
The Thesis committee for Hayes Elliott Converse

Certifies that this is the approved version of the following thesis:

Non-Semantics-Preserving Transformations For Higher-Coverage Test Generation Using

Symbolic Execution

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid, Supervisor

Dewayne Perry

Non-Semantics-Preserving Transformations

For Higher-Coverage Test Generation Using

Symbolic Execution

by

Hayes Elliott Converse, B.S.

Thesis

Presented to the Faculty of the Graduate school

at the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas At Austin

May 2016

Acknowledgements

The initial conception and driving force behind the ideas presented herein can be credited

to Sarfraz Khurshid, professor of computer engineering at UT Austin. He similarly enabled

the research that inspired this study, Shiyu Dong’s study of compiler optimizations and their

interplay with symbolic execution. The author would also like to thank Shiyu for enthusiastic

co-operation.

This work would not have been possible without the constant support and advice of Oswaldo

Olivo of UT Austin’s Computer Science department; each meeting with him opened up doors

that were previously closed.

The author must extend the most heartfelt thanks to his longtime friend Laura Jones for her

willingness to spend many hours editing a paper in a subject she knew nothing about.

Finally, the author would like to thank Mark Harman and Christian Cadar for their contribu-

tions to the foundational knowledge base of this project.

This work would funded in part by the National Science Foundation (NSF Grant Nos. CCF-

0845628 and CNS-1319858).

iii

Non-Semantics-Preserving Transformations

For Higher-Coverage Test Generation Using

Symbolic Execution

by

Hayes Elliott Converse, M.S.E.

The University of Texas at Austin, 2016

SUPERVISOR: Sarfraz Khurshid

Symbolic execution is a well-studied method that can produce high-quality test suites for

programs. However, scaling it to real-world applications is a significant challenge, as it de-

pends on the expensive process of solving constraints on program inputs. Our insight is that

non-semantics-preserving program transformations can reduce the cost of symbolic execu-

tion and the tests generated for the transformed programs can still serve as quality suites

for the original program. We present several such transformations that are designed to im-

prove test input generation and/or provide faster symbolic execution. We evaluated these

optimizations using a suite of small examples and a substantial subset of Unix’s Coreutils.

In more than 50% of cases, our approach reduces the test generation time and increases the

code coverage.

iv

Contents

Acknowledgements iii

Abstract iv

List of Tables vii

List of Figures viii

Chapter 1 Introduction 1

Chapter 2 Foundations 4

2.1 Symbolic Execution . 4

2.2 LLVM and KLEE . 5

2.3 Compiler Optimizations and Testability Transformations 5

Chapter 3 Motivating Examples 7

Chapter 4 Our Transformation Techniques 13

4.1 Basis for Transformations . 13

4.2 Transformation Design and Implementation: The Slicer 14

Chapter 5 Evaluation 17

5.1 Test Subjects . 17

5.2 Independent Variables . 17

5.3 Dependent Variables . 18

5.4 Methodology . 19

5.5 Results . 19

5.5.1 Small Examples . 19

5.5.2 Unix’s Coreutils . 20

v

5.6 Analysis . 22

5.6.1 Overall Performance . 22

5.6.2 Caching Disabled . 23

5.6.3 Caching Enabled . 24

5.7 Threats to Validity . 25

Chapter 6 Related Work 27

Chapter 7 Conclusion 29

Appendix A Example Results 30

Appendix B Coreutils Results 33

Bibliography 49

vi

List of Tables

5.1 Average time taken by each slicer mode. 20

5.2 Notable coverage change results. 21

5.3 Number of programs with execution times noticeably decreased. 21

5.4 Average change in coverage percentage after enabling caching. 21

5.5 Average change in the number of queries after enabling caching. 22

5.6 Average change in execution time after enabling caching. 22

5.7 Number of Coreutils improved by each slicer mode 23

5.8 Average changes in coverage by slicer mode for Coreutils, cache disabled. . . . 23

5.9 Average changes in queries by slicer mode for Coreutils, cache disabled. 24

5.10 Average changes in coverage by slicer mode for Coreutils, cache enabled. . . . 25

5.11 Average changes in queries and execution time by slicer mode with caching

for Coreutils. 25

5.12 Average changes in queries by slicer mode for Coreutils, cache enabled. 25

A.1 Coverage, Query, and Execution Time Results for small example programs,

cache disabled . 31

A.2 Coverage, Query, and Execution Time Results for small example programs,

cache enabled . 32

B.1 Coverage, Query and Execution Time Results for Coreutils, Caching Disabled . 40

B.2 Coverage, Query and Execution Time Results for Coreutils, Caching Enabled . 48

vii

List of Figures

3.1 Program p with two loops. 8

3.2 Program ptr ans f or m , equivalent to p with the second loop removed. 8

3.3 CFG for program p. 8

3.4 CFG for program ptr ans f or m . 9

3.5 Program q with a conditional structure contained in a loop. 9

3.6 Program qtr ans f or m , equivalent to q with the loop terminated after a single

iteration. 9

3.7 CFG for program q . 11

3.8 CFG for program qtr ans f or m . 12

4.1 Pseudocode for Mode 1. 15

4.2 Pseudocode for Mode 2. 15

4.3 Pseudocode for Mode 3. 16

4.4 Pseudocode for Mode 4. 16

4.5 Pseudocode for Mode 5. 16

viii

Chapter 1

Introduction

Symbolic execution [1, 2] is a powerful method for software verification and validation, with

applications in the processes of automatic mutation generation, data flow testing, and patch

generation, among others [3–5]. A symbolic execution engine performs a dynamic path-

based analysis of a program, allowing it to explore a large percentage of that program’s bounded

behavior space. Suitable test inputs are selected using the solutions to each branch’s path

condition generated by an SMT solver [6]. This allows the engine to generate large, high-

quality test suites [1, 2, 7–13]. However, the behavior space of a program grows very quickly

with its size and complexity in a phenomenon known as state space explosion. Subsequently,

the time demands of the requisite SMT solver calls become burdensome to the point of in-

feasibility. This makes symbolic execution impractical for many real-world applications [14].

This scaling problem has received a significant amount of attention from the software testing

community. Traditionally, symbolic execution performs a time-limited depth-first search of a

program’s control-flow graph, which maximizes depth of coverage at the expense of thorough

analysis of programs with many deep branches. Several techniques have been developed for

improving symbolic execution times and thus allowing deeper exploration, including loop

summarization [15], various heuristics [16], path analysis for intelligent selection [17, 18],

parellelization [19, 20], memoization [21], and ranged analysis [22], among others. Recently,

Dong et. al. [23] brought attention to the interactions between symbolic execution and stan-

dard compiler optimizations intended to improve the speed of execution of programs on

concrete inputs. They found that these semantics-preserving optimizations can decrease the

speed of symbolic execution, especially when applied in combination. Symbolic execution

1

must query an SMT solver at each junction in the program’s execution, and traditional com-

piler optimizations can make it more difficult by transforming variables or otherwise adding

clauses to the formula under consideration. This implies that symbolic execution is in need

of a new class of optimizations, designed under a different set of assumptions.

In an attempt to make symbolic execution faster while preserving its advantages, we present

a new series of non-semantics-preserving testability transformations [24] that are applied to

programs before symbolic execution is performed. Symbolic execution of the transformed

programs produces a test suite, which can then be run against the original program. The

principle behind this approach is simple: given a program p and another program q with

the same method signature, tests written for p can be executed against q . Our key insight is

that if q ’s logic is simpler than p’s, using symbolic execution to generate tests for q may be

less costly than generating tests for p, and the code coverage on p using tests generated for

q may still be similar to the coverage using tests generated for p. Non-semantics-preserving

transformations can also be used to guide symbolic execution towards areas of the program

that need particularly intensive testing. We use KLEE [7] as our symbolic execution engine

in this paper, as its foundation on LLVM allows us to easily create and use new compiler

optimizations.

We present our study of several new testability transformations designed end-to-end to im-

prove symbolic execution in its traditional context (i.e., using time-limited depth-first search

without caching). We equivalently refer to these transforms as "optimizations" throughout

this paper, as their goal is to produce a program optimized for symbolic execution. We eval-

uated these optimizations on a well-studied group of programs, Unix’s Coreutils, as well as

several small examples as proof of concept. We also conducted the same experiments with

caching enabled, as caching similarly decreases the number of calls KLEE makes to the SMT

solver. Our initial findings show that these transformations can in fact increase code coverage

and reduce symbolic execution times. Our findings are summarized below:

• Test suite generation can be improved using non-semantics-preserving transforma-

tions, providing 100% to 418% of the coverage of the original test suite, with an average

of 127%.

• In cases where transformed programs performed worse than their original counter-

parts, they did so with variable loss of accuracy, covering anywhere from 23.47% to

97.7% of the code covered by the original test suite, averaging about 75%.

2

• Enabling caching produces a small but positive change in performance, including small

increases in line coverage and decreases in both execution time and the number of

SMT solver queries.

This thesis makes the following technical contributions:

• The design and implementation of the first non-semantics-preserving testability trans-

formations for symbolic execution.

• Evaluation of these transformations on a significant group of programs.

Our work explores only a small space of the possible non-semantics-preserving transforma-

tions that can help scale symbolic execution. We hope that our work will motivate further

research into the possibilities offered by this promising development, as symbolic execution

is an incredibly powerful method with great potential in the field of systematic testing and

verification.

3

Chapter 2

Foundations

This section provides a brief overview of the central concepts behind symbolic execution,

LLVM and its symbolic execution engine, KLEE, and non-semantics-preserving transforma-

tions.

2.1 Symbolic Execution

Symbolic execution treats program inputs as variable rather than concrete. At each con-

trol point (or branch) in the program’s execution, these symbolic inputs are combined into a

Boolean formula representing the necessary conditions for the program to reach that point.

These formulas, known as path conditions, naturally grow more and more complex with each

subsequent control point along a path, so solving them similarly becomes a more and more

time-consuming task. This presents a problem, as each of these formulas must be solved to

ensure that a given path is feasible. If it is, the solutions to that formula can become a test

input for that path. As noted above, there have been a number of approaches developed with

the goal of addressing this bottleneck, both in the fields of SMT solving and symbolic execu-

tion. However, present approaches do their best not to change the semantics, or behavior, of

the program under test.

4

2.2 LLVM and KLEE

The LLVM framework [25, 26] is a powerful group of compilation and execution tools. Chief

among them is the LLVM core, which allows programs to be compiled, represented, and ma-

nipulated through the LLVM Intermediate Representation (IR). This independent back end

allows optimizations to be developed and applied regardless of a program’s front end. Addi-

tionally, this project provides the basis for KLEE [27], a symbolic execution engine that uses

a user-specified constraint solver to identify the necessary input conditions for each path

through a program’s control flow, as discussed above. KLEE also supports user definition of

bounds on the program’s input space, complicating the path conditions but ensuring that the

created tests are useful in the context of the program’s desired application.

KLEE can produce test suites that cover 90% of the Coreutils on average [7, 28], given enough

time. However, as full symbolic execution of non-trivial programs can take many hours, KLEE

is usually run with a time bound. Given these conditions, improving the engine’s perfor-

mance is a matter of either making the process of SMT solving more efficient to allow more

time for exploration and solver queries within the allotted time, or pruning infeasible, redun-

dant, or otherwise inapplicable paths.

2.3 Compiler Optimizations and Testability Transformations

Standard compiler optimizations are semantics-preserving program transformations, i.e. the

transformed program will provide the same output for a given input as the non-transformed

program. This is a necessary precondition for any optimization that is intended to speed

up a program in a deployment (i.e., concrete execution) setting. A compiler optimization

would be of little use if it changed the program’s behavior, regardless of increases to perfor-

mance. A non-semantics-preserving transformation, conversely, is under no such obligation.

The transformed program need not behave at all similarly to its progenitor. Clearly any such

transformation would be useless as a compiler optimization meant for deployed programs.

However, before software can be deployed it must be tested, and it is on this point in the

development life cycle that our research is focused.

The transformations that we have developed fall under the heading of testability transforma-

tions, [24] which are used in the testing phase to enable some test data generation method,

5

in this case, symbolic execution. A testability transformation produces an altered program

that is in some way more suited to be used by the selected test data generation engine; it

can be discarded after use and has no requirements with regards to semantics preservation.

Testability transformations also permit alteration of the test adequacy criteria. KLEE’s de-

velopers theorized about the possibility of using such transformations to improve symbolic

execution [29], but this paper is the first to our knowledge to design and implement non-

semantics-preserving testability transformations explicitly for this purpose. As our design

goals in the symbolic execution setting are similar to those of compiler optimizations in the

concrete execution setting, we have decided that it is appropriate to refer to our transforma-

tions as testability optimizations (shortened to optimizations for ease of discussion). These

are distinct from traditional compiler optimizations, which we reference explicitly.

It is important to note that, in order to generate useful test cases, a few rules must still be

obeyed when designing these transformations. Most importantly, the produced program

must have the same method signature, as test cases take the form of program inputs. A mis-

match between the transformed program and the original program in the number and/or

type of inputs required would result in some or all of the produced tests being unusable for

the original program. This also means that the transformed program must have the same re-

turn type as its source, although the return value can vary arbitrarily. Finally, the transformed

program must still have an entrance point, so the first basic block must not be removed.

6

Chapter 3

Motivating Examples

This section provides several examples using small programs to demonstrate how programs

can be optimized for symbolic execution using non-semantics-preserving transformations.

The program in Figure 3.1 has two consecutive loops with identical loop conditions. Sym-

bolic execution of this program using KLEE (with default settings) produces a test suite that

provides 100% code coverage. Note that the control flow of the second loop is independent

from the program inputs. Thus, removing the second loop, as in Figure 3.2, makes symbolic

execution faster without decreasing the test suite’s coverage. Control-flow graphs for both

programs can be seen in Figures 3.3 and 3.4, respectively. Making this alteration by hand re-

duces KLEE’s execution time from 10.9 hours to 23 minutes, providing a 28X speedup, and

reduces the number of queries issued to the SMT solver from 15495 to 6823, i.e. a 2.3X reduc-

tion. This result is achievable using one of our transformations, described in Section 4.2.

The program in Figure 3.5 has a conditional structure inside of a loop. However, multiple

symbolic executions of the loop are not necessary for complete coverage of the code within

it. By adding an unconditional return statement at the end of the loop, as in Figure 3.6, we

can significantly reduce the complexity of the structure while still providing 100% line cover-

age. The control-flow graphs for these programs (in Figures 3.7 and 3.8, respectively) show

the change visually: the altered program’s graph has no back edges. In this case, KLEE’s exe-

cution time is reduced from 19.63 to 3.29 seconds, i.e., about a 6X reduction, and makes only

201 solver queries for the transformed program as opposed to the original’s 1619, i.e., an 8X

reduction. This is similarly achievable using one of our transformations.

7

1int main(int argc, char *argv[]){
2 int x, y, i, k = 0;
3 x = atoi(argv[1]);
4 y = atoi(argv[2]);
5 for(i = 0; i < 10; i++){
6 if(k < 20) {
7 k += x*y; }
8 }
9 for(i = 0; i < 10; i++){

10 if(i < 5) {
11 k += x+y; }
12 }
13 return k;
14}

FIGURE 3.1: Program p with two
loops.

1int main(int argc, char *argv[]){
2 int x, y, i, k = 0;
3 x = atoi(argv[1]);
4 y = atoi(argv[2]);
5 for(i = 0; i < 10; i++){
6 if(k < 20) {
7 k += x*y; }
8 }
9 return k;

10}

FIGURE 3.2: Program ptr ans f or m ,
equivalent to p with the second loop

removed.

FIGURE 3.3: CFG for program p.

8

FIGURE 3.4: CFG for program ptr ans f or m .

1int main(int argc, char *argv[]) {
2 int a = atoi(argv[1]);
3 int x = 0, y = 0, z = 0;
4 if (a < 0){
5 return -1;
6 }
7 while(a < 12){
8 if(a >= 0 && a < 4){
9 x++;

10 a++;
11 }else if(a >=4 && a < 8){
12 y++;
13 a++;
14 }else if(a >= 8 && a < 12){
15 z++;
16 a++;
17 }
18 }
19 return z;
20}

FIGURE 3.5: Program q with a
conditional structure contained in a

loop.

1int main(int argc, char *argv[]) {
2 int a = atoi(argv[1]);
3 int x = 0, y = 0, z = 0;
4 if (a < 0){
5 return -1;
6 }
7 while(a < 12){
8 if(a >= 0 && a < 4){
9 x++;

10 a++;
11 }else if(a >=4 && a < 8){
12 y++;
13 a++;
14 }else if(a >= 8 && a < 12){
15 z++;
16 a++;
17 }
18 return 0;
19 }
20 return z;
21}

FIGURE 3.6: Program qtr ans f or m ,
equivalent to q with the loop termi-

nated after a single iteration.

9

These examples demonstrate that non-semantics-preserving transformations can preserve

the quality of the test suites generated through symbolic execution. In the course of our

experiments, we discovered that the transformations we devised can actually improve the

quality of these test suites. Our specific results are discussed in Section 5.5.

10

FIGURE 3.7: CFG for program q .

11

FIGURE 3.8: CFG for program qtr ans f or m

12

Chapter 4

Our Transformation Techniques

This chapter discusses the specifics of the optimizations we developed for this research, and

how we arrived at them.

4.1 Basis for Transformations

We began by reasoning about common problems faced by symbolic execution and the struc-

tures that create these issues. We examined traditional symbolic execution, which uses time-

limited depth-first search since complete symbolic execution is infeasible for programs of

any significant size or complexity. Within this context, the goal is to maximize the amount of

the program executed within the time limit.

Firstly, we considered the behavior of branching control flow paths. Depth-first search favors

longer paths over shorter ones, regardless of their content or the number of sub-branches

therein. Deep paths with many branches therefore take up more time during symbolic exe-

cution. This is not necessarily best for overall code coverage, as more lines of code may be

contained in shorter paths.

Loops also cause significant trouble for symbolic execution [15], as symbolic depth-first search

will execute the code within a loop as many times as is possible before examining any other

part of the program. This can be a waste of time in terms of coverage, as no new statements

are covered during that time if the loop iteration is not a factor in the control flow of the code

contained therein.

13

4.2 Transformation Design and Implementation: The Slicer

Based off of these observations, we created several new program transformations, which are

applied at compile time. Each has the general goal of syntactically reducing, which we term

as slicing1, a program to remove parts that have a low value proposition for symbolic exe-

cution. We introduce 5 slicing "modes" where each "mode" of our slicer is applied to the

program under test on a function-by-function basis.

Most modes first explore a function’s control-flow graph to find its longest acyclic source-sink

path, and use the length of this key path as a guide while slicing the rest of the function. Iden-

tifying the key path can be a time-intensive process. It is a specific case of the longest path

problem, which is an NP-Hard problem. It is at least fixed-parameter tractable in the length

of the longest path d , meaning it can be solved in time O(d !2d n), where n is the number of

nodes in the graph [31].

In our specific case, we are given a single source node from which to find paths in a directed

graph, which significantly decreases the complexity. Our algorithms use depth-first search

that breaks on cycles and are thus worst-case linear in the number of edges in the graph even

without a priori knowledge of the length of the key path. However, as functions can have

hundreds of edges, the time requirements can still increase beyond the point of feasibility.

As such, we included the option to limit the amount of time the optimizer spends doing so

in each function in the program under test. At the end of the specified time, the optimizer

slices the function with regard to the longest path found in that time. Figures 4.1, 4.2, 4.3, 4.4,

and 4.5 describe the five modes using pseudo-code.

Mode 1: The first of these transformations finds all acyclic source-sink paths in the function

and slices each of them to half of their length. When path lengths are uneven (i.e. a path of

length X where X mod 2 = 1) the optimizer leaves behind a path of length cei l i ng (X /2). The

same holds true throughout the slicer with regard to uneven path lengths. Due to state space

explosion, the number of such paths can grow exponentially with the size of the program.

Thus, this mode does not scale to real-world programs.

Mode 2: The second mode identifies the longest acyclic source-sink path and slices that path

to half of its length. It then repeats this process until there is no acyclic source-sink path with

1Our use of the term slicing is different from the common use of this term in the context of program slicing
where a slice is created with respect to a given set of variables [30].

14

1identify all acyclic source-sink paths {
2 recursively traverse graph using DFS
3 upon finding a cycle or sink {
4 if sink: store path, return
5 if cycle: return
6 }
7 for each identified path {
8 slice path in half {
9 x = length of path/2

10 l = length of path
11 remove last l-x nodes from path
12 add return block to end of path
13 }
14}

FIGURE 4.1: Pseudocode for Mode 1.

1identify key path {
2 while(time has not expired) {
3 recursively traverse graph using DFS
4 upon finding a cycle or sink {
5 if sink:
6 if current path longer current longest path:
7 overwrite current longest path with
8 current path, return
9 else return

10 if cycle: return
11 }
12 }
13}
14l = length of key path
15x = length of key path/2
16slice key path {
17 remove last l-x nodes from key path
18 add return block to end of key path
19}
20while(time has not expired) {
21 identify key path
22 if key path length <= x: break
23 slice key path
24}

FIGURE 4.2: Pseudocode for Mode 2.

length greater than half of the key path’s original length or until time runs out. If the key

path cannot be definitively identified in the allotted time, this mode is identical to the third.

However, as discussed in Section 5.5, this mode can produce superior results even with an

identical time budget.

Mode 3: The third transformation is a reduced version of the second. It similarly identifies the

15

1identify key path
2slice key path

FIGURE 4.3: Pseudocode for Mode 3.

1identify key path
2x = length of key path/2
3blind slice {
4 recursively traverse graph using DFS
5 after making x traversals: direct all outgoing
6 edges of current node to return blocks, return
7}

FIGURE 4.4: Pseudocode for Mode 4.

1loop slice {
2 while(time has not expired) {
3 recursively traverse graph using DFS
4 upon finding a cycle: direct cyclic outgoing
5 edge of current node to return block, return
6 }
7}

FIGURE 4.5: Pseudocode for Mode 5.

key path and slices it in half, but stops there. This is a minor optimization, but it nonetheless

provides a slight advantage for symbolic execution and fares well in some cases.

Mode 4: The fourth optimization works similarly to the second, but instead of slicing only

acyclic source-sink paths, it blindly slices all paths to half of the key path’s length. In essence,

this mode ensures that there are no paths of length greater than cei l i ng (X /2), where X is

the original length of the key path. This can be categorized as a more aggressive variant of

traditional depth-limited symbolic execution. It removes nodes from the control flow graph

entirely if there exists any path that could reach them in cei l i ng (X /2) or more traversals,

meaning that nodes that could be reached in depth-limited execution through shorter paths

can be removed from consideration in programs sliced using this mode.

Mode 5: The final transformation causes all loops to return after a single iteration. This mas-

sively decreases the number of paths through the graph and helps ensure that time is not

wasted repeatedly executing the same section of code.

The slicer also has a "Mode 0" which does not apply any transformations. This is a bookkeep-

ing marker to identify the original program while keeping a consistent numbering scheme.

16

Chapter 5

Evaluation

In this study we seek to answer one core research question: "How do non-semantics-preserving

program transformations impact the process of using symbolic execution for test generation

and the quality of the tests thereby generated?"

5.1 Test Subjects

Unix’s Coreutils are a standard group of programs used for research on symbolic execution [7,

22, 23], including the study on compiler optimizations that motivated this research. Specifi-

cally, we examined forty programs in Coreutils 6.11: base64, basename, chcon, cksum, comm,

cut, dd, dircolors, dirname, du, env, expand, expr, fold, groups, link, logname, mkdir, mk-

fifo, mknod, nice, nl, od, paste, pathchk, printf, readlink, rmdir, setuidgid, sleep, split, sum,

sync, tee, touch, tr, tsort, unexpand, unlink, and wc. We also created six small example pro-

grams on which we could reasonably run KLEE to completion: double_loop, two identical

consecutive loops; loop_switch, a conditional structure inside a loop (both as described in

Chapter 3); double_cond, two identical consecutive conditional statements; get_sign, a sin-

gle 3-way conditional branch; simple_switch, a simple conditional structure; and add_ints, a

simple function call.

5.2 Independent Variables

In our study, we adjusted the following independent variables:

17

Different transformations: We designed a number of optimizations for the study, as described

in Section 4.2.

Caching: We aimed to simulate traditional symbolic execution, which is performed without

caching. However, caching is a known method for reducing the calls to the SMT solver, which

was one of the design goals for our optimizations. Thus, we also conducted the same experi-

ments with caching enabled to observe the interactions.

While KLEE supports input bound definition (see Chapter 2), we chose not to provide any

such limits to maximize the generality and reproducibility of our results.

5.3 Dependent Variables

As noted in Chapter 2, testability transformations can alter a program’s test adequacy crite-

ria. We chose not to do so in this study to maximize the generality of the optimizations. We

examined the following dependent variables:

Change In Line Coverage: Through gcov, a coverage reporting tool compatible with LLVM [32],

we were able to record the percentage of a program’s code executed by a given test suite. By

comparing the line coverage for different optimizations’ test suites to that of the test suite for

the non-optimized version of the program, we can see how optimizations affect that partic-

ular program’s suitability for symbolic execution. From a broader perspective, by comparing

the change in coverage from non-sliced to sliced for a given mode across multiple programs,

we can get a sense of how well that optimization performs.

Execution Time: Faster execution time is naturally preferable during test generation. For the

Coreutils, we limited the allowed execution time as is typical in traditional symbolic execu-

tion settings. If KLEE reported that symbolic execution finished before time ran out, it was

noted. The time used by the slicer was also noted, to generate a complete picture of how

much time test generation took for a given program. The "unsliced" original versions of the

programs were given additional time for symbolic execution based on the maximum amount

of time taken to generate their sliced counterparts to ensure fair comparisons.

SMT Solver Queries: As mentioned before, the key bottleneck in symbolic execution is the

time spent by the SMT solver. For this reason, the number of queries issued is a key metric.

18

5.4 Methodology

Each of the proof-of-concept example programs was sliced using each of the slicer’s modes.

The resulting LLVM bitcode was fed to KLEE with a five-minute time limit. The original ver-

sions of the example programs were instrumented with gcov to provide a metric for test suite

quality. We ran each of the generated test suites against its originating program and used

gcov and KLEE’s reports as our data source.

We used the same forty Coreutils used by Dong et. al. [23] in their study of traditional com-

piler optimizations for ease of comparison. The programs were again instrumented using

gcov. Each of the forty programs was sliced using modes zero, two, three, four, and five using

a 30-second per-function time limit, chosen to minimize the number of functions on which

the slicer terminated prematurely. Mode one was excluded due to the aforementioned scal-

ing issue. As before, we ran all of the resulting bitcode through KLEE with a five-minute time

limit.

We repeated these experiments with caching enabled.

5.5 Results

The tables we provide in this chapter provide an illustrative subset of our total results. The

full set of results can be found in Appendices A and B.

5.5.1 Small Examples

Symbolic execution of each of the small example programs described in Section 5.1 provides

a test suite that gives 100% statement coverage within a small amount of time, with the ex-

ception of the deep conditional structure (93% coverage). Symbolic execution of the sliced

versions of each program provided matching coverage in all but one case. Symbolic execu-

tion of sliced programs tends to be of shorter duration and involve fewer queries. In partic-

ular, the more complex programs (double_loop, loop_switch) show the greatest amount of

speedup. This suggests that these optimizations are capable of increasing efficiency.

Enabling caching showed no change in coverage. This was expected, as the test suites already

had 100% coverage and enabling caching was not likely to reduce KLEE’s effectiveness. In the

19

Slicer Mode Average Time (s)

2 97.7
3 92.6
4 183
5 98.7

TABLE 5.1: Average time taken by each slicer mode.

larger example programs, loop_switch and double_loop, it did facilitate a noticeable reduc-

tion both in the number of SMT solver queries and in execution time. The smaller examples

saw a smaller and less consistent change in these values.

The full set of results for our small examples can be seen in Tables A.1 and A.2 in Appendix A.

5.5.2 Unix’s Coreutils

As these programs are massively more complex than our examples, the time spent in the op-

timizer becomes nontrivial. If the transformation process took just as much time as symbolic

execution itself, it would hardly be of value. Our starting time budget of thirty seconds per

function proved to be adequate in the majority of cases. Across all combinations of modes

and programs, the optimization process took no longer than 280 seconds. The average time

across all modes was 118 seconds. Table 5.1 shows the average time taken for each transfor-

mation. Mode 4’s increased time is due to the fact that the time budget only limits path iden-

tification time, not slicing time, for modes 2, 3, and 4. Mode 5 performs these two processes

simultaneously, and as such its slicing time is limited. As mode 4 must slice many more paths

than modes 2 or 3, it consistently took far longer to complete. Most functions were sliced well

within the time budget; the majority of programs had two or three large functions that used

all of their allotted time.

Table 5.2 shows some notable examples from our results: the greatest improvement, worst

loss, and example average cases for each mode. The "Comparison To Original" column shows

what percentage of the original program’s test suite’s coverage the sliced program’s test suite

achieved. We used this metric as opposed to a raw difference in percentage or number of

lines covered to provide more readable results and describe the patterns generally across all

programs.

Symbolic execution times were generally reduced by the application of optimizations. Ta-

ble 5.3 shows how many programs finished before their allotted time ran out for each slicer

20

Program Mode Coverage (%) Slicer Time
Comparison To

Original (%)
Execution Time (s)

dd 2 43.32 123 418 74.82
printf 4 17.9 184 23.47 4.13

tee 2 82.61 90 109.62 300
pathchk 3 64.39 83 108.97 300

od 4 60.62 183 120.73 300
rmdir 5 68.06 90 119.53 26.14

TABLE 5.2: Notable coverage change results.

Slicer Mode Programs Finished Early

Overall 78
0 4
2 13
3 12
4 18
5 31

TABLE 5.3: Number of programs with execution times noticeably decreased.

Slicer Mode Average Change in Coverage %

Overall 1.70
0 0.73
2 2.62
3 2.59
4 2.13
5 0.55

TABLE 5.4: Average change in coverage percentage after enabling caching.

mode. For all but one case in which the unsliced program finished before time ran out, the

sliced programs finished faster. The exception to this rule was the "split" program, in which

the executions on sliced programs went to time, but produced much better test suites.

After enabling caching, we saw some small changes in line coverage, both positive and nega-

tive. In 121 of 160 cases across the entire experiment, enabling caching caused no change in

line coverage. Table 5.4 provides a breakdown of the change in coverage by slicer mode. The

number of queries was changed much more significantly, with all but two trials using many

fewer queries. Table 5.5 shows the average change in number of queries by slicer mode.

Enabling caching also brought down execution times in all trials whose non-cached versions

finished before their time ran out. Specifically, the cached versions of these trials finished

in 42% of the time of their non-cached counterparts on average. Five additional trials were

21

Slicer Mode Average Change in # Queries

Overall -13845
0 -25687
2 -13980
3 -13819
4 -11973
5 -5534

TABLE 5.5: Average change in the number of queries after enabling caching.

Slicer Mode Average % of Non-Cached Time

Overall 42.12
0 32.05
2 45.69
3 53.44
4 40.20
5 38.66

TABLE 5.6: Average change in execution time after enabling caching.

only able to finish within their time budget when caching was enabled. Table 5.6 shows the

breakdown by slicer mode.

Full results for the tested Coreutils with and without caching are shown in Table B.1 and B.2

respectively.

5.6 Analysis

5.6.1 Overall Performance

Across the 160 experimental trials in the non-cached version of the experiment, the opti-

mized programs produced equivalent or superior results in 96 cases. Across the 160 trials

in the cached version, the optimized programs did even better, producing equal- or higher-

quality test suites in 103 cases. Table 5.7 shows the breakdown of the number of programs

improved by each optimization. The combination of these cases provided improved cover-

age on 36 of the 40 tested Coreutils. In all but 8 trials where coverage was improved in each

version of the experiment, the total time taken by the optimizer and KLEE to produce a test

suite for a program was less than or equal to the time used for standard symbolic execution

of the original program.

22

Slicer Mode
Executions

Improved (Cache
Disabled)

Executions
Improved (Cache

Enabled)

Overall 96 103
2 22 24
3 18 21
4 23 25
5 33 33

TABLE 5.7: Number of Coreutils improved by each slicer mode

Slicer Mode Avg Coverage Change Avg Coverage Gain Case Avg Coverage Loss Case

2 109.56 130.49 74.66
3 95.59 112.53 72.82
4 110.04 125.75 74.98
5 123.08 134.96 67.11

TABLE 5.8: Average changes in coverage by slicer mode for Coreutils, cache disabled.

5.6.2 Caching Disabled

Table 5.8 shows the average coverage as compared to unsliced programs for each mode over-

all, when coverage was improved, and when it was worse. Slicer mode 5, which causes loops

to terminate after one execution, was by far the most effective of our optimizations, with

many more improved cases and the highest average increase over the unaltered programs.

Mode 3, which only slices a single path, was the least effective. This is understandable, as it is

only a minor optimization, but it still outperformed the others in two trials, suggesting that

there are cases where fewer alterations achieve superior results.

When coverage was worse, the amount by which it suffered varied significantly, from a min-

imum of 23.47% of the unsliced program’s test suite’s coverage to a maximum of 97.7%. On

average, optimized programs that performed poorly had 73.12% of their progenitor’s cover-

age.

The difference in the number of queries used by the sliced and unsliced versions of the pro-

gram has a clear relationship to the change in coverage. Table 5.9 shows a comparison be-

tween the number of queries made during the execution of each sliced program to the num-

ber made executing the unsliced programs by mode. To reduce the impact of outliers, the

single greatest and least values for each mode were removed from this calculation. A pattern

is apparent in modes 2 and 4: both made more queries than the original program in suc-

cessful trials and fewer in unsuccessful ones. Meanwhile, mode 3 consistently made fewer

23

Slicer Mode
Avg Query

Change
Avg Query Change

(Coverage Gain)
Avg Query Change

(Coverage Loss)

Overall 83.29 91.11 68.43
2 92.57 106.09 73.97
3 82.86 92.50 68.89
4 100.99 117.83 71.68
5 57.19 59.84 43.04

TABLE 5.9: Average changes in queries by slicer mode for Coreutils, cache disabled.

queries than either of its cousins. Mode 5 breaks from this pattern: it made far fewer queries

across all trials, issuing about half as many during successful trials and fewer during unsuc-

cessful ones.

The optimizations all make fewer queries in unsuccessful trials on average; 51 of the 64 cases

that produced inferior test suites used fewer queries than their unsliced originators (this ratio

is consistent across all slicer modes within a 1-case tolerance).

5.6.3 Caching Enabled

As referenced in Section 5.5.2, changes in line coverage were not large or consistent, but they

were significant enough to increase the number of trials in which the optimized programs

outperformed the non-optimized ones. In three cases, programs whose coverage was im-

proved by optimization in the non-cached version did not see improvement in the cached

version. In all of these cases, the original program had a larger increase in coverage than the

optimized version with the addition of caching. Broadly speaking, caching made the opti-

mizations more effective; Table 5.10 shows the average changes in coverage by slicer mode in

this setting.

Enabling caching brought about a reduction in solver queries and execution time, as seen in

Table 5.11. The ratio of number of queries made while executing the sliced versions of the

programs to the number made while executing the originals also saw a significant increase;

Table 5.12 shows these changes, it should be noted that the averages again do not include the

top and bottom values to reduce the influence of outliers.

24

Slicer Mode Avg Coverage Change Avg Coverage Gain Case Avg Coverage Loss Case

2 112.59 136.60 74.66
3 98.87 117.48 72.82
4 112.56 131.23 74.98
5 122.55 134.85 67.11

TABLE 5.10: Average changes in coverage by slicer mode for Coreutils, cache enabled.

Slicer Mode
Average % of Non-Cached

Queries
Average % of Non-Cached

Execution Time

Overall 42.66 42.12
0 46.86 32.05
2 44.30 45.69
3 43.20 53.44
4 42.72 40.20
5 35.37 38.66

TABLE 5.11: Average changes in queries and execution time by slicer mode with caching for
Coreutils.

Slicer Mode
Avg % of
Unsliced
Queries

Avg % of Unsliced
Queries (Coverage Gain)

Avg % of Unsliced
Queries (Coverage Loss)

Overall 349.53 400.14 248.43
2 430.89 557.02 236.75
3 358.35 446.45 239.83
4 335.64 326.71 372.22
5 270.35 314.36 33.78

TABLE 5.12: Average changes in queries by slicer mode for Coreutils, cache enabled.

5.7 Threats to Validity

Threats to internal validity: There are multiple axes along which the parameters of this ex-

periment could be adjusted. For example, we only ran KLEE on our subject programs with

a 5-minute time budget, with the budget for the original programs adjusted by the amount

of time required for slicing. Allowing more time for symbolic execution may demonstrate a

ceiling for the coverage provided by test suites generated by symbolically executing the sliced

programs that is not necessarily present for unsliced programs. Additionally, the time allot-

ment for the slicer was held constant across all programs and modes, where altering it may

have been more effective. In particular, for large functions, if the longest acyclic source-sink

path is not identified within the allotted time, slicer modes 2 and 3 can be equivalent. Further

experimentation altering these values is certainly advisable.

25

Threats to external validity: Our results show that the optimizations developed herein are

not applicable for every program. To attempt to make this study as reproducible and gen-

eralizable as possible, we used a symbolic execution engine, KLEE, and group of programs,

Coreutils, whose interactions are well-studied and which provide a broad variety of different

use cases for symbolic execution. By design, our research is only a first step in the exploration

of the possibilities offered by non-semantics preserving optimizations, and while we believe

it to be a positive one, further experimentation and exploration using different optimizations,

programs, and symbolic execution engines is needed.

Threats to construct validity: The standout threat to construct validity is the possibility that

the chosen metrics used to measure relative performance do not provide an accurate rep-

resentation thereof. To mitigate this threat, we used several different metrics, relied on the

well-studied and broadly-used tools KLEE and gcov, and limited symbolic execution times

for our subjects.

26

Chapter 6

Related Work

Symbolic execution [1, 2] has been the focus of many research projects for over a decade. A

number of these projects address the scalability issues of the method, however, they mostly

use techniques that optimize it with respect to the original behaviors of the program under

test. To our knowledge, we introduce the first technique that optimizes symbolic execution

using program transformations that are unsound by design. Next, we briefly describe some

key techniques from previous work on scaling symbolic execution.

Dong’s study of the impact that semantics-preserving transformations (specifically standard

compiler optimizations) have on symbolic execution [33] is the closest in spirit to our work

and provides its inspiration. The study observed that, somewhat counter-intuitively, some

compiler optimizations can actually slow down symbolic execution. Cadar’s more recent

new ideas paper [29] hypothesizes about the use of non-semantics-preserving transforma-

tions for symbolic execution. The central idea of using unsound program transforms to pre-

process programs for more efficient test data generation was initially formalized by Harman

et al [24].

Directed incremental symbolic execution [18] introduced the idea of using a static analysis

for more efficient symbolic execution in the context of change, e.g., for regression checking.

Yang et al. [21] memoise the run of symbolic execution on the program under test as a trie

structure and re-use it for optimizing the next run of symbolic execution after a change to

the program or the search depth parameter. Green [13] caches the constraints that are solved

during symbolic execution in a database, which allows re-use of constraint solving results, in

the spirit of KLEE’s constraint caching [27].

27

Simple static partitioning [20] computes pre-conditions and uses them to distribute the ex-

ploration space of symbolic execution among different workers. ParSym [19] uses the non-

determinism in the exploration to create work units and distribute the overall workload.

Ranged symbolic execution [22] captures the state of a run of symbolic execution using a

concrete input. It uses two inputs to represent a sub-space, termed range of the exploration

space, and distributes the workload by creating consecutive ranges. These ranges are ex-

plored by separate workers; work stealing is used for load balancing.

PREfix and PREfast [34] are among the first techniques to introduce the idea of composi-

tional analysis for symbolic execution. A number of more recent techniques, e.g, SMART [35],

SMASH [36], CompoSE [37], and others [38, 39] further developed the idea and showed its

usefulness in scaling symbolic execution.

Godefroid and Luchaup [15] provide a way to deal with the path explosion problem in sym-

bolic execution caused by loops by introducing summarizing the loop and inferring simple

loop invariants. Our slicer also addresses this problem; however, our slicer’s loop-affecting

mode does not attempt to summarize or preserve the loop’s behaviors, rather it directly changes

the behavior of the loop by causing the function to return unconditionally after a single iter-

ation.

28

Chapter 7

Conclusion

We believe that we found an exciting new avenue for research into the improvement of sym-

bolic execution. We examined the use of non-semantics-preserving transformations to op-

timize programs for symbolic execution and thus produce higher-quality test suites more

efficiently than in traditional settings. To do this, we designed four new optimizations using

LLVM, which were then enabled in KLEE. Upon testing these optimizations on 40 of Unix’s

Coreutils, we found that we were able to achieve our goal in more than 50% of cases. Enabling

caching also caused these optimizations to generally become more effective. Across all cases,

we were able to improve performance in 90% of the tested programs. We believe that this is

a promising approach for tackling the scalability issues of symbolic execution, and hope that

our work serves as a basis for more effective applications of this well-known technique. Sym-

bolic execution does not play by the same rules as concrete execution, and our results here

show that the optimizations designed for it do not need to do so either.

29

Appendix A

Example Results

30

Program Slicer Mode Coverage (%) Time (s) Queries

double_loop 0 100 324.79 1474
1 100 306.48 1106
2 100 306.93 1137
3 100 305.36 1135
4 100 6.19 188
5 100 6.25 186

double_cond 0 100 71.51 1701
1 100 80.19 1790
2 100 76.65 1766
3 100 77.31 1779
4 100 77.31 1723
5 100 72.87 1698

loop_switch 0 100 19.63 1619
1 100 1.83 123
2 100 1.9 124
3 100 1.88 125
4 100 1.9 124
5 100 3.11 196

simple_switch 0 93 3.58 208
1 53 1.88 127
2 93 2.2 148
3 93 2.47 170
4 93 2.26 148
5 93 3.43 211

add_ints 0 100 6.07 188
1 100 5.99 186
2 100 6.01 186
3 100 5.97 186
4 100 5.86 184
5 100 6.11 186

get_sign 0 100 2.33 160
1 100 2.01 124
2 100 2.05 127
3 100 1.98 125
4 100 1.84 123
5 100 2.36 159

TABLE A.1: Coverage, Query, and Execution Time Results for small example programs, cache
disabled

31

Program Slicer Mode Coverage (%) Time (s) Queries

double_loop 0 100 300 1205
1 100 300 1046
2 100 300 988
3 100 300 987
4 100 6.38 184
5 100 6.39 185

double_cond 0 100 87.67 1765
1 100 82.77 1811
2 100 79.92 1728
3 100 80.16 1741
4 100 84.32 1803
5 100 78.72 1673

loop_switch 0 100 18.63 1626
1 100 1.87 125
2 100 1.78 123
3 100 1.8 124
4 100 1.82 124
5 100 2.92 193

simple_switch 0 93 3.67 215
1 53 1.92 126
2 93 2.29 151
3 93 2.6 176
4 93 2.35 150
5 93 3.71 215

add_ints 0 100 6.28 186
1 100 6.06 186
2 100 6.00 184
3 100 6.45 184
4 100 6.27 184
5 100 6.55 186

get_sign 0 100 2.21 162
1 100 1.95 127
2 100 1.97 127
3 100 1.91 124
4 100 1.94 123
5 100 2.16 155

TABLE A.2: Coverage, Query, and Execution Time Results for small example programs, cache
enabled

32

Appendix B

Appendix B Coreutils Results

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

base64 0 0 473 70.48 78692

2 90 300 72.38 102.7 23243 29.54

3 81 300 72.38 102.7 24017 30.52

4 173 300 72.38 102.7 20999 26.69

5 90 300 80 113.5 19481 24.76

basename 0 0 317 100 32470

2 90 5 92.31 92.31 686 2.11

3 83 5 92.31 92.31 686 2.11

4 178 5 92.31 92.31 686 2.11

5 90 5.5 97.44 92.31 732 2.25

chcon 0 0 503 67.69 59624

2 120 300 51.28 75.75 38748 64.99

3 113 300 51.28 75.75 38947 65.32

4 203 300 51.28 75.75 39798 66.75

5 120 65.76 43.59 64.4 8582 14.39

cksum 0 0 474 91.94 51671

2 90 32.74 85.48 92.97 3791 7.34

33

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

3 82 32.42 85.48 92.97 3791 7.34

4 174 32.24 85.48 92.97 3791 7.34

5 90 29.14 91.94 100 4256 8.24

comm 0 0 483 74.49 57977

2 90 300 53.06 71.23 47907 82.63

3 84 300 51.02 68.49 47572 82.05

4 183 21.24 67.35 90.14 3402 5.87

5 90 27.7 81.63 109.6 3528 6.09

cut 0 0 480 50.34 31329

2 90 300 49.32 97.97 8683 27.72

3 83 300 46.96 93.29 8796 28.08

4 180 300 47.64 94.64 8793 28.07

5 90 54.22 26.01 51.67 5752 18.36

dd 0 0 503 10.34 45408

2 123 74.82 43.32 419 7255 15.98

3 113 300 4.63 44.78 51 0.11

4 203 144.5 43.32 419 16359 36.02

5 124 6.02 37.97 367.2 802 1.77

dircolors 0 0 472 69.47 15879

2 90 300 77.89 112.1 10943 68.91

3 82 300 77.89 112.1 10784 67.91

4 172 300 77.89 112.1 44185 278.3

5 90 27.42 49.97 71.93 3837 24.16

dirname 0 0 186.16 100 21942

2 90 4.67 100 100 686 3.13

3 81 4.56 100 100 686 3.13

4 172 4.6 100 100 686 3.13

34

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

5 90 4.97 100 100 720 3.28

du 0 0 571 55.63 1686

2 194 300 73.18 131.5 52427 3109

3 177 300 36.42 65.47 43918 2604

4 271 300 73.51 132.5 48845 2897

5 193 300 79.8 143.5 23831 1413

env 0 0 476 100 12051

2 90 300 88.89 88.89 32073 266.1

3 81 300 88.89 88.89 31923 264.9

4 176 300 97.78 97.78 54049 448.5

5 90 191.24 100 100 13708 113.7

expand 0 0 472 39.07 49817

2 127 300 70.86 181.4 50345 101.1

3 117 300 39.07 100 29731 59.68

4 211 300 73.51 188.1 55585 111.6

5 130 86.18 80.79 206.8 9804 19.68

expr 0 0 511 40.83 10473

2 127 4.38 32.54 79.69 654 6.24

3 117 4.02 32.54 79.69 654 6.24

4 211 4.41 32.54 79.69 654 6.24

5 130 300 53.85 131.9 27900 266.4

fold 0 0 472 42.48 54834

2 90 300 58.41 137.5 27876 50.84

3 82 300 58.41 137.5 27955 50.98

4 172 300 52.21 122.9 15364 28.02

5 90 300 79.65 187.5 21893 39.93

groups 0 0 471 94.59 27737

35

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

2 90 99.6 64.86 68.57 2347 8.46

3 82 238.6 81.08 85.71 6262 22.58

4 172 10.92 81.08 85.71 1421 5.12

5 90 300 94.59 100 27401 98.79

link 0 0 474 71.43 80010

2 90 5.57 89.29 125 729 0.91

3 82 5.42 85.71 119.9 692 0.86

4 174 5.6 89.29 125 729 0.91

5 90 6.35 96.43 135 803 1

logname 0 0 472 56 52568

2 90 4.81 92 164.3 799 1.52

3 82 4.78 92 164.3 799 1.52

4 172 4.56 92 164.3 799 1.52

5 90 6.04 92 164.3 802 1.53

mkdir 0 0 472 60.61 40290

2 90 300 77.27 127.5 43396 107.7

3 81 300 71.21 117.5 44335 110

4 172 300 78.79 130 43757 108.6

5 90 30 78.79 130 3792 9.41

mkfifo 0 0 476 72.34 57802

2 90 300 63.83 88.24 40303 69.72

3 81 300 63.83 88.24 39211 67.84

4 172 300 63.83 88.24 39339 68.06

5 90 20 91.49 126.47 2701 4.67

mknod 0 0 490 47.56 53291

2 91 300 50 105.1 28658 53.78

3 86 300 41.46 87.17 28579 53.63

36

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

4 190 300 50 105.1 28423 53.34

5 92 21 65.85 138.5 2828 5.31

nice 0 0 480 76.27 34328

2 90 300 76.27 100 17343 50.52

3 82 300 61.02 80 16458 47.94

4 180 300 76.27 100 17434 50.79

5 90 16 94.42 124.5 2133 6.21

nl 0 0 483 54.98 69860

2 93 300 49.76 90.51 27826 39.83

3 86 300 51.18 93.09 25028 25.82

4 183 300 46.45 84.49 16068 23

5 96 300 75.83 137.9 16248 25.26

od 0 0 479 50.21 29619

2 90 300 51.48 102.5 38798 131

3 82 300 59.49 118.5 19011 64.19

4 179 300 60.62 120.7 18097 61.1

5 90 0.32 27.99 55.75 79 0.27

paste 0 0 483 64.71 117721

2 90 300 58.82 90.9 30572 25.97

3 83 300 58.82 90.9 29437 25.01

4 183 14.89 59.89 92.55 37616 31.95

5 90 40.4 71.66 110.7 2819 2.39

pathchk 0 0 472 59.09 38270

2 90 300 43.18 73.07 58190 152.1

3 82 300 64.39 109 25650 67.02

4 172 300 43.18 73.07 1983 5.18

5 90 27.42 52.27 88.46 5537 14.47

37

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

printf 0 0 484 76.26 26144

2 90 4.77 17.9 23.47 649 2.48

3 83 2.95 17.9 23.47 649 2.48

4 184 4.13 17.9 23.47 649 2.48

5 90 300 80.16 105.1 15043 57.54

readlink 0 0 494 100 65611

2 90 300 96 96 48784 74.35

3 83 300 96 96 50029 76.25

4 193 300 96 96 48918 74.56

5 90 35.27 100 100 4657 7.1

rmdir 0 0 493 56.94 67222

2 90 300 56.94 100 55602 82.71

3 83 300 75 131.2 45107 67.1

4 178 24.69 66.67 117.1 3135 4.66

5 90 26.14 68.06 119.5 3361 5

setuidgid 0 0 481 23.38 86465

2 90 300 23.38 100 11347 13.12

3 83 300 23.38 100 11987 13.86

4 181 300 23.38 100 12642 14.62

5 90 300 23.38 100 13968 16.15

sleep 0 0 487 45.65 53013

2 90 4.61 63.04 138.09 808 1.52

3 83 4.77 63.04 138.09 808 1.52

4 187 4.73 63.04 138.09 808 1.52

5 90 6.02 63.04 138.09 802 1.51

split 0 0 18 34.1 4092

2 90 300 47.47 139.2 32402 791.8

38

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

3 83 300 47.47 139.2 33534 819.5

4 182 300 47.47 121.6 54376 1329

5 90 300 58.53 171.6 36387 889.2

sum 0 0 550 86.23 33780

2 120 300 81.05 93.99 52630 155.8

3 115 300 81.05 93.99 50648 152.9

4 220 15.17 86.32 100.1 2136 6.32

5 120 36.89 90.53 105 5469 16.19

sync 0 0 5.99 100 802

2 90 4.91 100 100 799 99.63

3 85 1.85 100 100 799 99.63

4 179 1.84 100 100 799 99.63

5 90 5.92 100 100 802 100

tee 0 0 480 75.36 47201

2 90 300 82.61 109.6 54965 116.4

3 82 300 76.81 101.9 46550 98.62

4 180 20.47 84.06 111.5 2669 5.65

5 90 20.69 86.96 115.4 2729 5.78

touch 0 0 495 59.72 11373

2 114 300 55.56 93.03 11505 101.2

3 105 300 48.61 81.4 3900 34.29

4 195 300 55.56 93.03 14506 127.5

5 121 74.62 72.22 121 8924 78.47

tr 0 0 491 42.34 43422

2 90 300 18.36 43.36 49541 114.1

3 81 300 18.36 43.36 44413 102.3

4 172 300 16.54 39.06 48191 111

39

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

5 90 79.71 45.37 107.2 10393 23.93

tsort 0 0 480 72.41 865

2 90 4.3 25.12 34.69 799 92.36

3 83 14.55 27.09 37.42 1642 189.8

4 180 4.95 25.12 34.69 775 89.59

5 90 11.34 29.06 40.13 1597 184.6

unexpand 0 0 475 44.85 24101

2 90 300 60.31 134.5 62662 260

3 83 300 40.21 89.65 20049 83.19

4 175 300 47.94 106.9 64871 269.2

5 90 102.5 84.02 187.3 10514 43.62

unlink 0 0 472 72 51014

2 90 5.61 100 138.9 799 1.57

3 83 6.5 96 133.3 799 1.57

4 172 6.59 96 133.3 799 1.57

5 90 7.09 100 138.9 913 1.79

wc 0 0 473 55.34 25583

2 90 300 65.65 118.6 62310 243.6

3 82 300 59.92 108.3 60624 237

4 173 300 59.92 108.3 58929 230.3

5 90 57.58 64.89 117.3 8199 32.05

TABLE B.1: Coverage, Query and Execution Time Results for Coreutils, Caching Disabled

40

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

base64 0 0 473 70.48 7819

2 90 300 72.38 102.7 8602 110

3 81 300 72.38 102.7 8927 114.2

4 173 300 80 113.5 10974 1740.4

5 90 170 80.95 114.9 7690 98.35

basename 0 0 48.6 100 1330

2 90 1.98 92.31 92.31 309 23.23

3 83 1.98 92.31 92.31 309 23.23

4 178 1.98 92.31 92.31 309 23.23

5 90 2.14 97.44 92.31 336 25.26

chcon 0 0 503 67.69 9718

2 120 300 62.56 92.42 17221 177.2

3 113 300 52.31 77.29 17220 177.2

4 203 300 57.44 84.85 18988 195.4

5 120 13.37 43.59 64.4 1637 16.85

cksum 0 0 272.5 91.94 51671

2 90 8.2 85.48 92.97 3791 7.34

3 82 8.24 85.48 92.97 3791 7.34

4 174 8.34 85.48 92.97 3791 7.34

5 90 18.91 91.94 100 4256 8.24

comm 0 0 483 50.34 17184

2 90 300 67.35 90.41 22179 82.63

3 84 300 46.96 68.49 21022 82.05

4 183 6.49 81.63 109.6 1331 5.87

5 90 10.3 81.63 109.6 1480 6.09

cut 0 0 480 56.76 6121

2 90 300 49.32 86.89 6242 102

41

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

3 83 300 46.96 82.73 6454 105.4

4 180 300 47.64 83.93 6261 102.3

5 90 8.16 26.01 45.82 860 14.05

dd 0 0 503 10.34 10745

2 123 40.09 43.32 419 2701 25.13

3 113 300 4.63 44.78 44 0.41

4 203 78.53 43.32 419 8407 78.24

5 124 2.35 37.97 367.2 374 3.48

dircolors 0 0 472 69.47 7541

2 90 300 76.84 110.6 1649 21.87

3 82 300 77.89 112.1 1800 23.87

4 172 300 77.89 112.1 13539 179.53

5 90 4.99 49.97 71.93 561 7.44

dirname 0 0 51.09 100 2104

2 90 2.03 100 100 309 14.69

3 81 2.17 100 100 309 14.69

4 172 2.41 100 100 309 14.69

5 90 2.78 100 100 340 16.16

du 0 0 571 51.66 1071

2 194 300 81.79 158.32 29355 2740

3 177 300 46.69 90.38 6251 583.7

4 271 300 81.79 158.3 30195 2819

5 193 75.27 79.47 153.8 4452 415.7

env 0 0 476 100 853

2 90 300 97.78 97.78 3043 356.7

3 81 300 97.78 97.78 3472 407

4 176 300 97.78 97.78 21971 2576

42

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

5 90 70.39 100 100 1148 134.6

expand 0 0 472 39.07 15797

2 127 300 70.86 181.4 40017 253.3

3 117 300 39.07 100 10274 65.04

4 211 300 73.51 188.1 37095 234.8

5 130 34.55 80.79 206.8 3589 22.72

expr 0 0 511 40.83 9847

2 127 1.72 32.54 79.69 300 3.05

3 117 1.63 32.54 79.69 300 3.05

4 211 1.69 32.54 79.69 300 3.05

5 130 300 57.99 142 2298 23.34

fold 0 0 472 42.48 196

2 90 300 56.64 133.3 17266 8809

3 82 300 56.64 133.3 15659 7989

4 172 248.5 63.72 150 6475 3304

5 90 300 79.65 187.5 17070 8709

groups 0 0 408 94.59 1137

2 90 84.05 64.86 68.57 295 25.95

3 82 176.1 81.08 85.71 375 32.98

4 172 3.13 81.08 85.71 299 26.3

5 90 196.34 94.59 100 1005 88.39

link 0 0 474 67.89 15309

2 90 2.65 89.29 131.6 305 1.99

3 82 2.7 85.71 126.3 268 1.75

4 174 2.7 89.29 131.6 305 1.99

5 90 3.28 96.43 142.1 375 2.45

logname 0 0 472 56 10490

43

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

2 90 2.01 92 164.3 375 3.57

3 82 2 92 164.3 375 3.57

4 172 2.05 92 164.3 375 3.57

5 90 3.12 92 164.3 374 3.57

mkdir 0 0 472 68.18 15032

2 90 300 71.21 104.44 12423 82.64

3 81 300 71.21 104.44 12906 85.86

4 172 300 78.79 115.6 13330 88.68

5 90 6.63 78.79 115.6 720 4.79

mkfifo 0 0 476 72.34 10601

2 90 300 91.49 126.5 525 4.95

3 81 300 85.11 117.7 5474 51.63

4 172 300 85.11 117.7 5618 53

5 90 20 91.49 126.47 525 4.95

mknod 0 0 490 47.56 10781

2 91 300 64.63 135.9 6842 63.46

3 86 300 56.1 118 6720 62.33

4 190 300 50 105.1 7409 68.72

5 92 5.22 65.85 138.5 592 5.49

nice 0 0 480 76.27 13173

2 90 300 76.27 100 10578 80.3

3 82 300 61.02 80 7839 59.51

4 180 300 76.27 100 6595 50.06

5 90 8.33 94.42 124.5 821 6.23

nl 0 0 483 54.98 1903

2 93 300 70.62 128.5 8021 421.5

3 86 300 62.56 113.8 5096 267.8

44

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

4 183 300 60.66 110.3 10100 530.7

5 96 300 77.25 140.5 10919 573.8

od 0 0 479 50.21 14402

2 90 300 51.48 102.5 22206 154.2

3 82 300 67.37 134.2 17024 118.2

4 179 300 65.4 130.3 23248 161.4

5 90 0.14 27.99 55.75 37 0.26

paste 0 0 483 64.71 416

2 90 300 58.82 90.9 9145 2198

3 83 300 58.82 90.9 9333 2244

4 183 14.89 59.89 92.55 6927 1665

5 90 4.77 71.66 110.7 527 126.7

pathchk 0 0 472 68.18 14788

2 90 300 43.18 63.33 36419 246.3

3 82 300 65.91 96.67 7887 53.33

4 172 3.1 43.18 63.33 357 2.41

5 90 21.74 52.27 76.66 2517 17.02

printf 0 0 484 77.82 20202

2 90 1.63 17.9 23 295 1.46

3 83 1.59 17.9 23 295 1.46

4 184 1.6 17.9 23 295 1.46

5 90 300 95.72 105.1 9336 46.21

readlink 0 0 494 100 25021

2 90 300 96 96 22600 90.22

3 83 300 96 96 22425 89.52

4 193 300 96 96 22712 90.66

5 90 7.75 100 100 823 3.29

45

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

rmdir 0 0 493 56.94 13329

2 90 300 63.89 112.2 32519 244

3 83 300 75 131.2 15478 116

4 178 4.95 66.67 117.1 531 3.98

5 90 6.22 68.06 119.5 593 4.45

setuidgid 0 0 481 23.38 13864

2 90 300 23.38 100 6494 46.84

3 83 300 23.38 100 6514 46.98

4 181 300 23.38 100 7010 50.56

5 90 300 23.38 100 10615 76.57

sleep 0 0 487 45.65 11317

2 90 2.02 63.04 138.09 384 3.39

3 83 2.09 63.04 138.09 384 3.39

4 187 2.06 63.04 138.09 384 3.39

5 90 3.12 63.04 138.09 374 3.30

split 0 0 6.06 34.1 177

2 90 300 47.47 139.2 14143 7990

3 83 300 47.47 139.2 14222 8035

4 182 300 47.47 121.6 19795 11180

5 90 300 58.53 171.6 14553 8222

sum 0 0 431 86.32 30069

2 120 300 78.95 91.46 24080 80.08

3 115 300 78.95 91.46 22634 75.27

4 220 3.47 86.32 100 458 1.52

5 120 27.16 90.53 104.9 2156 7.17

sync 0 0 3.1 100 374

2 90 2.04 100 100 375 100.3

46

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

3 85 2.13 100 100 375 100.3

4 179 2 100 100 375 100.3

5 90 2.92 100 100 374 100

tee 0 0 448 75.36 25506

2 90 300 82.61 109.6 32560 127.7

3 82 300 76.81 101.9 17792 69.76

4 180 4.08 84.06 111.5 411 1.61

5 90 4.32 86.96 115.4 471 1.85

touch 0 0 495 59.72 10581

2 114 300 55.56 93.03 5600 52.93

3 105 300 48.61 81.4 3124 29.52

4 195 300 55.56 93.03 9770 92.34

5 121 26.61 72.22 121 2681 25.34

tr 0 0 491 42.34 211445

2 90 300 18.36 43.36 17250 8.16

3 81 300 18.36 43.36 15170 7.17

4 172 300 16.54 39.06 16186 7.65

5 90 19.79 45.68 107.8 1069 0.51

tsort 0 0 480 72.41 729

2 90 2.07 25.12 34.69 375 51.44

3 83 9.56 27.09 37.42 800 109.7

4 180 2.08 25.12 34.69 351 48.15

5 90 7.3 29.06 40.13 890 122.1

unexpand 0 0 475 56.7 23284

2 90 300 60.31 106.4 39460 169.5

3 83 300 58.76 103.6 20229 86.88

4 175 300 47.94 84.55 68929 167.2

47

Program
Slicer

Mode

Slicer

Time

Execution

Time

Coverage

(%)

% of

Unsliced

Cover-

age

Queries

% of

Unsliced

Queries

5 90 34.18 84.02 148.2 3498 15.02

unlink 0 0 472 72 11090

2 90 2.89 100 138.9 375 3.38

3 83 2.87 96 133.3 375 3.68

4 172 2.93 96 133.3 375 3.38

5 90 3.64 100 138.9 431 3.89

wc 0 0 473 55.34 16549

2 90 300 68.32 123.5 26266 158.7

3 82 300 62.6 113.1 17865 108

4 173 300 59.92 108.3 18203 110

5 90 19.61 64.89 117.3 2288 13.83

TABLE B.2: Coverage, Query and Execution Time Results for Coreutils, Caching Enabled

48

Bibliography

[1] L. A. Clarke, “A system to generate test data and symbolically execute programs,” TSE,

no. 3, pp. 215–222, 1976.

[2] J. C. King, “Symbolic execution and program testing,” Communications ACM, vol. 19,

no. 7, 1976.

[3] M. Papadakis and N. Malevris, “Automatic mutation test case generation via dynamic

symbolic execution,” in 2010 IEEE 21st International Symposium on Software Reliability

Engineering, pp. 121–130, Nov 2010.

[4] T. Su, Z. Fu, G. Pu, J. He, and Z. Su, “Combining symbolic execution and model checking

for data flow testing,” in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, vol. 1, pp. 654–665, May 2015.

[5] P. Muntean, V. Kommanapalli, A. Ibing, and C. Eckert, Computer Safety, Reliability,

and Security: 34th International Conference, SAFECOMP 2015, Delft, The Netherlands,

September 23-25, 2015, Proceedings, ch. Automated Generation of Buffer Overflow Quick

Fixes Using Symbolic Execution and SMT, pp. 441–456. Cham: Springer International

Publishing, 2015.

[6] L. de Moura and N. Bjørner, Formal Methods: Foundations and Applications: 12th

Brazilian Symposium on Formal Methods, SBMF 2009 Gramado, Brazil, August 19-21,

2009 Revised Selected Papers, ch. Satisfiability Modulo Theories: An Appetizer, pp. 23–

36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[7] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and automatic generation of

high-coverage tests for complex systems programs,” in 8th USENIX Symposium on Oper-

ating Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego,

California, USA, Proceedings, pp. 209–224, 2008.

49

[8] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley., “Automatic exploit generation,” in

NDSS, 2011.

[9] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random testing,” SIG-

PLAN Not., vol. 40, pp. 213–223, June 2005.

[10] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized symbolic execution for model

checking and testing,” in Proceedings of the 9th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, TACAS’03, (Berlin, Heidelberg),

pp. 553–568, Springer-Verlag, 2003.

[11] D. Molnar, X. C. Li, and D. Wagner, “Dynamic test generation to find integer bugs in x86

binary linux programs,” in USENIX Security, pp. 67–82, 2009.

[12] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke, “Combining symbolic execution

with model checking to verify parallel numerical programs,” in TOSEM, vol. 17, pp. 1–10,

2008.

[13] W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: Reducing, reusing and recycling con-

straints in program analysis,” in FSE, 2012.

[14] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Tillmann, and W. Visser,

“Symbolic execution for software testing in practice: Preliminary assessment,” in ICSE,

pp. 1066–1071, Springer, 2011.

[15] P. Godefroid and D. Luchaup, “Automatic partial loop summarization in dynamic test

generation,” in Proceedings of the 2011 International Symposium on Software Testing

and Analysis, ISSTA ’11, (New York, NY, USA), pp. 23–33, ACM, 2011.

[16] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in ASE, pp. 443–

446, 2008.

[17] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less traveled paths,” in

OOPSLA, pp. 19–32, 2013.

[18] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed Incremental Symbolic Execu-

tion,” in PLDI, pp. 504–515, 2011.

[19] J. H. Siddiqui and S. Khurshid, “ParSym: Parallel symbolic execution,” in ICSTE, pp. V1–

405–V1–409, Oct. 2010.

50

[20] M. Staats and C. Pǎsǎreanu, “Parallel Symbolic Execution for Structural Test Genera-

tion,” in ISSTA, pp. 183–194, 2010.

[21] G. Yang, S. Khurshid, and C. S. Păsăreanu, “Memoise: A tool for memoized symbolic

execution,” in Proceedings of the 2013 International Conference on Software Engineering,

ICSE ’13, (Piscataway, NJ, USA), pp. 1343–1346, IEEE Press, 2013.

[22] J. H. Siddiqui and S. Khurshid, “Scaling symbolic execution using ranged analysis,” SIG-

PLAN Not., vol. 47, pp. 523–536, Oct. 2012.

[23] S. Dong, O. Olivo, L. Zhang, and S. Khurshid, “Studying the influence of standard com-

piler optimizations on symbolic execution,” in Software Reliability Engineering (ISSRE),

2015 IEEE 26th International Symposium on, pp. 205–215, Nov 2015.

[24] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M. Roper, “Testa-

bility transformation,” IEEE Transactions on Software Engineering, vol. 30, pp. 3–16, Jan

2004.

[25] “The llvm compilation infrastructure.” http://llvm.org/.

[26] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis &

transformation,” in CGO, pp. 75–86, 2004.

[27] “The klee symbolic virtual machine.” http://klee.github.io/klee.

[28] “Klee coreutils study.” http://klee.github.io/klee/TestingCoreutils.htmls.

[29] C. Cadar, “Targeted program transformations for symbolic execution,” in Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,

Bergamo, Italy, August 30 - September 4, 2015, pp. 906–909, 2015.

[30] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey of program slicing,” SIGSOFT

Softw. Eng. Notes, vol. 30, pp. 1–36, Mar. 2005.

[31] H. Bodlaender, “On linear time minor tests with depth-first search,” Journal of Algo-

rithms, vol. 14, no. 1, pp. 1 – 23, 1993.

[32] “The gnu coverage tool.” http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[33] S. Dong, “Studying the influence of standard compiler optimizations on symbolic exe-

cution,” Master’s thesis, University of Texas at Austin, Austin, Texas, 5 2015.

51

http://llvm.org/
http://klee.github.io/klee
http://klee.github.io/klee/TestingCoreutils.htmls
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

[34] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A static analyzer for finding dynamic program-

ming errors,” Software: Practice and Experience, vol. 30, no. 7, pp. 775–802, 2000.

[35] P. Godefroid, “Compositional dynamic test generation,” in Proceedings of the 34th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’07, (New York, NY, USA), pp. 47–54, ACM, 2007.

[36] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali, “Compositional may-must pro-

gram analysis: Unleashing the power of alternation,” SIGPLAN Not., vol. 45, pp. 43–56,

Jan. 2010.

[37] R. Qiu, G. Yang, C. S. Pasareanu, and S. Khurshid, “Compositional symbolic execution

with memoized replay,” in 2015 IEEE/ACM 37th IEEE International Conference on Soft-

ware Engineering, vol. 1, pp. 632–642, May 2015.

[38] S. Anand, P. Godefroid, and N. Tillmann, Tools and Algorithms for the Construction and

Analysis of Systems: 14th International Conference, TACAS 2008, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hun-

gary, March 29-April 6, 2008. Proceedings, ch. Demand-Driven Compositional Symbolic

Execution, pp. 367–381. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[39] E. Albert, M. Gómez-Zamalloa, J. M. Rojas, and G. Puebla, Logic-Based Program Synthe-

sis and Transformation: 20th International Symposium, LOPSTR 2010, Hagenberg, Aus-

tria, July 23-25, 2010, Revised Selected Papers, ch. Compositional CLP-Based Test Data

Generation for Imperative Languages, pp. 99–116. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011.

52

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	2 Foundations
	2.1 Symbolic Execution
	2.2 LLVM and KLEE
	2.3 Compiler Optimizations and Testability Transformations

	3 Motivating Examples
	4 Our Transformation Techniques
	4.1 Basis for Transformations
	4.2 Transformation Design and Implementation: The Slicer

	5 Evaluation
	5.1 Test Subjects
	5.2 Independent Variables
	5.3 Dependent Variables
	5.4 Methodology
	5.5 Results
	5.5.1 Small Examples
	5.5.2 Unix's Coreutils

	5.6 Analysis
	5.6.1 Overall Performance
	5.6.2 Caching Disabled
	5.6.3 Caching Enabled

	5.7 Threats to Validity

	6 Related Work
	7 Conclusion
	Appendix A Example Results
	Appendix B Coreutils Results
	Bibliography

