (■)  
  75 μM DXP, (●) 50 μM DXP. 

 

[3F-DXP] (uM)

0 100 200 300 400

vs
s  (

u M
/s

)

0.002

0.004

0.006

0.008

0.01

 
Figure 2-12: 3F-DXP steady-state phase of inhibition fit to Equation 2-3, with DXP at 50  
  μM. 
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Figure 2-13: 4F-DXP steady-state phase of inhibition fit to Equation 2-3, with DXP at 75  
  μM. 
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Figure 2-14: Kinetic mechanisms for slow-binding inhibition. 

 

As depicted in Figure 2-14, there are two possible kinetic mechanism for an 

inhibitor to display slow-binding inhibition.  In mechanism A, the inhibitor binds in a 
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single step, with the rate to equilibrium steady-state inhibition being equal to the sum of 

k3[I] and k-3.  Therefore, if the inhibitor has a slow on and off rate, it will exhibit slow-

binding inhibition.  In mechanism B, the inhibitor binds weakly in a rapid equilibrium to 

form E•I.  The enzyme-inhibitor complex then undergoes a slow but favorable 

conformational change to E•I*, which results in tighter inhibition. 

To distinguish between the two possible kinetic mechanisms for slow-binding 

inhibition as shown in Figure 2-14, the inhibition experiment for 3F-DXP was repeated 

at saturating DXP and NADPH to ensure a linear reaction curve over the time scale of the 

assay.  This experiment was not conducted on 4F-DXP due to its moderate instability.  

To determine how the slow-binding nature of 3F-DXP relates to the previously studied 

slow-binding inhibitor, fosmidomycin,25,53,54 these experiments were conducted on 

fosmidomycin as well.  The progress curves were fit to Equation 2-2, and the kobs was 

plotted versus the concentration of inhibitor.  If the slow-binding inhibition is the result 

of a one-step binding mechanism with a slow on and off rates, as shown in Figure 2-14 

A, then the plot of kobs versus inhibitor concentration should yield a linear relationship.  If 

the inhibitors bind in a two-step mechanism as depicted in Figure 2-14 B, there will be a 

hyperbolic relationship between kobs and inhibitor concentration.  For fosmidomycin, the 

relationship was linear (see Figure 2-15), which implies a one-step binding mechanism.  

However, for 3F-DXP, it was not possible to discriminate between the two possible 

models.  Due to moderate error, the data could be fit to both a linear and a curved line.   
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Figure 2-15: Plot of kobs from Equation 2-2 versus [fosmidomycin] and fit to Equation 2-4. 

 

The slow-binding nature of 3F-DXP and fosmidomycin was further explored 

through global kinetic computer simulations of the progress curves, see Figure 2-16 and 

2-17.  The resulting rate constants and Ki’s of the simulations are reported in Table 2-1. 

 
Table 2-1: Summary of numerical results from computer simulations. 

One-Step Two-Step 
 k6  

(μM-1s-1) 
k-6 (s-1) Ki k6  

(μM-1s-1)
k-6 (s-1) Ki k7 (s-1) k-7 (s-1) Ki

* 

3F-DXP 4.84e-5 ± 
8e-7   

3.88e-3 ± 
8e-5  

81 ± 2 μM 0.8 ± 30 9000 ± 
3e5 

11 ± 560
mM 

0.5 ± 0.6 3.81e-3 ± 
9e-5 

80 ± 4000 
μM 

Fosmidomycin 5.99e-2 ± 
8e-4 

2.33e-3 ± 
5e-5 

39 ± 1 nM 6 ± 35 330 ± 110 55 ± 300
μM 

3 ± 17 2.4e-3 ± 
1e-4 

40 ± 290 
nM 
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Figure 2-16: A) Progress curves for 3F-DXP inhibition with corresponding simulation 

curves from one-step binding mechanism, and B) plot of residuals. 

 

These simulations concluded that a one-step binding mechanism yielded a better 

fit to the family of progress curves for both 3F-DXP and fosmidomycin.  If 3F-DXP and 

fosmidomycin both bind in a two-step mechanism, their initial weak Kis should be 11 

mM and 55 μM, respectively.  With these initial Ki values, the plots of kobs versus 

inhibitor concentration for both inhibitors will appear linear in the experimental 

concentration range for both binding mechanisms.  Therefore, the plot of kobs versus 

inhibitor concentration can not be used to distinguish a one-step binding mechanism from 

a two-step binding mechanism for these two inhibitors.  It is through the global fit of the 

progress curves that these two inhibition mechanisms are distinguished.    

 

 

A B
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Figure 2-17: A) Progress curves for fosmidomycin inhibition with corresponding 

simulation curves from one-step binding mechanism, and B) plot of 
residuals. 

2.3.3. Analysis of FCH2-MEP as a DXR Inactivator. 

To test if FCH2-MEP (9) could inactivate DXR, FCH2-MEP was incubated with 

DXR, NADP+, and MgCl2 overnight at room temperature.55  An identical incubation 

without 9 was run in parallel as a control.  An aliquot of each incubation mixture was 

assayed for activity by adding it to a solution containing NADPH, DXP, and MgCl2.  No 

loss in activity was observed as compared to the control.  Evidently, this compound is not 

an irreversible inactivator for DXR. 

To determine if DXR could catalyze the elimination of a fluoride ion from FCH2-

MEP, FCH2-MEP was mixed in a NMR tube with MgCl2 and NADP+, and the 19F NMR 

spectrum of this sample was recorded.55  DXR was then added to this mixture, and the 

solution was incubated at room temperature overnight.  The 19F NMR spectrum of this 

sample was again recorded, and no new peak in the 19F NMR spectrum was detected.  It 

was determined that no fluoride elimination was not due to DXR's inability to catalyze 

the retroaldol reaction on 10, but due to its inability to oxidize FCH2-MEP to 10 using 

A B
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NADP+.55  This is evident by the lack of NADPH production upon mixing FCH2-MEP 

with DXR, NADP+ and MgCl2.   

The fact that FCH2-MEP is neither a suicide inhibitor nor a substrate for DXR 

renders it unfit to distinguish the two proposed rearrangement mechanisms for DXR. The 

inability of DXR to catalyze the initial oxidation of FCH2-MEP, which is a prerequisite 

for both rearrangement mechanisms, may be ascribed to the increased steric bulk of the 

fluoromethyl group that may impede the required preorganization of FCH2-MEP in the 

active site for the oxidation to occur.  Interestingly, incubation of FCH2-MEP in the 

presence of MEP revealed that it is a weak inhibitor against DXR.  As shown in Figure 

2-18, when the reaction was run in the reverse direction with MEP (96 μM, which is 

roughly half its Km value) as the substrate, the addition of excess FCH2-MEP (2.9 mM) 

led to 45% inhibition of the reaction. 
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Figure 2-18: Dixon plot showing the inhibition by FCH2-MEP on the formation of DXP 

catalyzed by DXR.  The incubtion mixture contained 40 nM DXR, 400 μM 
NADP+, 2 mM MgCl2, and 96 μM MEP in 100 mM Tris•HCl buffer, pH 7.6. 
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2.3.4. FRET Binding Analysis. To explore the binding of the fluorinated analogues 

to DXR, a binding assay was developed by following the change of the FRET signal from 

Trp212 and the bound NADPH.  To confirm that a FRET signal exists for the 

DXR•NADPH•Mg2+ complex, a fluorescence scan of an NADPH and MgCl2 solution 

was conducted while exciting at 280 nm.  DXR was added to the solution and the scan 

was repeated, which produced the FRET signal displayed in Figure 2-19. 
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Figure 2-19: FRET Scans - Dashed line: 2 mM MgCl2, 55 μM NADPH in 100 mM Tris 

pH 7.6; Dotted line: the same solution but with 50 μM DXR; Solid line: 
difference spectrum showing the FRET peak at 440 nm. 

 

When MEP, 4F-DXP and fosmidomycin were titrated into a solution of DXR, 

NADPH and MgCl2, an increase in the FRET signal was observed, see Figure 2-20.  This 

change in FRET signal upon the addition of MEP, 4F-DXP and fosmidomycin was used 

to determine their respective Kd’s to the DXR•NADPH complex, and these values are 

listed in Table 2-2.  However, when 3F-DXP, FCH2-MEP or DMAPP (DMAPP is an 
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A B

inhibitor of DXR in the low mM range) was titrated into a solution of DXR, NADPH and 

MgCl2, no change in the FRET signal was observed. 

 
Table 2-2: Summary of analytical results from fitting to Equations 2-1 and 2-3. 

 Ki Kd 
3F-DXP 126 ± 21 μM ND 
4F-DXP 224 ± 65 μM 200 ±12 μM 

Fosmidomycin 23 ±10 nM 28 ± 4 nM 
DXP 130 ± 40 μM ND 
MEP 165 ± 28 μM 132 ± 6 μM 
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Figure 2-20: FRET titration of A: (●) MEP and (■) 3F-DXP; B: 4F-DXP. 

 

When 3F-DXP, FCH2-MEP or DMAPP was added to a solution of DXR, 

NADPH, MEP and MgCl2, a decrease in the FRET signal is observed due to competitive 

binding against MEP for the active site.  To determine if DXP induces an increase in the 

FRET signal upon binding to the active site, the binding assay was adaptive for analysis 

via stopped-flow under single-turnover conditions.  A solution of DXP and MgCl2 was 

mixed with a solution of DXR, NADPH and MgCl2, and an initial increase in the FRET 

signal was observed followed by the loss of the FRET signal due to the oxidation of 

NADPH during catalysis.   
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The fact that 3F-DXP, FCH2-MEP and DMAPP do not induce a change in the 

FRET signal while the other compounds tested here do, implies that these three 

compounds do not bind to the active site of DXR.  Since 3F-DXP is a slow-binding 

inhibitor, and closely resembles DXP and 4F-DXP, it is reasonable to assume that it binds 

to the active site.  Similarly, FCH2-MEP and DMAPP are related to the compounds that 

produce a change in the FRET signal upon binding.  Since they can compete with MEP 

for the binding site and have been shown to be inhibitors for DXR, they should also bind 

to the active site of DXR.  From the crystal structure studies, it is clear that fosmidomycin 

binds to the active site magnesium ion in a bidentate manner through the hydroxamate 

moiety.  It is believed that DXP also binds in an analogous bidentate form involving the 

C2 carbonyl and the C3 hydroxyl group.56,57  When the compounds that produced a 

change in the FRET signal upon binding were compared to those that are innert, it 

became apparent that all the compounds that produced a change contained both 

functional groups required for bidentate binding to the magnesium ion, as shown in 

Figure 2-21.  The compounds that failed to produce a change in the FRET signal are 

missing either one or both of the functional groups required for bidentate binding.  Since 

3F-DXP binds in a slow one-step mechanism, likely due to a slow conformational change 

that occurs concurrently with inhibitor binding, and does not produce a change in the 

FRET signal, the change in FRET signal observed for DXP, 4F-DXP, MEP and 

fosmidomycin unlikely arises from a conformational change.  The reason for the increase 

in the FRET signal is believed to be due to the desolvation of the active site triggered by 

the elimination of the two water molecules bound to the magnesium when the 

substrate/inhibitor binds to the magnesium. 
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Figure 2-21: Structures of the compounds whose binding to DXR•NADPH•Mg2+ was 

analyzed by FRET assay. The compounds that produce an increase in the 
FRET signal upon binding have their proposed Mg2+ ligands circled.  The 
compounds that do not produce a change in the FRET signal upon bindng 
have the missing Mg2+ ligand boxed. 

 

2.4. CONCLUSION 

To discriminate between the α-ketol mechanism and the retroaldol/aldol 

mechanism for the rearrangement reaction catalyzed by DXR, 3F-DXP and 4F-DXP were 

synthesized and analyzed as possible substrates.  It was determined that neither analogue 

is a substrate and that both are inhibitors with Ki’s similar to the KM of DXP.  These 

results are in agreement with the analysis from the study on 3-deoxy-DXP and 4-deoxy-

DXP, which concluded that both hydroxyl groups are important for catalysis yet not 

crucial for binding.37  Interestingly, in that same study, the authors report that 4-epi-DXP 

is also not a substrate and has a Ki similar to the KM of DXP; thus the stereochemistry of 

at least the C4 hydroxyl group is also important for catalysis and not binding.  The ability 

of both 4F-DXP and DXP to produce the same increase in the FRET signal upon binding 

implies that both bind in the same manner.  This further supports the conclusion that the 

importance of the C4-hydroxyl group is for chemistry and not for proper binding, and the 
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reaction favors the retroaldol/aldol rearrangement mechanism over the α-ketol 

rearrangement mechanism. 

When the study with 3F-DXP and 4F-DXP was first conducted, they were both 

found to be noncompetitive inhibitors of DXR.23  After reexamining the data, it was 

determined that 3F-DXP and 4F-DXP in fact slow-binding inhibitors for DXR.  The 

overlooking of the slow-binding inhibition resulted from using the initial weak binding 

phase to determine the initial velocity at low inhibitor concentrations, and using the final 

steady-state phase to determine the initial velocity at high inhibitor concentrations.  It is 

possible that a similar situation also occurred in the determination of 3-deoxy-DXP and 

4-deoxy-DXP as mixed type inhibitors for DXR that was also cloned from E. coli.40  

However, when 3-deoxy-DXP and 4-deoxy-DXP were analyzed against DXR cloned 

from Synechocystis PCC6803, no slow-binding inhibition was reported and both behaved 

as competitive inhibitors.37  

Based on the global analysis, both 3F-DXP and fosmidomycin are slow-binding 

inhibitors due to their respective slow on and off rates, not due to a slow conformational 

change following an initial rapid binding.  From crystal structure data, it is known that a 

conformation change does occur for the ternary DXR•NADPH•DXP/inhibitor enzyme 

complex, in which residues 206-216 move to enclose the active site upon forming the 

ternary complex.57  It is likely that this conformational change happens in a concerted 

manner along with DXP/inhibitor binding, which produces the slow on and off rates.58  

The requirements for slow-binding inhibition are not completely clear.  Among the 

compounds investigated here, only 3F-DXP, 4F-DXP and fosmidomycin exhibited slow-

binding inhibition; FCH2-MEP, DXP, MEP and DMAPP did not.  According to these 

results, two possible requirements for slow-binding inhibition become apparent.  One is 

the absence of either the 3-OH group or the 4-OH group but not both.  These hydroxyl 
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groups form hydrogen bonds with active site residues,57 which can provide part of the 

driving force for the binding/conformational change.  Thus, removal of one hydrogen 

bond donor/acceptor could raise the energy barrier for this conformational change that 

accompanies binding, resulting in slow-binding inhibition.  Removal of both hydrogen 

bond donor/acceptors could increase the energy barrier high enough to prevent the 

conformational change from occurring.  Consistent with this notion, fosmidomycin and 

4F-DXP are both missing the 4-OH group, and 3F-DXP is missing the 3-OH group.  

Mercklé et al. also reported that N-acetyl-1-amino-3-phosphonopropane, which lacks 

both 3-OH and 4-OH groups, does not show slow-binding inhibition.54  FCH2-MEP is 

only missing the 3-OH group, yet it is not slow-binding inhibitor.  This can be explained 

by its violation of the second possible requirement for slow-binding inhibition, no steric 

hindrance.  The increased steric bulk of the fluoromethylene group than the hydroxyl 

group prevents FCH2-MEP from proper binding to facilitate the conformational change.  

This can help account for the weak inhibition of FCH2-MEP, which is only effective in 

the mM range.  The size restrictions imposed on binding is also evident from the lack of 

turnover of Et-DXP ((2R,3S)-2,3-dihydroxy-4-oxohexyl dihydrogen phosphate), where 

the methyl group in DXP was replaced by an ethyl moiety.41  However, Et-DXP can still 

bind to and weakly inhibit DXR with an IC50 of 6.2 mM, but no slow-binding inhibition 

was reported for Et-DXP.  The impact of steric hindrance on binding and the absence of 

slow-binding inhibition is also evident for the carbamate fosmidomycin analogues 

designed by Mercklé et al. to rigidify the slow-binding inhibitor.54  Even though these 

analogues were well designed, they only showed inhibition in the high μM to low mM 

concentration range, and none of the analogues exhibited slow-binding inhibition.  This is 

believed to be due to the increase in steric bulkiness resulting from the modifications of 

fosmidomycin to increase its rigidity. 
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In an attempt to further differentiate between the two proposed mechanisms, 

FCH2-MEP was synthesized and analyzed as a possible mechanism-based inhibitor.  

Although this analogue was unable to inactivate DXR as originally proposed, it was 

determined to be a weak inhibitor of DXR.  It is possible that the cytidylated form of 

FCH2-MEP (equivalent to CDP-ME), which could be made synthetically or possibly by 

IspD, could be a viable inhibitor for IspE, which is also an excellent antibiotic drug target 

(see Figure 1-4).  The inability of DXR to oxidize FCH2-MEP to the aldehyde 

intermediate and the weak inhibition of FCH2-MEP towards DXR are most likely due to 

the steric hindrance caused by the substitution of a fluoromethylene group for a hydroxyl 

group. 

To investigate the binding of the fluorinated analogues, the FRET binding assay 

was developed.  The high sensitivity and simplicity of this binding assay make it ideal for 

high-throughput screening purpose.  A high-throughput screening assay for binding has 

previously been developed for DXR; however, this assay requires washing steps, 

streptavidin coated plates, biotinylated DXR, europium-conjugated streptavidin and a 

biotinylated peptide to serve as the competing DXR ligand.59  With the FRET assay 

described herein, a screening system can be envisioned requiring no washing steps and 

only native DXR, NADPH, MgCl2 and possibly MEP as a competing ligand. 

The results presented in this chapter provide a useful guide for the design of 

future inhibitors of DXR, which must consider the size restriction imposed by the active-

site of DXR.  However, due to the difficulty in rationally designing an inhibitor that does 

not violate DXR’s strict size exclusion, a high-throughput screening of chemical libraries 

might be the most productive approach for future search of inhibitors for this attractive 

antibiotic target. 
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Chapter 3: Secondary Kinetic Isotope Effect Study on DXR 

3.1. INTRODUCTION 

Terpenoids are a large family of natural products comprised of over 35,000 

distinct compounds.1  They are widely distributed in nature and are rich in biological 

activities, including light harvesting pigments,2 growth hormones,3 and molecules 

involved in signal transduction.4  The terpenoid building block is a 5-carbon unit known 

as isoprene, which has long been established to be derived from acetate via the 

mevalonate pathway.5  However, a new isoprene biosynthetic pathway has recently been 

discovered in eubacteria, archeabacteria, algae, and in the plastids of plants where the 

isoprenoid unit is formed independently of mevalonate.6-8  Since this pathway is absent in 

mammals but is essential for many pathogens, including Plasmodium falciparum9 and 

Mycobacterium tuberculosis,10 all enzymes in this pathway are potential antibacterial 

targets.11  

The first committed step of the nonmevalonate pathway is catalyzed by DXR, 

which catalyzes the rearrangement and NADPH mediated reduction of DXP (1) to MEP 

(3).  Since MEP is the first metabolite specific to this pathway, this pathway is also 

known as the MEP pathway.  There are two proposed mechanisms for the rearrangement 

reaction, a concerted α-ketol rearrangement and a stepwise retroaldol/aldol 

rearrangement.  In the α-ketol rearrangement, deprotonation of the C-3 hydroxyl group 

followed by a 1,2-migration to yield the aldehyde intermediate, methylerythrose 

phosphate (2), which is subsequently reduced by NADPH.  In the retroaldol/aldol 

rearrangement mechanism, DXR first cleaves the C3-C4 bond of 1 through a retroaldol 

mechanism to yield a three carbon (4) and a two carbon phosphate intermediates (5); 
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these intermediates then condense through an aldol reaction to form a new C-C bond 

(between C2 and C4 of 1) and the same aldehyde intermediate (2). 
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Figure 3-1: Proposed Mechanisms for DXR. 

 

A key difference between these two proposed mechanisms is the chemistry that 

occurs at C3 versus C4.  In Chapter 2, it was described how the hydroxyl groups at C3 

and C4 were separately replaced with a fluorine atom to probe the involvement of each 

hydroxyl group in the rearrangement reaction.12  Neither of these fluoro analogues is a 

substrate for DXR, but both are slow-binding inhibitors.12,13  These results are consistent 

with the retroaldol/aldol mechanism, since both hydroxyl groups are involved in the 

rearrangement reaction.  If the reaction proceeds with the α-ketol rearrangement 

mechanism, which only utilizes the C3-hydroxyl group, the 4-fluoro-analogue should be 

a substrate. 

To further investigate this important reaction, we designed and synthesized 3[2H]-

DXP (6) and 4[2H]-DXP (7) to study the secondary kinetic isotope effect experiment (2° 

KIE) of the DXR reaction.  The results may provide insight to distinguish between the 

two proposed rearrangement mechanisms.  A KIE of a is observed when there is a 
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difference in the zero-point energies (ZPE) of a C-H bond and the corresponding C-D 

bond in the reactant state versus in the transition state.  Differences in mass moments of 

inertia (MMI) and excited vibrational states (EXC) also contribute to the KIE.  However, 

for deuterium KIE’s, the difference in ZPE dominates the KIE.  If the reaction under 

investigation involves the cleavage of the C-H/D bond, a 1° KIE greater than unity is 

predicted.  If bond cleavage occurs next the labeled C-H bond in the reaction, a 2° KIE 

may be observed.  If the KIE is greater than unity, it is a normal KIE, and if the resulting 

KIE is less than unity, it is known as an inverse KIE.  Secondary KIE’s can be further 

devided into α and β effects.  An α effect occurs when the H/D is bonded to the carbon 

center where the reaction takes place, and in a β effect, the H/D is attached to a carbon 

adjacent to the carbon center where the reaction occurs.  The isotope effect study 

described herein is a 2° α-KIE. 

 

O

O

HO

OH

PO3
2-

6
D

O

O

OH

HO
PO3

2-

7

D

 
Figure 3-2: Structures of 3[2H]-DXP (6) and 4[2H]-DXP (7). 

 

As stated above, a KIE arises predominantly from the difference in the ZPE of a 

C-H bond and a C-D bond in the reactant state versus in the transition state.  For a 2° α-

KIE, this difference is mostly due to changes in the hybridization state between the 

substrate and transition state.  When a carbon atom changes from sp3 to sp2 hybridization, 

a number of vibrational modes (stretches, in-plane and out-of-plane bending) change.  

The changes in streches and in-plane bending are too small to create a significant isotope 

effect.  However, the out-of-plane bending vibration for a sp3 carbon is 1350 cm-1, while 

that for a sp2 carbon is 800 cm-1.  This difference is large enough to produce a significant 
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isotope effect.  The larger force constant for the out-of-plane bending vibration of the sp3 

centered C-H/D bond implies a stiffer bond vibration and thus a more narrow potential 

energy well.  As seen in Figure 3-3, the narrower energy well produces a larger 

difference in the ZPEs between the sp3 C-H/D bonds than the difference between the sp2 

C-H/D bonds.  This difference determines the magnitude of the observed isotope effect.  
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Figure 3-3: Reaction coordinate diagram displaying the origin of the normal 2° KIE for 

a sp3 carbon that rehybridizes to a sp2 centered carbon. 

 

The hybridization state of the transition state lies between the hybridization state 

of the substrate and product.  If a carbon rehybridizes from sp3 to sp2, the transition state 

will have an s-character greater than an sp3 center but less than an sp2 center.  The 

amount of rehybridization that has occurred in the transition state is determined by 

whether the transition state occurs early or late.  Either way, the transition state will have 

a smaller force constant than the sp3 reactant state; thus it will have a smaller difference 

between the C-H/D ZPEs.  This smaller difference in the ZPEs at the transition state will 

increase the activation energy of the deuterium labeled reaction, resulting in a normal 2° 



 83

KIE.  Whether the transition state is early or late will impact the size of the intrinsic 

isotope effect.  If a reaction has an early transition state, it will be more reactant-like than 

product-like; thus little rehybridization would have occurred for that stage of the reaction.  

This will produce a small difference in the C-H/D ZPEs between the reactant state and 

transition state, which will give a small, normal intrinsic isotope effect.  The later the 

transition state of the reaction, the larger the difference of the C-H/D ZPEs between the 

reactant state and transition state will be, and thus the larger the intrinsic isotope effect 

will be, with a theoretical maximum value of 1.4.14  A reaction undergoing a 

rehybridization from sp2 to sp3 will have the opposite scenario and will produce an 

inverse KIE. 
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Figure 3-4: Structure of 1F-DXP (8). 

 

In a report from Fox et al., 1F-DXP (8) was synthesized and analyzed as a 

possible substrate.  The fluorine addition to the methyl group is expected to accelerate the 

retroaldol reaction by stabilizing the negative charge on the resulting three carbon 

intermediate.  Indeed, the kcat for 1F-DXP was determined to be roughly twice that of 

DXP.15  To investigate whether the reduction step is rate-limiting, the 1° KIE was 

examined with 4S-[2H]-NADPH and DXP under single-turnover conditions.  A KIE of 

1.02 ± 0.02 was determined.  The experiment was repeated with 1F-DXP substituted for 

DXP, and a 1° KIE of 1.34 ± 0.01 was determined.  The KIE of unity with DXP implies 

that the hydride transfer step is not rate-limiting; however, the hydride-transfer step 

becomes partially rate-limiting when 1F-DXP (8) is substituted for DXP (1).  For the 
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hydride-transfer step to become partially rate-limiting, the step that is rate-limiting in the 

DXR reaction would have to become faster with a rate comparable to that of the hydride-

transfer step.  Since the addition of the fluorine at C1 is expected to accelerate the 

retroaldol reaction, the rearrangement step must be rate-limiting when DXP (1) is used as 

the substrate.  Thus, an observed 2° KIE should result only from the rearrangement 

reaction, specifically from the retroaldol reaction. 

In the α-ketol rearrangement, the C3 rehybridizes from sp3 to sp2, while the C4 

remains sp3 through out the reaction coordinate.  Therefore, if DXR utilizes the α-ketol 

rearrangement mechanism, 3[2H]-DXP should produce a normal 2° KIE, and 4[2H]-DXP 

should have a 2° KIE of unity.16  In the retroaldol/aldol rearrangement reaction, the C3 

rehybridizes from sp3 to sp2 in the retroaldol reaction and remains sp2 through out the 

aldol condensation reaction.  The C4 changes from sp3 to sp2 in the retroaldol reaction 

and changes back to sp3 in the aldol condensation reaction; however, it is believed that 

the retroaldol reaction will be significantly more rate-limiting than the aldol condensation 

reaction.  Thus if DXR follows the retroaldol/aldol rearrangement mechanism, 3[2H]-

DXP and 4[2H]-DXP should both produce a normal 2° KIE.16 

 

3.2. MATERIALS AND METHODS 

3.2.1. GENERAL. The pET24(+) vector was purchased from Novagen (Madison, 

WI).  Cloned DNA polymerase Pfu was obtained from Stratagene (La Jolla, CA).  

Primers used in PCR amplification were customarily prepared by Integrated DNA 

Technologies (Coralville, IA) and used without further purification.  All electrophoretic 

reagents were obtained from Bio-Rad (Hercules, CA), and culture media were products 

of Difco (Detroit, MI).  All other chemicals were purchased from Sigma-Aldrich (St. 

Louis, MO) or Fisher Scientific (Pittsburgh, PA).  DXP and MEP were made through 
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enzymatic synthesis as published,17,18 except were purified by cellulose chromatography 

using water and THF as the solvent system.  The concentrations of DXP, 3[2H]-DXP, 

4[2H]-DXP and MEP were determined according to a literature proceedure.19 

 

3.2.2. REMOVAL OF HIS-TAG, OVER-EXPRESSION AND PURIFICATION OF DXR.

 The DXR used in this work is the native (non-tagged) form of the enzyme; in the 

studies described in Chapter 2, a C-terminal His-tagged DXR.12,13,20  The C-terminal His-

tag was removed by inserting a stop codon after the dxr sequence and before the coding 

sequence for the His-tag.  This was performed by site-directed mutagenesis using the 

QuickChange site-directed mutagenesis kit from Stratagene (La Jolla, CA). The 

oligonucleotides used for mutagenesis were customarily synthesized by Integrated DNA 

Technology (Coralville, IA).  The mutagenesis primers used were dxrn1 

(5’GGTGATGCGTCTCGCAAGCTGACTCGAGCACC) and dxrn2 

(5’GGTGGTGGTGGTGCTCGAGTCAGCTTGCGAGA). The constructed mutant 

plasmids were amplified in E. coli strain DH5α and purified with QIAprep spin miniprep 

kit (Qiagen, Valencia, CA). Once the mutation was verified by DNA sequencing 

performed by the core facility in the Institute for Cellular and Molecular Biology of the 

University of Texas at Austin, the mutant plasmids were used to transform E. coli BL21 

Star™ (DE3) (Invitrogen, Carlsbad, CA) for protein expression. 

An overnight culture of the recombinant strain grown in LB media supplemented 

with kanamycin (50 μg/mL) at 37 oC was used to inoculate six 1 L cultures of the same 

medium and antibiotic.  These cultures were grown at 37 oC until the OD600 reached 0.65, 

followed by induction with 0.1 mM IPTG and 3.5 h of additional incubation at 37 oC.  

The cells were harvested by centrifugation (7000g, 8 min).  DXR was purified according 

to a literature procedure.19  The purified protein was concentrated, mixed with glycerol to 
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a final concentration of 30%, aliquotted, flash frozen, and stored at –80 °C.  The 

concentration of DXR was determined by the method of fluorescence active-site titration 

with NADPH as described in Chapter 2.12 

 

3.2.3. SYNTHESIS OF 3[2H]-DXP AND 4[2H]-DXP. The deuterium labeled DXP, 

3[2H]-DXP (6) and 4[2H]-DXP (7), were synthesized according to the synthetic schemes 

depicted in Figures 3-5 and 3-6, respectively, by Dr. Xiaotao Pu. 
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Figure 3-5: Synthetic scheme of 3[2H]-DXP (6). 
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Figure 3-6: Synthetic scheme of 4[2H]-DXP (7). 
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3.2.4. DETERMINING KCAT AND KM FOR DXP, 3[2H]-DXP AND 4[2H]-DXP.

 Enzyme assays were performed in duplicate and according to a literature 

procedure.19  The reactions were carried out at 24 °C.  The reaction mixture contained 

100 μL of degassed and N2 saturated 100 mM Tris•HCl buffer (pH 7.6), 2 mM MgCl2, 1 

mg/mL BSA, 0.15 mM NADPH, 30 nM DXR, and varied (20 μM-2328 μM) 

concentrations of DXP, 3[2H]-DXP and 4[2H]-DXP.  The reaction was initiated by the 

addition of DXR and was monitored by the consumption of NADPH at 340 nm.  The 

kinetic parameters of kcat and Km were determined using Grafit 5.0.1. 

 

3.2.5. DETERMINING KEQ FOR THE DXR REACTION USING DXP, 3[2H]-DXP AND 

4[2H]-DXP. The equilibrium constant for the reaction with DXP, 3[2H]-DXP and 

4[2H]-DXP was determined by measuring the change in [NADPH] from before the 

addition of DXR to after the addition of DXR till the reaction mixture reached 

equilibrium.  The assays were carried out at a fixed concentrations of MgCl2 (2 mM), 

NADPH (75 μM), DXP (67 μM), 3[2H]-DXP (57 μM), 4[2H]-DXP (70 μM), and at 

varying concentrations of NADP+ (0-1.7 mM) in 500 μL of 100 mM Tris pH 7.6 that was 

degassed and N2 saturated.  To drive the reaction to equilibrium, DXR was added to a 

final concentration of 1.7 μM.  The assays were carried out at 24 °C in duplicate.  To 

determine the Keq for each reaction the data was fit to Equation 3-1 using Grafit 5.0.1, 

where [NADPH]o, [DXP]o, and [NADP+]o are the respective starting concentrations 

before the addition of DXR.  In the equation, [X] is the difference between [NADPH]o 

and the concentration of NADPH once equilibrium is reached.  In the data fitting, Keq was 

set as a parameter, and [NADPH]o and [DXP]o were set as constants. 
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Equation 3-1 
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3.2.6. EQUILIBRIUM PERTURBATION EXPERIMENT. The equilibrium perturbation 

experiments were conducted according to literature procedures.21-23  The concentrations 

used in the experiment were based on a similar study on alcohol dehydrogenase.23  The 

perturbations were carried out in triplicate and at 24 °C.  A stock solution containing 

MgCl2, NADPH, 3/4[2H]-DXP, MEP and NADP+ was made, and a 1 mL aliquot of this 

stock solution was diluted to 3 mL for each perturbation experiment.  The final 

concentrations for the 3[2H]-DXP perturbation experiments were 165 μM NADPH, 1 

mM 3[2H]-DXP, 1.1 mM MEP, 3.1 mM NADP+ and 2 mM MgCl2.  For the 4[2H]-DXP 

perturbation experiments, the final concentrations were 148.5 μM NADPH, 900 μM 

4[2H]-DXP, 990 μM MEP, 2.79 mM NADP+ and 1.8 mM MgCl2.  Before the addition of 

enzyme, the sample in the cuvette was incubated in the UV/Vis cell holder, which is 

connected to a water circulator to allow the temperature of the sample to equilibrate and 

to ensure the sample produce an acceptable baseline reading.  The concentration of DXR 

in each perturbation experiment varied from 300-450 nM. 

 

3.2.7. KINETIC SIMULATIONS OF EQUILIBRIUM PERTURBATION EXPERIMENTS.

 The E. coli DXR has been shown to have an ordered substrate binding 

mechanism, with NADPH binding before DXP.19  In contrast, studies of M. tuberculosis 

DXR concluded that it binds substrate in random order, but with a preference to bind 

NADPH before DXP.10  In computer simulations described here, the ordered substrate 

binding mechanism was used.  It was assumed that product release is also ordered with 

MEP dissociating before NADP+.  A fully random kinetic mechanism was tested by 
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simulation but did not produce significantly different results.  Therefore, for 

simplification, only the ordered mechanism is considered herein.  The kinetic mechanism 

used in the simulation is shown in Figure 3-7. 

 

DXR + NADPH DXR  NADPH                    (1)

DXR  NADPH  DXP          (2)DXR  NADPH + DXP

DXR  NADP  MEP             (3)DXR  NADPH  DXP

DXR  NADP + MEP          (4)DXR  NADP  MEP

DXR + NADP                     (5)DXR  NADP

k1

k-1
k2

k-2
k3

k-3
k4

k-4
k5

k-5

DXR  NADPH  d-DXP       (6)DXR  NADPH + d-DXP

DXR  NADP  d-MEP         (7)DXR  NADPH  d-DXP

DXR  NADP + d-MEP       (8)DXR  NADP  d-MEP

k6

k-6
k7

k-7
k8

k-8  
Figure 3-7: Kinetic scheme used for computer simulations. 

 

In the simulations, all the rate constants were allowed to float but with a few 

restrictions.  One restriction is that there is no isotope effect on binding.  The simulation 

was carried out by having the rate constant for binding of DXP and [2H]-DXP set equal to 

each other so that they floated together.  This condition was also applied to true for the 

dissociation of DXP and [2H]-DXP and for the binding/dissociation of MEP and [2H]-

MEP.  The Kd of 750 nM for NADPH to DXR was previously determined in the active 

site titration experiment.  In the simulations, the rate constants for NADPH binding and 

dissociation were floated together so that the equilibrium for binding equaled the Kd 
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value for NADPH.  Since the Kds for DXP, MEP and NADP+ are not known, their rate 

constants for binding and dissociation were allowed to float independent of each other.  

To further restrict the simulation, the ratio of the equilibrium for chemistry of the 

unlabeled reaction, Step 3, and that for the labeled reaction, Step 7, was set to their 

respective equilibrium isotope effect (See Table 3-3).  This was performed by fixing the 

ratio of chemistry for the unlabeled reaction, Step 3, to the ratio of the kcat for the forward 

and reverse reactions.  The ratio for chemistry in the labeled reaction was then fixed so 

that the equilibrium isotope effect equaled the experimentally determined value.   

The binding and dissociation rates for all compounds and the equilibrium binding 

values for DXP, MEP or NADP+ derived from computer simulations are not to be 

considered as accurate.  The values obtained by simulations depend on the initial starting 

values.  All of the starting binding rates were set less than the diffusion controlled limit to 

ensure that the returned values were also under the limit.  If different values for the 

binding and dissociation rates were used to start the simulation, the program would give 

different rates and equilibrium values at the end.  If the Kd for DXP was lowered, then the 

Kd for either NADP+ or MEP would also lower so that the starting reactant concentrations 

entered into the program were at equilibrium.  In the simulations, the exact equilibrium 

binding value for each reactant is not important, only the relationship among the four 

reactants is important.  The binding and dissociation rates did affect the KIE values but 

not in a significant manner.  Depending on the starting binding and dissociation rates, the 

KIE for 3[2H]-DXP ranged from 1.02 to 1.05 and the KIE for 4[2H]-DXP ranged from 

1.09 to 1.14.  The simulation results from Table 3-2 were used to calculate the KIEs 

reported in Table 3-3. 
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3.3. RESULTS AND DISCUSSION 

3.3.1. NON-COMPETITIVE KIE ANALYSIS. The kcat and KM for DXP, 3[2H]-DXP 

and 4[2H]-DXP were determined under identical conditions and according to the 

procedure described above.  These values and their corresponding (non-competitive) 
dkcat’s and dkcat/KM’s are reported in Table 3-1.  While this investigation was underway, a 

similar study was reported by Wong et al., and their reported KIEs are also listed in 

Table 3-1 for comparison.24  Our dkcat values are in support of the retroaldol/aldol 

mechanism; however, the dkcat/Km values do not completely agree with expected results 

for either mechanism.  The normal C4 KIE is consistent with the retroaldol/aldol 

mechanism and derives from the initial retroaldol cleavage reaction where the C4 carbon 

rehybridizes from sp3 to sp2.  The inverse C3 KIE could only arise for both proposed 

mechanisms from the sp2 to sp3 rehybridization of C3 carbon when the rearranged 

aldehyde intermediate is reduced by NADPH.  This would result if the reduction step is 

rate-limiting, which is inconsistent with the findings of Fox et al.15  If the reduction step 

is rate-limiting, the C4 KIE should be close to unity. 

In the study carried out by Wong et al.,24 the reported KIE’s were determined in a 

similar non-competitive manner.  Their data was interpreted in favor of the 

retroaldol/aldol rearrangement mechanism; however, there are a few problems with their 

KIE values as well.  First, both values for dVmax are smaller than the theoretical minimum 

for a 2° KIE of ~0.71.  Second, the dVmax and dVmax/KM KIE’s for C3 and C4 are inverse.  

As discussed in the previous paragraph, a C3 inverse KIE is possible only if the reduction 

step is rate-limiting.  However, this has been determined not to be the rate-limiting step.15  

Also, if the reduction step is the rate-limiting step of the DXR reaction, the C4 KIE 

should be close to unity.  Again, this is not true.  The reported C4 KIE for both dVmax and 
dVmax/KM is inverse, which could only result from the aldol condensation in the proposed 
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retroaldol/aldol mechanism and is impossible for the α-ketol rearrangement mechanism.  

Thus, if the data are correct, the aldol condensation reaction sould be the rate-limiting 

step for DXR, even though the retroaldol cleavage is more likely the rate-limiting step for 

the retroaldol/aldol rearrangement mechanism.  Again, the C3 KIE should have a value 

close to unity, if the aldol condensation is the rate-limiting step.  Clearly the latter is 

inconsistent with what was observed. 
 

Table 3-1: Summary of non-competitive KIE measurements. 

Substrate kcat (s-1) KM (μM) dkcat dkcat/KM dVmax 
(a) dVmax/KM (a) 

DXP 16.1 ± 0.7 166 ± 20 -- -- -- -- 
3[2H]-DXP 13.2 ± 0.7 116 ± 20 1.21 ± 0.08 0.85 ± 0.19 0.56 0.92 

4[2H]-DXP 13.7 ± 0.5 154 ± 17 1.17 ± 0.05 1.12 ± 0.17 0.62 0.86 

(a)  KIE results from study by Wong et al.24 
 

After close inspection of the data obtained by our assays, it became apparent that 

not all of the progress curves for the 3[2H]-DXP and 4[2H]-DXP assays were linear, see 

Figure 3-8.  This is different from what was found when the enzymatically synthesized 

DXP was used in the assays.  The nonlinear progress curves are characteristic of a slow-

binding inhibitor,25 and slow-binding inhibitors for DXR have been reported and 

discussed in Chapter 2.13,19  The presumed slow-binding inhibitor is likely the DXP 

enantiomer resulting from the dihydroxylation step in the synthesis of both labeled 

substrates.26  This is supported by the observation that DXP with the stereochemistry of 

its C4-hydroxyl group inverted is not a substrate for DXR.27  This observation raised 

concerns about the validity of these KIE values and our method to accurately determine 

them. 
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Figure 3-8: Steady-state progress curves for DXP, 3[2H]-DXP and 4[2H]-DXP in 

determining dkcat and dkcat/Km for 3[2H]-DXP and 4[2H]-DXP.  Reaction 
conditions A) 100 mM Tris pH 7.6, 2 mM MgCl2, 150 μM NADPH, 30 nM 
DXR, and 118 μM DXP (●) or 116 μM 3[2H]-DXP (▲); B) 100 mM Tris pH 
7.6, 2 mM MgCl2, 150 μM NADPH, 30 nM DXR, and 2295 μM DXP (●) or 
2328 μM 4[2H]-DXP (▲). 

 

3.3.2. EQUILIBRIUM PERTURBATION EXPERIMENTS. In order to avoid any 

complications due to the contamination of an inhibitor, we decided to employ the 

equilibrium perturbation method to determine the KIE.  Since this is a competitive 

technique, the contaminant will not have an effect on the size of the KIE.21,22  DXR is an 

excellent system for this method due its reaction being freely reversible and the easiness 

to follow the course of the reaction by monitoring the formation/consumption of NADPH 

at 340 nm.  The experiment is initiated by adding DXR to a solution of NADPH, 3/4[2H]-

DXP, NADP+ and MEP at chemical equilibrium but not isotopic equilibrium.  If there is 

a normal KIE (labeled substrate being slower than unlabeled substrate), there will be a 

temporary increase in the concentration of NADPH due to the forward reaction being 

slower than the reverse reaction.  If there is an inverse isotope effect, then there will be a 

temporary decrease in the concentration of NADPH due to the forward reaction being 

faster than the reverse reaction.  To determine the concentrations of NADPH, 3/4[2H]-

DXP, NADP+ and MEP required for the mixture to be at chemical equilibrium at the 
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beginning of the perturbation experiment and to aid in the simulations to determine the 

KIE’s, the equilibrium constants for the reaction with DXP, 3[2H]-DXP and 4[2H]-DXP 

and the corresponding equilibrium isotope effects were determined from the data in 

Figure 3-9 and are reported in Table 3-3. 
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Figure 3-9: Curves for determining Keq for the reaction with A) DXP, B) 3[2H]-DXP, and 

C) 4[2H]-DXP.  [X] is from Equation 3-1, and represents the change in 
[NADPH] upon addition of DXR. 
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For 3[2H]-DXP and 4[2H]-DXP a temporary increase in the concentration of 

NADPH was observed before returning to equilibrium, corresponding to a normal 2° KIE 

for both compounds, see Figure 3-10.  To solve for the KIEs, an equation was derived 

based on Cleland’s methodology; however, to solve the differential equation, we had to 

assume that NADPH is in large excess of 3/4[2H]-DXP and MEP.  Reaction conditions 

where this assumption is valid would produce a perturbation smaller than the detection 

limit of a UV/Vis instrument.  To avoid this problem, conditions were used that produced 

a measurable perturbation in our experiment and the KIE was determined using a kinetic 

simulation software, as opposed to the FORTRAN program developed by Cleland.28 
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Figure 3-10: Data from equilibrium perturbation experiment and the respective curve fit 

from computer simulations:  A)  165 μM NADPH, 1 mM 3[2H]-DXP, 1.1 
mM MEP, 3.1 mM NADP+ and 2 mM MgCl2; B)  148.5 μM NADPH, 900 μM 
4[2H]-DXP, 990 μM MEP, 2.79 mM NADP+ and 1.8 mM MgCl2. 

 

The data was fit by computer simulation as described in the experimental section, 

and the resulting rate constants are listed in Table 3-2, and the corresponding KIE’s are 

listed in Table 3-3.  The normal KIE values for both compounds strongly favor the 

retroaldol/aldol rearrangement mechanism over the α-ketol rearrangement mechanism.  

These values are smaller than the 2° KIE values determined for muscle aldolase, 

suggesting either a step other than chemistry is partially rate-limiting, or the retroaldol 

reaction has an early transition state where little rehybridization has occurred.  The size 

A

B
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of the KIE for 4[2H]-DXP is slightly larger than 3[2H]-DXP.  This would result from the 

C3 having less s-character in the transition state than C4, which could result from the 

negative charge on C3 not fully delocalized on to the C2-carbonyl in the transition state. 

 
Table 3-2: Results from computer simulations. 

3[2H]-DXP (b) 4[2H]-DXP (b)  
Float All Fix Binding Float All Fix Binding 

k1 73 ± 3  73  72 ± 4  72 
k-1 55 ± 2 55 54 ± 3 54 
k2 2.15 ± 0.06 2.15 6.9 ± 0.3 6.9 
k-2 463 ± 13 463 946 ± 40 946 
k3 19.2 ± 0.5 19.6 ± 0.2 19.8 ± 0.5 19.8 ± 0.3 
k-3 9.1 ± 0.2 9.4 ± 0.1 9.4 ± 0.2 9.4 ± 0.1 
k4 2410 ± 130 2410 1660 ± 90 1660 
k-4 11.8 ± 0.4 11.8 5.9 ± 0.3 5.9 
k5 127 ± 5 127 91 ± 4 91 
k-5 16.5 ± 0.7 16.5 25 ± 1 25 
k6 2.15 ± 0.06 2.15 6.9 ± 0.3 6.9 
k-6 463 ± 13 463 946 ± 40 946 
k7 18.4 ± 0.4 18.9 ± 0.2 17.8 ± 0.4 17.8 ± 0.2 
k-7 8.4 ± 0.2 8.6 ± 0.1 9.4 ± 0.2 9.4 ± 0.1 
k8 2410 ± 130 2410 1660 ± 90 1660 
k-8 11.8 ± 0.4 11.8 5.9 ± 0.3 5.9 

(b)  All second order rate constants are given in μM-1s-1, and all first order rate constants are given 
in s-1. 

 
Table 3-3: Summary of Keq and KIE data from equilibrium perturbation experiments. 

Substrate Keq 
dKeq 

dkchem (c) 
DXP 22.0 ± 0.3 -- -- 

3[2H]-DXP 22.7 ± 0.2 0.97 ± 0.02 1.04 ± 0.02 
(0.04) 

4[2H]-DXP 19.8 ± 0.2 1.11 ± 0.02 1.11 ± 0.02 
(0.04) 

(c)  This is the KIE determined by the equilibrium perturbation experiment, and this value is 
determined by the ratio of k3 to k7, (See Figure 3-7).  The error reported is from the 
simulations when the binding rates are fixed on the values obtained from initially allowing 
them to float, and the error is the parenthesis is the error for when all the rate constants are 
allowed to float.  See supplementary section for a more complete description of the computer 
simulations. 
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3.4 CONCLUSION 

In conclusion, the normal 2° KIE’s observed for 3[2H]-DXP and 4[2H]-DXP are 

the first direct evidence that strongly favor the retroaldol/aldol rearrangement mechanism 

utilized by DXR to catalyze the rearrangement of DXP to the aldehyde intermediate.  

With this information in hand, it is now possible to design inhibitors by focusing only on 

the retroaldol/aldol mechanism and not the α-ketol rearrangement mechanism. 
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Chapter 4: Reconfirmation HppE is an Iron and NAD(P)H Dependent 
Epoxidase 

4.1. INTRODUCTION 

Fosfomycin (2) is a clinically useful antibiotic1 for the treatment of lower urinary 

tract infections2 and limb-threatening diabetic foot infections.3  It is also effective against 

methicillin-resistant4 and vancomycin-resistant5 strains of Staphylococcus aureus.  The 

antimicrobial activity of fosfomycin has been attributed to the inactivation of UDP-

GlcNAc-3-O-enolpyruvyltransferase (MurA), which catalyzes the first committed step in 

the biosynthesis of peptidoglycan, the main component of the cell wall.6,7 

 

  
H

PO3
2-Me

OH

PO3
2-

O

Me

H H
1 2

HppE

 
Figure 4-1: Reaction catalyzed by HppE. 

 

Fosfomycin (2) is a natural product that is made by several species of 

Pseudomonas and Streptomyces,8,9 and it is biosynthetically derived from (S)-2-

hydroxypropylphosphonic acid [1, (S)-HPP].10,11  The conversion of (S)-HPP (1) to 

fosfomycin (2) is catalyzed by HPP epoxidase (HppE), see Figure 4-1.12,13  A 

mononuclear non-heme iron in the HppE active site is essential for enzyme activity.14  

Coordination of the iron in the enzyme from Streptomyces wedmorensis, which is the 

source of the HppE used in this study, is by His138, Glu142, and His180.  The 2-H-1-D/E 

facial triad, was first implied by sequence alignment15 and site-directed mutagenesis 

studies,16 and it was later confirmed by the X-ray crystal structure of this enzyme.17  

Earlier research also demonstrated that molecular oxygen is essential for the reaction.13,14  
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However, no oxygen atoms from O2 are incorporated into the fosfomycin product.11,13,14  

Instead, the oxygen atom of the epoxy ring in 2 is derived from the secondary hydroxyl 

group of (S)-HPP (1).  Thus, the conversion of 1 to 2 by HppE is effectively a 

dehydrogenation reaction, not an oxygenation reaction.  

This unusual epoxidation reaction is NAD(P)H-dependent and involves four-

electron redox chemistry with full reduction of dioxygen to water.13,14  In this process, 

two electrons are generated through epoxide ring formation, and the other two electrons 

are supplied by NAD(P)H.  The use of NAD(P)H as a source of reducing equivalents 

distinguishes HppE from most other mononuclear non-heme iron-dependent oxygenases, 

where the source of electrons is either the substrate or a cosubstrate such as α-

ketoglutarate, ascorbate, or tetrahydropterin.18-21 

Despite the unusual chemistry of its physiological reaction, HppE can also 

function as a typical oxygenase.  In particular, it can self-hydroxylate an active site 

tyrosine to form 3,4-dihydroxyphenylalanine (DOPA).22  The modified residue has been 

identified as Tyr105, on the basis of its proximity to the iron center (8.7 Å)17 and the 

results of site-directed mutagenesis.22  The chelation of DOPA105 with the active site 

ferric ion gives HppE a green color.  This green chromophore has been assigned, on the 

basis of UV-vis and resonance Raman spectral analyses, to a catecholate-to-Fe(III) 

charge transfer complex.22 

Unlike the self-hydroxylation reactions observed for other non-heme iron-

dependent enzymes, such as the ribonucleotide reductase (RNR) R2 F208Y mutant,23 

taurine dioxygenase (TauD),24 and 2,4-dichlorophenoxyacetic acid dioxygenase (TfdA),25 

where the newly introduced oxygen atom in DOPA is derived from H2O, the oxygen 

atom incorporated into DOPA105 of HppE originates from dioxygen.22  The discovery of 

such oxygenase activity for HppE is significant because the same reactive intermediate 
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responsible for self-hydroxylation may also participate in the reaction cycle for the 

formation of fosfomycin. 
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Figure 4-2: Proposed NAD(P)H and Iron dependent mechanisms for HppE. 

 

The mechanism of HppE-catalyzed HPP epoxidation likely invokes an FeIII-OOH 

intermediate (7) derived from the one-electron reduction of an initial Fe(II)-O2 adduct.  

As shown in Figure 4-2, this peroxo intermediate (7) may either directly abstract a 

hydrogen atom from C-1 of (S)-HPP (1) to generate a transient substrate radical 

intermediate (9) or be converted to a high-valent iron-oxo species (such as 8) that carries 
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out the oxidation (8 10).  A direct attack by the iron-superoxide complex (5) to generate 

radical 6 is also possible.  Evidence for the involvement of an iron-superoxide species in 

the myoinositol oxygenase reaction has been reported.26  The subsequent cyclization to 

yield fosfomycin (2) and concomitant reduction of the metal center is reminiscent of 

oxygen rebound in the hydroxylation of alkanes by cytochrome P45027 and non-heme 

iron oxygenases (see Figure 4-3).28,29  
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Figure 4-3: Oxygen rebound mechanism. 

 

In a recent study, McLuskey et al. found that purified recombinant HppE, also 

from Streptomyces wedmorensis,  is active when reconstituted with Fe2+ or Zn2+.30  They 

also determined that HppE exhibits modest affinity for FMN which is required for 

activity.  Since Zn2+ is redox inert, these findings suggested that the previously proposed 

mechanism, which relies on metal ion redox chemistry (Figure 4-2), is incorrect.  Hence, 

McLuskey et al. proposed a new mechanism in which the active site-bound divalent 

metal ion (Fe2+ or Zn2+) serves as a Lewis acid to activate the C-2 hydroxyl group, and 

the epoxide ring is formed by the attack of the 2-hydroxyl group at C-1 coupled with the 

transfer of the C-1 hydrogen as a hydride ion to the bound oxidized FMN (11).  This 

"nucleophilic displacement-hydride transfer" mechanism is depicted in Figure 4-4. 
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Figure 4-4:  Proposed nucleophilic displacement-hydride transfer mechanism for HppE. 

 

To resolve the mechanistic discrepancies, we characterized the Zn2+-reconstituted 

HppE and re-evaluated the NADH dependence of HppE activity.  We also compared the 

efficiency of various enzyme activity assays and determined the binding affinity of HppE 

for several flavin derivatives.  The results support an exclusive role for iron in HppE 

catalysis.  We also found that FMN is unlikely a hydride acceptor, but an artificial 

electron mediator for the in vitro HppE activity.  It serves the role of accepting a hydride 

from NADH and then passes electrons on to reduce the iron center of HppE.  On the basis 

of these lines of evidence, we conclude that the "iron redox chemistry" mechanism 

(Figure 4-2) stands as the more likely mechanism for the HppE-catalyzed reaction. 

 

4.2. MATERIALS AND METHODS 

4.2.1. GENERAL. Enzyme E3 (AscD, CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-

dehydrase reductase) used in the assay was purified from the Escherichia coli 

JM105/pOPI culture based on a procedure published earlier.31  Culture medium 
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ingredients were purchased from Difco (Detroit, MI).  Biochemicals, including the 

fosfomycin disodium salt standard (2), were purchased from Sigma-Aldrich Chemical 

Co. (St. Louis, MO).  The substrate, (S)-2-hydroxypropylphosphonic acid [(S)-HPP, 1], 

was chemically synthesized according to a literature procedure.13,14  All other reagents 

and solvents were purchased from commercial sources and were used without further 

purification unless otherwise noted.  Protein concentrations were determined by the 

procedure of Bradford using bovine serum albumin as the standard.32 

 

4.2.2. PURIFICATION OF HPPE WITH AND WITHOUT BOUND METALS. Recombinant 

HppE from Streptomyces wedmorensis was overproduced from E. coli 

BL21(DE3)/pPL1001, and the metal-free HppE (apo-HppE) was purified according to 

the published procedure.14  An overnight culture of E. coli BL21(DE3)/pPL1001 grown 

at 37 °C in LB medium supplemented with kanamycin (50 μg/mL) was used, in a 200-

fold dilution, to inoculate 6 L of the same medium.  When the OD600 reached 0.6, the 

incubation temperature was lowered to 18 °C and IPTG was added to a final 

concentration of 0.1 mM to induce gene expression.  After incubation for an additional 15 

h at 18 °C, cells were harvested by centrifugation (8000g, 5 min) at 4 °C, washed with 

Tris·HCl buffer (20 mM, pH 7.5), collected again by centrifugation (8000g, 5 min), and 

stored at -80 °C for future use.  The typical yield was 6 g of wet cells per liter of culture. 

All purification operations were carried out at 4 °C except for the FPLC step, and 

all buffers were degassed and saturated with nitrogen before use.  Thawed cells were 

resuspended in a 5-fold (w/v) excess of lysis buffer (20 mM Tris·HCl, pH 7.5, 0.1 mM 

DTT; 1 mM EDTA was included to remove trace amounts of iron ion when necessary) 

and subjected to 5 × 40 s ultrasonic bursts, with a 1 min cooling interval between each 

blast. Cellular debris was removed by centrifugation at 15000g for 20 min.  The 
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supernatant was fractionated by ammonium sulfate, and the 30-65% ammonium sulfate 

precipitate was collected.  The protein pellet was resuspended in a minimal amount of 

Tris·HCl buffer (20 mM, pH 7.5).  The resulting protein solution was dialyzed against 1 

L of the same buffer for 4 h with two buffer changes.  

The dialysate was applied to a DEAE-Sepharose CL-6B column (2.5 × 24 cm) 

pre-equilibrated with 20 mM Tris·HCl, pH 7.5.  After loading, the column was washed 

with 500 mL of the wash buffer (20 mM Tris·HCl, pH 7.5, 0.15 M KCl).  The elution was 

then continued with a linear gradient of KCl from 0.15 to 0.35 M in 20 mM Tris·HCl 

buffer, pH 7.5 (2 L total volume).  The flow rate was 2 mL/min, and fractions of 15 mL 

were collected throughout the gradient elution.  The fractions containing the desired HPP 

epoxidase, as determined by SDS-PAGE, were pooled, concentrated to about 10 mL by 

ultrafiltration on an Amicon concentrator using a YM 10 membrane (Millipore, Bedford, 

MA), and desalted by dialyzing against 1 L of 20 mM Tris·HCl buffer, pH 7.5 for 3 h 

with two buffer changes. 

The protein from the last step was further purified at room temperature by FPLC 

equipped with a Mono Q HR 10/10 (GE Healthcare, Piscataway, NJ) using the solvent 

systems A (20 mM Tris·HCl buffer, pH 7.5) and B (A plus 0.6 M NaCl).  The elution 

profile included a linear gradient of 0 to 60% B from 0 to 25 min, followed by a linear 

gradient of 60 to 100% B from 25 to 26 min, and concluded with a 5 min wash at 100% 

B.  The flow rate was 3 mL/min, and the detector was set at 280 nm.  A sharp peak with a 

retention time of about 19 min was collected, concentrated by ultrafiltration as described 

before, desalted with 20 mM Tris·HCl buffer (pH 7.5), and stored at -80 °C. 

 

4.2.3.  BIOAUTOGRAPHY ASSAY. The conversion of (S)-HPP (1) to fosfomycin (2) by 

HppE was monitored by a previously developed bioautography assay, which is based on 
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the ability of fosfomycin to inhibit the biosynthesis of the bacterial cell wall.14  A typical 

assay mixture (200 μL) contained 20 mM (S)-HPP (1), 90 μM apo-HppE, 90 μM FMN, 

22.5 mM NADH, and 150 μM metal ions in 20 mM Tris-HCl buffer (pH 7.5).  The 

reaction was carried out at room temperature for 2 h.  Meanwhile, 20 mL of LB agar 

medium was autoclaved, cooled to 40-45 °C, mixed with 1 mL of E. coli K12 strain 

HW8235 precultivated in LB medium, and poured into a Petri dish.  After the agar 

solidified, sterilized paper disks (10 mm in diameter) were placed on the top of the agar.  

Each reaction mixture was divided into two portions, one of which was filtered through a 

Y-10 membrane to remove HppE.  Subsequently, an aliquot of 20 μL was applied to the 

paper disk, and the plate was incubated at 37 °C for 12-16 h.  The amount of fosfomycin 

produced in the reaction mixture was estimated by measuring the diameter of the 

inhibition zone and comparing it with that of a fosfomycin standard (10 μL of a 5 mg/mL 

solution).  To test the proposed hydride transfer mechanism, a separate set of reaction 

mixtures containing 20 mM (S)-HPP (1), 90 μM apo-HppE, 900 μM FMN, and 150 μM 

metal ions in 200 μL of 20 mM Tris-HCl buffer (pH 7.5) was prepared and incubated at 

room temperature for 2 h.  The subsequent treatment was the same as that described 

above.  These experiments were conducted by Dr. Fang Yan. 

 

4.2.4.  31P NMR SPECTROSCOPY ASSAY.   To directly determine the percentage of 

conversion of (S)-HPP (1) to fosfomycin (2) catalyzed by HppE, a 31P NMR spectroscopy 

assay developed previously was used.13,14  A typical assay mixture (200 μL) contained 20 

mM (S)-HPP (1), 90 μM apo-HppE, 90 μM FMN, 22.5 mM NADH, and 150 μM metal 

ions in 20 mM Tris-HCl buffer (pH 7.5).  The reaction was carried out at room 

temperature for 2 h, followed by rapid freezing with liquid nitrogen.  The frozen sample 

was thawed immediately before 31P NMR analysis.  The amount of fosfomycin produced 
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was determined on the basis of the integration of the appropriate 31P NMR peaks.  To test 

the newly proposed "hydride transfer" mechanism, the assay conditions were modified to 

include 20 mM (S)-HPP (1), 90 μM apo-HppE, 900 μM FMN, and 150 μM metal ions in 

200 μL of 20 mM Tris-HCl buffer (pH 7.5).  The incubation was allowed to proceed at 

room temperature for 2 h and then flash-frozen with liquid nitrogen.  The frozen sample 

was thawed immediately before NMR analysis.  These experiments were conducted by 

Dr. Fang Yan. 

 

4.2.5. NADH STOICHIOMETRY. The NADH dependence of the conversion of (S)-

HPP to fosfomycin was also studied. The reaction mixture (100 μL) contained 4.5 mM 

(S)-HPP (1), 78 μM apo-HppE, 120 M Fe(NH4)2(SO4)2, 156 μM FMN, and various 

amounts of NADH (0-0.9 mM). The incubation was carried out at room temperature for 2 

h, and the reaction was quenched by the addition of EDTA to a final concentration of 100 

mM, followed by freezing with liquid nitrogen. Product formation was assessed by 31P 

NMR spectroscopy. The percentage of conversion was calculated on the basis of the 

integration of the corresponding peaks [fosfomycin vs the sum of fosfomycin and (S)-

HPP] from the spectra.  These experiments were conducted by Dr. Fang Yan. 

 

4.2.6. BINDING AFFINITY OF FLAVIN DERIVATIVES. The binding affinity between 

HppE and various flavin derivatives (11a-c) was determined by the change in 

fluorescence intensity of flavin resulting from binding to HppE.  Since flavin 

fluorescence is linear only up to ~5 μM, HppE was titrated into the flavin solution [1 μM 

flavin in 2 mL of 20 mM Tris-HCl buffer (pH 7.5)], as opposed to the standard method of 

titrating the ligand into the enzyme solution.  The excitation and emission wavelengths 

were 450 and 525 nm, respectively, and the excitation and emission slit widths were set 
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at 1 and 3 nm, respectively.  The titrations were carried out at 25 °C. The fluorescence 

data were adjusted so that the y-axis represented the net decrease in fluorescence.  These 

data were then fit, using Grafit 5.0.1, to Equation 2-1 with Fo, F, and KD as parameters, 

where Fo is the initial fluorescence, ∞F  is the final fluorescence, Eo is the total HppE 

concentration, and So is the total ligand concentration.33 
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4.2.7. HPLC ACTIVITY ASSAY. Enzyme assays were carried out in 50 μL of 20 mM 

Tris-HCl buffer (pH 7.5) in triplicate.  The reactions were initiated by the addition of a 

mixture of apo-HppE, Fe(NH4)2(SO4)2, and an electron mediator (flavin cofactors (11a-

c), benzyl viologen (15), methyl viologen (16) or E3) to a mixture of (S)-HPP (1) and 

NADH.  The final concentrations were as follows: 50 μM HppE, 50 μM Fe2+, 75 μM 

flavin cofactors/benzyl viologen/E3, 10 mM (S)-HPP (1), and 15 mM NADH.  The 

reactions were quenched by the addition of 2 M acetic acid (50 μL), and then the 

mixtures centrifuged through a Nanosep centrifugal device with a 10K Omega Membrane 

(Pall Life Sciences, Ann Arbor, MI) to remove protein.  The samples (77 μL each) were 

analyzed with a HPLC system equipped with a Dionex CarboPac PA-1 (4 × 250 mm) 

column.  The fosfomycin product was eluted with a gradient of water as solvent A and 

500 mM NH4OAc as solvent B where the following gradient was used: 5% B for 2 min, 

from 5 to 25% B over 30 min, from 25 to 100% B over 1 min, 100% B for 9 min, from 

100 to 5% B over 2 min, and then 5% B for 13 min.  The flow rate was 1 mL/min.  The 

detector used is the Corona charged aerosol detector (CAD) (ESA, Inc., Chelmsford, 



 113

MA), which is designed to detect nonvolatile compounds.  The amount of fosfomycin 

produced was determined by peak integration and then converted into micromoles on the 

basis of a calibration curve. 

 

4.3. RESULTS AND DISCUSSION 

4.3.1.  ENZYME ACTIVITY DETERMINED BY BIOAUTOGRAPHY ASSAY.        Two assay 

methods had been developed in our early work to determine the activity of HppE.13,14  

One is the bioautography assay, in which a paper disk soaked with the assay mixture is 

placed in direct contact with a lawn of E. coli K12 HW8235 grown on nutrient (LB) agar.  

When fosfomycin is produced in the assay mixture, an inhibition zone is visible after 

incubation for a few hours.  Using this bioautography assay led to the identification of 

Fe(II) and NAD(P)H as two essential components for HppE activity.13,14  While this 

assay is convenient and sensitive, the same incubation mixture with all of the components 

mentioned above included failed to produce enough fosfomycin that can be discerned by 

NMR analysis.13  It was later found by a 31P NMR assay that the addition of FMN or 

FAD greatly enhanced the production of fosfomycin.13,14  Because this NMR method 

allows direct detection of fosfomycin production in the assay mixture, it has been the 

assay of choice in our subsequent studies.  However, since the conclusions of McLuskey 

et al. about HppE activity and mechanism were based mainly on the bioautography 

results,30 we decided to re-examine the assay conditions using both Fe(II)- and Zn(II)-

reconstituted HppE.  It should be pointed that FMN was introduced into the 

bioautography assay carried out by McLuskey et al. but was not included in our original 

bioautography assay.13,14  

As shown in Figure 4-5, fosfomycin production was detected in the incubation 

mixture containing Zn(II)-HppE (disk 1) and Fe(II)-HppE (disk 4) complexes with excess 
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FMN and (S)-HPP (1). The addition of NADH to the assay mixture led to more 

fosfomycin formation in both cases as indicated by the enlarged diameter of inhibition 

zones (Figure 4-5B, disks 1 and 4). These results are in agreement with those of 

McLuskey et al. 30 showing that the Zn(II)-HppE complex is catalytically active but less 

active than the Fe(II)-HppE complex. However, we were troubled by the positive 

response given by the metal-free apo-HppE sample, which was performed as a negative 

control (disk 3 in Figure 4-5A,B). The fact that the Fe(II)-HppE complex was active in 

the absence of NADH was also puzzling (Figure 4-5A, disk 4).  

 

 
Figure 4-5: Bioautography assay results of unfiltered reaction samples. (A) (1) Apo-
HppE, Zn(II), FMN, and (S)-HPP, (2) fosfomycin standard, (3) apo-HppE, FMN, and (S)-
HPP, and (4) apo-HppE, Fe(II), FMN, and (S)-HPP. (B) (1) Apo-HppE, Zn(II), FMN, (S)-
HPP, and NADH, (2) fosfomycin standard, (3) apo-HppE, FMN, (S)-HPP, and NADH, and 
(4) apo-HppE, Fe(II), FMN, (S)-HPP, and NADH. 

 

Since HppE was not removed prior to application of the reaction mixture to the 

disk, it should still be catalytically active when exposed to the nutrient rich agar media 

where metal ions are plentiful.  This "postincubation activation/activity" may be partially 

responsible for the positive response exhibited by the Zn(II)-HppE and apo-HppE 

samples.  To eliminate this potential complication, the reaction mixture was passed 

through a membrane with a molecular mass cutoff of 10 kDa.  After this treatment, the 

inhibition results should reflect the total amount of fosfomycin produced in the assay 

solution under defined reaction conditions because no HppE is available to make 
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additional fosfomycin during the overnight incubation on the plate.  As expected, no 

inhibition by the reaction mixture containing the Zn(II)-HppE sample was discernible 

(Figure 4-6A,B, disk 1), whereas the inhibitory effect of the Fe(II)-HppE sample 

remained very apparent (Figure 4-6B, disk 3).  The addition of more FMN to the reaction 

mixture containing the Zn(II)-HppE complex (up to 200-fold more than the HppE 

concentration) showed no effect on the autobiography results (data not shown). It is thus 

evident that the Zn(II)-HppE sample is not active and Zn(II) cannot substitute for Fe(II) 

in reconstituting a catalytically active HppE. The activity observed for the unfiltered 

samples shown in Figure 4-5 must be an artifact and may be attributed to the ability of 

HppE on the disk to elicit iron from the LB agar to make fosfomycin. 

 

 
Figure 4-6: Bioautography assay results of filtered reaction samples. (A) (1) Apo-HppE, 
Zn(II), FMN, and (S)-HPP, (2) fosfomycin standard, and (3) apo-HppE, Fe(II), FMN, and 
(S)-HPP. (B) (1) Apo-HppE, Zn(II), FMN, (S)-HPP, and NADH, (2) fosfomycin standard, 
and (3) apo-HppE, Fe(II), FMN, (S)-HPP, and NADH. 

 

While the observations described above clearly ruled out a role for Zn(II) in the 

HppE-catalyzed reaction, the inhibitory effect exhibited by the mixture containing Fe(II) 

and FMN but no NADH was unexpected (Figure 4-5A, disk 4, and Figure 4-6A, disk 3).  

We speculated that the photoreducible properties of FMN could play a role.  This 

speculation was substantiated by the subsequent two parallel reactions, one carried out in 

the dark and another in sunlight.  As for the reaction in the dark without NADH, no 
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detectable level of fosfomycin was produced when the incubation mixture was filtered 

prior to being applied to the disk (Figure 4-7, disk 3).  In sharp contrast, the same 

reaction performed in sunlight gave a large inhibition zone (Figure 4-7, disk 2).  Thus, 

photoreduction of FMN is clearly the cause of the complication.  Taken together, enzyme 

activity determined by the bioautography assay should be analyzed with caution, since 

the readout could be misleading if the assay conditions are not properly controlled. 

 

 
Figure 4-7: Bioautography assay results of filtered reaction samples carried out in dark 
and in sunlight: (1) fosfomycin standard, (2) apo-HppE, Fe(II), FMN, and (S)-HPP in 
sunlight, and (3) apo-HppE, Fe(II), FMN, and (S)-HPP in the dark. 

 

4.3.2. ENZYME ACTIVITY DETERMINED BY NMR SPECTROSCOPY. The HppE 

reactions conducted under various conditions as described above were also subjected to 
31P NMR analysis.  In agreement with our previous observation, only the incubation 

mixture containing the Fe(II)-HppE complex in the presence of FMN and NADH 

produced NMR-discernible amounts of fosfomycin from (S)-HPP (1).  The detection 

limit of fosfomycin is estimated to be 1 mM on the basis of 31P NMR peak integration 

and is equivalent to 5% conversion of (S)-HPP (20 mM, total amount used) under our 

assay conditions.  The fact that no fosfomycin formation was detected when the Zn(II)-

HppE complex was used strongly suggested an exclusive role for iron in HppE catalysis.  

In an earlier study, the apo-HppE was reconstituted with various redox active metal ions 

to examine their effects on enzyme activity using the same NMR assay.  Among the 
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divalent metal ions that were examined [Fe(II), Co(II), Ni(II), Cu(II), and Mn(II)], only 

Fe(II) could reconstitute HppE activity.14  Thus, HppE is believed to be iron-dependent.  

Clearly, the direct detection of product formation by NMR spectroscopy is a much more 

reliable activity assay.   

 

4.3.3. ENZYME ACTIVITY DETERMINED BY THE HPLC ASSAY.  Although 31P 

NMR spectroscopy is a highly reliable method of measuring fosfomycin production, it is 

not amenable to microanalysis due to its low sensitivity.  To overcome this shortcoming, 

an HPLC assay coupled with a charged aerosol detector (CAD) to detect nonvolatile 

compounds in the eluent was developed.  This HPLC assay allowed us to quantitatively 

analyze the conversion of (S)-HPP (1) to fosfomycin (2), both nonchromophoric, under 

different incubation conditions.  As illustrated in Figure 4-8, baseline resolution of 1 and 

2 was achieved using a Dionex CarboPac PA-1 (4 × 250 mm) column. 
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Figure 4-8: HPLC chromatogram of the HppE-catalyzed conversion of (S)-HPP (1) to 
fosfomycin (2). The inset shows the increase in the fosfomycin peak after 10, 20, 40, 60, and 
80 min (from bottom to top). 
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4.3.4.  NADH DEPENDENCE OF HPPE ACTIVITY. A fundamental distinction between 

the iron-redox mechanism and the nucleophilic displacement-hydride transfer mechanism 

is the NADH dependence of the reaction. As depicted in Figure 4-2, in the iron-redox 

mechanism, NADH plays an essential role by supplying two electrons to prime the iron 

center for oxygen activation and to reduce an iron-oxygen species during catalysis. In 

contrast, no NADH is needed for the nucleophilic displacement-hydride transfer 

mechanism (Figure 4-4) since the transferred hydride is derived from (S)-HPP (1) and 

not from NADH. Although the activity assay results have clearly implicated NADH as 

the source of reducing equivalents, further analysis was performed to determine the 

stoichiometry of NADH required per catalytic turnover to better quantify the NADH 

dependence. As expected, a direct correlation between the percentage of conversion and 

the NADH/(S)-HPP ratio was found (see Figure 4-9). Our data also established that 1 

equiv of NADH is consumed per conversion of 1 equiv of (S)-HPP to fosfomycin. The 

direct involvement of NADH in the HppE reaction supports the iron-redox mechanism 

and is not consistent with a nucleophilic displacement-hydride transfer mechanism. 
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Figure 4-9: The NADH-dependence of the conversion of (S)-HPP (1) to fosfomycin (2) 
catalyzed by HppE. 
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4.3.5. BINDING OF FLAVIN COFACTORS. While no flavin cofactor was found in the 

purified HppE, FMN had been shown to be an important component in the HppE activity 

assay.13,14  It serves as an electron mediator in the iron-redox mechanism and has been 

proposed to be the hydride acceptor in the nucleophilic displacement-hydride transfer 

mechanism.30  Since the translated sequence of HppE lacks an ADP βαβ-binding fold 

characteristic of flavin-dependent enzymes and reconstitution failed to incorporate FMN 

in the active site, FMN has not been considered to be a true coenzyme of HppE.13  

Instead, it is believed to function as a surrogate in the iron-redox mechanism for an 

electron transfer protein involved in the catalysis in vivo.  Interestingly, a Kd of 10 μM 

for dissociation of FMN from HppE was determined by McLuskey et al.,30 which was 

cited as an indication of a specific binding of FMN in HppE in support of the proposed 

nucleophilic displacement-hydride transfer mechanism. 
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Figure 4-10: Proposed pterin-dependent hydroxylase-like mechanism for HppE 
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If FMN is indeed a coenzyme of HppE, a non-heme iron pterin-dependent 

hydroxylase-like mechanism found for aromatic amino acid hydroxylase (see Figure 4-

10), where a Fe-O-O-pterin intermediate (13) is involved, may also need to be 

considered.19,20  In this mechanism, the reduced flavin (12), acting as a 

tetrahydrobiopterin mimic, may react with Fe(II)-activated dioxygen to form a Fe-O-O-

flavin intermediate (13).  Subsequent heterolytic breakdown of the O-O bond leads to the 

generation of the reactive Fe(IV)-oxo intermediate (8).  This iron-oxo species, capable of 

hydroxylating the substrate in the aromatic amino acid hydroxylase reaction, may be used 

to abstract the C-1 hydrogen of (S)-HPP (1) in the HppE reaction (8 9).  To gain more 

insight into flavin binding, the affinities of HppE for a series of flavin analogues were 

determined. 

 
Table 4-1: Binding affinity of HppE for flavin derivatives. 

 Apo-HppE Zn(II)-HppE Fe(II)-HppE 
Riboflavin (11a)   N.B. a N.B. N.B. 

FMN (11b) N.B. 3.2 ± 0.9 μM 5.3 ± 0.9 μM 
FAD (11c) N.B. 300 ± 700 μM 50 ± 10 μM 

FMN + (S)-HPP - N.B. N.B. 

aN.B., no binding.  This is based on an estimated upper detection limit of a Kd equal to 1 mM. 

 

In this study, the Kd constants were determined by the change in the fluorescence 

intensity of flavin resulting from binding to HppE (see Figures 4-11 and 4-12), and the 

Kd’s determined are listed in Table 4-1.  The Kd values for binding of FMN (11b) to the 

Zn(II)-HppE and Fe(II)-HppE complexes are 3.2 ± 0.9 and 5.3 ± 0.9 μM, respectively, 

similar to the reported values measured by isothermal titration calorimetry.30  However, 

when metal ions were absent (apo-HppE) or substrate, (S)-HPP (1), was present, no 

binding interaction between FMN and protein was detected (Table 4-1).  These 
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observations suggest that the binding of substrate and the binding of FMN are mutually 

exclusive and do not support specific binding of FMN to HppE.  Interestingly, riboflavin 

(11a), which is an effective FMN (11b) substitute (see Table 4-2), shows no affinity for 

the Zn(II)-HppE or Fe(II)-HppE complex (Table 4-1).  Since the epoxidation reaction 

catalyzed by HppE proceeds at a comparable rate using FMN (11b) or riboflavin (11a) 

(Table 4-2) and if HppE binds FMN in a specific manner, one would expect a similar 

specific binding of riboflavin.  Taken together, the measured binding interactions are 

unlikely catalytically relevant and may result from binding of the phosphate of FMN to 

the metal center.  This would explain why the presence of substrate, which is known to 

bind to the active site metal,17 can block FMN binding and why riboflavin, which has no 

phosphate group, cannot bind to the enzyme.  The probability of a flavoenzyme not 

having a defined flavin binding pocket is low.  The fact that no flavin was found in the 

crystal structure of HppE also suggests that a specific flavin binding site in HppE is not 

present.17,30 
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Figure 4-11: To examine FMN (11b) binding, A) HppE(Zn2+) and B) HppE(Fe2+) were 
titrated into a 1 μM solution of FMN in 20 mM Tris pH 7.5. 

 

A B



 122

[HppE(Zn)] (uM)
0 4 8 12 16 20

Δ 
Fl

uo
re

sc
en

ce

9.6e5

1e6

1.04e6

1.08e6

1.12e6

[HppE (FeII)] (uM)
0 8 16 24 32 40 48

Δ 
Fl

uo
re

sc
en

ce

1.02e6

1.04e6

1.06e6

1.08e6

1.1e6

1.12e6

1.14e6

 
Figure 4-12:  To examine FAD (11c) binding, A) HppE(Zn2+) and B) HppE(Fe2+) were 
titrated into a 1 μM solution of FAD in 20 mM Tris pH 7.5. 

 

4.3.6. ELECTRON MEDIATORS. Using our newly developed HPLC assay, we 

determined the rates for fosfomycin formation with FMN (11b) and other electron 

mediators (Figure 4-11), including FAD (11c), riboflavin (11a), benzyl viologen (15), 

methyl viologen (16) and an electron transfer protein, E3.  As listed in Table 4-2, the 

rates of these reactions are within the same order of magnitude, suggesting that these 

compounds and/or proteins are all competent to enhance HppE reaction.  As discussed 

above, riboflavin does not bind to HppE, yet it is as effective as FMN which binds to the 

Fe(II)-HppE complex with a Kd of 5.3 ± 0.9 μM (Table 4-1).  This observation is at odds 

with the expectation of a flavin-dependent hydride transfer mechanism, because the lack 

of riboflavin binding should result in a significant reduction in enzyme activity.  

Interestingly, HppE remains active, albeit slightly slower, when FMN (11b) is replaced 

with benzyl viologen (15).  This finding again supports an electron mediator role of FMN 

in catalysis because benzyl viologen is a well-known electron carrier and is not expected 

to bind to the putative FMN binding site due to lack of structural similarity with FMN.  

The reduced rate seen for benzyl viologen may be due to its Em° value of -370 mV which 

A B
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is lower than the midpoint potential of -211 mV for free FMN.34,35  In agreement with 

this analysis, replacing FMN with methyl viologen (16), which has a much lower Em° (-

448 mV),34 failed to reconstitute HppE activity. 
 

Table 4-2: Rates of HppE-catalyzed epoxidation using different electron mediators. 

 Riboflavin 
(11a) 

FMN (11b) FAD (11c) E3 Benzyl 
viologen (15) 

Methyl 
viologen (16)

k (min-1) 0.41 ± 0.03 0.44 ± 0.05 0.22 ± 0.03 1.3 ± 0.2 0.13 ± 0.01  N.A.b 

b) N.A. stands for no activity detected 
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The results obtained with E3, an NADH-dependent [2Fe-2S]-containing 

flavoenzyme from Yersinia pseudotuberculosis,36,37 provide further support for the 

assigned electron mediator role of FMN in HppE catalysis.  E3, along with E1 (CDP-6-

deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase), catalyzes the C-3 deoxygenation 

reaction in the biosynthesis of 3,6-dideoxyhexoses.38  During turnover, the reducing 

equivalents are relayed from the E3-bound NADH to the active site of E1 via a chain of 

redox-active cofactors, including FAD and the iron-sulfur center in E3.37  The 
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involvement of an iron-sulfur cluster, an obligatory one-electron carrier, defines E3 as an 

electron transfer protein.  No change in function is expected for E3 in the HppE reaction 

where the FAD in E3 is the immediate recipient of hydride from NADH and serves as a 

two-electron (hydride)/one-electron switch in the subsequent electron relay to reduce the 

ferric center in HppE.  The fact that E3 is more effective than any flavin analogues that 

were tested (Table 4-2) implies that the physiological electron mediator is likely a 

protein reductase.  However, since no reductase gene exists in the two known fosfomycin 

biosynthetic gene clusters of Streptomyces wedmorensis12 and Pseudomonas syringae,39 

the electron transfer in the HppE reaction may not be mediated by a specific reductase 

but may rely on a promiscuous reductase within the cell. 

 

4.4. CONCLUSION 

Literature precedence for epoxide formation via a nucleophilic substitution 

mechanism comes from the halohydrin dehalogenase reaction in which the leaving group 

is a chloride (or a bromide) anion that is intramolecularly displaced by a vicinal hydroxyl 

group to yield the corresponding epoxide.40  A similar mechanism has recently been 

proposed for HppE where a divalent metal ion [Zn(II) or Fe(II)] acts as a Lewis acid and 

enhances the nucleophilicity of the attacking 2-hydroxyl group, and an active site-bound 

flavin coenzyme (FMN) receives the departing hydride to complete this energetically 

challenging epoxidation reaction (Figure 4-4).30  However, in this study, we have 

demonstrated that the Zn(II)-reconstituted HppE is catalytically inactive, and FMN 

cannot bind to the HppE-substrate binary complex.  Both observations fail to support the 

nucleophilic displacement-hydride transfer mechanism.  Likewise, a non-heme iron 

pterin-dependent hydroxylase-like mechanism (Figure 4-10) can be ruled out on the 

basis of the preclusion of binding of FMN to the HppE-substrate complex and the 
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competence of non-flavin electron mediators in the catalysis.  Our results also confirmed 

that Fe(II) is the only metal ion examined that is effective in reconstituting HppE activity, 

and NADH is an exogenous electron donor which is necessary for multiple turnovers by 

the Fe(II)-HppE complex.  The requirement of an electron mediator, either an electron 

transfer protein or a small molecule electron carrier, for HppE activity is also firmly 

established.  All of these results strongly support the iron-redox mechanism (Figure 4-2).  

Clearly, the reaction catalyzed by HppE is beyond the scope encompassed by common 

biological epoxidation and C-O bond formation reactions.  More studies aimed at 

uncovering details of the mechanism of HppE-catalyzed epoxidation are in progress.  

Insight gained from study of this unique non-heme iron-dependent enzyme will certainly 

enhance our understanding of this important and growing enzyme family.  
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CHAPTER 5: PURIFICATION, CHARACTERIZATION AND A 

KINETIC ISOTOPE EFFECT ANALYSIS OF THE HPPE FROM 

PSEUDOMONAS SYRINGAE 

5.1. INTRODUCTION 

Fosfomycin (6) is a clinically useful antibiotic1 for the treatment of limb-

threatening diabetic foot infections2 and lower urinary tract infections.3  It has been 

shown to be effective against ciprofloxacin-resistant E. coli,4 as well as methicillin-

resistant5 and vancomycin-resistant6 strains of Staphylococcus aureus.  The antimicrobial 

activity of fosfomycin results from the inactivation of UDP-GlcNAc-3-O-

enolpyruvyltransferase (MurA), which catalyzes the first committed step in the 

biosynthesis of peptidoglycan, the main component of the cell wall.7,8 

Fosfomycin belongs to a steadily growing family of natural products containing a 

C-P bond.9  Members of this family, such as fosfomycin,10 fosmidomycin,11 and 

bialaphos,12 are all derived from phosphoenolpyruvate (1, PEP).  The C-P bonds in these 

compounds are formed through an intramolecular rearrangement reaction catalyzed by 

PEP mutase resulting in the conversion of PEP (1) to phosphopyruvate (2, PnPy) (Figure 

1).13-15  Since the equilibrium between PEP and PnPy highly favors PEP, the 

decarboxylation catalyzed by the second enzyme, Fom2 (PnPy decarboxylase), provides 

the driving force to shift the equilibrium in favor of C-P bond formation.16  The next two 

steps in the biosynthesis have not been explicitly demonstrated, but it is believed to be the 

reduction of the aldehyde (3) to generate hydroxyethylphosphonic acid (4), followed by a 

methyl transfer reaction to generate (S)-2-hydroxypropylphosphonic acid (5, (S)-HPP).17  
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The final step of the pathway is the conversion of (S)-HPP (5) to fosfomycin (6) 

catalyzed by (S)-HPP epoxidase (HppE). 
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Figure 5-1: Fosfomycin biosynthetic pathway. 

 

Previous investigations of HppE from Streptomyces wedmorensis (Sw-HppE) 

revealed that this enzyme is a mononuclear non-heme iron-containing catalyst, and unlike 

most other enzymes in the same class, its activity is α-ketoglutarate-independent.18  For 

activity, HppE does require NADH, FMN and O2.19   In nature, most epoxide rings are 

generated via oxidation of the corresponding alkenes by either heme-dependent 

cytochrome P450s20,21 or non-heme iron-dependent monooxygenases.22  However, 

isotope labeling experiments with Sw-HppE revealed that no oxygen atoms from O2 are 

incorporated into fosfomycin, and instead, the oxygen atom of the epoxy ring in 6 is 

derived from the secondary hydroxyl group of (S)-HPP (5).18,19  Thus the conversion of 5 

to 6 by Sw-HppE is effectively a dehydrogenation reaction, not an oxygenation reaction.   

The mechanism of HppE epoxidation (Figure 5-2) has been proposed to parallel 

alkane hydroxylation catalyzed by cytochrome P45021 and non-heme iron-dependent 

oxygenases.23,24  The reaction likely begins with hydrogen abstraction from the C-1 

position by an activated oxygen species.  In a manner similar to the oxygen rebound 

mechanism for cytochrome P450s, the C-1 centered radical intermediate can then cyclize 
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to form fosfomycin and the reduced iron center.  The reactive oxygen species can be one 

of three species.  The reactive species can be Fe(III)-superoxide (9), which forms upon 

dioxygen binding to the ferrous iron center, similar to what has been proposed for 

isopenicillin N synthase (IPNS).25,26  The Fe(III)-superoxide species can be reduced by 

one electron and protonated to form Fe(III)-hydroperoxide (11), which can also abstract 

the C-1 hydrogen atom.  The Fe(III)-hydroperoxide species can be further reduced by a 

second single electron transfer with concurrent cleavage of the O-O bond to form Fe(IV)-

oxo (12), as proposed for α-ketoglutarate dependent TauD27 and for tyrosine 

hydroxylase28, which can later abstract the hydrogen atom. 
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Figure 5-2: Proposed NAD(P)H and Iron dependent mechanisms for HppE. 

 

Clearly, Sw-HppE is unique with respect to all other mononuclear non-heme iron-

dependent enzymes regarding the required components for activity, and it is also unique 

among epoxidase enzymes in that the net transformation is a dehydrogenation reaction 

and not an oxygen insertion across a carbon-carbon double bond.  Interestingly, an 

homologous enzyme has been identified in the fosfomycin producing Pseudomonas 

syringae PB-5123.29  This HppE (Ps-HppE) has not been investigated to determine if it is 

a functional mimic of Sw-HppE, acting as an iron-dependent enzyme and catalyzing the 

analogous epoxidation reaction.  Reported herein is an account of the biochemical and 
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spectroscopic characterization of the Ps-HppE enzyme and the implications of its mode 

of action. 

In order to obtain a more intimate understanding of how Ps-HppE, and 

presumably Sw-HppE, activates molecular oxygen and possibly to determine the identity 

of the reactive oxygen species, an [18O]-KIE analysis was conducted in collaboration 

with Prof. Judith P. Klinman at the University of California at Berkeley.  The 18O in the 

experiments is from the natural abundance in air, which is ~0.2%.30  Due to the low level 

of abundance, the isotope effect determined is for 16,16O2 versus 16,18O2.30,31  As described 

in Chapter 3, a KIE arises from differences in the zero-point energies (ZPE), mass 

moments of inertia (MMI) and excited vibrational states (EXC) between the reactant state 

and the transition state.  This is also true for an equilibrium isotope effect (EIE), except 

the difference is then between the reactant state and the product state.  Unlike the 

deuterium KIE, the [18O]-KIE and EIE is not necessarily dominated by differences in 

ZPE.  However, for the single electron reduction of molecular oxygen to superoxide (see 

Table 5-1)30 the difference in ZPE does dominate the EIE, and a reaction coordinate 

diagram depicting the EIE (see Figure 5-3) can be drawn as in Chapter 3. 

 
Table 5-1: Calculated EIEs for the reduction of molecular oxygen.30 

Reaction ΔBO ZPE EXC MMI 18Kcalc 

O2 O2
-1e-

 0.5 1.03309 .99921 1.00004 1.03309 

O2 O2
2-2e-

 1 1.05147 0.99761 1.00063 1.04962 
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Figure 5-3: Reaction coordinate diagram displaying the origin of the 18O KIE for the 

single electron reduction of molecular oxygen to superoxide. 

 

The 2° [2H]-KIE in Chapter 3 was described as arising from changes in the 

hybridization state of the carbon center.  This rehybridization results is a difference in the 

frequency for the out-of-plane bending vibration of the reacting carbon center in the 

reactant state versus in the transition state, which in turn produces an isotope effect.  For 
18O isotope effects, it is most easily to envision them arising from changes in bond order; 

however, this is not always true when metal ions or protons are involved.30  For the single 

electron reduction of dioxygen to superoxide, there is a decrease in bond order of 0.5 (see 

Table 5-1).  As seen in Figure 5-4, this results because the additional electron enters one 

of the π* molecular orbitals, which is an antibonding orbital.  Such a decrease in bond 

order weakens the O-O bond, which in turn decreases the O-O stretching frequency (see 

Table 5-2). 
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Table 5-2: Vibration frequencies of molecular oxygen and reduced forms.31 

Molecule ν16,16 (cm-1) ν16,18 (cm-1) 

O2 1556.3 1512.5 

•O2
¯ 1064.8 1034.8 

O2
2¯ 800 777 
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Figure 5-4: Molecular orbital diagram for A) O2 and B) •O2
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Using either calculated or experimentally determined frequencies for all the 

stretching and bending vibrations, the isotope effect from the difference in ZPE, EXC and 

MMI can be calculated.  The product of the three terms is the EIE (see Equation 5-1).  

These frequencies are not easy to obtain for the transition state, so it is not typically 

calculated.32  Instead, the EIE is calculated and is used as an upper boundary for the KIE, 

assuming a negligible isotope effect contribution from the reaction coordinate 

frequency.30,32,33  To probe the identity of the oxygen species that forms in the rate-

limiting step of the enzymatic reaction, the experimentally determined KIE can be 

compared to a list of calculated EIEs of possible oxygen intermediates.  Due to the [18O]-
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KIEs being determined by competition between 16,16O2 and 16,18O2, the experimental 

[18O]-KIEs are on kcat/KM.  KIEs on kcat/KM only take in to account the enzymatic steps up 

to and including the first irreversible step; therefore, any steps after the first irreversible 

step will not affect the [18O]-KIE. 
 

Equation 5-1 

MMIEXCZPEEIE ××=  
 

In the proposed HppE mechanism in Figure 5-2, the first irreversible step differs 

based on the reactive oxygen species used to abstract the C-1 hydrogen atom.  If Fe(III)-

superoxide (9) is the reactive species, then the first irreversible step will be the electron 

transfer from reduced FMN to the active site iron (10→13).  If the reactive species is 

either Fe(III)-hydroperoxide (11) or Fe(IV)-oxo (12), then the first irreversible step will 

also be the electron transfer from reduced FMN to the active site iron (9→11).  For all 

three possible reactive species, the resulting [18O]-KIE will be too similar to discriminate 

between the three.  The mechanisms differ in if the hydrogen atom abstraction occurs 

before or after the first irreversible step.  For the reaction with Fe(III)-superoxide (9) as 

the reactive species, hydrogen atom abstraction (9→10) occurs before the first 

irreversible step, and with Fe(III)-hydroperoxide (11) or Fe(IV)-oxo (12) as the reactive 

species, abstraction occurs after the first irreversible step (11→13 and 12→14, 

respectively).  If the hydrogen that is abstracted is replaced with deuterium, there will be 

a 1° [2H]-KIE on its abstraction.  If the [18O]-KIE is determined with the deuterium 

labeled (S)-HPP, it may or may not affect the [18O]-KIE value, depending on whether or 

not hydrogen atom abstraction occurs before or after the first irreversible step.  Therefore, 

if Fe(III)-hydroperoxide or Fe(IV)-oxo is the reactive species, then the [2H]-KIE will 

have no effect on the [18O]-KIE, but if Fe(III)-superoxide (9) is the reactive species, then 
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abstraction (9→10) will occur before the first irreversible step and could possibly affect 

the [18O]-KIE. 

 

5.2. MATERIALS AND METHODS 

5.2.1. GENERAL. Protein concentrations were determined by the procedure of 

Bradford using bovine serum albumin as the standard.34  The NMR spectra were acquired 

on a Varian Unity 300 spectrometer, and chemical shifts (δ in ppm) are given relative to 

those for Me4Si (for 1H and 13C) and aqueous 85% H3PO4 (external, for 31P), with 

coupling constants reported in hertz (Hz).  The UV-vis absorption spectra were recorded 

on the Agilent 8453A Diode Array Spectrophotometer.  The HPLC assays were 

conducted with the Beckman Coulter System Gold 125 Solvent Module coupled with the 

System Gold 508 Autosampler.  The Corona charged aerosol detector (CAD) from ESA 

(Chelmsford, MA) was used as the HPLC detector. 

 

5.2.2. MATERIALS. Culture medium ingredients were purchased from Difco (Detroit, 

MI).  DNA minipreps were performed using QIA Spin Miniprep Kit from Qiagen 

(Valencia, CA).  All oligonucleotide primers for PCR amplification of the desired inserts 

were customly prepared by Integrated DNA Technologies (Coralville, IA) and used 

without further purification.  Restriction endonucleases were acquired from New England 

Biolabs (Ipswich, MA).  The pET24b(+) vector and the overexpression host strain 

Escherichia coli BL21(DE3) were obtained from Novagen Inc. (Madison, WI).  All 

electrophoresis materials were products of Gibco BRL or Bio-Rad (Hercules, CA).  All 

chemicals were analytical grade or the highest quality commercially available.  

Biochemicals, including fosfomycin disodium salt (6) standard, were purchased from 

Sigma-Aldrich (St. Louis, MO), unless noted otherwise.  The natural substrate, (S)-2-
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hydroxypropylphosphonic acid (5, (S)-HPP) and its enantiomer (7, (R)-HPP) were 

chemically synthesized according to reported proceedures.18,19,35 

 

5.2.3. SYNTHESIS OF DEUTERIUM LABELED HPP ANALOGUES. The deuterium 

labeled HPP analogues, (R)-2-[2H]-HPP (20), (1R,2S)-1-[2H]-HPP (31) and (S)-1,1-[2H]2-

HPP (35), were synthesized by Dr. Sung-Ju Moon and according to Figures 5-5, 5-6 and 

5-7, respectively. 
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Figure 5-5: Synthetic scheme for (R)-2-[2H]-HPP (20). 
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Figure 5-6: Synthetic scheme for (1R,2S)-1-[2H]-HPP (28). 
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Figure 5-7: Synthetic scheme for (S)-1,1-[2H]2-HPP (35). 

 

5.2.4. CONSTRUCTION OF EXPRESSION PLASMID FOR THE PS-HPPE GENE. A 

clone of the Ps-HppE gene (orf3) in pUC118 was generously provided by Dr. Tomohisa 

Kuzuyama, the University of Tokyo.  The Ps-HppE gene was PCR amplified from this 

plasmid and ligated into pET24b(+) to generate pLH01.  The resulting plasmid was used 

to transform Escherichia coli BL21(DE3).  The general methods and protocols for 

recombinant DNA manipulations were as described by Sambrook et al.36  This was 

conducted by Dr. Lin Hong. 

 

5.2.5. GROWTH OF E. COLI BL21(DE3)/PLH01 CELLS. An overnight culture of E. 

coli BL21(DE3)/pLH01 grown at 37 °C in Luria-Bertani (LB) medium supplemented 

with kanamycin (50 μg/mL) was used, in a 250-fold dilution, to inoculate 6 L of the same 

medium.  The culture grew at 37 °C until the OD600 reached 0.6.  The incubation 

temperature was then lowered to 18 °C, and isopropyl β-D-thiogalactoside (IPTG) was 

added to a final concentration of 0.5 mM.  After incubation for an additional 16 h at 18 

°C, cells were harvested by centrifugation (7000g, 8 min) at 4 °C and washed with the 

lysis buffer (20 mM Tris·HCl, pH 7.5, 0.1 mM DTT, 10 mM EDTA).  The washed cells 

were again centrifugated (7000g, 8 min) and stored at -80 °C until future use. 

 



 141

5.2.6. PURIFICATION OF RECOMBINANT APO- PS-HPPE.            All purification 

operations were carried out at 4 °C except for the fast protein liquid chromatography 

(FPLC) step.  All buffers were degassed and saturated with nitrogen before use.  Thawed 

cells were resuspended in a 5-fold (w/v) excess of lysis buffer (see above) and subjected 

to 14 × 30 s ultrasonic bursts, with a 50 s cooling interval between each blast.  Cellular 

debris was removed by centrifugation at 17000g for 25 min.  The supernatant was 

fractionated by ammonium sulfate, and the 10-65% ammonium sulfate precipitate was 

collected.  The protein pellet was resuspended in a minimal amount of buffer A (20 mM 

Tris·HCl, pH 7.5, 0.1 mM DTT, 0.1 mM EDTA).  The resulting protein solution was 

dialyzed against 1 L of the same buffer for 3 h with two buffer changes.  

The dialysate was applied to a DEAE-Sepharose CL-6B column (6 × 18 cm) pre-

equilibrated with buffer A.  After loading, the column was washed with 300 mL of buffer 

A containing 180 mM NaCl.  The elution was then continued with a linear gradient of 

NaCl from 180 to 300 mM in the same buffer (2 L total volume).  The flow rate was 1.5 

mL/min, and fractions of 20 mL were collected throughout the gradient elution. The 

fractions containing HppE, as determined by SDS-PAGE, were pooled, concentrated to 

about 15 mL by ultrafiltration on an Amicon concentrator using a YM 10 membrane 

(Millipore, Bedford, MA), and desalted by dialyzing against 1 L of buffer A for 1 h, 

followed by 1 L of 20 mM Tris·HCl buffer (pH 7.5) for 2 h with one buffer change.  The 

concentrated protein from the last step was further purified at room temperature by FPLC 

equipped with a Mono Q HR 16/10 column (GE Healthcare, Piscataway, NJ) using the 

solvent systems B (20 mM Tris·HCl buffer, pH 7.5) and C (B plus 0.6 M NaCl).  The 

elution profile included a linear gradient of 0 to 35% C over 40 mL, followed by a linear 

gradient of 35 to 60% C over 160 mL, and concluded with a 40 mL wash at 100% C.  

The flow rate was 7 mL/min, and the detector was set at 280 nm.  A peak with a retention 
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time of approximately 19 min was collected, concentrated by ultrafiltration as described 

before, and dialyzed against 1 L of 20 mM Tris·HCl buffer (pH 7.5) for 3 h with two 

buffer changes.  The purified protein was then aliquoted, flash frozen, and stored at -80 

°C. 

 

5.2.7. MOLECULAR MASS DETERMINATION. The molecular mass of Ps-HppE was 

determined by size exclusion chromatography performed on a FPLC Superdex 200 HR 

10/300 column (GE Healthcare, Piscataway, NJ) with an eluent of 20 mM Tris·HCl, 0.15 

M NaCl, pH 7.5, at a flow rate of 1 mL/min.  Calibration of the column was achieved 

using the following protein standards (Aldrich): cytochrome C (14.2 kDa), carbonic 

anhydrase (29 kDa), bovine serum albumin (66 kDa), alcohol dehydrogenase (150 kDa), 

and β-amylase (200 kDa).  The void volume (V0) of the column was measured using blue 

dextran (2000 kDa).  A linear fit to a plot of the Log molecular weight versus Ve/V0 was 

used to estimate the native molecular mass (Mr) of the protein sample.37  This experiment 

was conducted by Dr. Svetlana Borisova. 

 

5.2.8. NBT STAINING OF PS-HPPE. Detection of the presence of quinoid 

structure in the protein was performed according to a published procedure.38,39  The wild-

type HppE and its mutants were subjected to 15% SDS-PAGE and transblotted onto a 

nitro-cellulose membrane at 100 V for 1 h using a transfer buffer (25 mM Tris base, 192 

mM glycine, 20% methanol).  Detection of the presence of quinoid structure was 

performed according to a procedure of Paz et al.38 by immersing the membrane in a 

solution of 0.24 mM nitroblue tetrazolium and 2 M potassium glycinate, pH 10, for 45 

min.  After the membrane was rinsed with H2O, the stained bands were recorded. 
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5.2.9. ENZYME ACTIVITY ASSAYS. The enzyme activity was determined by an 

HPLC assay, which was conducted as previously described in Chapter 4.  Due to the 

slower rate of turnover of Ps-HppE compared to that of Sw-HppE, the concentrations of 

Ps-HppE, iron, and FMN used in the assays were doubled.  The final concentration of 

each reagent in a 50 μL assay was 100 μM Ps-HppE, 100 μM Fe(NH4)2(SO4)2, 150 μM 

FMN, 10 mM HPP, and  16 mM NADH  in 20 mM Tris•HCl buffer (pH 7.5).  To 

compare the activity of Ps-HppE to Sw-HppE, the assays were carried out on the same 

day and with the same stock of reagents for Sw-HppE.  The final concentrations in the 50 

μL Sw-HppE reactions were 50 μM Sw-HppE, 50 μM Fe(NH4)2(SO4)2, 75 μM FMN, 10 

mM HPP, and 16 mM NADH  in 20 mM Tris•HCl buffer (pH 7.5).  The amount of 

product formed was normalized by dividing by the concentration of HppE, which was 

then plotted versus time to determine kobs.  With the assumption that substrate is 

saturating, kobs is kcat.  Over the time scale used in all assays, the product formation was 

linear with respect to time. 

 

5.2.10. PRIMARY [2H] KINETIC ISOTOPE EFFECT.  The catalytic rate of HppE 

increases with increasing concentration of FMN.  To determine the ratio of FMN:Ps-

HppE where the increase in rate plateaus, the reaction with (R)-HPP (38) was conducted 

at increasing ratios of FMN:Ps-HPP by varying the concentration of FMN at a fixed 

concentration of Ps-HppE.  The final concentrations in the 50 μL reactions were 100 μM 

Ps-HppE, 100 μM Fe(NH4)2(SO4)2, 0.01-12.9 mM FMN, 10 mM (R)-HPP, and 16 mM 

NADH  in 20 mM Tris•HCl buffer (pH 7.5).  At each ratio, each reaction was incubated 

at room temperature for 20 min before being quenched with 50 μL of 2 M acetic acid and 

analyzed by HPLC as previously described.  The concentration of ketone (39) formed 

was plotted versus the FMN:Ps-HppE ratio to determine the saturating ratio.  It was 
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assumed that the saturating FMN:Ps-HppE ratio for the (R)-HPP (38) reaction is the same 

as the (S)-HPP (5) reaction.  To determine the 1° [2H]-KIE for hydrogen atom 

abstraction, the kobs was measured by the HPLC assay for (S)-HPP (5), (1R,2S)-1-[2H]-

HPP (31), (S)-1,1-[2H]2-HPP (35), (R)-HPP (38) and (R)-2-[2H]-HPP (20) at specified 

ratios of FMN to Ps-HppE.  The final concentrations in the 50 μL reactions to determine 

the KIE were 100 μM Ps-HppE, 100 μM Fe(NH4)2(SO4)2, 0.11-5 mM FMN, 10 mM 

HPP, and 16 mM NADH  in 20 mM Tris•HCl buffer (pH 7.5). 

 

5.2.11. NMR CHARACTERIZATION OF THE PS-HPPE’S PRODUCTS. 1H and 31P 

NMR’s were used to characterize the products of the reaction catalyzed by Ps-HppE with 

(S)-HPP (5) and (R)-HPP (38) as the substrates.  The conditions used were 150 μM Ps-

HppE, 150 μM Fe(NH4)2(SO4)2, 370 μM FMN, 40 mM (S)-HPP (5) or (R)-HPP (38), and 

40 mM NADH in 200 μL of 20 mM Tris•HCl buffer (pH 7.5).  The reactions were 

incubated at room temperature for 15 h.  The samples were then lyophilized to dryness 

and redissolved in 600 μL of D2O.  Spectral data of fosfomycin (6):1H NMR (300 MHz, 

D2O) δ 3.11 (1H, m, J = 5.4, 2-H), 2.66 (1H, d, J = 5.3, 18.6, 1-H), 1.33 (3H, d, J = 5.4, 

3-H); 31P NMR (D2O, 121 MHz) δ 10.9 (s).  Spectral data for 2-oxopropylphosphonic 

acid (39): 1H NMR (300 MHz, D2O) δ 2.81 (2H, d, J = 21.0 Hz), 2.16 ppm (3H, s); 31P 

NMR (D2O) δ 11.1 (s). 

 

5.2.12. EFFECTS OF METAL IONS ON THE ACTIVITY OF PS-HPPE. A systematic 

investigation to determine the metal ion(s) requirement for the activity of Ps-HppE was 

performed by including different redox-active metals, such as iron (Fe(NH4)2(SO4)2), 

copper (CuSO4), cobalt (CoCl2), and manganese (MnCl2), and the non-redox active 

metal, zinc (ZnSO4), in the reaction mixture, and assessing their effects on enzyme 
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activity.  A typical 50 μL reaction mixture contained 16 mM NADH, 10 mM (S)-HPP 

(5), 100 μM Ps-HppE, 150 μM FMN, and 100 μM of the investigate metal in 20 mM 

Tris·HCl buffer (pH 7.5).  After incubating at room temperature for 1.5 h, the reaction 

was quenched with 2 M acetic acid, and the relative activity of each sample was 

determined by the HPLC assay described above.  To further assess the metal ion 

requirement for the enzyme activity, the effect of the metal chelator, EDTA, on the 

catalysis of Ps-HppE was also examined.  In this case, the activity assay with Ps-HppE 

reconstituted with ferrous iron was repeated in the presence of 5 mM EDTA. 

 

5.2.13. THE DEPENDENCE OF PS-HPPE ACTIVITY ON OXYGEN.  In a sealed vessel, an 

assay mixture (1 mL) containing 200 μM Ps-HppE and 200 μM Fe(NH4)2(SO4)2 in 20 

mM Tris·HCl, pH 7.5, was made anaerobic by 15 repeated cycles of subjecting the 

mixture to vacuum and purging with argon. The mixture was kept under argon for 20 min 

followed by another 15 cycles of vacuum and argon purging to ensure anaerobic 

conditions. In a separate sealed vessel, a solution of 32 mM NADH, 300 μM FMN, and 

20 mM (S)-HPP (5) in the same buffer was made anaerobic by the same procedure.  The 

vessels were transferred to an anaerobic glove box, where 25 μL of each mixture was 

combined to start the assay.  The final concentrations of the reagents in 50 μL were 100 

μM Ps-HppE, 100 μM Fe(NH4)2(SO4)2, 150 μM FMN, 10 mM (S)-HPP, and 16 mM 

NADH.  After incubating for 1.5 h at room temperature, the reaction was quenched with 

50 μL of 2 M acetic acid.  The activity was then analyzed by the HPLC assay described 

above. 

 

5.2.14. DFT CALCULATIONS OF BOND DISSOCIATION ENERGIES.             To gain 

insight into the distinct regiospecificity observed in the reactions of HppE with (R)- and 
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(S)-HPP (38 and 5, respectively), electronic structure calculations were performed to 

estimate the bond dissociation enthalpies of the C1-H and C2-H bonds of HPP.  All 

calculations were performed using Gaussian98.40  Geometry optimizations were 

performed using Becke-style 3-Parameter Density Functional Theory (DFT) with the 

Lee-Yang-Parr correlation functional (B3LYP) and Pople’s diffuse polarized triple-ζ 6-

311+G(d,p) basis set with the Opt = Tight and Int = Ultrafine keywords.  The initial 

geometry of the heavy atoms of the substrate was taken from the crystal structure of Fe2+-

HppE in complex with (S)-HPP (5) (PDB accession number 1ZZ8).41  Vibration 

frequency calculations were then performed on the optimized geometries based on the 

same B3LYP/6-311+G(d,p) scheme at 25 °C and 1.0 Atm, using a scale factor of 0.9877 

to correct the zero-point vibrational energies.42  These calculations were performed by 

Dr. Steven O. Mansoorabadi. 

 

5.2.15. EPR SPECTROSCOPY. EPR first derivative spectra of Ps-HppE were 

collected at X-band microwave frequency with 100-kHz field modulation using a Bruker 

(Billerica, MA) EMX spectrometer with a 4119HS high-sensitivity resonator.  Sample 

temperature was maintained with an ITC503S temperature controller, an ESR910 liquid 

helium cryostat, and LLT650/13 liquid helium transfer tube (Oxford Instruments, 

Concord, MA).  The EPR parameters were obtained by simulation of the experimental 

spectra using an EPR program written by Dr. Frank Neese43 and were further verified in 

Bruker SimFonia.  The as-isolated Ps-HppE was made anaerobic by repeated cycles of 

evacuation and flushing with argon.  A molar equivalent of Fe(NH4)2(SO4)2 from an 

anaerobic stock solution was added to Ps-HppE to reconstitute it under anaerobic 

conditions.  For the sample with (S)-HPP bound, ten molar equivalents of anaerobic (S)-

HPP (5) were incubated with the ferrous reconstituted Ps-HppE in the EPR tube.  Nitric 
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oxide gas was passed over NaOH pellets to remove any acid impurities and then 

introduced into the substrate-bound enzyme samples through a gas-tight Hamilton 

syringe under argon.  The samples were frozen by slow immersion in liquid nitrogen for 

later EPR analysis.  Spin quantification was performed by double integration of the EPR 

spectra recorded under nonsaturating conditions at 20 K for comparison with a Cu-EDTA 

standard (0.5 mM).  The EPR samples were prepared by myself, and Dr. Aimin Liu 

helped with the analysis of the signal. 

 

5.2.16.  [18O] KINETIC ISOTOPE EFFECTS MEASUREMENTS. [18O]-KIEs were 

measured competitively as described previously.31,44  The 18O/16O ratios were measured 

using isotopic ratio mass spectrometry (Laboratory for Environmental and Sedimentary 

Geochemistry, Department of Earth and Planetary Science, UC Berkeley, CA).  The 

[18O]-KIEs were obtained by fitting the 18O/16O ratio of ratios versus fractional 

conversion according to Equation 5-2, where Rf is the 18O/16O isotopic ratio at f 

fractional conversion, and R0 is the isotopic ratio prior to the enzymatic reaction.  All 

KIEs are reported with errors of ± 1σ from the nonlinear regression fit to Equation 5-2. 
 

Equation 5-2 

1)/(1

0

18

)1( −−= OKIEf f
R
R

 

 

The [18O]-KIE experiments were carried out in 20 mM Tris-HCl buffer (pH 7.5), 

in the presence of 1 mM (S)-HPP (5) or (S)-1,1-[2H]2-HPP (35), 1.5 mM NADH, and 

0.4–0.6 mM O2.  Reactions were initiated by the addition of 3 μL of apo-Ps-HppE 

reconstituted with equimolar Fe(NH4)2(SO4)2, followed by the addition of FMN to 

minimize the background oxygen consumption.  Final concentrations were typically 8–12 
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μM HppE and 9–13 μM FMN.  The fractional conversions used for the [18O]-KIE 

measurements were between 20 and 60%.  The amount of O2 consumed was corrected for 

the background O2 consumption due to FMN, NADH and/or Fe(II) in the absence of 

enzyme.  In all experiments, the O2 consumed in non-enzymatic reactions accounted for 

less than 10% of the total O2 consumed.  The [18O]-KIE was also measured for the 

background oxygen consumption (at 11 μM FMN and 1.5 mM NADH), for comparison 

with the enzymatic reaction.  The [18O]-KIE experiments were conducted by Dr. Liviu 

Mirica in the lab of Prof. Judith Klinman at the University of California at Berkeley. 

 

5.2.17. CALCULATION OF 18O EQUILIBIUM ISOTOPE EFFECTS. The [18O]-EIEs for 

the reactions with O2 were determined as the product of three terms, ZPE, EXC and 

MMI, see Equation 5-1.45,46  All three terms are related to vibrational frequencies (ν) of 
18O– and 16O–containing reactants (R ≡ O2) and products (P), as shown in Equations 5-3, 

5-4 and 5-5, where the asterisk denotes the 18O-containing reactants or products, T is 

temperature in K, h is Planck’s constant, and k is Boltzmann’s constant.31  

Experimentally determined frequencies for Fe(III)-OO•, Fe(III)-OOH,47,48 and Fe(IV)=O 

species49 were used for calculation of the [18O]-EIE (Table 5-3).  For the asymmetric 

Fe(III)-O2• and Fe(III)-OOH, species, the 18O label can be at either the central or terminal 

position.  The populations of the two isotopic products are expected to be close to each 

other, hence the [18O]-EIE was calculated using the formula: [18O]-EIEcalc = 2/(18,16K–1 + 
16,18K–1).  The [18O]-EIE calculations were conducted by Dr. Liviu Mirica in the lab of 

Prof. Judith Klinman at the University of California at Berkeley. 
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Table 5-3: Vibrational frequencies (cm–1) of O2, H2O, and Fe/O2 species. 

Frequency (cm-1) Molecule Mode 
ν16-16

a ν18-18
a ν18-16

a ν16-18
a 

O2 O–Ob 1556 1467 1512 1512 
H2O H–Ob 3824 -c 3824 - 

 H–Ob 3939 - 3922 - 
 H-O-Hb 1654 - 1644 - 

Fe(III)-OO• Fe–Od 555 526 526 555 
 O–Od 1136 1066 1100e 1100e 

Fe(III)-OOH Fe–Of 621 599 599 621 
 O–Of 844 796 820e 820e 
 O–Hb 3539 - 3527 3539 
 O-O-Hb 1205 1199 1199 1204 

Fe(IV)=O Fe–Og 821 - 787 - 
a) Frequencies νx-x represent the modes for the species derived from x,xO2, the first label 
corresponding to the O atom closest to the metal center; b) Ref 31; c) Not applicable; d) Ref 50; 
e) ν18-16 was calculated as follows: ν18-16 = (ν16-16 ν18-18)½; f) Ref 48; g) Ref 49. 

 

5.3. RESULTS AND DISCUSSION 

5.3.1. CLONING, OVEREXPRESSION, AND PURIFICATION OF PS-HPPE.  The 

gene, orf3, coding for Ps-HppE which catalyzes the last step of fosfomycin biosynthesis 

in Pseudomonas syringae PB-5123, was amplified by PCR and cloned into the 

expression vector pET24b(+).  The resulting construct, pLH01, was used to transform E. 

coli BL21(DE3) cells.  The induction of orf3 expression by IPTG was conducted at 18 °C 

to minimize the formation of inclusion bodies. 

As shown in SDS-PAGE (Figure 5-5), the desired protein was isolated in nearly 

homogeneous form after ammonium sulfate fractionation and two anion exchange 

chromatographic steps (DEAE-Sepharose and MonoQ).  The subunit molecular mass of 

21 kDa, assessed by SDS-PAGE, correlates well with the predicted value of 21,315 Da 

calculated from the deduced amino acid sequence.  As determined by size exclusion 

chromatography, the purified recombinant Ps-HppE has a mass of 73 kDa in solution.  
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When Sw-HppE, which has a mass of 21,210 Da as a monomer, was analyzed under the 

same conditions, it yielded a mass of 95 kDa.  Based on the results of  X-ray 

crystallography, Sw-HppE has been determined to exist as a homotetramer.41  Since the 

observed mass for Sw-HppE is 11 kDa higher than the predicted mass for a 

homotetramer, and the Ps-HppE is 10 kDa higher than the predicted mass for a 

homotrimer, Ps-HppE likely exists as a homotrimer instead of homotetramer.  

Determination of the crystal structure for Ps-HppE is in progress, and the results will 

reveal if Ps-HppE is indeed a homotrimer. 

 

25 kDa
16.5 kDa

Ps-HppE

 
Figure 5-8: SDS-PAGE gel of as-purified (apo) Ps-HppE. 

 

5.3.2. SEQUENCE ANALYSIS. The epoxidation reaction catalyzed by Ps-HppE is 

identical to that catalyzed by Sw-HppE and is the final step in the biosynthesis of 

fosfomycin.  Interestingly, amino acid sequence alignment showed that the two enzymes 

share only 27% identity (Figure 5-6).  However, the residues that have been determined 

to be crucial for Sw-HppE are conserved in Ps-HppE.  These include Lys21, Tyr92, 

Tyr93, Tyr95, His128, Glu132, and His171 (the numbering given is based on the Ps-

HppE sequence).  His128, Glu132, and His171 are assigned to be the ligands responsible 

for iron binding in Ps-HppE, since the corresponding residues; His138, Glu142, and 

His180; in Sw-HppE have been determined to be the metal binding residues.41,51  The 
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proposed role for Lys21 in Ps-HppE is to stabilize the negative charge on the iron-peroxo 

intermediate generated during oxygen activation.  A similar function has been assigned to 

its counterpart, Lys23, in Sw-HppE based on the crystal structure as well as the 

mutagenesis results.41  The three conserved tyrosine residues; Tyr92, Tyr93, and Tyr95; 

are proposed to be part of a relay for shuttling electrons derived from NADH from the 

protein surface to reduce the active site iron.  This is based on the observation from the 

crystal structure of Sw-HppE, which undergoes a significant conformational change upon 

(S)-HPP binding.  It was noted that the three conserved tyrosine residues in the enzyme-

substrate complex align themselves in a row constituting a pathway extending from the 

surface of the protein to the active site.41 

 
Sw-HppE      1     MSNTKTASTGFAELLKDRREQVKMDHAALASLLGETPETVAAWENGEGGELTLTQLGRIA
Ps-HppE      1     M-DVRTLAVGKAHLEA-LLATRKMT---LEHLQDVRHDATQVYFDG------LEHLQNVA
Consensus               T   G A L        KM    L  L             G      L  L   A

Sw-HppE     61     HVLGTSIGALTP-PAGNDLDDGVIIQMPDERPILKGVRDNVDYYVYNCLVRTKRAPSLVP 
Ps-HppE     50     QYLAIPLSEFFVGQTQSDLDDGVKIARRNGGFKREEIRGGVHYYTYEHLVTTNQDPGLMA 
Consensus            L              DLDDGV I            R  V YY Y  LV T   P L  

Sw-HppE    120     LVVDVLTDNPDDAKFNSGHAGNEFLFVLEGEIHMKWG-DKENPKEALLPTGASMFVEEHV 
Ps-HppE    110     LRLDLHSDDEQPLRLNGGHGSREIVYVTRGAVRVRWVGDNDELKEDVLNEGDSIFILPNV 
Consensus          L  D   D       N GH   E   V  G     W  D    KE  L  G S F    V

Sw-HppE    179     PHAFTAAKGTGSAKLIAVNF-
Ps-HppE    170     PHSFTNHVGGAKSEIIAINYG
Consensus          PH FT   G      IA N

 

Figure 5-9: Protein sequence alignment of Ps-HppE and Sw-HppE. 

 

5.3.3. RECONSTITUTION OF EPOXIDASE ACTIVITY. As described above, Ps-HppE 

and Sw-HppE catalyze the same reaction, and the residues important for catalysis are 

conserved in both enzymes.  Thus, it is very likely that Ps-HppE utilizes the same 

chemistry as Sw-HppE to catalyze the epoxide formation.  To verify this contention, the 

as-purified Ps-HppE was reconstituted using the same procedures developed for Sw-

HppE with ferrous iron and assayed under aerobic conditions in the presence of FMN, 
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NADH and (S)-HPP.19  Formation of the product, fosfomycin (6), was detected by 

HPLC, and its chemical identity verified by 1H and 31P NMR.  If either iron, FMN or 

NADH was omitted from the reaction mixture, no product formation was discernible by 

HPLC.  Our results showed that NADH is essential and is consistent with its role to 

provide two of the four electrons needed for oxygen activation and the conversion of 

molecular oxygen to water (Figure 5-2).  FMN is also required.  This requirement may 

be ascribed to its role as an electron mediator in the reduction of the metal center by 

NADH.  Since oxygen is used to activate the iron center, when the incubation was carried 

out under an anaerobic environment, no epoxidase activity could be detected by the 

HPLC-based enzyme assay. 

 It was reported in a recent publication that Sw-HppE was not strictly iron-

dependent, because the zinc reconstituted enzyme retained reduced but measurable 

activity.52  Since zinc ion is redox-inert, a new mechanism that does not involve the 

reductive activation of molecular oxygen was proposed.  In this mechanism (Figure 5-7), 

the divalent metal ion acts as a Lewis acid to activate the C-2 hydroxyl group, which 

attacks C-1 with concurrent transfer of the pro-R hydrogen as a hydride to FMN.  It was 

later determined that the observed activity with the zinc Sw-HppE was an artifact.53  This 

“nucleophilic displacement-hydride transfer” mechanism could also be ruled out for Ps-

HppE, since no epoxidase activity could be detected with zinc reconstituted Ps-HppE.  

To explore if other redox active metals could substitute iron in the epoxidase assay, the 

catalytic property of Ps-HppE reconstituted with cobalt, copper and manganese was 

investigated.  No turnover could be detected using Ps-HppE carrying any of these metals.  

The fact that the addition of 5 mM EDTA abolished the activity of the iron reconstituted 

Ps-HppE further confirm the importance of iron in the catalysis. 
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Figure 5-10: Proposed nucleophilic displacement-hydride transfer mechanism for HppE. 

When using (R)-HPP (38) as the substrate, Sw-HppE catalyzed the conversion of 

the C-2 hydroxyl group to a ketone to yield 2-oxopropylphosphonic acid (39) as the 

product (Figure 5-8).54  Further investigation indicated that the stereochemistry at the C-

2 position of HPP determines the regiospecificity of the initial hydrogen atom 

abstraction.  In the mechanism depicted in Figure 5-2, when (S)-HPP binds to Sw-HppE, 

the C-1 pro-R hydrogen atom is abstracted, which leads to the production of fosfomycin.  

However, when (R)-HPP binds to Sw-HppE, it is believed that the C-2 hydrogen atom is 

abstracted, which leads to the formation of 2-oxopropylphosphonic acid (39).  It was 

investigated if Ps-HppE utilizes this method to control the regiospecificity of the initial 

hydrogen atom abstraction.  When the above activity assays for Ps-HppE where 

conducted using (R)-HPP as the substrate, the product 2-oxopropylphosphonic acid (39) 

was formed.  This was verified by 1H and 31P NMR spectroscopy. 
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Figure 5-11: The HppE catalyzed reaction with (R)-HPP as the substrate. 

 

5.3.4. ACTIVITY FOR (S)-HPP AND (R)-HPP. To determine how the activity of Ps-

HppE compares to Sw-HppE, the rate of catalysis was determined separately using (S)-

HPP (5) and (R)-HPP (38) at saturating concentration.  To determine the optimal 

substrate concentration for the assay, the amount of product formation was measured 

after 20 min incubation using 5, 10, 15 and 20 mM substrate.  Since all four substrate 

concentrations resulted in the same amount of product formation, 10 mM substrate was 

set as the saturating concentration.  Due to the reduced activity of Ps-HppE with respect 

to Sw-HppE, the concentrations of Ps-HppE, Fe(NH4)2SO4 and FMN were doubled.  The 

ratio of 1:1:1.5 for HppE to Fe(NH4)2SO4 to FMN was held constant for all assays. 
 

Table 5-4:  Rate constants for reactions at 1.5:1 FMN to HppE ratio. 

Substrate Ps-HppE Sw-HppE 
(S)-HPP (5) 
kobs (min-1) 0.17 ± 0.02 0.31 ± 0.06 

(R)-HPP (38) 
kobs (min-1) 0.33 ± 0.04 0.58 ± 0.02 

 

As seen in Table 5-4, the observed rate constants for both enzymes with both 

substrates are of similar magnitudes.  Two observations are worthy of comments.  The 

first is that the Sw-HppE is roughly 1.8 times faster than Ps-HppE for both (S)-HPP and 

(R)-HPP.  It appears that Sw-HppE is a more effective epoxidase.  Secondly, the reaction 

rate for (R)-HPP (38) is 1.9 times faster than that for (S)-HPP (5) using either Sw-HppE 

or Ps-HppE.   
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To determine how rate-limiting hydrogen atom abstraction is for the (S)-HPP (5) 

and (R)-HPP (38) reactions, the 1° [2H]-KIE was determined for both.  It has previously 

been demonstrated that the C-1 pro-R hydrogen atom is abstracted in the conversion of 

(S)-HPP to fosfomycin,55 and for the turnover of (R)-HPP to 39, it is the C-2 hydrogen 

atom that is abstracted.54  When the [2H]-KIE was determined for the (S)-HPP reaction, 

using (S)-1,1-[2H]2-HPP (35) as the labeled substrate and at a FMN to Ps-HppE ratio of 

1.1:1, a [2H]-KIE of 1.10 ± 0.04 was measured.  Since this [2H]-KIE was determined with 

(S)-1,1-[2H]2-HPP (35), it results from the 1° [2H]-KIE on hydrogen atom abstraction and 

from the 2° [2H]-KIE on radical formation (sp3 to sp2) and ring-closure (sp2 to sp3).   The 

2° [2H]-KIE on radical formation will be small and normal, while the 2° [2H]-KIE on 

ring-closure will be small and inverse.  Since ring-closure is not expected to be 

significantly rate-limiting, the impact of the inverse isotope effect should be small.  

Either way, due to the difference in magnitude of a 1° [2H]-KIE versus a 2° [2H]-KIE; the 

measured [2H]-KIE will be dominated by the 1° [2H]-KIE.  The 1° [2H]-KIE for the (R)-

HPP (38) reaction was determined with (R)-2-[2H]-HPP (20) as the labeled substrate and 

at an FMN to Ps-HppE ratio of 1.5:1.  The measured 1° [2H]-KIE was 1.07 ± 0.07.  The 

observed [2H]-KIEs for both reactions are smaller than is expected for a 1° [2H]-KIE; 

therefore, a step other than hydrogen atom abstraction is rate-limiting, presumably 

electron transfer to the active site iron. 

It is known that the rate of reaction increases with increasing FMN, presumably 

due to an increased rate in electron transfer to the active site iron.  In order to reduce the 

commitments to catalysis, which could have masked the previous 1° [2H]-KIEs, the [2H]-

KIEs were re-measured at an FMN:Ps-HppE  ratio where the rate enhancement of FMN 

is saturated.  To determine this saturating FMN:Ps-HppE  ratio, the (R)-HPP reaction was 

conducted at varying ratios of FMN:Ps-HppE.  At each ratio, the reaction incubated for 
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20 min before being quenched and analyzed by HPLC.  The amount of product (39) 

formed was plotted versus the respective FMN:Ps-HppE  ratio.  From the plot in Figure 

5-12, an FMN to Ps-HppE ratio of 50:1 was chosen.  It was assumed that this ratio is 

saturating for the (S)-HPP reaction as well.  For the (S)-HPP [2H]-KIE measurement at 

this FMN ratio, (1R,2S)-1-[2H]-HPP (31) was used as the labeled substrate; therefore 

there is no 2° [2H]-KIE to complicate the analysis.  From the results in Table 5-5, it is 

evident that hydrogen atom abstraction does become more rate-limiting for the (S)-HPP.  

The measured 1° [2H]-KIE is smaller than what would be expected for an intrinsic 1° 

[2H]-KIE.  Thus the hydrogen abstraction step is believed to be partially rate-limiting, 

and electron transfer may still be the predominant rate-limiting step.  For the (R)-HPP 

reaction, there is again no significant [2H]-KIE, so the abstraction is still not significantly 

rate-limiting. 
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Figure 5-12: Plot of the product (39) from the reaction of (R)-HPP (38) with Ps-HppE at 

varying ratios of FMN to Ps-HppE. 
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Table 5-5: Summary of 1° [2H]-KIE results at a different FMN to Ps-HppE ratios. 

 FMN:Ps-HppE   
(50:1) 

FMN:Ps-HppE 
(1.5:1) 

FMN:Ps-HppE 
(1.1:1) 

Substrate kobs dkobs kobs dkobs kobs dkobs 

(S)-HPP (5) 0.46 ± 
0.04 -- ND -- 0.199 ± 

0.002 -- 

(1R,2S)-1-[2H]-HPP 
(31) 

0.31 ± 
0.03 1.5 ± 0.2 ND ND ND ND 

(S)-1,1-[2H]2-HPP 
(35) ND ND ND ND 0.18 ± 

0.007 
1.10 ± 
0.04 

(R)-HPP (38) 1.12 ± 0.1 -- 0.45 ± 
0.03 -- ND -- 

(R)-2-[2H]-HPP (20) 1.12 ± 0.1 1.08 ± 
0.14 

0.42 ± 
0.01 

1.07 ± 
0.07 ND ND 

 

The reduced rate for the Ps-HppE reaction with (S)-HPP compared to with (R)-

HPP reaction and the small but significant 1° [2H]-KIE for (S)-HPP versus the KIE of 

unity for (R)-HPP implies that hydrogen atom abstraction is slower and more rate-

limiting for (S)-HPP than (R)-HPP.  There are two possible explanations for the 

difference in rates for C-2 hydrogen atom abstraction in the (R)-HPP reaction versus C-1 

hydrogen atom abstraction in the (S)-HPP reaction.  It is possible that the C-2 hydrogen 

for bound (R)-HPP is closer to the reactive oxygen species than the C-1 hydrogen for the 

bound (S)-HPP, thus reducing the barrier for abstraction.56  The rate difference is likely 

due to the difference in the energetics of the hydrogen being abstracted and the stability 

of the resulting substrate radical.  Based on DFT calculations, the bond dissociation 

energies (BDE) for the C-1 hydrogen and the C-2 hydrogen are 96.5 and 89.0 kcal/mol, 

respectively.  Thus, the thermodynamic energy barrier for hydrogen atom abstraction in 

the (R)-HPP reaction is 7.5 kcal/mol lower than in the (S)-HPP reaction.  This may 

account for the observed rate difference of the two substrates. 
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5.3.5. EPR CHARACTERIZATION OF PS-HPPE.  EPR spectra of Ps-HppE-

Fe(II) nitrosyl complexes, in the presence and absence of substrate, are shown in Figure 

5-13.  The corresponding EPR spectra of Sw-HppE-Fe(II) are also shown in this figure in 

dashed traces for comparison.  In the absence of (S)-HPP (5), the EPR spectrum of the 

Ps-HppE-NO complex consists of two sets of axial EPR signals of the Fe-nitrosyl 

complexes in an 88:12 ratio.  The major axial species exhibits an isotropic resonance 

component at g = 3.96 and a V-shaped resonance at 2.00 (not shown).  This is typical for 

an S = 3/2 non-heme {Fe-NO}7 species with  an E/D value of 0.01 and D > 0.  The minor 

species is also an S = 3/2 {Fe-NO}7 complex, but less axial, with principal g values of 

4.30, 3.69, and 2.00 (E/D value of 0.05).  In contrast, an apparent heterogeneity is 

observed for Sw-HppE, with two similar species present in a 3:7 ratio.19  Thus, the Fe(II) 

center in Ps-HppE appears to be more uniform than that in Sw-HppE. 
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Figure 5-13: EPR spectra of reduced HppE-Fe(II) nitrosyl complexes at 4 K: (A) 250 μM 
Ps-HppE (solid trace) or Sw-HppE (dashed trace) in the presence of NO; (B) 
the ternary complex of substrate-HppE- NO (Ps-HppE, solid trace; Sw-
HppE, dashed trace).  Substrate was present in 10-fold excess. The spectrum 
shown also contains a minor species (ca. 5%) due to a denatured protein-
bound Fe-NO complex (g = 4.07) which was previously characterized.19  
Instrumental conditions: microwave power, 0.5 mW; modulation amplitude, 
5 G; time constant, 0.02 s; and sweep rate: 50 G/s. The g-scale is plotted on 
the top of the spectra. 

 

Although the ferrous center of Sw-HppE can react with NO and form two 

spectroscopically distinguishable complexes, we have previously found that only a 

uniform substrate-Fe-NO complex of Sw-HppE (g = 4.42, 3.63, and 1.97, E/D = 0.066) is 

formed in the presence of substrate (S)-HPP (5).19  These results suggested that the 

substrate likely binds to the active site iron center first, and as such organizes the center 

to bind NO, an O2 analogue, only in one conformation.  In contrast, in the presence of 

(S)-HPP, the EPR spectrum of the nitrosyl complex of Ps-HppE-Fe(II) presents apparent 

heterogeneity.  Two sets of EPR signals are observed (in a 3:7 ratio); both can be 
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attributed to the substrate-enzyme-NO ternary complexes.  This is opposite to the prior 

Sw-HppE result.  The minor ternary complex (30%) observed for Ps-HppE exhibits the 

same EPR parameters as those previously observed for Sw-HppE (g = 4.42, 3.63, and 

1.97, E/D = 0.066).  The major ternary complex (70%) having g = 4.33, 3.74, and 2.00, 

E/D = 0.059, is less rhombic. 

The above results indicate that substrate and NO could bind to the ferrous center 

of the reduced Ps-HppE enzyme to form a stable complex.  But the heterogeneity EPR 

signals observed for the ternary complex of Ps-HppE suggest that substrate binding to the 

active site Fe(II) ion may lead to two different conformations.  Our recent isotope 

labeling study showed that the uniform EPR signal for the ternary complex of Sw-HppE 

is a result of the substrate coordination to the Fe(II) ion in a bidentate fashion.57  This 

same species is also seen in the Ps-HppE ternary complex, albeit it represents only 30% 

of the total iron.  The remaining 70% of the ternary complex may be in a form of 

monodentate coordination of substrate onto the metal center.  This is an intermediate step 

towards the bidentate binding to the active site Fe ion. 

 

5.3.6. POST-TRANSLATIONAL HYDROXYLATION OF PS-HPPE.  The reconstituted 

ferrous form of Ps-HppE is colorless.  However, when the protein is exposed to air, it 

slowly turns green in color. The optical spectrum of this green protein exhibits a broad 

band around 600-750 nm having a λmax at 672 nm with a molar absorption coefficient of 

approximately 409 (M of Fe)-1·cm-1 (Figure 5-14).  A similar peak formed with a λmax at 

680 nm and a molar extinction coefficient of 450 (M of Fe)-1·cm-1 was previously 

observed when the reconstituted ferrous form of Sw-HppE was exposed to air.19  Further 

investigation showed that the color change in Sw-HppE is due to a post-translational 

hydroxylation of Tyr105 to DOPA.39  The green chromophore arises from a ligand to 
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metal charge transfer transition of a bidentate catecholate-iron (III) complex formed 

between the active-site iron center and the modified tyrosine.  A similar post-

translationally hydroxylate ion of Tyr95 (the Tyr105 equivalent in Ps-HppE) to DOPA, 

may also occur when ferrous reconstituted Ps-HppE is exposed to air leading to the 

formation of the bidentate catecholate-iron (III) complex. 

 

 

Figure 5-14: Electronic absorption spectrum of as-purified Ps-HppE that has been 
reconstituted with 1.1 equivalents of Fe(NH4)2(SO4)2.  

 

To verify the occurrence of the catecholate residue, the isolated Ps-HppE was 

subjected to the Paz’s quinone staining reagents including glycine and nitroblue 

tetrazolium (NBT).38  If a quinone is present, it can oxidize the glycine in solution.  The 

reduced quinone then reacts with dioxygen to generate superoxide, which oxidizes NBT 

to generate a blue-purple compound.  As shown in Figure 5-15, the stain produced a 

positive result indicating the presence of quinone in Ps-HppE.  It is therefore highly 

likely that Tyr95 is post-translationally hydroxylated to DOPA.  The significance of this 

modification in HppE is currently under investigation. 
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Figure 5-15: As-purified Ps-HppE was run on SDS-PAGE gel and transfered 
electrophoritically to nitrocellulose membrane.  The membrane is then 
temporarily stained for proteins with Ponccaus (left) and then NBT stained 
(right) to detect the presence of quinone. 

5.3.7. [18O]-KIE Analysis of Ps-HppE. 
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Figure 5-16: Isotope fractionation plots for (S)-HPP (5) (●) and (S)-1,1-[2H]2-HPP (35) 

(■).  The fits for obtaining [18O]-KIEs are shown in solid for (S)-HPP (5) and 
dashed for (S)-1,1-[2H]2-HPP (35). Conditions: Ps-HppE: 10 μM HppE, 0.4–
0.6 mM O2, 1 mM (S)-HPP or (S)-1,1-[2H]2-HPP, 11 μM FMN, 1.5 mM 
NADH, 20 mM Tris-HCl (pH 7.5), 25 ºC. 
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The [18O]-KIE was determined from the data in Figure 5-16 for the Ps-HppE 

reaction with (S)-HPP and separately with (S)-1,1-[2H]2-HPP (35), and these values are 

reported in Table 5-6.  As described above, the values in Table 5-6 are [18O]-KIEs on 

kcat/KM(O2), which reflect changes in the oxygen bond order that occur in all steps from 

initial O2 binding up to and including the first irreversible step.44  To help interpret the 

measured [18O]-KIEs, [18O]-EIEs were calculated from vibrational frequencies from 

Table 5-3 of the reactants and possible oxygen products, following the formalism 

developed by Bigeleisen and Mayer.45  These calculated [18O]-EIEs (see Table 5-7) can 

be used as upper limits for the measured [18O]-KIEs,30,32,33 allowing a direct comparison 

between model reactions and experimental values. 

 
Table 5-6: Summary of experimental [18O]-KIEs 

Substrate [18O]-KIE 
(S)-HPP (5) 1.0120 ± 0.0002 

(S)-1,1-[2H]2-HPP (35) 1.0136 ± 0.0002 

 
Table 5-7: Calculated [18O]-EIEs using vibrational frequencies. 

Reaction ZPE EXC MMI [18O]-EIEcalc [18O]-EIEnet
a 

Fe(II) O2 Fe(III)-O2+       
Fe-18O-16O• 0.9493 0.9887 1.0590 0.9939  
Fe-16O-18O• 1.0193 0.9994 1.0037 1.0224 1.0080 

      

Fe(II) O2 Fe(III)-OOH+
e-, H+

      
FeIII-18O16OH 0.9947 0.9921 1.0370 1.0234  
FeIII-16O18OH 1.0044 0.9979 1.0087 1.0110 1.0172 

      

Fe(II) O2 Fe(IV)=O + H2O+
2e-, 2H+

 
     

FeIV=18O, H2
16O 1.0239 0.9967 1.0138 1.0347  

FeIV=16O, H2
18O 1.0414 1.0001 0.9820 1.0228 1.0287 

a The net 18O EIE was calculated using the formula: 18EIEnet = 2/(18,16EIE–1 + 16,18EIE–1).31 
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Comparing the measured [18O]-KIE for (S)-HPP (5) of 1.0120 ± 0.0002 with the 

calculated [18O]-EIEs, the oxygen product formed in the rate-limiting step appears to be 

Fe(III)-hydroperoxide, which would be either species 10 or 11 in Figure 5-2.  The [18O]-

KIE is slightly lower than the calculated [18O]-EIE for Fe(III)-hydroperoxide of 1.0172; 

however, it is similar to the experimentally determined [18O]-EIE of 1.0113 ± 0.0005 for 

Hr, which does form a Fe(III)-OOH as its product.31  From the [18O]-KIE measured with 

(S)-1,1-[2H]2-HPP (35) as the substrate (1.0136 ± 0.0002), it can be concluded that the 

[18O]-KIE is mechanistic in origin.  If the [18O]-KIE was dominated by O2 binding, the 

[18O]-KIE would not change when measured with a deuterated substrate.  The fact that 

the [18O]-KIE did increase when (S)-1,1-[2H]2-HPP (35) was the substrate also implies 

that the step giving rise to the [18O]-KIE becomes more rate-limiting with the deuterated 

substrate.  The change in [18O]-KIE with (S)-1,1-[2H]2-HPP (35) as the substrate also 

requires that hydrogen atom abstraction occurs before or in the first irreversible step.  The 

first irreversible step is believed to be the first electron transfer from reduced FMN to the 

active site iron.  If Fe(III)-superoxide (9) (path a in Figure 5-2) is the reactive species, 

the first irreversible step will be 10→13, and if either Fe(III)-hydroperoxide (11) or 

Fe(IV)-oxo (12) (paths b and c in Figure 5-2, respectively), then the first irreversible 

step will be 9→11.  If the reactive species was either Fe(III)-hydroperoxide (11) or 

Fe(IV)-oxo (12) is the reactive species, hydrogen atom abstraction will occur after the 

first irreversible step; thus there would be no change in the [18O]-KIE when using the 

deuterated substrate.  Of the different mechanisms depicted in Figure 5-2, only in path a, 

where Fe(III)-superoxide (9) is the reactive species, does hydrogen atom abstraction 

occur before or in the first irreversible step. Therefore, based on the increase in the [18O]-

KIE when using the deuterated substrate, (S)-1,1-[2H]2-HPP (35), versus (S)-HPP; the 
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reactive oxygen species in the Ps-HppE reaction, and presumably the Sw-HppE reaction, 

is Fe(III)-superoxide (9). 

Superoxide has been proposed as the reactive oxygen species in the copper-

dependent enzymes, dopamine β-monooxygenase (DβM)58 and peptidylglycine α-

amidating monooxygenase (PHM),59 in the binuclear non-heme iron dependent, myo-

inositol oxygenase (MIOX),60 and in the mononuclear non-heme iron-dependent, 

isopenicillin N-synthase (IPNS).25  The mechanism of IPNS is displayed in Figure 5-17.  

The IPNS reaction begins with the binding of the substrate, δ-(L-α-aminoadipoyl)-L-

cysteinyl-D-valine (ACV, see 41).25,61  The binding of the thiolate group of ACV to the 

active site iron produces a five-coordinate iron, which leaves the sixth site open for 

oxygen binding.  Dioxygen now binds to the ferrous iron at the available coordination 

site, where it is reduced by an inner-sphere electron transfer from iron(II) to yield Fe(III)-

superoxide (42).  The reactive species for the first oxidative ring closure, formation of the 

β-lactam ring, is believed to be this Fe(III)-superoxide (42); however, it has not been 

experimentally verified.  The Fe(III)-superoxide (42) is believed to abstract a hydrogen 

atom from the cysteine β-carbon to form the substrate radical and Fe(III)-hydroperoxide 

(43).  The substrate is then further oxidized by a second single electron transfer to the 

iron to form the thioketone and Fe(II)-hydroperoxide (44).  The O-O bond of the 

peroxide is then cleaved heterolytically to generate Fe(IV)-oxo (45), which abstracts the 

unactivated hydrogen atom from the valine β-carbon.  Similar in fashion to the oxygen 

rebound mechanism of cytochrome P450 and the ring-closure reaction proposed for 

HppE (Figure 5-2), the resulting substrate radical attacks the thiolate to close the 

thiazolidine ring with concurrent homolytic cleavage of the Fe-S bond. 
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Figure 5-17: Proposed mechanism of isopenicillin N-synthase (IPNS). 

 

Fe(III)-superoxide (42) has not been experimentally verified as the reactive 

species for IPNS, as it has for MIOX60 and DβM.58  Through the use of semi-empirical 

density functional theory (DFT) calculations that were guided by variable-temperature, 

variable-field magnetic circular dichroism (VTVH-MCD) experiments, the labs of Profs. 

Lipscomb and Solomon were able to determine Fe(III)-superoxide (42) to be an 

energetically accessible reactive species for the IPNS reaction.26  The formation of an 

Fe(III)-superoxide species is not typically a favored reaction.  In other mononuclear non-

heme iron-dependent enzymes, this is overcome by distal oxygen inserting itself into 

either the substrate, as in extradiol catechol dioxygenases, or co-substrate, as in the α-

KG- and pterin-dependent enzymes.  They determined that the charge donation from the 
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thiolate of ACV stabilizes the oxidation Fe(II) to Fe(III), which allows the IPNS-ACV 

complex to form a now energetically favorable Fe(III)-superoxide complex (42). 

It is possible that HppE utilizes a similar strategy to stabilize the HppE-Fe(III)-

superoxide complex (9) from charge donation.  From EPR and X-ray crystallography 

results with Sw-HppE, it is known that (S)-HPP (5) binds the iron in a bidentate manner 

(8) through the hydroxyl group and a phosphonate oxygen.41,57  Thus, there could be 

stabilizing charge donation from the C-2 oxygen, assuming it is deprotonated when 

bound to iron, and/or from the phosphonate oxygen.  It is also possible that the positively 

charged Lys21 (Lys23 in Sw-HppE) stabilizes the negative charge that develops on 

oxygen in the superoxide complex.  Thus HppE could stabilize the Fe(III)-superoxide 

species (9) in a push-pull type manner.  This Fe(III)-superoxide stabilizing mechanism 

will also prevent the formation of a reactive oxygen species that could possibly damage 

the enzyme if the substrate is not present.  Compared to other metaloenzymes where a 

metal-superoxide is believed to be the reactive species that abstracts a hydrogen atom 

from the substrate, the BDEs of the abstracted hydrogen atom in those cases are all lower 

than the BDE of the hydrogen atom that is abstracted in the (S)-HPP (5) reaction (see 

Table 5-8).  The closest in energy is the β-C-H bond in the IPNS reaction, the only other 

mononuclear non-heme iron enzyme proposed to utilize metal-superoxide as the reactive 

species.  Thus the C-1 hydrogen of (S)-HPP (5) has the highest thermodynamic energy 

barrier for a hydrogen atom that is abstracted by a metal-superoxide in an enzyme 

catalyzed reaction. 
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Table 5-8: Summary of BDEs of the different hydrogen atoms abstracted by a metal-
superoxide. 

Enzyme BDE of H-atom 
abstracted (kcal/mol) 

HppE ((S)-HPP, 5) 96.5 
HppE ((R)-HPP, 38) 89.0 

DβM 85a 

PHM 87b 

MIOX 91c 
IPNS (β-C-H bond) 93d 

a) Ref. 62; b) Ref. 63; c) Ref. 64; d) Ref. 65. 
 

5.4 CONCLUSION 

In this study, the newly isolated Ps-HppE was established to be an iron dependent 

enzyme, which catalyzes the same reactions and requires the same components; iron, 

FMN, NADH, and O2; as Sw-HppE.   As implicated by the EPR results, dioxygen is 

activated in the reaction with the aid of ferrous iron, to a reactive species in order to 

abstract a hydrogen atom from the substrate.  To complete the oxygen activation cycle, 

four electrons are consumed.  Two of the electrons are supplied by the substrate, and the 

remaining two are provided by NADH.  Due to the fact that reduction of iron requires 

single electron transfer and NADH is incapable of single electron transfer, FMN is 

needed to mediate the two single electron transfers from NADH to reduce the active site 

iron.  Since no suitable reductase gene can be found in the S. wedmorensis and P. 

syringae fosfomycin biosynthetic gene clusters, a promiscuous reductase may serve the 

role as electron mediator in vivo. 

On the basis of sequence comparison with Sw-HppE, Ps-HppE utilizes two 

histidines and one glutamate residue as ligands to bind the active site iron.  Thus, Ps-

HppE is a new member of the growing superfamily of non-heme iron-dependent enzymes 

that contain the 2-His-1-carboxylate facial triad to bind and activate iron.  This family of 

enzymes have proven to be remarkably versatile in the types of reactions they catalyze.20  
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According to Koehntop et al., this superfamily of enzymes can be devided into five 

classes: extradiol cleaving catechol dioxygenases, Rieske dioxygenases, α-ketoglutarate-

dependent enzymes, pterin-dependent enzymes, and “other” oxidases.66  The fifth family 

of enzymes is described as a “catch all” for the unique enzymes that can not be included 

in one of the other four families.  The “other” family includes IPNS, 1-

aminocyclopropane-1-carboxylic acid oxidase and Sw-HppE.  From the results reported 

herein, Ps-HppE has been demonstrated to require the same components for activity and 

catalyze the same unique reaction as Sw-HppE.  Ps-HppE is therefore a second example 

of a member in the superfamily of enzymes that utilize the 2-His-1-carboxlyate facial 

triad that catalyzes this unusual epoxidation reaction, and it can be further subdivided as a 

member of the “other” division in this superfamily. 

Based on the comparison of the measured [18O]-KIE to the calculated [18O]-EIEs, 

Ps-HppE forms Fe(III)-hydroperoxide (10) in the rate-limiting step (looking up to and 

including the first irreversible step).  When the [18O]-KIE was measured using a 

deuterated (S)-HPP that would produce a 1° [2H]-KIE on hydrogen atom abstraction, the 

[18O]-KIE increased.  Since the [18O]-KIE only takes into account the steps up to and 

including the first irreversible step, the hydrogen atom abstraction must occur before or 

be part of the first irreversible step to have an effect on the [18O]-KIE.  When the 

proposed mechanisms for the different possible reactive oxygen species (see Figure 5-2) 

were examined for when hydrogen atom abstraction occurred in relation to the first 

irreversible step, only in the mechanism with Fe(III)-superoxide (9) as the reactive 

species did hydrogen atom abstraction occur before or in the first irreversible step.  

Therefore, the reactive oxygen species that abstract the C-1-hydrogen of (S)-HPP (5), and 

presumably the C-2 hydrogen of (R)-HPP (38), in the HppE reaction is Fe(III)-superoxide 
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(9).  This is the first experimental evidence of Fe(III)-superoxide as the reactive oxygen 

species in a mononuclear non-heme iron-dependent enzyme. 

The method of C-O bond formation catalyzed by Sw-HppE was believed to be 

unique among Nature; however, with the characterization reported herein of Ps-HppE, it 

is evident that there is another example.  In these two reactions, an important factor is 

believed to be the coordination of the reacting oxygen to the active site iron.  There are 

two α-KG dependent enzymes, hyoscyamine 6β-hydroxylase (H6H)67 and clavaminic 

acid  synthase (CAS),68 that catalyze similar C-O bond formations (see Figure 5-18); 

however, for the standard oxygen activation mechanism in α-KG dependent enzymes,24 

there is no available coordination site for the reacting oxygen.  It will be interesting to 

determine if the chemistry utilized by Sw-HppE and Ps-HppE for C-O bond formation is 

more widely used, and if it has been adapted for the α-KG dependent enzymes, H6H and 

CAS. 
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Figure 5-18: Reactions catalyzed by the α-KG-dependent H6H and CAS. 
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