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ABSTRACT

We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density
profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made
about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar
system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use
existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with
the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Our non-parametric
Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 � r � 700 pc. The
profile for r � 20 pc is well fit by a power law with slope α = −1.0 ± 0.2, consistent with predictions from cold
dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco
lives in a massive halo.
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1. INTRODUCTION

Understanding how dark matter is distributed in low-mass
galaxies is central to the study of galaxy formation in the
cold dark matter (CDM) paradigm. The first CDM simulations
predicted that all dark matter halos share a universal density
profile with a cuspy inner slope of α ≡ d ln ρDM/d ln r = −1
(Navarro et al. 1996b, hereafter NFW). When observers began
studying low-mass galaxies, however, they mostly found halos
with a uniform density α = 0 core (Burkert 1995; Persic et al.
1996; Borriello & Salucci 2001; de Blok et al. 2001; Blais-
Ouellette et al. 2001; Simon et al. 2005). This disagreement
between theorists and observers over the form of ρDM(r) became
known as the core/cusp debate.

Since the debate began, the number of profile parameteriza-
tions used to describe low-mass galaxies by both theorists and
observers has only increased. Observers champion empirical
fits such as the Burkert profile (Burkert 1995; Salucci & Burkert
2000), cored isothermal models (Persic et al. 1996), or simply
generic broken power laws (Koch et al. 2007; Strigari et al. 2008;
Walker et al. 2009). Theorists have also introduced new fits to
their simulated halos with varying, although still cuspy, inner
slopes (Navarro et al. 2004, 2010; Stadel et al. 2009). Modeling
a galaxy with each of these parameterizations would be not only
time-consuming but also biased if the true profile is unlike any
of them. It is therefore preferable to use non-parametric methods
to determine ρDM(r).

Van den Bosch et al. (2006) first experimented with non-
parametric orbit-based models by allowing the mass-to-light
ratio M/L to vary with radius in the globular cluster M15. We
introduce a similar modeling technique that uses axisymmetric
Schwarzschild modeling, combined with knowledge of the full
line-of-sight velocity distribution (LOSVD) of stars, to break the
well-known degeneracy between mass and orbital anisotropy.
We demonstrate the capability of these models by applying
them to the Local Group dwarf spheroidal galaxy (dSph) Draco.

Draco is part of an interesting class of objects that are some of the
most dark-matter-dominated galaxies discovered. This makes
differentiating between dark and luminous mass in dSphs easier
as the baryons have less of an effect on the total density profile
than they do in larger galaxies. Recently, using improved data
and modeling techniques, Adams et al. (2012) found a cuspy
dark matter profile in the low-mass galaxy NGC 2796 where
previous studies found a core. Studies like these motivate us to
investigate the dSphs with more sophisticated models.

Our models represent a significant improvement over previ-
ous work on dSphs as most studies use spherical Jeans models
(Gilmore et al. 2007; Walker et al. 2009; Wolf et al. 2010) that
require the modeler to make assumptions about the nature and
degree of the anisotropy. These assumptions vary in complexity
from simply assuming isotropy, which can bias the estimate of α
(Evans et al. 2009), to parameterizing the anisotropy as a general
function of radius (Strigari et al. 2008; Wolf et al. 2010). Mod-
els that allow for more freedom in the anisotropy typically fall
victim to the mass–anisotropy degeneracy and cannot robustly
determine the inner slope of ρDM(r) (Walker et al. 2009). We
hope to make a robust determination of the inner slope in Draco
with a suite of more general non-parametric Schwarzschild
models.

2. NON-PARAMETRIC SCHWARZSCHILD MODELS

At the heart of our non-parametric technique is the orbit-based
modeling code developed by Gebhardt et al. (2000, 2003), up-
dated by Thomas et al. (2004, 2005), and described in detail in
Siopis et al. (2009). All orbit-based codes are based on the prin-
ciple of orbit superposition first introduced by Schwarzschild
(1979). Similar axisymmetric codes are used by Rix et al. (1997),
van der Marel et al. (1998), Cretton et al. (1999), and Valluri
et al. (2004), while van den Bosch et al. (2008) present a fully
triaxial modeling code. The current Schwarzschild models that
allow for dark matter do so by requiring the modeler to assume
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a parameterization for the dark matter density profile ρDM(r).
Unfortunately, this parameterization is often exactly what we
wish to determine. Current methods get around the circular
logic of this dilemma by running models with different parame-
terizations and comparing their relative goodness of fit with a χ2

test. Non-parametric modeling sidesteps the issue entirely and
lets the parameterization of ρDM(r) be output from the models,
rather than input as a guess.

The principle of orbit superposition works by choosing from
a library of all possible stellar orbits only those orbits that
best reproduce the observed kinematics of the galaxy being
modeled. If we know the mass density profile of the galaxy,
and hence the potential, we can compute the appropriate orbit
library. However, since we do not know the potential of the
galaxy, we must construct a number of models with slightly
different mass distributions and compare the goodness of fit
of the resulting allowed orbits. The radial profile of the total
(dark + stellar) mass density in a galaxy can be written as

ρ(r) = M∗
L

× ν(r) + ρDM(r), (1)

where M∗/L is the mass-to-light ratio of the stars, ν(r) is the
stellar luminosity density profile, and ρDM(r) is the dark matter
density profile. In principle, we know M∗/L, which can vary
as a function of radius, from stellar population models. We
also know ν(r) from the deprojection of the observed surface
brightness profile. Our task is to construct orbit libraries for
varying ρ(r) and match the allowed orbits to kinematics in
the form of LOSVDs—the distribution of projected velocities
observed. Some orbit libraries will contain orbits that do a
good job at fitting the observed LOSVDs, and others will not.
The best-fitting model identifies the best-fitting ρ(r). Once we
know this, we can invert Equation (1) to solve for ρDM(r).
The trick is to vary ρ(r) in a systematic way. This is the
principal difference between our new approach and standard
Schwarzschild modeling, which tries to vary ρ(r) by varying
the parameters that define an assumed dark matter profile.

To compute the orbit library for each model, we first calculate
the potential. We assume axisymmetry and make use of the
stellar ellipticity to define the density at angle θ in our meridional
grid. The dark matter halo is assumed to have the same ellipticity
as the stars. We solve Poisson’s equation for the potential
associated with this density distribution by decomposing ρ(r, θ )
into spherical harmonics (Siopis et al. 2009). With the potential
known, we launch 20,000–30,000 orbits and integrate their
motion for roughly 100 crossing times, storing position and
velocity information at each time step.

Orbits in axisymmetric potentials respect three isolating
integrals of motion: energy E, the z-component of angular
momentum Lz, and the non-classical third integral I3. By
specifying all three of these quantities together, an orbit is
uniquely defined. Unfortunately, there is no analytical form for
I3, and it is generally not known a priori. We therefore rely on
the sampling scheme of Thomas et al. (2004) to construct an
orbit library that uniformly samples E, Lz, and I3 and thereby
contains all possible orbits for a given potential.

Each orbit in the library is given a weight wi , and a set
of wi are chosen so the observed kinematics are appropriately
reproduced by the orbits that have been weighted, averaged,
and projected. Quantitatively, we observe NLOSVD LOSVDs in
the galaxy at various positions. Each LOSVD contains Nvel
velocity bins with uncertainties, so the number of observables
the models must match to is given by the product NLOSVD×Nvel.

The goodness of fit of a model is judged by

χ2 =
NLOSVD∑

i=1

Nvel∑
j=1

(
�obs

ij − �mod
ij

σij

)2

, (2)

where �obs
ij and �mod

ij are the j th velocity bin of the ith LOSVD
from the observations and model, respectively, and σij is the
uncertainty in �obs

ij .
Given the freedom to choose from upward of 10,000 orbital

weights to match only NLOSVD × Nvel ∼ 100 observables, a
standard χ2 minimization routine can populate the distribution
function in any number of ways that introduce unwanted noise.
To avoid distribution functions that are noisy or unrealistic but
still consistent with the observables, we employ a maximum en-
tropy smoothing technique developed by Richstone & Tremaine
(1988) and described in Siopis et al. (2009). Instead of mini-
mizing χ2, we maximize the objective function

Ŝ = −
Norb∑
i=1

wi log

(
wi

ΔΩi

)
− αSχ

2, (3)

where Norb is the number of orbits in the library and ΔΩi is the
phase-space volume of the ith orbit. See Siopis et al. (2009) for a
technical description of how we calculate phase-space volumes
and maximize Ŝ.

The first term in Equation (3) is an entropy-like quantity, and
the second term is χ2 from Equation (2). The parameter αS

controls which term influences Ŝ. For small αS , orbital weights
are chosen to produce a smooth distribution function at the
expense of reproducing the data. For large αS , the data are well
fit by the model (χ2 is small), but the resulting distribution
function is likely not smooth. We determine the appropriate
αS for each model using the scheme described in Siopis et al.
(2009). We start with αS = 0 and incrementally increase it until
changes to χ2 between successive iterations are small. Thus,
the maximum entropy constraint serves to initialize the search
for the minimum when αS = 0. By slowly increasing αS , we
drive down the importance of entropy to the fit until it no longer
matters.

2.1. Varying ρ(r) between Models

The major innovation of our new modeling technique is how
we choose the density profile ρ(r) of each model. Current meth-
ods assume ρDM(r) and calculate ρ(r) from Equation (1); how-
ever, this requires knowledge of the appropriate parameteriza-
tion for ρDM(r). We use a fundamentally different strategy and
divide ρ(r) into Nbin discrete points whose value ρ at radius
ri is labeled ρi . The Nbin points are spaced evenly in log r and
connected by straight line segments. Each trial density profile
is now defined by the ρi at each of the Nbin bins. We run many
models adjusting the values of the ρi so as to sample all possi-
ble density profiles. This strategy requires no assumptions to be
made about the shape of ρ(r) or ρDM(r), but it is computationally
intensive for large Nbin.

The choice of Nbin is a compromise between accuracy in
reproducing ρ(r) and computational resources. Large values of
Nbin can make parameter space impossibly large, while small
values can be overly restrictive on ρ(r). We have experimented
with Nbin = 5, 7, and 10. The added freedom with Nbin = 7 or 10
was not found to be worth the increase to the dimensionality of
parameter space. We have also tried connecting the ρi with
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splines, but we found that the additional freedom produced
unrealistic density profiles. Concern over the smoothness of
ρ(r) may be mitigated by the fact that ρ(r) only matters to our
models in that it determines the potential. As the potential is the
integral of ρ(r), this introduces additional smoothness.

We extrapolate the density at the outermost point as a power
law with slope α∞. The only parameters in the model are the
ρi themselves and the extrapolation slope α∞. The models also
have the flexibility to add a central black hole of mass M• to the
galaxy for future studies.

2.2. Separating Dark from Stellar Mass

Once the best-fitting ρ(r) is found, the task remains still to
recover the underlying dark matter density profile. This involves
finding some other constraint on the stellar mass-to-light ratio.
We can often determine M∗/L from simple stellar population
(SSP) models. The required input for SSP models varies greatly,
and different methods are appropriate depending on the galaxy
modeled. For example, if spectra are available, stellar population
synthesis models or Lick indices can be used. Lacking spectra,
one can use the relations between broadband colors and M∗/L
(Bell & de Jong 2001). In nearby dSphs where individual stars
are resolved, color–magnitude diagrams can be constructed to
fit for age and metallicity with isochrones. We can also evaluate
the radial variation of M∗/L without much additional effort.
Spectral or photometric data need only be spatially binned
with the same procedure repeated at each bin. Once M∗/L is
calculated, stellar density is simply the product of the (possibly
radially varying) M∗/L × ν(r).

3. APPLICATION TO DRACO

We apply our new non-parametric Schwarzschild modeling
technique to study the nearby Draco dSph. Draco is a satellite
galaxy of the Milky Way orbiting at a distance from the sun of
only 71 kpc (Odenkirchen et al. 2001). At this distance indi-
vidual stars are resolved even with ground-based observatories.
Consequently, the data we use are radial velocities of individ-
ual stars. Radial velocities are available for 158 stars in Draco,
and we present radial velocities from new observations of 12
additional stars near the center of Draco.

We choose Draco because it is the most dark matter dom-
inated of the “classical” (pre-SDSS) dSphs. We can therefore
differentiate between dark and luminous mass more easily since
the baryons contribute less to the total density profile than they
do in larger galaxies. Consequently, we can absorb larger un-
certainties in M∗/L. The primary science goal of this work,
and a future study of all dSphs, is to determine the functional
form of the dark matter profile in dSphs and compare results to
theoretical predictions by CDM.

3.1. Data

3.1.1. Kinematics

We use a combination of published radial velocities and new
observations for kinematics in Draco. Data exist at larger radii
for 158 stars (Kleyna et al. 2002), but we wish to explore the
central region of Draco in order to have the best constraint on
the inner slope of ρDM(r).

To accomplish this, we observe the center of Draco with
the VIRUS-W integral field unit (IFU) spectrograph (Fabricius
et al. 2008) on the 2.7 m Harlan J. Smith telescope at McDonald
Observatory. This instrument allows for a high density of stars

to be observed simultaneously, but with the drawback that
fibers are not positionable. There are 267 fibers that cover the
105′′ × 55′′ field of view with a 1/3 fill factor. We observed
the spectral region covering 4900 Å to 5500 Å with a resolving
power R ∼ 9000.

The observations took place over the first half of five nights on
2011 August 1–5 in excellent conditions. Seeing was typically
2′′ or better, which is smaller than the 3.′′2 diameter fibers.
The standard battery of bias, Hg–Ne arc lamp, and twilight
calibration frames were taken at the start of each night. We use
an early implementation of the Cure data reduction software.
Cure is being developed as the pipeline for the Hobby–Eberly
Telescope Dark Energy Experiment (HETDEX; Hill et al. 2006).
We briefly describe steps taken to reduce the VIRUS-W data. A
detailed description of Cure is beyond the scope of this paper.

We perform standard CCD processing steps, using the fit-
stools package (described in Gössl & Riffeser 2002), to create
master bias, twilight flat, and arc lamp images for each night.
We use twilight flats in combination with arc lamp images to
determine the distortion solution—a two-dimensional map that
translates the (x, y) position of a pixel on the CCD to a fiber
number and wavelength.

Our science frames consist of 15-minute integrations of
a single pointing of the central part of the galaxy. Prior to
observing, we determined the optimal position of the IFU by
examining Hubble Space Telescope (HST) photometry of the
central region (Ségall et al. 2007). With accurate fiber and star
positions, we determined a pointing that maximizes the number
of bright stars on fibers (see Figure 1). There are 57 science
frames with this pointing, totaling roughly 14 hr of integration.

We apply each night’s distortion solution to the science
frames yielding rectified, wavelength-calibrated frames. We
then collapse and median-combine these science frames along
with the twilight flat frames. Each night’s stacked science frame
is divided by the appropriate master flat for that night.

Since the majority of the 267 fibers in the IFU are on empty
sky, we are able to calculate an accurate sky model directly from
each science frame. We compute this sky model for each fiber
on the chip using a moving-window average of 20 nearby fibers.
We subtract the sky model from each frame, and the resulting
sky-subtracted frames for each night are median-combined.

We extract one-dimensional spectra from 17 fibers containing
stars. Star 2 in our sample is used as a velocity standard since
it is the brightest member star with known radial velocity from
Armandroff et al. (1995). We cross-correlate the other 16 spectra
to star 2 using the IRAF task FXCORR. By cross-correlating to
the spectrum of a star with known heliocentric radial velocity
in Draco, we automatically remove the contribution from
Earth–Sun motion. We perform the cross-correlation analysis
on the combined image, and in doing so we introduce a small
bias due to the change in the heliocentric velocity correction over
the course of the observing run. However, the magnitude of this
change is only 0.1 km s−1, much smaller than our uncertainties.

We list the heliocentric radial velocities and Tonry–Davis
RTD values determined for the 12 stars we report as members in
Table 1. The Tonry–Davis value indicates the relative strength of
the primary peak in the cross-correlation function to the average
(Tonry & Davis 1979). The right ascension and declination given
for each star in Table 1 indicate the position of the center of the
VIRUS-W fiber containing that star.

To determine membership for the 17 stars, we use the
photometry of Ségall et al. (2007) to produce a color–magnitude
diagram (CMD). Figure 2 presents the resulting CMD, where
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Figure 1. VIRUS-W IFU overlaid on top of an HST image from Ségall et al. (2007). Red circles highlight fibers containing stars used in the determination of the
central LOSVD. Note that the HST PSF is significantly smaller than the typical 2′′ seeing at McDonald Observatory.

(A color version of this figure is available in the online journal.)

Figure 2. Color–magnitude diagram of stars near the center of Draco. Colored asterisks are stars we observe, coded according to their offset from Draco’s systemic
velocity Vsys. Red stars have |V − Vsys| < 30 km s−1, blue stars have |V − Vsys| > 50 km s−1, and the green star has a radial velocity between 30 and 50 km s−1 of
Vsys.

(A color version of this figure is available in the online journal.)

the colored symbols indicate observed stars. We also group the
stars according to their offset from Draco’s systemic velocity,
which we assume is Vsys = −293 km s−1 (Armandroff et al.
1995). Stars with radial velocity offsets greater than 50 km s−1

are classified as non-members, while stars with offsets less
than 30 km s−1 are categorized as members. The one star
with radial velocity V − Vsys = 32.6 ± 3.9 km s−1 (green
symbol in Figure 2) is classified as a possible member. Possible
and non-members are discarded from further analysis, leaving
12 member stars. Note that blind sigma clipping retains these
same 12 stars as members.

We have individual radial velocities for stars at positions
around the galaxy, but our models want the distribution of
radial velocities at each position—the LOSVDs. We group
the individual velocities into spatial bins and determine the
LOSVD at each bin via an adaptive kernel density estimator

(Silverman 1986; Gebhardt et al. 1996). In velocity space, this
procedure replaces each of the N discrete observations with
a kernel of width h and height proportional to N−1h−1. We
use the Epanechnikov kernel (an inverted parabola) and sum
the contribution from each discrete velocity to obtain a non-
parametric representation of the LOSVD. The 1σ uncertainties
on the LOSVDs are calculated through bootstrap resamplings
of the data (i.e., sampling with replacement from the N velocity
measurements; see Gebhardt et al. 1996; Jardel & Gebhardt
2012). In Figure 3, we show an example LOSVD.

We combine the new VIRUS-W data with 158 additional
radial velocities from the literature (Kleyna et al. 2002). We
divide these 170 radial velocities into 8 radial bins of roughly
20 stars each. LOSVDs are calculated for each of these bins,
yielding kinematics coverage over the radial range 25′′–1500′′
(8–500 pc). We fit Gauss–Hermite moments to the eight
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Figure 3. LOSVD generated from the discrete velocities of 29 stars.

Table 1
Radial Velocities Obtained with VIRUS-W

Star R.A. Decl. Vhelio ΔVhelio RTD

(km s−1) (km s−1)

1 17h20m14.s76 +57◦54′32.′′40 −288.1 2.57 4.76
2 17h20m07.s49 +57◦54′32.′′04 −299.1a 1.89a . . .

3 17h20m06.s12 +57◦54′32.′′40 −293.1 3.99 8.75
4 17h20m14.s11 +57◦54′23.′′04 −310.9 3.35 6.01
5 17h20m12.s10 +57◦54′13.′′68 −270.6 3.37 7.47
6 17h20m16.s78 +57◦54′59.′′76 −276.2 1.91 12.98
7 17h20m08.s14 +57◦55′00.′′12 −258.4 3.89 7.87
8 17h20m16.s44 +57◦54′55.′′08 −293.2 6.05 8.01
9 17h20m07.s80 +57◦54′55.′′44 −307.6 4.51 10.92
10 17h20m09.s48 +57◦54′50.′′76 −277.7 3.61 8.02
11 17h20m19.s10 +57◦54′46.′′08 −292.2 3.23 10.94
12 17h20m17.s11 +57◦54′46.′′08 −277.8 2.17 14.39

Notes. Heliocentric radial velocities for the 12 member stars observed with
VIRUS-W at the center of Draco.
a From Armandroff et al. (1995).

LOSVDs and plot the kinematics in Figure 4. This is only
done for comparison purposes as the models fit directly to the
LOSVDs. We compare the velocity dispersion as determined
from the Gauss–Hermite fit with the standard deviation of the
individual velocities (using the biweight scale; see Beers et al.
1990) in order to determine the best value for the smoothing
width h.

The issue of foreground contamination frequently comes up
in the study of dSphs using individual radial velocities. There is
always the possibility that some fraction of the observed stars
are members of the Milky Way. These stars would be velocity
outliers and therefore artificially increase the measured velocity
dispersion or, in our case, the width of the LOSVD. Fortu-
nately, the foreground Milky Way stars are well separated in
velocity space from the Kleyna et al. (2002) sample. Contami-
nants are also unlikely to have colors and magnitudes that place
them on the red giant branch of Draco’s CMD. Łokas et al.
(2005) use these two constraints to estimate that there are of
order 1–2 Milky Way contaminants in the entire Kleyna et al.
(2002) data set.

Figure 4. Gauss–Hermite moments fit to the eight LOSVDs generated from 170
radial velocities. The solid line is the result of our best-fit model.

3.1.2. Photometry

Our models are required to match not only the observed
LOSVDs but also the three-dimensional luminosity density
profile ν(r). The first step in obtaining ν(r) is to measure the two-
dimensional surface brightness profile. We use the photometry
of Ségall et al. (2007), who publish a number density profile
of stars in Draco. This profile covers the radial range from
15′′ to 2400′′. We extrapolate the profile as a power law out
to R = 6000′′ by fitting a constant slope to the profile in
logarithmic space. To convert the number density profile to
an effective surface brightness profile, we apply an arbitrary
zero-point shift in log space until the luminosity obtained by
integrating the surface brightness profile is consistent with
the observed luminosity (Mateo 1998). We plot this surface
brightness profile in Figure 5.

We deproject the surface brightness profile according to the
procedure detailed in Gebhardt et al. (1996). We assume that
surfaces of constant luminosity density ν are coaxial spheroids
and perform an Abel inversion. For Draco we adopt an ellipticity
of e = 0.3 (Odenkirchen et al. 2001). We assume an inclination
of i = 90◦ for simplicity. Inclination is typically one of the
more difficult quantities to constrain (Thomas et al. 2007b). In
addition to simplifying our models, assuming i = 90◦ provides
the advantage that the deprojection is unique. For a detailed
discussion of how uncertainties in viewing angle and geometry
propagate through our models, see Thomas et al. (2007a).

The resulting luminosity density profile we calculate has an
average logarithmic slope 〈d ln ν/d ln r〉 = −0.4 inside 50 pc.
In Figure 5, we plot ν(r) and also illustrate the positions of our
kinematics data.

3.2. Models

Our non-parametric models of Draco use Nbin = 5 radial bins
spaced equally in log r from 15′′ to 2000′′. We initialize our
search for the minimum with a brute-force method, construct-
ing a coarse grid in Nbin +1 dimensions from which we calculate
all possible permutations of the Nbin parameters and the extrap-
olated slope α∞. Additionally, we require the density profile of
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Figure 5. Surface brightness profile Σ(r) (dashed) and deprojected luminosity density profile ν(r) (solid) used in our models. Horizontal lines near the x-axis indicate
the radial position of our kinematics bins. Numbers refer to the number of radial velocities used per bin. Note the central location of the new VIRUS-W data (innermost
bin) in comparison to existing data.

each model to be monotonically decreasing or constant. This is
a natural constraint, and it significantly lowers the number of
models needed to sample parameter space.

Once the models defining the coarse grid are evaluated, we
employ an iterative sampling scheme to focus in on and define
the minimum in better detail. This method takes all the models
with χ2 within χ2

lim of the minimum χ2
min as starting points. For

each starting point, a fractional step of size δi is taken above and
below the initial value, one at a time, for all the density bins. If
there is no change to χ2

min, then δi is decreased. This procedure
is repeated until δi is less than a specified threshold. Additional
models are also run as needed to fill in regions of parameter
space that appear interesting.

We do not attempt to fit for α∞ as we clearly do not have
kinematics in that radial range to constrain the mass. Instead,
we treat α∞ as a nuisance parameter and marginalize over it in
our analysis. We restrict the value of the extrapolated slope to
α∞ ∈ {−2,−3,−4}, and every ρ(r) we sample has been run
with each of these values. These slopes are representative of the
isothermal, NFW, and Hernquist (1990) density profiles.

Since Draco orbits within the dark matter halo of the Milky
Way, it is probable that is has been tidally stripped at large radii.
To account for this, the density is truncated at the tidal radius rt
defined by

rt ∼
( m

3M

)1/3
D. (4)

For reasonable values of the Milky Way’s mass M, Draco’s
mass m, and the Galactocentric radius of Draco’s orbit D
(assumed circular), Equation (4) gives an approximate tidal
radius rt ≈ 3 kpc. We therefore truncate ρ(r) at this radius. We
also assume that the dark halo in Draco has the same flattening
as the stars and therefore leave qDM fixed at 0.7. In the future
we plan to investigate models with varying qDM; however, that
is not the focus of this paper.

4. RESULTS

The χ2 curves for all the ρi are plotted in Figure 6. Each dot
represents a single model, and the red curve is a smoothed fit to
the minimum. We obtain the red curve through a smoothing
process that is similar to a boxcar average, except that we
take the biweight of the seven lowest χ2 values within the
boxcar. This method is therefore less sensitive to outliers than
a traditional boxcar average. When determining a smoothed
fit to the minimum, one is tempted to use only the points
with the lowest χ2. However, numerical noise causes models
to scatter to both higher and lower χ2 in some bins. This
is difficult to see by eye because scatter to higher values of
χ2 causes the models to blend in with the black points in
Figure 6, while scatter to lower χ2 makes models appear to stand
out. The sliding biweight robustly picks out the center of this
distribution.

The red curve plots χ2(ρi) for each radial bin and therefore
gives an indication of the model-preferred density at radius ri.
We estimate the 1σ uncertainties on each of the ρi by deter-
mining the portion of each parameter’s χ2 curve, marginalized
over all other parameters that lie within Δχ2 = 1 of the overall
minimum. Figure 6 shows this limit as a horizontal line whose
intersection with the red curve indicates the 1σ range of the
density at bin i. In all further analysis we identify the midpoint
of this range as the best-fitting value and report uncertainties as
symmetric about this value.

In two cases, bins 4 and 5, there are secondary minima that
extend almost to the Δχ2 = 1 line but not quite. It is likely that
with perfect coverage of parameter space the area between these
minima would be filled in. However, available computational
resources limit the extent to which we can sample parameter
space. In order to be more conservative in our analysis, we fit
a quadratic in log ρ to these minima, centered roughly on the
midpoint between them (blue curves in Figure 6).
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Figure 6. χ2 curves for all of the ρi parameters. Each black dot represents a single model (combination of ρ1, ρ2, . . . ρ5), and the red curve is a smoothed fit to the
minimum. The red curve in any panel therefore is the χ2 curve marginalized over the other density points. The unit of density is M pc−3. In panels 4 and 5, the blue
curve is a parabola in log ρ that we use to interpolate between two local minima.

(A color version of this figure is available in the online journal.)

The best-fitting model has unreduced χ2
min = 9.1, and the

number of observables our models fit to is ν = NLOSVD×Nvel =
8 × 15 = 120. If we were to naively calculate a reduced χ2, we
would estimate χ2

ν = 0.08. This low value of χ2
ν results from an

overestimation of the number of independent degrees of freedom
ν. The adaptive kernel density estimator we use to compute the
LOSVDs introduces correlations among neighboring velocity
bins, therefore reducing the number of truly independent degrees
of freedom.

To account for this, we consider the Gauss–Hermite parame-
terizations of our best-fitting model (solid line in Figure 4) and
input LOSVDs (points with error bars in Figure 4). This model
has χ2

νGH
= 0.33, where νGH is 4 Gauss–Hermite parameters × 8

LOSVDs = 32. This χ2
νGH

is still less than 1; however, it is more
consistent with previous studies (Gebhardt et al. 2003) and may
be due to correlations among the Gauss–Hermite parameters
(e.g., Houghton et al. 2006). We use χ2

νGH
to calculate the appro-

priate scaling to apply to our models that use the LOSVDs in
determining χ2. We scale all unreduced χ2 values by the factor
χ2

νGH
/χ2

ν = 4.3.

4.1. Obtaining M∗/L

We have so far identified the best-fitting total density profile.
In order to study the dark matter profile, we must subtract the
stellar density profile ρ∗(r). This involves finding an indepen-
dent constraint on the stellar mass-to-light ratio M∗/L. Using
stars within the central 5′ of Draco, we construct a g′ − i ′ CMD
from the photometry of Ségall et al. (2007). We fit isochrones
(Marigo et al. 2008) to the CMD, corrected for Galactic extinc-
tion (Schlegel et al. 1998), so that we may determine the age
and metallicity of the stellar population.

Figure 7 shows the CMD with our best isochrone fit. The
red giant branch is well defined, and we obtain a sensible fit
with age tage = 12.7 Gyr and metallicity [Fe/H] = −1.4.
Using the SSP models from Maraston (2005), we are able to
convert tage and [Fe/H] to a V-band stellar mass-to-light ratio
M∗/LV = 2.9 ± 0.6. Uncertainties in M∗/LV represent the
spread in SSP predictions when different initial mass functions
are assumed in the models.

4.2. The Dark Matter Profile

With M∗/LV determined from stellar population models, we
can subtract ρ∗(r) from the best-fitting total density profile
obtained during the modeling procedure. We plot the resulting
dark matter profile in Figure 8. The red band is the 68%
confidence band for each density point, marginalized over the
others, and the gray band shows the 68% confidence band of all
the parameters jointly (at Δχ2 = 7.04).

From Figure 8, it seems plausible that ρDM(r) can be fit by a
power law of the form log ρDM = α log r + β with the exception
of perhaps the innermost data point. The slope of this fit α
can be directly compared to both theoretical predictions and
observations of similar dSphs. The innermost point, however,
is puzzling. Its value indicates a large central density and a
departure from the power-law nature of the outer profile. Further
puzzling is that its point-wise uncertainty (plotted as a red error
bar) indicates a strong constraint despite the fact that we have
no kinematic data in this region of the galaxy. We speculate
that, in the absence of such data, models are able to arbitrarily
increase the central density. Since the volume of this inner bin
is small, the total amount of mass added is negligible. With no
kinematics in this region, models can easily absorb this mass
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Figure 7. Color–magnitude diagram of stars within the central 5′ of Draco. From left to right, we plot isochrones of (tage ×109 yr, [Fe/H]) = (11.5,−1.6), (12.5,−1.4),
and (13.5,−1.3). The solid red line is the (12.5,−1.4) isochrone we use when determining M∗/LV .

(A color version of this figure is available in the online journal.)

Figure 8. Best-fitting dark matter density profile in Draco. The red shaded
region represents the point-wise 68% confidence band for ρDM(r) (Δχ2 = 1),
with the solid black line derived from forcing symmetric logarithmic errors.
The gray shaded region is the 68% confidence band on ρDM(r) considering
all parameters jointly (Δχ2 = 7.04). We plot the innermost point (excluded
from all further analysis) as an error bar with the same color scheme. The solid
blue line is the best power-law fit to the profile, and the dashed line shows an
r−1 NFW-like profile. We plot the best-fitting NFW halo from a small grid
of parametric models as the dashed green line. Vertical lines along the x-axis
indicate the radial range of our kinematic data.

(A color version of this figure is available in the online journal.)

without affecting χ2. We therefore exclude the innermost point
in all further analysis.

The resulting power-law fit to the outer four points is shown
in blue in Figure 8. We characterize the uncertainty in this fit by
constructing 1000 Monte Carlo realizations with noise added
to the density profile. We draw each point i randomly from a
Gaussian distribution with mean log ρi and dispersion given by
the width of the 1σ confidence band at point i in Figure 8.
We repeat the fit for each realization and determine the 1σ
uncertainties on α from the 68% span of this distribution. This
procedure yields α = −1.0±0.2. None of the 1000 realizations
have a slope α > −0.45, strongly indicating that the galaxy is
not cored for r � 20 pc.

4.3. Orbit Structure

Once we have determined the best-fitting model, we can
calculate the internal (unprojected) moments of the distribution
function at each of the bins in our meridional grid. Of interest
is the anisotropy in the velocity dispersion tensor, which we
quantify with the ratio σr/σt—the ratio of radial to tangential
anisotropy in the galaxy. We define the tangential anisotropy σt

as

σt ≡
√

1

2

(
σ 2

θ + σ 2
φ + v2

φ

)
(5)

in spherical polar coordinates, where vφ is the rotational velocity.
Streaming motions in the r and θ directions are assumed to be
zero. We plot σr/σt in Figure 9. Since the LOSVDs we use
in Draco contain contributions from stars at all angles θ , we
average σr and all quantities in Equation (5) when calculating
σr/σt . Consequently, we lose the ability to evaluate anisotropy as
a function of θ . This can be avoided if better kinematics coverage
is available, through either more stars with radial velocities in
dSphs or two-dimensional integral-field spectroscopy in more
distant galaxies. Fortunately, most other large dSphs in the Local
Group have many more radial velocities publicly available.
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Figure 9. Ratio of the radial to tangential components of the velocity dispersion.
Values of σr/σt different from unity indicate anisotropy. The black line is our
best-fitting model.

We plot σr/σt in Figure 9 over the radial range that our
LOSVDs sample. We determine the uncertainties in σr/σt by
the maximum/minimum values of σr/σt for models within
Δχ2 = 7.04 of χ2

min (1σ for Nbin +1 degrees of freedom). We
find evidence for radial anisotropy at all radii, consistent with
the “tidal stirring” theory describing the origin of the Milky Way
dSphs (Łokas et al. 2010; Kazantzidis et al. 2011). Uncertainties
are large on σr/σt , likely due to the small number of radial
velocities available as a kinematic constraint. To constrain the
anisotropy better, more radial velocities are needed.

5. DISCUSSION

5.1. Improvement over Parametric Methods

Since we eventually fit our non-parametric dark matter pro-
file with a power law, one can ask why we do not initially use
a power-law-parameterized profile. This would seem advanta-
geous, especially given the large parameter space required by
non-parametric methods. This reasoning, however, relies on the
assumption that we know that the profile is a power law a priori.
The point of this study is to relax this assumption and see what
type of profile comes out of the modeling, rather than impose
unjustified interpretation on the problem. It happens that Draco
hosts a nearly power-law density profile, but by not assuming
this a priori, we allow more general models to be explored. As
a rough check that our models have converged to a global min-
imum, we run a small grid of parametric models with an NFW
dark matter density profile. The best fitting of these models is
plotted in green in Figure 8.

5.2. Interpreting the Dark Matter Profile

It is important to note that we only constrain the dark
matter density profile over little more than a decade in radius
from 20 to 700 pc. One could easily imagine our power-

law fit changing from α = −1 to a core (α = 0) inside of
r ∼ 20 pc. Likewise, the slope may also change at larger radii
than r ∼ 700 pc without our knowledge. The NFW density
profile has an outer slope α = −3 for r � rs , but our profile
does not change slope within our model grid. This could indicate
that rs � 700 pc, but without knowledge of the outer slope we
cannot say with certainty that the profile is NFW-like.

Recent cosmological N-body simulations have been found to
produce density profiles shallower than the traditional α = −1
cusps (Stadel et al. 2009; Navarro et al. 2010). Many authors
suggest that dark matter profiles are best parameterized by the
Einasto profile (Navarro et al. 2004, 2010; Merritt et al. 2005;
Gao et al. 2008), where the slope varies with radius according
to a power law α(r) ∝ rn. These profiles can have shallower
cusps than NFW but do not have constant slopes over a large
range in radius. Our non-parametric density profile is well fit
by a single power law from 20 � r � 700 pc, but, again, this
is a fairly narrow range in radius. Our models cannot rule out
an Einasto-like change in slope outside this radial range. More
kinematics are needed to characterize the density profile at large
and small radii.

When calculating the potential, we allow the outer slope of
ρ(r) to vary between 2 � α∞ � 4 for r > 700 pc, but,
unsurprisingly, we are unable to constrain α∞. Tidal effects may
also alter the shape of ρDM(r) since Draco is orbiting within the
dark matter halo of the Milky Way. The tidal radius calculated
from Equation (4) is sufficiently large that tides are unlikely to
affect the stellar component, but ρDM(r) at large radii could be
affected. If this is the case, ρDM(r) would decline more steeply
than expected and the total mass enclosed would be smaller than
what we calculate.

The cuspy α = −1 dark matter profile we find in Draco stands
in contrast to many other observational studies of dSphs that find
α = 0 cores (Gilmore et al. 2007; Walker & Peñarrubia 2011;
Jardel & Gebhardt 2012). The effects of baryons are still not well
understood and could potentially drive α to different values on a
galaxy-by-galaxy basis. These effects are the sum of at least two
competing processes. Adiabatic compression (Blumenthal et al.
1986) draws in dark matter boosting the central ρDM and driving
α to more negative values. On the other hand, feedback from star
formation and supernovae can cause strong outflows (Navarro
et al. 1996a; Binney et al. 2001), which can in turn remove dark
matter from the centers of galaxies, reshaping cuspy profiles
into α = 0 cores.

In a recent paper, Governato et al. (2012) use high-resolution
cosmological N-body simulations with a fully hydrodynamical
treatment of baryons to test these two competing effects in low-
mass dwarf galaxies. They find that the cuspiness of the dark
matter halo is directly related to the amount of star formation
activity in the galaxy. This is expressed as a correlation between
α and stellar mass M∗. Their interpretation is that galaxies
that form more stars (larger M∗) have more supernovae and
a greater potential to turn a cuspy dark matter profile into a
core. Using their least-squares fit to the M∗–α correlation, they
predict α ≈ −1.3 (at 500 pc) for Draco’s stellar mass. This is
in approximate agreement with our measured value of α = −1.

Perhaps owing to the lack of stellar velocities available in
Draco compared to other dSphs, there are not many studies
investigating its dark matter profile through dynamical models.
A rough comparison can be made with Łokas et al. (2005),
who fit profiles with an inner slope of α = −1 and an outer
exponential cutoff at large radii. They find a total mass-to-light
ratio that varies with radius between 100 � Mtot/LV � 1000
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Figure 10. Top: enclosed mass profile of our best-fitting model (black line) and
1σ confidence region. The green point is the Wolf et al. (2010) mass estimator.
Bottom: circular speed profile and 1σ confidence region. Colors are the same
as above. Vertical tick marks on the x-axis represent the range of our kinematics
coverage.

in the inner ∼700 pc. These values are comparable to the total
mass-to-light ratio we calculate in the inner ∼300 pc. However,
unlike Łokas et al. (2005), we do not impose an exponential
cutoff in ρDM(r) at large radii. Our calculated Mtot/LV therefore
rises sharply at large radii where the stellar luminosity profile is
decreasing much faster than ρDM(r).

Importantly, Mtot/LV � M∗/LV = 2.9 ± 0.6 (the stellar
mass-to-light ratio we derive from SSP models) at all radii. This
means that we can confidently state that Draco is dark matter
dominated at all radii, allowing us to easily absorb errors in
M∗/LV from SSP models. In other words, when determining
ρDM(r) from Equation (1), the uncertainty in ρ(r) dominates the
uncertainty in stellar density since the product M∗/L × ν(r) is
much smaller than ρ(r). This is one of the reasons we choose to
test this non-parametric technique on Draco first. In the future,
we plan to extend this analysis to the remaining Local Group
dSphs, which are also thought to be dark matter dominated
everywhere.

5.3. Draco’s Mass

We plot the enclosed mass profile of our models in Figure 10.
The shaded region is the 1σ confidence band derived from the
extreme values of M(r) for all models within Δχ2 = 5.84 of
the minimum (1σ for Nbin = 5 free parameters, marginalizing
over α∞). The vertical ticks on the x-axis represent the radial
extent of our kinematics coverage. From this plot it is apparent
that, despite its low luminosity and stellar mass, Draco lives in
a dark matter halo that is surprisingly massive.

An interesting comparison can be made with the brightest
dSph Fornax, roughly two orders of magnitude higher in
luminosity. If we compare the mass enclosed within a common
physical radius of 300 pc, we find that for Draco M300 ≡ M(r =
300 pc) = 3.8+0.84

−0.29 × 107 M, and Jardel & Gebhardt (2012)
measure M300 = 3.5+0.77

−0.11 × 106 M for Fornax. Of course,
Fornax is much more extended than Draco, so it is sensible to

also compare the mass enclosed within the deprojected half-
light radius of each galaxy’s stellar component. For Draco we
measure M1/2 ≡ M(r = re) = 1.6+0.6

−0.2 ×107 M, and in Fornax
Jardel & Gebhardt (2012) measure M1/2 = 5.8+1.0

−0.2 × 107 M.
We would prefer to compare the total mass of each galaxy, but
there are no kinematic tracers far enough out in the halo that
the density profile declines sharply enough to keep mass finite
for any dSph. Consequently, we cannot constrain the total mass
observationally and must rely on comparisons to simulations
(Section 5.4).

We also use our dynamical models to compare our measure-
ment of M1/2 with the convenient mass estimator proposed by
Wolf et al. (2010) (see Walker et al. 2009 and Cappellari et al.
2006 for similar formulae). This formula relates M1/2 to the
directly observable luminosity-weighted line-of-sight velocity
dispersion 〈σ 2

LOS〉 and projected half-light radius Re. The Wolf
et al. (2010) mass estimator is written as

M1/2 ≈ 4G−1Re

〈
σ 2

LOS

〉
, (6)

and Wolf et al. (2010) give a theoretical argument for why the
effect of anisotropy is minimized near re for a variety of stellar
systems in spherical symmetry.

For a more fair comparison of Equation (6) to our models
we calculate M1/2 from our data set, not the value listed in
Wolf et al. (2010). We use 〈σ 2

LOS〉 = 11.3 ± 1.6 km s−1,
calculated directly from our data in Figure 4, as well as
Re = 158.1 pc and re = 205.2 pc, which we derive from
the photometry in Figure 5. This calculation yields an estimated
M1/2 = (1.9 ± 0.5) × 107 M, in excellent agreement with the
mass calculated from our models. We plot the estimated M1/2
as the green point in Figure 10.

5.4. Comparing Draco to CDM Simulations

We can also gain insight into the properties of Draco’s dark
matter halo by examining the circular speed profile Vc(r) plotted
in the lower panel of Figure 10. The green point plotted is
V1/2 = √

GM1/2/r1/2 = 20.0 ± 2.6 km s−1 using our value
of the Wolf et al. (2010) mass estimator. In a recent paper,
Boylan-Kolchin et al. (2012) match the observed V1/2 of Local
Group dSphs to subhalos around a Milky-Way-like halo in the
Aquarius Simulation (Springel et al. 2008) to derive constraints
on each dSph’s maximum circular speed Vmax—a quantity
directly related to the total halo mass. Boylan-Kolchin et al.
(2012) find that this estimate of Vmax is usually 20–30 km s−1

smaller than the Vmax they obtain through abundance matching.
These results lead them to conclude that the Local Group dSphs
are dynamically inconsistent with the types of halos they are
predicted to inhabit from abundance matching.

We are in a position to investigate this claim directly in Draco.
We do not need to match our V1/2 to simulations in order to gain
knowledge of Vc(r); we calculate the latter directly, and not just
at the half-light radius. Interestingly, much of our circular speed
profile lies above the Vmax = 20.5+4.8

−3.9 predicted by Boylan-
Kolchin et al. (2012). At r = 500 pc, the radius where we run
out of kinematic tracers and can therefore no longer robustly
constrain the mass, we find Vc = 34.6+3.5

−8.2 km s−1. We can take
the lower bound of Vc here as a lower limit on Vmax � 26.4.
The scaling relations between total mass and Vmax for subhalos
(Springel et al. 2008) imply a lower limit on Draco’s total mass
of M � 1.0 × 109 M.

Ours is not the first study to suggest that Draco lives in a halo
with such a large mass. Peñarrubia et al. (2008) demonstrate that

10



The Astrophysical Journal, 763:91 (11pp), 2013 February 1 Jardel et al.

a family of NFW halos with varying Vmax and rmax is consistent
with the stellar kinematics of any King model embedded in
an NFW halo. They break this degeneracy by invoking the
correlation between Vmax and rmax found in CDM simulations
(e.g., Bullock et al. 2001). Their study suggests that Draco is the
most massive of the Milky Way dSphs with Vmax ≈ 35 km s−1.

The comparison between Draco and Fornax is interesting
as the two galaxies are separated by almost two orders of
magnitude in luminosity but may have similar masses. Since
Draco’s inner halo is nicely fit by the NFW density profile
(Figure 8), we can rely on simulations to extrapolate a total mass
M � 1.0 × 109 M. However, multiple independent studies
using different methods suggest that Fornax does not live in
an NFW halo (Goerdt et al. 2006; Walker & Peñarrubia 2011;
Jardel & Gebhardt 2012), and we therefore should not use the
NFW formalism to predict a total mass from its Vmax. Still, the
similarity in the galaxies’ values of M1/2 and M300 suggests
that the simplest abundance matching models, which require
a one-to-one mapping between luminosity and the total mass,
may not appropriately describe the dSphs. If Draco and Fornax
do indeed have similar masses, despite vastly different baryonic
properties, then there must be substantial stochasticity in the
galaxy formation process at the dSph mass scale. Even without
comparing to Fornax, it is clear that Draco’s baryonic properties
do not map in the expected way to its halo mass.
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Gössl, C. A., & Riffeser, A. 2002, A&A, 381, 1095
Governato, F., Zolotov, A., Pontzen, A., et al. 2012, MNRAS, 422, 1231
Hernquist, L. 1990, ApJ, 356, 359
Hill, G. J., MacQueen, P. J., Tufts, J. R., et al. 2006, Proc. SPIE, 6269, 7
Houghton, R. C. W., Magorrian, J., Sarzi, M., et al. 2006, MNRAS, 367, 2
Jardel, J. R., & Gebhardt, K. 2012, ApJ, 746, 89
Kazantzidis, S., Łokas, E. L., Callegari, S., Mayer, L., & Moustakas, L. A.

2011, ApJ, 726, 98
Kleyna, J., Wilkinson, M. I., Evans, N. W., Gilmore, G., & Frayn, C.

2002, MNRAS, 330, 792
Koch, A., Kleyna, J. T., Wilkinson, M. I., et al. 2007, AJ, 134, 566
Łokas, E. L., Kazantzidis, S., Klimentowski, J., Mayer, L., & Callegari, S.

2010, ApJ, 708, 1032
Łokas, E. L., Mamon, G. A., & Prada, F. 2005, MNRAS, 363, 918
Maraston, C. 2005, MNRAS, 362, 799
Marigo, P., Girardi, L., Bressan, A., et al. 2008, A&A, 482, 883
Mateo, M. L. 1998, ARA&A, 36, 435
Merritt, D., Navarro, J. F., Ludlow, A., & Jenkins, A. 2005, ApJL,

624, 85
Navarro, J. F., Eke, V. R., & Frenk, C. S. 1996a, MNRAS, 283, L72
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996b, ApJ, 462, 563
Navarro, J. F., Hayashi, E., Power, C., et al. 2004, MNRAS, 349, 1039
Navarro, J. F., Ludlow, A., Springel, V., et al. 2010, MNRAS, 402, 21
Odenkirchen, M., Grebel, E. K., Harbeck, D., et al. 2001, AJ, 122, 2538
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