

Copyright

by

Mason Tyler Schoolfield

2015

The Report Committee for Mason Tyler Schoolfield

Certifies that this is the approved version of the following report:

Message Transfer Framework For Mobile Devices

Using Bluetooth Low Energy

 APPROVED BY

SUPERVISING COMMITTEE:

Supervisor: ___________________________________
Christine Julien

William Bard

Message Transfer Framework For Mobile Devices

Using Bluetooth Low Energy

By

Mason Tyler Schoolfield, B.B.A

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

In Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2015

Dacia – I’m glad we got to share all this.

Jonas – Keep learning, if you don’t push you’ll never grow.

v

Acknowledgements

 I would like to thank all of my instructors in the Electrical Engineering

Department at the University of Texas at Austin, who taught me complex concepts and

instilled in me an appreciation of intellectual rigor. My supervisor, Christine Julien,

exposed me to the breadth and capabilities of mobile computing. My reader, William

Bard, taught me the importance of security and gave me insight into the implementation

of encryption.

vi

Message Transfer Framework For Mobile Devices

Using Bluetooth Low Energy

Mason Tyler Schoolfield, M.S.E.

The University of Texas at Austin, 2015

Supervisor: Christine Julien

 Despite the increasing availability of mobile devices offering handheld peer to

peer communication capabilities, interoperability between heterogeneous mobile device

platforms is hampered by the security requirements of their underlying operating systems.

Bluetooth Low Energy (BLE) was introduced so that mobile devices could read from

sensors with fewer security requirements, presenting an opportunity to allow disparate

devices to connect and transfer data.

 This paper presents a message transfer framework to facilitate arbitrary data

transfer using the GATT mechanisms as provided by BLE in the Bluetooth 4.0

specification. The provided implementation library and applications for Android along

with a proof of concept application for iOS 8 sustain reliable transfer speeds of 1 KB/s,

allowing for a 100KB payload (a small picture, for example) to be sent wirelessly

between an Android and iOS device in just over a minute.

vii

Table of Contents

Acknowledgements ... v

List of Tables ... xi

List of Figures ... xii

Chapter 1 - Introduction .. 1

1.1 Motivation .. 1

1.2 Problem .. 2

1.3 Vision ... 3

1.4 Hurdles ... 4

1.5 Scope and Report Organization .. 4

Chapter 2 – Bluetooth Low Energy (BLE) ... 6

2.1 High Level Description of Bluetooth Low Energy .. 6

2.1.1 Link Layer / Physical Layer .. 7

2.1.2 L2CAP .. 7

2.1.3 GAP... 7

2.1.4 SM .. 8

2.1.5 ATT and GATT .. 8

viii

2.2 The Bluetooth Profile Abstraction ... 9

2.3 Services and Characteristics ... 10

2.4 Using Bluetooth Low Energy .. 11

2.4.1 Intended functionality, example .. 11

2.4.2 Extended, Novel Uses ... 12

2.5 Suitability of Bluetooth Low Energy for message transport 13

Chapter 3 - SimpBLE Design ... 16

3.1 GATT Profile Description .. 16

3.2 Architecture .. 17

3.2.1 Data Objects .. 18

3.2.2 Connection Objects and Interfaces ... 19

3.3 Use Cases, Internal Implementation ... 20

3.3.1 Initiating a Connection .. 20

3.3.2 Preparing a Message ... 22

3.3.3 Transmitting Packets ... 24

3.3.4 Message Acknowledgment ... 25

3.3.5 Message Receipt ... 27

3.4 Testing and Performance .. 27

ix

Chapter 4 – SimpBLE Public Interface .. 29

4.1 OS Resources ... 29

4.2 Connection Management .. 30

4.3 Sending a Message ... 32

4.4 Receiving a Message .. 33

4.5 Usage By a Calling Application ... 34

Chapter 5 – Secure Message Passing Application .. 35

5.1 Authentication and Encryption ... 35

5.1.1 Key Exchange ... 35

5.1.2 Encrypted Message Transfer... 38

5.1.3 SQLite Data Objects ... 41

5.2 Summary of Message Passing Application .. 42

Chapter 6 – Distribution of Secret Shares... 45

6.1 Motivating Scenarios.. 45

6.2 System Design .. 47

6.2.1 Creating a Message ... 47

6.2.2 Distributing a Message ... 49

6.2.3 Re-assembling a Message ... 49

x

6.3 Future Work ... 50

Chapter 7 – Implications and Future Work ... 51

Appendix A – Testing Applications ... 53

Bibliography ... 55

xi

List of Tables

Table 3.1 - SimpBLE GATT Profile Attributes .. 17

xii

List of Figures

Figure 2.1 – Bluetooth Low Energy Protocol Layers 6

Figure 3.1 - SimpBLE Architecture 18

Figure 3.2 - SimpBLE Handshake 22

Figure 3.3 - SimpBLE Data and Ack Packets 23

Figure 3.4- Message Acknowledgment 26

Figure 5.1 - Application Message Class 36

Figure 5.2 – Identity Exchange, Manual Authentication 37

Figure 5.3 - Identity Exchange, Implemented on Android 38

Figure 5.4 - Queue Message and Encrypt for Sending 39

Figure 5.5 - Receipt and Decryption of AES Key and Original Message 41

Figure 5.6 - ER Diagram, Messages and Friends 42

Figure 6.1 - Creating a Shared Secret 48

Figure 6.2 - Reassembling a Message 50

Figure A.1 – Kevo Android Service and Characteristics 53

Figure A.2 - Benchmark App on Nexus 5 (4.4.4) 54

1

Chapter 1 - Introduction

1.1 Motivation

 With almost ubiquitous access to the internet, users of smart mobile devices have

come to rely on infrastructure for communication. However there are times when

infrastructure cannot serve the requirements of the user, such as disaster scenarios [1], an

unreliable signal (either in the developing world or a large building), or a saturated

wireless spectrum such as at a large music festival [2]. Users may also want to avoid

infrastructure to preserve their privacy from malicious actors or government overreach

[3], or continue to communicate when mobile infrastructure access has been blocked [4].

 As mobile devices gain more functionality and attention in the lower-end and

developing world markets, more consumers will have access to communication features

that were previously reserved for higher end hardware. For example, Google recently

announced their Android One project to sell affordable smartphones in Asia [5]. Android

One compliant phones implement a Google-approved reference design [6] which includes

Bluetooth 4.0 and Wi-Fi Direct compliance. In the United States, Motorola sells the

Moto E (used as the primary development device for this paper) which ships with

Android 5.0. As mobile devices with improved hardware and software approach

commodity, so too does the mobile device ecosystem approach a more functional base

level of inter-device communication capabilities.

2

 Android provides built-in applications allowing two devices to transfer files using

NFC (the “Beam” application) or Bluetooth (once these devices have paired). Android

also provides programmatic access for peer to peer connectivity via its APIs for NFC,

Wi-Fi Direct and Bluetooth [7]. iOS provides AirDrop for file transfer to other iOS

devices. iOS also provides programmatic access to similar functionality via its MultiPeer

Connectivity API, an abstraction interface for peer to peer connectivity that uses Wi-Fi or

Bluetooth to communicate with “nearby iOS devices” [8]. With the peer to peer support

provided by both of these major mobile platforms, transmitting a small amount of

information from one device directly to another should be trivial.

1.2 Problem

 The baked-in applications on iOS and Android, while they allow simple transfer

between homogeneous platforms, do not allow an iOS device to send data directly to an

Android device (or vice-versa). The programmatic APIs offer no relief; even though

Android provides lower level access to peer to peer communication protocols, a

developer still cannot write an application to communicate directly with an iOS device

due to the previously noted restriction that MultiPeer Connectivity API enforces to only

connect with iOS devices.

 Both platforms offer Bluetooth support, a technology for exchanging data over

short distances. Primarily used as a way to communicate with peripheral devices such as

headsets and keyboards, Bluetooth also offers the capability for devices to transmit data

3

between each other. While Android devices can use Bluetooth to transfer files and

arbitrary data, iOS does not support the Bluetooth profile necessary to transfer data [9].

Thus as a method of data transfer, classic Bluetooth is relegated to the realm of being

proprietary per OS, and no more interoperable than a technology like Android’s WiFi p2p

or iOS’s MultiPeer Connectivity API. Since Android has 80% of the worldwide market

[10] one could almost assume that writing an application specifically for Android would

provide sufficient market penetration – however in the US and Europe market share is

much more evenly split between iOS and Android devices [11].

1.3 Vision

 Bluetooth Low Energy (commonly abbreviated BLE) was added to the

Bluetooth 4.0 specification and was designed for a handheld device to gather data from a

sensor. Chips were designed to be cheap to manufacture, low power so that sensors can

remain in place for long periods of time, and use an open and simple protocol to make it

easy for devices to communicate. Authentication and encryption, while offered, are not

required for connectivity.

 Starting with the iPhone 4S, iOS 5 was able to act as a handheld BLE scanner as

well as impersonate a remote sensor providing data. Starting with Android 4.3, Android

devices were able to act as a handheld BLE scanner, and with Android 5.0, new Android

devices gained the ability to act as a remote sensor providing data. With mobile devices

gaining the capability to act as these roles (that of scanner and that of sensor), any mobile

4

OS adhering to the Bluetooth 4.0 standard gained the ability to transfer information to

another compliant OS using BLE.

1.4 Hurdles

 Because BLE was designed to pull readings from sensors, it was optimized to

transmit small amounts of data at close proximity, with the bulk of the data originating

from the sensor and not the reader. Thus data transfer rates between two devices will be

asymmetric, where the device acting as a sensor will be able to transfer outbound data at

a higher rate than the device acting as a reader.

 While the iOS BLE implementation is well established, the Android

implementation is new and approximately only half of Android devices currently support

BLE, with only 5% supporting the ability to impersonate a sensor [12].

 While classic Bluetooth has long been established as a secure transfer medium,

BLE as specified by the Bluetooth 4.0 specification has a weak encryption handshake that

is exploitable [13]. As with classic Bluetooth, pairing takes place at the OS level and

cannot be handled by an application.

1.5 Scope and Report Organization

 This report will describe a framework, SimpBLE, which provides for the transfer

of arbitrary data using Bluetooth Low Energy constructs as a transport layer. This report

will provide an implementation library compatible with Android versions 4.3 through 5.1,

5

popular use cases a developer might choose to implement, and finally Android

implementations of SimpBLE that demonstrate the feasibility of using common consumer

grade Android devices for message communication, secure and otherwise. Compatible

transport-level mechanisms will be implemented on iOS to demonstrate the feasibility

and performance of cross-platform communication over BLE.

6

Chapter 2 – Bluetooth Low Energy (BLE)

 Detailing the lower level implementation details of Bluetooth Low Energy is

outside the scope of this paper. However a valid understanding of how devices

communicate over BLE will help the reader appreciate the utility of SimpBLE. The

following description is thus meant to be informative but not exhaustive.

2.1 High Level Description of Bluetooth Low Energy

 For the purposes of this report, the layers of Bluetooth Low Energy from a

software developer’s perspective are distilled in Figure 2.1 (adapted from [14] and [15]).

Figure 2.1 – Bluetooth Low Energy Protocol Layers

7

2.1.1 Link Layer / Physical Layer

 As with Classic Bluetooth, BLE operates in the 2.4 GHz ISM band. However

BLE divides this spectrum into 40 channels of 2 MHz each (instead of 79 channels of 1

MHz each). Of these 40 channels, 3 are for advertising services and are positioned at

2402, 2426, 2480 MHz to avoid interference with the most commonly used 802.11

frequencies. The 37 remaining channels are assigned for data transmission, using

Adaptive Frequency Hopping to rapidly switch channels to avoid interference.

2.1.2 L2CAP

 The Logical Link Control and Adaption Layer Protocol (L2CAP) is responsible

for multiplexing the data it receives from the higher layer protocols and communicating

with the Link Layer below it.

2.1.3 GAP

 The Generic Access Profile (GAP) is responsible for the logical connection

functionality for the BLE stack, governing how devices connect with each other. GAP

defines four roles of Central, Peripheral, Observer, and Broadcaster. Broadcaster and

Observer roles do not allow connections so this paper will focus on the connection and

data transfer capabilities of the Central and Peripheral roles.

8

2.1.4 SM

 The Security Manager (SM) provides crytographic methods for encryption and

authentication that can be used by the other layers for secure communication through the

Security Manager Protocol (SMP). The SMP encryption layer in BLE uses AES-128

with a CCM encryption engine, which for session encryption is secure as there are no

practical attacks. However the key exchange was designed by the Bluetooth SIG and

isn’t a standard well tested protocol as with Diffie-Hellmann. It has been shown to be

flawed as the Temporary Key (TK) can be brute forced in less than one second on an

Intel i7 [13]. Once the TK is determined the subsequent keys are trivial to find.

2.1.5 ATT and GATT

 The Generic Attribute Profile (GATT) is the framework that BLE uses to store

and transfer data. A device in the GAP role of Peripheral traditionally hosts a GATT

Server, which maintains a database of information ready for consumption. Traditionally

a GATT Client in the Central role interfaces with the GATT Server to pull data formatted

as Attributes (as provided for by the Bluetooth 4.0 specification). These role

combinations are common enough that the terms Central and Client are often used

interchangeably, as are the terms Peripheral and Server.

 To communicate with the GATT Server and consume the data provided by these

Attributes, the Bluetooth 4.0 specification requires the Attribute Protocol (ATT) to be

implemented for Bluetooth Low Energy. The GATT Client and Server communicate

9

using the Attribute Protocol, which (as its name suggests) allows for operations on these

Attributes such that the GATT Client can read data from and write data to the GATT

Server.

2.2 The Bluetooth Profile Abstraction

 To aid in standardization the Bluetooth SIG provides Profiles - definitions for

common applications and behaviors that these applications should use for

communication. The Bluetooth SIG highlights the frequently implemented Heart Rate

Profile [16] as a common example: a smart phone with a heart rate monitor app scans its

range for a smart heart rate monitor. It picks up the heart rate sensor attached to the

user’s chest strap and subscribes to be notified of heart rate measurements. The heart rate

sensor pushes its data to the subscribed monitoring app. The monitoring app can also pull

the location of the sensor on the body as well as modify control parameters on the sensor

itself.

 Because Profiles such as these are standardized, an application developer can

write the module for a communication interface and be assured that it will work with any

peripheral whose Bluetooth implementation recognizes and adheres to the same

advertised Profile.

 For the BLE specification in particular, the Bluetooth SIG has defined a distinct

set of Profiles that are considered part of the GATT Profile [17]. These Profiles allow the

developer of software for a Peripheral device hosting a GATT Server to know how to

10

make a sensor’s data available, the same way these Profiles allow the developer of

software for a Central device hosting a GATT Client to know where to look for data and

what contract of data transfer to expect.

2.3 Services and Characteristics

 Bluetooth Low Energy Profiles are implemented through GATT Characteristics

grouped into GATT Services. In the case of the Heart Rate Profile, the Heart Rate

Service exposes three Characteristics – Heart Rate Measurement, Body Sensor Location,

and Heart Rate Control Point. This Service and its Characteristics are forms of Attributes,

and as such their access is governed by the ATT protocol. As Attributes, they are also

identified by 128 bit Universally Unique Identifiers (as defined in ITU-T X.667 and

ISO/IEC 9834-8). To facilitate development, Shortcut UUIDs of only 16 bits are

available for commonly used Services and Characteristics and are provided by the

Bluetooth SIG; programmatically these are extrapolated to full 128 bit UUIDs using a

Bluetooth SIG- provided base UUID [18]. Profile specifications reference these UUIDs

so that developers know what UUIDs to use when building their applications – a

developer can check the Bluetooth SIG to find that the Heart Rate Service UUID is

0x180D and the Heart Rate Measurement UUID is 0x2A37.

 Services are valuable constructs in that they group and make visible

Characteristics. The handle to data, however, is provided solely through Characteristics

that a GATT client can read from or write to, depending on how these characteristics are

11

configured. An application developer will implement a GATT Client to search for a

GATT Service and pull its GATT Characteristics. The Client will then use the Attribute

Protocol to act on advertised Characteristics by reading a value, writing a value, or asking

to be notified by a Peripheral when a value has changed. These operations form the

backbone through which devices transfer data using BLE.

2.4 Using Bluetooth Low Energy

 The Bluetooth SIG approved GATT based profiles illustrate the kind of services

that Bluetooth Low Energy was designed for: Blood Pressure, Health Thermometer,

Heart Rate, Running Speed and Cadence, etc. All of these demonstrate the intention that

Bluetooth Low Energy was designed for a Central device with a reasonable amount of

power to interface with a Peripheral device (providing data) that is meant to be longer

lived. BLE was not designed for large amounts of data (the default payload per packet in

Android is 20 bytes), but rather to achieve the goals of low power consumption and low

latency.

2.4.1 Intended functionality, example

 The use case for a Heart Rate Profile application is implemented as follows: a

smart phone with a heart rate monitor app assumes the role of Central and scans for

devices advertising a service with the UUID 0000180D-0000-1000-8000-00805F9B34FB

(the GATT Heart Rate Service). The Central finds the heart rate monitor which is

12

advertising this service as a Peripheral, and subscribes to the Characteristic identified by

UUID 00002A37-0000-1000-8000-00805F9B34FB (the GATT Heart Rate Measurement

Characteristic) by updating the Heart Rate Measurement Client Characteristic

Configuration descriptor. The heart rate sensor updates the value of the subscribed

Characteristic on its GATT Server, which pushes the updated value to the subscribed

Central application.

2.4.2 Extended, Novel Uses

 Consider this application – one friend wants to send a picture from his Android

Moto E smartphone to his friend’s iPhone 5. The Wi-Fi router at the coffee shop where

the friends are chatting over coffee is out of service and one of the friends has exceeded

his mobile phone LTE data allotment for the month. Both friends pull up the same app.

The Android user selects the picture and scans for the iPhone, which was placed in

receive mode. Both phones connect, and the Android phone sends a segmented byte

stream of the picture in question to the iPhone. The app on the iPhone re-assembles the

bytes into a picture file and saves it to the phone’s picture gallery.

 The popular mobile app FireChat [19] implements the message sending portion of

the above functionality using Bluetooth Low Energy as part of its “Nearby” Chatroom

functionality. Messages are not sent to a particular device, but are sent to a virtual

chatroom such that any device that is part of this chatroom will receive the message.

13

Other protocols can be used (via the iOS MultiPeer Connectivity API) if the conversing

devices are all running iOS.

 The Kwikset lock company recently released its Kevo Smart Lock for a physical

door [20]. The Kevo app (available on Android and iOS) uses BLE to control the

physical Kevo Smart Lock. It’s capable of unlocking the door with no user interaction,

advertising in BLE Peripheral mode on a low duty cycle such that the physical lock can

scan for and find the Kevo app. [see Figure A.1]

 There are no Bluetooth SIG approved GATT Profiles to enable the above use

cases. These software manufacturers instead use their own ad-hoc and unpublished

Profiles, which is a welcome feature of BLE [21]. Given that the use cases for these

applications are dissimilar from the SIG approved GATT Profiles, why did these device

and software manufacturers choose to use BLE? In the case of FireChat, BLE provides

the only mechanism through which an iOS and Android device can transfer data. In the

case of Kevo, the low power capabilities of BLE allow the batteries in the door lock to

last a year [22], and allow the user’s phone to constantly advertise on a very low duty

cycle so that the lock can scan for and detect the phone when in proximity. Both of these

applications illustrate currently active applications for data transfer over BLE.

2.5 Suitability of Bluetooth Low Energy for message transport

 From a transport perspective, classic Bluetooth BR/EDR is much better suited

than BLE for transferring data. BLE has a lower bandwidth and is therefore not as good

14

at transferring large amounts of data. However for small amounts of data such as email

and small pictures these drawbacks are not as pronounced. BLE’s less stringent security

requirements also facilitate the transfer of non-sensitive data.

 No Pairing Necessary. BLE does not require that devices pair to transfer data

between each other. By avoiding the need to pair at the OS level, an application can

choose its preferred and custom method of authentication and encryption. If

authentication and encryption are not needed, the application does not have to implement

these layers.

 Quick Connections. The Bluetooth SIG indicates that devices can connect and

transfer data in as little as 3ms [23]. In practice connection and transfer times of just over

1 second have been observed [24].

 Mobile Device Penetration. The two most prominent mobile operating systems,

iOS and Android, held over 96% of the worldwide smartphone OS market in 2014 [25].

iOS and Android themselves present varying levels of Bluetooth Low Energy support.

 Apple introduced full BLE support in early 2011. In early 2015 the app store

reported that 98% of devices are versions of iOS that support BLE. In contrast, Android

only introduced partial BLE support (Central mode) with the second maintenance release

of version 4.3 (Jelly Bean MR2) in July of 2013. Android finally introduced full BLE

support (Peripheral mode) in late 2014 with version 5.0. As of April 2015 the Google

Play Store reports Android versions 4.3 through 5.1 hold 50% of the Android market

15

share [12]. Note however that only devices designed at production for Android 5.0 will

support Peripheral mode; older devices are not guaranteed to gain this functionality [26].

 Mobile Device APIs. The iOS CoreBluetooth API is well established since its

release in 2011 with iOS 5. Work from a previous paper [27] demonstrated the

capabilities of CoreBluetooth, and implementations of iBeacon functionality are now

implemented commercially [28].

 Android’s API Level 18 introduced Bluetooth Low Energy functionality, and API

Level 21 extended this functionality to match that of iOS’s CoreBluetooth library. API

Level 21 (Lollipop) was released in November of 2014 [29].

 Good Range for the Power. For traditional Bluetooth, a class 2 device (mobile

phone, Bluetooth headset) transmitting at 2.5 mW has a range of 10 meters, or 33 feet

[30]. Experiments with Bluetooth Low Energy with the iPhone 5s have shown reliable

connectivity at 50 meters [24]. According to the Bluetooth SIG, the range is better than

traditional Bluetooth due to BLE’s use of a larger GFSK modulation index [23].

16

Chapter 3 - SimpBLE Design

 This paper presents the SimpBLE framework to help developers use Bluetooth

Low Energy as a transport method for arbitrary data. Android was selected as the

development language for the initial implementation of SimpBLE due to its market

penetration worldwide and relative affordability compared with similar iOS devices. To

verify compatibility with iOS, a barebones iOS implementation of SimpBLE transport

methods was implemented for iOS 8.2.

3.1 GATT Profile Description

 In the same spirit of standardization that the Bluetooth SIG provides defined

GATT Profiles, this paper presents the basis for a SimpBLE GATT Profile. This Profile

defines the roles of Connection Initiator and Connection Responder, where the Initiator is

a GATT Client and the Responder is a GATT Server. The Connection Responder will

provide a Message Transfer Service. The Service will be identified by the following

UUID randomly generated from Java’s UUID class: 73A20000-2C47-11E4-8C21-

0800200C9A66.

 For purposes of clarity, this UUID will also serve as a base for all Characteristics

used by the Service so that they may be represented by a 16 bit UUID. Below is a table

of the Characteristics for the GATT Service that SimpBLE will implement.

17

Message Transfer Service UUID: 73A20000-2C47-11E4-8C21-0800200C9A66

Characteristic Function 16 bit UUID GATT Type

DATA_CtoS Write Data from Client to Server 0x0101 WRITE

DATA_StoC Write Data from Server to Client 0x0102 NOTIFY

DATA_ACK Acknowledge Receipt of Message 0x0105 READ /
WRITE

Table 3.1 - SimpBLE GATT Profile Attributes

The SimpBLE service and associated characteristics will be advertised when SimpBLE is

invoked in Peripheral mode, and will be scanned for when SimpBLE is invoked in

Central mode.

3.2 Architecture

 SimpBLE attempts to abstract as much Central or Peripheral specific functionality

as possible, so that these concepts are made transparent to the application’s developer.

Following are the internal details which must differentiate between the Central and

Peripheral GAP roles. The components of the Figure 3.1 are described in this section.

18

Figure 3.1 - SimpBLE Architecture

3.2.1 Data Objects

BlePacket. Represents an individual packet of data at the GATT layer. An integer to

track packet sequence is mapped to a byte array which holds the raw bytes of the packet.

This message sequence integer represents the sequence of that particular packet in terms

of making up a parent BleMessage.

BleMessage. Represents a message sent to or received from a BlePeer (described next).

Contains a collection of BlePackets and methods to construct a full byte array of an entire

message from these packets as well as methods to packetize the full byte array of an

entire message into BlePackets.

BlePeer. Represents a currently connected GATT Client or GATT Server. Contains a

collection of BleMessages which are pending send or are pending completion of receipt,

as well as methods to act on these.

19

BleGattCharacteristic. Wrapper for Android’s BluetoothGattCharacteristic which

allows for custom callbacks that can be applied to each. Used solely in the layer that

managers GAP Peripheral operations (BlePeripheral, described in the next section).

BleCharacteristic. Used to set the service definition of the GATT Characteristics that

make up the Service.

3.2.2 Connection Objects and Interfaces

BleMessenger. Responsible for tracking peers using a collection of type BlePeer.

Manages connections for and handles callbacks from BleCentral and BlePeripheral

classes (described next), and as such is responsible for merging and abstracting GATT

communication activity which would otherwise require direct knowledge of Bluetooth

GATT characteristics and how these are used with the GAP Central and Peripheral roles.

BleCentral. Manages connectivity as a GATT client. Responds to requests for scanning

for Peripheral devices from BleMessenger and reports connection and data events back to

BleMessenger through the BleCentralHandler callback. Responsible for making direct

calls to the OS’s API for GAP Central and GATT client operations.

BlePeripheral. Manages connectivity as a GATT server. Creates GATT Service and

Characteristics as directed by BleMessenger. Updates Characteristic values as directed

by BleMessenger. Responsible for making direct calls to the OS’s API for BLE

Peripheral and GATT Server operations.

20

BleCentralHandler. Interface through which BleCentral notifes BleMessenger of

connection and data events.

BlePeripheralHandler. Interface through which BlePeripheral notifies BleMessenger of

connection and data events.

BleStatusCallback. Interface through which BleMessenger notifies the calling

application of connection and data events.

3.3 Use Cases, Internal Implementation

 The following describes the internal functionality SimpBLE implements when

invoked by a calling application to perform common communication use cases.

3.3.1 Initiating a Connection

 By design, one peer must act in the Central role and the other must act in the

Peripheral role. The design of SimpBLE doesn’t attempt to abstract out the differences

between a Central and a Peripheral in terms of device discovery. A developer may intend

for a device to seek out other devices yet not advertise the presence of the application’s

own device; conversely a device may want to passively offer data and not wish to

actively scan for other peers, as the act of scanning takes more power than passively

advertising at a low power. Accordingly later when the public interface of SimpBLE is

described Scan functionality will be separated from Accept functionality. Figure 3.2

illustrates the connection steps described in the next two sections.

21

 Central. For the device that enters the Central role, it issues a call to the

Bluetooth LE adapter to scan for advertising peripherals. The adapter will filter to only

connect to those devices that advertise SimpBLE’s Message Transfer Service UUID.

BleMessenger is notified of this connection via the BleCentralHandler callback, at which

time it instantiates a new BlePeer object and adds it to a lookup structure, indexed by the

received Bluetooth address. Once identified, the Central peer connects to the Peripheral

and itemizes the characteristics offered. If the characteristics match the service definition

noted in Table 3.1, the Central subscribes to the DATA_StoC GATT characteristic by

writing the appropriate byte value to that Characteristic’s Client Characteristic

Configuration descriptor to enable notifications. [31] Upon verification from the

connected Peripheral that this subscription is successful, SimpBLE considers this peer

connected and marks the corresponding BlePeer object as having a data transport open.

 Peripheral. For the device that assumes the Peripheral role, it begins advertising

SimpBLE’s Message Transfer Service UUID and associated characteristics. When

connected to by a Central device, BleMessenger instantiates a BlePeer object and adds it

to a map indexed by the Central’s Bluetooth address. It then waits for the Central to

subscribe to the DATA_CtoS characteristic, and returns a verification when that

subscription occurs. At this point SimpBLE marks this peer as having a data transport

open.

22

Figure 3.2 - SimpBLE Handshake

3.3.2 Preparing a Message

 SimpBLE creates packets of byte size 20 to send to the device’s Bluetooth stack.

The packet size is derived from the maximum per-packet payload allowed in Android

versions before 5.0. The calling application submits a message in a byte array (or a

helper object) to BleMessenger along with a target peer’s identifier. BleMessenger

instantiates a BleMessage object using these bytes and adds it to the appropriate BlePeer.

The BleMessage object then creates a set of BlePackets, each BlePacket holding a byte

23

array of data ready for transmission to the recipient. The layout of the byte array for

packets used by SimpBLE is provided in Figure 3.3.

Figure 3.3 - SimpBLE Data and Ack Packets

 In each payload packet: SimpBLE uses 1 byte to identify the message for a

connection session (max 256 messages per connection session), 2 bytes to identify the

current packet (max 65,536 packets), and 17 bytes for the message payload itself. Since

2 bytes are used for the packet counter, there are a maximum of 65,535 packets per

message (packet 0 is used as the header packet). At 17 bytes of payload a packet,

SimpBLE allows for messages of a maximum size of 1,114,095 bytes.

24

3.3.3 Transmitting Packets

 SimpBLE identifies the target connected peer using the Bluetooth address and

references the appropriate BlePeer object. The BlePeer object references its own

collection of BleMessage objects that have not been sent, and provides a BleMessage

object to BleMessenger. Using transport mechanisms as noted below, BleMessenger

gathers the pending BlePackets from the provided BleMessage and loops over each,

sending to the target device via the GATT Characteristic as noted below.

 Transmitting from the Central Role. The only way for a Central to transmit

data to a peripheral is by updating the value of a GATT Server’s Write Characteristic,

noted in Chart 1a as DATA_CtoS. Since the Bluetooth specification allows a Central to

be connected to multiple Peripheral peers, the Bluetooth address of the target peripheral

is necessary to direct each message to the appropriate recipient. BleMessenger directs the

BleCentral object to deliver each packet to the DATA_CtoS Characteristic. There is a

50ms delay added in between each WRITE operation, as developers have experienced

problems overwhelming the Android 4.3 Bluetooth stack outgoing data buffer, leading to

Characteristics not being properly sent. BleCentral then calls the underlying

android.bluetooth API to deliver the packet to the target Characteristic on the GATT

Server.

 Transmitting from the Peripheral Role. A Peripheral role has many options to

transmit data to its Central peer. SimpBLE uses the Notify attribute, noted in Chart 1a as

DATA_StoC. The Indicate attribute was also an option for transfer, however that proved

25

too slow as the Central must acknowledge receipt of each packet for an Indicate.

 While the Bluetooth 4.0 specification allows a single Central peer to be connected

to multiple Peripheral peers, a Peripheral can only be connected to a single Central.

Future versions of Bluetooth have indicated the capability of allowing a Peripheral to

host multiple Central peers, so BleMessenger uses an index to look up the connected

peer, although as only a single peer can be connected this strategy is currently

unnecessary.

 BleMessenger checks to ensure that the Client device is subscribed to the

DATA_StoC Characteristic, and then directs the BlePeripheral object to update this

Characteristic with the byte value of each BlePacket for the message. The

android.bluetooth layer then delivers each packet to the subscribed Client device.

3.3.4 Message Acknowledgment

 Figure 3.4 illustrates the message acknowledgment process described in this

section After a Central completes sending a message to the Peripheral, BleMessenger

follws up by directing BleCentral to issue a Read request to the Peripheral’s

DATA_ACK GATT characteristic. BlePeripheral relays the calling Bluetooth address

and Characteristic called to BleMessenger, which upon seeing DATA_ACK was called

looks up the BlePeer via the Bluetooth address and identifies any incoming BleMessages

for that peer, which it then queries for any missing BlePackets. An ACK packet detailing

which BlePackets are missing will be returned. If any are missing, BleMessenger directs

26

BleMessage to requeue these and will re-send at the next send event. If none are

missing, BleMessenger directs BlePeer to mark that particular message as sent.

 After a Peripheral completes sending a message to the Central, the Central

initiates the acknowledgment action (as the Central must initiate any connection event).

Because this action is initiated immediately after a successful receipt, the BleMessage

object can be referenced directly. BleMessenger directs BleCentral to issue a Write

request in the format of an ACK packet to the Peripheral’s DATA_ACK GATT

Characteristic indicating the message was fully received. If the message was not fully

received, then a cleanup routine will identify missing packets and follow up with an ACK

packet which instead will indicate which packets were not received.

Figure 3.4- Message Acknowledgment

27

3.3.5 Message Receipt

 Regardless of whether the packet stream is incoming via DATA_StoC or

DATA_CtoS, BleMessenger reads the incoming bytes into a BlePacket and uses the

Bluetooth address to identify the sending peer’s corresponding BlePeer object, using the

first byte of the packet to identify to which BleMessage that BlePacket belongs. Based

on the first BlePacket received for the parent message, a BleMessage knows how many

packets to expect. Once all BlePackets have been received, BleMessage reconstructs the

original message and BleMessenger delivers this message to the calling application.

3.4 Testing and Performance

 A custom rudimentary benchmarking application was used to test connection

distance and measure transfer speeds between a Moto E 4G LTE (Android 5.0.2) and a

Nexus 5 (Android 4.4.4). Basic transport mechanisms were implemented using

CoreBluetooth on an iPad Mini (iOS 8.3) to demonstrate that iOS and Android can

indeed communicate over BLE. Initially the iOS LightBlue App [32] was used for

Service and Characteristic exploration between the iPad Mini and the Moto E.

 BLE advertises raw transfer rates of 1Mbps, with a maximum theoretical

application throughput of 236.7 kbps [33], although testing in literature has only seen as

much as 58 kbps using embedded devices [34]. The testing for this paper consistently

yielded just under 10 kbps, significantly slower but enough to transfer a 100kB file in just

over a minute [Figure A.2]. Proof of concept testing between the Moto E and the iPad

28

Mini resulted in similar throughput results. This testing was made possible by adapting

code from a previous project [27].

 Note that due to the asymmetric nature of BLE transfer, these results were

achieved with the device in GAP Peripheral mode sending a payload to the device in

GAP Central mode. For transfers from a Central to Peripheral, throughput of just over

2kbps was achieved. This throughput, while not suitable for large payloads, is suitable

for a small amount of data such as the transfer of encryption key information.

29

Chapter 4 – SimpBLE Public Interface

 The goal of SimpBLE is to abstract out the cumbersome details of message

transfer over Bluetooth Low Energy. As such a calling application will only interface

with the BleMessenger class. BleMessenger exposes a short set of public methods and

properties, and will relay information back to the calling application via several methods

from a single registered callback.

4.1 OS Resources

 Because of how Android allocates handles to its resources, some of the lower

level details must still be addressed by the calling application. To implement BLE

actions, the constructor for SimpBLE needs a pointer to the following Android system

level resources: BluetoothManager, BluetoothAdapter, and Context..

BluetoothManager btMgr = (BluetoothManager)
 this.getSystemService(Context.BLUETOOTH_SERVICE);

BluetoothAdapter btAdptr = btMgr.getAdapter();

Context ctx = this;

To instantiate the BleMessage class, the application passes in handles to the

BluetoothManager, BluetoothAdapter, the application’s context, and finally a callback to

handle BleMessenger events.

bleMessenger = new BleMessenger(btMgr, btAdptr, this, bleStatusCallback);

30

 For an Android application to perform Bluetooth operations and initiate device

discovery, the following permissions must also be set in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

 The AndroidManifest.xml file must specify a minimum API level of 18.

Scanning is more optimized in API levels 21 and above, however API levels 18 through

20 offer scanning that proved to be functional and robust enough during testing to merit

compatibility.

<uses-sdk android:minSdkVersion="18" android:targetSdkVersion="21" />

The application developer can decide whether or not to take certain actions depending on

whether the device supports Peripheral (GATT Server) mode or not.

if (bleMessenger.SupportsAdvertising) {
 // perform actions based on whether or not this device can advertise
}

4.2 Connection Management

 To look for peers, the application calls the ScanForPeers method, passing in the

duration to scan in milliseconds. SimpBLE will auto-connect to any detected device that

advertises the Service definition specified in Section 3.1. Whenever a device is

connected to or its connection status updated, the callback peerConnectionStatus will be

executed (detailed further down).

bleMessenger.ScanForPeers(MillisecondsToScan);

31

To be found by another device which is actively scanning, the application makes a simple

call to start advertising.

bleMessenger.StartAdvertising();

When the application no longer wants to be visible to nearby devices, it makes a similar

call to stop advertising.

bleMessenger.StopAdvertising();

SimpBLE makes assumptions about certain advertising parameters such as power and

duty cycle, and sets up the advertising functionality per the specifications in Section 3.1.

Any connections made to the device are reported through the function

peerConnectionStatus in the BleStatusCallback, regardless of which device initiated the

connection.

public void peerConnectionStatus(String remoteAddress, int ConnectionStatus) {
 if (ConnectionStatus == BleMessenger.CONNECTION_NEGOTIATING) {
 // negotiating connection with remoteAddress
 } else if (ConnectionStatus == BleMessenger.CONNECTION_CONNECTED) {
 // connected to remoteAddress
 } else if (ConnectionStatus == BleMessenger.CONNECTION_DISCONNECTED) {
 // disconnected from remoteAddress
 }

}

Note that connection status of CONNECTION_CONNECTED refers to a connection at

the SimpBLE abstraction level. The devices are in fact connected at the GATT level

32

when SimpBLE reports CONNECTION_NEGOTIATING however the ability to send

and receive data has not yet been finalized.

 The calling application should maintain a collection of Bluetooth addresses

passed in from the remoteAddress parameter in peerConnectionStatus , and can direct

BleMessenger to disconnect from any of these.

bleMessenger.disconnectPeer(BluetoothAddress);

Once the connection has been terminated, the callback peerConnectionStatus is called

with a ConnectionStatus of CONNECTION_DISCONNECTED.

4.3 Sending a Message

 When a device is connected, SimpBLE reports the connection back to the calling

application along with the Bluetooth address of the remote device as a way for both

SimpBLE and the calling application to keep track of peers. The calling application will

use this address as an index with which to reference a message recipient, allowing a

message to be sent to a single peer while connected to multiple devices.

 The calling application calls the AddMessage method, passing in the content of

the outgoing message to BleMessenger as either an array of bytes or an instantiation of

the abstract BleApplicationMessage helper class. The AddMessage method returns a

33

truncated SHA-1 digest of the message bytes so the calling application can uniquely

identify the message by content.

bleMessenger.AddMessage(BluetoothAddress, ApplicationMessage);

// or

bleMessenger.AddMessage(BluetoothAddress, RawByteArray);

 When a message is queued and a peer is connected, BleMessenger periodically

checks for any messages that are pending send. After sending the message,

BleMessenger attempts to determine if a message was successfully delivered. If so, it

executes the BleStatusCallback function messageDelivered.

public void messageDelivered(String remoteAddress, String payloadDigest, int
 parentMessageId) {
 // message identified by payloadDigest was delivered to remoteAddress
}

4.4 Receiving a Message

 When a message is received in its entirety, the handleReceivedMessage method

from the callback BleStatusCallback is executed. If the application developer has been

using a custom class derived from the provided BleApplicationMessage helper class, the

details of the message can be easily rebuilt.

public void handleReceivedMessage(String remoteAddress, int parentMessageId,
 boolean messageIntact, byte[] MessageBytes) {

 ApplicationMessage incomingMsg = new ApplicationMessage();

 String incomingDigest = incomingMsg.SetRawBytes(MessageBytes);

 incomingMsg.BuildMessageDetails();

34

 // assuming as single byte is used for the message type
 int messageType = incomingMsg.MessageType & 0xFF;

 // who’s supposed to get it, who sent it, what does the message contain
 byte[] recipientFingerprint = incomingMsg.RecipientFingerprint;
 byte[] senderFingerprint = incomingMsg.SenderFingerprint;
 byte[] messagePayload = incomingMsg.MessagePayload;
 byte[] messageHash = incomingMsg.BuildMessageMIC();

}

4.5 Usage By a Calling Application

 Earlier the use case of a two friends exchanging a photo between an Android and

iOS device was presented. An application that implements this with SimpBLE could be

as simple as loading the image into a raw byte array, two devices connecting, and one

device sending the byte array to the other.

 If the information is more sensitive than (for instance) a photo suitable for social

media, an application may choose to offer authentication and encryption. In this case a

pairing mechanism will need to be implemented as well as a layer of encryption. Sample

implementations for these layers are detailed in Chapter 5.

35

Chapter 5 – Secure Message Passing Application

 In Chapter 2 the use case of one friend needing to send the other a non-sensitive

message via peer to peer transport between heterogeneous platforms was posited. For

situations like these an application may not implement security, however for more

sensitive information authentication and encryption may be required. This chapter

presents a sample application to illustrate how a developer may use SimpBLE to

implement a custom security layer.

5.1 Authentication and Encryption

 This particular application relies on Public/Private key authentication and

encryption, as well as symmetric key encryption. When a message is prepared for

sending, the plaintext of the original message is encrypted with symmetric key encryption

and the ciphertext sent to the recipient. The symmetric key itself is then encrypted with

the recipient’s public key and sent to the recipient in a separate message.

5.1.1 Key Exchange

 The application requires that an RSA key pair is generated and stored on each

device. This implementation on Android uses the Android Keystore Provider, which

identifies this application via a random UUID written to the installation directory of the

app.

36

 For an installation, the application will generate an Identity message of type

ApplicationMessage (an instantiation of the abstract BleApplicationMessage helper class

presented in chapter 4) with the fields detailed below.

Figure 5.1 - Application Message Class

Message Type is used to indicate the type of message being sent. In this case the

meessage type is 0x01, indicating an identity message.

SenderFingerprint is used to identify the sender of the message and is always the SHA-

1 digest of the sender’s Public Key (20 bytes).

RecipientFingerprint is used to identify the recipient of the message and is generally the

SHA-1 digest of the recipient’s Public Key. In the case of an Identity message no

specific recipient is necessary, thus this field is the byte 0x00 repeated 20 times.

Payload is the data destined for the message recipient. In this case, the payload is the

sender’s Public Key.

 To begin the identity exchange process, each user starts the app on their phones.

User A advertises connectability and User B scans for User A’s phone. The two phones

37

connect over BLE and each user is notified the app is ready to exchange data. Each user

pushes a button to queue an identity message and passes it to SimpBLE, which relays the

message to the other device.

 Upon receipt of an identity message, a screen pops up on each device, displaying

a hex representation of the other party’s Public Key along with a hex representation of a

SHA1 fingerprint of the Public Key (Figure 5.3). The users confirm each others’

fingerprints by voice using the first 4 to 8 hex octets. Each user enters in a friendly name

to identify the other person (Figure 5.2). These values are saved into the application’s

SQLite database.

Figure 5.2 – Identity Exchange, Manual Authentication

38

Figure 5.3 - Identity Exchange, Implemented on Android

 Alternatively the public keys and fingerprints could be exchanged beforehand –

for instance via secure email - and copy/pasted directly into the Add Friend dialog. The

friends have now authenticated to each other and can trust that the friendly name stored

in the application corresponds to their friend’s device.

5.1.2 Encrypted Message Transfer

 Once the application has a friend’s Public Key and Fingerprint stored in its

database, a user can author a message and specify that friend as a recipient.

39

Figure 5.4 - Queue Message and Encrypt for Sending

Queueing a message. To require encryption for a message, the user checks a box when

authoring a message. The body of the message is stored in the SQLite database as plain

text. When the peers reconnect and identify each other, the database is queried for any

messages queued for the connected peer. If the message found for the connected peer

requires encryption, the system will encrypt the original message and create an additional

message providing the encryption key used to encrypt the original message.

40

Encrypting and sending the message. The system will generate a one-time random 256

bit AES key and a one-time random 128 bit Initialization Vector (IV). The message

plaintext, AES key, and IV are provided to a simple implementation of the javax.crypto

library [35] to generate the message ciphertext. The IV is then prepended to the

encrypted ciphertext to create an encrypted payload which is sent to the message

recipient.

Encrypting and sending the key. The app then takes the AES key used to generate the

ciphertext and RSA encrypts it by using the Public Key stored for the message recipient.

This encrypted key is then appended to a SHA-1 digest of the original message and sent

to the message recipient.

Receiving and decrypting the key. The message recipient decrypts the key message

payload using the Private Key corresponding to the Public Key that was used to

authenticate with the message sender, and stores that decrypted symmetric key in a Map

indexed by the digest of the plaintext message.

Receiving and decrypting the message. The message recipient stores the AES-

encrypted payload in another Map indexed by the hash of the plaintext message. The

receiving application then uses the digest of the received message to look up the

41

previously decrypted AES key. If it exists, then the AES key is pulled and used to

decrypt the payload, which is then displayed in plain text to the user.

Figure 5.5 - Receipt and Decryption of AES Key and Original Message

5.1.3 SQLite Data Objects

 To support static data between application sessions should the application be

terminated before a message can be sent, the SQLite library is used (available on Android

and iOS). As this is a fairly trivial system for demonstration, only two tables are needed

whose relationships are noted in Figure 5.6.

42

Figure 5.6 - ER Diagram, Messages and Friends

Friends. The Friends table stores a peer’s Public Key, the Public Key’s Fingerprint as a

hex string, and a friendly name for a user’s Friend. The _id field is unique per row and is

used to simplify row-level operations.

Messages. The Messages table stores incoming and outgoing messages. The message

type is stored to indicate whether or not this message will be encrypted. The message

content is stored in plaintext, while the friendly name of the recipient allows the system

to look up recipient details from the Friends table. A hex representation of the recipient’s

fingerprint is stored (in case this message passes through an intermediary), and a SHA-1

signature of the message’s payload provides unique message identification.

5.2 Summary of Message Passing Application

 The authentication mechanism presented in this implementation has several

advantages over the traditional Bluetooth pairing mechanism provided by common

mobile phone operating systems.

43

• The app does not cede control. Since the application manages the pairing and

does not have to cede control to the operating system’s pairing mechanism, the

user is never forced to leave the application to interact with a separate dialog.

• The authentication step can happen beforehand. In the case that two users

have already authenticated each others’ Public Keys, the users can add each these

Public Keys manually into the application with no loss in trust.

• The keys can be moved to a different device. While the sample application

does not have a mechanism to move keys to a different device, this functionality

is supported by virtue of the key store being separate from the authentication

mechanism itself.

Along with flexibility in security comes some vulnerability. Because the key data is not

maintained and protected at the OS level, the possibility of surrendering this key to a

malicious actor may be more likely. Also note that this implementation does not ensure

that the connected peer actually owns the private key for the recipient’s public key. This

shortcoming is mitigated somewhat in that regardless of who gets the message, only the

holder of the private key can decrypt the message. While this may be a problem for

highly secure messages, this enables other devices to act as middle men to help deliver a

message securely to its ultimate destination.

 The overhead added by this encryption strategy in terms of computation

complexity is negligible. On the Moto E 4G LTE device (Android 5.0.2) used for testing,

AES encryption of a 100KB message required 8ms to complete. Decryption of the

44

100KB payload on the receiving device (Nexus 5, Android 4.4.4) required 14ms to

complete. RSA encryption of the 32 byte key requires around 2ms to complete, while

RSA decryption of the 32 byte key averaged around 80ms.

 In terms of message complexity, the primary overhead is due to the addition of a

separate key message. This overhead is mitigated somewhat due to the small size of the

key message itself (just over 256 bytes assuming a 2048 bit RSA key), allowing this

message to be transferred in just over a second. Also note that AES encryption does not

increase message size [36], so the increase in size of transferred messages is negligible.

45

Chapter 6 – Distribution of Secret Shares

 A novel use case for an environment rich in wireless peer to peer connectivity is

that of a mobile threshold secret sharing scheme. A threshold secret sharing scheme is a

way of splitting up a message such that the original message cannot be reconstructed

without a pre-determined minimum number of shares; Adi Shamir presented the first

implementation of such a scheme [37]. Note that with Shamir’s scheme, each share must

be the size of the original message.

6.1 Motivating Scenarios

 Group Trust. A parent has three children, each who have a smartphone. The

parent wants each child to have access to money in case of an emergency but does not

trust any child individually. The parent gives the oldest child a PIN operated ATM card,

but not the PIN. Instead he uses a smartphone application that splits the PIN into 3

shares, where a minimum of 2 shares is needed to reconstruct the original PIN. He gives

each child’s device a single share, ensuring that at least 2 children must confer in order to

rebuild the PIN.

 Untrusted Couriers. A message sender needs to get a message to a recipient in

an area without infrastructure and cannot deliver the message personally. The sender and

recipient do not share any encryption keys, symmetric or otherwise. The sender uses a

smartphone application to split up a short message into 5 secret shares such that any 3 are

needed to rebuild it. The application transmits a single share each onto smartphones

46

possessed by 5 separate message couriers. As long as only 2 of these couriers collude to

attempt to rebuild the message and at least 3 of the couriers make it to the recipient and

are able to relay their 3 shares, the message can be delivered securely.

 Dead Drop. If a message sender and recipient cannot meet in person, the sender

drops a message off at a pre-determined location with the expectation that the recipient

will retrieve the message. As recent as 2006, Russian intelligence agents observed agents

for the British government using a dead drop to gather information from Russian

informants; the dead drop was a wireless receiver and transmitter hidden in a fake rock

[38]. The scenario below presents a mobile and distributed dead drop implementation

that overcomes the vulnerability in having a dead drop at only a single location.

 Alice needs to deliver a message to Bob, however Alice and Bob are both being

tracked and cannot risk being seen together. Neither can communicate using

infrastructure as the email accounts and internet access of both are being tracked. Alice

loads an application on her smartphone and splits a message into three secret shares,

requiring a threshold of two shares to reconstruct the message. Alice goes to a coffee

shop and surreptitiously drops a share onto the shop’s peer to peer electronic message

board. She then goes to a different part of the city and drops another share onto an

untrusted courier’s phone inside a crowded shopping mall. On her way back to her

apartment she stops by a sports bar and drops off a final share at the electronic message

board at that location. A few hours later, Bob travels to an as-yet unvisited location

where he knows the courier will be and picks up a share from that courier, then travels to

47

the original coffee shop and retrieves a second share of the message. Bob then

reconstructs the original message using the application on his phone.

 Section 6.2 describes an Android implementation of such an application.

6.2 System Design

 As with the encrypted message transfer from the previous section, the

functionality described in this section is meant to show an application of a particular

cryptographic technique using Bluetooth Low Energy as a peer to peer transport between

wireless devices. The database and object design in this section are identical to the

previous chapter.

6.2.1 Creating a Message

 For this type of message the application need not identify a particular recipient as

the final recipient is any peer who gains the minimum number of shares needed to rebuild

the original message. The application prompts the user for the number of shares to

generate as well as the threshold number of shares needed to recreate the message. The

user also enters an identifying topic name for the message, which is used in place of the

recipient name. The type of message is stored as “topic”.

 The plaintext of the message is not stored in the database. Instead the application

uses an adapted version of a Java implementation to generate secret shares [39], and

stores each of these shares as an individual message. The content of each message is

48

such that the first character indicates the number of shares required to rebuild the

message (1-9). The second character indicates which share number a particular message

is. The next 40 characters are a hexadecimal representation of a SHA-1 signature of the

original plaintext, and the remaining characters are a hexadecimal representation of the

share itself. Figure 6.1 details a message generated with 5 total shares, any 2 of which

are required to rebuild the original message. The message was authored on a Moto E 4G

LTE running Android 5.0.2.

Figure 6.1 - Creating a Shared Secret

49

6.2.2 Distributing a Message

 Upon connecting, the peers perform the identification handshake to exchange

public keys, as detailed in Chapter 5. The sending application then checks to see if a

share for this message has already been sent to the connected peer. If not, the originating

application sends a share to that device and stores this peer’s fingerprint to disallow

subsequent deliveries of message shares to that peer. In the presented example, two

shares were delivered, one each to a Galaxy Nexus (custom build of Android 5.1) and a

Nexus 5 (Android 5.1)

6.2.3 Re-assembling a Message

 The particular implementation tested for this paper assumes that any peer who has

not already received a share is interested in receiving an unsent share. Upon receipt of a

share message, the application stores the received message in the Messages table. The

user can then view the received shares and pick any share for the secret message, then

instruct the application to Combine Shares. If enough have been received then the

original message is displayed on the device as shown in Figure 6.2.

 To re-assemble the message, the application was removed and freshly installed

onto the Moto E 4G LTE to create the appearance of a new peer. This step was necessary

due to the number of devices required to test multiple peers in this simulation. This

device then connected to each of the other two tested devices to gather the shares that

were originally dropped off. The shares were reconstructed as shown in Figure 6.2.

50

Figure 6.2 - Reassembling a Message

6.3 Future Work

 Using Shamir’s original scheme, each share is the size of the secret message

itself. While Shamir’s scheme is theoretically secure, computationally secure

implementations have been presented which will allow for each share to be smaller than

the original secret [40], allowing for larger messages to be created.

 If social media location based apps become more prevalent and electronic peer to

peer bulletin boards become popular, a share can be dropped in the open and cloaked by

using popular topics, such as sports teams’ names. The sending application can also use

GPS to ensure that it doesn’t drop off more than one share at a physical location.

51

Chapter 7 – Implications and Future Work

 Enabling iOS and Android devices to communicate via an easy to implement peer

to peer standard opens the doors for a wide variety of applications from mobile

application developers, both in the private sector and in academia. To facilitate

application development, a formal GATT Profile for arbitrary message transfer can be

presented to the Bluetooth SIG and adopted as an implementable standard. All code for

this project is available on GitHub at https://github.com/ludwigmace/blebenchmark [41]

and can be used freely. The next most logical step is to re-implement the full SimpBLE

framework on iOS and not just the rudimentary transport mechanisms used for testing.

 Without the requirement for OS level pairing and peer to peer capabilities

between Android and iOS made possible, the modeling of message passing routines for

Mobile Ad Hoc Networks (MANETs) can be simplified and greatly increase a potential

testing population. Test subjects may also be more willing to install these apps as the

battery drain from Bluetooth Low Energy is much less than from Classic Bluetooth.

 The recently adopted specification for Bluetooth 4.2 increases the raw BLE

packet sizes are from 27 bytes to 251 bytes. This mirrors the ability of iOS 8 and

Android 5 to negotiate an MTU size larger than the maximum packet size specified in the

Bluetooth 4.0 specification. With this change alone transfer speeds may become fast

enough for much higher throughput and expand MANET capabilities.

52

 This paper and implemented applications have demonstrated that Bluetooth Low

Energy provides a suitable peer to peer transport method for small amounts of arbitrary

data between modern smartphones. With the planned capabilities of Bluetooth Low

Energy in future specifications and the rising ubiquity of consumer devices offering BLE

capabilities, reliable and commonplace peer to peer networking is on the horizon.

53

Appendix A – Testing Applications

Figure A.1 – Kevo Android Service and Characteristics

54

Figure A.2 - Benchmark App on Nexus 5 (4.4.4)

55

Bibliography

[1] Sasso, B. (2012). “FCC: hurricane Sandy took out 25 percent of cell towers.” The
Hill, p. 10.

[2] Jurgensen, J. (2015). “Concert Crowds Flounder in Digital Dead Zones. WSJ.”
Retrieved 4 May 2015, from http://www.wsj.com/articles/demand-for-wireless-signals-
pressures-concert-promoters-1417722615

[3] Landau, S. (2013). “Making Sense from Snowden: What's Significant in the NSA
Surveillance Revelations.” Security Privacy, IEEE, 11(4), 54-63.

[4] Cronan, B. (2014). “Hong Kong protestors use FireChat to text without cell service.”
The Christian Science Monitor, 23.

[5] Rai, S. (2014). “Google introduces phone for emerging markets.” The New York
Times, 11.

[6] Cooper, D. (2015). “Google's Android One program will set minimum standards for
bargain-basement smartphones.” Engadget. Retrieved 4 May 2015, from
http://www.engadget.com/2014/06/25/google-android-one/

[7] Android Connectivity APIs,. (2015). “Connectivity | Android Developers.” Retrieved
4 May 2015, from http://developer.android.com/guide/topics/connectivity/index.html

[8] iOS Developer Library,. (2015). “Multipeer Connectivity Framework Reference.”
Retrieved 4 May 2015, from
https://developer.apple.com/library/prerelease/ios/documentation/MultipeerConnectivity/
Reference/MultipeerConnectivityFramework/index.html

[9] Apple iOS Support,. (2015). “iOS Supported Bluetooth profiles.” Retrieved 4 May
2015, from https://support.apple.com/en-us/HT204387

[10] International Data Corporation,. (2014). “Smartphone Outlook Remains Strong for
2014, Up 23.8%, Despite Slowing Growth in Mature Markets, According to IDC.”
Retrieved from http://www.idc.com/getdoc.jsp?containerId=prUS25058714

56

[11] Milanesi, C. (2015). “Apple iOS leads US OS share for the first time since Q4 2012
- Global site - Kantar Worldpanel.” Kantarworldpanel.com. Retrieved 4 May 2015, from
http://www.kantarworldpanel.com/global/News/Apple-iOS-leads-US-OS-share-for-the-
first-time-since-Q4-2012

[12] Android Developer Dashboard, (2015). “Platform Versions.” Retrieved 4 May 2015,
from http://developer.android.com/about/dashboards/index.html

[13] Ryan, M. (2013). “Bluetooth: With Low Energy Comes Low Security.” Presented as
part of the 7th USENIX Workshop on Offensive Technologies. Berkeley, CA: USENIX.
Retrieved from https://www.usenix.org/conference/woot13/workshop-
program/presentation/Ryan

[14] Galeev, M. (2011). “Bluetooth 4.0: An introduction to Bluetooth Low Energy-Part
II.” EE Times. Retrieved 4 May 2015, from
http://www.eetimes.com/document.asp?doc_id=1278966

[15] Bluetooth SIG,. (2015). “Bluetooth Smart (Low Energy) Technology.” Retrieved 4
May 2015, from https://developer.bluetooth.org/TechnologyOverview/Pages/BLE.aspx

[16] Bluetooth SIG,. (2015). "Bluetooth Developer Portal - Heart Rate Profile.” Retrieved
4 May 2015, from
https://developer.bluetooth.org/gatt/profiles/Pages/ProfileViewer.aspx?u=org.bluetooth.p
rofile.heart_rate.xml

[17] Bluetooth SIG,. (2015). “GATT Specifications, Profiles.” Retrieved 4 May 2015,
from https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

[18] Bluetooth SIG,. (2010). “Bluetooth Core Specification 4.0”, p. 216.

[19] OpenGarden,. (2015). “Firechat FAQ.” Retrieved 4 May 2015, from
https://opengarden.com/faq#faq-general-F6

[20] Unikey. (2015). “Let There Be Android for Kevo.” Retrieved 4 May 2015, from
http://www.unikey.com/blog/2015/04/26/let-there-be-android-for-kevo/

[21] Bluetooth SIG,. (2015). “Bluetooth Interoperability and Profiles.” Retrieved 4 May
2015, from https://developer.bluetooth.org/DevelopmentResources/Pages/Custom-
Profile-Development.aspx

57

[22] Kwikset,. (2015). “Kevo Smart Lock - Battery Life.” Retrieved 4 May 2015, from
http://www.kwikset.com/kevo/default.aspx#.VR7iuvkc7Gw

[23] Bluetooth SIG,. (2015). “The Low Energy Technology Behing Bluetooth Smart.”
Retrieved 4 May 2015, from http://www.bluetooth.com/Pages/low-energy-tech-info.aspx

[24] Bronzi, W., Frank, R., Castignani, G., & Engel, T. (2014). “Bluetooth low energy for
inter-vehicular communications.” In IEEE (pp. 215-221).

[25] International Data Corporation,. (2015). “Android and iOS Squeeze the Competition,
Swelling to 96.3% of the Smartphone Operating System Market for Both 4Q14 and
CY14, According to IDC.” Retrieved from
http://www.idc.com/getdoc.jsp?containerId=prUS25450615

[26] Android Developer Preview, (2014). “Issue 1570 - android-developer-preview -
BLE advertise mode not working.” Retrieved 4 May 2015, from
https://code.google.com/p/android-developer-preview/issues/detail?id=1570#c52

[27] Sandoval, R., & Schoolfield, M. (2014). “SubContext.”

[28] “Marsh Deploys IBeacon System.” (2015). MMR, 32(2), 30.

[29] Official Google Blog, (2015). “Android: Be together. Not the same.” Retrieved 4
May 2015, from http://googleblog.blogspot.com/2014/10/android-be-together-not-
same.html

[30] Wright, J. (2007). “Dispelling Common Bluetooth Misconceptions.” SANS.
Retrieved 4 May 2015, from http://www.sans.edu/research/security-
laboratory/article/bluetooth

[31] Bluetooth Developer Portal,. (2015). “DescriptorViewer”. Retrieved 4 May 2015,
from
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluet
ooth.descriptor.gatt.client_characteristic_configuration.xml

[32] Laiacano, A. (2015). “Testing Bluetooth Low Energy Devices.” Punch Through
Design. Retrieved 22 April 2015, from
http://blog.punchthrough.com/post/46285311872/testing-bluetooth-low-energy-devices

58

[33] Gomez, C., Demirkol, I., & Paradells, J. (2011). “Modeling the Maximum
Throughput of Bluetooth Low Energy in an Error-Prone Link.” IEEE Communications
Letters, 12(11), 1187-1189.

[34] Gomez, C., Oller, J., & Paradells, J. (2012). “Overview and evaluation of bluetooth
low energy: an emerging low-power wireless technology.” Sensors (Basel, Switzerland),
12(9), 11734-11753.

[35] Android Developer Reference, (2015). “javax.crypto.” Retrieved 4 May 2015, from
http://developer.android.com/reference/javax/crypto/package-summary.html

[36] Daemen, J., & Rijmen, V. (2002). “The design of Rijndael: AES--the advanced
encryption standard.”

[37] Shamir, A. (1979). “How to Share a Secret.” Commun. ACM, 22(11), 612--613.
Retrieved from http://doi.acm.org/10.1145/359168.359176

[38] Belton, C. (2012). “UK admits officials used fake rock to spy on Russia.” The
Financial Times, 4.

[39] Tiemens, T. (2015). “Shamir's Secret Share in Java.” GitHub. Retrieved 4 May
2015, from https://github.com/timtiemens/secretshare

[40] Parakh, A., & Kak, S. (2011). “Space efficient secret sharing for implicit data
security.” Information Sciences, 181(2), 335-341.

[41] Schoolfield, M. (2015).” Source code for SimpBLE and Benchmarking
Application.” GitHub. Retrieved 4 May 2015, from
https://github.com/ludwigmace/blebenchmark

	Chapter 1
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1 - Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Vision
	1.4 Hurdles
	1.5 Scope and Report Organization

	Chapter 2 – Bluetooth Low Energy (BLE)
	2.1 High Level Description of Bluetooth Low Energy
	2.1.1 Link Layer / Physical Layer
	2.1.2 L2CAP
	2.1.3 GAP
	2.1.4 SM
	2.1.5 ATT and GATT

	2.2 The Bluetooth Profile Abstraction
	2.3 Services and Characteristics
	2.4 Using Bluetooth Low Energy
	2.4.1 Intended functionality, example
	2.4.2 Extended, Novel Uses

	2.5 Suitability of Bluetooth Low Energy for message transport

	Chapter 3 - SimpBLE Design
	3.1 GATT Profile Description
	3.2 Architecture
	3.2.1 Data Objects
	3.2.2 Connection Objects and Interfaces

	3.3 Use Cases, Internal Implementation
	3.3.1 Initiating a Connection
	3.3.2 Preparing a Message
	3.3.3 Transmitting Packets
	3.3.4 Message Acknowledgment
	3.3.5 Message Receipt

	3.4 Testing and Performance

	Chapter 4 – SimpBLE Public Interface
	4.1 OS Resources
	4.2 Connection Management
	4.3 Sending a Message
	4.4 Receiving a Message
	4.5 Usage By a Calling Application

	Chapter 5 – Secure Message Passing Application
	5.1 Authentication and Encryption
	5.1.1 Key Exchange
	5.1.2 Encrypted Message Transfer
	5.1.3 SQLite Data Objects

	5.2 Summary of Message Passing Application

	Chapter 6 – Distribution of Secret Shares
	6.1 Motivating Scenarios
	6.2 System Design
	6.2.1 Creating a Message
	6.2.2 Distributing a Message
	6.2.3 Re-assembling a Message

	6.3 Future Work

	Chapter 7 – Implications and Future Work
	Appendix A – Testing Applications
	Bibliography

