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A �exible, robust attitude determination and control (ADC) system is presented

for small satellite platforms. Using commercial-o�-the-shelf sensors, reaction wheels, and

magnetorquers which �t within the 3U CubeSat form factor, the system delivers arc-minute

pointing precision. The ADC system includes a multiplicative extended Kalman �lter for

attitude determination and a slew rate controller that acquires a view of the Sun for nav-

igation purposes. A pointing system is developed that includes a choice of two pointing

controllers � a proportional derivative controller and a nonlinear sliding mode controller.

This system can reorient the spacecraft to satisfy a variety of mission objectives, but it does

not enforce attitude constraints. A constrained attitude guidance system that can enforce

an arbitrary set of attitude constraints is then proposed as an improvement upon the uncon-

strained pointing system. The momentum stored by the reaction wheels is managed using

magnetorquers to prevent wheel saturation. The system was thoroughly tested in realistic

software- and hardware-in-the-loop simulations that included environmental disturbances,

parameter uncertainty, actuator dynamics, and sensor bias and noise.
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Chapter 1

Introduction

Small satellites (of under 100 kg) are becoming increasingly popular due to the

signi�cant reductions in cost and delivery time that they o�er. They are also becoming

increasingly capable as advancements in satellite technology have scaled instruments down

in size and mass, allowing them to �y on these smaller platforms. These vehicles can now

provide easy access to space for a variety of purposes, such as science experiments, remote

communications, space exploration, and reconnaissance. For example, the United States

Army Space and Missile Defense Command is beginning to employ the small satellites SNaP

and Kestrel Eye for beyond-line-of-sight communications and situational awareness [4, 5].

The Space Systems Laboratory at the Massachusetts Institute of Technology is working on

the nanosatellite ExoplanetSat, which will detect exoplanet transits [6]. Small satellites also

enable the use of satellite constellations (coordinated networks of multiple satellites) which

would otherwise be infeasible due to the cost of the numerous satellites. These constellations

can provide near-constant coverage of portions of the Earth. Planet Labs launched one such

�eet of 28 small satellites from the International Space Station to image the Earth with 3

to 5 meter resolution [7].

These missions of growing complexity often require the satellite to image a celestial

body, direct a high-gain antenna at a ground station, or point a science instrument to collect

data. The ability to precisely and reliably reorient in space is essential to meeting these

mission objectives. This capability is delivered by the spacecraft's attitude determination
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and control (ADC) system, which is responsible for 1) determining the current attitude (or

orientation) through a combination of sensor measurements, 2) computing an appropriate

control signal to send to the actuators, and 3) using the actuator devices to change the

spacecraft's orientation as desired. The goal of this thesis is to present the design, de-

velopment, and simulation of a complete ADC system for small satellite platforms. This

chapter discusses the motivating spacecraft missions behind this research and an outline of

the thesis.

1.1 Motivation

This research was primarily conducted to develop the ADC system that will �y on

two 3U CubeSats currently in development at the Texas Spacecraft Laboratory (TSL) at

the University of Texas at Austin. This section provides an overview of the CubeSat form

factor followed by a description of these two satellites, Bevo-2 (an autonomous rendezvous

technology demonstration) and ARMADILLO (Atmosphere Related Measurements And

Detection of submILLimeter Objects). A brief description of a previous satellite delivered

by the TSL, RACE (Radiometer Atmospheric CubeSat Experiment), is also provided. Since

the TSL builds multiple satellites concurrently, the ADC system needs to be modular and

reusable across di�erent missions. Thus, the ADC system design was driven by the mission

requirements of Bevo-2 and ARMADILLO, but the system could easily be used for any

small satellite with similar pointing requirements and an equivalent suite of sensors and

actuators.
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Figure 1.1: Poly Picosatellite Orbital Deployer (P-POD) and Cross-section [1]

1.1.1 CubeSat Form Factor

Many small satellites follow the CubeSat standard, which was developed by Cali-

fornia Polytechnic State University (Cal Poly), San Luis Obispo, and Stanford University's

Space Systems Development Lab. Every CubeSat must adhere to the speci�cations outlined

in the CubeSat Design Speci�cation document maintained by The CubeSat Program at Cal

Poly. A CubeSat is composed of 10x10x10 cm units of less than 1.33 kg. These units can be

stacked together along one axis to form 2-unit (2U) or 3-unit (3U) CubeSats of 20x10x10

cm and 30x10x10 cm, respectively. This standardization allows CubeSats to share a com-

mon deployment system called the Poly Picosatellite Orbital Deployer, or P-POD system.

A P-POD is a spring-loaded case that can accommodate up to three 1U CubeSats, or a

single 3U CubeSat. Since a P-POD takes up minimal space, CubeSats typically piggyback

on launches as secondary payloads. This expedites the process of securing a launch vehicle

provider and greatly reduces the cost of launch [1].

1.1.2 RACE

RACE is a 3U CubeSat that the TSL designed, built, and tested for the Jet Propul-

sion Laboratory (JPL) to house their radiometer instrument. The radiometer measures

3



Figure 1.2: RACE inside a P-POD

electromagnetic radiation at the water vapor absorption line at 183 GHz, providing valu-

able data on water vapor levels in the upper atmosphere for improving weather forecasting

and climate models. The radiometer instrument �ts within 1.5U of the CubeSat, with the

remaining volume containing the power, communications, data handling, and attitude con-

trol systems. To collect the science data, the satellite must maintain a constant spin of 6

rpm about the long axis of the satellite along which the radiometer is oriented. RACE was

to be deployed in October 2014 from the NanoRacks CubeSat Deployer on the International

Space Station (ISS) after arriving at the station with a Cygnus re-supply mission. The

unfortunate loss of the Antares launch vehicle prevented this, but the skills and experience

gained from building RACE were invaluable and will be applied to future missions.

Although RACE, Bevo-2, and ARMADILLO have di�erent payloads and mission

objectives, their design architecture is nearly identical. Each satellite's suite of sensors and

actuators are composed of the same commercial-o�-the-shelf (COTS) components, although

the exact combination of components varies for each individual satellite. The satellite struc-

ture is also very similar across the three satellites aside from di�ering payload modules. As

the only fully tested and delivered 3U CubeSat, RACE is thus used as a baseline for many

of the physical parameters in simulation testing of the ADC system (see Section 3.3).
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1.1.3 Bevo-2

Bevo-2 will demonstrate the technological capabilities of small satellites as part of

NASA Johnson Space Center's LONESTAR-2 (Low-Earth Orbiting Navigation Experiment

for Spacecraft Testing Autonomous Rendezvous and Docking) project. This 3U CubeSat

has a six degree-of-freedom guidance, navigation, and control (GN&C) system consisting of

the ADC system outlined in Section 2.3 and a one degree-of-freedom 3D-printed cold-gas

thruster. It will deploy from within AggieSat-4, a <50 kg nanosatellite to be delivered

by Texas A&M University, using a CubeSat launcher developed by Innovative Solutions in

Space (ISIS). The blue ISIPOD (ISIS Payload Orbital Dispenser) can be seen in Figure

1.3b with its front door open, through which the spring-loaded mechanism that will propel

Bevo-2 out into space is visible (refer to [8] for ISIPOD speci�cations). The two satellites

will be delivered to the ISS via a SpaceX CRS-7 cargo resupply mission that is tentatively

scheduled for June 2015. The satellites will then deploy from the ISS via the Space Station

Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS).

After deploying from the ISS and separating from AggieSat-4, Bevo-2 will establish

cross-link communications with AggieSat-4 and send Global Positioning System (GPS) data

across the link. The GPS data will be used to perform relative navigation, allowing Bevo-2

to image AggieSat-4 with its star tracker camera. Bevo-2 will then perform a variety of

reorientation maneuvers and demonstrate momentum management to test the sensors and

actuators. This will be followed by a propulsion test of the cold-gas thruster [9]. After Bevo-

2 demonstrates the capabilities of the six degree-of-freedom GN&C system, the satellite will

perform a rendezvous maneuver with AggieSat-4. A graphic summary of the concept of

operations is presented in Figure 1.4.
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Figure 1.3: LONESTAR-2 Satellites

(a) Bevo-2 (b) AggieSat-4 in Integration

Figure 1.4: Bevo-2 Concept of Operations
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1.1.4 ARMADILLO

ARMADILLO was the winning entry submitted by the TSL in the University

Nanosat Program-7 (UNP-7) spacecraft competition sponsored by the Air Force Research

Laboratory. This 3U CubeSat has an ADC module that is nearly identical to the one on-

board Bevo-2 (refer to Section 2.3 for details). ARMADILLO will characterize space debris

in Low Earth Orbit by measuring impacts from sub-millimeter particles using a piezo-electric

dust detector (PDD). The PDD is being developed by the Center for Astrophysics, Space

Physics, and Engineering Research (CASPER) at Baylor University. The instrument collects

data regarding the number, mass, and velocity of particles colliding with the instrument by

recording the piezo signals that they generate upon impact [10]. To intercept particles for

debris detection, the satellite must point the PDD within 5 degrees of the velocity vector.

The PDD can be seen as a grid on the -Z face of the spacecraft in Figure 1.5.

Figure 1.5: ARMADILLO CAD Model

A secondary payload science instrument on-board the satellite is the Fast, Orbital,

TEC, Observables, and Navigation (FOTON) GPS receiver developed by the Radionaviga-

7



tion Laboratory at the University of Texas at Austin. This dual-frequency, software-de�ned

receiver provides radio occultation observations which measure the total electron content

(TEC) of the ionosphere. The GPS satellite transmitting the signal appears to set behind

ARMADILLO, since the GPS satellite is in a much higher orbit than the CubeSat in low

Earth orbit (LEO). During such an event (termed an occultation), the signal travels hori-

zontally through the layers of the ionosphere and neutral atmosphere. As it passes through

these layers, the signal is refracted by the free electrons in the ionosphere. This e�ect can be

measured by the receiver to provide an estimate of the TEC along the path traveled by the

signal, thus capturing the instantaneous state of the ionosphere. As the relative orientation

of occulting GPS satellites and the receiving LEO satellite changes, successive layers of the

atmosphere are scanned. These measurements can be used to monitor the state of the iono-

sphere and improve models of space weather [11]. A diagram of ARMADILLO's concept of

operations is presented in Figure 1.6. The satellite is scheduled for launch in February 2016

on a SpaceX Falcon Heavy as part of the Space Test Program 2 (STP-2).

8



Figure 1.6: ARMADILLO Concept of Operations

1.2 Overview

This thesis is organized in the following fashion:

First, the hardware components that make up the suite of sensors and actuators in

the ADC module are introduced along with the limitations that they place on the system.

The con�guration of components that is used on Bevo-2 and ARMADILLO is presented as

well as models for simulating the output from each component. The following chapter de-

scribes the simulation environment that is used in conjunction with the sensor and actuator

models to assess the performance of the system.

The controllability and observability of the attitude system is then presented, along

with a controller that is used to acquire a view of the Sun for navigation purposes. This is

followed by a description of the navigation �lter that uses sensor measurements to provide an

9



estimate of the attitude states of the spacecraft. The next chapter outlines the algorithms

behind the unconstrained pointing system used to satisfy the pointing requirements of a

given mission objective. These algorithms include the pointing manager, which determines

the desired orientation of the spacecraft, and the pointing controllers, which reorient the

spacecraft into that commanded attitude.

A more sophisticated alternative to the unconstrained pointing system is the con-

strained attitude guidance (CAG) system presented in the following chapter. This system

reorients the satellite while satisfying an arbitrary number of attitude constraints, which

are not taken into account by the unconstrained pointing system. Finally, the reaction

wheels used by the Sun acquisition, pointing, and CAG control laws must have a method of

dissipating momentum, motivating the development of a momentum management system.
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Chapter 2

ADC Module Hardware

The ADC system's capabilities and limitations are driven by the hardware com-

ponents that are available on the satellite. This chapter includes a description of each

component within the ADC module, its function, and the constraints it places on the sys-

tem. Models of each component for simulating its output are provided, which will be used to

simulate and test the system. The physical parameters that are speci�c to the components

chosen for the TSL satellites are also presented here. These are the parameters that will be

used in simulation testing, however, the parameters for any equivalent component can be

substituted into this framework to test an ADC system with a di�erent con�guration.

2.1 Sensors

The sensor suite on-board the TSL satellites is composed of commercial-o�-the-

shelf magnetometers, gyroscopes, and sun sensors, as well as a miniaturized star tracker

that was developed in-house by the TSL. Each of these sensors is rigidly attached to the

frame of the satellite, so the measurements the sensors provide are in the body frame of the

satellite. These measurements can be compared against model-generated estimates of their

true values in the Earth-centered inertial (ECI) frame. The measurements and their inertial

counterparts are consumed by the navigation �lter in order to generate an estimate of the

satellite's current attitude and slew rate (see Section 5.2).
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2.1.1 Magnetometers

Magnetometers measure the strength and direction of the local magnetic �eld. Satel-

lites in LEO are still within the magnetic �eld around Earth, so the �eld that the magne-

tometer experiences is mainly the terrestrial one. Note that the magnetic �eld generated by

the electronics on-board the spacecraft must be accounted for when using these magnetic

�eld measurements.

A true inertial magnetic �eld vector can be generated by using a model of Earth's

magnetic �eld if the position of the satellite is known. The magnetic �eld measurement from

the magnetometer is B̃B = [ B̃x B̃y B̃z]
T
B , representing each magnetic �eld component

in the spacecraft body frame. The notation˜ signi�es a measured quantity and a subscripted

B or I denotes the body or inertial frame, respectively. The magnetometer output can be

modeled by:

B̃B = BB + βmag + ηmag (2.1)

where BB is the true magnetic �eld in the body frame, βmag is the magnetometer

bias, and ηnoise ∼ N(03×1, σmag) represents zero-mean Gaussian noise in the measurements

with a standard deviation of σmag. The magnetometer does not impose any constraints on

the system, as it can sample the local magnetic �eld in any orientation.

TSL-speci�c parameters

The magnetometer used by the TSL satellites is the HMR2300 Smart Digital Magne-

tometer by Honeywell. From the data sheet, the HMR2300 magnetometer has typical o�set

errors and noise values of 0.01%FS, where the full scale (FS) �eld applied was ±2Gauss.
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Thus, βmag =
[

40 40 40
]T
nT and σmag =

[
40 40 40

]T
nT ) [12].

2.1.2 Gyroscopes

A gyroscope measures angular rate about a single axis, so satellites generally use a

suite of 3 gyroscopes oriented along each body axis. In such a con�guration, the gyroscope

measurements form a vector of measured body spin rates, ω̃B = [ ω̃x ω̃y ω̃z]
T
B . The

gyroscope measurements are simulated using:

ω̃B = ωB + βω + ηω (2.2)

where βω is the gyro bias and ηω ∼ N(03×1, σω) represents zero-mean Gaussian

white noise. As shown in Figure 2.1, the gyro bias changes over time as well as every time

the gyroscopes are turned on. The variation in bias within one run can be modeled by:

βω = β−ω + ηβdt (2.3)

where − denotes the prior value, dt is the simulation time step, and ηβ is the

random variation in bias over time. ηβ is modeled by a zero-mean Gaussian distribution

with standard deviation σβ given by the in run bias stability. The initial bias β0 at the time

when the gyroscopes are turned on is a random number sampled from a zero-mean normal

distribution with a standard deviation of σβ0 describing the variation in these initial biases

across di�erent runs.

β(t = 0) = β0 ∼ N(03×1, σβ0) (2.4)
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Figure 2.1: Gyroscope Bias Behavior [2]

TSL-speci�c parameters

The TSL satellites use three ADIS16251 Programmable Low Power Gyroscopes by

Analog Devices. Since the same gyroscope is used on each axis, the parameters in Table 2.1

are identical for each component of the associated vectors. The bias parameters were taken

from the ADIS16251 data sheet. The output noise was experimentally determined by cal-

culating the standard deviation in gyroscope data that was collected from three ADIS16251

units over a period of 25 minutes. The standard deviations from the three units were then

averaged to produce the value tabulated below.

Table 2.1: ADIS16251 Gyroscope Parameters

Parameter Notation Value

In Run Bias Stability σβ 0.0016degsec
Turn-On-to-Turn-On Bias Stability σβ0

0.018degsec
Output Noise σω 0.0555degsec

2.1.3 Sun Sensors

A sun sensor is an instrument that measures the azimuth and elevation angles of

the Sun to generate a relative vector from the sun sensor to the Sun. If the ECI position of

the satellite is known, a true inertial Sun vector can be generated from the positions of the
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Earth and the Sun. The measured Sun vector can then be modeled by:

r̃sun,B =

 cos(ẽl) cos(ãz)

cos(ẽl) sin(ãz)

sin(ẽl)

 (2.5)

where ãz and ẽl are the measured azimuth and elevation, respectively. These mea-

sured values are subject to noise based on how accurate the sensor is:

ẽl = el + ηel (2.6)

ãz = az + ηaz (2.7)

where ηel and ηaz are zero-mean Gaussian noise in the measured angles, and az and

el are the true azimuth and elevation angles computed from the true Sun vector in the body

frame, rsun,B = [ sunX sunY sunZ ]TB .

el = arcsin(sunZB) (2.8)

az = arctan

(
sunYB
sunXB

)
(2.9)

The sun sensor can only generate a Sun vector if the Sun is in the �eld-of-view

(FOV) of the sensor. Thus, the sun sensor places a keep-in attitude constraint on the

satellite by requiring that the satellite be oriented such that the Sun vector is kept within

its FOV. Also note that sun sensors cannot provide a measurement if the satellite is in

eclipse.
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TSL-speci�c parameters

The sun sensor used by the TSL satellites is the SS-411 Two-Axis Digital Sun

Sensor by Sinclair Interplanetary. From the data sheet, the SS-411 sun sensor has an

accuracy of 0.1 degrees. The simulated Sun vector measurements were generated using

ηel = ηaz ∼ N(0, 0.1deg) which results in a more conservative approximation of the total

Sun vector angle error of 0.1414deg. The SS-411 sensors have a FOV of 140◦, so the angle

between the sun sensor boresight and the Sun vector must be less than 70◦ to obtain a Sun

vector measurement [13].

2.1.4 Star Tracker

A star tracker computes relative vectors from the star tracker camera to stars within

the camera's FOV. It accomplishes this by taking an image, identifying points in the image

above a threshold brightness as stars, computing the vectors to these stars, and using a star

catalog to identify the inertial star vectors. The star tracker delivers star vector measure-

ments with arc-minute level accuracy, and it is used for navigation when the satellite is in

eclipse and cannot obtain a Sun vector.

Since the star tracker is light-sensitive, it must avoid looking at bright objects such

as the Sun and the Moon. This places a keep-out attitude constraint on the satellite by

requiring that bright objects be kept out of the FOV of the star tracker. The star tracker

also places a maximum slew rate constraint ωmax on the satellite, as rapid slewing will cause

the star �eld to smear and result in poor attitude estimates. Given that the star tracker

is more accurate than the sun sensor, navigation using a Sun vector when the satellite is

not in eclipse is the more strenuous test case for the navigation �lter. Thus, the sun sensor

model is used for simulation and testing purposes, and a model for simulated star tracker
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measurements was not developed for this thesis.

TSL-speci�c parameters

The star tracker used by the TSL has a FOV of 40◦ and imposes a maximum slew

rate of 2deg/s on the satellite. For more details on the star tracker developed in the TSL,

please refer to [14].

2.2 Actuators

The actuator suite on-board the TSL satellites is composed of commercial-o�-the-

shelf reaction wheels and magnetorquers which are used to generate torques on the space-

craft. The controllers in the ADC system compute the torques necessary to reorient the

satellite as desired and command the actuators accordingly.

2.2.1 Reaction Wheels

Reaction wheels are spinning cylinders with variable, commandable spin rates. Since

the total angular momentum of the system must be conserved, changing the momentum in

a reaction wheel results in an equal and opposite momentum change in the satellite.

In the absence of external torques, conservation of total angular momentum can be

expressed as:

htot = hSC + hwheel = Jω+Jwheelωwheel = constant (2.10)

where hSC and hwheelare the angular momentum of the spacecraft and reaction

wheel assembly, respectively. J denotes the moment of inertia, and ω is spin rate. Since the

derivative of angular momentum is torque,
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ḣtot = 0 =
∆hSC

∆t
+

∆hwheel

∆t
= uSC − uwheel (2.11)

where ∆t is the di�erentiation time interval, uSC is the torque on the spacecraft,

and uwheel is equal and opposite to the torques on the wheel. The negative sign convention

is used so that rearranging this equation gives:

uSC = uwheel (2.12)

and uwheel represents the torques acting on the satellite due to the reaction wheels.

A more complete discussion of the torques acting on the spacecraft is presented in Section

3.1.2.

The reaction wheels place several physical constraints on the spacecraft. The wheels

have a maximum spin rate, which limits the amount of momentum they can store to hmax.

Commanding additional torque will fail to make the wheels increase their speed beyond this

point. This is known as wheel saturation and results in loss of controllability.

There is also a maximum torque that each of the reaction wheels can provide, umax,

which limits the amount of control torque available to the ADC system. The torques acting

on the satellite from the reaction wheels can be modeled as:

uwheel =sat(ucommanded + ηwheel, umax) + ujitter (2.13)

where the saturation function is de�ned as a component-wise saturation of each

element in the n-dimensional vector u by the limit umax.
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sat(u, umax ) =


sat(u1, umax)
sat(u2, umax)

...
sat(un, umax)

 (2.14)

where

sat(ui , umax ) =


−umax ui < −umax
ui |ui| < umax

umax ui > umax

(2.15)

where the subscript i denotes the ith component of the vector. Note that there is

an implicit assumption that each reaction wheel on the satellite is identical and thus limited

by the same maximum torque.

The jitter torques, ujitter, are the result of static and dynamic imbalances in the

reaction wheels. The static imbalance S of a wheel is due to an uneven distribution of

mass about its spin axis, which can be modeled as an equivalent point mass on the edge

of a perfect cyclinder (see Figure 2.2a). The static imbalance can then be calculated by

multiplying this point mass by its distance from the center of mass of the wheel, giving it

dimensions of [mass] · [length]. As the wheel spins, the mass imbalance exerts a periodic

force on the spacecraft. For a reaction wheel oriented along the X body axis, this force can

be modeled as:

FS =

 0
Sω2

wheel cos(ωwheelt+ φS)
Sω2

wheel sin(ωwheelt+ φS)

 (2.16)

Similar expressions can be derived for reaction wheels that are oriented along the

other two axes. The phase angle φS can be modeled as a uniform random distribution from

[0, 2π], since the mass imbalance could be at any angular position about the spin axis at the
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Figure 2.2: Reaction Wheel Mass Imbalances

(a) Static Imbalance (b) Dynamic Imbalance

initial time. The resulting torque uS,i on the satellite due to the static imbalance of the ith

wheel is given by:

uS,i = rwheel,i × FS,i (2.17)

where rwheel is the position of the wheel relative to the spacecraft center of mass.

The dynamic imbalanceD of a wheel is due to a misalignment of the inertia tensor of

the wheel with the spin axis. It can be modeled as two point masses that have some angular

o�set ∆θ on the edge of a perfect cylinder, where each point mass is on a balancing plane

normal to the spin axis. The dynamic imbalance can then be calculated as the magnitude

of the resulting products of inertia, giving it dimensions of [mass] · [length]2. The products

of inertia of the spinning wheel generate a restoring torque that attempts to realign the

nearest principal axis Ip with the spin axis (see Figure 2.2b). The torque on the satellite

due to the dynamic imbalance of a reaction wheel along the X body axis is given by:
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uD =

 0
Dω2

wheel sin(ωwheelt+ φD)
−Dω2

wheel cos(ωwheelt+ φD)

 (2.18)

Similar expressions can be derived for reaction wheels that are oriented along the

other two axes. The phase angle φD can once again be modeled as a uniform random

distribution from [0, 2π]. The wheel jitter torques acting on the satellite are given by the

summation:

ujitter =

3∑
i=1

(uS,i + uD,i) (2.19)

TSL-speci�c parameters

Both Bevo-2 and ARMADILLO use a reaction wheel assembly composed of three

orthogonal RW-0.01-4 Picosatellite Reaction Wheels by Sinclair Interplanetary. Each wheel

provides a maximum torque of 1mNm and can store up to a maximum of 10mNm · s of

angular momentum. The moment of inertia of each wheel is 2.80e − 5kg ·m2, so each one

has a maximum spin rate of 3410rpm.

Prior to its delivery to the TSL, the mass imbalance of each reaction wheel unit was

measured using two balancing planes. Using the recorded mass imbalances, the static and

dynamic imbalances for three of the RW-0.01-4 reaction wheel �ight units were calculated

using the method described above.

Table 2.2: Reaction Wheel Imbalances

Wheel 1 Wheel 2 Wheel 3

Static Imbalance (kg ·m) 9.675e-08 8.675e-08 7.025e-08
Dynamic Imbalance (kg ·m2) 3.7141e-10 4.7936e-10 3.1356e-10
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From these values, the static and dynamic imbalances in any given Sinclair wheel

used on a TSL satellite are expected to be less than 1e − 7 kg · m and 5e − 10 kg · m2,

respectively. These expected bounds are the static and dynamic imbalance values used to

simulate the system.

2.2.2 Magnetorquers

Magnetorquers, or torque rods, are essentially electromagnetic coils. Running cur-

rent through a rod creates a magnetic dipole in the direction along which the rod is oriented.

A suite of magnetorquers generates a torque on the spacecraft according to:

umag = sat(µmag ×BB, µmax) (2.20)

where µmag is the commanded magnetic dipole from the torque rods and µmax

is the maximum dipole they can generate. As seen in the equation above, the amount of

control torque they can provide to the ADC system is limited by this maximum dipole, as

well as the strength and direction of the local magnetic �eld. Since these devices are simple

and provide much less torque than the reaction wheels, the bias and noise in the torque rods

are negligible. Magnetorquers are sometimes limited to being fully on or o�, making them

bang-bang devices that limit the commandable dipole to the following values:

µmag,i =


−µmax
0

+µmax

(2.21)

The magnetic dipole can be set to −µmax by switching the direction of the current

through the rods.
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TSL-speci�c parameters

The magnetorquers in the TSL ADC module are the ADC916 CubeSat Magne-

torquer Rods from SSBV Space & Ground Systems. These torque rods have a maximum

magnetic dipole of µmax = 0.2Am2, and they can only be full on positive, full on negative,

or o�.

2.3 Component Summary

The combination of components that is speci�c to the ADC modules on Bevo-2 and

ARMADILLO is presented in the Table 2.3. The constraints that each component imposes

on the ADC system are also stated, with asterisks * demarcating the attitude constraints.

The orientations of the components are given in the body frame of the satellites, where the

body axes are de�ned in Figures 1.5 and 2.3b for ARMADILLO and Bevo-2, respectively.

Table 2.3: ADC Components

Component Bevo-2 ARMADILLO Constraint

Magnetometer 1 1 N/A
Gyroscope 3 (each axis) 3 (each axis) N/A
Sun Sensor 2 (+X, +Y) 2 (+Y, -Y) *Keep Sun within 140◦ FOV

Star Tracker 1 (-Z) 1 (-X)
Maximum 2deg/s slew rate

*Keep bright objects out of 40◦ FOV

Reaction Wheel 3 (each axis) 3 (each axis)
Maximum 1mNm of torque

Maximum 10mNm · s momentum
Magnetorquer 2 (+X, +Y) 3 (each axis) Maximum 0.2Am2 magnetic dipole

The component layout for the Bevo-2 ADC module is presented in Figure 2.3a.

ARMADILLO has a very similar layout with the di�erences tabulated in Table 2.3.
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Figure 2.3: Bevo-2 CAD Models

(a) ADC Component Layout (b) Body Frame Axes
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Chapter 3

Simulation Environment

This chapter describes the MATLAB simulation environment that was used to eval-

uate the on-orbit behavior and performance of the ADC system. The simulation is heavily

based on the one developed by Kjellberg [3] and has the architecture that he developed

(refer to Figure 3.1).

As outlined in Figure 3.1, the simulator propagates the state of the spacecraft, gen-

erates true inertial vectors for the sensor models presented in Section 2.1, and uses those

models to provide simulated sensor output to the �ight software. The algorithms which

make up the �ight software are presented in Chapters 5 through 8 and are used to generate

the control inputs to the actuator devices. The simulator then uses the actuator models

in Section 2.2 to compute the resulting control torques on the spacecraft as well as envi-

ronmental models for external disturbance torques. These are fed back into the simulation

loop as the states are propagated forward in time. The nominal physical parameters of the

spacecraft and initial conditions that were used to simulate the ADC system are based on

those of the motivating spacecraft missions, ARMADILLO and Bevo-2. The resulting sim-

ulation is a robust test environment for the ADC system that includes actuator and sensor

dynamics, noise, and biases; environmental perturbations; and realistic physical parameters.

3.1 State Propagation

The spacecraft state is represented by the following vector,
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Figure 3.1: Block Diagram of the Simulation Environment [3]

x = [ r v q ω hwheel ]T (3.1)

where r and v are the position and velocity of the spacecraft in the ECI frame,

q is the quaternion attitude of the spacecraft, ω is the spacecraft slew rate, and hwheel is

the total angular momentum in the assembly of reaction wheels. The spacecraft states are

propagated forward in time by numerically integrating the di�erential equations for each

state over each simulation time step:

ẋ =
d

dt
[ r v q ω hwheel ]T (3.2)
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Simulation Parameters

The simulations performed for this thesis used a time step of 0.25s. Given that the

maximum slew rate of the spacecraft is limited to 2deg/s, the largest change in attitude

over 0.25s would be approximately half a degree. Since the attitude state has the fastest

dynamics, this time step was deemed su�cient for capturing the state of the spacecraft with

reasonable accuracy.

3.1.1 Orbit Propagation

The equations of motion for the spacecraft position and velocity are governed by

simple two-body orbital mechanics:

ṙ = v (3.3)

v̇ = −µEarth
‖r‖3

r +
Fdrag

mSC
(3.4)

where µEarth is the gravitational parameter of Earth, Fdrag is the drag force acting

on the satellite (refer to Section 3.2.1), and mSC is the mass of the spacecraft (refer to

Section 3.3). Higher order orbital perturbations such as the gravitational e�ects of other

celestial bodies and the oblateness of Earth are neglected here, since the primary objective of

the simulation software is to evaluate attitude determination and control capabilities. Thus,

characterizing the attitude of the spacecraft in the space environment is more important

than precisely predicting its orbit.

27



Simulation Parameters

A 400 km, circular orbit with an inclination of 51.65 degrees was used to simulate

the system. These nominal orbit parameters were based on the ISS orbit, since CubeSats

are often deployed from the ISS.

3.1.2 Attitude Dynamics

The attitude of the spacecraft is represented using quaternions, since they consume

less memory than rotation matrices and avoid issues with singularities. For any orientation,

there is a corresponding rotation between the base reference frame to which the orientation

is relative, and the body frame attached to and rotating with the object. In this case, the

orientation of the spacecraft is de�ned with respect to the ECI frame. The rotation can

be broken down into a rotation of angle θr about the unit eigenaxis, er. The quaternion is

de�ned in terms of the eigenaxis and angle of rotation as follows:

q =

[
er · sin(θr/2)

cos(θr/2)

]
=

[
qv

q4

]
(3.5)

where qv and q4 are the vector and scalar part of the quaternion, respectively.

The kinematic equations for rigid body dynamics as expressed using quaternions

are given below:

q̇ =
1

2
Ξ(q)ω (3.6)

ω̇ = J−1(−ω×(Jω + hwheel) + u) (3.7)
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ḣwheel = −uwheel (3.8)

where u represents the sum of the torques acting on the satellite.

u = umag + uwheel + uext (3.9)

The external disturbance torques, uext, are computed according to the environ-

mental models described in Section 3.2. The operator Ξ used in Equation 3.6 is de�ned

as:

Ξ(q) =

[
q4I3×3 + q×

−qT

]
=


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (3.10)

The operator

[A×] =

 0 −A3 A2

A3 0 −A1

−A2 A1 0

 (3.11)

is the standard skew-symmetric matrix for vector cross product, and In×n is the

n × n identity matrix. The quaternion must satisfy the unity norm constraint in order to

preserve length in a rotation.

‖q‖ = 1 (3.12)

The multiplication of two quaternions is de�ned as:

q⊗ p =
[

Ξ(q) q
]

[p] (3.13)

29



Any quaternion can be converted into a direction cosine matrix (DCM), which is a

rotation matrix from the body frame to the ECI frame. Multiplying a vector in the inertial

frame by the direction cosine matrix rotates it into the body frame, as shown below.

xB = I
BT · xI (3.14)

The subscripts I and B represent the vector x being in the inertial and body

frames, respectively, and I
BT is the transformation matrix from inertial to body frame. The

transformation matrix can be computed from the quaternion as follows:

I
BT = DCM(q) =

 1− 2(q2
2 + q2

3) 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) 1− 2(q2

1 + q2
3) 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 1− 2(q2
1 + q2

2)

 (3.15)

The quaternion can also be converted into Euler angles, which are the angles of

rotation in a series of three single-axis rotations about each body axis. This series of body

rotations produces the same rotation matrix as the DCM, since both are representations

of the same orientation. The rotation matrix can be computed from the Euler angles by

multiplying the rotation matrices for a rotation about the X, Y, and Z body axes together.

This gives the following expression relating the DCM to Euler angles:

I
BT = R1(φ)R2(θ)R3(ψ) = DCM(q)

=

 cosψ cosθ cosθ sinψ − sinθ
cosψ sinφ sinθ − cosφ sinψ cosφ cosψ + sinφ sinψ sinθ cosθ sinφ
sinφ sinψ + cosφ cosψ sinθ cosφ sinψ sinθ − cosψ sinφ cosφ cosθ

 (3.16)

θ = arcsin(−DCM1,3) (3.17)
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ψ = arctan

(
DCM1,2

DCM1,1

)
(3.18)

φ = arctan

(
DCM2,3

DCM3,3

)
(3.19)

where Ri(θ) denotes the rotation matrix for a rotation of angle θ about the ith

axis, and φ, θ, and ψ are the Euler angles about the X, Y, and Z body axes, respectively.

Note that quadrant checks must be performed in order to unambiguously solve for the Euler

angles. The angles ψ and φ are easily resolved by using the four-quadrant inverse tangent

for these computations. For θ, a quadrant check can be manually performed by storing the

previous value of θ for comparison.

3.2 Environmental Models

The perturbations acting on the satellite include atmospheric drag, solar radiation

pressure, residual magnetic dipole, and gravity gradient torques. Models for each of these

external environmental e�ects are presented in this section.

3.2.1 Atmospheric Drag

Satellites in LEO experience drag from traveling through the Earth's atmosphere.

The drag force acting on the satellite in the ECI frame can be calculated according to:

Fdrag =− 1

2
ρ ‖vrel‖CDAproj,V vrel (3.20)

where ρ is the density of the atmosphere at the altitude at which the satellite is

traveling, CD is the satellite's coe�cient of drag, and Aproj,V is the projected area of the
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satellite into the velocity vector. The vector vrel is the instantaneous velocity of the satellite

relative to the rotating atmosphere attached to a spinning Earth in the ECI frame.

vrel = v +

 ωEry
−ωErx

0

 (3.21)

where ωE is Earth's rotation rate, and rx and ry are the X and Y components of

the satellite's ECI position, respectively. The drag torque can be calculated by summing

over each surface of the satellite:

udrag =

Nfaces∑
i=1

ri × Fdrag,i (3.22)

where ri is the position of the ith face of the satellite relative to the center of mass,

and Fdrag,i is the drag force acting on that face in the body frame. Fdrag,i is calculated

according to Equation 3.20 using the relative velocity vector in the body frame and the

projected area of the ith face. vrel can be rotated into the body frame by using Equation

3.14.

Simulation Parameters

To represent the worst-case drag scenario, the atmospheric density was calculated

using the Mass Spectrometer and Incoherent Scatter Radar (MSIS) atmospheric model

during maximum solar activity at the nominal orbit altitude of 400 km. This gives a density

of ρ = 7.55e− 12kg/m3. A conservative estimate for the coe�cient of drag of a cube is 2.5

[15]. The position and area of each face is determined by the 3U CubeSat geometry of the

spacecraft.
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3.2.2 Solar Radiation Pressure

Incident radiation from the Sun is absorbed and/or re�ected by the satellite, trans-

ferring momentum from the incoming photons to the surface they hit. The resulting force

in the ECI frame due to this solar radiation pressure (SRP) is calculated according to:

FSRP = −PSRCRAproj,S ‖rsun‖ (3.23)

The solar radiation pressure PSR is a function of the satellite's distance from the

Sun. CR is the satellite's radiation coe�cient which captures the optical properties of the

satellite, and Aproj,S is the projected area of the satellite into the Sun vector. The SRP

torque can be calculated by summing over the SRP forces on each face of the satellite:

uSRP =

Nfaces∑
i=1

ri × FSRP,i (3.24)

where ri is the position of the ith face of the satellite relative to the center of mass,

and FSRP,i is the SRP force acting on that face in the body frame. FSRP,i is calculated

according to Equation 3.23 using the relative Sun vector in the body frame, rsun,B, and the

projected area of the ith face. The solar radiation pressure forces and torques are zero when

the satellite is in eclipse.

The SPICE toolkit developed by NASA's Navigation and Ancillary Information

Facility (NAIF) is used to compute the relative position of the Sun from the spacecraft in

the ECI frame, rsun [16]. The true inertial vector given by SPICE is rotated into the body

frame by using Equation 3.14. The body-frame Sun vector is also used by the sun sensor

models in Section 2.1.3.
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Simulation Parameters

Earth is at a distance of 1 Astronomical Unit (AU) from the Sun, where the solar

radiation pressure is PSR = 4.59e − 6Pa. A conservative radiation coe�cient based on

typical absorptivity and re�ectivity values for the satellite is CR = 1.5 [17]. The position

and area of each face is determined by the 3U CubeSat geometry of the spacecraft.

3.2.3 Residual Magnetic Dipole

The spacecraft itself has a small magnetic dipole due to current running through

the electronics on-board. Additionally, magnetic materials in the construction of the space-

craft often contribute a small dipole bias. This residual magnetic dipole interacts with the

magnetic �eld of the Earth according to:

um = µSC ×BB (3.25)

where µSC is the residual magnetic dipole of the spacecraft, and um is the resulting

magnetic dipole torque on the satellite.

The International Geomagnetic Reference Field 11 (IGRF-11) mathematical model

of the Earth's magnetic �eld and its secular variation is used to compute the local magnetic

�eld vector in the ECI frame at the position of the satellite [18]. The true inertial vector

given by the IGRF-11 model is rotated into the body frame by using Equation 3.14. The

body-frame magnetic �eld vector is also used in the magnetorquer and magnetometer models

in Sections 2.1.1 and 2.2.2.
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Figure 3.2: RACE Testing inside a Helmholtz Cage

Simulation Parameters

Measurements of the residual magnetic dipole of the RACE satellite were taken

inside a Helmholtz cage which minimized the e�ects of Earth's magnetic �eld (see Figure

3.2). The maximum dipole measured had a magnitude of 0.025Am2 [19]. The test procedure

did not measure the direction of this dipole vector, so an arbitrary unit vector scaling with

the dimensions of the spacecraft was assigned.

µSC = 0.025Am2 ·
[

0.1 0.1 0.34
]T∥∥[ 0.1 0.1 0.34
]∥∥ (3.26)

Note that only the relative orientation of the dipole vector to the magnetic �eld

matters for torque calculations. Since this relative orientation is constantly changing with

the spacecraft's attitude and position, the direction assigned to the residual magnetic dipole

vector is not important for assessing the ability of the ADC system to handle this source of

disturbance.

Since ARMADILLO and Bevo-2 are structurally similar to RACE, the residual
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magnetic dipole of RACE was taken as a reasonable approximation of the expected dipole.

Thus for simulation purposes, RACE's residual magnetic dipole was used with a factor of

safety of 2.

3.2.4 Gravity Gradient

The di�erential gravity force acting over the body of the spacecraft results in a

gravity gradient torque uGG about its center of mass:

uGG = 3
µEarth

‖r‖3
rB,u

XJrB,u (3.27)

where rB,u is the unit vector position of the satellite in the body frame.

rB,u =
rB,u

‖rB,u‖
(3.28)

3.3 Satellite Parameters

The physical spacecraft parameters used in the simulations are based on AR-

MADILLO and Bevo-2. These 3U CubeSats have the following dimensions and mass:

Table 3.1: Physical Parameters

Parameter Value

Width 10cm
Length 10cm
Height 34cm
Mass 4kg

RACE's center of mass and moments of inertia were measured using a Space Elec-

tronics KGR-500 spin table. These measurements are tabulated below.

36



Table 3.2: RACE Mass Properties

(a) Center of Mass O�set
from Geometric Center

CM O�set (mm)

X 1.46
Y −2.68
Z 3.39

(b) Moments of Inertia

Moment of Inertia Value (kg ·m2)

Ixx 0.041094
Iyy 0.040940
Izz 0.008128

Given that RACE's center of mass is within 4 mm of its geometric center in each

axis, the center of mass for the simulated spacecraft is conservatively set at 5mm from the

geometric center in each axis.

rCM =

 5
5
5

mm (3.29)

To account for possible products of inertia, the simulated moment of inertia tensor

is based on RACE, but has 5 degrees of misalignment about each axis.

J = R1(5deg)R2(5deg)R3(5deg)JRACE (3.30)

To account for uncertainty in the moment of inertia, the estimated moment of

inertia has an error of 25% and assumes that the principal axes are aligned with the body

axes of the spacecraft.

Ĵ = 0.75JRACE (3.31)

The notationˆ denotes an estimated quantity.
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Chapter 4

Controllability and Observability

This chapter presents the results of the nonlinear controllability and observability

analysis performed for the attitude system of the spacecraft. The observability analysis

demonstrates that the slew rates of the spacecraft are always observable with the presence

of gyroscopes on each axis, whereas attitude observability requires at least two linearly

independent sensor measurement vectors.

The controllability analysis demonstrates that the cascade nature of the system

dynamics can be exploited to perform nonlinear control on the system. Equation 3.7 shows

that the slew rate is directly dependent on the torque, u, and is thus controllable. The

quaternion is dependent upon the slew rate but not the torque, and the slew rate is not

dependent on the quaternion. Therefore, the slew rate can be used as the e�ective control

input for quaternion control. This is the control approach that is taken for the nonlinear

pointing controller described in Section 6.2.2. The controllability and observability of the

slew rates and attitude were analyzed independently by dividing the states of the system

into two separate subspaces.

4.1 Slew Rate

The output for the state subspace containing the slew rates is a vector of measured

spin rates from the gyroscopes, ω̃. The gyroscope measurements are modeled using Equation

2.2, which is restated here for convenience:
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ω̃B = ωB + βω + ηω

Farrenkopf's gyroscope model is used to model the bias drift that was described in

Section 2.1.2, since this is the model that the navigation �lter will use to estimate the slew

rates (refer to Chapter 5).

β̇ω =
1

τ
βω + ηβ (4.1)

where τ is the bias time correlation. As τ → ∞, the bias becomes a constant.

In the equations above, ω is the true (unknown) slew rate. The estimate of the slew rate

ω̂ is the expected value of the true slew rate if the estimator is unbiased. Similarly, the

estimate of the gyro bias β̂ω is the expected value of the true gyro bias. Also recall that

ηω is zero-mean Gaussian noise. Using these relations and rearranging the equation above

gives the following expression for ω̂:

ω̂ = E[ω] = E[ω̃]− E[βω]− E[ηw] = ω̃ − β̂ω (4.2)

Thus, the states of interest are the slew rate and gyroscope bias:

x̂ =

[
ω̂

β̂ω

]
(4.3)

ẋ = f(x) + g(x)u =

[
J−1(−ω̂×Jω̂)

− 1
τ β̂ω

]
+

[
J−1

03×1

]
u (4.4)

The output can be expressed in terms of the states:
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y = h(x) = ω̃ = ω̂ + β̂ω (4.5)

The observability and controllability of a nonlinear system can be determined by

computing its Lie brackets and derivatives. The Lie bracket is de�ned as:

[f ,g] =
δg

δx
f − δf

δx
g (4.6)

Higher order Lie brackets can be computed according to:

(ad1
f ,g) = [f ,g]

(ad2
f ,g) = [f , [f ,g]]

...

(adk
f ,g) = [f , (adk−1

f ,g)] (4.7)

Lie derivatives are de�ned as:

Lfh =
δh

δx
· f (4.8)

where by de�nition,

L0
f (h) = h (4.9)

The controllability matrix is composed of Lie brackets as follows:
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C =
[
g1, ...gn, [gi,gj], ..., [adk

gi,gj], ..., [f ,gi], ...[adk
f ,gi], ...

]
(4.10)

where gi denotes the ith column of the function g(x). For this system, the function

g(x) is composed of the column vectors g1,g2,g3, giving the following controllability matrix:

C =
[
g1,g2,g3, [ad1

f ,g1], [ad1
f ,g1], [ad1

f ,g1]
]

(4.11)

Computing the controllability matrix by calculating the Lie brackets using the func-

tions f(x) and g(x) from Equation 4.4 results in a matrix that always has a rank of 3. For

example, performing this calculation for the CubeSat moment of inertia given in Section 3.3

gives the following controllability matrix:

C =
24.2 −1.93 2.3 10.2ω2 − 0.93ω3 2.3ω1 − 12.8ω2 − 19.6ω3 1.9ω1 − 96.2ω2 − 2.3ω3
2.1 24.3 −1.9 1.94ω2 − 12.6ω1 + 19.7ω3 11ω1 − 1.6ω3 97ω1 + 2.1ω2 − 2.76ω3

−10.7 10.7 122 10.7ω3 − 7.31ω2 − 25.5ω1 5.4ω1 − 14.3ω2 + 10.7ω3 46.9ω1 + 59.36ω2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (4.12)

Thus, the slew rates are controllable and the gyroscope biases are not. Since the

biases only need to be estimated, not controlled, this is perfectly acceptable.

Similarly, the observability matrix O is the gradient of a matrix composed of Lie

derivatives:
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O =



dL0
f (h1)
...

dL0
f (hp)
...

dLn−1
f (h1)
...

dLn−1
f (hp)


(4.13)

for a system that has p output functions [20]. For this system, there is only one

output function, so the observability matrix is:

O =

[
dL0

f (h) = dh

dL1
f (h)

]
(4.14)

Computing the observability matrix by calculating the Lie derivatives using the

output function de�ned in Equation 4.5 results in a matrix that is always full rank. For

example, the observability matrix for the simulated CubeSat case is:

O =
1.0 0 0 1.0 0 0
0 1.0 0 0 1.0 0
0 0 1.0 0 0 1.0

−0.087ω2 − 0.017ω3 0.13ω2 − 0.087ω2 + 0.79ω3 0.79ω2 − 0.017ω1 + 0.031ω3 −0.001 0 0
0.18ω1 − 0.088ω2 − 0.8ω3 −0.0872ω1 − 0.0157ω3 0.037ω3 − 0.016ω2 − 0.8ω1 0 −0.001 0
0.88ω1 + 0.02ω2 − 0.4ω3 0.02ω1 + 0.8ω2 − 0.47ω3 −0.47ω2 − 0.4ω1 0 0 −0.001


(4.15)

Thus, the slew rate and gyroscope bias are always observable.

4.2 Quaternion

In the second subspace, the quaternion attitude is the state that needs to be esti-

mated and controlled. Using the estimate of the slew rate as the e�ective control input to

this subspace, the state vector and di�erential equations are as follows:
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x = [q̂] (4.16)

ẋ = f(x) + g(x)ueff = 04×1 +

[
1

2
Ξ(q̂)

]
ω̂ (4.17)

The outputs for the subspace containing the quaternion state are the measurements

from the magnetometers, sun sensors, and star tracker on-board the spacecraft. Each of

these sensors produces a measurement in the body frame of the spacecraft. These should

match the model-generated inertial vectors rotated into the body frame of the spacecraft. If

there are two measurements available from the sensor suite, the output expressed in terms

of the states is:

y = h(x) =

[
m̃1,B

m̃2,B

]
=

[
DCM(q̂) ·m1,I

DCM(q̂) ·m2,I

]
(4.18)

where mi,I represents the true inertial vector that corresponds with the body-frame

measurement m̃i,B of the ith sensor.

The controllability matrix is given by:

C = [g1,g2,g3] =
1

2


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 =
1

2
Ξ(q) (4.19)

which is full rank for all unity-norm quaternions. Thus, the quaternion is always

controllable. The observability matrix is given by:

O = dh =
4 a1 q1 + 2 a2 q2 + 2 a3 q3 2a3 q1 − 2 a3 q4 2 a3 q1 + 2 a2 q4 4 a1 q4 + 2 a2 q3 − 2 a3 q2

2 a1 q2 + 2 a3 q4 2 a1 q1 + 4 a2 q2 + 2 a3 q3 2 a3 q2 − 2 a1 q4 2 a3 q1 − 2 a1 q3 + 4 a2 q4
2 a1 q3 − 2 a2 q4 2 a1 q4 + 2 a2 q3 2 a1 q1 + 2 a2 q2 + 4 a3 q3 2 a1 q2 − 2 a2 q1 + 4 a3 q4

4 b1 q1 + 2 b2 q2 + 2 b3 q3 2b3 q1 − 2 b3 q4 2 b3 q1 + 2 b2 q4 4 b1 q4 + 2 b2 q3 − 2 b3 q2
2 b1 q2 + 2 b3 q4 2 b1 q1 + 4 b2 q2 + 2 b3 q3 2 b q2 − 2 b1 q4 2 b3 q1 − 2 b1 q3 + 4 b2 q4
2 b1 q3 − 2 b2 q4 2 b1 q4 + 2 b2 q3 2 b1 q1 + 2 b2 q2 + 4 b3 q3 2 b1 q2 − 2 b2 q1 + 4 b3 q4


(4.20)
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To avoid an overabundance of subscripts, the inertial measurements vectors m1,I

and m2,I are represented by a =
[
a1 a2 a3

]T
and b =

[
b1 b2 b3

]T
in the matrix

above. This matrix is full rank if the measurement vectors are linearly independent, so the

quaternion is observable. However, if there is only one linearly independent measurement

vector available, the output is reduced to:

y = h(x) = m̃ = DCM(q̂) ·mI (4.21)

The observability matrix in this case is:

O =

[
dh

dL1
f (h)

]
=


4 a1 q1 + 2 a2 q2 + 2 a3 q3 2a3 q1 − 2 a3 q4 2 a3 q1 + 2 a2 q4 4 a1 q4 + 2 a2 q3 − 2 a3 q2

2 a1 q2 + 2 a3 q4 2 a1 q1 + 4 a2 q2 + 2 a3 q3 2 a3 q2 − 2 a1 q4 2 a3 q1 − 2 a1 q3 + 4 a2 q4
2 a1 q3 − 2 a2 q4 2 a1 q4 + 2 a2 q3 2 a1 q1 + 2 a2 q2 + 4 a3 q3 2 a1 q2 − 2 a2 q1 + 4 a3 q4

0 0 0 0
0 0 0 0
0 0 0 0


(4.22)

This matrix is only of rank 3, and thus the quaternion attitude is unobservable if

there is only one sensor measurement available or if all of the available measurement vectors

align. The former case is handled by the Sun acquisition controller introduced in the next

section. The latter case occurs if the satellite is not using a star tracker and the Sun vector

is aligned with the local magnetic �eld. In this scenario, the only way of reacquiring attitude

observability is to change the relative orientation of the Sun vector and the local magnetic

�eld by changing the position of the spacecraft. The small satellite using this ADC system

most likely does not have a propulsion system or would consider it much too costly to expend

fuel on recovering attitude observability. Thus, the satellite will simply need to drift through

this period of unobservability until its orbit su�ciently alters the relative orientation of the

Sun and magnetic �eld vectors.
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4.3 Sun Acquisition Controller

When the satellite is not using a star tracker and the Sun is out of the �eld-of-view

of the sun sensors, only measurements from the magnetometer will be available. However,

at least two linearly independent sensor measurements are required in order to estimate the

attitude of the spacecraft according to the observability analysis above.

In order to avoid this scenario, a controller was developed to acquire the Sun vector

by rotating the spacecraft until the Sun is within the FOV of a sun sensor. Since the slew rate

is always observable, this is a slew rate controller that does not require an attitude estimate.

The controller uses a simple proportional control law with nonlinearity cancellation for

the known gyroscopic torques in the slew rate dynamics. The resulting control torque is

saturated to meet the maximum torque constraint from the reaction wheels:

uwheel = sat(−cJω̂E + ω̂×E (Jω̂E + hwheel), umax) (4.23)

where sat is the saturation function de�ned in Equations 2.14 and 2.15, umax is the

maximum torque from the reaction wheels, c is the controller gain, and ω̂E is the slew rate

error given by:

ω̂E = ω̂ − ωdesired (4.24)

where ωdesired is the desired slew rate of the spacecraft. The scanning algorithm

will initially null the rates of the spacecraft by setting ωdesired = 03×1. The controller

will then spin the spacecraft up to some constant speed ωscan about the Z axis to begin

scanning for the Sun by setting ωdesired =
[

0 0 ωscan
]T
. If the rotation about the Z
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axis is completed without acquiring the Sun within the FOV of a sun sensor, the controller

will then set ωdesired =
[
ωscan 0 0

]T
to begin rotating about the X axis at the same

constant scanning rate. As soon as the Sun is acquired, the controller despins the satellite

again to hold that orientation.

Since ARMADILLO and Bevo-2 have sun sensors on the X-Y plane of the spacecraft

with a FOV of 140◦, this set of rotations is guaranteed to put the Sun within view of a sun

sensor if the satellite is not in eclipse. For any arbitrary satellite con�guration that includes

a sun sensor with a FOV > 90◦, selecting the two body axes that are orthogonal to the bore-

sight vector of the sensor for this series of rotations will also guarantee Sun acquisition. Note

that care should be taken to select a su�ciently low ωscan to ensure that the reaction wheels

can despin the satellite before the Sun passes back out of the FOV of the sun sensors. For

the ARMADILLO and Bevo-2 satellites, ωscan is the maximum slew rate of 2deg/s, which

allows near-instantaneous despinning.

Using the environment described in Chapter 3, the Sun acquisition controller was

simulated using the con�guration of sun sensors on-board Bevo-2. The initial orientation of

the satellite is the worst-case initial orientation for the scanning algorithm, in which the Sun

vector is initially aligned with the Z axis of the spacecraft. Figure 4.1a shows the slew rates

of the spacecraft as it rotates about the Z and X body axes sequentially while searching

for the Sun. Figure 4.1b is a plot of the angle between each sun sensor's boresight vector

and the vector from the satellite to the Sun during this scanning procedure. Given the 140◦

�eld-of-view, the sun sensors are able to see the Sun when the angle between those vectors

is less than 70◦. This threshold is delineated in red on the angle plots. The �X� marks the

point at which the Sun is acquired within the FOV of a sensor. As illustrated in this plot,

the worst-case Sun acquisition time is less than �ve minutes.

46



Figure 4.1: Sun Acquisition Simulation Results

(a) Slew Rates

(b) Sun Sensor Angle to Sun Vector
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Chapter 5

Navigation Filter

This chapter discusses the multiplicative extended Kalman �lter (MEKF) that is

used to provide estimates of the current state of the spacecraft. The �lter is initialized by

using Davenport's q-method to provide an initial estimate of the quaternion attitude. The

navigation �lter then updates the previously computed (a priori) estimate by consuming

measurements from the suite of sensors on-board the spacecraft. When the system loses

observability of the attitude state, the attitude is propagated by integrating the slew rate

measurements from the gyroscopes.

5.1 A Priori Estimate

The states estimated by the navigation �lter are the quaternion and gyroscope bias.

The slew rate is not directly estimated, since it can be calculated using the estimate of the

gyroscope bias with Equation 4.2. After receiving the �rst set of measurements from the

sensors, an a priori estimate of the states must be calculated to initialize the �lter. The a

priori estimate of the gyroscope bias is 03×1, but Davenport's q-method is used to obtain

an initial estimate of the quaternion attitude. The optimal quaternion solution minimizes

the performance index,

J(q) = λ0 − qTKq (5.1)
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where λ0 is the sum of the weights assigned to each of the Nmeas measurements,

wi.

λ0 =

Nmeas∑
i=1

wi

K is the Davenport matrix, de�ned as:

K =

[
S− µI3×3 z

zT µ

]
(5.2)

z =

Nmeas∑
i=1

wim̃B,i ×mI,i (5.3)

S = B + BT (5.4)

µ = trace(B) (5.5)

B =

Nmeas∑
i=1

wim̃B,im
T
I,i (5.6)

W =


w1I3×3 [0]

w2I3×3

. . .

[0] wNmeasI3×3

 = R−1 (5.7)

The matrix R is the covariance for the measurement error, which is determined by

the accuracy of the sensors. To give less weight to measurements with greater uncertainty,

the measurement weights are the inverse of the covariance of the measurement error.
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wi = 1/σ2
φ,i (5.8)

where σ2
φ,i is the error variance in the ith measurement. For example, the mag-

netometer has greater error uncertainty than the sun sensors on the TSL satellites, so the

magnetometer measurements are weighted less heavily in this estimate. The minimum of

the performance index in Equation 5.1 occurs when

Kq = λq (5.9)

which is an eigenvalue/eigenvector problem. The eigenvector q associated with the

largest eigenvalue λ is the optimal solution for the attitude quaternion and is thus the a

priori estimate for the MEKF [21].

5.2 Measurement Update Step

A sequential estimator computes estimates of the state in real-time, updating the

a priori estimate as new measurements from the attitude sensors are received. Usually,

extended Kalman �lters use an additive update of the state:

x̂+ = x̂− + K[ỹ − h(x̂)] (5.10)

where K is the Kalman gain and h(x̂) is the predicted value of the output based on

the system model. The residuals, or the di�erence between the actual measured output and

the expected value, are given by ỹ − h(x̂). The superscripts + and − denote the updated

and a priori estimates, respectively. However, this additive update does not work well for

quaternion states due to the unity-norm constraint, i.e.,
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q̂+ = q̂− + K[ỹ − h(q̂)] (5.11)

will give a quaternion q̂+ that does not have a magnitude of 1, violating the con-

straint in Equation 3.12. Therefore, a multiplicative update step is used for the quaternion

estimate:

q̂+ =

[
1
2 δ̂α

+

1

]
⊗ q̂− = q̂− +

1

2
Ξ(q̂−)δ̂α

+
(5.12)

where ⊗ is the quaternion multiplication operator de�ned in Equation 3.13. δα is

a vector of small angle corrections about each body axis, namely:

δα =

 δθx
δθy
δθz

 (5.13)

As long as δ̂α
+
is small, the quaternion is close to unity-norm. This multiplicative

update results in slower error build-up in the norm of the quaternion, however, the con-

straint is still violated to a lesser degree. To resolve this issue, the quaternion is brute-force

normalized every time a new estimate is calculated.

q =
q

‖q‖
(5.14)

The state correction vector, ∆x, is de�ned as:

∆x = x∗ − x̂ (5.15)
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where x∗ is the nominal state. With the multiplicative attitude update, the correc-

tions to the quaternion and gyroscope bias are given by:

∆x =

[
δα
δβ

]
(5.16)

Substituting these two equations into Equation 5.10 gives the following expression

for the estimated state correction vector:

∆̂x =

[
δ̂α

δ̂β

]
= K[ỹ − h(q̂)] (5.17)

The predicted value of the output is given by rotating the known, true measure-

ment vectors into the body frame according to Equation 4.18, which is restated here for

convenience:

h(q̂) =

[
DCM(q̂) ·m1,I

DCM(q̂) ·m2,I

]

The Kalman gain is computed as follows:

K = PHT[HPHT + R]−1 (5.18)

where P is the error covariance matrix which the sequential estimator seeks to

minimize.

P = E[(∆x− ∆̂x)(∆x− ∆̂x)T] (5.19)

52



This covariance matrix is initialized to the identity matrix and decreases as the

estimator converges upon the true state, driving the error in the estimated state towards

zero. H is the sensitivity matrix for the measurements and satis�es the equation

H(q̂)∆̂x =


mB,1 − m̂B,1

mB,2 − m̂B,2

...
mB,Nmeas − m̂B,Nmeas

 (5.20)

For this system, the H matrix is calculated according to:

H(q̂) =


DCM(q̂)m̃×I,1 03×3

DCM(q̂)m̃×I,2 03×3

...
...

DCM(q̂)m̃×I,Nmeas
03×3

 (5.21)

After calculating the state correction vector ∆x, the estimate of the quaternion is

updated according to Equation 5.12 and the estimate of the bias is updated according to

β+ = β− + δβ (5.22)

The covariance matrix is updated according to

P+ = [I−KH(q̂−)]P− (5.23)

5.3 Flying the Gyros

While the magnetometer, sun sensor, and star tracker vectors are used to provide

measurement updates to the estimated states, these sensors are typically sampled at a lower

rate than the gyroscopes. In between vector measurement updates from the attitude sensors,

the gyroscope measurements are used to propagate the attitude solution. This integration
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step is known as ��ying the gyros.� The state di�erential equations were previously de�ned

in Equations 4.4 and 4.17 and are restated here:

˙̂q =
1

2
Ξ(q̂)ω̂

˙̂
β = −1

τ
β̂

where the estimated slew rate ω̂ is calculated by subtracting the estimated gyroscope

bias from the incoming slew rate measurements. The propagated states become the a

priori estimate for the next measurement update step. The covariance matrix also evolves

according to:

Ṗ = FP + PFT + GTQG (5.24)

where F is the derivative of the di�erential equations with respect to the states, Q

is the covariance matrix of the process noise, and G is a mapping matrix from the process

noises to the states. For this system,

F =

[
−ω̂× −I3×3

03×3 − 1
τ I3×3

]
(5.25)

G =

[
−I3×3 03×3

03×3 I3×3

]
(5.26)

Q =

[
σ2
fI3×3 03×3

03×3 σ2
gI3×3

]
(5.27)
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where σf and σg are the standard deviations of the process noise in the slew rate

and gyroscope biases, respectively. Since the sequential estimator is based on a linear, unbi-

ased, minimum variance estimate (LUMVE), the estimator minimizes the error covariance

matrix as more measurements are processed. However, the Kalman gain will also decrease

as the covariance matrix decreases, and eventually the �lter will ignore incoming data if

the covariance matrix becomes very small. This is known as �lter divergence. Adding in

process noise in�ates the covariance between measurements, thus preventing the �lter from

diverging. Selecting the σ's for the process noise in matrix Q is a trial-and-error process

known as tuning the �lter. Too little process noise will cause the estimator to track poorly

when the states are changing quickly, and using too much will cause the estimator to track

the noise in the data too closely, resulting in a noisy estimate.

For further details on the formulation of the multiplicative extended Kalman �lter,

please refer to [22].

5.3.1 Attitude Error Accumulation

When the attitude is unobservable, there is an insu�cient number of measurements

available to update the estimated state. The attitude estimate is thus propagated by �ying

the gyros without angle corrections from the sensor measurement vectors. Integrating the

noisy slew rate measurements from the gyroscopes results in an angle random walk, causing

the estimated attitude to diverge from the true attitude of the spacecraft. The amount of

error that accumulates in the attitude estimate depends on the quality of the gyroscopes

and the amount of time spent integrating the noise in their measurements.

The simulation results presented in Figure 5.1 represent typical error accumulation

in the attitude estimate during the worst-case attitude unobservability scenario for the TSL
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satellites. This scenario assumes that:

1. The satellite requires a Sun vector for observability (i.e. it does not have a source

of independent measurement vectors in addition to the magnetometer, such as a star

tracker);

2. The Sun vector is in the orbital plane of the spacecraft, causing the satellite to spend

41% of its orbit in eclipse where the view of the Sun is obscured by Earth's shadow;

and

3. After exiting eclipse, the satellite takes the worst-case acquisition time of �ve minutes

to acquire a view of the Sun within a sun sensor.

As shown in Figure 5.1, the accumulated attitude error is too large to maintain pointing

knowledge for this entire duration. Thus, the satellite requires a star tracker or better

gyroscopes in order to perform pointing maneuvers while in eclipse. However, the zoomed-

in portion on the �rst ten minutes of the plot demonstrates that the error in the attitude

estimate is su�ciently small for navigation purposes if observability is only lost for a few

minutes.
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Figure 5.1: Attitude Estimation Error During Loss of Observability
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Chapter 6

Unconstrained Pointing

This chapter presents the unconstrained pointing algorithms that were developed

for the ADC system. The pointing system is composed of two parts: a pointing manager

that computes the desired attitude of the spacecraft for some stated mission objective, and

the pointing controllers that reorient the spacecraft into that desired orientation. This set of

pointing algorithms is unconstrained in the sense that attitude constraints are not enforced

on the satellite, though all other constraints are met.

6.1 Pointing Manager

The pointing manager computes the quaternion attitude that will align a speci�ed

vector in the body frame of the spacecraft with an inertial target vector. The pointing

vector in the body frame and the inertial vector to the target are determined by the mission

mode of the spacecraft. The resulting quaternion is then sent to the pointing controllers

which generate the actuator control signal necessary to perform the reorientation maneuver

into this desired attitude. An schematic representation of the pointing manager is given in

Figure 6.1.

6.1.1 Pointing Modes

This section discusses the commandable pointing modes of the spacecraft and the

associated algorithms for computing the target vector tI in each mode. The target vector
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Figure 6.1: Pointing Manager Overview

is a relative vector from the satellite to the target in the ECI frame. Depending on the

pointing mode, the target vector is either automatically generated or speci�ed. If a target

vector tX is speci�ed in frame X, the appropriate rotation matrix X
I T is applied to rotate

it from frame X into the ECI frame. Table 6.1 gives the target vector for each available

pointing mode. Each of these target vectors must be normalized to form a unit vector.

Table 6.1: Target Vectors in Each Pointing Mode

(a) Generated Targets

Pointing Mode Target Vector

Sun rsun,I

Moon rmoon,I

Nadir −r
Ram v

(b) Speci�ed Targets

Pointing Mode Target Vector

ECI tI

LVLH LVLH
I T · tLVLH

LLA LLA
I T · tLLA

The pointing vector pB is a unity-norm body-frame vector that is speci�ed by the

user. For example, to collect debris data on ARMADILLO, the spacecraft operator would
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command the ADC system into the ram pointing mode and set pB to be the -Z body axis

on which the PDD science instrument is located. As shown in Table 6.1, the corresponding

target vector tI in this mode is the inertial velocity vector of the spacecraft, v. The following

sections provide further detail on the transformations that are applied to the target vector

if it is speci�ed in the LVLH or LLA frames.

6.1.1.1 LVLH Target

The local vertical/local horizontal (LVLH) reference frame is a spacecraft-�xed ref-

erence frame that is de�ned by the position of the satellite relative to Earth r, and the unit

normal vector to the orbital plane. The transformation matrix to rotate a target vector

from the LVLH to ECI frame is given by:

LVLH
I T =

[
iLVLH jLVLH kLVLH

]
(6.1)

where

iLVLH =
r

‖r‖
(6.2)

kLVLH =
r× v

‖r× v‖
(6.3)

and

jLVLH = kLVLH × iLVLH (6.4)
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completes the right-handed frame [23]. Since the LVLH frame is centered at the

spacecraft, the resulting target vector after applying this rotation matrix will be a relative

vector from the spacecraft to the target as desired.

6.1.1.2 LLA Target

Latitude/longitude/altitude (LLA) is a set of geodetic coordinates rather than a

reference frame, so it is an abuse of notation to de�ne a LLA
I T. In reality, the LLA coordi-

nates are transformed into an Earth-centered-Earth-�xed (ECEF) vector and then rotated

from the ECEF frame to ECI. However, the rotation matrix is a convenient notation to

represent this series of calculations that transforms an LLA vector into an ECI vector, even

if the transformation is not really a simple rotation.

The geodetic latitude λ, longitude φ, and altitude alt of a point on Earth's surface

can be transformed into a position vector in the ECEF frame according to:

rECEF =

 (N + alt) cos(λ) cos(φ)
(N + alt) cos(λ) sin(φ)
((1− e2)N + alt) sin(λ)

 (6.5)

where

N =
a√

1− e2 sin2(λ)
(6.6)

is the ellipsoidal radius of curvature, a is the semi-major axis, and e is the eccen-

tricity of Earth given by:

e =
√

2f − f2 (6.7)
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where f is the �attening factor of Earth. Using the constants de�ned by the World

Geodetic System 1984 (WGS 84) ellipsoidal model of Earth, these parameters are f =

1/298.257223563 and a = 6378.137km [24]. After converting the target's LLA coordinates

into an ECEF position vector, the vector can be rotated into the ECI frame according to:

rECI =I
ECEF T · rECEF (6.8)

ECEF
I T = R3(−θGST ) (6.9)

where θGST is the current Greenwich Sidereal Time [23]. To get the relative target

vector from the satellite to the target, the position of the satellite in the ECI frame must

be subtracted from the vector.

6.1.2 Desired Attitude

The desired attitude of the spacecraft is one which aligns the speci�ed pointing

vector in the body frame pB with the inertial target vector tI. The eigenaxis of rotation er

is the unit normal vector to the plane containing pB and tI:

er = pB × tI (6.10)

The eigenangle of rotation about this axis θr is the angle between the two vectors:

θr = arccos(pB · tI) (6.11)
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The quaternion that corresponds to this rotation can be calculated using Equation

3.5:

q1 =

[
er · sin(θr/2)

cos(θr/2)

]
(6.12)

After constraining the pointing vector to be aligned with the target vector, there is

another degree of freedom which can be used to satisfy a secondary pointing objective. If

the user speci�es a secondary pointing and target vector, pB,2 and tI,2, the angle between

the two vectors can be minimized while satisfying the primary pointing constraint by per-

forming another rotation about the constrained direction. The secondary rotation aligns the

projected vectors p′B,2 and t′B1,2
into the plane normal to the constrained direction by using

the procedure outlined above. The vector t′B1,2
is in the body frame of the satellite after the

�rst rotation, denoted by B1. Thus, the secondary rotation captures the B1 to body frame

rotation that will align the projected pointing and target vectors. This is analogous to the

ECI to B1 rotation represented by q1. The projected vectors can be computed according

to:

t′B1,2 = pB × (DCM(q1)tI,2 × pB) (6.13)

p′B,2 = pB × (pB,2 × pB) (6.14)

The secondary rotation that will align these projected vectors is given by:

q2 =

[
er,2 · sin(θr,2/2)

cos(θr,2/2)

]
(6.15)
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er,2 = p′B,2 × t′B1,2 (6.16)

θr,2 = arccos(p′B,2 · t′B1,2) (6.17)

These two successive rotations can be represented in a single rotation using quater-

nion notation:

qcmd = q1 ⊗ q2 (6.18)

where ⊗ is the quaternion multiplication operator de�ned in3.13. Thus, the com-

manded attitude qcmd represents an eigenaxis rotation that aligns the primary pointing

vector with the primary target and simultaneously minimizes the angle between the sec-

ondary pointing vector and target. For example, the satellite can point a camera at a target

while minimizing the angle between the boresight vector of the sun sensor and the Sun for

navigation purposes. On Bevo-2 and ARMADILLO, the pointing manager's default pB,2

is the sun sensor boresight vector that will have a smaller angle to the Sun since there are

two sun sensors on-board these satellites.

6.1.3 STK Veri�cation

The commanded quaternions from the pointing manager were veri�ed using Ana-

lytical Graphics' Systems Tool Kit (STK) [25]. The MATLAB interface was used to auto-

matically load the satellite and orbit parameters into STK, propagate the orbit, compute

the desired quaternions for a given mode, and apply the computed quaternions to the STK
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Figure 6.2: STK Pointing Veri�cation

(a) Sun Pointing (b) LLA Pointing

satellite object. The quaternion output from the pointing manager was successfully veri-

�ed to produce the desired orientation for each mode. Examples of the simulated pointing

veri�cation in STK are provided in Figure 6.2.

6.2 Pointing Controllers

The pointing controllers accept a commanded quaternion from the pointing manager

and compute the torques required to reorient the satellite into that attitude. There are two

pointing controllers in this ADC system � a proportional derivative (PD) controller and a

sliding mode controller (SMC). The controllers di�er in their approaches to handling the

nonlinear dynamics of the system. The PD controller is a linear controller that approximates

the derivative of the attitude state as the slew rate and performs nonlinear cancellation. The

SMC is a nonlinear controller that drives the states toward the desired states along a sliding

surface.

Either of these controllers can be used to point the satellite while satisfying max-

imum slew rate and torque constraints. Both controllers compute a control torque input
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uwheel3×1 which is generated by an assembly of reaction wheels. The reaction wheels must

be oriented such that their combined torques span all three body axes, such as the assembly

of three orthogonal reaction wheels on-board ARMADILLO and Bevo-2.

6.2.1 Proportional Derivative Controller

The proportional derivative controller employs the saturation control logic proposed

by Wie [26]. The control law is as follows:

ucmd = sat
(
−Ksat (I3×3q̂E, ωmax )− cĴω̂ + ω̂×(Ĵω̂ + hwheel), umax

)
(6.19)

where K is the gain matrix, q̂E is the error quaternion, and c is a control design

parameter that tunes the performance of the controller. Increasing c will demand higher

control torques and result in faster controller response. However, an overly high value for c

will drive the system unstable, cause ringing, and saturate the control signal. For the TSL

satellite parameters, a value of 1 for c was determined to provide desirable performance.

Note that this value must be properly adjusted for other satellites with a di�erent moment

of inertia.

This is a proportional derivative controller in the sense that the �rst term is pro-

portional to the attitude error, and the second term is proportional to the slew rate which

is essentially the derivative of the attitude. The third term is for cancellation of the known

nonlinearities in the attitude dynamics from the gyroscopic torques. This is the same nonlin-

ear term cancellation that was performed for the Sun acquisition controller (refer to Section

4.3).

The error quaternion represents the rotation from the current estimated attitude to
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the commanded attitude. The error quaternion can be computed via quaternion multipli-

cation:

q̂E = q̂⊗ qC
cmd (6.20)

where the superscript C denotes the conjugate quaternion:

qC =

[
−er · sin(θr/2)

cos(θr/2)

]
(6.21)

The gain matrix is given by:

K = diag

(
c · sign(δα)

q̂E

‖q̂E‖

)
(6.22)

where the diag function diagonalizes an n-dimensional vector x according to:

diag(x) =


x1 [0]

x2

. . .

[0] xn

 (6.23)

The sign function operates on each component of an n-dimensional vector x accord-

ing to:

sign(x) =


sign(x1)
sign(x2)

...
sign(xn)

 (6.24)

where
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sign(xi) =


−1 xi < 0

0 xi = 0

1 xi > 0

(6.25)

The vector δα is a set of angle errors about each body axis,
[
δθx δθy δθz

]T
.

This is the same representation that was used in the MEKF to compute angle corrections to

the attitude estimate during the measurement update step (refer to Section 5.2). The angle

errors can be computed by transforming the error quaternion into its equivalent Euler angles

using Equations 3.17, 3.18, and 3.19. Note that the two-quadrant Euler angle solution for

δθx over [−π, π] is su�cient since only the sign of these angle errors is needed by the control

law.

The unit error quaternion in the gain matrix K determines the eigenaxis of rotation,

while the angle error sign check ensures that the satellite takes the shorter rotation about

this eigenaxis to reach the commanded quaternion. The cascade-saturation functions in

the control law prevent the satellite from exceeding the maximum torque and slew rate

constraints. The outer saturation function limits the commanded torques to umax, while

the inner saturation function limits the maximum slew rate to ωmax. While saturation is a

source of nonlinearity, the system behaves linearly within the saturation limits due to the

nonlinear term cancellation. Further analysis proving that the linear controller provides

asymptotic stability, bounds the maximum slew rate to ωmax, and monotonically drives the

error quaternion to zero can be found in [26].

6.2.2 Sliding Mode Controller

As shown in the controllability analysis, a nonlinear controller can take advantage

of the cascade structure of the system dynamics to drive the states as desired. A sliding
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mode controller was developed that uses this approach to perform cascade control on the

two subspaces of the system using two sliding mode control laws. The quaternion controller

computes a slew rate trajectory that will drive the attitude to the commanded quaternion.

The slew rate controller then computes the necessary actuator control torques to generate

this slew rate trajectory.

6.2.2.1 Quaternion Control

The estimate of the slew rate is used as the e�ective control input to drive the

quaternion to the desired orientation. For convenience, the system model is restated here:

˙̂q =
1

2
Ξ(q̂)ω̂

y =

[
m̃1,B

m̃2,B

]
=

[
DCM(q̂) ·m1,I

DCM(q̂) ·m2,I

]

The quaternion is embedded in the output, so di�erentiating the output once will

give a ˙̂q term which contains the e�ective control, ω̂. Since the control term is recovered

after one di�erentiation of the output, the relative order of the system is 1. Accordingly,

a sliding surface of order 1 is constructed as a linear function of the error between the

desired and estimated orientation. This error is represented by the vector of angle errors δα

introduced previously:

sω = δα =

 δθx
δθy
δθz

 (6.26)
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Once again, these angle errors can be computed by transforming the error quater-

nion into its equivalent Euler angles using Equations 3.17 through 3.19. In this case, the

quadrant ambiguity in the Euler angles must be resolved. The corrected angle error δαi,c

about the ith body axis can be computed according to:

δαi,c =

{
δαi + 2πsign(δα−i )

∣∣δαi − δα−i ∣∣ > π

δαi otherwise
(6.27)

where δα−i is a vector of previous angle errors. Since the derivative of the body axis

angles is simply the slew rate, the e�ective control input can be computed by setting the

derivative of the sliding surface equal to the desired sliding mode behavior:

ṡω = ωcmd = −ωmax · tanh

(
sω
sω0

)
(6.28)

where sω0 is the width of the boundary layer around the sliding surface. The

tanh function saturates at +/ − 1, so the commanded slew rate never exceeds the ωmax

constraint. A smooth tanh function was chosen over the sign function in order to avoid

aggressive �in�nitely-fast� switching in the control signal. In the real system, this would

cause the spacecraft to oscillate back and forth at a high frequency about the desired ori-

entation instead of settling and maintaining it. The boundary layer acts like a low pass

�lter, e�ectively smoothing out the control signal and reducing chattering. Increasing sω0

ampli�es this e�ect, but at the cost of degraded pointing accuracy. In the ADC system, it is

desirable to have minimal chattering and a smooth control signal, but to also maintain high

pointing accuracy. To achieve both of these goals, a variable boundary layer was imposed.

sw0 =

{
5 deg ‖δα‖ > 5 deg

1 deg ‖δα‖ ≤ 5 deg
(6.29)
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The larger boundary layer when the spacecraft is far from the desired orientation

generates a smoother control history with less chattering, and the smaller boundary layer

once the spacecraft is close to commanded quaternion ensures a smaller steady state pointing

error [27].

6.2.2.2 Slew Rate Control

A similar sliding mode control law is developed to compute the reaction wheel

torques necessary to generate the slew rates commanded by the quaternion controller. For

convenience, the system model for this subspace is also restated:

ω̇ = J−1(−ω×(Jω + hwheel) + u)

y = ω̃ = ω̂ + β̂

Di�erentiating the output once will result in an ω̇ term containing the control input

u, so the relative order of this system is also 1. A sliding mode surface of order 1 in the

error is de�ned as:

su = ω̂E = ωcmd − ω̂ (6.30)

where ωcmd is the control signal computed by the quaternion sliding mode con-

troller. Di�erentiating the above equation and setting it equal to a tanh sliding mode

control function gives the following expression for ṡ:
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ṡu = ω̇cmd − ˙˙̂ω = ω̇cmd − J−1(−ω̂×(Jω̂ + hwheel) + u)= −ηu · tanh

(
su

su0

)
(6.31)

where su0 is the width of the boundary layer. Assuming that the commanded slew

rate is roughly constant, solving for the control input u gives:

ucmd = Jηu · tanh

(
su

su0

)
+ ω̂×(Jω̂ + hwheel) (6.32)

The saturation limit ηu can be calculated as

ηu = ‖J‖−1 · umax (6.33)

such that the saturation limit of the sliding mode term is the saturation limit of

the reaction wheels. However, the additional nonlinear gyroscopic terms would cause the

torque constraint to be violated. Since the nonlinear terms are much smaller in magnitude

than the sliding mode term, they can be treated as additional disturbance torques to be

rejected by the controller rather than computing a state-varying ηu that would satisfy the

maximum torque constraint. The resulting commanded torque is:

u = umax · tanh

(
su

su0

)
(6.34)

which does satisfy the torque constraints. The boundary layer width su0 is set to 2

deg/s, which results in fairly smooth control torques and very accurate slew rate control.
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6.2.3 Performance Analysis

A simulation of a 170 degree eigenangle slew maneuver was performed using both

pointing controllers. The simulation includes environmental disturbance torques, actuator

dynamics, and uncertainty in the moment of inertia of the spacecraft. The simulation

also includes MEKF state estimation using simulated sensor measurements with noise and

biases. For details on the ADC component models and simulation environment, please refer

to Chapters 2 and 3.

The results of the simulation are presented in Table 6.2. The maneuver time is

de�ned as the time taken to decrease the magnitude of the pointing error and slew rate

below 0.5 deg and 0.5 deg/s, respectively. The pointing error is the mean angle to the

desired attitude after the controller has reached steady state. The pointing error standard

deviation is the standard deviation in the angle error about that mean value. As shown in

Table 6.2, both controllers achieve very small pointing errors in less than two minutes. The

sliding mode controller has better performance since it completes the slew maneuver more

quickly and accurately.

As shown in the plots in Figure 6.3, both controllers satisfy the maximum torque

constraint of 1mNm in each axis. While they also satisfy the maximum slew rate constraint

of 2deg/s, the type of slew rate constraint that is enforced di�ers between the two controllers.

The PD controller enforces this constraint on the total eigenaxis slew rate of the spacecraft,

whereas the SMC enforces it on the rotation rate about each individual axis. Thus, SMC

allows the spacecraft to rotate faster, explaining why there is a fairly large discrepancy in

maneuver time between the two controllers. Care should be taken when selecting a pointing

controller to note whether the maximum slew rate limit is speci�ed for an eigenaxis or
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body axis rotation rate. For the TSL satellites the distinction is not signi�cant, and either

controller may be used. Also note that the price paid by the SMC for greater pointing

precision is greater actuator e�ort, as can be seen in the torque plot comparison.

Although the attitude was continuously observable during this simulated maneuver,

the unconstrained nature of the pointing system means that no keep-in constraints were

enforced to keep the Sun in the FOV of a sun sensor, and no keep-out constraints were

enforced to keep bright objects out of the FOV of the star tracker. The lack of attitude

constraints means that the sun sensors or star tracker could fail to provide measurement

vectors to the navigation �lter, and observability could be lost.

This navigation problem can be resolved by using the secondary pointing constraint

in the pointing manager to minimize the angle between a navigation sensor and its target

(e.g. sun sensor boresight and Sun vector). So long as the primary pointing constraint

does not prevent the satellite from also satisfying the navigation requirements, the satellite

will regain observability at the end of the maneuver. Although the attitudes along the

reorientation trajectory are not constrained, the satellite can navigate through this period

of unobservability since the pointing controller maneuver times are less than two minutes

(refer to attitude error growth in Section 5.3.1).

Care must be taken by the satellite operator to avoid commanding a primary point-

ing direction that prevents the satellite from collecting navigation measurement vectors.

For example, on Bevo-2 and ARMADILLO, if the Z body axis is pointed at the Sun vector,

the minimum angle to the Sun from the sun sensors on the X-Y plane is 90 degrees, which

exceeds the 70 degree half-angle of the sensors. This pointing command would thus cause

long-term attitude unobservability, and the satellite will eventually be unable to maintain

pointing as the error in the estimated quaternion grows.
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Figure 6.3: Pointing Controller Simulation Results

(a) Pointing Angle Error over Time
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(c) Reaction Wheel Torques over Time
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Table 6.2: Controller Performance

Controller Maneuver Time (s) Pointing Error (deg) Standard Deviation (deg)

PD 116.75 0.277795 0.06332
SMC 95 0.139416 0.06255

6.2.4 Robustness Analysis

Several studies were performed to analyze the robustness of the controllers to dis-

turbances, sensor noise, and satellite parameter uncertainty. The disturbance robustness

study compares the performance of the controllers in a series of simulations with a range of

scaling factors from [1, 15] on the nominal environmental disturbance torques. The sensor

noise robustness study compares their performance when the MEKF is providing state esti-

mates using sensors with a scaling on the standard deviation in the measurement noise. The

scaling factors on the sensor noise ranged from [1, 35], and the biases in the measurements

were not altered. For details on the nominal sensor noise and disturbance torque values,

refer to Sections 2.1 and 3.2.

As shown in the plots in Figure 6.4a, the sliding mode controller is generally much

more robust to disturbance torques. This is as expected, since the SMC is designed to

handle nonlinearities, whereas the PD controller relies on approximating the system as linear

by performing nonlinear cancellation. As the simulated disturbance torques are unknown

and cannot be cancelled, increasing the disturbance torques quickly degraded the linear

controller's performance. This robustness to unmodeled system dynamics is one of the

primary advantages of nonlinear control.

The large spike in error seen in the SMC plot is due to the reaction wheels saturating

at their maximum momentum of 10mNm · s. The sliding mode controller causes wheel

saturation before the proportional derivative controller does, since its control law demands
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Figure 6.4: Controller Robustness to Disturbance and Sensor Noise

(a) Scaled Environmental Disturbance Torques
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greater control torques from the wheels. Thus, if conserving actuator e�ort and preventing

wheel saturation is a primary concern, the PD controller should be selected or the SMC

boundary layer should be adjusted. If the wheels are unlikely to saturate, then the SMC

should be selected for greater pointing accuracy.

As shown in Figure 6.4b, the controllers generally have comparable pointing accu-

racies when the sensor measurement noise is low, while the PD controller is more robust

to very noisy measurements. However, the pointing errors of > 5 degrees at those levels of

noise are too great for most satellite pointing requirements regardless.

Simulations of the controllers' performance when the moment of inertia (MOI) is

under- and over-estimated by a factor of 50 demonstrated that the SMC is much more robust

to MOI uncertainty. This is as expected, since the estimated moment of inertia tensor is

integrated into the PD control law, whereas the SMC has no dependence on this estimate.

The PD controller response plotted in Figure 6.5 shows the poor controller performance in
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Figure 6.5: PD Controller Performance with MOI Uncertainty

(a) Underestimated MOI
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(b) Overestimated MOI
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both of these cases. The SMC response is not plotted, as the estimated moment of inertia

has no e�ect on this control law. Thus, the SMC should be selected if the mass properties

of the satellite are not well known. This is often the case for small satellites, which may

not have access to the necessary equipment for measuring their mass properties. Without a

measured MOI, estimates of the inertia tensor are often poor. For example, on RACE, the

estimated moments of inertia about the two shorter axes were about 36% lower than the

measured values, and 250% smaller for the moment of inertia about the long axis [28].
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Chapter 7

Constrained Attitude Guidance

This chapter presents the guidance system that was developed as a more sophis-

ticated alternative to the system outlined in the previous chapter. As noted above, the

unconstrained pointing algorithms have the following limitations:

1. Only one additional attitude constraint can be satis�ed via the secondary constraint

functionality in the pointing manager;

2. The secondary constraint merely minimizes the angle between a second pair of point-

ing/target vectors, with no consideration for the �eld of view of the sensor;

3. Attitude is not constrained along the attitude trajectory during the maneuver�the

secondary constraint is only for the �nal orientation, and the pointing controllers will

take any path necessary to get there; and

4. Cannot satisfy keep-out constraints.

These restrictions motivated the development of a more general purpose constrained attitude

guidance system without these limitations. Using a convex optimization approach, a CAG

system was developed that autonomously reorients the satellite along an attitude trajectory

that satis�es an arbitrary number of keep-in and keep-out constraints at all times.
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7.1 Convex Optimization Approach

Nonlinear optimization can be applied to solve problems that have nonlinear con-

straints, as is the case for this problem. However, this approach does not guarantee that

it will �nd a feasible solution even if one exists. The computation time can also be large

which prevents it from being �own on a real-time navigation system. On the other hand,

convex optimization o�ers a solution to the CAG problem that guarantees a solution within

polynomial computation time if a feasible solution exists. Numerical convex optimization

solvers using interior-point methods (IPMs) have proven to be very reliable and can solve

problems with hundreds of variables and constraints in tens of seconds [29]. For the CAG

problem, there are only a handful of variables and constraints; thus a convex optimization

formulation would allow for control updates in real-time, as is necessary for an attitude

control system. The di�culty in this approach is in formulating the CAG problem as a

well-posed convex optimization problem.

A convex optimization problem has a convex objective function and convex con-

straints. In the CAG problem, the keep-in and keep-out pointing constraints de�ne a set of

permissible orientations which is non-convex. This source of non-convexity can be handled

by applying the convex parametrization proposed by Yoonsoo Kim in [30, 31] to transform

the attitude constraints into convex quadratic inequalities. For sets of redundant sensors

where satisfying a keep-in pointing constraint for one sensor out of the set is su�cient,

the constraint becomes a logical combination of the individual keep-in constraints. This

can be satis�ed by introducing binary variables to convert the set of quadratic inequality

constraints into mixed integer convex constraints [32].

A second source of non-convexity is the nonlinear dynamics of the system. The
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discretization approach taken by Kim in [30, 31] is adopted to transform the nonlinear

kinematic constraints into pointwise-in-time linear constraints. The simplicity of this con-

vexi�cation of the problem comes at the cost of global optimality and feasibility, since this

approach requires solving a convex optimization problem at every time step. Even if an ad-

missible path exists over the entire set of permissible orientations, with discretized dynamics

it is possible that a feasible solution does not exist at every step. The pointwise-in-time

kinematic constraints can prevent the system from �nding a path forward that does not

violate the pointing constraints. This is addressed by relaxing the pointing constraints so

that an admissible path is guaranteed, despite the discretization. Although this relaxation

allows pointing constraint violations along the resulting path, this concern can be mitigated

by enforcing more conservative pointing constraints.

Discretizing the dynamics also results in a suboptimal trajectory, since the opti-

mization is performed at each step instead of over the entire path. However, a globally

optimal trajectory would require recomputing the trajectory at certain time intervals as

disturbances and uncertainties that are unmodeled in the system dynamics push the true

states further from the predicted states. Discretization o�ers robustness to these unmodeled

dynamics, since the control input is continually being computed based on the current state.

The discretized convex optimization algorithm presented here naturally integrates into an

ADC system by generating a steering law that acts just like any robust feedback controller

while satisfying the pointing constraints.

7.2 Problem Statement

The CAG problem is to compute a control signal, u(t), that autonomously reorients

the spacecraft such that a speci�ed vector in the body frame of the spacecraft is aligned
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with an inertial target vector. If pB is the unit body vector to point in the direction of

tI, the unit inertial vector to the target, then the angle between these two vectors must be

driven to zero:

arccos (pB · tB)→ 0 (7.1)

where tB is the target vector rotated into the body frame according to Equations

3.14 and 3.15.

tB = DCM(q)tI (7.2)

If the instrument needs to be at rest for mission operations, such as imaging a star,

then the slew rate also needs to be driven to zero.

ω → 03×1 (7.3)

The bounds on control input and slew rate are enforced as follows:

‖u‖∞ ≤ umax (7.4)

‖ω‖∞ ≤ ωmax (7.5)

where the in�nity-norm bounds the control input and slew rates in each axis. If ωmax

is a limit on the maximum eigenaxis rotation rate, the 2-norm should be used in Equation

7.5 instead. Both norms are convex functions, so these bounds are convex constraints.
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Figure 7.1: Sun Keep-Out Attitude Constraint

To satisfy the keep-out pointing constraints, the angle between the unit boresight

vector y of a sensitive instrument and the unit vector x to the object to which it is sensitive

must exceed the half-angle θ of its exclusion cone, as illustrated in Figure 7.1. This constraint

is satis�ed for each sensitive instrument by the following condition:

xT
I,iyI,i ≤ cos θi, i ∈ [1, nout] (7.6)

where nout is the number of sensitive instruments imposing keep-out constraints on

the spacecraft. Both vectors are in the inertial frame as indicated by the subscript I. The

keep-in constraint is analogous to the keep-out constraint and can be expressed as follows:

xT
I,iyI,i ≥ cos θi, i ∈ [1, nin] (7.7)

where nin is the number of instruments imposing keep-in constraints, y is the unit

boresight vector of an instrument imposing a keep-in constraint, andx represents the unit

vector to the object which must be kept in its view. The angle between these two vectors

must be within the half-angle θ of the inclusion cone of the instrument. If there is a set of

redundant sensors for which satisfying one keep-in constraint out of the set is su�cient, the
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constraint becomes a logical combination of individual keep-in constraints:

xT
1,Iy1,I ≥ cos θ1

or xT
2,Iy2,I ≥ cos θ2

...

or xT
I,nr

yI,nr ≥ cos θnr
(7.8)

where nr is the number of redundant sensors. Now the constrained attitude control

problem can be summarized as follows:

Compute the control signal u(t) that drives the angle between the speci�ed pointing vector and

target vector to zero by minimizing

arccos (pB ·DCM(q)tI)

subject to �nal conditions

ω(tf ) = 03×1

kinematic constraints

q̇ =
1

2
Ξ(q)ω, ω = J−1(−ω×(Jω + hwheel) + u)

control and slew rate bounds

‖u‖∞ ≤ umax, ‖ω‖∞ ≤ ωmax

and pointing constraints

xT
I,iyI,i ≤ cos θi, i ∈ [1, nout]

xT
I,iyI,i ≥ cos θi, i ∈ [1, nin]

xT
I,1yI,1 ≥ cos θ1 or xT

I,2yI,2 ≥ cos θ2 or . . . or xT
I,nr

yI,nr ≥ cosθnr

84



7.3 Convex Parametrization of Pointing Constraints

The pointing constraints as currently stated are non-convex, but they can be con-

verted into convex quadratic inequalities using the method outlined in [30, 31]. The keep-out

pointing constraint is given by Equation 7.6, where the unit vector yI is the body vector

yB rotated into the inertial frame:

yI = yB−2(qT
v qv)yB+2(qT

v yB)qv+2q4(yB × qv) (7.9)

Substituting this expression and performing some algebraic manipulation allows the

keep-out constraint for the ith instrument to be expressed as

qTPiq ≤ 0 (7.10)

where

Pi =

[
Ai bi

bT
i di

]
(7.11)

Ai = yB,ix
T
I,i + xI,iy

T
B,i − (xT

I,iyB,i + cos θ)I3×3 (7.12)

bi = xI,i × yB,i (7.13)

di = xT
I,iyB,i − cos θ (7.14)
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This quadratic inequality is non-convex, since the matrix Pi is sign-inde�nite. How-

ever, Equation 7.10 is equivalent to

qT [Pi + λiI4×4] q = qTPiq+λi‖q‖2≤λi (7.15)

since q is unity norm. Then, the matrix

P̂i =Pi+λiI4×4 (7.16)

is positive de�nite if λi is slightly larger than the most negative eigenvalue of Pi.

This spectral shift makes all eigenvalues of P̂i strictly positive, so P̂i is a symmetric positive

de�nite matrix. The following expression is thus a convex quadratic inequality constraint.

qTP̂iq≤λi (7.17)

An equivalent process can be applied to the keep-in constraint from Equation 7.7.

Due to the sign change, the quadratic constraint becomes

qTPiq =

[
Ai bi

bT
i di

]
≥ 0 (7.18)

or

qT(−Pi)q ≤ 0 (7.19)

which is equivalent to
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qT [−Pi + λiI4×4] q = qT(−Pi)q+λi‖q‖2≤λi (7.20)

Then the matrix

P̃ = −Pi + λiI4×4 (7.21)

is symmetric positive de�nite if λi is slightly larger than the most positive eigenvalue

of Pi, and the keep-in constraint has been converted into another convex quadratic inequality

constraint.

qTP̃iq ≤ λi (7.22)

If there is a set of redundant sensors, the keep-in constraint should be satis�ed for at

least one of the sensors in that set. Enforcing the keep-in constraint for every sensor in the

set results in an over-constrained problem that may not be feasible. The logical combination

of individual constraints as stated in Equation 7.8 can be satis�ed by introducing a binary

variable µi = {0, 1} for each redundant sensor. The resulting mixed integer constraint can

be constructed as follows:

qTP̃iq ≤ λi +Mµi (7.23)

whereM is an arbitrary large positive number. Thus, µi = 0 means that the keep-in

constraint is satis�ed for the ith instrument. To ensure that at least one of these binary

values is 0, the following additional constraint is enforced on the binary variables:
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nr∑
i=1

µi ≤ nr − 1 (7.24)

The complexity of a mixed integer convex programming (MICP) problem increases

exponentially with the number of binary variables; in this case, that is the number of

redundant pointing constraints. For any spacecraft system the number of redundancies in a

set of sensors is guaranteed to be small, since having many redundant sensors unnecessarily

increases the mass and cost of the system. The MICP problem can thus be expected to be

limited to at most 5 binary variables, which keeps the computation time low.

7.4 Discretization of Nonlinear Dynamics

The kinematics of the system are non-convex, but they can be converted into

pointwise-in-time linear constraints by discretization [30, 31]. Linearizing the quaternion

dynamics in Equation 3.6 gives the following quaternion update equation at each time step,

k:

q(k + 1) = ∆t
1

2
Ξ(q(k))ω(k) + I4×4q(k) (7.25)

where ∆t is the time interval between each step. Using forward di�erences to

compute the numerical derivative, the angular acceleration is

ω̇ =
ω(k + 1)− ω(k)

∆t
(7.26)

Substituting this expression for ω̇ into Equation 3.7, gives the following constraint

on the control torques:
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u(k) = J
ω(k + 1)− ω(k)

∆t
+ ω(k)×(Jω(k) + hwheel(k)) (7.27)

Selecting the solution variable

s =

 u(k)
ω(k + 1)
q(k + 2)

 (7.28)

the dynamic constraints can be enforced through the following constraint:

F(k)s(k) = z(k) (7.29)

where

F(k) =

[
∆tI3×3 J 03×4

04×3 −∆t
2 Ξ(q(k + 1)) I4×4

]
(7.30)

z(k) =

[
Jω(k)−∆tω(k)×(Jω(k) + hwheel(k))

q(k + 1)

]
(7.31)

These can both be computed at each time step and are independent of the solution

variable. Equation 7.29 is thus a linear equality constraint and is subsequently convex.

7.5 Convex Objective Function

To autonomously satisfy the mission objectives, the guidance system needs to min-

imize

ψ = arccos (pB ·DCM(q)tI) (7.32)
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where tI is the target vector in the inertial frame, pB is the body vector to point

at the target, and ψ is the angle between the two vectors. This can be formulated as a

convex cost function by applying the methods used in the convexi�cation of keep-in pointing

constraints. Consider the keep-in constraint

qTPq ≤ λ (7.33)

where P is de�ned according to Equations 7.11-7.14 with xI = tI, yB =pB, and θ is

some small angle. Smaller values of λ impose tighter keep-in constraints on the system and

cause the inclusion cone to become smaller and smaller, until the angle between the target

and pointing vectors is zero for λ = 0. Thus, the target and pointing vectors are aligned

when

qTPq =
∥∥∥P1/2

q
∥∥∥2

= 0 (7.34)

The angle ψ is driven to zero by minimizing the cost function

cost =
∥∥∥P1/2

q
∥∥∥ (7.35)

This is a convex objective function, since norms are convex. If the reorientation

maneuver needs to end at rest, the cost function can be modi�ed according to:

cost = kq

∥∥∥P1/2
q
∥∥∥+ kω ‖ω‖2 (7.36)

where the kq and kω are weights on the pointing error and slew rates, respectively.
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This is also convex, since it is an a�ne combination of convex functions [29]. kω is de�ned

by the switching function

kω =

{
0; ψ < ψsmall

kw,c < kq; ψ > ψsmall
(7.37)

so that the slew rate is only driven to zero at the end of the maneuver. So long as

the slew rate remains within its imposed bounds, slewing more slowly would only hurt the

system by increasing the maneuver time. The weight on the slew rates should always be

less than the weight on the pointing error, as the system would otherwise prioritize staying

at rest over decreasing the pointing error. The choice of kw,c is fairly trivial, as any small

weight will su�ce. Its inclusion in the cost function is su�cient to drive the �nal angular

rates to zero, provided the weight is not vanishingly small with respect to kq.

As mentioned in Section 7.1, the discretization can cause the solver to fail to �nd

a feasible solution. In order to guarantee a feasible solution, the pointing constraints are

relaxed:

qTP̂iq ≤ λi + νi, i ∈ [1, nout] (7.38)

qTP̃iq ≤ λi + νi, i ∈ [1, nin] (7.39)

where ν is a relaxation variable. Pointing constraint violations are then penalized

in the cost function, where M is some arbitrary large positive number:

cost = kq

∥∥∥P1/2
q
∥∥∥+ kω ‖ω‖2 +M ‖ν‖2 (7.40)
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The relaxation of the constraints can also be o�set by adding conservatism back

into the pointing constraints:

qTP̂iq ≤ (1− δ)λi + νi, i ∈ [1, nout] (7.41)

qTP̃iq ≤ (1− δ)λi + νi, i ∈ [1, nin] (7.42)

where δ is some small number much smaller than 1. The larger this value, the more

conservative the constraint becomes. This parameter should be adjusted via numerical sim-

ulation to determine an acceptable degree of pointing constraint violation or conservatism.

This relaxation also o�ers the advantage of not requiring the initial attitude of the satellite

to satisfy the pointing constraints. The big-M penalty on constraint violations will drive

the attitude into the set of permissible orientations as quickly as possible.

Computing a control signal by solving the convex optimization problem using Equa-

tion 7.40 would generate a slew maneuver that satis�es the constraints. However, there is

no consideration of control e�ort in this formulation; as such, the resulting control signal

will rapidly oscillate between its maximum and minimum bounds and act like a bang-bang

control law. To prevent this behavior, a penalty for control e�ort is appended to the cost

function:

cost = kq

∥∥∥P1/2
q
∥∥∥+ kω ‖ω‖2 + ku ‖u‖2 +M ‖ν‖2 (7.43)

The weights kq and ku are parameters that must be carefully selected by the control

designer. Increasing kq will decrease the maneuver time and improve pointing accuracy, but
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at the cost of greater control e�ort. The weight kq is best de�ned by another switching

function:

kq =

{
kq,far; ψ > ψsmall

kq,close > kq,far; ψ < ψsmall
(7.44)

Increasing the weight when the maneuver is almost complete causes the �nal point-

ing error to be small. The smaller weight when ψ is large results in lower control expenditure

over large slew maneuvers. Combining the results from Section 7.3 through the current sec-

tion gives the following MICP formulation of the CAG problem:
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At every time step, k, solve the MICP problem for the solution variables

s =

 u(k)
ω(k + 1)
q(k + 2)

 , ν =

 ν1

...
νnin+nout

 , µ =

 µ1

...
µnr

 , µi = {0, 1}

Minimize

cost = kq

∥∥∥P1/2
q(k + 2)

∥∥∥+ kω ‖ω(k + 1)‖2 + ku ‖u(k)‖2 +M ‖ν‖2

subject to the control and slew rate bounds

‖u(k)‖∞ ≤ umax, ‖ω(k + 1)‖∞ ≤ ωmax

pointing constraints

q(k + 1)TP̂iq(k + 1)≤λi, i ∈ [1, nout]

q(k + 1)TP̃iq(k + 1)≤λi, i ∈ [1, nin]

q(k + 1)TP̃iq(k + 1) ≤ λi +Mµi, i ∈ [1, nr];

nr∑
i=1

µi ≤ nr − 1

and kinematic constraints

F(k)s(k) = z(k)

F(k) =

[
∆tI3×3 J 03×4

04×3 −∆t
2 Ξ(q(k + 1)) I4×4

]

z(k) =

[
Jω(k)−∆tω(k)×(Jω(k) + hwheel(k))

q(k + 1)

]

7.6 Simulation Results

To demonstrate the system, a simulation of a ram-pointing mission in which the -Z

body axis of the Bevo-2 satellite must be aligned with the instantaneous velocity vector is

presented. The simulation includes environmental disturbance torques, actuator dynamics,

and uncertainty in the moment of inertia of the spacecraft. The simulation also includes

MEKF state estimation using simulated sensor measurements with noise and biases. For

details on the ADC component models and simulation environment, please refer to Chapters
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2 and 3.

For the ram-pointing objective, the pointing vector and target vectors are:

pB =

 0
0
−1

 ; tI = vI

where vI is the current inertial velocity vector.

The initial conditions are:

q(0) =


0
0
0
1

 ; ω(0) =

 0
0
0


The slew rate and control bounds are given by:

umax = 1e− 3N ; ωmax = 2deg/s

The keep-out constraints are imposed by the sensitive star tracker on the -Z axis of

the spacecraft.

x1 = rsun; x2 = rmoon

y1 =

 0
0
−1

 ; y2 =

 0
0
−1


The keep-in constraints are OR constraints imposed by the two sun sensors on the

+X and +Y axes of the spacecraft.

95



x3 = rsun; x4 = rsun

y3 =

 1
0
0

 ; y4 =

 0
1
0


This MICP is solved at time intervals of 0.25 seconds using the CVX convex opti-

mization modeling toolbox and Gurobi optimization software [33, 34].

Figure 7.2: Bounded Control and Slew Rates
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(b) Slew Rates
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The control torques and slew rates saturate at their respective bounds, as illustrated

in Figure 7.2. Note that Figure 7.3a demonstrates that the mission objective of aligning

the -Z body axis with the instantaneous velocity vector is achieved. The maneuver time is

about a minute, and the �nal pointing error is less than 0.05 degrees. The sun sensor angles

with respect to the Sun vector are plotted in Figure 7.3b. The mixed integer formulation

successfully imposes the OR condition on the keep-in constraints, as is evident in the manner

in which the sun sensors hand o� responsibility for providing a Sun vector measurement.

When the Sun vector leaves the inclusion cone of the �rst sensor at around 50 seconds, it
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Figure 7.3: Pointing Error and Pointing Constraints
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(b) Keep-In Pointing Constraints

0 50 100 150
0

50

100

150

S
un

 s
en

so
r 

1

Angle between sun sensors and sun vector (deg)

0 50 100 150
0

50

100

150

S
un

 s
en

so
r 

2

(c) Keep-Out Pointing Constraints
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enters the inclusion cone of the second. Thus, a Sun vector measurement is always available

to the navigation �lter. Figure 7.3c shows that both the Sun and the Moon stay outside of

the exclusion cone of the sensitive star tracker.
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Chapter 8

Momentum Management

This chapter discusses the magnetorquer controller that is used to manage the

momentum level in the reaction wheels. A discussion of the importance of momentum

management is �rst presented to motivate the development of a momentum management

system, followed by a description of the controller and its performance.

8.1 Reaction Wheel Saturation

The change in the combined momentum of the spacecraft and wheel assembly is

equal to the external torques on the system. Thus, the wheels will gradually accumulate

angular momentum from the environmental torques acting on the satellite. However, the

reaction wheels can only store a �nite amount of angular momentum. If a reaction wheel

controller commands a torque that would result in exceeding this maximum momentum

level, the reaction wheel will saturate at this limit and be unable to provide the torque

commanded. This lack of controllability would prevent the Sun acquisition controller from

spinning the satellite at the desired rates, and prevent the pointing controllers and CAG

system from reorienting the satellite into the desired orientation. Thus, another set of

control devices which can unload the momentum in the wheels is essential for preventing

wheel saturation and maintaining controllability.

Momentum management is also useful for improving pointing accuracy. The gyro-

scopic torque terms scale with the reaction wheel spin rate, and reaction wheel jitter torques
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Figure 8.1: Pointing Accuracy with Varying Wheel Momentum
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scale with the wheel speed squared. Keeping the reaction wheel speeds low therefore mini-

mizes these perturbing torques on the satellite. A simulation of the PD and SMC pointing

controllers was performed with varying levels of initial momentum in the wheels to illustrate

this point.

The simulation includes environmental disturbance torques, actuator dynamics, and

uncertainty in the moment of inertia of the spacecraft. The simulation also includes MEKF

state estimation using simulated sensor measurements with noise and biases. For details on

the ADC component models and simulation environment, please refer to Chapters 2 and 3.

The simulation results are presented in Figure 8.1. As shown in these plots, the pointing

accuracy degrades at increased momentum levels, and the ADC system loses controllability

entirely when the momentum level in the reaction wheels is above 7.5mNm · s due to wheel

saturation.
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8.2 Momentum Controller

The momentum in the wheels is managed by commanding a magnetic dipole µcont

from the magnetorquers according to:

µcont = sat(km(∆H×BB), µmax) (8.1)

where km is the the controller gain, BB is the local magnetic �eld in the body

frame, and ∆H is the desired change in momentum given by:

∆H = hwheel − hcmd (8.2)

where hcmd is the commanded level of momentum in the reaction wheels. The

commanded wheel momentum should be much less than hmax to prevent the wheels from

saturating. However, the wheels also have a small deadband region, so the commanded

momentum level should be slightly o�set from zero. The controller gain km should be

selected such that the commanded magnetic dipole saturates at high values of ∆H and scales

accordingly as it decreases to zero. For the magnetorquers on-board the TSL satellites, a

gain value of 1e7 was selected. The torques on the satellite due to the magnetic dipole of

the rods are given by Equation 2.20, which is restated here:

umag = µmag ×BB

If the magnetorquers on-board the satellite are bang-bang devices, the continuous

control law becomes:
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µmag = sign(µcont) (8.3)

where the sign function is de�ned in Equations 6.24 and 6.25.

To continually manage the momentum level in the wheels and prevent them from

saturating, this controller should be used whenever the reaction wheels are on. However,

these magnetic dipole torques essentially become disturbance torques from the perspective of

the reaction wheel controllers. Generally, these torques are so small that these disturbances

are easily rejected by the reaction wheel controllers. If ∆H is small, however, this results in

the continuous dipole µcont rapidly changing signs as ∆H oscillates about zero. Since the

magnetorquers are bang-bang devices, this will result in constant, abrupt switching in the

commanded magnetic dipoles from full on positive to negative. This rapid switching will

cause oscillatory pointing error in the reaction wheel controllers.

To address this problem, a tiered deadband region is imposed around the continuous

dipole µcont in each axis. Within the deadband region, the commanded dipole is zero. The

deadband entry condition occurs when µcont,i falls below an inner deadband limit, µd,in.

The exit condition occurs when µcont,i rises above an outer deadband limit, µd,out. This

logic is illustrated in Figure 8.2. Imposing this deadband on the continuous dipole before

applying the sign function to obtain the bang-bang control law prevents the rapid magnetic

dipole switching scenario described above. The inner and outer deadband limits were set

to µmax/50 and µmax/5, respectively, which provides su�cient distance between the deadband

limits to prevent the system from constantly entering and exiting the deadband region.
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Figure 8.2: Momentum Management Deadband Logic

8.3 Simulation Results

A simulation of the momentum in the reaction wheels being lowered from an initial

momentum level of 5mNm · s in each wheel is presented to demonstrate the momentum

management capabilities of the system. The momentum management is performed con-

currently with the reaction wheels being used by the PD pointing controller to maintain

a commanded attitude. The same simulation environment described above was used to

generate these results.

The desired momentum level to which the system is driven is 0.5mNm · s. This

is far from the saturation limit of 10mNm · s, but o�set from zero to avoid the reaction

wheel deadband region. The simulated momentum management scenario uses Bevo-2's

con�guration of 2 bang-bang magnetorquers, so there is no magnetic dipole commanded

from the Z body axis. A satellite with three orthogonal torque rods would simply have better

performance than this baseline. As shown in Figure 8.3a, the momentum in the wheels is

102



successfully lowered to 0.5mNm · s within one orbit. The plot of the pointing angle error

in Figure 8.3b also illustrates the decrease in pointing angle error as the reaction wheel

momentum level is lowered. The commanded magnetic dipoles as plotted in Figure 8.3c

demonstrate that the controller gain was appropriately tuned, as the continuous dipole only

saturates at high levels of momentum in the wheels. The tiered deadband structure is also

shown to successfully prevent the bang-bang magnetorquers from overly rapid, continuous

switching. The transitions between on and o� are on the order of tens of seconds. This

magnetic torque pro�le is easily rejected by the pointing controller, which is evident in the

small pointing angle errors.

8.4 Lifetime Momentum Management

Satellites in LEO experience signi�cant drag which gradually decays the orbit and

lowers the altitude of the satellite until it disintegrates in Earth's atmosphere. As the satel-

lite's altitude decreases, the density of the atmosphere increases exponentially. This causes

greater drag torques acting on the satellite, resulting in greater momentum accumulation.

If the momentum accumulation due to the external torques on the satellite exceeds the

amount of momentum that the torque rods can unload from the wheels, controllability will

be lost. To assess the momentum management capabilities of the ADC system over the

lifetime of the satellite, the momentum accumulation from environmental torques over one

orbital period was calculated for a circular orbit at altitudes of 400 to 150km. For the

worst-case momentum accumulation scenario, the simulation assumes maximum solar ac-

tivity and a satellite orientation that maximizes the projected area into the velocity vector.

The maximum amount of momentum that can be unloaded from the reaction wheels by the

magnetorquers is given by:
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Figure 8.3: Momentum Management Simulation Results
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Figure 8.4: Momentum Accumulation over an Orbit at Varying Altitudes
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∆Hmax = µmax ‖B‖ (8.4)

where B is the local magnetic �eld. This is plotted as a black, dashed line in Figure

8.4 with a factor of safety of two. As the altitude of the satellite decreases, ∆Hmax increases

due to the increased strength of the magnetic �eld at lower altitudes. However, this e�ect is

far outweighed by the exponential increase in drag. As shown in Figure 8.4, the momentum

accumulated over an orbit exceeds the momentum management capabilities of the satellite

at an altitude of roughly 175 km. At this point, the reaction wheels will start accumulating

momentum that cannot be unloaded until they are saturated and controllability is lost.

However, the altitude at which this occurs is so low that the satellite cannot maintain this

orbit, and it will quickly deorbit. This ADC system therefore maintains controllability over

the entire duration of the satellite's lifetime.
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Chapter 9

Conclusions

With the miniaturization of space instrumentation, small satellites are being increas-

ingly called upon to collect data, perform experiments, and relay information at a fraction

of the price. As these small satellite platforms gain popularity, they also gain responsibility

for missions of greater complexity. In view of these demands, a �exible, robust attitude

determination and control system was developed to meet a variety of mission objectives.

9.1 Summary of Work

Using a suite of commercial-o�-the-shelf sensors and actuators which �t within the

3U CubeSat form factor, the ADC system presented in this thesis is capable of precisely

estimating and controlling the attitude of the spacecraft. The system includes a multiplica-

tive extended Kalman �lter for attitude estimation using measurements from the sensors

on-board the satellite. A Sun acquisition controller restores observability so that the navi-

gation �lter has enough measurement vectors to update the attitude estimate.

The ADC software also includes an unconstrained pointing system that reorients

the spacecraft to align a commanded pointing vector with a given target. The pointing

system can accept a secondary pointing constraint to minimize the angle between another

pair of vectors without violating the primary constraint. This functionality can be used to

maintain observability in the system to satisfy navigation requirements. The pointing system

also includes a choice of two pointing controllers � a proportional derivative controller, and
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a nonlinear sliding mode controller. Both of these controllers satisfy the maximum torque

and slew rate constraints imposed by the ADC hardware.

A constrained attitude guidance system is proposed as an improvement upon the

unconstrained system. Using convex optimization, the CAG system can enforce an arbitrary

number of keep-in and keep-out constraints at every point along the attitude trajectory. It

can also satisfy logical combinations of the attitude constraints, such as keeping the Sun

within the FOV of either of the two sun sensors on-board the TSL satellites.

Finally, a momentum management system is demonstrated to successfully dissipate

the momentum stored in the reaction wheels at any point during the lifetime of the satellite.

Every part of the ADC system was extensively tested in simulation using realistic physical

parameters based on the TSL satellites. It was demonstrated to be robust to environmental

disturbance torques, sensor noise, and actuator dynamics. The system delivers arc-minute

level pointing precision in the presence of these perturbations and uncertainties. Although

the ADC system was speci�cally designed for use on-board ARMADILLO and Bevo-2,

the algorithms developed are general-purpose and �exible enough to be used on the vast

majority of satellite missions. The pointing system can accept pointing targets in a variety

of frames, and the CAG system can handle an arbitrary set of attitude constraints. The

control algorithms are also tunable, so the gains and controller parameters can be adjusted

for di�erent satellites as needed.

9.2 Current and Future Work

The majority of the ADC algorithms presented in this thesis have been integrated

into the �ight software on Bevo-2 and ARMADILLO. Both satellites make use of the un-

constrained pointing system, as the CAG system has not been integrated for �ight. They
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also use the sequential optimal attitude recursion (SOAR) �lter rather than the MEKF. The

SOAR �lter has improved performance with noisier sensor measurements, but the perfor-

mance of the two �lters is nearly identical when the sensor noise is low [21]. The performance

of the system will therefore be as good or better with the SOAR �lter as compared to the

results presented in this thesis.

As of Spring 2015, both of these satellites are about to be delivered and �own

within the year. Extensive software-in-the-loop testing was performed using the simulation

environment while running the ADC �ight software on the ADC �ight computer. Hardware-

in-the-loop testing is currently being performed on the ADC engineering design unit (EDU),

shown in Figure 9.1a. The engineering design unit has three orthogonal torque rods, two

sun sensors, three gyroscopes, a magnetometer, and one reaction wheel. The test setup

is illustrated in Figure 9.1b. The ADC graphical user interface (GUI) is used to send

commands to the ADC computer on the EDU which is running the �ight software. These

commands switch the ADC system between the following modes: turn actuators o�, spin

the reaction wheel at a set speed, use the sliding mode controller, use the pointing controller,

acquire the Sun, and turn on the torque rods. The ADC GUI can also send commands to

turn momentum management on or o�, as well as set all of the controller parameters (e.g.

gains, deadband limits, and boundary layer widths).

The MATLAB simulation environment is used to generate simulated sensor mea-

surements corresponding to the satellite's simulated state in space. These simulated sensor

measurements are consumed by the navigation �lter rather than the true measurements

produced by the sensors sitting on the ground. Depending on the mode set by the ADC

GUI, the actuators will respond as commanded, and their outputs will be fed into the MAT-

LAB simulation to propagate the attitude with the appropriate actuator torques. All of the
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Figure 9.1: ADC Hardware-in-the-Loop Testing

(a) Engineering Design Unit

(b) Testing Setup

telemetry data from the ADC is displayed in the GUI, so the operator can verify that the

states of the system are as expected.

Future work includes further hardware and systems-level testing to prepare the sys-

tem for delivery. Rather than simulating commands from the command and data handling

(CDH) subsystem using the ADC GUI, the interface between the ADC and CDH computers

needs to be implemented and tested. If time permits, the CAG system will also be imple-

mented on the �ight system before delivery. The ADC system will then be �own for the

�rst time on Bevo-2 and ARMADILLO. The data collected during these missions will be

essential for on-orbit validation and assessment of the performance of the system.
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