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ABSTRACT

To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc–Scd galaxies
with Hubble Space Telescope (HST) photometry and Hobby–Eberly Telescope (HET) spectroscopy. We use the
HET High Resolution Spectrograph (resolution R ≡ λ/FWHM � 15,000) to measure stellar velocity dispersions
in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810,
NGC 6503, and NGC 6946. The dispersions range from 20 ± 1 km s−1 in the nucleus of M 33 to 78 ± 2 km s−1

in the pseudobulge of NGC 3338. We use HST archive images to measure the brightness profiles of the nuclei
and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply
small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions.
(1) Upper limits on the masses of any supermassive black holes are M• � (2.6 ± 0.5) × 106 M� in M 101 and
M• � (2.0 ± 0.6) × 106 M� in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges
that make up �3% of the stellar mass. This provides the strongest constraints to date on the lack of classical
bulges in the biggest pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our
Galaxy to see whether giant, pure-disk galaxies are common or rare. We find that at least 11 of 19 galaxies with
Vcirc > 150 km s−1, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical
bulge. Four may contain small classical bulges that contribute 5%–12% of the light of the galaxy. Only four
of the 19 giant galaxies are ellipticals or have classical bulges that contribute ∼1/3 of the galaxy light. We
conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as
the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem
with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk
galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of
environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants.

Key words: galaxies: evolution – galaxies: formation – galaxies: individual (M 33, NGC 3338, NGC 3810,
NGC 5457, NGC 6503, NGC 6946) – galaxies: nuclei – galaxies: photometry – galaxies: structure

1. INTRODUCTION

This paper has two aims. First, we derive upper limits on the
masses M• of any supermassive black holes (BHs) in two giant,
pure-disk galaxies. This provides data for a study (Kormendy
et al. 2010) of the lack of correlation (Kormendy & Gebhardt
2001) between BHs and galaxy disks. Second, we inventory
disks, pseudobulges, and classical bulges in the nearby universe
and show that giant, pure-disk galaxies are not rare. This
highlights the biggest problem with our mostly well supported
picture of hierarchical clustering: How can so many pure-disk
galaxies form, given so much merger violence? Both studies
need the same observations: photometry to measure structure
and spectroscopy to measure velocity dispersions and masses.

∗ Based on observations obtained with the Hobby–Eberly Telescope, which is
a joint project of the University of Texas at Austin, the Pennsylvania State
University, Stanford University, Ludwig-Maximilians-Universität München,
and Georg-August-Universität Göttingen.
† Based on observations made with the NASA/ESA Hubble Space Telescope,
obtained from the Data Archive at STScI, which is operated by AURA, Inc.,
under NASA contract NAS 5-26555. These observations are associated with
program numbers 7330, 7919, 8591, 8597, 8599, 9293, 9360, 9490, 9788, and
11080.

1.1. A Practical Guide for Readers

In Section 2, we measure stellar velocity dispersions in high-
mass, Sc – Scd galaxies that contain only nuclei or extremely
small pseudobulges. In Section 3, we derive HST- and ground-
based surface photometry of the most useful subset of our
galaxies to see whether they contain small classical bulges,
pseudobulges, or nuclei and to measure nuclear masses and
M• limits. Sections 2 and 3 are long. Readers who need σ and
M• results can find them in Figure 1 and Table 1. Readers who
are interested in the smallest pseudobulges can concentrate on
Section 3. Readers whose interest is the challenge that pure-disk
galaxies present for our picture of galaxy formation should skip
directly to Section 4.

1.2. Introduction to the Velocity Dispersion Measurements

Nuclei are expected to have velocity dispersions that range
from those of globular clusters, σ ∼ 10 km s−1, to values
similar to those in the smallest classical bulges and ellipticals
(e.g., M 32: σ � 60 km s−1; Tonry 1984, 1987; Dressler &
Richstone 1988; van der Marel et al. 1994a, 1994b; Bender
et al. 1996). But nuclei are faint and embedded in bright disks.
The σ constraint implies that we need high dispersion, and the
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Table 1
Central Velocity Dispersions, Nuclear Masses, and Black Hole Mass Limits in Pure-disk Galaxies

Galaxy Type D MV Ho et al. (2009) σ σ Mnuc M•
(Mpc) (km s−1) (km s−1) (106 M�) (106 M�)

(1) (2) (3) (4) (5) (6) (7) (8)

M 33 Scd 0.82 −19.0 20.0 ± 8.5 19.8 ± 0.8 1.0 ± 0.2 · · ·
NGC 3338 Sc 23.2 −19.8 120.6 ± 9.6 77.5 ± 1.5 · · · · · ·
NGC 3810 Sc 30.2 −18.9 93.8 ± 9.5 62.3 ± 1.7 · · · · · ·
NGC 5457 Scd 7.0 −21.6 23.6 ± 8.7 27 ± 4 8.1 ± 1.7 �2.6 ± 0.5
NGC 6503 Scd 5.27 −18.6 46 ± 3 40 ± 2 5.5 ± 1.3 �2.0 ± 0.6
NGC 6946 Scd 5.9 −21.4 55.8 ± 9.4 56 ± 2 76 ± 16 · · ·

Notes. Column 2: Hubble types are from NED. Column 3: absolute magnitudes MV are calculated from apparent
magnitudes and colors in NED or HyperLeda. Column 4: distance sources are, for M 33: Freedman et al. (2001); for
NGC 3338: NED; for NGC 5457: see Table 2; for NGC 6503: Karachentsev & Sharina 1997; Karachentsev et al.
2003c; and for NGC 6946: see Table 2. Column 5 lists the velocity dispersions measured by Ho et al. (2009). These
galaxies were all measured with the red wavelength (6210 Å–6860 Å) arm of the Double Spectrograph and the Palomar
Observatory Hale 5 m telescope. Note that the tabulated measurements are not necessarily the best σ values actually
adopted by Ho and collaborators. For example, for NGC 3810, Ho et al. (2009) measured 93.8 ± 9.5 km s−1 but
adopted 64.6 ± 8.7 km s−1 based on data in HyperLeda. The dispersion σ = 46 ± 3 km s−1 quoted for NGC 6503 is
from Barth et al. (2002) and has σinstr = 25 km s−1. Column 6 lists our measurements of central velocity dispersions.
The relative contributions to these σ values of the galaxy nuclei and pseudobulges are discussed in Section 3. Columns
7 and 8 list our measurements of dynamical masses of nuclei and BH mass limits as derived in Section 3.

Figure 1. HET HRS spectra of standard stars δ And (K3 III), γ Tau (K0 III),
and η Cyg (K0 III), our galaxies, and M 32. The galaxies are ordered from top
to bottom by increasing velocity dispersion from σ = 20 km s−1 in M 33 to
σ = 89 km s−1 in a central spectrum of M 32. The spectrum of standard star η

Cyg broadened to each galaxy’s line-of-sight velocity distribution is superposed
in red on the galaxy’s spectrum.

faintness implies that we need a large telescope. As a result, few
σ measurements of nuclei are available. The best object—now
very well measured—is M 33, whose exceptionally well defined
nucleus has a velocity dispersion of σ � 21 ± 3 km s−1

(Kormendy & McClure 1993; Gebhardt et al. 2001). We use it as
a test case for our observations. The “gold standard” of nuclear
dispersion measurements is Walcher et al. (2005); they used the
Ultraviolet and Visual Echelle Spectrograph on the Very Large
Telescope to measure nine nuclei of generally modest-sized
galaxies at a resolution of R = 35,000.

This paper reports R = 15,000 measurements of σ in M 33,
NGC 3338, NGC 3810, NGC 5457, NGC 6503, and NGC 6946.
In choosing targets, we favored the largest pure-disk galaxies
that have the smallest possible pseudobulges (Kormendy &
Kennicutt 2004) and the smallest possible distances. The most
important galaxies for our purposes are NGC 5457 = M 101
and NGC 6946. A closely similar object is IC 342, for which
Böker et al. (1999) measured a nuclear dispersion of σ =
33 ± 3 km s−1 at a spectral resolution of R = 21,500. All three
are Scd galaxies with extremely small pseudobulges or nuclear
star clusters but essentially the largest possible asymptotic
rotation velocities ∼200 km s−1 consistent with our requirement
that they contain no classical bulges.

Late in our data reduction, we were scooped by Ho et al.
(2009), who measured σ and collected published σ data for 428
galaxies. All of our objects are included in their paper. How-
ever, their instrumental velocity dispersion is σinstr = 42 km s−1,
whereas ours is 8 km s−1. Our measurements therefore pro-
vide important confirmation. Most of their measurements prove
to be remarkably accurate, even when σ < σinstr. We dis-
agree on two values. Also, our measurements have estimated
errors that are a factor of ∼4 smaller than theirs. Confi-
dence in our understanding of the smallest central velocity dis-
persions in the biggest pure-disk galaxies is correspondingly
increased.
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2. OBSERVATIONS AND DATA REDUCTION

2.1. Observations

The spectra were obtained with the High Resolution Spectro-
graph (HRS; Tull 1988) and the 9 m Hobby–Eberly Telescope
(HET; Ramsey et al. 1998). The queue-scheduled observations
were made between 2006 October 17 and 2007 April 21. HRS is
fed by optical fibers; the image scrambling provided by the 34 m
long fibers guarantees that different seeing conditions, source
light distributions, and object centering accuracies do not affect
the wavelength resolution. We used 3′′ fibers. A central fiber was
positioned on the galaxy nucleus and two bracketing “sky fibers”
measured the night sky and galaxy disk at radii of 10′′ immedi-
ately outside the nucleus. We confirmed the nominal resolution
of R = 15,000 by measuring night sky emission lines. The
corresponding instrumental dispersion is σinstr � 8.2 km s−1 at
the Ca infrared triplet lines, 8498 Å, 8542 Å, and 8662 Å. The
instrument is an echelle; the above lines were positioned in three
orders that were combined into a single spectrum as described
in Section 2.2.

We obtained four, 900 s exposures of NGC 6946. Exposure
times were 600 s per spectrum for the other galaxies; we
obtained two such spectra for M 33, three for NGC 6503, four
for NGC 3338, five for NGC 5457, and seven for NGC 3810. In a
few cases, seeing or transparency was poor—the latter is judged
by signal level and the former is judged by the contrast of the
nucleus against the disk, that is, by the ratio of the flux from the
galaxy to that from the sky plus disk. Low-quality spectra were
not reduced. Each spectrum was taken in 2–3 subexposures to
allow correction for cosmic ray hits.

We also obtained 1 s to 50 s exposures of five velocity standard
stars, HD 117176 (G4 V), HR 1327 (G4 III), η Cyg (K0 III),
γ Tau (K0 III), and δ And (K3 III). We have used the K0–K3
stars in many previous papers; they reliably fit the spectra of low-
to moderate-dispersion galaxies very well. In any case, (1) the
Ca infrared triplet region is relatively insensitive to template
mismatch (Dressler 1984), and (2) the FCQ program that
provides our final dispersion values is specifically engineered to
minimize problems with template mismatch (Bender 1990).

2.2. Preprocessing of Spectra

Spectral reductions were carried out using the interactive
image processing system IRAF4 (Tody 1993). The echelle
software package was used to remove instrumental signatures
from the data. For each night, we created a bias frame, a
continuum flat, and a thorium–argon arc-lamp spectrum from
calibration data taken before and after the observations. Science
frames were first bias and overscan corrected. Bad pixels
were flagged. Next, we removed cosmic ray hits using the
spectroscopy-optimized version of L.A.COSMIC (van Dokkum
2001), and we coadded the three spectra obtained for each
galaxy. We traced and fitted the spectral orders in the continuum
flats using third-order Legendre polynomials. We removed the
spectral signature of the continuum lamp from the flat fields by
fitting the continuum using seventh-order Legendre polynomials
along the dispersion direction and divided the flat field frames
by the fits. Next, we extracted the science spectra (galaxies
and velocity standard stars) using these normalized flat fields

4 IRAF is distributed by the National Optical Astronomy Observatories,
which are operated by the Association of Universities for Research in
Astronomy, Inc., under cooperative agreement with the National Science
Foundation.

to obtain one-dimensional spectra for each order. This provided
one, multi-order spectrum of the galaxy nucleus from the object
fiber plus two “sky” spectra at galactocentric distances of 10′′
bracketing the nucleus. Finally, all spectra were wavelength
calibrated using the Th-Ar lamp spectra to an accuracy of
∼0.02 pixel � 0.003 Å � 0.1 km s−1.

The remaining tasks are sky subtraction and the combination
of separate orders into a single final spectrum rewritten on a
log λ scale. These steps were carried out using a combination
of IRAF and VISTA (Lauer 1985; Stover 1988). Two aspects of
the reduction are tricky and require special care.

The first is sky subtraction. The good news is that sky
spectra are taken simultaneously with the object spectra;
this is important because sky lines vary on short timescales.
The bad news is that sky subtraction is more difficult than
it is with long-slit spectrographs, because we cannot aver-
age many spatial elements to get high signal-to-noise ratios
(S/N). There are only two sky fibers. Sky subtraction contributes
significant noise. Moreover, the sky fibers have slightly different
throughputs than the object fiber, so the two sky spectra must
be scaled (differently) to the object spectrum. Sky subtraction is
more difficult for some objects than for others, because the Ca
triplet lines are badly positioned with respect to night sky lines
for some galaxy redshifts and benignly positioned for others.

The second tricky problem is the polynomial fit to the
continuum that must be divided into each spectral order to
remove the blaze efficiency function. These functions are
approximately

⋂
-shaped. They are not vertical at the ends of

orders, but the signal is low there and hence multiplied upward
by the continuum division. When Ca lines fall well away from
the ends of orders, then continuum fitting is easy and results are
robustly reliable. But when Ca triplet lines fall near the ends of
orders, then (1) the fit becomes difficult because there is little
continuum to fit, and (2) small fitting errors matter a lot because
the line profile is divided by the low blaze efficiency.

Both problems are differently severe for different galaxies.
As a result, the spectral lines that produce the most reliable
results are different for different galaxies. We therefore discuss
the consequences for each galaxy separately.

After continuum division, we kept parts of three orders that
contain the Ca triplet lines. Two wavelength regions were used,
8450–8750 Å in 1024 pixels for the Fourier quotient program
(FQ; Sargent et al. 1977) and 8450–8730 Å in 2048 pixels for
the Fourier correlation quotient program (FCQ; Bender 1990).
The final reduced spectra and the best fit of a standard star
spectrum are illustrated in Figure 1. Our velocity dispersion
measurements are discussed in Section 2.3 and listed in Table 1.

2.3. Velocity Dispersion Measurements

2.3.1. M 33

We included M 33 to check our ability to measure small σ .
We obtained two, 600 s exposures on different nights. They
presented no problems. The nucleus is very compact and high
in surface brightness and very distinct from the surrounding disk
(see Figure 1 in Section 3.1 and Kormendy & McClure 1993). By
a factor of two, it provides the highest flux of any of our galaxies.
Sky lines fall in the red wings of the 8498 Å and 8542 Å lines
and in both wings of the 8662 Å line. But the galaxy signal is
11 and 9 times larger than the sky signal in the two exposures.
We measured the factor by which to scale the sky spectra to the
galaxy spectra to 2% accuracy using 56 and 61 emission lines
in the two spectra. This results in excellent sky subtraction. The
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continuum fit is relatively easy at the heliocentric velocity of
−179 km s−1 (NED). It also helps that the absorption lines are
so narrow that they clobber few continuum pixels. Combining
orders is easy and the dispersion measurements are reliable.

FQ and FCQ give consistent results. The K3 III standard
star δ And gives consistently larger scatter in σ values than
the other stars; we omit it from our averages. Then the average
velocity dispersion given by the other four standard stars is
σ = 21.2 ± 0.6 km s−1 using FQ and σ = 19.8 ± 0.7 km s−1

using FCQ. Quoted errors are for any one standard star. Adding
in quadrature the estimated error in the mean from averaging
results for four stars, we get σ = 19.8 ± 0.8 km s−1 using FCQ.
We adopt this result.

We tested it further by reducing six subregions of the spectra.
They isolate individual Ca lines or combinations of weaker
lines between the Ca lines. FCQ finds that the average intrinsic
widths of the template lines in the wavelength regions tested are
σ∗ = 6 km s−1 to 38 km s−1. Signal-to-noise ratios are lower
and estimated σ errors are bigger when subregions are used. But
results for different subregions are consistent. In particular, we
found no significant dependence of the measured σ on σ∗ (see
also Section 2.3.5). There is a hint that σ may be 1.0 km s−1

smaller in M 33 than we derive. It is not significant, so we retain
the result from the whole spectrum. Similar wavelength region
tests gave similar results for all galaxies. We always tried at least
one wavelength region that contains only a single Ca triplet line.
This guarantees that template mismatch cannot be a problem.

Our result agrees very well with σ = 21±3 km s−1 measured
with σinstr = 20 km s−1 by Kormendy & McClure (1993).
Gebhardt et al. (2001) derived an integrated velocity dispersion
for the whole nucleus of σ = 24.0 ± 1.2 km s−1 using HST
STIS. Merritt et al. (2001), also with the Space Telescope
Imaging Spectrograph (STIS), found a central dispersion of
σ = 24 ± 3 km s−1 but a rapid rise in σ to ∼35 ± 5 km s−1 at
±0.′′3 radius; Ferrarese (2002) quoted an integrated velocity
dispersion of σ = 27 ± 7 km s−1 from these data. Most
recently, Ho et al. (2009) got σ = 20.0 ± 8.5 km s−1 in their
catalog of 428 σ measurements; this is remarkably accurate
given that σ < σinstr = 42 km s−1. We adopt our measurement
of σ = 19.8 ± 0.8 km s−1; it was obtained with the highest
wavelength resolution.

2.3.2. NGC 3338 and NGC 3810

Despite having the largest σ values in our sample—which
means that there are fewer continuum pixels to fit—these are
the easiest galaxies to reduce. The reason is that the heliocentric
velocities (V� = 1302 and 993 km s−1, respectively) put the
Ca triplet lines far from night sky lines and far from the ends
of orders. Sky subtraction and continuum fitting are both easy.
Wavelength range tests show that all lines give reliable results.

For NGC 3810, we obtained four, 600 s exposures with good
seeing and nucleus centering, all taken on different nights. The
flux in the nuclear spectrum ranged from 3.8 to 4.7 times that
of the “sky” spectra in the four exposures. Recall that the “sky”
apertures were located at r � 10′′ on opposite sides of the
galaxy major axis. They clearly contained galaxy absorption
lines. Because of disk rotation, their wavelengths differed from
those of the corresponding lines in the nuclear spectrum. It was
necessary to be exceptionally careful to subtract disk absorption
and sky emission lines correctly from the nuclear spectrum.
This was done by cleaning the sky lines out of each sky
spectrum to leave only the galaxy lines, smoothing the result
slightly, and subtracting this from the sky spectrum to leave

only sky lines. The cleaned sky spectrum was clipped to zero
at low intensities to reduce noise and leave behind only the
significant sky emission. The result was subtracted from the
nuclear spectrum. This was done separately for each of the four
nucleus spectra.

FCQ gave a velocity dispersion of σ = 62.3±1.7 km s−1 for
the nucleus. This is the mean of the σ values for the four spectra.
Each σ for one spectrum is an average over four standard stars.
The quoted error is the sum in quadrature of the estimated error
given by FCQ for one spectrum reduced with one star and the
error in the mean for four standard stars.

Our σ measurement can be compared with σ = 73 ±
16 km s−1 measured with an instrumental σinstr = 78 km s−1

by Héraudeau et al. (1999) and σ = 58 ± 12 km s−1 measured
with σinstr = 65 km s−1 by Vega Beltrán et al. (2001). Ho et al.
(2009) adopt σ = 64.6 ± 8.7 km s−1 credited to HyperLeda
(Paturel et al. 2003) who averaged the above values.

We also reduced the absorption-line spectrum obtained
through the “sky” aperture and got σ = 56.1 ± 2.3 km s−1

at r ∼ 10′′ along the major axis of the disk of NGC 3810. This
is not significantly different from the nuclear dispersion.

For NGC 3338, we also obtained four, 600 s exposures on
different nights. The galaxy flux again was ∼5 times that in the
sky spectra, but this time, the sky spectra showed no significant
galaxy lines. Because the overall S/N was also a factor of two
lower than for NGC 3810 and because all galaxy lines are
benignly positioned with respect to night sky lines, we reduced
only the sum of the four nuclear spectra. Sky subtraction was
easy and FCQ gave σ = 77.5 ± 1.5 km s−1.

For comparison, Héraudeau et al. (1999) got σ = 91 ±
18 km s−1 at σinstr = 78 km s−1, and Ho et al. (2009)
got σ = 120.6 ± 9.6 km s−1 at σinstr = 42 km s−1. Our
two largest and most easily measured σ values are the only
ones that disagree with the Ho et al. (2009) measurements.
For NGC 3810, Ho adopted a smaller σ from HyperLeda.
For NGC 3338, Figure 1 shows that σ � 89 km s−1, the
near-central value in M 32. We are confident in our result.
Note: our science conclusions are based on low-σ galaxies.
No conclusions depend on NGC 3338. It is included to anchor
our measurements at the high-σ end in Figure 1.

2.3.3. NGC 6503

NGC 6503 and NGC 6946 (Section 2.3.4) are more difficult
than M 33. At heliocentric velocities of ∼ 36 km s−1 and
46 km s−1 (HyperLeda), their Ca triplet 8498 Å and 8542 Å
lines are bracketed by sky lines where they merge into the
continuum. Most of each line profile is safe, but special care
is required in sky subtraction. The 8662 Å line falls in a “picket
fence” of night sky lines. They subtract well, but it is necessary to
interpret results from this line with caution. Sky scaling factors
were again determined from several dozen night sky lines.

These galaxies are also difficult because the nuclei are faint.
The S/N was therefore improved by subtracting sky only above
a level of about 1.5 times the rms fluctuations in brightness.
That is, significant sky lines were subtracted, but the sky was
not subtracted between the lines where it consists mostly of
noise. This is consistent with advice in the online HRS manual
(http://www.as.utexas.edu/mcdonald/het/het.html), links on the
HRS and thence on HRS Data Reduction Tips.

The less-than-fortuitous redshifts also put the 8542 Å and
8662 Å lines near the ends of spectral orders. Continuum fitting
is more uncertain than normal for these lines. Therefore, the
most reliable velocity dispersion comes from the 8498 Å line.

http://www.as.utexas.edu/mcdonald/het/het.html
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For NGC 6503, we took two, 600 s exposures on different
nights. The spectra of the nucleus are only 2.5 and 2.1 times
brighter than the corresponding sky spectra. Therefore, (1) the
S/N is relatively low and (2) the seeing or the centering—more
specifically, the degree to which the nuclear spectrum isolates
light from the nucleus—is significantly better in one exposure
than in the other. We reduce only the better exposure to measure
the velocity dispersion of the nucleus. We reduce the sum of the
sky exposures to get the velocity dispersion—albeit with still
lower S/N—in the disk. The sky apertures were positioned at
Δ P.A. � 53◦ from the major axis; that is, relatively near the
minor axis of the i = 74◦, highly inclined disk of NGC 6503.

The nuclear spectrum was sky-subtracted using a median of
the associated “sky” exposures. We assume that the inner expo-
nential profile of the galaxy disk—i.e., the outermost part of the
profile that is fitted with an exponential in Figure 16—extends
to the center. Then “sky subtraction” removes both the night sky
emission lines and the contribution to the nuclear spectrum from
the underlying disk. This leaves us with a spectrum (Figure 1) of
the combination of the nucleus and pseudobulge (see Figure 16,
where r1/4 = 1.11 is the radius of the spectral aperture). FCQ
gives σ = 40.5±2.0 km s−1 for this spectrum. As noted above,
the λ = 8498 Å line alone is more reliable than the other Ca
triplet lines, given the HRS configuration and galaxy redshift.
Using only this line, FCQ gives σ = 39.9 ± 2.0 km s−1. We
adopt the latter value.

The sky exposures are noisy, but they show absorption lines.
We therefore reduced the sum of the sky exposures to give
us an estimate of the velocity dispersion in the galaxy disk.
Subtracting sky emission lines without affecting the galaxy
absorption lines was tricky, because we could not afford sky
exposures taken far from the galaxy. Fortunately, we had one
spectrum each of NGC 3810 and NGC 5457 taken on the same
night as one of the NGC 6503 spectra and one more spectrum
of each of these galaxies taken a few nights later. Their redshifts
are different enough so that galaxy lines in their “sky” spectra
do not overlap. We therefore scaled the above four sky spectra of
two galaxies together in intensity and medianed them, rejecting
one low value. This very effectively removed absorption lines
from the median sky spectrum. The median was scaled to the
emission-line strengths in the summed NGC 6503 sky spectrum
and subtracted. The result was a noisy but relatively clean
spectrum of the disk of NGC 6503 at radius r = 10′′ at
P.A. = 53◦ from the major axis. This corresponds to a true
radius of 30′′ along the major axis. For this spectrum, FCQ gave
σ = 35.6 ± 1.4 km s−1. Using only the λ8498 line, FCQ gave
σ = 31 ± 4 km s−1. We adopt the latter value.

In Section 3.4, we use σ to constrain M•. However, a problem
is revealed when we compare our central σ with published
results:

NGC 6503 is a well-known galaxy; it has an extended flat
rotation curve and one of the best rotation curve decompositions
into visible and dark matter (Bottema 1997). And it was one of
the first galaxies in which a drop in σ toward the galaxy center
was reported. Bottema (1989) measured the dispersion profile
shown in Figure 2. He found a maximum σ = 45 km s−1 at
r � 12′′ and then a drop at larger radii to ∼15 km s−1. The
outward drop in σ is no surprise. But at r < 10′′, Bottema
observed a highly significant drop in σ to 25 km s−1 in two
independent central radial bins. This was unexpected at the
time, but it has since become a common observation (e.g.,
Emsellem et al. 2001; see especially the extensive results on
“σ drops” from the SAURON group: Ganda et al. 2006; Falcón-

Figure 2. Velocity dispersion vs. major-axis radius in NGC 6503 as measured
by Bottema (1989; see also Bottema & Gerritsen 1997). Our value of the disk
dispersion at a true radius of 30′′ almost along the minor axis agrees well with
Bottema’s measurements along the major axis. But we do not confirm the central
σ drop. Rather, our measurement of the central velocity dispersion is consistent
with that of Barth et al. (2002; see also Ho et al. 2009).

Barroso et al. 2006; Peletier et al. 2007a, 2007b). Small central
velocity dispersions are now known to be a defining signature of
pseudobulges that are believed to be grown by secular evolution
of isolated galaxy disks (Kormendy 1993; Emsellem et al. 2001;
Márquez et al. 2003; Kormendy & Kennicutt 2004; Chung &
Bureau 2004; Peletier et al. 2006, 2007a, 2007b; Kormendy &
Fisher 2008). We will conclude in Section 3.4 that NGC 6503
contains a small pseudobulge, based on other classification
criteria. But we do not confirm the central σ drop.

Instead, our measurement of σ = 40 ± 2 km s−1 agrees with
σ = 46 ± 3 km s−1 observed by Barth et al. (2002) using the
Ca triplet lines at σinstr = 25 km s−1. Both values agree with the
dispersion peak observed by Bottema (1989). Who is correct?
Is there a central σ drop?

Some aspects of the observations favor the larger central σ .
The strongest argument is that the two results based on the best
instrumental σinstr = 25 km s−1 (Barth et al. 2002) and σinstr =
8 km s−1 (this paper) agree with each other in disagreeing with
Bottema’s result based on σinstr = 35 km s−1. A possible danger
in Bottema’s measurement is (1) that his slit width controlled his
instrumental resolution and (2) that his slit may have been wider
than the image of the nucleus. If the nucleus underfills the slit,
then it is easy to underestimate its σ . Another possible problem is
the wavelength region used. We and Barth observed at ∼8500 Å,
where an admixture of young stars has almost no effect on
σ measurements. Bottema observed at 5020 Å. Cid Fernandes
et al. (2005) show that the center is dominated by intermediate-
age stars. Their blue spectrum may not be as well matched by
standard stars or—for broad absorption lines—as suitable for
σ measurements as are near-infrared spectra. Finally, Bottema
measured σ via cross-correlation; this is less robust than FCQ
(this paper) or than fitting broadened star spectra to the galaxy
spectrum in pixel space (Barth et al. 2002). Of course, these
caveats are not conclusive.
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Some aspects of the observations probably did not cause the
disagreement. Bottema’s exposure time was a heroic 35,400 s
(9 h 50 m) taken in 1200 s chunks with the 2.5 m Isaac Newton
Telescope at La Palma. Barth’s spectrum was a 3600 s exposure
taken with the Palomar 5 m Hale telescope, and ours is a 600 s
exposure taken with the 9 m HET. Barth got high S/N, and
we got S/N = 91 per resolution element. However, Bottema’s
spectrum had good enough S/N to allow him to measure small
velocity dispersions at large radii. So it is unlikely that the
central S/N was a problem. Also, our measurement of the
disk dispersion at a major-axis radius of 30′′ agrees well with
Bottema’s results (Figure 2). There is no reason to believe that
either set of observations is unable to measure small dispersions.
Note that we measure mostly the radial velocity dispersion near
the minor axis of the disk, whereas Bottema measured mostly
the azimuthal dispersion; we do not expect them to be exactly
equal. Finally, spatial resolution is not the issue: Bottema had
1.′′0–1.′′7 seeing; Barth had 1.′′5–2.′′0 seeing, and we had 1.′′7
FWHM seeing. Moreover, our aperture was 3′′ in diameter, and
Bottema (1989) and Barth et al. (2002) binned their spectra
in spatial pixels of 2.′′64 and 3.′′74, respectively. So all three
observations have poor spatial resolution. It is remarkable that
Bottema saw a dispersion drop over a radius of ±2 pixels of
3.′′74 each.

Alternatively, could all results in Figure 2 be correct? This
could happen as a consequence of the fact that we and Barth
observed near λ = 8500 Å whereas Bottema observed near
5020 Å. If the nucleus is colder than the pseudobulge and if
it is brighter in the blue than in the infrared, then it could
dominate Bottema’s result but not ours. No blue-band HST
image is available to check whether the I-band photometry
derived in Section 3.4 (Figure 16) is relevant for understanding
Bottema’s data. However, the brightness contrast of the nucleus
plus pseudobulge in Bottema’s spectrum (his Figure 2) looks
higher than the contrast in our spectrum. Also, recall that Cid
Fernandes et al. (2005) found that the center is dominated by
intermediate-age stars. It is possible that Bottema measured a
different stellar population than we did or than Barth did.

We therefore do not know whether NGC 6503 has a central
drop in σ . In Section 3.4, we use both σ values to derive nuclear
mass-to-light ratios. The one based on σ = 25 ± 3 km s−1

is more plausible. But the conservative choice is to adopt
our measurement, σ = 40 ± 2 km s−1. The Wolf et al. (2010)
mass estimator used in Section 3.4 is valid for any set of test
particles—even ones that contribute no significant mass—pro-
vided that σ and the brightness distribution are measured for
the same stars. This means that we must use our σ measured in
I band to match the HST surface photometry and to derive the
nuclear mass Mnuc. We also use it to get our M• limit.

2.3.4. NGC 6946

NGC 6946 has almost the same redshift and therefore almost
the same data reduction problems as NGC 6503 (see the first
three paragraphs of the previous section). However, we have
much higher-S/N spectra of NGC 6946, because we have four,
900 s exposures, obtained, as always, on different nights. The
nuclear contrast is better than for NGC 6503 also: the nuclear
spectra are 9–11 times brighter than the “sky” spectra. Since
the latter are taken at 10′′ distance from the nuclear aperture,
they are, as usual, well within the galaxy. They were positioned
in the transition region between what will turn out to be a
tiny pseudobulge and the galaxy’s exponential disk. However,

galaxy absorption lines are negligible in the sky spectra, and sky
subtraction was straightforward.

For this galaxy, the best sky subtraction was obtained by
scaling the two spectra given by the sky apertures to have the
same average emission-line intensities as the nuclear spectrum
using a single scaling factor for each aperture (the spectra were
taken over a period of only six nights). The scale factors were
determined for the two apertures by measuring the strengths of
239 and 297 lines in the four NGC 6946 spectra and in two
M 33 spectra obtained during the same nights. (The number of
lines used is not the same for the two sky apertures because
different pixellation of almost-unresolved lines causes different
problems—for example, with blends—for different lines.) The
scale factors are determined to <1%. The sky-subtracted spectra
are very clean.

However, the velocity dispersion in NGC 6946 is slightly
larger than that in NGC 6503, and the redshift is slightly dif-
ferent, too. The wings of the Ca triplet lines reach closer to
the ends of the spectral orders, so continuum fitting was more
of a problem. The best single spectrum yielded an FCQ ve-
locity dispersion of σ = 55.7 ± 1.1 km s−1. All four spectra
summed but analyzed only using the safest (8494 Å) line gave
σ = 56.4 ± 0.9 km s−1. The signal-to-noise ratios in the best
spectrum and in the sum of four spectra were 292 and 416
per resolution element, respectively. The errors in σ are com-
pletely dominated by problems with the continuum removal.
They may be underestimated by FCQ, which bases its error es-
timates on S/N and on the quality of the star-galaxy spectral
match.

We adopt σ = 56±2 km s−1. We therefore confirm the result
in Ho et al. (2009), σ = 55.8 ± 9.4 km s−1.

2.3.5. NGC 5457 = M 101

NGC 5457 is the most difficult galaxy in our sample: at a
heliocentric radial velocity of 240 km s−1 (NED, HyperLeda),
the redshifted Ca triplet lines are almost exactly centered on sky
emission lines. Any oversubtraction or undersubtraction of the
sky spectrum would result, respectively, in an underestimate
or an overestimate of σ . Therefore, for each of our three,
600 s exposure spectra, we measured the sky spectra scaling
factors using 45–55 emission lines. These factors produced
relatively clean sky-subtracted absorption-line profiles. Each
spectrum was reduced individually through both the FQ and
FCQ programs. This provides a consistency check for the three
separate sky subtractions.

However, sky subtraction proves not to be the biggest problem
with the NGC 5457 spectral reductions. Instead, continuum fit-
ting is especially difficult because the galaxy’s redshift puts the
two red triplet lines too close to the ends of orders. In fact, both
lines have wavelengths that appear at the blue end of one order
and the red end of the adjacent order. In combining and averaging
continuum-divided orders, we kept these lines only in the order
in which they were farther from the end of the wavelength range
covered by that order. Nevertheless, NGC 5457—even more
than our other galaxies—is best measured by the λ = 8498 Å
line, which is fortuitously located in the middle of its spectral
order.

Another problem—not well known but correctly emphasized
by Barth et al. (2002), by Walcher et al. (2005), and by Ho
et al. (2009)—is that the Ca triplet lines are intrinsically broad.
Averaged over our standard stars, the intrinsic width of the
λ = 8498 Å line is σintr � 28 km s−1; that of λ = 8542 Å is
σintr � 50 km s−1; and that of λ = 8662 Å is σintr � 35 km s−1.
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Once σinstr < σintr, the intrinsic widths of the absorption lines
and not the instrumental resolution of the spectrograph largely
control the smallest dispersions that we can measure. High
S/N overcomes most of the problem; this is why we had no
trouble with M 33. Our S/N for NGC 5457 is good; it ranges
from 160 to 165 per resolution element for the three spectra.
Nevertheless, the intrinsic narrowness of the λ = 8498 Å
line is another reason why results from this line alone are
more reliable than those from other lines or from the whole
spectrum. This remark applies to some extent to all of our
galaxies with small velocity dispersions but not (for example) to
NGC 3338.

With this background, our results are as follows.
For the complete wavelength range, FCQ gives σ = 36.1 ±

1.3 km s−1 for the best spectrum and σ = 36.6 ± 1.2 km s−1

and σ = 34.2 ± 1.2 km s−1 for the other two spectra. The mean
is σ = 35.6 ± 1.4 km s−1. At such small σ , comparison to FQ
is important. It gives a mean value of σ = 36 ± 2 km s−1, in
good agreement with FCQ. However:

In marked contrast, for the λ = 8498 Å line alone, FCQ
gives σ = 27.3 ± 2.0 km s−1 for the best spectrum and
σ = 29.8±1.3 km s−1 and σ = 29.8±1.6 km s−1 for the other
two spectra. The mean is σ = 29.0±1.9 km s−1. Omitting only
the λ = 8542 Å line, FQ gives σ = 25.2 ± 3.5 km s−1. For the
best spectrum, FQ gives σ = 23.3 ± 3.1 km s−1.

Recognizing that the error estimates given by FQ and FCQ
do not take into account any problems with continuum fits, we
conservatively adopt σ = 27 ± 4 km s−1. This agrees with
σ = 23.6 ± 8.7 km s−1 obtained by Ho et al. (2009).

2.3.6. Adopted Velocity Dispersions

Table 1 lists our σ measurements and the masses derived from
them in Section 3. For M 33, M• � 1500 M� based on HST
spectroscopy was derived by Gebhardt et al. (2001). NGC 3338
and NGC 3810 are too far away to yield useful M• limits.

Table 1 provides an independent test of the σ measurements
in Ho et al. (2009). Note that our smallest velocity dispersions
are smaller than σintr even for the λ = 8498 Å line. Therefore we
emphasize: Ho et al. (2009) are not much less able to measure
small velocity dispersions with σinstr = 42 km s−1 than we are
with σinstr = 8 km s−1. Moreover, the excellent agreement of
our measurement and Ho’s of σ in M 33 implies that systematic
errors in Ho et al. (2009) are small even at the smallest σ .
Ho et al. (2009) actually have important advantages over our
measurements. (1) They used a long-slit spectrograph, so they
can more accurately subtract sky and galaxy light from near the
nucleus. (2) Their spectrograph is not an echelle, so they have
no problems with continuum fits and do not need to combine
spectral orders. Finally, (3) their 2′′ slit is narrower than our
3′′-diameter aperture, and their seeing at Palomar Observatory
likely was better than ours at the HET for most observations.
Our results correct one dispersion value in Ho et al. (2009).
And we generally have smaller estimated errors. But one of our
main contributions is to provide independent, high-resolution
verification of the large σ database in Ho et al. (2009).

3. PROPERTIES OF NUCLEI AND PSEUDOBULGES

In this section, we measure surface brightness profiles of
NGC 5457, NGC 6946, and NGC 6503. To do this, we
combine archival HST images with ground-based images. The
photometry allows us to identify and measure the properties of
the central stellar components. We show that all three galaxies

have nuclear star clusters embedded in tiny pseudobulges. We
combine the photometry with the σ measurements from the
previous section to measure the masses of the nuclei. And we
derive BH mass limits for NGC 5457 and NGC 6503. First, as
an illustration, we apply this machinery to M 33.

3.1. M 33

The nucleus of M 33 is illustrated in Figure 3. Because
it is both very compact and very cold (σ = 20 km s−1),
strong upper limits on M• have been derived. Kormendy &
McClure (1993) found M• � 5 × 104 M� from ground-based
photometry and spectroscopy; Lauer et al. (1998) improved this
to M• � 2 × 104 M� by adding HST photometry; Merritt et al.
(2001) got M• � 3000 M� using spatially resolved HST STIS
spectroscopy and improved dynamical modeling, and Gebhardt
et al. (2001), also using STIS spectroscopy and three-integral
dynamical models, derived the strongest M• upper limit in any
galaxy to date: M• � 1500 M�.

The stellar mass of the nucleus was not measured in any of
the above papers. We do so here. We begin by decomposing
the HST plus ground-based profile of M 33 (Gebhardt et al.
2001) into a Sérsic function plus an exponential. The fit
rms is 0.06 mag arcsec−2 and re = 0.′′36 = 1.4 pc for
the nucleus. Its total magnitude is Vnuc = 14.05 ± 0.07 or
Inuc = 13.05 ± 0.07 from Kormendy & McClure (1993)
and from the above decomposition using colors from Lauer
et al. (1998). The Merritt et al. (2001) dynamical models give
M/LV = 0.35 and Mnuc = 0.54 × 106 M�. The Gebhardt
et al. (2001) dynamical models give M/LI = 0.68 and
Mnuc = 1.30 × 106 M�. In the rest of this section, we measure
masses using the Wolf et al. (2010) estimator of the nuclear half-
mass, M1/2 = 4σ 2re/G (see the next section for a discussion).
For M 33, it implies that Mnuc = 2M1/2 = 1.04×106 M�. Note
that this compares well with the mean of the results from the
Merritt and Gebhardt dynamical models. We adopt the mean of
all three determinations, Mnuc = (1.0±0.2)×106 M� (Table 1).

In Sections 3.2 and 3.4, we base M• limits on the minimum
possible mass for a spherical stellar system plus BH. Merritt
(1987) shows that this limit is achieved if all of the mass is
in the central point; then M• � 3σ 2〈1/r〉−1/G. The harmonic
mean radius of the M 33 nucleus is 〈1/r〉−1 = 0.′′19 = 0.76 pc
and M• � 2.1 × 105 M�. This is not competitive with HST-
based limits. But even our modest limits based on such virial
theorem arguments can be useful for BH demographic studies.

3.2. NGC 5457 = M 101

Giant pure-disk galaxies present the biggest challenge to our
picture of galaxy formation, because they require the most
hierarchical halo growth without converting any pre-existing
stellar disk into a classical bulge. They also provide important
constraints on BH correlations with host galaxies. This paper
emphasizes such galaxies. However, the biggest galaxies are
the rarest galaxies. Few are close enough for M• measurements.
Three giant, unbarred Scd galaxies stand out as being potentially
useful. IC 342 has a published M• limit (Böker et al. 1999).
NGC 6946 is the subject of Section 3.3. And NGC 5457—the
best galaxy in many ways—is discussed here.

Figure 4 shows that the galaxy is completely disk dominated.
The reddish, high-surface-brightness center would traditionally
be identified as a tiny bulge; this defines the Scd Hubble type.
We will find that it is a pseudobulge: it has the properties
of bulge-like central components that were manufactured by
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Figure 3. Central 69′′ × 110′′ of M 33, in a B- and R-band color version of Figure 1 in Kormendy & McClure (1993). The nucleus is a dense, central star cluster that
is very distinct from the galaxy’s disk. There is certainly no classical bulge in M 33, and there is arguably no pseudobulge (Kormendy & Kennicutt 2004). So M 33 is
a moderate-sized (rotation velocity ∼135 ± 10 km s−1: Corbelli & Schneider 1997; Corbelli & Salucci 2000; Corbelli 2003) example of a pure-disk galaxy.

star formation following secular inward transport of gas (see
Kormendy 1982, 1993; Kormendy & Kennicutt 2004 for re-
views). The plausible engine for secular evolution is, in this
case, spiral structure that lacks an inner Lindblad resonance.
We will find that the pseudobulge makes up 2.7% of the light of
the galaxy. At its center, HST images reveal a distinct nuclear
star cluster (a “nucleus”) that makes up only 0.03% of the light
of the galaxy. It is too small to be visible in Figure 4, but it is
illustrated in Figure 5. Its properties provide our M• limit.

To understand our σ measurements and to estimate M•, we
need surface photometry of all components in the galaxy. That
is, we need a composite brightness profile that measures the
nucleus at the highest possible spatial resolution but that also
reaches large radii. It would be best (1) if this profile were
observed in approximately the same wavelength range as the
spectroscopy and (2) if it were insensitive to the young stars and
dust that are clearly present (Figure 5).

We obtained spectroscopy at the Ca triplet (λ � 8550 Å),
so I-band photometry sees approximately the same stars. The
HST archives contain two I-band Advanced Camera for Surveys
(ACS) images that are ideally suited to our purposes. We use
these for the central profile.

However, K-band images would more securely provide a
brightness distribution that is proportional to the stellar mass
distribution. Therefore, we constructed a K-band composite
profile by grafting a central profile measured using an HST
archive NICMOS F190N image (brown crosses in Figure 6)
to an outer K profile from the Two-Micron All-Sky Survey
(2MASS)5 Large Galaxy Atlas (Jarrett et al. 2003; brown filled

5 The 2MASS survey uses a Ks bandpass whose effective wavelength is
∼2.16 μm (Carpenter 2001; Bessell 2005). Following the above papers, we
assume that Ks = K − 0.044. Then the Ks-band absolute magnitude of the
Sun is 3.29 (Cox 2000). Except in this footnote, we call the 2MASS Ks band
“K” for convenience.

circles in Figure 6.) The problem is that the NICMOS PSF
and the NIC3 scale of 0.′′2 pixel−1 substantially smooth the (as
it turns out) tiny nucleus. Therefore, we used the ACS I-band
profile interior to 2.′′5, and we verify that I band is an accurate
surrogate for K band in Figure 6.

Even in HST I band, the point-spread function (PSF)
causes significant smoothing. We therefore applied 40 it-
erations of Lucy–Richardson deconvolution (Lucy 1974;
Richardson 1972), as in Lauer et al. (2005). We used a VISTA
program that was written and kindly made available by T. R.
Lauer; it was thoroughly tested in Lauer et al. (1992, 1995,
1998). The composite profile constructed from the deconvolved
I-band profile at radii r � 11.′′0 and from the 2MASS K profile
at r � 2.′′5 is illustrated in Figure 6.

The next step was to decompose this profile outside the
nucleus at 0.′′65 � r � 370′′ into an exponential disk and
a Sérsic (1968) log I (r) ∝ r1/n function (pseudo)bulge. The
Sérsic and exponential fits are shown by black dashed curves in
Figure 6; their sum is the black solid curve. It fits the observed
profile to an rms of 0.069 K mag arcsec−2 in the fit range. Since
we need to constrain the (pseudo)bulge properties accurately,
we did not worsen the disk fit by including the outermost three
points.

The Sérsic index of the (pseudo)bulge is 1.91. Many authors
have found that classical (we believe: merger-built) bulges
almost all have n � 2 and that observing n < 2 correlates
with other indicators that the “bulge” was built out of the disk
by secular evolution (Courteau et al. 1996; Carollo et al. 1997,
1998, 2001, 2007; Carollo 1999; MacArthur et al. 2003; Balcells
et al. 2003; Fathi & Peletier 2003; Kormendy & Kennicutt
2004; Kormendy & Cornell 2004; Scarlata et al. 2004; Peletier
2008; Fisher & Drory 2008, 2010; Gadotti 2009; Ganda et al.
2009; Weinzirl et al. 2009; Mosenkov et al. 2010). We conclude
that NGC 5457 contains a pseudobulge. Further evidence for a
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Figure 4. Sloan Digital Sky Survey (SDSS) color image of NGC 5457 (http://www.wikisky.org). This image emphasizes how much this giant galaxy
(Vcirc � 210 ± 15 km s−1; Table 2) is dominated by its disk. The tiny, bright center is the pseudobulge; it makes up 2.7% of the K-band light of the galaxy
(see the text). The nucleus whose properties we use to constrain M• makes up only 0.03% of the K-band light of the galaxy and is completely invisible here. It is
illustrated in Figure 5.

pseudobulge is provided by the fact that the parameters do not
fit the fundamental plane correlations for classical bulges and
ellipticals (Kormendy et al. 2009; Kormendy 2009). Finally,
star formation and spiral structure (Figure 5) are additional
pseudobulge indicators (Kormendy & Kennicutt 2004).

The magnitude of NGC 5457 obtained by integrating the pro-
file in Figure 6 to its outermost point is K = 5.530. This agrees
well with the total magnitude, K = 5.512, given by the 2MASS
Large Galaxy Atlas. The total magnitude of the pseudobulge
given by our decomposition is 9.42. So the pseudobulge-to-total
luminosity ratio is PB/T = 0.027 (Table 2 in Section 4).

To use σ to derive an M• limit, we need the properties of the
nucleus. This is much smaller and denser than the already tiny
pseudobulge (Figures 5 and 6). We derive the brightness profile
of the nucleus by subtracting the pseudobulge-plus-disk model
(black curve in Figure 6) from the observed profile. The result
is the profile shown by the red open circles in Figure 6.

The total magnitude of the nucleus obtained by integrating its
profile and taking into account its average axial ratio, b/a = 0.8,
is K = 14.37. Because this result is very sensitive to small
wiggles in the observed profile caused by azimuthally averaging
star formation, dust absorption, and noise, we also fitted a
Sérsic function to the well-defined, inner parts of the profile (red
solid curve in Figure 6). This gives a total nuclear magnitude

of K = 14.54. The corresponding ratios of nuclear to total
light are N/T = 0.00029 and 0.00025, respectively. So the
nucleus contains 0.027% ± 0.002% of the light of the galaxy.
This is approximately one-quarter of the typical ratio M•/M of
supermassive BHs to the mass of their host elliptical galaxies and
near the bottom end of the range of observed M•/M values (e.g.,
Merritt & Ferrarese 2001; Laor 2001; McLure & Dunlop 2002;
Kormendy & Bender 2009, in which the correlation between
M•/M and core missing light—their Figure 2—adds additional
support for small M•/M values).

We need to address one more issue before deriving a nuclear
mass and M• limit. This is the appropriate value of σ to use. Ho
et al. (2009) find a nuclear dispersion σ = 23.6 ± 8.7 km s−1.
We observe σ = 27 ± 4 km s−1 in a 3′′-diameter aperture
centered on the nucleus. These values are consistent, but
we briefly explore the difference. Integrating the total composite
profile of the galaxy (brown filled circles in Figure 6) inside
r = 1.′′5 gives a K-band magnitude of 12.81. Comparing this
to the above total magnitude of the nucleus implies that the
fraction of the light seen by our spectral aperture that comes
from the nucleus is 0.24 from the integration of the nuclear
profile or 0.20 from the Sérsic fit. Moreover, the seeing FWHM
as measured from the setup exposures was about 2′′. This blurs
more nuclear light out of our aperture. We conclude that we

http://www.wikisky.org
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Figure 5. Color image of the central 20.′′5 × 20.′′5 of NGC 5457 made from
B-, V-, and I-band, HST ACS images. The nucleus is overexposed at the center.
As in M 33, the nucleus is clearly distinct from the lower-surface-brightness
center of the star-forming pseudobulge (see also Figure 6). Spiral dust lanes
are canonically interpreted as regions where gas is being channeled toward the
center (e.g., Athanassoula 1992).

measured the central velocity dispersion of the pseudobulge. Ho
et al. (2009) had better seeing at the Palomar 5 m telescope and
better sky+pseudobulge subtraction via their long-slit spectra.
Their central σ may be a better measurement of the nucleus.
In particular, it may be a hint that the velocity dispersion of
the nucleus is smaller than that of the pseudobulge. This would
be consistent with other observations of σ drops in nuclei and
in pseudobulges (see references in Section 2.3.3). It favors the
conclusion that BHs are small in bulgeless galaxies. However,
given measurement errors, we adopt the weighted mean of the
two measurements, σ = 26.4 ± 3.6 km s−1, for the nucleus.

First, we estimate the mass Mnuc of the nuclear star cluster.
Wolf et al. (2010) present a new mass estimator,

M1/2 = 3σ 2r1/2/G � 4σ 2re/G, (1)

where M1/2 is the mass contained within r1/2, the radius of
the sphere that contains half of the light of the unprojected
light distribution. Also, σ is the line-of-sight projected velocity
dispersion, re is the half-light radius of the projected light
distribution, and G is the gravitational constant. This estimator
has two virtues for our case. (1) It uses self-consistent properties
r1/2, re, and σ of any tracer population—in this case, the stars
that contribute most of the light—even when these have a
radial distribution that is different from the unknown radial
distribution of mass. That is, it does not require the assumption
that mass follows light. (2) Wolf et al. (2010) show that r1/2 is a
“sweet spot” radius whose choice ensures that M1/2 is minimally
sensitive to unknowns like the velocity anisotropy of the tracer
particles. We then assume that Mnuc = 2M1/2.

The nucleus of NGC 5457 has re � 0.′′223 from an integration
of the observed PSF-deconvolved brightness profile. Multiply-
ing by

√
0.8, the mean re = 0.′′200 = 6.8 pc. Then Equation (1)

gives M1/2 = 4.4 × 106 M�. The integral of the nuclear profile
also gives Knuc = 14.37, MK,nuc = −14.86, and hence a total

Figure 6. Brown points show the major-axis, K-band brightness profile of
NGC 5457. They are a composite of the 2MASS Large Galaxy Atlas profile
(Jarrett et al. 2003) at large radii and a deconvolved I-band HST ACS profile
shifted in μ to agree with the outer profile where they overlap (2.′′5–11.′′0).
Also shown is an HST NICMOS F190N profile (crosses) similarly shifted to
the 2MASS outer profile. The black lines show a decomposition of the profile
outside the nucleus into an exponential disk and a Sérsic function (pseudo)bulge
(dashed black lines). Their sum (solid black line) fits the observed profile in the
fit range (vertical dashes) with an rms of 0.069 K mag arcsec−2. The Sérsic
index of the inner component is n = 1.91 (key). Subtracting the fit from the
observed brightness profile provides the brightness profile of the nucleus (open
red circles). A Sérsic function fitted to the well-defined inner part of the nucleus
gives the red curve (n = 1.1). The nuclear profile is determined entirely from
the deconvolved ACS I-band image. To check that this accurately represents
the inner K-band light, we convolved the deconvolved ACS I image with the
NICMOS PSF and resampled the resulting image at NIC3 scale. This gives the
profile of the nucleus that is shown by the red plus signs. It agrees well with
the profile measured in the NICMOS image. This shows that the I-band image
is a good high-spatial-resolution surrogate for the K-band light.

nuclear luminosity of LK,nuc = 18.1 × 106 LK�. Half of this
is LK,1/2 = 9.0 × 106 LK� and so the nucleus has a global
mass-to-light ratio of M1/2/LK,1/2 = 0.49.

Similarly, the Sérsic fit to the nuclear profile gives re � 0.′′191
corresponding to a mean re of 5.8 pc. Equation (1) gives
M1/2 = 3.8 × 106 M� and an integral of the Sérsic fit gives
Knuc = 14.54, MK,nuc = −14.69, and hence a total nuclear
luminosity of LK,nuc = 15.5 × 106 LK�. Half of this is
LK,1/2 = 7.75 × 106 LK� and so the nucleus has a global
mass-to-light ratio of M1/2/LK,1/2 = 0.49.

In the above, we assumed that the distance to NGC 5457 is
7.0 Mpc (see Table 2). Also, the absolute magnitude of the Sun
is MKs� = MK� −0.044 = 3.286 (Cox 2000; footnote 5 here).

A check on the above M/LK ratio is provided by estimating
the mass M(rc) and light L(rc) inside the core radius rc. An
approximate M(rc) is provided by King (1966) core fitting,
(M/L)0 � 9σ 2/2πGΣ0rc, where Σ0 is the central surface
brightness and rc is the radius at which the surface brightness
has fallen by a factor of 2 from the central value. From the
Sérsic fit to the nucleus, we derive an upper limit on the core
radius, rc � 0.′′064 and a lower limit on the central surface
brightness Σ0 corresponding to 11.41 K mag arcsec−2. The
product Σ0rc is much less sensitive to resolution than either
value is individually (Kormendy & McClure 1993). This gives
(M/LK )0 = 0.45. Note that this is an estimate of the central
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Figure 7. Color image of NGC 6946 taken with the Large Binocular Telescope (http://medusa.as.arizona.edu/lbto/astronomical.htm). This galaxy is very similar to
NGC 5457: it is a giant galaxy (Vcirc � 210 ± 10 km s−1: Table 2), but it is completely dominated by its disk (Hubble type Scd). As in NGC 5457, the tiny, bright
center visible in this image proves to be a pseudobulge that makes up 2.4% of the I-band light of the galaxy (see the text). The nucleus whose dispersion we measure
makes up only 0.12% of the I-band light of the galaxy. It is completely invisible here but is illustrated in Figure 8.

volume (not projected) M/L ratio. The core mass-to-light ratio
of the nucleus is remarkably similar to the global value. This
strengthens the justification that our measurements of M/L
ratios and masses are realistic. The uncertainty is that we had to
assume that σ is independent of radius. This has been verified
in M 33 (Kormendy & McClure 1993; Gebhardt et al. 2001;
contrast Merritt et al. 2001) but not in our present galaxies.

The above mass-to-light ratios are intermediate between
values of M/LK ∼ 1 that are normal for old stellar populations
and the smallest values M/LK � 0.05 observed for the youngest
stellar populations (Böker et al. 1999). We need this M/LK in
order to understand the stars. Assuming below that M/LK = 0
therefore gives a strong upper limit on M•.

A limit on M• can be derived by making dynamical models of
the light distribution and the luminosity-weighted total σ with
M/L and M• as free parameters. Merritt (1987) shows that the
total mass is minimized by putting all of the mass into a point
at the center. Independent of velocity anisotropy, this minimum
is Mmin = 〈V 2〉/G〈1/r〉, where 〈V 2〉 is the mean-square stellar
velocity and 〈1/r〉 is the harmonic mean radius of the cluster.
We assume isotropy and adopt M• � 3σ 2/G〈1/r〉. Barth et al.
(2009) arrive at the same conclusion by using Jeans models to
explore the tradeoff between M/L and M• for the nucleus of
the Sd galaxy NGC 3621; for this example, the range of masses

obtained for plausible anisotropies is small. For the nucleus of
NGC 5457, we measure 〈1/r〉−1 = 0.′′18 ± 0.′′01. Correcting for
flattening, 〈1/r〉−1 = 5.4 ± 0.2 pc. Therefore, we conclude that
M• � (2.6 ± 0.5) ×106 M�. In comparison, the mass of the
nucleus is Mnuc = (8.1 ± 1.7) ×106 M� (Table 1).

3.3. NGC 6946

Globally, NGC 6946 is very similar to NGC 5457. It has
the same Scd Hubble type. It has almost the same luminosity
(MV � −21.4 versus −21.6 for NGC 5457), inclination-
corrected maximum rotation velocity (Vmax = 210 ± 10 km s−1

versus 210 ± 15 km s−1 for NGC 5457), and distance (5.9 Mpc
versus 7.0 Mpc for NGC 5457; see Tables 1 and 2). It is less well
known than NGC 5457 because it is heavily obscured by our
Galactic disk. We adopt absorptions AV = 1.133, AI = 0.663,
and AK = 0.125 (NED, following Schlegel et al. 1998).

Figure 7 illustrates the similarity to NGC 5457. We tried to
match the color scheme of Figure 4 but did not fully succeed:
the bandpasses are different, and the correction for foreground
reddening is not perfect. In fact, the galaxies have similar
dereddened total colors: (B − V )T 0 � 0.46 for NGC 6946 and
0.44 for NGC 5457. Both disks are dominated by ongoing star
formation. A difference is that NGC 6946 has a compact central

http://medusa.as.arizona.edu/lbto/astronomical.htm
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Figure 8. Color image of the central 20.′′5 × 20.′′5 of NGC 6946 made from
F547M-, F606W-, and F814W-band, HST WFPC2 images. North is up and east
is at left. The nucleus is overexposed at the center. As in M 33 and NGC 5457,
the nucleus is clearly distinct from the lower-surface-brightness center of the
star-forming pseudobulge (see also Figures 9–11). The pseudobulge is irregular
due to patchy star formation and differently patchy absorption. Its SE – NW
elongation causes the ε maximum at r1/4 � 1.3 in Figure 9; this was called a
“nuclear bar” by Elmegreen et al. (1998). The galaxy looks less patchy in H and
K bands, but it continues to be brightest at the same nucleus.

concentration of molecular gas and a nuclear starburst; we will
detect this gas dynamically. Because the gas mass and internal
absorption are uncertain, we will not find a secure M• limit.

Like NGC 5457, NGC 6946 has no hint of a classical bulge. In
photometry discussed below, the overexposed red center shown
in Figure 7 proves to be a pseudobulge. As in NGC 5457, it
is easy to identify an engine for secular evolution: the spiral
structure and associated dust lanes reach the nucleus, so there
is no effective inner Lindblad resonance (see Kormendy &
Norman 1979) that acts as a barrier to inflowing gas. However,
we expect that secular evolution is slow in a barless Scd galaxy
(Kormendy & Kennicutt 2004; Kormendy & Cornell 2004).
So, as in NGC 5457, it is no surprise that the pseudobulge of
NGC 6946 is tiny. It adds up to 2.4% of the I-band light of the
galaxy.

At the center of NGC 6946 is an even tinier nucleus (Figure 8)
that is seen in the V-band decomposition of Fisher & Drory
(2008) but that is still more obvious in I band. Large color
gradients in NGC 6946 imply (in contrast to NGC 5457) that
the nucleus is dominated by young stars. To measure its mass,
it is important that we measure its brightness profile at the same
wavelength that we used in our spectroscopy to measure σ . We
therefore work in I band.

3.3.1. I-band Photometry and Nuclear Mass Estimates

Figures 9–11 show the brightness profile of NGC 6946. The
individual measurements are shown in Figure 9; their average is
in Figures 10 and 11. Figure 9 also shows ellipticity profiles ε(r).

At r � 6.′′0, we used an I-band profile from the McDon-
ald 0.8 m telescope measured and kindly provided by Fisher
& Drory (2008). At r � 23.′′2, we measured the profile in

Figure 9. Major-axis, I-band brightness profile of NGC 6946. Black lines show
a decomposition in the fit range (vertical dashes) into an exponential disk and a
Sérsic pseudobulge (dashed black lines). Their sum is the solid black line. The
Sérsic index of the pseudobulge is nPB = 0.92 (key). Subtracting the fit from
the observed profile gives the profile of the nucleus (open red circles). A Sérsic
fit to the nuclear profile (red curve) has nnuc = 0.72 ± 0.18.

an HST ACS F814W image, and at r � 15.′′9, we measured
it in the WFPC2 F814W image used in Figure 8. Where
they overlap, the HST profiles agree almost perfectly (rms
difference = 0.030 I mag arcsec−2 for 49 overlapping points
omitting one deviation of 0.138 mag arcsec−2). We also mea-
sured the ACS profile after 40 iterations of Lucy–Richardson
deconvolution. However, HST easily resolves the central flat
profile, so deconvolution makes no significant difference. We
adopt the undeconvolved profile.

We used the I-band VEGAmag zero point 25.53561 mag
(http://www.stsci.edu/hst/acs/analysis/zeropoints) for ACS ob-
servations taken before 2006 July 4. To estimate the total mag-
nitude of the galaxy, we extended the observed profile using
the exponential fit in Figures 9–11. Integrating this extended
profile together with the ellipticity profile gives a total appar-
ent magnitude of Itot = 7.43. This compares very well with
Itot = 7.46 found by Makarova (1999). Also, our exponen-
tial disk fit in Figures 9–11 has an apparent central surface
brightness of 19.44 I mag arcsec−2 and a scale length of 115.′′9.
Makarova got 19.41 I mag arcsec−2 and 113.′′1, respectively.
Springob et al. (2007) got Itot = 7.33 ± 0.04 extrapolated to
eight disk scale lengths. However, we and Springob extrapo-
late the surface brightness profile to 23.5 I mag arcsec−2 at
r = 425.′′6 and 423.′′2, respectively. So the agreement in zero
points, parameters, and total magnitudes is good.

http://www.stsci.edu/hst/acs/analysis/zeropoints
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Figure 10. Composite brightness profiles of NGC 6946. Black lines show a
Sérsic—exponential decomposition of the extra-nuclear profile in two radial
ranges (vertical dashes) that omit points between r1/4 = 1.60 and 2.27. This
gives (solid black line) a better fit to the central pseudobulge profile and a more
accurate extrapolation into the nucleus. The nuclear profile and Sérsic fit were
then calculated as in Figure 9.

However, it is unrealistic to think that we know the total
magnitude to better than ∼0.1 mag. Reasons include the
irregularities introduced by patchy star formation and dust
absorption, spiral structure, and the overall disk asymmetry.
The ellipticity measurements are uncertain at large radii. The
brightness and the ellipticity profiles must be extrapolated to
get the total magnitude; we do not know whether the disk has an
outer cutoff. Even the uncertainties of foreground star removal
are not negligible. We adopt Itot = 7.43 from our photometry.
With AI = 0.663 and an adopted distance of 5.9 Mpc (Table 2),
the total absolute magnitude of NGC 6946 is MI = −22.1 (keys
to Figures 9–11).

To derive Mnuc, we need the I-band total luminosity and
effective radius of the nucleus. Also, we need to know that our
spectroscopy measured its velocity dispersion. And we need a
reliable classification and total luminosity of the (pseudo)bulge.
All of these require decomposition of the observed brightness
distribution into nuclear, bulge, and disk contributions, with
due regard to uncertainties introduced by the patchy light
distribution in Figure 8.

Figures 9–11 show three decompositions. The disk fit is
identical in all three. The overall fit to the (pseudo)bulge is best in
Figure 9: we fit all of the profile outside the nucleus. Figures 10
and 11 provide error bars on the (pseudo)bulge parameters. The
good fit to the central, almost-constant-surface-brightness part
of the (pseudo)bulge in Figure 10 provides the best extrapolation
into the nucleus and therefore the best brightness profile of the
nucleus. The decompositions in Figures 9 and 11 are used to
provide error bars on the nuclear parameters. The profile of the
nucleus is so steep that these errors are small.

Figure 9 shows a decomposition of all of the profile outside the
nucleus. Between the vertical tics (1.′′3 � r � 296′′), an outer
exponential profile + an inner Sérsic (1968) log I (r) ∝ r1/n

function fit the data with an rms of 0.19 I mag arcsec−2.
The rms is dominated by the poor (pseudo)bulge fit; the fit

Figure 11. Composite brightness profile of NGC 6946. Black lines show a
Sérsic—exponential decomposition of the extra-nuclear profile in two radial
ranges (vertical dashes) that omit points between r1/4 = 1.33 and 1.80. This
gives the largest (pseudo)bulge nPB = 0.92 ± 0.37 that is consistent with the
data. The extrapolation into the nucleus is fortuitously almost identical to that
in Figure 9. The nuclear profile and Sérsic fit were calculated as in Figure 9.

to the disk is good to a few percent. The measurements of
the (pseudo)bulge are accurate—the ACS and WFPC2 profiles
agree almost perfectly—but given the asymmetric and patchy
star formation and dust, the idea that the brightness distribution
in Figure 8 can be described by μ(r), ε(r), and a position angle
profile is more approximate than usual.

Happily, the fit in Figure 9 is easily adequate for our needs.
We do not use it to measure the (pseudo)bulge magnitude. We
use it only to help classify this component and to estimate how
much light it adds to the nucleus. First, the classification: Its
Sérsic index is nPB � 0.92. The range in Figures 10 and 11 is
nPB = 0.42 ± 0.06 to nPB = 0.92 ± 0.37. Robustly, nPB � 2.
Many papers (cited in Section 3.2) have shown that this implies
that the component is a pseudobulge.

Note: there is no sign of a classical bulge in NGC 6946, i.e.,
one that has n � 2 and that satisfies the fundamental plane
correlations for elliptical galaxies (see Carollo 1999; Kormendy
& Fisher 2008; Fisher & Drory 2008; Gadotti 2009 for bulge-
pseudobulge comparisons).

Next, we need to derive the brightness profile and the
structural parameters of the nucleus. Extrapolating the sum
of the exponential and Sérsic-function fits in Figures 9–11
(solid black curves) to smaller radii provides three estimates
of the amount of pseudobulge light that underlies the nucleus.
Subtracting these from the observed profile gives the nuclear
profile. It is shown by open circles in Figures 9–11. Fortunately,
the pseudobulge contributes little light underlying the nucleus
in I band. So uncertainties in the above extrapolation are small.
Sérsic fits to the nuclear profiles are shown by the red curves
in Figures 9–11. The most accurate inner pseudobulge fit and
therefore plausibly the best extrapolation is the one in Figure 10.
The resulting Sérsic index of the nucleus is nnuc = 0.58 ± 0.09.
The nuclear profile at r � 0.′′5 falls off almost as steeply as
a Gaussian (n = 0.5). The other two decompositions provide
error bars. We conclude that nnuc = 0.6+0.2

−0.1. One consequence is
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that the effective and harmonic mean radii are well constrained.
This improves our mass estimates.

The Sérsic fits in Figures 9–11 give major-axis effective radii
of the nucleus, re = 0.′′63±0.′′11, 0.′′62±0.′′10, and 0.′′60±0.′′10,
respectively. Alternatively, integrating the observed profiles
implies that re = 0.′′52±0.′′02, 0.′′52±0.′′02, and 0.′′51±0.′′02. We
adopt re = 0.′′57±0.′′11 along the major axis. Since the ellipticity
of the nucleus is ε � 0.35 ± 0.05 (Figure 9), the mean effective
radius that is relevant for Virial theorem arguments is 〈re〉 =
re

√
1 − ε = 0.′′46 ± 0.09 � 13.2 ± 2.6 pc.

Averaging all three decompositions, the total magnitude of
the nucleus corrected for its flattening is Inuc = 14.70+0.06

−0.10.
The corresponding absolute magnitude is MI,nuc = −14.8. The
nucleus-to-total luminosity ratio is (N/T )I = 0.00124+0.00013

−0.00016.
Getting the pseudobulge-to-total luminosity ratio is trickier,

because none of the three decompositions is adequate to provide
the pseudobulge magnitude from the Sérsic fit. Instead, we
exploit the excellent fit of the exponential to the disk profile.
The disk dominates at r1/4 > 2.4. We therefore measure the
pseudobulge + nucleus contribution by integrating the observed
brightness and ellipticity profiles out to the above radius and
subtracting the exponential disk fit integrated to the same radius
with εdisk = 0.35 (Figure 9). We then subtract the nucleus.
This gives the pseudobulge apparent and absolute magnitudes,
IPB = 11.47 and MI,PB = −18.0. The pseudobulge-to-total
luminosity ratio is (PB/T )I = 0.024. Large color gradients in
NGC 6946 imply that N/T and PB/T are different in other
bandpasses. But (PB/T )I in NGC 6946 is similar to (PB/T )K
in NGC 5457. Both pseudobulges are tiny.

Before estimating masses, we need to check whether our
spectra adequately measure σ in the nucleus of NGC 6946.
Comparing Inuc = 14.70 with the integral of the total brightness
and ellipticity profiles out to the radius r = 1.′′5 of our input
fiber implies that 52% of the light in our spectra came from
the nucleus. The real contribution is slightly smaller because of
seeing. However, recall that we measured σ = 56 ± 2 km s−1,
whereas Ho et al. (2009) got σ = 55.8 ± 9.4 km s−1. We
expect that the Ho et al. (2009) spectra have better spatial
resolution than our own. One possible concern is that nuclear
velocity dispersions may be slightly smaller than pseudobulge
dispersions in NGC 5457 (Section 2.3.5) and NGC 6503
(Section 2.3.3). But our excellent fits of broadened standard
star spectra to the line-of-sight velocity distributions exclude
roughly equal contributions to our NGC 6946 spectra from two
components that have very different velocity dispersions. We
therefore feel safe in adopting σ = 56 ± 2 km s−1 for the
nucleus.

We now derive the dynamical mass of the nucleus using the
Wolf et al. (2010) estimator. As in NGC 5457, the nucleus has a
steep enough profile—steeper than I ∝ r−2 deprojected—so
that we can treat it as an independent dynamical system
(Tremaine & Ostriker 1982). Then 〈re〉 = 13.2 pc and σ =
56 km s−1 imply that the nuclear half-mass is M1/2 = (38±8)×
106 M�. From MI,nuc = −14.82, half of the I-band luminosity
is L1/2 = (19.1+1.7

−1.0) × 106 LI�. So the mass-to-light ratio
inside a sphere that contains half of the mass of the nucleus is
(M/L)I = 2.0+0.5

−0.4.
A check on this result is provided by the core M/L ratio. It

is better determined in NGC 6946 than in NGC 5457 because
a flat profile is well resolved at the center. Its physical origin
is unlikely to be the same as those of the cores in globular
clusters or in elliptical galaxies. However, estimates of how
much gravity is required to bind the near-central stars do not

Figure 12. Composite K-, H-, I-, and V-band, major-axis brightness profiles of
NGC 6946. All individual profiles that are used in this paper are shown.

depend on this physics. Also, rc � 0.′′48 � 14 pc is small;
if the three-dimensional velocity dispersion is

√
3σ , then a

typical star travels a distance of rc in ∼140,000 yr. This is
much less than the lifetimes of even the most massive stars. It
seems safe to assume that the core and, indeed, all of the nucleus
is well mixed and in dynamical equilibrium. The central surface
brightness is 14.37 ± 0.05 I mag arcsec−2, and the mean core
radius is 〈rc〉 = rc

√
1 − ε = 0.′′39 = 11.2 pc. Then the core

mass-to-light ratio is (M/L)I,0 = 9σ 2/2πGΣ0rc = (1.9 ± 0.1)
(M/L)I�. This is in excellent agreement with the global mass-
to-light ratio (M/L)I = 2.0+0.5

−0.4 estimated above. Note that
rc ≈ re, so this is a check on our machinery rather than a
check on whether M/LI depends on radius. The core mass is
M(rc) = 1.074Σ0r

2
c (M/L)I,0 = (12.3 ± 0.6) × 106 M�. All

estimated errors here are internal; they do not include distance,
magnitude zero point, or model assumption errors.

The question is: What objects dominate M1/2 and M(rc)?
Possibilities include stars (which can be obscured by dust), gas,
and a central BH. For stars, M/LI,0 = 2.0±0.1 is normal for an
old stellar population in a globular cluster (Wolf et al. 2010, see
Figure 4) or a small early-type galaxy (Cappellari et al. 2006,
see Figure 8). Star formation is in progress in NGC 6946, but
our Figure 8 also shows patchy absorption. We need to look
at the situation in more detail to see how consistent our results
are with the sum of a central concentration of gas plus a partly
absorbed, mixed-age stellar population.

3.3.2. H- and K-Band Photometry and Mass Estimates

We therefore measured K-, H-, and V-band profiles
(Figure 12). The K-band profile was measured using an HST
NICMOS NIC3 F190N image zero pointed to the 2MASS Large
Galaxy Atlas Ks profile (Jarrett et al. 2003). We abbreviate Ks
as “K.” The H-band profile was measured using a NICMOS
NIC2 F160W image zero pointed to the 2MASS H-band pro-
file. Unlike the I- and V-band profiles, the HST H and K profiles
required 40 iterations of Lucy–Richardson deconvolution using
PSF stars in the images. Finally, we remeasured the V-band pro-
file using an HST WFPC2 PC F547M image. The zero point is
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from Dolphin (2009). In Figure 12, the outer V-band profile is
from Fisher & Drory (2008) shifted to our zero point.

The contrast of the nucleus above the pseudobulge is smaller
at H and K than at I, so we do not try profile decomposition.
Instead, we estimate core masses and M/L ratios using the
total profiles in Figure 12. In H band, 〈rc〉 = 0.′′60 = 17 pc;
M/LH = 0.37; M(rc) = 19×106 M�. In K band, 〈rc〉 = 0.′′69 =
20 pc; M/LK = 0.15; M(rc) = 22 × 106 M�. These infrared
mass-to-light ratios are smaller than those of unobscured, old
stellar populations. This suggests that the nucleus contains
young stars that are partly obscured at optical wavelengths.

3.3.3. Stellar Population Models and the
Stellar Mass of the NGC 6946 Nucleus

We therefore compare our results with models of stellar
populations that include starbursts and internal absorption. The
modeling machinery from Drory et al. (2004a, 2004b) was used
to fit the central surface brightnesses, μV = 15.81 ± 0.05
V mag arcsec−2, μI = 14.37 ± 0.05 I mag arcsec−2, μH =
11.80 ± 0.08 H mag arcsec−2, and μK = 11.11 ± 0.10 K
mag arcsec−2. Relative errors are estimated from plausible zero
point and photometry errors. The foreground extinctions were
assumed to be AV = 1.133, AI = 0.663, AH = 0.197, and
AK = 0.125 (Schlegel et al. 1998). An example of such a
model is shown in Figure 13.

Each model consists of the sum of a starburst with a constant
star formation rate for the past 50 Myr and a stellar population
of intermediate to old age. Its spectrum is synthesized using
the S. Charlot & G. Bruzual A. (2010, in preparation) stel-
lar population synthesis library that incorporates an improved
treatment of thermally pulsating, asymptotic giant branch
(TP-AGB) stars. They dominate intermediate-age (0.5–2 Gyr
old) populations from the I band through the near-infrared
(Maraston 2005; Maraston et al. 2006). They can lead to changes
of up to a factor of 2–3 in the stellar mass estimates for star-
bursts such as the one in NGC 6946. In Figure 13, the burst
fraction b, the internal absorptions AV (b) and AV of the burst
and of the older population, the latter’s age, and its star formation
e-folding time τ are free parameters. We want to know the total
mass-to-light ratio of the extincted model. The upper-right panel
of Figure 13 shows the likelihood distribution of the extincted
M/LI marginalized over all other parameters. The most likely
unextincted M/LI = 0.05 (dashed line). But the extincted ratio
has a median value of M/LI = 0.42 and a most likely value
of M/LI = 0.61. It is robustly less than the observed value
M/LI = 2.0 ± 0.1.

Stellar populations have much more freedom than Figure 13
explores. With only four points in a spectral energy distribution
(SED), our model fits are underconstrained. Some parameters
are especially unconstrained. For example, we can trade burst
fraction against the absorption AV of the older population
(modifying the burst extinction) and produce good fits that are
dominated either by the starburst or by the older population.
But putting more light into the starburst forces us to increase its
absorption. And trying to force higher mass-to-light ratios by
adding priors that favor older stars forces the fit to put more light
into less obscured, young stars in order to fit the V- and I-band
points. Trying to increase M/LI by allowing higher extinctions
has the same effect. The fitting procedure wants most of the
light to be only moderately extincted. The result is that the
extincted M/LI is constrained to be ∼0.2–1. Favored mass-to-
light ratios are M/LI = 0.42 (median) to 0.61 (most probable)
and M/LK = 0.044 (median) to 0.039 (most probable).

Urged by the referee, we also tried three-component models.
The added, old population has an age of 8 Gyr. The results
are similar. Favoring young stars produced a χ2 = 2.1,
acceptable fit with an extincted, total M/LI = 0.30. Forcing
the intermediate-age population to contribute most of the light
forced the extinction to be very low; M/LI = 0.63 at χ2 = 5.5.
Forcing the old population to contribute significantly at H and
K forced the young population to fit V and I. That model has
M/LI = 0.80 but χ2 = 5.9. As long as the SED observations
control the population mix, M/LI � 0.2 to 1 rather than 2±0.1
as observed.

This implies a weak detection of more dynamical mass than
we can account for with stellar populations that fit our SED.
From Mnuc = (76 ± 16) × 106 M� and a stellar mass of
M∗ = 16 (8–31) ×106 M� from the Figure 13 models or
(12–31) ×106 M� from the three-component models, we can
estimate that the nonluminous material has a mass of (20–50) ×
106 M�.

3.3.4. Molecular Gas Mass in the NGC 6946 Nucleus

It turns out that the above, nonluminous mass is reasonably
consistent with the molecular gas mass in the nucleus. There is
a large literature on the gas content and starburst in the center of
NGC 6946; we concentrate on results that help us to interpret our
mass measurement. In the optical, the center of the galaxy shows
an H ii region spectrum but not a LINER or a Seyfert nucleus
(Ho et al. 1995, 1997). The nucleus plus pseudobulge contain
both an N-band mid-infrared source (Telesco et al. 1993) and
an X-ray source (Ptak et al. 1999; Schlegel 1994; Schlegel et al.
2000, 2003). However, it satisfies X-ray–infrared correlations
for starburst galaxies that are clearly separated from correlations
for Seyferts (Krabbe et al. 2001). This is one sign among many
that a starburst is in progress.

An early study by Engelbracht et al. (1996) found σ =
45 ± 10 km s−1 and σ = 53 km s−1 from two independent
analyses of the spectra of CO absorption bands at 2.3 μm
wavelength taken in a 2.′′4 × 8′′ aperture. This is consistent
with our σ measurement. They fitted their flux and mass
constraints with starburst models and favored a model with
two instantaneous bursts, one that made 4 × 106M� of stars
7 million years ago and a second burst that made 1.8 × 107M�
of stars 27 million years ago. They concluded that “the high rate
of star formation in the nucleus of NGC 6946 must be episodic
in nature rather than continuous throughout the lifetime of the
galaxy” (Engelbracht et al. 1996, p. 238).

The highest resolution line observations are IRAM Plateau
de Bure Interferometer CO measurements by Schinnerer et al.
(2006, 2007) with resolutions ∼0.′′58 × 0.′′48 and ∼0.′′35, re-
spectively. Their highest resolution (“inspector”) rotation curve
in Figure 10 formally gives M(r = 0.′′5) ∼ 26 × 106 M�.
This is not very different from our M(rc). The true mass is
likely to be larger because beam smearing affects V and because
the velocity dispersion of the gas is neglected. The molecular
gas reaches a maximum central velocity dispersion of 50 and
42 km s−1 in the 12CO(1–0) and 12CO(2–1) lines, respectively
(Schinnerer et al. 2006). These values are reassuringly consis-
tent with Engelbracht et al. (1996) and with our results.

Most importantly, Schinnerer et al. (2006) estimate that
the mass of molecular gas interior to r � 1.′′0 = 29 pc is
MH2 ∼ 17×106 M�. Within measurement errors, this is similar
to our dynamical estimate of the central dark matter. There is
room for a BH whose mass is a few tens of millions of M� but
no secure dynamical evidence that such a BH must be present.
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Figure 13. Example of a stellar population model fitted to the central surface brightnesses of NGC 6946 in V, I, H, and K bands after correction for foreground
Galactic extinction. In the bottom panel, the green points are the model fits to the observations (black points). They are synthetic surface brightnesses calculated from
the sum (green spectrum) of a starburst (blue spectrum) that has had a constant star formation rate for the past 50 Myr and an intermediate-age stellar population (red
spectrum). The intermediate-age stellar population has an age of 0.4 Gyr, and its star formation rate decays with an exponential e-folding time of τ = 0.5 Gyr. It is
extincted by AV = 2.0 mag. The mass fraction in the starburst is b = 0.017, and the burst is not extincted: AV (b) = 0. The upper panels show χ2 values (orange
shading: darker means less likely) and χ2 contours that illustrate the coupling between the various parameters. Blue solid, dashed, and dotted contours are 1σ , 2σ and
3σ , respectively. The upper-right panel shows the likelihood distribution of the total I-band mass-to-light ratio including internal extinction; i.e., as we observe it. The
dashed line shows the most likely unextincted mass-to-light ratio. Some parameters are strongly coupled (for example—as expected—b and AV ). Some parameters
are poorly constrained (e.g., the age of the intermediate-age population). But the extincted mass-to-light ratio has a median value of M/LI = 0.42 and a most likely
value of M/LI = 0.61. It is robustly less than 1. All these values are much smaller than the M/LI = 2.0 ± 0.1 that we observe. The population modeling machinery
is from Drory et al. (2004b, see also Drory et al. 2004a). The fit shown has χ2 = 0.91 per degree of freedom.

3.3.5. Caveat ⇒ No M• Limit

Many of the above papers conclude that the central starburst
is essentially completely obscured. Our results do not require
this conclusion. The H- and K-band HST images show the same
nucleus as the V and I images even though the extinction is

much smaller in the infrared. The stellar population models
require that the optical light comes mostly from young stars. Of
course, some stellar mass could be hidden from all photometry
by putting it behind a completely opaque screen. But that screen
would be transparent to CO line measurements. It is reassuring
that the CO velocity dispersion of the central molecular cloud
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Figure 14. Color image of NGC 6503 taken with the Hubble Space Telescope Advanced Camera for Surveys. Colors are bland because the wavelength range available
is small. Blue corresponds to the F650N filter (Hα), red to F814W (I band), and green to their average. Brightness here is proportional to the square root of the
brightness in the galaxy. North is up and east is at left. Like NGC 5457 and NGC 6946, this is a pure-disk galaxy. But NGC 6503 is smaller; it has a flat outer rotation
curve with Vcirc � 115 km s−1 compared with Vcirc � 210 km s−1 for the previous galaxies. Like those galaxies, its Hubble type is Scd. And like them, a tiny, bright
center visible in this image proves to be a pseudobulge that makes up 0.11% of the I-band light of the galaxy (see the text). The nucleus that we use to constrain M•
makes up only 0.040% of the I-band light of the galaxy. It is completely invisible here but is illustrated in Figure 15.

agrees with the I-band stellar velocity dispersion of the nucleus.
Since their linear sizes are similar, the implied dynamical masses
are similar. Nevertheless, the potential that some stellar mass is
completely hidden makes it impossible for us to derive an M•
value or limit.

3.3.6. Episodic Growth of the Nucleus and Pseudobulge

Schinnerer et al. (2006, 2007) note that NGC 6946 contains
prototypical examples of a nucleus and pseudobulge that are
caught in the act of growing by the internal secular evolution
of isolated galaxy disks (Kormendy & Kennicutt 2004). With a
stellar mass of Mnuc � 2×107 M� and a molecular gas mass of
MH2 � 1.7 × 107 M� (Schinnerer et al. 2006), the stellar mass
will at least double when the present gas has turned into stars.

Other nuclei are seen in earlier and later stages. The blue
nucleus of M 33 (Section 3.1) still has an A-type optical
spectrum indicative of several past starbursts (van den Bergh
1976, 1991; O’Connell 1983; Schmidt et al. 1990; Kormendy
& McClure 1993; Lauer et al. 1998; Gordon et al. 1999; Long
et al. 2002), but it has no substantial molecular gas (Rosolowsky
et al. 2007). In NGC 4593, gas is accumulating near the center
but not yet starbursting. Kormendy et al. (2006) suggest that the
“starburst events that contribute to pseudobulge growth can be
episodic.”

3.4. NGC 6503

NGC 6503 (Figures 14 and 15) is an Scd galaxy that is smaller
than NGC 5457 and NGC 6946. It has a rising rotation curve
over the inner 100′′, i.e., roughly the radius range shown in
Figure 14, and then a well-known, flat outer rotation curve with
Vcirc � 115 km s−1 (van Moorsel & Wells 1985; Begeman 1987;
Begeman et al. 1991) out to r � 800′′. This is similar to Vcirc in

Figure 15. Color image of the central 20.′′5 × 20.′′5 of NGC 6503 made as in
Figure 14 but with a different square-root stretch to show the central bar-like
pseudobulge and nuclear star cluster. Both together are saturated in Figure 14.

M 33. NGC 6503 is another example of a pure-disk galaxy; it is
not in the Section 4 sample because Vcirc < 150 km s−1.

Two HST archive images include the nucleus, an F814W
image that defines our I photometry bandpass and an F650N
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Figure 16. VEGAmag I-band surface brightness and ellipticity profiles of
NGC 6503. Black lines show a decomposition into nuclear, pseudobulge,
and disk components; their sum is shown in dark red. The nuclear profile is
exponential. Two Sérsic functions, the inner of which is essentially Gaussian,
are required to fit the pseudobulge; they should not be interpreted as physically
separate or distinct components. The outer exponential is fitted to the inner,
flat part of the Freeman (1970) “Type II” profile of the disk. The fit range is
shown by vertical dashes; the rms of the fit is 0.063 I mag arcsec−2. The inner
pseudobulge brightness shelf has essentially the same flattening as the outer
disk; it is the disk-like or bar-like feature seen around the nucleus in Figure 15.
The ellipticity wiggles at r1/4 � 1.1 to 1.9 are caused by patchy dust (see
Figures 14 and 15).

image that includes Hα emission. Color images of the galaxy
and its nucleus plus pseudobulge are constructed from these
images in Figures 14 and 15. The wavelength range is small, so
colors look bland. But absorption and star formation regions are
recognizable, and the figures serve to emphasize how thoroughly
this is a pure-disk galaxy.

The tiny, bright center that is saturated in Figure 14 is
resolved in Figure 15 into an elongated structure that resembles
a nuclear bar (see also González Delgado et al. 2008). The
disk-like or bar-like morphology is sufficient to identify this as
a pseudobulge. It surrounds a distinct, high surface-brightness
nucleus. NGC 6503’s distance is only 5.27 Mpc (Karachentsev
et al. 2003c; Karachentsev & Sharina 1997). So the nucleus
provides another opportunity to use ground-based spectroscopy
to derive an M• limit in a pure-disk galaxy.

The major-axis brightness profile of NGC 6503 is shown
in Figure 16. All of our results except our measurement
of the total magnitude of the galaxy are based on the I-band
profile derived from the HST ACS F814W image. However,
this profile was extended to r = 201′′ by averaging an

R-band profile from Bottema (1989) and a V-band profile from
Héraudeau et al. (1996) both shifted to the present zero point.
Over this wavelength range, color gradients in the galaxy are
small.

Figure 16 shows the central profile after 40 iterations of
Lucy–Richardson deconvolution. However, all analysis was also
carried out in parallel on the undeconvolved profile. We use both
sets of results below.

To estimate the total magnitude of the galaxy and to check
our zero point, we extended the observed profile by fitting an
exponential to the outer, steep profile that is just beginning to be
visible at the largest radii shown in Figure 16. This is the outer
exponential in the Freeman (1970) Type II profile of the galaxy.
Integrating this extended profile and the ellipticity profile gives
a total apparent magnitude of IT = 8.96. This compares well
with IT = 8.94 in Héraudeau et al. (1996) and with IT =
BT − (B − V )e − (V − I )e = 8.93 and 9.02 using magnitudes
and colors from the main and integrated photometry tables in
HyperLeda. Magnitudes and colors from the RC3 (NED) give
IT = 9.06. Makarova (1999) gets IT = 9.20. We adopt our
total magnitude but again note that it is unrealistic to think that
this is more accurate than ±0.1 mag since extrapolations of
μ(r), ε(r), and color are required. The agreement in zero point
and total magnitude of our results with published photometry is
good.

Figure 16 shows that the nucleus is tiny and dense compared
to the r � 1′′ main part of the pseudobulge. Its deprojected
outer profile is much steeper than I ∝ r−2, so we treat it as an
independent self-gravitating cluster. To estimate its mass and a
limit on M•, we need its effective radius, harmonic mean radius,
and total magnitude with the small contribution from the rest of
the galaxy removed.

A profile decomposition of NGC 6503 is shown in Figure 16.
The inner, shallow part of the Freeman Type II disk profile is
accurately exponential. The pseudobulge is too complicated to
be fitted by a single function, Sérsic or otherwise. We fit it with
the sum of two Sérsic functions, an inner one for the nuclear
bar and an outer one for the rest. However, we interpret both as
being parts of the same pseudobulge in the same way that, in
any barred galaxy, the bar and the rest of the disk are parts of
the same disk. The secular evolution that makes pseudobulges
is complicated and often involves starburst rings (Kormendy
& Kennicutt 2004); it is convenient that the results are often
nearly-Sérsic profiles with n � 2, but this is not guaranteed.
Here, we need to fit the inner shelf in the pseudobulge profile
well enough for a robust extrapolation into the nucleus. The
decomposition in Figure 16 serves this purpose.

Then the nucleus is exponential and re = 0.′′057 ± 0.′′011.
Its profile falls off steeply, so we expect that the deconvolution
“rings” and makes the profile slightly too steep. So we carried
out the same analysis on the undeconvolved profile. This
is PSF-blurred, so re = 0.′′088 ± 0.′′006 overestimates the
effective radius. We therefore average these two values and
adopt re = 0.′′072 ± 0.′′016 = 1.8 ± 0.4 pc. If σ = 40 ±
2 km s−1, then M1/2 = (2.7 ± 0.6) × 106 M�. The total mass
of the nucleus, Mnuc = (5.5 ± 1.3) × 106 M�, is included in
Table 1.

The total magnitude of the nucleus given by the raw and
deconvolved profiles is IT ,nuc = 17.54 and 17.39, respectively.
We adopt IT ,nuc = 17.47 ± 0.07; MI,nuc = −11.2 ± 0.07, and
L1/2 = (0.65 ± 0.04) × 106 LI�. So M1/2/L1/2 = 4.2 ± 1.0.

This value is too large to be easy to understand. Of course, star
formation histories and internal absorptions that make M/LI =
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4.2 can be devised. But the color of the nucleus is normal for an
Scd galaxy: the central five B −V measurements in HyperLeda
range from 0.69 to 0.88 and average 0.79 ± 0.03. The aperture
diameters are 1.′′4–6.′′9; that is, these are measurements of the
nucleus and pseudobulge. Correcting for Galactic reddening,
(B − V )0 = 0.75 ± 0.03. Bell & de Jong (2001, Table 1)
list the relationship between color and stellar population M/L
for a formation model that, while not unique, is suitable for
NGC 6503. For the above color, it predicts that M/LI =
1.50 ± 0.12.

Absent exotic star formation histories, two possibilities look
plausible. The stellar population may be as above and we may
have weakly detected a BH of mass M• ∼ 1 × 106 M�. But a
more conservative interpretation is more likely. Integrating the
light profiles of the components shown in Figure 16 shows that
<10% of the light in our spectroscopic aperture comes from
the nucleus. Our measurement of σ = 40 ± 2 km s−1 is a
measurement of the pseudobulge. The same is true of Ho et al.
(2009) quoting Barth et al. (2002). Many galactic nuclei have
velocity dispersions of 20–25 km s−1; M 33 and NGC 5457 are
two of them. NGC 6503 may be another. That is, the velocity
dispersion may decrease from the pseudobulge into the nucleus
and its stellar population M/LI may be entirely normal.

The irony is that Bottema (1989) found σ = 25 ± 3 km s−1,
even though we cannot understand how he did it, because he got
similar dispersions even at larger radii where we get 40 km s−1.
Bottema’s σ gives M1/2/L1/2 = 1.66 ± 0.4. Moreover, our
σ = 40 ± 2 km s−1 gives a pseudobulge mass-to-light ratio of
(M/L)I = 2.7. The first value is as expected and the second is
more plausible than M/LI = 4. We clearly need a high-spatial-
resolution measurement of σ in the nucleus of NGC 6503.

The same uncertainty applies to constraints on M•. For the
undeconvolved and deconvolved nuclear profiles, we measure
〈1/r〉−1 = 0.′′090 and 0.′′053, respectively. We adopt the mean,
〈1/r〉−1 = 0.′′071 ± 0.′′019 = 1.8 ± 0.5 pc. It fortuitously equals
re. Then M• � Mmin = (2.0 ± 0.6)(σ/40 km s−1)2 × 106 M�.

This limit is not restrictive in the context of an extrapolation
of the M• – σ correlation (Ferrarese & Merritt 2000; Gebhardt
et al. 2000; Tremaine et al. 2002; Gültekin et al. 2009). For
σ = 40 km s−1 and 25 km s−1, it predicts M• = 0.4 × 106 M�
and 0.07 × 106 M�, respectively. All allowed M• are adequate
to explain any low-level nuclear activity in NGC 6503. It was
classified as a Seyfert–LINER transition object (“T2/S2”) by
Ho et al. (1997), and it contains a weak nuclear X-ray source
(Panessa et al. 2006, 2007; Desroches & Ho 2009). The latter
papers suggest that the nucleus may be powered by young stars
rather than an active nucleus.

4. HOW CAN HIERARCHICAL CLUSTERING MAKE SO
MANY BULGELESS, PURE-DISK GALAXIES?

Hierarchical clustering in a cold dark matter universe (White
& Rees 1978) is a remarkably successful theory of galaxy
formation. The remaining struggle is with baryonic physics.
The most serious problem has been emphasized many times by
observers (e.g., Freeman 2000; Kormendy & Kennicutt 2004;
Kormendy & Fisher 2005, 2008; Kautsch et al. 2006; Carollo
et al. 2007; Kormendy 2008; Barazza et al. 2008; Weinzirl et al.
2009; Kautsch 2009), by modelers (Steinmetz & Navarro 2002;
Abadi et al. 2003; Governato et al. 2004, 2010; Robertson et al.
2004; Mayer et al. 2008; Stewart et al. 2008, 2009; Hopkins
et al. 2009a; Croft et al. 2009 is a very incomplete list), and
by reviewers (e.g., Burkert & D’Onghia 2004; Lake 2004;
Brooks 2010; Peebles & Nusser 2010). Given so much merger

violence, how can hierarchical clustering make so many pure-
disk galaxies with no signs of merger-built bulges? That is:

How can dark matter halos grow (e.g.) to Vcirc ∼ 210 km s−1

without letting the mergers that accomplished that growth de-
stroy the fragile thin disks of stars that predate the mergers
(Tóth & Ostriker 1992) and without scrambling disks into rec-
ognizable classical bulges (Toomre 1977; Schweizer 1989)? Mi-
nor mergers are not a problem; they do no damage. But major
mergers—with range of mass ratios to be determined—scram-
ble disks into classical bulges. Can we explain pure
disks?

The problem gets much harder when we realize that many
(we thought) small bulges are unlikely to be merger remnants.
Rather, they are pseudobulges made mainly by secular evolution
of isolated galaxy disks (e.g., Kormendy & Kennicutt 2004;
Kormendy & Fisher 2008; Weinzirl et al. 2009). From a galaxy
formation point of view, galaxies that contain only pseudobulges
are pure-disk systems. The luminosity function of ellipticals
is bounded at low luminosities (Sandage et al. 1985a, 1985b;
Binggeli et al. 1988); the faintest ones resemble M 32 but are
very rare (Kormendy et al. 2009). Recognizing pseudobulges
shows us that small classical bulges are rarer than we thought,
too. How much rarer is the subject of this section.

The problem of bulgeless disks is least difficult for small
galaxies. They accrete gas in cold streams or as gas-rich dwarfs
more than they suffer violent mergers (Maller et al. 2006; Dekel
& Birnboim 2006; Stewart et al. 2009; Koda et al. 2009; Brooks
et al. 2009; Hopkins et al. 2009b, 2010). Energy feedback
from supernovae is effective in counteracting gravity (Dekel
& Silk 1986; Robertson et al. 2004; D’Onghia et al. 2006;
Dutton 2009; Governato et al. 2010). Attempts to explain pure
disk galaxies have come closest to success in explaining dwarf
systems (Robertson et al. 2004; Governato et al. 2010). So:

The pure-disk galaxies that most constrain our formation
picture are the ones that live in the highest-mass dark halos.
We know of no Sc or later-type galaxy that has a classical bulge
(Kormendy & Kennicutt 2004). In this section, we inventory
classical and pseudobulges in the nearby universe and conclude
that the solution to the problem of giant bulgeless galaxies is
not to hope that they are rare enough so they can be explained
as the tail of a distribution of formation histories that included
a few fortuitously mergerless galaxies.

Consider first the Local Group. Only our Galaxy has had an
uncertain bulge classification. Its boxy shape (Maihara et al.
1978; Weiland et al. 1994; Dwek et al. 1995) implies that the
high-latitude structure is a pseudobulge—the part of the disk
that heated itself vertically when it formed the Galactic bar
(Combes & Sanders 1981; Combes et al. 1990; Raha et al.
1991; Athanassoula & Misiriotis 2002; Athanassoula 2005).
Particularly compelling is the observation of a perspective
effect—the near side of the thick bar looks taller than the far
side, so the pseudobulge is not just boxy, it is a parallelogram
(Blitz & Spergel 1991). Further evidence is provided by the
observation that the rotation velocity is almost independent of
height above the disk plane, as in other boxy bulges and as
in n-body models of edge-on bars (Howard et al. 2009; Shen
et al. 2010). Further, the low velocity dispersion of the bulge
merges seamlessly with that of the disk (Lewis & Freeman
1989). Finally, the complicated central σ profile derived by
Tremaine et al. (2002) also implies a pseudobulge. Only the
old, α-element-enhanced stellar population is suggestive of a
classical bulge. But these stars could have formed before the
bar structure (Freeman 2008). Kormendy & Kennicutt (2004)
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Table 2
Bulge, Pseudobulge, and Disk Inventories in Giant Galaxies Closer Than 8 Mpc Distance

Galaxy Type D S MK MV Vcirc S B/T PB/T S
(Mpc) (km s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC 6946 Scd 5.9 a, b −23.61 −21.38 210 ± 10 a, b 0 0.024 ± 0.003 a
NGC 5457 Scd 7.0 c, d, e −23.72 −21.60 210 ± 15 c, d, e 0 0.027 ± 0.008 a
IC 342 Scd 3.28 f, w −23.23 −21.4 : 192 ± 3 a, f 0 0.030 ± 0.001 c, e, f
NGC 4945 SBcd 3.36 g −23.21 −20.55 174 ± 10 e 0 0.073 ± 0.012 b
NGC 5236 SABc 4.54 d, i, j −23.69 −21.0 180 ± 15 e, i 0: 0.074 ± 0.016 c, e
NGC 5194 Sbc 7.66 h −23.94 −21.54 240 ± 20 a, i, j 0: 0.095 ± 0.015 d, e
NGC 253 SBc 3.62 g, k −24.03 −20.78 210 ± 5 a, f 0: 0.15 c
Maffei 2 SBbc 3.34 l −23.0 : −20.8 : 168 ± 20 f 0: 0.16 ± 0.04 b
Galaxy SBbc 0.008 m, n, o −23.7 −20.8 : 220 ± 20 k, l 0: 0.19 ± 0.02 g, h
Circinus SABb: 2.8 a −22.8 −19.8 155 ± 5 o, p 0: 0.30 ± 0.03 b, e
NGC 4736 Sab 4.93 h, p −23.36 −20.66 181 ± 10 e, q 0: 0.36 ± 0.01 d, e
NGC 2683 SABb 7.73 h −23.12 −19.80 152 ± 5 g, h 0.05 ± 0.01 0: b
NGC 4826 Sab 6.38 h, u −23.71 −20.72 155 ± 5 m, n 0.10 0.10 d, e, f, i, j
NGC 2787 SB0/a 7.48 h −22.16 −19.19 220 ± 10 r, s, t 0.11 0.28 ± 0.02 d, k
NGC 4258 SABbc 7.27 g, h, q −23.85 −20.95 208 ± 6 e, u 0.12 ± 0.02 0: b, d, e, l
M 31 Sb 0.77 c, h, r −23.48 −21.20 250 ± 20 e 0.32 ± 0.02 0 b, m, n
M 81 Sab 3.63 d, r, s −24.00 −21.13 240 ± 10 e, v 0.34 ± 0.02 0 d, e, f, i, o, p
Maffei 1 E 2.85 l −23.1 : −20.6 : (264 ± 10) w 1 0 q
NGC 5128 E 3.62 e, h, t, v −23.90 −21.34 (192 ± 2) x 1 0: q

Notes. Galaxies are ordered from pure disk to pure elliptical, i. e., by increasing pseudobulge-to-total luminosity ratio PB/T and then by increasing bulge-to-total
luminosity ratio B/T . Column 2: Hubble types are from NED. Column 3: adopted distance. Column 4: distance sources are (a) Karachentsev et al. 2004; (b)
Karachentsev et al. 2000; (c) Sakai et al. 2004; (d) Saha et al. 2006; (e) Rizzi et al. 2007; (f) Saha et al. 2002; (g) Mouhcine et al. 2005; (h) Tonry et al. 2001; (i) Thim
et al. 2003; (j) Karachentsev et al. 2002; (k) Karachentsev et al. 2003d; (l) Fingerhut et al. 2007, which is also the source for Galactic extinctions and, together with
Buta & McCall 1999, for VT ; (m) Paczyński & Stanek 1998; (n) Stanek & Garnavich 1998; (o) Eisenhauer et al. 2003; (p) Karachentsev et al. 2003b; (q) Caputo et al.
2002; (r) Ferrarese et al. 2000; (s) Jensen et al. 2003; (t) Rejkuba 2004; (u) Mould & Sakai 2008; (v) Ferrarese et al. 2007; (w) Karachentsev et al. 2003a. Columns 5
and 6: absolute magnitudes MK and MV are calculated from apparent integrated magnitudes (in K band, from Jarrett et al. 2003; in V band, preferably from HyperLeda,
otherwise from NED) and colors (preferably (B − V )T from RC3, otherwise from HyperLeda). Galactic absorptions are from Schlegel et al. 1998. Column 7: circular
rotation velocity at large radii, Vcirc, corrected to edge-on inclination. Values in parentheses are

√
2σ . In many galaxies (e. g., M 31) error bars reflect variations with

radius, not errors of measurement. Column 8: source of Vcirc measurements: (a) Sofue 1996; (b) Tacconi & Young 1986; (c) Bosma et al. 1981; (d) Kenney et al.
1991; (e) Sofue 1997; (f) Kuno et al. 2007; (g) Casertano & van Gorkom 1991; (h) McGaugh 2005; (i) Bosma 1981; (j) Tilanus & Allen 1991; (k) Gunn et al. 1979;
(l) McMillan & Binney 2010 – Caution: Vcirc may be more uncertain (although not smaller) than we commonly think; (m) Braun et al. 1994; (n) Rubin 1994a; (o)
Jones et al. 1999; (p) Curran et al. 2008; (q) Bosma et al. 1977; (r) Shostak 1987; (s) Sarzi et al. 2001; (t) Erwin et al. 2003; (u) van Albada 1980; (v) Visser 1980; (w)
Fingerhut et al. 2003; (x) Silge et al. 2005. Columns 9 and 10 are averages of measured classical-bulge-to-total and pseudobulge-to-total luminosity ratios. Quoted
errors are from the variety of decompositions discussed in this paper or, when there are multiple sources, are the dispersions in the published values divided by the
square root of the number of values averaged. In the latter case, the smallest values are unrealistically optimistic estimates of the true measurement errors and indicate
fortuitously good agreement between published values (e. g., for IC 342). Colons indicate uncertainty in the sense that we know of no observational evidence that this
component is present in the galaxy but we are also not aware of a rigorous proof that a small contribution by this component is impossible. Column 11: references for
columns 9 and 10: (a) This paper, Section 3: I band for NGC 6946; K band for NGC 5457; (b) this paper and J. Kormendy 2010, in preparation; see Appendix for
details on individual galaxies; (c) Simien & de Vaucouleurs 1986; (d) Fisher & Drory 2008; (e) Fisher & Drory 2010; (f) Baggett et al. 1998; (g) Kent et al. 1991; (h)
Dwek et al. 1995; (i) Méndez-Abreu et al. 2008; (j) Möllenhoff & Heidt 2001; (k) Erwin et al. 2003; (l) Sánchez-Portal et al. 2004; (m) Seigar et al. 2008; (n) Tempel
et al. 2010; (o) Möllenhoff 2004; (p) Laurikainen et al. 2004; (q) from assumed Hubble type. For NGC 4826, the five sources of photometric decompositions give a
total (pseudo)bulge-to-total luminosity ratio of 0.20 ± 0.05; we conservatively assign half of this to a classical bulge and half to a pseudobulge, for reasons discussed
in the Appendix. Note. Since we convert our bulge-pseudobulge-disk luminosity inventory into a stellar mass inventory using MK and K-band mass-to-light ratios,
(P )B/T values were determined in the infrared (H to L bands) whenever possible, especially for spiral galaxies. Some sources that list (P )B/T determined in optical
bandpasses are therefore not used here. J. Kormendy 2010, in preparation discusses the dependence of (P )B/T on bandpass in more detail.

discuss caveats. Like Freeman (2008), we conclude that there is
no photometric or dynamical evidence for a classical bulge.

Our Galaxy provides an additional important conclusion. Its
disk stars are as old as 9–10 Gyr (Oswalt et al. 1995; Winget &
Kepler 2008). Unless our Galaxy is unusual, this suggests: the
solution to the problem of forming giant, pure-disk galaxies is
not to use some physical process like energy feedback to delay
star formation until recently and thereby to give the halo time
to grow without forming a classical bulge.

Then the Local Group contains one tiny elliptical, M 32, and
one big classical bulge, in M 31. In the most massive three
galaxies, there is only one classical bulge.

Looking beyond the Local Group, the nearest giant Sc–Scd
galaxies include the well-known objects M 101, NGC 6946, and
IC 342. All have outer rotation velocities Vcirc � 200 km s−1. All

have extraordinarily tiny pseudobulges and no sign of classical
bulges (Section 3). To further test whether such galaxies could be
rare enough to have formed as the quiescent tail of a distribution
of merger histories, we inventory similar giant galaxies in the
nearby universe. This section expands on Kormendy & Fisher
(2008) to provide better statistics.

The problem of pure-disk galaxies proves to depend on
environment—it is a puzzle in the field but not in rich clusters.
Also, we need detailed observations to classify (pseudo)bulges.
These considerations motivate us to restrict ourselves to a
nearby volume that contains small groups of galaxies like the
Local Group but not any denser environments that approach
the conditions in the Virgo cluster. M 101 is the most distant
bulgeless disk discussed in Section 3, at D = 7 Mpc. We look
for all giant galaxies with D � 8 Mpc. As our cutoff for giant
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galaxies, we will be conservative and choose Vcirc > 150 km s−1

or central σ ∼ Vcirc/
√

2 > 106 km s−1. We use Tully (1988),
HyperLeda, and NED to construct a master list of nearby
galaxies and then use individual papers that provide accurate
measures of D, Vcirc, and σ to cull a sample that satisfies the
above criteria.

Table 2 lists the resulting 19 galaxies in order from pure
disk to pure elliptical. Distances are a complicated problem; we
use averages (Column 3) of the most accurate determinations
that we could find in the sources in Column 4. Column (5)
gives the K-band absolute magnitude of the galaxy from the
total magnitude in the 2MASS Large Galaxy Atlas (Jarrett
et al. 2003). Column 6 is the V-band total absolute magnitude.
Column 7 gives the outer rotation velocity Vcirc from sources in
Column 8. For the two ellipticals, we use Vcirc = √

2σ , where
σ is an approximate velocity dispersion. Finally, classical-
bulge-to-total and pseudobulge-to-total ratios B/T and PB/T ,
respectively, are listed in Columns 9 and 10. We averaged
the values given by the sources listed in Column 11. Bulge
classifications are discussed in the Appendix.

M 101, NGC 6946, and IC 342 are well-known examples
of giant, pure-disk galaxies, but they are not unique even in
our sample. Four of the nineteen galaxies have PB/T �4%.
No classical bulge can be hidden in these galaxies—not even
one as small as M 32. In M 101 and in NGC 6946, we find
nuclear star clusters that make up 0.03% and 0.1% of the light
of the galaxy; these are as faint as or fainter than the smallest
ellipticals known. But they are nuclei—they are too small and
dense to be bulges. We emphasize: we do not have the freedom
to postulate classical bulges which have arbitrary properties
(such as low surface brightnesses) that make them easy to hide.
Classical bulges and ellipticals satisfy well-defined fundamental
plane correlations (Kormendy et al. 2009 and Kormendy 2009
show these to the faintest luminosities). Objects that satisfy
these correlations cannot be hidden in the above galaxies. So
B/T = 0 in 4/19 of the giant galaxies in our sample.

Of the rest, seven more are dominated by pseudobulges and
show no signs of classical bulges. The pseudobulge classifica-
tions are robust. There is no sign of a multi-component bulge
structure. Many of these objects have long been discussed as
prototypical examples of pseudobulge formation by secular evo-
lution (e.g., NGC 4736, see the Appendix). So 11 of the 19 giant
galaxies in our sample either cannot have a classical bulge or
have dominant pseudobulges and show no sign of a classical
bulge.

Four galaxies are listed in Table 2 as having tiny classical
bulges (B/T � 0.1). Except in NGC 4258, the identification
of these as classical bulges is uncertain. For example, Erwin
et al. (2003) decompose the complicated inner light profile of
NGC 2787 into two components that they interpret as coexist-
ing classical and pseudobulges with B/T � PB/T . It is not
clear that the smaller of these components is a classical bulge.
But we do expect that classical and pseudobulges coexist in
some galaxies (Kormendy 1993; Erwin et al. 2003; Kormendy
& Kennicutt 2004). In Table 2 and in the Appendix, we err on
the side of caution in identifying small classical bulges. How-
ever, note that in NGC 2683–NGC 4258, B/T = 0.05–0.12.
This is still small compared to the classical bulges that are
made in simulations of hierarchical clustering (Abadi et al.
2003).

Finally, substantial merger remnants are not absent from
our sample. Maffei 1 and NGC 5128 = Centaurus A are
ellipticals. They are sometimes classified as peculiar S0s, but

we assign B/T ≡ 1 to both. NGC 5128 is the most massive
classical bulge in our sample. Two other galaxies have classical
bulges with B/T � 1/3 and no sign of pseudobulges, M 31
and M 81.

We conclude that bulgeless galaxies do not form the rare
tail of the distribution of galaxy formation histories; they are
58%–74% of our sample. Almost all of the classical bulges that
we do identify—some with substantial uncertainty—are smaller
than those that are normally made in simulations of galaxy
formation. In field environments, the problem of forming giant,
pure-disk galaxies in a hierarchically clustering universe is
acute.

Finally, we estimate the stellar mass in disks, pseudobulges,
and classical bulges + ellipticals summed over the 19 galaxies
in our sample. The calculation is approximate, e.g., because
we do not have dynamical stellar mass measurements and
because many of the galaxies have large and somewhat uncertain
Galactic obscurations. We estimate a stellar population, K-band
mass-to-light ratio, log M/LK = −0.692+0.652(B−V )0, from
the dereddened B−V color, following Bell & de Jong (2001).
Classical bulges are redder than their associated disks; we use
the correspondingly higher M/LK ratios. For pseudobulges, we
use the disk M/LK (“Bulges are more like their disks than they
are like each other.”—Wyse et al. 1997, p. 659; see also Peletier
& Balcells 1996; Gadotti & dos Anjos 2001). We assume that
the B/T and PB/T values in Table 2 apply at K band and
apply them to MK to get the luminosity of each component.
The result is that the total stellar masses in the galaxies, in
their pseudobulges, and in classical bulges + ellipticals are
ΣMtotal = 6.0 × 1011 M�; ΣMpseudobulge = 4.7 × 1010 M�;
ΣMbulge = 1.34 × 1011 M�. That is, 22% ± 4% of the mass
is in bulges and ellipticals, 8% ± 4% is in pseudobulges,
and so 78% ± 4% is in pseudobulges plus disks, i.e., not in
major merger remnants. In the above, the high-bulge-mass-
fraction error bar is derived by assigning half of all pseudobulge
mass to classical bulges; this is certainly too conservative,
because it is inconsistent with the properties observed for the
biggest pseudobulges. The low-bulge-mass-fraction error bar
is similarly derived by assigning 1/2 of the classical bulge
mass (not including ellipticals) to the pseudobulges; this also
is inconsistent with observations.

Our conclusions are robust to uncertainties in assumptions.
For example, if we use the same mass-to-light ratio for all
stellar populations, then 17−3

+4 % of the mass is in bulges
and ellipticals, 8+3

−4% is in pseudobulges, and 83+3
−4% is in

pseudobulges plus disks. The stellar mass results are even
robust to any uncertainty in the distinction between classical and
pseudobulges, because the ratio of stellar mass in both together
is (ΣB + ΣPB)/ΣT � 0.25–0.30 for the above possible choices
of mass-to-light ratios. That is, the total mass in bulges is small
because most (P )B/T values in the field are small. Note also
that our procedure underestimates disk and pseudobulge masses
significantly, because we do not inventory cold gas and because
we do not correct for internal absorption, which is large in some
disks but small in bulges and ellipticals.

We conclude that, in the nearby field, most stellar mass and
most baryonic mass is in disks; in fact, in pure disks. The ratio
of pseudobulge-to-bulge stellar mass is ΣPB/ΣB = 0.41+0.31

−0.24;
that is, significant but not dominant. However, the importance
of pseudobulges is not in their total mass but rather in the fact
that they are not merger remnants. From the point of view of
galaxy formation by hierarchical clustering, their mass should
be included in the disk inventory. So only 1/5 of the stellar
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mass in giant galaxies in our 8-Mpc-radius, field volume is in
probable remnants of major mergers. And this is distributed in
no more than 8 but possibly as few as 5 of the 19 giant galaxies
in our sample. Pure disk galaxies are the dominant population
among our giant galaxies in extreme field environments.6

In contrast, in the Virgo cluster, about 2/3 of the stellar mass
is in elliptical galaxies and some additional mass is in classical
bulges (Kormendy et al. 2009). So the above statistics are a
strong function of environment.

We therefore restate the theme of this section: What is
special about galaxy formation in low-density, Local-Group-
like environments that allows the majority of galaxies with halo
Vcirc > 150 km s−1 to form with no sign of a major merger?
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APPENDIX

BULGE VERSUS PSEUDOBULGE
CLASSIFICATIONS IN TABLE 2

This appendix discusses the bulge and pseudobulge classifi-
cations in Table 2. It is far from an exhaustive review; many
of these galaxies have been studied in great detail. We provide
enough information for a robust classification.

M 101 and NGC 6946 are discussed in Section 3. They satisfy
three of the pseudobulge classification criteria in Kormendy
& Kennicutt (2004, hereafter KK04): they have overall Sérsic
indices n < 2; they contain small-scale structure that cannot be
formed in a hot stellar system; and star formation is vigorously
in progress. In fact, in NGC 6946, the mass of molecular gas in
the nuclear star cluster is very similar to its stellar mass, showing
that growth of the nucleus and, at larger radii, the growth of the
pseudobulge are still very much in progress.

IC 342 is closely similar to the above galaxies. Fisher &
Drory (2010) find that n < 2. A strong central concentration
of molecular gas feeds vigorous star formation (Becklin et al.
1980; Turner & Ho 1983; Böker et al. 1999; Meier et al. 2000;
Helfer et al. 2003, and references therein).

NGC 4945’s pseudobulge is best fitted with n � 1.3, based
on our decomposition of the 2MASS Ks profile. Here and for all
decompositions in this paper, the different flattenings of the
bulge and disk are taken into account in measuring PB/T .
A strong central concentration of molecular gas is associated
with vigorous star formation (Dahlem et al. 1993; Henkel &
Mauersberger 1993; Wang et al. 2004), particularly in a 100 pc
nuclear ring (Marconi et al. 2000) like the starburst rings seen
in many other barred and oval galaxies that are actively growing
pseudobulges (see KK04 for a review). The starburst is powerful
enough to drive a polar wind of X-ray-emitting gas (Strickland
et al. 2004).

NGC 5236 has a powerful nuclear starburst (Turner & Ho
1994; Harris et al. 2001; Bresolin & Kennicutt 2002; Dı́az et al.
2006) with multiple density concentrations that are comparable
in mass to giant molecular clouds (Thatte et al. 2000; Bresolin &
Kennicutt 2002; Rodrigues et al. 2009). Fisher & Drory (2010)
find that n � 2. The whole center of the galaxy is being re-
engineered on a timescale of 107 yr (Rodrigues et al. 2009).

NGC 5194 = M 51 shows strong central star formation (e.g.,
Turner & Ho 1994; Calzetti et al. 2005) associated with a central

http://leda.univ-lyon1.fr
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peak in molecular gas emission (Helfer et al. 2003). It also
has n � 0.5 (Fisher & Drory 2008, 2010) and a nuclear bar
(Menéndez-Delmestre et al. 2007).

NGC 253 has an extraordinarily powerful nuclear starburst
(e.g., Rieke et al. 1980; Engelbracht et al. 1998; Ott et al. 2005b;
Martı́n et al. 2006) that drives a polar wind of X-ray-emitting
gas (e.g., Strickland et al. 2004). As in other, similar starbursts,
it is associated with a dense and massive central concentration
of molecular gas (e.g., Peng et al. 1996).

Maffei 2 has a pseudobulge, based on the observation that
molecular gas (e.g., Kuno et al. 2007, 2008) feeds a nuclear
starburst (e.g., Turner & Ho 1994; Tsai et al. 2006; Meier
et al. 2008). We constructed a composite profile by measuring
an HST NICMOS NIC3 F190N image and grafting its profile
onto the center of the 2MASS Ks profile. The central arcsecond
is heavily obscured even in the infrared. Extinction and star
formation both render the Sérsic index uncertain; depending
on assumptions about whether to include the obscured part of
the profile in the decomposition fit or not, Sérsic indices from
2.5 ± 1 to 3.4 ± 0.5 fit the data reasonably well. The derived
PB/T = 0.16 ± 0.04 is more robust; the quoted error estimate
takes the above uncertainties into account. Our value is measured
in K band. For comparison, Buta & McCall (1999) got 0.22 in I
band using an r1/4 law for the pseudobulge.

Our Galaxy is discussed in Section 4.
Circinus is discussed in detail in J. Kormendy (2010, in

preparation). The galaxy has a pseudobulge based on three
classification criteria. The weakest one is the Sérsic index.
J. Kormendy (2010, in preparation) constructs a K-band com-
posite profile from the 2MASS data at large radii and from HST
NICMOS data near the center. The best-fit Sérsic-exponential
decomposition has n = 1.7 ± 0.3, which is formally but not
significantly less than 2. A stronger argument is provided by
the observation of a nuclear disk—a shelf in the brightness dis-
tribution that has almost the same flattening as the outer disk.
Most compelling is the observation of a strong central concen-
tration of molecular gas and star formation (Marconi et al. 1994;
Oliva et al. 1995; Maiolino et al. 1998; Elmouttie et al. 1998;
Jones et al. 1999; Wilson et al. 2000; Curran et al. 1998, 2008;
Greenhill et al. 2003; Mueller Sánchez et al. 2006).

NGC 4736 is the “poster child” for pseudobulges. It satis-
fies five classification criteria in KK04. It has a nuclear bar
(e.g., Kormendy 1993; Möllenhoff et al. 1995) which implies
that a pseudobulge dominates the light even at small radii. Spi-
ral structure reaches in to the nuclear bar essentially undiluted
by a classical bulge (Chincarini & Walker 1967; Kormendy
1993; Fisher et al. 2009). Especially important is the obser-
vation that the pseudobulge has a large ratio of rotation ve-
locity to velocity dispersion (Kormendy 1993; KK04). The
pseudobulge has a complicated light profile (cf. the pseudob-
ulge in NGC 6946: Figures 9–11), but the main part has a
Sérsic function profile with n � 1.4 ± 0.2 (Fisher & Drory
2008, 2010). Finally, star formation in central molecular gas
(Regan et al. 2001; Helfer et al. 2003) is modest now (Turner
& Ho 1994) but was more vigorous in the past (Pritchet 1977;
Walker et al. 1988); in addition, vigorous star formation is un-
der way now in a molecular gas ring farther out in the pseu-
dobulge (Wong & Blitz 2000; Bendo et al. 2007). This is con-
sistent with the general picture in which star formation—often
in rings—builds pseudobulges from the inside outward as the
gradual increase in central mass concentration shifts to larger
radii the annulus at which infalling gas stalls and makes stars
(KK04).

NGC 2683 is a difficult case, because the center of this almost-
edge-on galaxy is obscured by dust in the optical. However,
the 2MASS Ks-band outer profile and an HST NICMOS NIC3
image taken with the F160W filter and calibrated to Ks yield a
composite profile that clearly shows a tiny central bulge. Is it
classical or pseudo? We cannot be sure, because a bulge that is
comparable in size to the thickness of the disk is not always
classifiable using the KK04 criteria. The range of plausible
decompositions gives n = 2.5+0.6

−0.3. Its structural parameters
satisfy the fundamental plane correlations for small ellipticals
and classical bulges (Kormendy et al. 2009; Kormendy 2009).
Both results favor but do not guarantee a classical bulge. It could
be a pseudobulge, as is the case for the bright, tiny center of the
similar, edge-on, “boxy bulge” galaxy NGC 4565 (Kormendy
& Barentine 2010). But we err on the side of caution and call
the bulge in NGC 2683 classical. It is important to note that
this tiny bulge with B/T = 0.05 ± 0.01 is not the boxy bulge
seen at larger radii and confidently identified as an edge-on bar
via the observation of “Figure 8” structure in the emission lines
of ionized gas (Rubin 1993; Merrifield & Kuijken 1999; Funes
et al. 2002; Kuzio de Naray et al. 2009).

NGC 4826 is tricky, because the KK04 bulge classification
criteria send a mixed message. Among three pseudobulge
characteristics, the most important is that the (pseudo)bulge has
a relatively high ratio of rotation velocity to velocity dispersion.
This puts it near other dynamically classified pseudobulges and
above the “oblate line” that describes rotating, isotropic oblate
spheroids in the V/σ–ε diagram (Kormendy 1993). This is a
disky property (see KK04 for a review). For its luminosity,
NGC 4826 also has a low, pseudobulge-like velocity dispersion
(Kormendy 1993). A somewhat weaker argument is that it shows
small-scale, mostly spiral structure all the way to the center
(Lauer et al. 1995; http://heritage.stsci.edu/2004/04/big.html).
The problem with interpreting this is that it could be caused
by the prominent dust disk. The dust is associated with strong
and centrally concentrated molecular gas emission (Regan et al.
2001; Helfer et al. 2003; Garcı́a-Burillo et al. 2003), but the
star formation rate is not particularly high (Turner & Ho 1994).
All this is suggestive of a pseudobulge. On the other hand,
the Sérsic index of the bulge is variously derived to be ∼1.8
(Möllenhoff & Heidt 2001) to ∼3.6 (Fisher & Drory 2008;
Méndez-Abreu et al. 2008), and the apparent axial ratio of the
bulge is considerably rounder than that of the disk (see all three
of the above papers). These properties favor a classical bulge
interpretation, although they are not conclusive. A complication
is the observation of counterrotating gas at large radii (Braun
et al. 1992, 1994; Rubin 1994a, 1994b), although its mass is
small and Rix et al. (1995, p. 166) conclude that “NGC 4826
has not undergone a merger with another galaxy of significant
size since the formation of its stellar disk.” Plausibly, they
argue that “any [prograde-orbiting] gas...that is likely to have
existed originally in NGC 4826...would have suffered inelastic
collisions with the [accreted] retrograde disk and would have
gradually lost angular momentum and spiraled into the center
of the galaxy. This mechanism offers an elegant explanation
for the abnormally high gas surface density in the center of
NGC 4826 (Braun et al. 1994)” and perhaps also for the dust
disk. We conclude with some confidence that the recent minor
accretion event—while intrinsically interesting—does not affect
our classification of the (pseudo)bulge. The weight of the
evidence favors a pseudobulge. However, in this paper more than
most, it is exceedingly important that we not overestimate the
importance of pseudobulges. Moreover, it is clear that classical

http://heritage.stsci.edu/2004/04/big.html
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and pseudobulges must co-exist in some galaxies (Kormendy
1993; Erwin et al. 2003; KK04), the best candidates are galaxies
in which classification criteria send a mixed message. We are
therefore conservative and assign half of (P )B/T to a classical
bulge and half to a pseudobulge.

NGC 2787 satisfies at least three pseudobulge classification
criteria: high ratio of rotation to random velocities, a nuclear
disk structure, and n ∼ 1 to 2 (Erwin et al. 2003; Kormendy
& Fisher 2008; Fisher & Drory 2008). Erwin et al. (2003)
decompose the profile into what they interpret as classical bulge
and pseudobulge parts. The complicated central profile is not in
doubt, but all of the bulge may be pseudo. To be conservative,
we follow Erwin’s decomposition in Table 2.

NGC 4258 contains a classical bulge with n > 2 and V/σ
value consistent with the “oblate line” in the V/σ–ε diagram
(Fisher & Drory 2008, 2010; Siopis et al. 2009). Molecular gas
is observed (Helfer et al. 2003), but the emission drops in the
center as it does in other classical bulges (Regan et al. 2001).

M 31 contains a classical bulge with n � 2.5 (Kormendy &
Bender 1999) and rotation that is slightly below the oblate line
in the V/σ–ε diagram (Kormendy & Illingworth 1982).

M 81 contains a classical bulge with n � 3.8 ± 0.1 (Fisher
& Drory 2008, 2010) and rotation that is consistent with the
oblate line in the V/σ–ε diagram (Kormendy & Illingworth
1982). Like other classical bulges, M 81 has a central minimum
in molecular gas emission (Helfer et al. 2003) and a low central
star formation rate (Turner & Ho 1994).

Maffei 1 and NGC 5128: We adopt elliptical galaxy classifi-
cations for these two galaxies (for Maffei 1, see Buta & McCall
1999, 2003). We neglect the light of the small, late-type galaxy
that is in the process of being inhaled by NGC 5128. The ab-
solute magnitudes of both galaxies are somewhat uncertain: the
intrinsic colors implied by MK and MV listed in Table 2 are
(V −K)0 = 2.5 for Maffei 1 and 2.56 for NGC 5128; these val-
ues are bluer than normal colors (V − K)0 = 3.0 for old stellar
populations. We use only the K-band magnitudes consistently
adopted from the 2MASS Large Galaxy Atlas.

Two galaxies that were included in Kormendy & Fisher
(2008) are omitted here because Vcirc < 150 km s−1:

NGC 3077 is usually classified as a Type II irregular (Sandage
1961) or equivalently as an I0 galaxy (de Vaucouleurs et al.
1991) because of patchy dust near its center. However, it is
participating in a spectacular, three-way gravitational interaction
with M 82 and M 81 (Yun et al. 1994), and its H i connection
with the latter galaxy makes it likely that it has accreted cold
gas during the interaction. The central dust and prominent star
formation (e.g., Ott et al. 2003, 2005a; Harris et al. 2004)
therefore are likely to be recent additions to what previously
was probably a more normal, early-type galaxy. If it was an
elliptical, then it is particularly important that we not bias our
results by excluding it unfairly. Kormendy & Fisher (2008)
included the galaxy to be safe but were not certain that it was
big enough to make their sample cut. We have now checked this
by obtaining spectra with the 9.2 m HET and LRS Spectrograph
(Hill et al. 1998). The slit width was 1.′′0 and the instrumental
velocity dispersion was σinstr = 119 km s−1 near the Mg b lines
(λ ∼ 5175 Å). The K0 III standard star was HD172401. Our
signal-to-noise ratios were very high, and the absorption lines
in NGC 3077 are very obvious. However, we completely failed
to resolve their line widths. We conclude that σ � 119 km s−1

in NGC 3077. This is consistent with the estimate that the central
escape velocity from the galaxy is ∼110 km s−1 (Ott et al. 2003).
Therefore, NGC 3077 is too small to be included in our sample.

NGC 5195, the companion of M 51, was also included in
Kormendy & Fisher (2008). However, Kohno et al. (2002)
find from CO observations that the maximum rotation velocity
is “160 km s−1 at r ∼ 50 pc in the plane of the galaxy”
but that there is a “steep rise of rotation velocity toward the
center” to the above value from smaller rotation velocities at
larger radii (their Figure 6). We therefore omit the galaxy.
However, we note that the central concentration of molecular
gas and star formation—possibly fed by the interaction with
M 51—is most consistent with a pseudobulge and (2) that the
pseudobulge-to-total luminosity ratio is small (Smith et al.
1990 estimate that PB/T ∼ 0.06 in K band). If we are
incorrect in omitting NGC 5195, then we underestimate the
importance of pseudobulges in our mass inventory and therefore
overestimate the importance of classical bulges. However, any
error introduced is small, because the pseudobulge of NGC 5195
is small.
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