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Product development is often modeled as a cycle between phases of designing, 

building, and testing. This work will explore early stage build efforts of product design, 

which is also known as prototyping. Prototyping is a critical determinant of product 

success. Research shows that different approaches to prototyping can greatly affect 

design outcome. This work provides an integrated overview, and expansion of the 

existing work on design prototyping methods. Following the introduction, an extensive 

literature review of design prototyping tools, techniques, and methods is provided. These 

sources are indexed and comparatively reviewed. The capabilities of a novel hybrid 

prototyping technique is explored through a design case study. Next, insights from the 

review are integrated in a context independent prototyping strategy method. The method 

is developed with heuristics extracted from the literature, and additional insights from 

experimental studies. The technique is then experimentally evaluated. Finally, results of 

an extensive study of an online design repository are provided. The results include five 

key principles for prototype design and fabrication. The presence of these principles in 

the repository is validated through a novel crowd-sourced online study. The outcome 

effects of deploying these principles to design teams is experimentally evaluated. Overall, 

this research provides a guide to prototyping which includes a systematically indexed 
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review and comparison of the existing work, as well as a novel method, and principles for 

design and fabrication.  
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Chapter 1: Introduction 

The product development cycle is often modeled as an iterative loop through 

designing, building, and testing [1]. The early stages of build and test, in this cycle, are 

typically referred to as prototyping. A prototype is a pre-production representation of 

some aspect of a final product or design. Prototyping and design have been interwoven 

from antiquity through the present. Michelangelo and Palladio presented physical models 

for communication and planning [2]. Henry Ford's model T was the result of extensive 

prototyping efforts [3]. Dyson has stated that the commercially successful bag-less 

vacuum design was achieved after 5,127 prototypes [4]. Sensitivity analysis has also 

identified that prototyping is a key driver of design outcome [5]. The importance of 

prototyping could be said to be well known. Despite this, formulation of a well-planned 

prototyping effort remains a complex challenge. Many designers state that prototype 

planning occurs according to experience or intuition. There are limited tools to guide the 

development of prototyping efforts or to give insights on how to design and fabricate 

prototypes with higher efficiency. The research opportunity is found in the need to 

define, evaluate, and expand various techniques and principles for design prototyping that 

systematically enable innovative design. 

The primary objective of this research is to identify, evaluate, and expand upon 

methodological tools and techniques for design prototyping. The primary objective is 

evaluated through four specific research objectives which map directly to the research 

projects covered in Chapters 2-5.  

• Index and evaluate existing methodological tools and individual 

techniques for design prototyping and related empirical research findings. 
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• Employ a design case study to evaluate the effectiveness, as measured by 

model accuracy and cost, of a hybrid of two individual techniques.  

• Evaluate the effects of deploying individual techniques on prototyping 

outcomes such as performance and cost expenditure; and determine 

outcome effects from employing an integrated strategy method to design 

teams. 

• Explore DIY design repositories to search for potential prototype design 

and fabrication principles, to provide insight for the relatively open 

research issue of methods to achieve low cost, rapid, functional prototype 

embodiment; and to evaluate the outcome effects of deploying such 

principles to design teams.  

Prototyping includes several outcome objectives. Refinement is perhaps the most 

commonly cited objective of prototyping [6]. Other commonly cited direct objectives of a 

prototyping effort are communication and usability testing, or design exploration and 

validation [7-10]. While indirect objectives, from reflective observation of the 

prototyping process itself, include increased knowledge of the design space [11], and 

clarified design requirements [12]. There is a substantial body of information regarding, 

objectives of prototyping, the relationship of prototyping and the design process, strategic 

techniques, and fabrication of prototypes. There is a need, however, to index the available 

research for comparative review. Chapter 2 provides an overview of prototyping 

literature. This review is constructed to provide indexed overviews of various subtopics 

in prototyping, illustrative examples for each individual technique, and empirical data 

regarding each technique [13].  

It is also possible to evolve and combine individual techniques to form hybrid 

techniques. A hybrid technique involves the simultaneous implementation of two or more 
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individual techniques in one prototype. Several projects have explored hybrid techniques 

for prototyping. An example is a mixed physical and virtual prototype [14]. A mixed 

prototype can enable iterations on subsystems as well as obtaining system level 

simulation information when all of the subsystems are not prototyped on a common 

platform. An example would be if the designers had developed a physical prototype for 

an automobile steering column, and a virtual prototype of the chassis and engine [15]. 

One open opportunity is to develop and evaluate additional hybrid prototyping 

techniques. Chapter 3 introduces a novel relaxed requirement virtual prototyping method 

via a design case study. The method is capable of providing normalized comparative 

ranking between competing designs with drastically reduced computational cost as 

compared to a full fidelity finite element model virtual prototype [16].  

Individual and hybrid techniques can be used to achieve a variety of design 

outcomes. For many design efforts, however, the designer pursues several different 

prototypes. Therefore, the designer must partition the design problem and map it to an 

overall strategy. In other words, a series of choices need to be made regarding how the 

prototype will be made, and what information it will be used to gather. Careful planning 

of a prototyping strategy is required [17]. The need for this planning is because 

partitioning may influence the outcome of the prototype, specifically with regards to what 

is learned [18]. The scope of this plan may include the type of testing the prototype will 

undergo, as well as how it is constructed with regards to variables such as fidelity or scale 

[19]. There is an opportunity to explore prototyping strategies and compare the outcomes 

of various techniques. Chapter 4 pursues additional literature review on a subset of 

potential techniques. This information is integrated to develop a systematic strategy 

formation method. The individual techniques, and the pursuant method are 

experimentally evaluated [20]. The method provides an expanded dimensionality of the 
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prototyping space, Figure 1.1, This framework is more comprehensive than the traditional 

stage gate definition of a prototyping strategy (from proof of concept, to alpha then beta 

level testing) to define a space with parallel concepts, multiple iterations, and fidelity 

properties of each individual prototype. The strategy method provides a tool to aid 

designers in navigating this space.  

 

 

Figure 1.1:  Schematic representation of the expanded design prototyping space. With 
six independent strategy variables. 

A design strategy can form specific design goals and pathways for the overall 

effort. Once a strategy has been developed, the designer explores the detailed design of 

the prototype, including plans for fabrication. Design principles can offer a unique 

opportunity to guide this stage of prototyping. Principles are fundamental to the 

engineering process [21]. Principles can relate key insights from large data sets in 

compact form [22]. They provide aid in the solution of a problem, but may not directly 

provide a solution themselves [21]. Principles provide a necessary contextual flexibility 

required for prototyping methodologies. A prototyping method should be relevant to 

general design problems. There is an opportunity to explore and develop principles for 

prototype design and fabrication. Chapter 5 provides results from an extended empirical 
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study of a prototype design database. The study consists of systematic extraction of 

principles for prototype design and fabrication. These principles provide avenues for 

developing highly functional prototypes with lower cost and effort [23].  

As indicated by the summary and motivation above, an objective of this research 

is to develop an overview of the state-of-the-art design tools, methods, and techniques for 

prototyping. Previous research has identified a number of individual techniques to 

achieve specific outcomes from the prototyping process. Several studies have also 

identified the impact of various factors on design outcome. These studies explore factors 

such as time spent prototyping and the emergence of fixation. A novel relaxed 

requirement virtual prototyping method is presented, which demonstrates the potential of 

hybrid prototyping techniques. This study synthesizes existing research on prototyping 

methodology. This synthesis in turn leads to development and evaluation of an integrated 

prototyping strategy method, which guides development of an overall prototyping effort, 

leading to enhanced efficiency and outcome. The relatively open opportunity of 

determining principles for design and fabrication of prototypes was explored through 

analysis of a design database. These principles of prototype design and fabrication guide 

the embodiment process of a prototyping effort. The results of this research can be used 

to select between various prototyping techniques, implement them in a systematic 

strategy for the overall prototyping effort, and to guide the design and fabrication of each 

specific build. These contributions form a substantial basis for a methodological approach 

to prototyping which has not previously been available.  
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Chapter 2 Prototyping: State-of-the-art in Techniques, Methods, and 
Design Science 

OPENING REMARKS 

This chapter explores and reports on the body of prototyping literature. 

Significant experimental design research has been undertaken to quantify contextual and 

practice-based variables that are correlated with successful prototyping efforts. This 

chapter surveys design science, engineering, fabrication, manufacturing, additive 

manufacturing, rapid prototyping, and engineering education literature regarding: high-

level objectives of prototyping, integration of prototyping in the design process, 

systematic methods to enhance the effectiveness of prototyping, and comparative review 

of fabrication technologies. Key examples of the relationship of prototyping and design 

outcome are: earlier prototyping, constructing prototypes with fewer (more integrated) 

components, and faster prototyping tend to correlate with high performance outcomes. 

Indexed overview tables are also provided in each section. These compact summaries of 

research findings are particularly intended to aid in comparing the potential benefits and 

costs of various techniques. An example is that parallel prototyping is commonly cited as 

a means for exploration, while iterative prototyping is cited for refinement. The chapter 

concludes with a summary of best practices, key points of potential risk, and a number of 

potential avenues for continuing innovation in the scientific research of prototyping for 

design.  

2.1 INTRODUCTION 

Different forms of prototyping are apparent throughout product and systems 

development efforts. The cost of developing a prototype is also often non-trivial in terms 

of person-hours and other resources. Implementation of a clear prototyping strategy can 
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reduce ambiguity in expected objectives and benefits. Systematic prototyping can also 

enhance the probability of successful early product development. Significant effort has 

been made, by a variety of design science research groups, to explore and quantify 

prototyping practices that were historically considered purely intuitional.  

This chapter presents a synthesized review of design science, engineering, 

fabrication, manufacturing, additive manufacturing, rapid prototyping, and engineering 

education literature relating to the topic of developing an informed prototyping process. 

There are five primary sections to this review: 

1. Objectives and outcomes of prototyping 

2. Incorporating prototyping in the design process 

3. General principles for prototyping 

4. Strategic techniques for prototyping 

5. Comparison of fabrication technologies 

The objective of this review is to explore theoretical and experimental (or 

empirical) research on identifying and understanding prototyping principles, critical 

process variables and types of prototyping, and associated correlations to design 

outcome. Section 1 reviews high-level objectives of prototyping. Section 2 outlines 

research on integrating prototyping with other aspects of the design process. Section 3 

reviews the general theory of design principles, and specific principles for prototyping. 

Section 4 provides a detailed review of strategic methods. These methods help to enhance 

the repeatability of successful outcome, and increase the efficiency of resource 

deployment. Finally, Section 5 provides a comparative overview of fabrication 

techniques. 

Building on this review, the work aims to identify critical areas of emerging 

research, and potential future directions for experimental studies of prototyping. The 
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techniques and methods presented in this chapter also help to cross-compare the many 

forms of prototyping which are available. Figure 2.1 depicts several prototypes from 

research projects of the SUTD-MIT International Design Center (a joint venture of 

Singapore University of Technology and Design (SUTD) and Massachusetts Institute of 

Technology (MIT)) and one from an Instructable [24]. These examples include several 

different forms of prototype.   
 

    

Figure 2.1:  From left to right: CAD render of a prototype 'M.C. Escher' sculpture figure 
from two views; LEGO prototype for an atomic force microscope stage; 
functional prototype for a DIY eye-tracking design (adapted from ‘The 
eyewriter’ [24]); a functional fluid flow visualization chamber prototype. 
Each of these prototypes has a different level of fidelity, and was fabricated 
using different processes. 

Setting the Stage 

A physical prototype is a fabricated object that approximates a feature (or 

multiple features) of a product or system [19]. Prototypes convey and feel; they can also 

provide a venue for validating or improving hardware selection [19]. Design and 

prototyping have been interwoven throughout history. Michelangelo used physical 

prototypes to communicate construction details, and for marketing to investors [2]. 

Palladio used full-scale wooden prototypes of architectural elements to plan costly stone 

works [2]. Henry Ford explored nineteen models (some of which were prototypes) before 
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finalizing the revolutionary model T design [3]. The triumph of Dyson's cyclonic vacuum 

was only achieved after 5,127 prototypes [4].  

There are overall trends in how individual industries approach prototyping [25]. 

Some are driven by achieving specifications (typically those developing large and 

complex systems), while others, typically more agile firms, focus on prototyping to 

explore and develop a design [25]. There are several apparent context factors (risk, 

capabilities, requirements, etc.) that are critical to planning a prototyping effort [17].  

Prototyping implies a certain partitioning of a design problem or opportunity. This 

partitioning influences the nature of information that can be explored and learned from a 

prototype[18]. Therefore, a prototyping strategy should carefully planned, with specific 

attributes related to the application [17]. Designers may explicitly consider what type of 

activities (testing) will be performed with the prototype, and assess associated risks [19]. 

Strategic methods include planning tables [10, 19], and heuristic guidelines [26-31]. 

Factorial experiments may also assist greatly in identifying critical parameters [19]. 

Despite the fact that prototypes may differ in some aspects from a final product, they 

provide a concrete interface between the designer (or user) and the design space [11]. It is 

critical to include consideration of how a design will affect human behavior.  Prototypes 

permit the acquisition of this knowledge by direct interaction with customers and stake-

holders (individuals and groups) [32].  

Experimental studies have explored the engagement of prototyping in various 

activities. For example, concept generation is encouraged to evolve with and be informed 

by the prototyping process; proof-of-concept prototyping could occur throughout any 

phase of the design process [33]. It has also been observed that successful teams engage 

in more collaborative work, which physical and virtual prototypes can facilitate [34]. 
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Research shows that using a taxonomy of prototypes may foster communication 

within multidisciplinary design teams [35]. Several detailed taxonomies of prototypes 

have been proposed. A typical first taxonomic division is between prototypes that address 

form and those that address function [19, 36, 37]. Another common distinction is the 

variable level of fidelity of a prototype with respect to the final model [8, 38]. Finally, a 

distinction is typically drawn between virtual (simulations, visualization or computational 

geometric modeling) and physical models [38]. This work develops an expanded index 

which provides a functional model of the expected outcomes of various prototyping 

activities through synthesis of empirical studies.  
 

2.2 OBJECTIVES AND OUTCOMES 

There are many potential objectives to prototyping. This section explores a set of 

objectives and outcomes that have been explored in some detail across multiple sources. 

Figure 2.2 presents several of the most common objectives, where prevalence of the 

objective is proportional to box height in the diagram. The objectives where listed in each 

of the articles from this study which addressed this topic directly. For example, 29 

articles from the review directly referred to refinement as a primary objective of 

prototyping. The binning was completed iteratively by comparing definitions. For 

instance, 'exploration' was binned with 'navigate the design space', as in both cases the 

same activity occurs. This prevalence is a rough metric that identifies where the literature 

appears to have the most focus relative to each objective. Although this analysis is 

independent of the value or potential impact of each objective, it helps to outline the 

literature’s focus. This list of objectives builds on lists identified in other foundational 

works.  Details are expanded throughout the section. 
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Figure 2.2:  Frequently cited prototyping objectives. Each box’s height is proportional to 
the number of sources from the review which refer to a given objective. 
Refinement, communication, and exploration are the most frequently 
observed.  

Refinement 

Several of the benefits of prototyping relate to design concept refinement. 

Prototyping is used to clarify requirements and reveal critical design concerns [12]. 

Physical models, or prototypes, help to identify potential changes in a design, and result 

in performance increase [39, 40]. Prototypes may also be tested under a variety of 

conditions [19]. These conditions may be binary or continuous [19]. A parametric 

prototype may be used to this end, in which styling and other design features are 

optimized via the sequential testing and manipulation of parameters [41]. Another 

refinement activity is simulated use [19].  

The US Department of Defense (DoD) uses prototypes as a forum for competitive 

design, system demonstration, manufacture planning, cost estimation, and risk mitigation 

[42]. Some of the other benefits observed by the DoD are: quality decision making, early 

change incorporation, system interface testing, and earlier testing [17]. An observational 

Refinement

Communication and Usability

Exploration and Validation

Active Learning
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study resulted in identification of several related benefits of prototyping including: 

feasibility testing, error reduction, and realistic requirement assessment (including 

correction of erroneous mental models) [6]. In tandem with these findings, the study 

identified common mistakes made in prototyping efforts which may include unexpected 

critical failure loads/modes, interface misalignment, and high cost [6]. It has been 

experimentally observed that physical prototypes are superior for identifying unexpected 

issues, and virtual prototypes are superior for refining function [38]. A relevant key 

difference between physical and virtual prototypes is that construction of a virtual 

prototype does not consume material. However, virtual prototypes do require a pre-

established theoretical model of phenomena relevant to the design.  

Communication and Usability 

Research supports prototypes as essential in the exploration of usability [43]. 

Prototypes enable observation of interaction between the user and the device, or between 

multiple users (if it is relevant to the specific design) [44]. It is likely for this reason that 

developers frequently employ prototypes for the purpose of illustration [7]. Designers at 

IDEO (Palo Alto, CA), for example, list understanding experiences, exploring designs, 

and design concept communication as the core value generating activities for prototypes 

[45]. A meta-review of case studies reports that rapid prototyping was a success in 85% 

of cases, and with significant benefit for enhancing usability of a design, ease of use, and 

user needs identification [12].  Prototypes can also demonstrate the feel of a product, or 

provide an avenue for marketing [19]. From a meta-review of industry case studies on 

prototyping, it was found that rapid prototypes reduce designer effort, increase end-user 

participation, enhance cost estimation accuracy, and require less expertise to implement 

[12].  These effects may be due to the reciprocal relationship between requirements and 
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prototypes; in other words prototyping clarifies requirements and leads to these outcomes 

[12].  An experimental study supports that deploying a rapid prototype during client 

interactions significantly enhanced quality and usability of the design, as well as 

promoting relations with the client [46].  

Exploration and Validation 

Two high level processes in design with which prototyping can be associated are 

divergence and convergence. Divergence implies gathering information and generating 

new concepts, while convergence implies selecting or refining one or more concepts [9]. 

In other words, two key roles of prototypes are exploration and validation [7, 8]. Some 

companies, particularly those working in highly complex systems, drive prototypes by 

specification as a metric for success, while others emphasize continual explorative 

prototyping [25]. Experimental data supports that a key goal of prototypes is to test and 

select among concepts [47]. Investigation of industry also shows that practicing designers 

frequently use physical prototypes to successfully aid in the concept generation process 

[48].   

Active Learning 

In this context, active learning applies not only in the educational sense, but in 

terms of advancing designers' mental models of phenomenal interactions. A study from 

psychology finds that when children are tasked with ordering physical objects before 

using them to explain a concept (such as division) their cognition is higher than if the 

objects were pre-arranged (for instance, set in ordered rows) [49]. Experimental analysis 

of prototyping also shows that use of prototypes is directly correlated with knowledge 

acquisition about the design space (this is in turn correlated with success) [50]. Another 

study of industry-academic design project collaborations, observes that physical models 
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demonstrate flexibility across a range of disciplines and generally support design 

education [51]. Student's in design courses report that hands-on experiences increase the 

relevance of coursework [52-54]. Study of a cross-course machine shop prototyping 

project supports that prototyping facilitates hands-on learning and results in knowledge 

integration [55]. Finally, from ethnographic observation of practice, prototypes appear to 

be critical in the psychological experience of the designer, for re-evaluating failure as an 

opportunity to learn, enhancing a sense of progress, and encouraging creative abilities 

[56].   

2.3: PROTOTYPING AND DESIGN  

A number of experimental studies have explored how and when to integrate 

prototyping into the design process. This subsection reviews several topics with regard to 

prototyping and the design process, while Subsections 2.4, 2.5, and 2.6 review 

prototyping design principles, strategic techniques, and fabrication, respectively.  

 Table 2.1 highlights a few points that will be examined. 
 
Variable Design Heuristic 
Timing early prototyping is the most critical 
Ideation prototypes lead to functional ideas 
Fixation fast prototyping reduces fixation 
Feedback feedback may induce corrections but also increase fixation 
Parts part integration is correlated to success 
Fidelity higher fidelity representations lead to accurate interpretation of the design 
Usability end-user testing (usability) may increase assessment accuracy 

Table 2.1:  Overview of general findings on prototyping in design. Detailed references 
supplied in the following section. 
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Timing 

One of the essential and expected benefits of prototyping, as observed from a 

DoD study, is to act as an early-stage mitigation of risk [57]. It is critical that the process 

occur early for success [57]; and to prototype the most difficult components first [19]. 

From another DoD study, prototyping efforts occurred more often (20.5% of all projects) 

during the first phase than the second or third phase of prototype development (phases in 

this case simply refers to segmentation of the project timeline) [17]. However, a review 

of industry practices observes that the mean time to prototype from concept can vary 

greatly by the company.  These differences may be driven by practical aspects of design 

context (such as system complexity) [25]. An industry informed method thus implies that 

designers need to explicitly and strategically consider when to engage in prototyping 

[19]. 

There are significant experimentally tested correlations with timing and 

prototyping [58]. A video protocol study of physical artifacts during design found that on 

average, in terms of physical interaction, tools were handled more often than sketches, 

notes, or the product itself [59]. Designers spend on average only a small percentage of 

actual design time handling a physical object. The majority of time is spent in learning 

and observing visual patterns (looking at the objects or sketches) [59]. Observation shows 

that successful teams start prototyping earlier in the process and do so throughout a 

project, while less successful teams used notes and a computer more often [34]. Late 

prototyping is correlated with unsuccessful efforts [34]. In fact, surprisingly, committing 

a larger amount of time to a project does not correlate with greater success; however, 

there is a strong positive correlation with early time spent prototyping (towards the 

beginning of the project) that generally decreases over time [58]. Specifically, 

prototyping during the first 30% of a design project is strongly correlated with success 
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[60]. A strategic prototyping method was shown to induce earlier and more frequent 

fabrication. This method resulted in a performance increase compared to a control group 

which was not exposed to this method [27, 29]. A related method, focused on aiding 

designers in selecting between virtual versus physical prototyping, also appears to 

encourage earlier prototyping. In this study, the final build was physical, and the 

participants chose between either physical or virtual modeling as the platform for concept 

development and iteration [30]. 

Ideation with Prototypes 

Prototypes are critical not only for evaluation, but also for inquisitive exploration 

of concepts, as they enable organic learning and discovery [61]. However, it is important 

to strategically employ prototype-assisted ideation. For instance, Toyota developed a 

novel method of initiating all design in CAD, to remove the inaccuracies of traditional 

scanning of clay models. A general observation of this change was that the design team 

was able to explore changes much more rapidly with lower risk. There was also a 

smoother integration with manufacturing as the parts were already modeled [25]. A case 

study of design firms finds that practicing designers successfully incorporate prototypes 

into ideation [48].  

Experimental studies have also made significant findings about prototyping and 

ideation. Ideation with prototypes can increase the percentage of functional ideas versus 

pure sketching, and a sufficiently simple (fast) method of prototyping will have 

equivalent novelty to pure sketching [39, 62]. In this context a functional idea was 

defined as a concept which is feasible to build and test with the given material 

restrictions. Another study found that individuals provided with foam core (a continuous 

material) instead of erector sets (a modular, discrete material) included dimensions in 
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sketches [63]. Another study found that constant prototyping led to new design ideas as 

compared to late prototyping and no prototyping conditions [64]. Physical model 

construction may also help identify differences between a concept and real behavior [65]. 

Further study may be required to fully map the relationships between prototyping and 

ideation [59]. However, given the observation that prototypes lead to functional ideas 

[62], and a recent study that design concept quality is critical to outcome [60], the 

potential benefit of interweaving prototyping and ideation is clear. 

A survey found that industrial design engineers, both graduate students and 

professionals, used objects and images for inspiration in design ideation more often than 

text [66]. Professionals typically report supporting CAD design with external sketches 

[67]. Representation form may also affect what type of design information can later be 

extracted [68]. A study shows that designers successfully and confidently extracted both 

requirement satisfaction, and functionality from physical prototypes (either low or high 

fidelity), and high fidelity (CAD) representations; while sketches permitted extraction of 

functionality but not requirement satisfaction [68].  

Fixation Effects 

An experimental study identified that introducing an exemplar to teams before 

prototyping began resulted in feature borrowing from that exemplar. However, teams not 

exposed to the exemplar borrowed features from each other instead. There was no 

significant difference in the total number quantity of borrowing [69]. In another study 

between a sketching only and a prototyping condition, where both were exposed to an 

exemplar, those given the physical prototyping condition were less fixated to the example 

[70]. The prototyping groups also produced designs with better performance, as would be 

expected from the previously reported correlation with low fixation and high 
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performance [70]. One study found that prototypes may be used more often to 

communicate within domain analogies, and sketches for between-domain analogies. This 

case study was limited to a single team, however, and does not report full ideation results, 

only those related to analogy use [71]. A more detailed empirical study finds that 

prototypes will assist in mitigating fixation, but that a cumbersome prototyping process 

can slow down ideation to the point that variety will suffer. Empirical results show no 

reduction in variety with a sufficiently fast process compared to a sketching only 

condition [72].  

Feedback on Prototypes 

A case study observed that designers were hesitant to show prototypes to 

executives or managers, but they were comfortable showing their peers [25]. In some 

prototyping cultures, stakeholders expect high-fidelity prototypes, and may reject a 

project when presented with a low fidelity prototype [25]. A study of prototyping and 

funding at the DoD supports this conclusion with the comment that “Admirals are 

inclined to sponsor huge money programs, not relatively inexpensive programs at ‘a 

Captains budget" [73]. Feedback can thus influence the way prototyping programs are 

designed in a reward cycle [73]. There is often an open question regarding ‘who owns the 

prototype?’ and design of the timing for engagement of management, customers, and 

suppliers, etc. should become engaged with the process [25]. An empirical study 

observed this tradeoff: feedback leads to corrected errors but may also increase fixation 

[64].  

Novel Metrics 

It is critical for designers to define the metrics that will be used to evaluate 

prototypes, and how the metrics may be assessed [19].  Considering one design field, 
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there is a recognized problem in information science research that although meta-data is 

an important component of an information artifact, there is often little strategy for its 

assessment [74]. As prototyping is also often a form of information collection, it is 

critical to consider how the information gained from a prototype can be used more than 

once. In other words, prototypes are often designed, fabricated, tested, and discarded. 

There is an opportunity to develop means for integrating or tracking design knowledge 

across efforts.  

Some methods place emphasis on metrics for usability. It is critical that 

prototypes capture the voice of the customer and the user experience during interaction 

[75]. A case-based study thus explored a novel metric for prototyping, which is the 

interactivity level [31]. An assessment table may be employed to evaluate the following 

aspects of prototype usability: context (use situation), function, inputs,  tasks required of 

user, outputs, input-task-output cycle[31]. In this table, Likert values can be assigned to 

evaluate a prototype’s interactivity [31].  

Another set of metrics can assess the information fidelity in the representation. An 

experimental study compared the fidelity of several representations, as well as how 

confident the extractor is in the information [68]. This experimental study finds that 

higher fidelity representations lead to more accurate interpretations, and that prototypes 

are generally interpretable (compared to sketches) [68].  

An experimental study observed a surprising inverse correlation with the number 

of parts and the success of a prototype [58]. In general, there is a nearly linear trend of 

part number increase over the course of project development [58]. However, projects that 

do not exhibit this trend are more successful; prototypes with more integrated 

components performed well [58]. This observation could potentially be applied in a 
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feedforward approach. A designer could actively seek to reduce the number of parts in a 

prototype.   

2.4: GENERAL PRINCIPLES FOR PROTOTYPING 

Billy Koen observed that heuristics or principles are at the center of the design 

engineering methodology. They are characterized by provision of aid or direction towards 

the solution of a problem. They guide, but may not in and of themselves resolve a 

problem [21, 76]. Furthermore, a principle can be defined as an objective paired with a 

means of achieving that objective [77]. One avenue for basic design research is to 

categorize principle approaches in a given domain. Categorization and classification are 

essential to the development of design principles, as categorization facilitates the 

representation of large amounts of information in a compact form [22]. There are several 

established avenues for this type of research. Avenues include: critical analysis of design 

repositories, literature review and synthesis, controlled experiments, and deductive 

analysis. Several studies have explored principles of prototyping. Work in design 

research on pattern language, and content analysis also informs principle extraction [78, 

79].  

Five principles of do-it-yourself (DIY) prototyping were extracted from a study of 

the crowdsourced database Instructables.com. Instructables is a unique repository in that 

the over 100,000 entries contain not only representations of the final design, but also a 

cataloguing of the fabrication, failures, and process of development. Principles were 

extracted through iterative review of strategically selected entries in the database. 

Crowdsourced analysis was applied to validate presence of the principles. A controlled 

study was also conducted to determine that introduction of these principles to designers 

leads to enhanced prototyping outcome. This is compared to a control group that applied 
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a traditional stage gate approach and was not exposed to the principles. These principles 

are [80]: 

• Hack commercial products to reduce cost and effort of achieving function. 

• Employ basic crafting to reduce the effort and cost of fabrication. 

• Prepare fabrication blueprints to manage complexity and increase accuracy of 

fabrication. 

• Repeat fabrication processes to increase the efficiency of fabrication. 

• Include structural voids to increase strength to weight ratio of the prototype. 

Prototyping principles were also extracted from the repository Thingiverse.com. 

Thingiverse is an extensive repository of three dimensional modeling files. It is primarily 

intended as forum to share source components for additive manufacture. One advantage 

of Thingiverse for design repository analysis is that design evolutions can be tracked 

through a function of the database called 'remixing' in which a parent (original) part is 

modified and reposted to the site. Principles were extracted by identifying changes 

between remixes. Twenty three principles for additive manufacturing design prototypes 

were identified from this study. Example principles include: reduce weight, material cost, 

and preserve stability by replacing solid volumes with cellular structures; minimize 

design time and effort by reusing already-designed component geometry; minimize 

assembly time and number of components by incorporating snap fits when possible [81]. 

It is notable that several prototyping principles were common to both of these studies.  

In a general way, this literature review also leads to the identification of 

prototyping principles. Observations from the objectives section can be paired with 

individual techniques to achieve principle approaches. This comparison is highlighted in 

Table 2.2, which follows in Subsection 2.5. 
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2.5: INDIVIDUAL TECHNIQUES 

An individual technique is a process for resolving one aspect of a prototyping 

effort. Techniques guide development more directly than a principle. However, the 

choice of whether or not to implement a given technique must be weighed carefully. 

They can be integrated in strategic methods for the prototyping process [26, 27, 29, 82] . 

Table 2.2.2 provides a general mapping between objectives and techniques.  The content 

summarizes results from the empirical research. Expected benefits and challenges of 

individual techniques are listed according to frequency of citation. If there were several 

empirical sources that identified an outcome, then it would map to the frequently cited 

bin. This chart helps to identify objectives of each individual method at a glance. It 

functions as an index. The rest of this Subsection expands details of each technique.  
	  

  Outcomes 
 Legend (how frequently each 

outcome is cited as a likely 
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Physical (complete)         

Table 2.2:  Mapping between techniques and likely outcomes. Relative frequency with 
which each outcome is cited as an expected benefit of each technique.  
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Relaxed Requirement Prototyping 

For some prototypes, the requirements may be relaxed from final values (example 

shown in Figure 2.3). Motivation for this approach can be explained by the tradeoff 

between model accuracy and cost [19]. A less accurate model may at times be sufficient 

because of the benefit of reduced costs. DoD research identifies that a low fidelity 

prototype (or a “strawman”) is essential for early stage risk reduction and refining design 

requirements [17, 42, 57]. Early stage low fidelity prototyping can facilitate “moving the 

ball forward” [83]. Relaxation of requirements must be implemented carefully to ensure 

that useful information is obtained. It is critical that the prototype is tested in a realistic 

environment [42]. The designer can specify what requirement simplifications are 

acceptable for a prototype [19]. It has been suggested that threshold minimum 

requirements can be addressed in early development stages [84]. Relaxed requirement 

prototyping can act as a facilitator to parallel prototyping and iteration [85] at a more 

rapid pace [42]. This can also be achieved without loss of function. An example is 

retrofitting new function to an existing product (reduced fabrication requirements) [86]. 

With this approach, however, it is critical to realistically assess feasibility and cost of 

manufacture [87]. 
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Figure 2.3:  Example relaxed requirement prototype (left) and full fidelity requirement 
prototype(right). The design is a whiteboard cube. The relaxed requirement 
prototype is made from poster board. It allows examination of feel and 
function at low cost, but durability is very low. The acrylic pre-production 
prototype on the right is fully functional. The cost and time of production 
were substantially higher for the full prototype. It was only produced after 
the relaxed requirement prototype was tested successfully.  

Experimental studies have explored prototype requirement specification. 

Prototype fidelity predetermines potential for certain insights from a prototype [68]. In 

general, the order of decreasing fidelity is given by: high fidelity prototype, low fidelity 

prototype, CAD, sketch [68]. The first three may permit successful functional 

interpretation; however, only high fidelity prototypes are observed to permit assessment 

of full manufacturability [68]. Low fidelity prototyping fosters a sense of forward 

progress, learning from failure, and concept expression without fixation on detail [88]. 

Methods have been demonstrated to guide successful implementation of requirement 

relaxation. A strategy method has been shown to induce requirement relaxation at early 

stages to improve design. It was also observed that relaxed requirement prototypes cost 

less and required less time to build [26-28]. The strategic relaxation of requirements on 

early prototypes does not seem to have any adverse effects on final performance [29].  
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Mockup Testing 

A mockup is a prototype that demonstrates a feature(s) of a system or product 

concept in an abstract, high-level way (example shown in Figure 2.4). Although mockups 

may only approximate a system’s or product’s actual physical behavior, they are very 

useful and may be more practical in some stages of development [19]. Techniques in this 

category (storytelling, vignettes, cartoons, and amateur videos) can also be more holistic 

and touch on several points at once [89]. They can also incorporate the designer’s play 

acting usage scenarios (and components) by the designer, such as IDEO’s bodystorming  

[45]. Scenario methods can be enhanced with preconceived action prompts to guide 

scenarios, or with requirements for quantitative observation such as note taking at timed 

intervals [45].  
 

 

Figure 2.4:  Illustration of an actual paper mockup for the structure of an atomic force 
microscope casing. The model was fabricated (with paper and clay) in less 
than 15 minutes.  
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Recent studies have identified that scenarios can be explored through narrative to 

achieve novel predictive modeling results. An applied narrative for the purpose of 

exploring a functional design is known as Zygotics, or science fiction prototypes [90]. 

The designer constructs a narrative to introduce the design into various potential future 

scenarios [90]. This method enables an immersive experience of the design that might be 

otherwise impossible [91], as well as encouraging precognitive analysis of the design’s 

interaction with people and circumstances to make new discoveries [90]. It is effectively 

cognition-based usability testing. The following is a sample taken from a Zygotic 

Vignette [90]: 

…Freeway Savage was the first in his downtown zonal grid to install the device. 
As he walked to the bathroom he heard the letterbox yap and a delivery thud onto 
the floor. Curious, he entered the hallway and picked up the parcel with its 
FedBot logo. He wasn't expecting a delivery, but then it wasn't about expectation 
these days. Weighing the package in his hands, Savage moved back into the 
bedroom and sat heavily on the bed. The box contained a power cell, a 
replacement for the Living WallTM energy port which was, he now understood, 
about to run out of juice. 

…Smith held up a finger to indicate a question: “This ADEM App. It predicts 
when the people it serves need things, yes?”Servis' mood picked up. “Take a pair 
of sneakers, Chief. The Trypolysinuate sole has built-in sensors which enable it to 
monitor its own state of depletion. It's constantly feeding this data back to the 
Cloak. And it's the same for every other product in the citizen's life. 

Mockups can also represent a partitioned effort. For instance paper mockups 

could represent the functionality of different subsystems of a design [92], e.g. software 

and hardware are each represented with distinct mockups [92]. Paper mockups were 

found to be roughly equivalent to virtual prototypes for obtaining usability feedback in a 

software interface design experiment [93]. Mockups may be particularly useful when 

capabilities do not permit fabrication of a functional form, or if modifications are desired 

from non-experts [93]. An experimental study, of website menu design found that paper 
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prototyping encouraged meta-discussion of the grouping of menu topics [94]. This may 

be because low fidelity prototypes encourage high level discussion, as only the basic 

concept is present [95]. 

Isolated Subsystem Testing 

In isolated subsystem testing, a prototype is segmented, and a single subsystem 

(or group of subsystems) is explored in isolation (example shown in Figure 2.5). 

Constructing subsystems in isolation can permit development of a tailored strategy for 

that subsystem [84]. A study of military design efforts found that isolated subsystem 

testing (for large and complex systems) can provide useful data for about 60% of the cost 

of an integrated prototype [42]. Specifically, each subsystem can have a unique set of 

requirements [15]. The subsytem prototypes may be a mixture of physical, virtual [15], or 

even a scaled model [96]. Isolated subsystem prototypes can also aid in ideation with 

users [97].   
 

 

Figure 2.5:  An example isolated subsytem prototype. This is a testing rig for a three-
phase mechanical pitch sensor on a rolling cart robot. The system is 
completely isolated. Electrical contacts are not included. The only function 
being tested is the relationship between tilt angle and the position of the 
rolling contacts. The basic phenomena of the sensor geometry can be 
evaluated without time expenditure on the wiring or other systems. 
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It is possible to pseudo-connect the isolated models (see also mixed prototype). 

This approach is analogous to designing the elements of a network.  In this network 

analogy, it is critical to simulate information transmission across interfaces. Artificial 

interfacing also permits design of control system design without an integrated prototype. 

A case study demonstrated an artificially interfaced model for subcomponents in a 

vehicle chassis that achieved 95% test accuracy to the integrated chassis model on 

average (90% minimum accuracy across varied test conditions) [15].  

Isolated subsystems can be used as a mechanism for generative design. For the 

example in Figure 2.6, and other cases of tectonic design, the designer specifies 

properties of a basic building block. Then an algorithm works to construct a more 

complex figure, using these blocks. This approach has been demonstrated at the research 

level. However there are currently only a few commercial applications supporting 

tectonic design [2].  
 

 

Figure 2.6:  A tectonic artifact adapted from [2]. Although the super structure is 
complex, the form was segmented into simple-to-manufacture triangles with 
an algorithm.  
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Experimental studies have explored isolated subsystem testing. Presenting each 

function of the design with a separate abstract representation enables rapid in-depth 

exploration of different types of information [97]. A strategy based method can 

encourage use of subsystem isolation [28]. Isolating a subsystem significantly reduces the 

cost of prototyping without adversely affecting performance [29]. However, it may be 

more difficult for isolated subsystems to address unanticipated needs [98].  

Scaled Prototyping 

A scaled prototype mimics behavior(s) of a larger (or smaller) design through 

similitude (example shown in Figure 2.7). The discovery of similitude is attributed to 

William Froude, in the 1870’s [99]. Froude discovered that by identifying critical factors 

of a phenomenon (e.g. the way gravity drives wave formation), one can develop the 

models to extrapolate real conditions from scaled models [99]. By the 1940’s this 

technique was fully integrated into US naval design programs [99]. Scaling may enable 

prototyping in cases where a full scale model is not feasible [84]. Therefore, scaling can 

also be used to save resources [19]. As the economy of computer models increases, it 

becomes possible to scale virtual models to include incredibly dense design information 

[100]. While certain buildings were once represented as a series of basic blocks, they can 

now be organically crafted in each detail [100].  
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Figure 2.7:  Example of a scaled prototype. In this case an architectural design can be 
examined in detail for very low cost relative to a full scale model. 

Empirical similitude is an advanced technique of similitude; it is based on 

forming the vector product of multiple models of similitude (which are each similar in a 

different variable) for the final design [101-111]. There are a number of alternative 

mathematical techniques for approximating the vector product and generating models, 

where the accuracy is typically high for such domains as heat transfer, mechanics and 

non-linear fluid dynamics [101-111].  

Use of similitude scaling can be induced with a strategy method. A controlled 

empirical study with participants from mechanical engineering found that scaled models 

cost significantly less than full prototypes without adverse performance effects [26, 28, 

29]. 

Iterative Prototyping 

Iteration is the sequential testing and refinement of a prototype [84] (example 

shown in Figure 2.8). It is reported as a key strategy element, and allows gradual 
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achievement of requirements [84]. Iteration is particularly useful to meet rigid 

(challenging) requirements [10]. Iteration is critical to obtaining insights into difficult 

issues, managing high uncertainty, identifying errors and simplifying parts [112]. 

Regarding iterations to increase modeling accuracy, a probabilistic approach was used to 

estimate that a prototype will have sufficiently little error after a number of iterations 

proportional to the ratio of avoidable cost (of malfunction) divided by the testing cost 

[85].  
 

 

Figure 2.8:  An example of iterative design. These three controllers show vast 
improvements in ergonomics with each iteration. 

Iteration can be used to improve a design concept. Several controlled experiments 

have shown that groups iterating on a design significantly outperform teams without 

iteration, based on the evaluation of self-efficacy and design requirement satisfaction [26-

29, 113]. It has also been shown that a strategy method can induce the use of iteration, 

compared to a control group [27]. Further exploration has shown that there is a continued 

and marginal benefit to iteration of approximately 12% performance increase per build 

for the cases studied [29]. This increase continued even up to 20 iterations at the end of a 

study [29]. There also appears to be a reduction in time required to execute iterations. 

One study showed a 75% drop between the first and second model, and an 8% average 

drop for continuing iterations [29]. However, an observational study noticed that 
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selection of fabrication methods has a significant impact on how many iterations are 

pursued on average (a more complicated method leads to fewer iterations) [114]. 

Parallel Prototyping 

In parallel prototyping, multiple potential design concepts are fabricated and 

compared in parallel or concurrently (example shown in Figure 2.9). Parallel prototyping 

can help provide critical feedback for concept selection [84]. A prototyping effort may 

also explore an opportunity or problem through subdivisions in parallel [18]. Designers at 

IDEO are strongly encouraged to bring a prototype, or several, to each meeting [83]. A 

probabilistic study suggests that to maximize profit, the number of parallel designs can be 

proportional to the ratio of profit uncertainty to the cost of each design [115]. Or, in a 

more general way, multiple designs in parallel are encouraged when cost (budget) is 

flexible [10]. 
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Figure 2.9:  An example of parallel prototyping. Three alternative proof of concept 
designs for the strut distribution in a prosthetic leg are explored 
simultaneously. Top three designs before testing. Bottom after a metal 
weight is placed on each prototype. 

Experimental studies support the benefits of parallel prototyping. Several 

controlled experimental studies have shown that groups producing prototypes in parallel 

produce designs that significantly outperform groups producing a single design [29, 116-

119]. This result holds true whether the teams are iterating [116, 117], or only executing a 

single test [119]. Participants in an empirical study who pursued parallel prototyping 

reported an increased sense of time constraint as compared to teams that only prototyped 

a single concept [119]. Pursuit of parallel prototypes may lead to higher concept diversity 

[117]. Presentation of several prototypes during critique can result in higher quality. 

Multiple prototypes permitted comparative evaluation of features, as opposed to purely 

negative/positive evaluation [118]. A strategy method has also been shown to encourage 

utilization of parallel prototyping compared to a control group [26].  
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Competitive Prototyping 

Competitive prototyping implies parallel prototyping engaged by separate entities 

(example shown in Figure 2.10). Competitive prototyping was developed at the 

Department of Defense to decrease expenditure [120]. However, competitive prototyping 

is effective in shorter term challenge activities between design teams (even with 3-5 

individuals per team). The benefit of having separate entities is that it allows for high 

design divergence [120]. Having multiple teams working on the problem can improve 

outcome [5]. In cases where contractors are competing, it allows comparison of alternate 

designs before committing to production [121]. Competitive prototyping also increases 

awareness of latent design requirements and aids in quantifying feasibility [73]. The 

physical embodiment of competitive designs is even more critical for large scale projects 

due to high risk factors [120]. Although it may increase cost to explore competing 

prototypes, the overall design costs likely will be reduced [121]. One risk is that the 

information produced by each effort may not be integrated. Knowledge integration is 

critical [122]. 
 

  

Figure 2.10: An example of competitively produced prototypes, adapted from [120]. 
These two helicopters were competing prototypes for a DoD contract. This 
approach allows for tangible comparison.  
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Cooperative Prototyping 

In cooperative prototyping, a group of users and designers are actively engaged 

with each other during concept development [123] (example shown in Figure 2.11). The 

system or product under examination may even be under control by a designer/operator 

in a separate room [123] (an augmented prototype), or simply a demonstrative mockup 

[124]. This tangibility makes the user’s feedback concrete [124]. In cooperative 

prototyping, the physical model is a catalyst for discussion about actual usage; therefore, 

it is critical that interaction (that the user has with the prototype) is open-ended, rather 

than proscribed by the designer [125]. An experimental study shows that providing 

multiple designs for group feedback in a cooperative setting produced a better outcome, 

compared to providing only a single design [118]. 
 

 

Figure 2.11:  An example of cooperative prototyping. In this case, the designer is 
discussing design requirements with potential users who have prototyped 
and presented a mockup of the product. 
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Virtual Prototyping 

A virtual prototype is one which is developed (and tested) on a computational 

platform (example shown in Figure 2.12). A review of the prototyping literature identifies 

that virtual models can permit complex analyses and facilitate production [84].  However, 

physical models provide unique user interaction capabilities [84]. Virtual models may 

also leave out unexpected phenomena [19]. However, the advancement of computer-

aided design and computational technology has enabled models that are both physically 

large and contain detailed design information [100]. These constructions may both be 

aesthetically graceful and accommodate diverse functionality [100]. Virtual models also 

allow for coupled design of the components and the manufacturing process [126]. Virtual 

designs also present new possibilities. Simulation, e.g. a product demo, can be held 

concurrently in many locations [14]. Virtual prototypes enable perturbation studies on 

design features at rapid pace and reduced cost compared to physical tests [84]. 

 

  
Figure 2.12:  An example virtual model. This CAD chair model, adapted from L. Sass 

[127], can be viewed and modified without the need for costly fabrication.  
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Virtual models allow for novel approaches to data collection. An example of this 

is taken from design of a rocket test chamber simulation at NASA. Test data was 

collected from a rocket in a chamber. The chamber and rocket were modeled in one 

simulation, and refined until the simulation matched experimental data. Then the 

chamber was removed in the simulation. This way, an accurate model of open-air 

performance was developed [128]. At BMW, a detailed wheel model provided low cost 

data that is considered to be as accurate as that from track tests [128]. This test also 

provided measurements which would be physically impossible to sense and record with a 

physical test [128]. For example, a virtual model can reveal key frequencies or loads that 

cause fatigue, which a physical test could not easily show [129]. Virtual product models, 

for example, sportswear, can be parametrically refined with virtual custom user models 

[130].  Models of a scoliotic correction-brace can simulate patient response with lower 

risk [131]. Virtual models can be supplied with multiple user data, such as for ergonomic 

exercise equipment [132]. Larger logistical problems can also be incorporated, for 

example, the entire process of constructing a bridge, including vehicle paths, platform 

design, and materials supply channels to avoid potential collisions, rebuild errors, and for 

resource optimization [133].  

Virtual modeling can also be used as tool to automate some aspects of design. 

Certain classes of problems that lend themselves to functional synthesis can be 

decomposed to grammatical formalisms, allowing for algorithmic generation and 

evaluation of virtual models of design solutions [134, 135]. Computational algorithms 

can also support multi-component heuristics [136]. For example, a genetic architectural 

design algorithm might test both aesthetic and structural features of a generated model 

[136]. Virtual models can even include multiple agents [137]. An architectural design 

included AI user-agents that walk around and interact with features of the design [137]. 
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Another example is rapid iterative design concept generation for geometry of a bus stop 

with passive air flow acceleration, as evaluated by computational fluid dynamics 

simulations [138]. 

Software design has reduced the effort of generating virtual models. Some 

developments in virtual modeling software include wireframe editable models to depict 

function [139], sketch-to-component automated recognition [140, 141], sketch-to-3D 

model recognition [142], or capture of 3D hand motion to draw 3D representations [143]. 

There are a plethora of impactful design problems relevant to virtual prototyping. 

Other novel virtual design cases include: custom prosthesis socket refinement [144], risk 

assessment and communication in construction of buildings [145], simulation of clothing 

that includes material drape [146], algorithmic design of automobile headlamp geometry 

and control circuit [147], or a virtual chassis manufacturing assembly environment [148].  

The empirical research supports the utility of virtual models. Practicing designers 

report predominant use of CAD for documentation, sketches for mnemonics, and both for 

communication and ideation [67]. Virtual prototypes have drastically lower costs than 

physical prototypes with roughly equal performance [29]. A computer prototype was 

reported to require less effort, and perform as well as a paper prototype for usability 

testing [93]. CAD models also compared equally well to traditional hand-carved foam 

models in a design exercise [149]. Indeed, virtual prototypes were found to be the faster 

and higher performing alternative to cardboard-physical prototyping for a linkage design 

task [30]. In a trial project, students even successfully remotely designed a prototype in 

CAD, which was then 3D printed and tested [150]. For evaluation of a product, virtual 

testing was found to match well with physical evaluation [151]. However, tactile material 

properties (such as texture) are not perceptible in the virtual format [151]. Participants in 

a study reported that virtual models require less “unnecessary work” [93]. 
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There are, however, a number of substantial limitations to virtual models. Virtual 

modeling requires a significant allocation of time to tool selection and perspective 

alignment [149]. This approach may take relatively longer, in some cases, than a physical 

prototype [29]. It is therefore critical to specify which parameters the model will address, 

to reduce unnecessary costs [152]. The decision to employ modeling versus physical 

prototyping can be driven by cost and expected accuracy [19, 153]. The approach with a 

higher ratio of accuracy to cost may be pursued [19, 153]. Virtual models may not 

capture all relevant physics [154]. However, advances in non-linear and multi-physics 

computational modeling capabilities are closing this gap [155]. 

Mixed Prototyping 

Prototypes can be developed by integrating various physical and virtual elements 

in one model. There are several reported forms of this mixed approach.  

One form of mixed prototype is the augmented reality prototype, in which 

auditory-visual simulations are overlaid on physical elements (example shown in Figure 

2.13). Functionality is added to visible features by an invisible agent, in a manner like the 

“Wizard of Oz” [123]. The prototype can be virtual, physical or mixed, and the user can 

be real or virtual [156]. This permits critical usability assessment [123]. There are several 

basic forms of augmented reality: screens embedded in the device, vision augmentation, 

and projection [157]. In the projection form, certain functions are demonstrated by 

projecting video of simulated features onto a physical mockup [158]. This process can be 

enabled by tracking user motion [159]. Another augmentation might consist of a casing 

with display and buttons which simulate a camera that is actually tethered to a PC which 

handles the image processing [45].  
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Augmented reality facilitates capturing the voice of the customer in a uniquely 

quantitative fashion [75]. An augmented reality prototype might, for example, integrate 

eye tracking for detailed use assessment [156]. Cost and time are also saved [160]. Mixed 

prototyping facilitates the potential to engage more senses in the user interaction 

environment at an earlier stage (sight, sound, touch, etc.) [43]. A unique benefit is the 

ability to independently manipulate each sensory feedback [160]. A controlled study 

found an augmented reality prototype to provide the same usability data, from 

participants, as a physical prototype [161]. 
 

 

Figure 2.13:  An example of a mixed prototype. Although in the physical world, there is 
only an aluminum frame; the users vision (and hearing) is augmented with a 
VR display to perceive a complete product.  

There are many other examples of augmented reality facilitating design: an 

environment in which the user can modify a live-functional simulation [162], support for 

training in manufacture to enhance efficiency [163], parametric manipulation of a 

physical mockup that is captured and used to update a CAD model [41], VR goggles that 
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are used to add detailed material depictions that are inserted to the user's vision (in this 

case objects were tracked with QR codes)[43].  

Hardware in the loop simulations allow integration of both virtual and physical 

prototypes for simulation of a complex system [15]. This approach allows requirements 

specific to the particular subsystem [15]. Information can be transmitted between each 

subsystem as required [15]. Physical components are typically used for subsystems with 

high predictive error; such models may be scaled [96]. User-interaction is also possible 

[164]. For example, signals from a driver holding a physical wheel could be transmitted 

to a suspension model, which supplies feedback to a servo on the wheel shaft [164]. 

Image and motion capture systems can be integrated to obtain highly detailed information 

of usage [165]. 

A related, enabling, technology is haptics. Haptics provide tactile feedback to 

simulate forces supplied in the actual product [166]. An empirical study reported that 

adding haptic feedback to a mixed prototype was preferable to users  [159]. One 

advantage of prototyping with haptic interfaces is in designing for visually impaired users 

[167]. Haptics can be classified based on what type of forces are applied (along different 

axes, rotating versus linear etc.) [166]. Haptics can also be used as a design tool; that is 

forces from a virtual model can be supplied as the designer interacts with it via a haptic 

interface [159]. A design trial reported that although the simulation of touch is crude, 

adding an element such as a ‘hammered surface’ was easier to apply and feel than with a 

physical model [159].  

Methods can help in selecting what type of virtual or mixed model to pursue. 

Filippi has proposed a method to enable selection of a physical, virtual, or augmented 

reality prototype by prompting the designer to assign weights in a table of factors [168]. 

These factors include: realism, error recognition, functionality, and others [168]. 



 42 

2.6: FABRICATION 

Various fabrication methods can be employed to embody a prototype. This 

section presents a detailed review of experimental research into novel fabrication 

approaches. Comparative research of the expected benefits of these methods is also 

reviewed. Table 2.3 provides a high level index of the approaches that are reviewed in 

this section. The table cross references approaches with expected capabilities. The 

approaches are general; for instance there are multiple subtractive methods. It is 

important to note that many other fabrication approaches exist. Other examples include 

molding or casting. The three categories were selected based on their frequent citation in 

the prototyping literature. The table was formed by evaluating the relative frequency with 

which each capability is cited. The 'frequently cited' bin is assigned when at least several 

articles refer to a given capability of a certain approach. Details are given below.  
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Component Source Selection 

When prototyping, there are several options for component sourcing: in-house 

production, outsourcing, and commercial off-the-shelf (COTS) component purchase. 

COTS components, or catalogue ordered components, can often save cost and time [19]. 

NASA has used COTS for a proof of concept satellite system prototype [169]. Modular 

COTS parts systems can be used to generate arbitrary geometries. An algorithm has been 

demonstrated to generate segmented ‘puzzle pieces’ that interlock to compose a 3D form 

supplied from CAD. The method has been demonstrated with LEGO pieces [170].  

For custom part design, two options are outsourcing or in house fabrication. 

Outsourcing permits pre-settled cost, and potentially enhanced quality [171]. Although 

outsourcing may be more costly it may reduce in-house strain, and provide access to 

specialized processes [84]. A Honk Kong ethnographic industry study finds that the 

decision to outsource or manufacture should consider organizational flexibility, expertise, 

and cost [172]. Technical facilities are another factor to consider, in-house manufacture 

may have unexpected costs (e.g. software, depreciation, material excess) [171]. 

Outsourcing a custom build may be avoided if the item or its manufacture is proprietary 

[171]. It is also important to note that when employing external contractors, reward 

structure may play a significant role in outcome [73].  

Handcrafting 

A rudimentary handcrafted prototype can be achieved with very little fabrication 

time (often on the order of minutes) [27, 173], whereas currently the fastest freeform 

fabrication process takes more than an hour for anything other than very small parts [174-

176]. Handcrafting has a connotation of basic materials and fabrication methods [177]; 

however, the emergence of maker technologies (e.g. Arduino) enable handcrafting of 

advanced electromechanical prototypes [63]. It is also possible to generate fabrication 
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patterns for handcrafting with computation [177]. Handcrafting also enables use of mixed 

materials and localized sourcing. In professional architecture, handcrafted models are 

traditionally used in several design stages. These range from feasibility models made in a 

single day, to full scale models that require four weeks of full time fabrication for final 

project displays [176]. Empirical studies show that handcrafting with continuous material 

(e.g. foam core) rather than modular materials (e.g. erector set) led to inclusion of 

dimensions in design sketches [63]. 

There is an emerging trend of individuals pushing forward the practice of micro-

production from their own home [178]. This so-called DIY movement is a re-emergence 

of the craft tradition [166] that is enabled by low cost modular technology (like 

microcontrollers [179]) and the information infrastructure of the Internet [178]. Examples 

of enabling infrastructure are crowdsourced databases like Instructables.com, an offshoot 

project of MIT’s Media Lab, which contains hundreds of thousands of detailed walk-

through instructions for product fabrication (at home) for low cost and often with basic 

tools [24]. Example products found on Instructables include: plasma phase pulse 

speakers, bicycle to motorcycle conversion, or homemade video arcades. Another 

example is Thingiverse.com, which is an open source platform for sharing part files for 

additive manufacture [180].  

Subtractive Fabrication 

There are several methods for subtractive fabrication. These include blade cutting, 

ablative laser cutting, milling, and jet cutting technologies. Most operate within a fixed 

cutting bed, while it is also possible that material is fed in one direction past a rastering 

head (allowing for a flexible work size) [2].  
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Ablative laser cutting consists of rastering a high power laser over a 2D material 

[2]. Laser cutting often requires very little training and can be applied to a wide variety of 

materials rapidly [2]. Laser cutting is generally limited to planar cutting, however, some 

multi-axis laser cutting tools are under development.  

Computer numerical controlled (CNC) machining is a subtractive rapid 

prototyping method [181]. Although the machine is costly and operation requires 

significant technical expertise (path debugging, etc.), parts are highly functional (for 

example made from cast aluminum) and rapidly produced [181]. CNC milling is 

restricted to line of sight cutting (no hollow parts) [182]. CNC-machined parts might be 

incorporated with parts from other methods for more flexibility [2, 183]. Another 

advantage of CNC parts is that they can be modified [184]. 

Water jet cutting is another form of CNC in which extremely high pressure water 

with a garnet powder suspension is used to supply the cutting force [185]. Water jet 

cutting can be extremely fast (300mm/min feed-rate); however, the feed-rate slows as 

material thickness increases [185].  The cost of water jet cutting a part can be as low as a 

few dollars, though the machine cost is roughly $25,000.00 USD [185]. It is possible to 

cut a great variety of materials with water jet cutting, from glass to stainless steel. 

It is intrinsically obvious that planar subtraction can result in 2D parts. However, 

novel research has shown that it is also possible to produce arbitrary 3D forms with 

planar processing, i.e., sheet material (example shown in Figure 2.14). Typically this is 

achieved through a three step process: (1) algorithmic deconstruction of a digital 3D 

form, (2) planar plate fabrication, and (3) plate assembly [186]. This interconnecting 

array of 2D plates most often employs sliding friction joints [187]; however joints formed 

with another process can also be incorporated [2, 188].  
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Figure 2.14:  An example of a 2D to 3D form, produced by planar segmentation 
algorithm. Adapted from [189] 

Various shape grammar segmentation algorithms have been proposed [187]. One 

demonstrates decomposition with ribs that are perpendicular to the compound surface 

[187]. It is possible to produce interlocking forms that either collapse in plane [190] or 

remain rigid (due to joint alignment) [191]. Multi-planar decomposition can enhance 

rigidity [192]. One algorithm even generates ‘pop-up’ forms from paper [193]. 

Several materials [194], and joining methods [127, 186, 195] have also been 

explored using this approach. Cardboard, paper and plywood can present incredibly low 

cost options for producing 3D artifacts [190-192, 196]. Use of plywood even permits 

functional furniture production [197, 198]. One algorithm reformulates approximations of 

existing 3D furniture from model decomposition. These reformulations have the 

advantage of not requiring additional fasteners [199]. Production of custom clothing has 

also been demonstrated (although sewing was required at the interface) [130]. 

Additive Manufacturing 

Additive manufacturing (AM), typically refers to an automated sequential 

fabrication process which consist of the production of many 2D layers to gradually form 

a 3D part. Blanther can be credited with the inspiration for AM, who filed a patent for a 
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technique of layered topographical maps in 1892 [19]. AM prototypes have many general 

applications: visualization, ergonomics, functional testing, manufacturing testing, molds, 

cost analysis, or marketing [19].  AM may even permit a direct transition between 

prototyping and manufacture. The range of specific applications for AM technology is 

vast, from 3D printed chocolate [200], to implants for facial reconstruction [201], or tile 

production for tectonic buildings [202]. A study finds that AM has a positive impact on 

design learning [203]. However, the utility of AM technology varies by application [176]. 

A realistic product can be produced in a short time period. This enables rapid iteration 

and application to highly customized situations (such as implants). However, some 

processes require multiple processing steps [35]. Implications of AM include: a more 

continuous design process (from concept to analysis); reduction of intractable problems 

(like doubly curved surfaces) [2]; exploration of many physical designs in parallel; and 

digitally composite materials. However, current CAD software has a limited capacity to 

fully engage some of these potentials [2, 188, 204]. As AM processes have several 

practical and theoretical layers of abstraction, and there are currently many opportunities 

for exploration and integration [205]. 

A number of design concerns have emerged relating to AM. Rosen proposes the 

question “Now that we can put material anywhere, how do we go about designing for that 

and why?” [189, 206-213]. This has led to the exploration and refinement of various 

finite element design algorithms for producing optimized meso-structures from a variable 

base cell design (variations typically include removal or thickening/thinning of struts in a 

lattice cell) to refine local quality [189, 206-213]. The file types used for maintaining and 

editing forms (STL is most common) also have various limitations  [214]. Part slicing 

and orientation can drastically alter quality in many of the processes [215]. Algorithms 

have been proposed to: refine slicing algorithms [216], locally refine layer thickness 



 48 

[216-219], refine printing paths [220], segment large parts for printing [221], or optimally 

re-orient parts [215]. Note that tolerancing may vary by process and result in negative or 

positive offset, depending on the nature of the process [220]. 

There are some observed limitations to AM. Currently, CAD modeling of 

functionally graded materials appears limited to experimental software [222, 223]. A case 

study demonstrates that AM was less affordable than small run ABS injection molding 

when several hundred copies of a small part (for a chain mechanism) were required 

[224]. Another case study also finds that interface assessment with AM parts may be 

inaccurate, although their production time is less than ABS injection molding [225]. Most 

current print beds are relatively small (less than 20 inches to a side), and there are various 

factors to be weighed when selecting among the various methods. A quantitative 

selection process may assist to consider cost, time, accuracy, material type, part size and 

part strength of each method [19].  

Table 2.4 reports some average capabilities of commonly discussed AM 

technologies. This information is averaged from several reports [174-176, 182, 226-228]. 

Cost for several machines was updated from a manufacturer’s website [229]. For some 

machines the cost has dropped by more than 98% in about ten years. These methods are 

reviewed in some detail in the remainder of the section.  
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  FDM SLA Polyjet SLS 3D Print LOM 

Minimum layer thickness (mm) 0.15 0.10 0.15 0.20 0.20 0.15 

Build rate (mm3 per hour) 100 65 40 65 400 400 

Build cost ($ per 110X110X110mm cube) 386 1230 2735 1170 125 220 

Print volume, (average measure by in3) 5000 7000 700 3000 2500 8000 

Max part failure strength (MPA) 50 75 N/A 512.7 5 N/A 

Machine cost, low end (USD) 200 2000 20000 50000 15000 22000 

Table 2.4:  A comparison of common AM methods 

Selective laser sintering (SLS) involves rastering a laser over the surface of a 

powder. Another powder layer is then added and the process repeats. Several materials 

have been demonstrated; even ceramics or metals can be used if a thermal binder is 

integrated [172, 174, 175, 226, 227]. Support is provided by the unfused powder of each 

layer, which is dusted off at removal [172, 174, 227]. Powder particles are taken to the 

glass transition temperature [176]. Typically an infrared laser is used [176]. Airflow, 

cooling rate and part geometry can affect accuracy [228]. Large parts may require a long 

cooling time [228]. Multi-material part delivery has been proposed [230]. 

Stereolithography (SLA) is based on rastering a laser over the surface of a 

photopolymer liquid [172, 174, 175, 226, 227]. SLA requires support structures to be 

built up under overhangs [172, 174, 175, 227]. SLA results in smooth surface finishes 

[176, 182]. SLA can support multiple colors and graded materials [176]. Laser geometry 

determines the theoretical minimum feature size; however tiny features may be too 

fragile [228]. Typically a UV laser is used (for photocuring) [176]. In some cases, the 

material may be toxic in the liquid state, and thus require careful handling [176].  

Fused filament fabrication (FFF), or fused deposition modeling (FDM) involves 

extruding a heated thermoplastic strand (typically ABS) as a nozzle is rastered over a 
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support table to gradually build up the part [172, 174-176, 228]. Support structures may 

be required in FDM, depending on part geometry. Multiple materials are possible but not 

gradient material builds [176]. Support material is required, and may take considerable 

effort to remove. Dissolvable supports are available in some machines [176, 182]. 

Support structures are trapped in cavities [228]. Some surface finishing may also be 

required.  

Polyjet printing is a multi-material extrusion process. A heated print head deposits 

polymers on a support bed [174-176, 226, 228]. The support material is easy to remove. 

Gradient materials are supported [174]. Note that each layer slightly melts the layer 

beneath it [176]. 

3D printing is considered an indirect method, as an inkjet deposits adhesive to 

bond powder (the powder is laid down as in an SLS machine) [174-176, 226, 228]. This 

is not to be confused with the colloquial term '3D printing' which typically means either 

FDM or AM in general. It saves build time to place the thinnest dimension along the (z-

axis) build direction, to reduce the total number of layers [226]. Parts are typically 

fragile, but they can be reinforced with an adhesive [228].  

Laminated Object Manufacturing (LOM) involves layering thin sheets [172, 174-

176, 226, 228]. The material comes from a roller, unspooling like a paper towel roll, that 

allows for rapid printing [172, 174-176, 226, 228]. Support material removal requires 

some effort [228]. Parts are also notably weaker (1/10 yield strength) along the axis of 

layering. 

There are a number of other AM methods. In beam interference solidification, two 

lasers intersect in a liquid filled vat, causing the material to solidify at that point [231]. 

Another form of sterolithography applies an infrared laser [231]. In solid ground curing, a 

physical mask is placed in front of a wide light source to direct light for curing each 
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successive layer [231]. Holographic interference solidification involves projecting a 

holographic image into liquid polymer and the whole object solidifies [231]. In 

electrosetting, layers are printed along with electrodes, then electric current is applied to 

set the powder [231]. Three dimensional welding is applied by a robotic arm that deposits 

metal in a 3D path with an arc welder [231]. Solid foil polymerization is similar to LOM 

except that the sheets are UV-curable and set with a UV laser [231]. Laser engineered net 

shaping (LENS) is a direct metal deposition process, in which metal powder is supplied 

by a deposition head, and then a separate laser system sinters the powder. One advantage 

of LENS is direct printing onto a contoured substrate. LENS also supports gradient 

materials; however, machine and material costs are high [175]. Foam-cut layering has 

also been presented as a technique for visualization [232, 233]. This might be done with 

paper also, and although it is a manual technique, it is very low cost [176]. Some 

specialized SLS machines work with metal powders. Additive manufacture of metal 

components has been demonstrated with a wide variety of metallic compounds from steel 

to gold. Crystal lattice structures in metal prints are relatively uncontrolled at this time, 

and research is ongoing in this area.  

Further methods propose rapid manufacture of large scale structures (e.g. houses). 

One concept employs a gantry for deposition, with a robot for troweling surface detail 

[234]. In another method, parts are algorithmically segmented, then mortise and tenon 

features are added for assembly of a part that is larger than the print bed [235]. A hybrid 

manufacturing technique (e.g. SLA and CNC) can also fabricate parts with superior 

material properties [236]. 

3D Scanning is often an enabling technology of AM, as models can be scanned 

and modified (if necessary) then directly reprinted. In most cases some assumptions of 

scale and calibration are required [237]. Surface reconstruction varies by algorithm [238], 
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various alternatives have been explored. Some algorithms have proven highly accurate 

even on complicated surface [239]. Scans also vary by technology; while laser scanning 

captures surface information, CT or magnetic resonance imaging MRI scans also capture 

internal structures [175]. Alternative methods include pattern projection, in which 

distortion of a light pattern projected onto the surface reveals its contours [240]. Pattern 

projection is static (the subject need not be rotated as is required in laser scanning) [240]. 

Another approach uses an algorithm to stitch common points of pictures taken at multiple 

perspectives to form a 3D shape [241], a process that can even be executed on a mobile 

phone. This method works well for buildings and large structures [241].  

Scanning has been incorporated with AM in diverse applications. In dentistry, 

scanning and AM are applied to form teeth and other prostheses [175]. MRI, coupled 

with rapid prototyping, was used to develop precise replications of the human vascular 

system [242]. These can be useful for study or surgical training [242]. A 3D scan of an 

athlete was also used in simulation then rapid prototyping of high performance 

sportswear [130]. 
 

2.7 CONCLUSION 

Summary of key observations for prototyping 

There are numerous established objectives and outcomes of prototyping. Two 

high level objectives of prototyping are exploration and validation of design concepts. 

However, prototyping is perhaps most well-known for design refinement. Studies of 

industry also highlight the critical importance of prototypes for communication, both for 

gathering usability data from the user and for communicating the concept to other 
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developers. Finally, prototypes are also critical for the active learning of designers and 

users.  

The use of prototypes as a general design tool has been explored in some detail. 

There are several effective ways to engage with a prototype, although certain activities 

may be more applicable at one time than another. The research shows that while early 

prototyping is critical for success, this effect diminishes over time. The use of prototypes 

for ideation can increase the percentage of functional ideas, versus pure sketching. 

Although prototypes can actually reduce fixation, due to organic concept evolution, a 

cumbersome fabrication process has the opposite effect. Receiving outside feedback on 

prototypes can lead to feature improvement, especially if several are presented in parallel, 

but this may also increase fixation. Other novel metrics such as number of parts, which is 

inversely correlated to performance, or interactivity assessment, may also provide insight 

for evaluating the prototype. 

There are a number of strategic techniques to apply prototyping, each with 

various advantages. Prototypes with reduced requirements can reduce early waste (of 

resources) but may not provide much detail of manufacturability. Mockups are a 

powerful tool to rapidly explore concepts and enable communication; however, they may 

misrepresent physical principles. Isolated subsystem testing can also reduce costs and 

permit tailored requirements; however, unanticipated needs may be difficult to address. 

Scaled prototypes can enable testing in cases when a full-scale system might be 

infeasible; however, significant testing may be required to achieve an accurate model. 

Iterative prototyping is strongly correlated with performance increase, and although time 

expense decreases with each iteration, it may cost additional time. Parallel prototyping is 

correlated with increased performance, but also appears to put additional strain on the 

design team. Competitive prototyping is analogous to parallel prototyping. However, 
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separate teams each pursue one concept. This approach may reduce ultimate costs and 

improve quality, but short term costs may rise. Cooperative prototyping can engage end 

user participation. Virtual prototypes can supply novel data, and drastically reduce 

prototyping costs; however, significant technical expertise may be required to implement 

a virtual model. Mixed prototypes provide authentic user interaction at low cost, novel 

data acquisition, and permit controller design. However, in some cases mixed prototyping 

may require a skilled operator to implement.  

There are numerous fabrication techniques for prototyping, each with various 

benefits and drawbacks. Component sourcing can play a large factor in costs; typically, 

COTS components can result in savings. If custom components are required, strategic 

analysis of in-house versus outsourcing can reduce risk. Handcrafting appears to be the 

fastest fabrication method; however, it often carries the connotation of low-technology 

and may not be as effective at eliciting confidence in stakeholders. Two dimensional 

fabrication is rapid and may produce functional components. The emergence of 2D-to-3D 

tectonic decomposition methods demonstrates new capabilities of laser-cutting and other 

2D methods; however these algorithms are not yet commercialized. There is also a wide 

selection of additive manufacturing technologies; however, certain capabilities such as 

gradient materials are not readily represented in commercial CAD software. 3D scanning 

is often an important extension to additive manufacture, and there are many technologies 

for surface scanning. There is an opportunity for development of integrated methods to 

select between scanning, modeling, and additive manufacture tools.  

Concluding Remarks and Looking Forward  

This review provides an overview and synthesis of current major findings in 

scientific empirical examinations of prototyping. These studies provide a systematic 
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review of many of the critical variables related to prototyping. Protocol analyses, 

controlled variable experimentation, and in depth ethnographic reviews of practicing 

designers have been conducted to provide a clear picture of many of the practices 

associated with success in a prototyping effort. 

Section 1 identifies the high level motivations for implementing prototypes. 

Section 2 then outlines general precautions and factors that are empirically correlated 

with successful integration of prototyping into the design process. Section 3 reviews 

research related to principles or heuristics; Section 4 then provides a set of standalone 

techniques which could also be combined into a larger strategy for planning a prototyping 

effort. These techniques have numerous benefits but are generally guidelines for planning 

a specific prototyping effort and guiding the selection of certain variables (such as 

fidelity of the representation). These methods are based on empirical studies identifying 

opportunities to enhance the efficiency of time and resources, and improve data 

acquisition. Section 5 concludes the review with a summary of fabrication technologies. 

This last section provides quantitative descriptions of the capabilities and cost of various 

fabrication technologies to assist in efficient cross-assessment between subtractive 

fabrication, additive manufacture, outsourcing, and hand crafting. 

There are opportunities for seminal work in integrating design science with the 

DIY movement. This trend is towards the consumer becoming the designer and the 

manufacturer, and there are many opportunities to explore how design research may 

systematically enable DIY design. In parallel with this, it appears that there is an 

enormous untapped potential for rapid mockup handcrafting, and also with distributed 

task decomposition (crowdsourcing and crowdcrafting) in the prototyping literature and 

methodologies. How can cognitive processes, advanced ideation methods (such as 

biological analogy methods), and hand fabrication be mapped in empirical studies? This 
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might include protocol analysis observing fabrication in situ, neurological analysis of 

prototyping activities, study of crowdsourced design, and even crowdsourced design 

research.  

It is also clear that there is a need for design tools that capture the full capabilities 

of additive manufacturing (some of which may be yet to be discovered). Several 

objectives for development which have been provided are: intuitive human interfacing 

with CAD tools for complex design features, micro- to-meso- features, design and 

modeling using gradient materials, algorithmic model construction, and integration of 

multi-domain functionality. 
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Chapter 3: A Hybrid Design Prototyping Tool - Designing Biologically 
Inspired Leaf Structures: Computational Geometric Transport Analysis 

of Volume-to-Point Flow Channels1  

OPENING REMARKS 

This chapter explores a detailed design case study of executing a hybrid technique 

for prototyping. The effectiveness of a full-fidelity, finite element model is compared to a 

relaxed requirement virtual modeling technique. Both methods are applied for design of 

an efficient cooling channel array. The novel method which is developed in this chapter 

demonstrates the capability of combining individual techniques for prototyping. In this 

case, combining requirement relaxation is combined with virtual prototyping resulting in 

a novel biologically-inspired design, as well as reduced modeling complexity. The 

approach demonstrates that critical design decisions can be made using a relaxed virtual 

prototype. Using the relaxed requirement virtual prototype, it is possible to compare 

several alternative designs in parallel with substantially less computational expense than 

a full FEM would require.  

3.1 INTRODUCTION: THE VOLUME-TO-POINT FLOW PROBLEM 

A common feature among certain natural systems, such as arteries, lightning, 

bronchial airways, leaves, and watersheds, is a pseudo fractal branching structure ) [243] 

This commonality may be due to the fact that these systems solve a similar type of 

problem, i.e., the transport of energy or matter from a distributed arrangement (area or 

volume) to a single point (sink) [244]. Figure 3.1 shows an example natural system. A 

                                                
1	  B.	  Camburn,	  K.	  Otto,	  D.	  Jensen,	  R.	  Crawford,	  and	  K.	  Wood,	  "Designing	  biologically	  inspired	  leaf	  

structures:	  computational	  geometric	  transport	  analysis	  of	  volume-‐to-‐point	  flow	  channels,"	  
Engineering	  with	  Computers,	  2014.	  

	  
Contributions:	  B	  Camburn	  research	  concept,	  lead	  author,	  experimental	  execution;	  K.	  Otto,	  D.	  Jensen,	  
R.	  Crawford,	  and	  K.	  Wood	  provided	  guidance	  and	  editing.	  	   
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characteristic of these systems is a network flow field that guides the energy or matter to 

a sink point [244].     
 

 

Figure 3.1:  Example of a volume-to-point flow system - a leaf and its veins. 

A number of geometric layout choices for the channels are possible for the path 

configurations when solving volume-to-point flow problems. For designers, it would be 

convenient if an effective layout could be found easily and repeatably. A review of the 

literature indicates a need for more advanced and repeatable approaches for 

understanding how to lay out channels to optimize flow. 

There are a number of approaches to solving volume-to-point flow problems. One 

area focuses on the use of biological analogy to solve such problems. In particular, 

truncated pseudo-fractal geometries have been proposed for channel cooling [244-248]. 

These types of geometries, known as Constructal configurations, were developed from a 

cellular optimization method and exhibit a pseudo-fractal structure [244]. An alternative 

analysis that takes into account the global topology of flow configurations can offer new 

insight into these systems.  
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This work proposes a novel metric, path length, defined to be the average distance 

travelled by fluid or energy from the starting point in a substrate to the sink. This metric 

provides the basis for a quantitative approach to evaluate configurations for volume-to-

point flow problems. The path length metric arises from basic transport theory and 

inspires the design of novel configurations for volume-to-point flow problems. The goal 

of these configurations is to provide near-minimum path length. Computational analysis 

is used below, to demonstrate that these configurations are more effective than state-of-

the-art approaches for the given problem. 

3.2 PREVIOUS WORK 

Background: Biological Analogy and Fractal Representations 

The term homoplasy, which is sometimes called convergent evolution, is used to 

describe unrelated organisms that develop similar traits. The extensive homoplasy of the 

pseudo-fractal architectural structures in nature strongly indicates that this solution form 

is very effective for volume-to-point flow problems [249]. Thus, due to their potential 

optimality, pseudo-fractal structures may provide appropriate analogies for solving such 

design problems. 

Analogical methods have been shown to be effective in the creation of novel 

solutions to design problems in the engineering knowledge domain [250-263]. One 

example is a method of seeding mind-maps with biological analogies for the solution 

[264]. In studies on biological analogy, it has been shown that exposure to biologically 

inspired design methods can systematically enhance creativity in designers [261]. 

Further, it has been found that the biological analogies used for solution generation can 

entail transfer of knowledge of causal mechanisms or knowledge for problem 

decomposition [262]. 
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Solution of a biologically inspired problem begins by first generalizing the 

problem form [261]. Bejan executed this approach to generalize the volume-to-point flow 

problem, leading to the identification of the Constructal structure as an analogous 

solution [244].  The abstraction approach simultaneously re-represents the design 

problem and provides initial understanding. Subsequently, one must extract the general 

principle that occurs in the natural systems, allowing for direct replication of the natural 

analogy into the human-design frame [261]. A principle can be observed in these 

systems, which  is minimization of transport distance. When other variables (such as 

channel cross section properties) are held constant, the minimization of path length is 

effectively the minimization of the total quantity of resistance that must be overcome 

when moving energy or matter from a volume to a point. This minimization is an instance 

of finding the “path of least resistance,” thereby achieving the most effective use of 

available transport energy. 

Fractal representations in engineering analysis are well known for a number of 

physical domains [245, 246, 265-272].  Several authors have published work on the 

characterization of the fractal form of various naturally emergent volume-to-point flow 

systems, especially relating to humanoid cardiovascular systems, e.g.,  [273]. This 

research clearly classifies the fractal number, examines the levels before truncation and 

determines geometric ratios between branches. Several authors have been conducting 

ongoing research into the truncated fractal, or Constructal, volume-to-point channels 

[243-246, 249, 265-268, 270, 271, 274, 275]. These papers thoroughly examine and 

expand the Constructal theory; however, it may be that additional properties can be 

examined to expand understanding of system-wide resistance to flow.  
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Constructal Theory and Alternatives 

Previous research has explored fractal structures in nature and their application to 

the volume-to-point flow problem. Bejan, in particular, has developed a pseudo-fractal 

Constructal geometry for volume-to-point cooling problems [276]. Constructal theory 

begins with the assumption that the pseudo-fractal structures in nature have undergone 

sequential improvement, and that likewise, an optimization procedure should produce an 

analogous configuration. Bejan’s analytical model optimizes the local heat transfer 

cellular building block [244]. In contrast, this chapter explores the global structure 

through a geometric analysis for developing optimal flow channel designs as an 

alternative approach to mimic biological pseudo-fractal systems. 

Bejan proposed the Constructal Theory, which states that, the pseudo-fractal 

structures observed in nature result from a directional optimization process that moves 

from a smaller scale towards a system-level scale [244]. The implication is that pseudo-

fractal structures are the result of an iterative bottom-up optimization process for volume-

to-point flow. Based on his observations of nature, Bejan proposed a flow principle: “For 

a finite-size system to persist in time (to live), it must evolve in such a way that it 

provides easier access (less resistance) to the imposed (global) currents that flow through 

it” [244]. This principle includes the assumption that flow rates inside the channel are 

much higher than that of the substrate volume in which energy is generated (i.e. channel 

resistance is very low). An assumption is made for Constructal analysis that the optimal 

flow configuration can be found by minimizing the temperature differences between 

directly adjacent elements and that this corresponds to minimizing resistance, for the 

volume-to-point cooling problem. This assumption has merit. However, it does not 

appear to take into account effects from distant cells, or effects due to the global position 

of each differential element with respect to the sink location. Therefore it may tend to 
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create flow channel configurations that have locally optimal characteristics as opposed to 

ensuring solutions that move toward global optimization.   

Other researchers have considered alternate solutions to the volume-to-point flow 

problem [245-247]. Zhang compared the analytically determined performance of a 

serpentine channel configuration to that of Bejan’s Constructal configuration (see Figure 

3.2) [250]. Figure 3.3 shows a plot of the difference between minimum and maximum 

wall temperature versus heat generation value. He found that the Constructal design 

results in a more uniform wall temperature, indicating that the plate is more evenly 

cooled. Temperature difference (∆𝑇) versus heat flux (𝑞) provides one measure of 

effectiveness of cooling performance. Figure 3.2 illustrates the Constructal and serpentine 

configurations.  

Several authors compared the performance of serpentine and fractal 

configurations via empirical studies [245, 277] in fluid flow systems. They concluded 

that the Constructal configuration (Figure 3.2a) is superior to parallel lines for fluid flow 

problems. The parallel lines configuration is shown in Figure 3.2c. Several papers 

explore a variant of the Constructal geometry that is circular in form [274, 278]. This 

circular geometry had been developed by Wechsatol et al. to minimize fluid pressure in 

channel flows [248]. Chen et al. consider the Constructal configuration for a methanol 

reformer design problem. In this system there are a separate inlet and outlet. The overall 

functionality is similar to the volume-to-point flow problem, and they also find the 

Constructal geometry to outperform the serpentine configuration [278]. Additionally, 

Chen et al. find the rectangular Constructal form to outperform the serpentine 

configuration in terms of pressure loss for a single inlet, single outlet flow system [274]. 

Analyses have considered the number of branching levels in a Constructal form  [278], 

and in alternate flow problems including line to line flow [276]. Some of these analyses 
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consider similar geometries; however, they are largely investigations for fluid flow. This 

work analyzes conductive heat transfer. Also in most of the analyses, channel width can 

vary throughout the geometry. Each geometry should have the same surface area (driven 

by channel width) and length of channel within the plate, as these geometric constraints 

correspond to certain manufacturing constraints. There do not appear to be any papers 

that consider the Leaf configuration in Figure 3.2d. The following sections will pursue 

such a geometry. 
 

 
(a) Constructal 

 
(b) Serpentine 

  

 
(c) Parallel Lines 

 
(d) Leaf 

 

Figure 3.2:  CAD rendering of each configuration. In the FEM, the voids in the plates 
are filled with cooling channel. The cooling channel is kept at constant 
temperature at the small opening on the wall. (See Figure 3.4.) 
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Figure 3.3:  Difference between maximum and minimum wall temperature values as a 
function of heat generation for Constructal versus serpentine configurations 
[28]. 

3.3 RESEARCH APPROACH 

In this chapter, analytical and computational evaluation are used to determine the 

effectiveness in conductive heat transfer of geometrically different arrangements of 

cooling channels. The channel arrangements each have the same volume and length. 

They conduct heat from a substrate volume, which has a lower thermal conductivity than 

the channels and is homogenously producing heat. The heat is conducted to a sink point 

that is maintained at constant temperature (Figure 3.4). Constant temperature 

approximates a rapid convective cooling condition at that point. This condition might be 

found at the interface of the chip and a heat sink. Because the transport efficiency of each 

arrangement is different, the maximum plate temperature at steady-state is higher for a 

less efficient arrangement. This example of volume-to-point flow is known as the 

microchip-cooling problem. This design problem is a standard benchmark for diffusive 

channel design analysis [244, 249, 250].  
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Figure 3.4: Detailed model of the (leaf) system with boundary conditions. Channels (left) 
have thermal conductivity K1; plates (center) have thermal conductivity K2 
and nonzero heat generation per unit volume; and the bottom surface of the 
channel (right) is at constant temperature 0°C. All exterior surfaces are 
adiabatic (q*=0) 

In this chapter cooling performance analysis methods are used to compare several 

channel configurations. Path length analysis is proposed as a geometric approach that 

simplifies the evaluation, and ultimately the design process, for volume-to-point flow 

channel configurations. Specifically, path length minimization is used as a critical 

requirement in the design of channel configurations.  This metric is used to compare 

different channel configurations by inspecting performance results from the finite 

element method (FEM). 

The system schematic, Figure 3.4, shows boundary conditions applied to the FEM 

models. Although only one configuration is shown, analogous conditions were used for 

each model. The mesh is held at constant temperature at the sink (as in Figure 3.4, right) 

and heated with constant heat generation throughout the entire sub-volume. The channels 

were not heated. Four geometries were constructed in a CAD program and imported into 

computational (FEM) software for evaluation. The cooling channel lengths of the 

different configurations agree to within 0.1%. Negligible contact resistance between the 

K = K
q = 0

1 K = K
q > 0

2 T = 0 C
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cooling channel and the plate is assumed. A large range of conduction coefficients was 

considered to effectively model different thermal resistances within the cooling system. 

The analyzed geometries are introduced above in Figure 3.2. The Constructal 

form is a truncated fractal, i.e., a fractal that terminates after a certain number of 

repetitions or levels. Four iterations of branching are used herein. The Constructal 

configuration from Figure 3.2a is generally considered to be a benchmark optimal 

configuration for volume-to-point flow on a square plate [244]. The serpentine and 

parallel line geometries (Figures 3.2b and 3.2c) were also considered from relevant 

literature [243-246, 249, 265-268, 270, 271, 274, 275]. The leaf geometry is novel to this 

work and was developed based on path length analysis (Figure 3.2d).  

Metrics 

A set of meaningful metrics and design variables are chosen for each analysis 

approach, as summarized in Table 3.1. Average path length and maximum plate 

temperature are used to evaluate the geometries in the path length analysis and finite 

element analysis, respectively. The hypothesis that the geometry with the shortest path 

length also has the best transport efficiency, and thus better cooling performance, is 

tested. From a global metric perspective, the cooling channel configuration with the 

lowest maximum plate temperature in steady-state conditions is considered to have the 

best cooling performance. The channel depth, width and total channel length are held 

constant to effectively compare different channel configurations. For this study, the 

geometric arrangement of the cooling channels in the plate is the design variable of focus. 

The material properties and heat generation values are varied in the FEM. These 

parameters are varied within the FEM. The performance values are compared to the 

computed path length. Path length is a metric for the average transport distance within a 
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volume-to-point flow problem and is described in greater detail in the rest of Section 3. 

From the comparison of FEM and path length, the range of physical conditions over 

which the path length can be used to predict performance is determined.  
 

 Path Length FEM 
Performance Metric Average path 

length 
Maximum plate 
temperature 

Design Variables Volume of cooling channel  Constant Constant 
Surface area of cooling 
channel Constant Constant 

Plate volume  Constant Constant 
Channel configuration Varied Varied 
Plate and channel material 
properties  N/A Varied 

Volumetric heating values N/A Varied 

Table 3.1:  Metrics and design variables. 

Path Length Analysis Method 

To visualize path length, suppose a heat generating volume is replaced with a 

densely packed cloud of points in space, and the cooling channel is replaced with another 

set of points in space. Assume that at discrete time steps, the points that represent the 

plate are producing packets of energy, heat, or fluid flow. Theoretically, these packets 

will travel along some path between each source point and the sink point. The path length 

is simply the geometric length of this transport path, averaged across all of the points in 

the cloud. The novel assumption of path length analysis is that each packet will flow 

along the shortest path to the nearest segment of channel, and then inside the channel, via 

the shortest path, to the exit. The path followed by a single point source is shown in 

Figure 3.5 for an example channel configuration. The assumption that flow occurs in this 

way arises from the observation that flow follows the path of least resistance, and the fact 

that the channel resistance is much lower than that of the plate [244]. Several supportive 
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arguments for the construction of this model of the generic volume to a point transport 

scenario are discussed below.  

 

 

Figure 3.5:  Example of path length (for a single point in the leaf configuration), 
highlighted with the blue dotted line, between a single point source, p, and 
the sink. 

Analytical Foundations (Transport and Lumped Resistance) 

A configuration with a high thermal resistance will result in a high maximum 

plate temperature [244]. Equation 3.1 demonstrates that thermal resistance is proportional 

to transport path length. To efficiently conduct heat from a distributed volume to a single 

point, the overall thermal flow resistance must be minimized. Based on the heat 

conduction equation between two surfaces separated by a material layer, the thermal 

p
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resistance between the two points is proportional to the distance between those two points 

[279]:  

q= -
KA
L TH-TC   

RC= 
L
kA  

RC α L                                                 (3.1) 
 

where 𝑞 is the heat flux, K is the thermal conductivity, A is conduction area 
perpendicular to the direction of heat transfer, 𝐿 is the conduction distance, TH is 
the hot side temperature, TC is the cold side temperature, and 𝑅!  is thermal 
resistance.  

Note that different configurations with the same length of channel can still have 

different path lengths. This is because, due to the different channel configurations, there 

are different distances between the heat generation points located throughout the plate 

and the channels.  In this design scenario, L is the dominant component. This holds in 

many natural systems such as the leaf [249], and engineering problems such as 

conductive microchip cooling [244]. 

Algorithm to Compute Path length 

In the path length analysis method, the heating volume and the cooling channel 

are represented as a two dimensional matrix of point clouds. Using the standard 

discretization process, similar to that used in FEM, the volume is represented as a set of 

differential subvolumes. Each subvolume is then represented as a point source.  

It is not necessary to consider the amount of heat generated at each point for path 

length analysis. FEM testing showed that q, volumetric heat generation, does not affect 

the contours of the temperature distribution on the plate, only the magnitude, and it does 

this in equal proportions for each configuration.  
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The algorithm for calculating average path length for a configuration consists of 

representing the geometry as a point cloud and then performing a series of geometric 

distance calculations using these points. The steps in the algorithm are detailed in Table 

3.2. The appropriate density of approximation points (similar to FEM discretization 

density) is determined through convergence analysis. To perform convergence analysis, 

the matrix of points is redefined, increasing the number of points per unit area, and then 

recalculating the path length. This is repeated until the variance in average path length 

from a discretization density increase of one order of magnitude is less than some epsilon 

value, in this case, a tenth of a percent of the average path length. 
 
(1a) Generate the Substrate 
Point Grid 

Generate a set of m evenly distributed points, over an 
area, to represent the substrate. Store the coordinates of 
each point in a 2×m matrix, S . Figure 3.6a (top) 

(1b) Generate the Channel 
Points 

Generate a set of n evenly distributed points, along lines, 
to represent the cooling channel. Store the coordinates of 
each point, in a 2×n matrix, PL  Figure 3.6a (bottom) 

(2) Determine the Endo-
Channel Path Lengths 

Geometrically calculate the distance along the channel 
from each point on the channel line to the sink.   

(3) Compute the Exo-Channel 
Path Length Values 

For each point in the substrate grid, calculate the distance 
to the first point in PL  using the distance equation, 
𝑥! − 𝑥! ! + 𝑦! − 𝑦! !. Store this distance as 

PLEX_min. Calculate the distance to the next point in 
PL  from the current substrate point, and replace 

PLEX_min  with this value if it is smaller than the current 
value for PLEX_min. Repeat for all points in PL. Then 
PLEX_min is stored in a new matrix as the exochannel 
path length for that point on the substrate. Add the 
distance, found in 2, for the point at PLEX_min along the 
channel from that closest point to the sink. Repeat for 
every point on the substrate matrix. Figure 3.6b 

(4) Compute the Average Total 
Path Length 

Sum the distance found for each point in step 3 and divide 
by n to determine the average path length.  

Table 3.2:  Steps to Compute Path Length. 
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Figure 3.6:  (a) Graphical elaboration of step 1 of path length algorithm from Table 3.2. 
(b) Demonstrates path length calculation for a single point from step 3 of 
path length algorithm from Table 3.2 

Verification of Discretization for Path Length Analysis 

To determine if the coded implementation of the method given in Table 3.2 is 

accurate, a basic example is evaluated. The path length for a simple square geometry 

(Figure 3.7) was computed in closed form as well as using the path length algorithm. The 

cooling channel in this configuration is a straight line along the base of the square plate, 

and the sink is at the center of the channel. The average distance from any point to the 

channel is half the plate height, and the average endo-channel path length is one quarter 

of the edge length. Thus, the closed form average total path length is exactly 75% of the 

edge length. Implementation of the steps in Table 3.2, using MATLAB (MathWorks® 

Convert substrate to point clouds Determine distance to channel

Add to distance along channel Convert channel to point clouds

a b
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Natick, MA, USA), finds the average total path length to be 75.025% of the edge length. 

The algorithm exhibits a small discretization error of approximately 0.03%.  

 

 

Figure 3.7:  Geometry of the example problem. The channel is shown in grey, the 
average distance to channel is shown in red, the average distance along the 
channel is shown in green, and the blue square is the sink. 

3.4 COMPUTATIONAL MODEL THEORY 

This section describes validation of the path length method by comparison with 

finite-element analysis of a heat transfer problem. In this problem, heat is conducted 

through two materials to a sink. The first material is the homogeneous heat generating 

plate (Figure 3.4 center), and the second is the cooling channel (Figure 3.4 left). In the 

computational model, the channel component is assigned a high value of thermal 

conductivity while the substrate has a lower value of thermal conductivity. The small 

opening where the channel terminates is maintained at a constant temperature (0° C) to 

simulate connection to a heat sink or coolant at steady-state. The channels of various 

L

.5L

L

.25L
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geometrical configurations conduct heat to this sink area. The plate is adiabatic at all 

surfaces. The constant temperature surface on the channel bottom, Figure 3.4 (right), acts 

as a sink. Every geometric configuration has the same volume and surface area of cooling 

channel. Various values of thermal conductivity are employed. Heat generation is also 

varied to demonstrate that the changes are linear, as stated above. Each analysis 

terminates when steady state conditions are reached. The model is effectively two-

dimensional as there is no variation in the 𝑧 dimension (perpendicular to the plate). Table 

3.3 summarizes the properties used for the finite element analyses. The values that are not 

varied in the model, such as plate dimension, are those for which heat transfer 

phenomena are scalable; thus, the method remains generalizable.  
 

Geometry 10x10x1 cm3 plate 
Thermal Conductivity of Plate K! 
Thermal Conductivity of Channel K!, where (K! > K!) 
Avg. Mesh Length (after convergence) 0.3 cm 
Cooling Channel Volume 1,245 cm3 
Cooling Channel Surface Area 12,250 cm2 

Table 3.3:  Properties of the FEM. 

Computational model theory 

Finite element modeling of a heat transfer problem is a process of discretizing a 

volume into a network of approximately differential unit volumes and calculating heat 

transfer between them. First a wire-frame model is created from an imported 3D 

geometry, in this case the channels and plate. The finite element discretization involves 

the creation of three dimensional elements where the equilibrium equations will be 

enforced.  These elements are connected to adjacent elements at nodes where 

compatibility will be enforced so that the continuity of the solution of the differential 

equations of equilibrium can be maintained. This results in a matrix equation for the heat 



 74 

transfer characteristics of the system. Finally a Newton-Raphson type sparse solver 

algorithm is applied to determine temperatures throughout the system. A flowchart of the 

over-all process applied can be seen in Figure 3.8.  
 

 

Figure 3.8:  Flowchart representation of a method for finite element heat transfer 
modeling 

Meshing  

Meshing is the first step in finite element modeling (FEM) processing. The 3D 

geometry of the channels is imported as parametric curves. A mesh representation of the 

object is created by modeling geometric features as elements that have nodes and edges 

connecting these nodes. The meshing algorithm operates by supplying a generic guess at 

a mesh structure and then iteratively testing this against certain error criteria and 

continually updating the mesh. When the error criteria have converged, the system 

finalizes the mesh for analysis. The metrics are the error of the mesh surface (difference 

to actual), the ratio of side lengths of one element to another, and a range of acceptable 

angles of intersection (between two lines in the mesh) [280]. The equilibrium equations 

Geometry Matrix

Meshing

Steady State Heat Transfer Equations

Solver

3D CAD Representation of Model

Temperatures

System Model
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are enforced in each element and the results extrapolated to the nodes that connect the 

elements.  The values of the dependent variables are calculated at the nodes (often called 

degrees of freedom).  This ensures a form of continuity of the field variables across the 

plate, as the elements share adjoining nodes.  For this work, the 8 Node Brick type 

element was selected as the base unit due to its reliability for heat transfer modeling [281, 

282]. A representation of the wireframe of an 8 Node Brick element can be seen in Figure 

3.9.  
 

 

Figure 3.9:  Wireframe of 8 Node Brick element. 

The equations for this geometry, Figure 3.9, are given as follows: 
 

T   =
1
8 (T! 1− s 1− t 1− r + T! 1+ s 1− t 1− r  
+T! 1+ s 1+ t 1− r + T! 1− s 1+ t 1− r  
+T! 1+ s 1− t 1+ r + T! 1+ s 1− t 1+ r   
+T! 1+ s 1+ t 1+ r + T! 1− s 1+ t 1+ r  

 
 
 
 

(3.2) 

where TI, TJ, TK, TL, TM, TN, TO, and TP are the temperatures at each of those 
points (I through P), respectively [42-Chapter 12]. 

Unit Volume Model 

Once the mesh is developed, the heat equation is applied across the mesh. 

Applying the first law of thermodynamics to a control volume and combining with 
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Fourier’s law relating heat flux to thermal gradients develops the result for steady-state 

conduction for a unit volume, in this case, a single brick node 8 element: 

 
0 = q+ !

!x
Kx

∂T
∂x

+ !
!y

Ky
∂T
∂y

+ !
!z
Kz

∂T
∂z

                              (3.3) 

where q is the heat generation per unit volume, Kx, Ky, Kz are thermal 
conductivities in x, y, and z respectively, T is temperature (=T(x,y,z)).  

Two types of boundary conditions are applied in the model. Constant temperature 

is applied at the base of the channel, and zero heat flux (insulation) is applied on external 

surfaces. Equation 5 is the form for specified temperature acting on a surface S1:  

 
T = T*                                                              (3.4) 

where T* is the specified temperature acting on S1.  

The second boundary condition is for a specified heat flux. Equation 6 is the form 

for specified heat flow acting of a surface S2. 

 
q T 𝜂 = −q*                                                        (3.5) 

where 𝜂  is a unit outward normal vector, and q* is the specified heat flux 
through the surface S2.  

Full System Model 

The mesh structure, described above, connects each finite element to a fixed 

number of adjacent neighbors. Each node is completely surrounded by either boundary 

conditions or neighboring nodes. Thus, the heat flux leaving one node is equivalent to the 

heat flux entering adjacent nodes. Summing these relationships over all nodes yields: 

 
 

K! T!
!!! = Q!! + Q!

!!
!!!                                     (3.6) 
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where: 

𝐾! =   

!
!x
!
!y
!
!z

N T

T

Kx 0 0
0 Ky 0
0 0 Kz

!
!x
!
!y
!
!z

N Td volvol = element conductivity 

matrix, 

T =    N T Te = temperature variance in space, 

N  = N x,y,z  = element shape functions (see 4.1.1), 

𝑛  = the number of nodes, 

Te =  nodal temperature vector, 

𝑄!
! = 𝑞∗ 𝑁 𝑆!!!

= element mass flux vector (for constant flux at a surface), 

𝑄!
! = 𝑞 𝑁 𝑑 𝑣𝑜𝑙!"# = element heat generation load,  

The integrals are solved at each node using a Gauss numerical integration 

(Equation 9): 

 
f x, y, z dxdydz!

!! = H!H!H!f x!y!z!!
!!!

!
!!!

!
!!!                         (3.7) 

where: 𝑓 𝑥,𝑦, 𝑧  is a generic function (in this case, the integrand of 𝐾! ) , n,m,l 
are the number of integration points in each dimension, and 𝐻! ,𝐻! ,𝐻! are a 
weighting factor for integration approximation [280].  

System matrices are then passed into the solver.   

Solver 

The system of simultaneous linear equations generated from the heat transfer 

model above is solved using a direct elimination process. This is largely a Gaussian 

elimination that involves solving for the unknown vector, generally u ; which is in this 

case, T. [K] is a matrix that results from the integral of the differentials of the shape 
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functions and thermal conductivities.  For heat transfer applications [F] is analogous to 

[Q], the vector representing the discretized heat sources. 

 
K u = F                                                           (3.8) 

 

The direct elimination process involves decomposition of the matrix K  into 

lower and upper triangular matrices, K = L U . Forward and backward substitutions or 

passes are made to solve for u  itself.  

Comparison to Analytical Solution 

To validate the computational solutions against well-established analytical 

methods, a simple configuration was modeled both analytically and with FEM software 

(ANSYS Mechanical, Canonsburg, PA) [279]. The configuration consists of a plate with 

fixed temperatures on each side, internal heat generation and adiabatic conditions on the 

top, bottom, front and back. The plate is 1x1x0.1 cm3. The temperature of the plate varies 

in the horizontal direction only. In this example problem, the left surface is maintained at 

a constant 80° C, and the right surface is maintained at a constant 20° C. The thermal 

conductivity of the plate is 1  !
!"

. The FEM model has three degrees of freedom, so 8 

node brick elements were used [155, 281, 282].  

The analytical solution for temperature as a function of penetration depth between 

the two walls is: 

 

 T= qL
2

2K
x
L

- x
L

2
- TH-TC

L
x+TH                             (3.9) 

where 𝑞 is the heat generation rate per unit length, 𝐿 the distance between the 
walls, K is the thermal conductivity, 𝑥 is the penetration depth, 𝑇!   is the hot wall 
temperature, and 𝑇!  is the cooler wall temperature [279].  
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The maximum plate temperatures for several values of heat generation are shown 

for the FEM and the analytical solutions in Table 3.4. The maximum difference between 

the analytical and computational solution was found to be 0.03%. 
 

Heat 
Generation 0 𝐖

𝐦𝟑 5X105 𝐖
𝐦𝟑 1X106 𝐖

𝐦𝟑 2x106 𝐖
𝐦𝟑 5X106 𝐖

𝐦𝟑 1X107 𝐖
𝐦𝟑 

Analytical  80.0000°C 80.0000°C 80.0000°C 84.0000°C 116.1000°C 176.8000°C 
FEM 80.0000°C 80.0000°C 80.0000°C 83.9965°C 116.1110°C 176.8680°C 
Error 0.0000% 0.0000% 0.0000% 0.0040% 0.0090% 0.0300% 

Table 3.4:  Maximum plate temperature in a volumetrically heated plate from analytical 
and FEM solutions. 

Variance of Sink Temperature 

The temperature of the sink area was varied to determine its correlation to 

performance results. In this study, it was found that the results, temperature contour and 

maximum plate temperature, scale proportionally with changes in the sink temperature. 

Thus, performance values are reported at one sink temperature. 

Convergence of to Mesh Density 

The sensitivity of the maximum temperature in each model to FEM mesh density 

was determined by studying five mesh sizes of increasing density for each model. These 

variations spanned a full order of magnitude in mesh size, which was sufficient, as the 

maximum temperature of the plate did not vary by more than 1% as the mesh size 

decreased (over the entire order of magnitude shift), i.e. the solution was convergent. 

Figure 3.10 shows an example of a mesh geometry. 
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Figure 3.10:  Example of meshed geometry (leaf) for plate and channel assembly (1592 
nodes). 

3.5 RESULTS  

In this section the results from path length analysis are compared to those from 

FEM simulations to establish the viability of the path length approach for evaluating flow 

channel geometry. 

Computational Model Results 

Results from 56 unique finite element models are shown in Tables 3.5 and 3.6. 

These tables present the steady state maximum plate temperature occurring in each of the 

geometries over a variety of different thermal conductivities (Table 3.5) and applied 

volumetric heat generation values (Table 3.6). As noted in the previous section, shifts in 

heat generation values result in linearly proportional changes to the maximum 

temperature. Thus the morphology of temperature contours is independent of heat 

generation intensity for this particular problem.  

The FEM results indicate that the leaf geometry performs best (has the lowest 

maximum temperature). The remaining results match those from the literature in that the 

Constructal configuration performs better than the serpentine configuration [244, 247, 

250, 252, 272, 276, 278]. The direct comparison of other configurations, such as the leaf 
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configuration to the Constructal configuration, is novel to this analysis (example in 

Figure 3.11). On average the leaf geometry cools the plate to a temperature 36% lower 

than the basic, serpentine configuration, while the Constructal geometry only provides a 

14% improvement over the serpentine.  
 

 

Figure 3.11:  FEM contour plots of temperature with K! = 1 !
!"

 and K! = 100 !
!"
  and q = 

5X105 !
!! for the Leaf (left), with maximum temperature of 355 °C; and 

Constructal (right), with maximum temperature of 773 °C. 

 

q = 500000 𝐖
𝐦𝟑 

Form K1/K2 = 1 K1/K2 = 1/2 K1/K2 = 1/10 K1/K2 = 1/50 K1/K2 = 1/100 
Constructal 1190000 5106 2870 1184 773 
Serpentine 1190000 5126 3401 1993 1537 
Parallel 1190000 5035 2588 833 477 
Leaf 1190000 4299 1653 554 355 

Table 3.5:  Maximum steady state plate temperature, constant q, varying conductivities 
(bold indicates lowest temperature). Note that K1/K2 = 1 is the condition of 
no channel cooling effects. 
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                            K! = 149 !
!"

, K! = 401 !
!"

 (K1/K2 = 1.49/4.01) 

Form q  = 1000 𝐖
𝐦𝟑 q  = 10000 𝐖

𝐦𝟑 q  = 10000000 𝐖
𝐦𝟑 

Constructal 0.063 6.33 633 
Serpentine 0.065 6.45 645 
Parallel 0.062 6.20 620 
Leaf 0.049 4.89 489 

Table 3.6:  Maximum steady state plate temperature (°C), constant thermal 
conductivity, varying q values, the boundary conditions for this analysis are 
as in Figure 3.4. The K1,2 values are for silicon and copper respectively 

Figure 3.12 shows thermal gradient vector plots. The flow is towards the channel, 

then along the channel towards the constant temperature sink for the cooled (left and 

right) configurations. The uncooled, channel-less geometry in the center demonstrates the 

natural flow of heat when the entire volume has a constant thermal conductivity. Note 

that the channels in the leaf plot are normal to the flux vectors seen on the uncooled plate. 

The most rapid heat flow is in the channels, and this flow aligns with the natural contour 

for the leaf geometry. This occurs only in the leaf configuration. For the parallel lines 

configuration, a portion of the channel flow is perpendicular to the natural gradient. 

Therefore the thermal resistance of the parallel lines should be greater for conductive 

cooling. This observation is in accordance with the cooling performances of these 

different geometries.  
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Figure 3.12:  Thermal gradient vector plots for the (from left to right) leaf geometry, 
uncooled plate, and parallel lines geometry 

Path Length Results 

The geometric path lengths of the cooling channel configurations are shown in 

Table 3.7. The average total path length of the leaf configuration is the least of the four 

geometries at 6.5 cm. It is interesting to note that the absolute minimum path length is a 

straight line from each point to the exit. This value is 5.95 cm for the plate geometry used 

herein. This minimum length can be calculated by modifying the algorithm from Table 

3.2 such that the channel point cloud is replaced with a single point at the sink. The heat 

flow vectors in Figure 3.12 (center) demonstrate the path vectors in this minimum case. 

However, in Figure 3.12 (center), flow is very ineffective as there is no channel to 

accelerate flow. The advantage of a channel with a small path length is that the channel is 

aligned with vectors along the minimum path. In contrast, other channel configurations 

carry the flow along directions divergent from the optimal path. This leads to a certain 

principle: to minimize volume-to-point flow resistance, maximize the alignment of the 

channel with the natural (diffusion only) flow vectors. 

The leaf configuration is an embodiment of the above principle. There is a 

fascinating resemblance between the biological leaf-veins from Figure 3.1 and the 

thermal gradient plots from Figure 3.12 (left). This shape has the minimum path length 
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and maximum performance in the tested set, and most closely resembles the archetypical 

structure seen in nature (see Figure 3.1).  
 

Configuration Average Total Path Length 
Constructal 10.9 
Serpentine 25.26 
Parallel 8.01 
Leaf 6.5 

Table 3.7:  Results of the Path Length Calculations. 

Comparison of Models 

Results from the path length calculation (Table 3.7) correspond directly to cooling 

performance predicted by FEM (Table 3.5). The analyses show that the geometry with 

the shortest average total path length also has the best cooling performance for the range 

of values in the parametric study. For example, the leaf configuration has a near 

minimum average path length and the best cooling performance across the full range of 

modeling conditions where K2 > K1. In fact, the sequence of increasing path lengths 

(Leaf, Parallel, Constructal, Serpentine) corresponds exactly with the sequence of 

increasing maximum temperatures. 

The thermal gradient vector plots in Figure 3.12 help demonstrate that the flow of 

heat is in fact occurring in the manner predicted by the path length analysis procedure. 

Heat flows first towards the channel and then along the channel towards the sink. Table 

3.7 (a summary of Tables 3.4 and 3.5) shows that both methods find the same order of 

performance.  

3.6 DISCUSSION 

In this chapter a geometric method for analyzing the performance of a cooling 

channel is introduced as a form of relaxed requirement virtual prototype. The purpose of 
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this method is to simplify analysis so that more of the design space of cooling channel 

configurations can be explored using fewer computational resources. The agreement 

between FEM simulations and the more basic and simpler path length analysis is 

exceptional, across a very broad range of physical parameters. These results support the 

effectiveness of hybrid prototyping methods.  

A visual comparison between the computational thermal model and the path 

length results is shown in Figure 3.13. This figure shows that the correlation in 

performance between computational heat transfer analysis and path length analysis is in 

fact due to a fundamental similarity between the two models. On the left is the 

temperature contour plot of the computational model. On the right is the contour plot of 

path length for each point. As expected, those points with higher path length (red-brown) 

color correlate to points with higher temperature (brown-red). This diagram shows the 

very close agreement between these two contours, and thus between the two models. A 

mathematical analysis of this overlay was also performed. The correlation coefficient (r2 

value) of the one-to-one mapping for each point over the entire geometry is 0.95.  
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a. b. 

Figure 3.13:  a) Leaf, FEM heat contour plot. b) Leaf, average total path length contour 
plot. Detailed comparison of path length and temperature. For all figures, 
blue is a low value, and red is a high value- with the color spectrum 
representing intermediate values. 

3.7 LIMITATIONS 

The analysis techniques discussed in this chapter have limitations. The metric of 

path length is applicable to heat transfer applications where length is the dominant 

characteristic in the equation for thermal resistance. This condition holds for many 

interesting heat transfer problems such as the cooling of a micro-chip [244]. The finite 

element analyses are based on assumptions of adiabatic wall conditions and constant sink 

temperature. The adiabatic condition is based on reasonable assumptions. Although no 

system is truly adiabatic, there will be negligible heat transfer into the walls if the chip is 

coated, or if the plate represents a cell surrounded by other cells. It is possible that there 

may be some non-linear behavior at the sink. However, two observations lead to the 

conclusion that the modeling technique is satisfactory: (1) the temperature distribution 

morphology of a plate configuration was found to be independent of the sink point 
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temperature, and (2) the sink condition is consistent across the configurations so that the 

comparison between them is objective. A final limitation is that only four configurations 

are analyzed.  Other geometries and conditions should be explored, where path length 

analysis may be used to estimate preferred choices for more detailed analysis.  However, 

the geometries in this study represent some of the major cooling channel designs found in 

the literature and are geometrically diverse. 

3.8 CONCLUSIONS 

This research examines a new analysis technique for the volume-to-point 

transport problem for the specific example of cooling a microchip using biological 

analogy as a source of inspiration. The goals of this research are (1) to introduce a novel 

metric to evaluate volume-to-point flow systems; (2) to posit, through the example of a 

design procedure that has cooling channels that mimic a leaf, that the implications of this 

metric can be leveraged as a design tool; and (3) to determine if leaf-like shapes are more 

efficient than other analyzed geometries for the given problem. Each of these goals has 

successfully been addressed by the analyses presented in the chapter. 

To achieve these ends, a multi-pronged research approach was employed. The 

path length metric (i.e., the average transport distance from the heat generation points to 

the sink through both the substrate and then along the channel) is used to evaluate the 

performance of several cooling channel designs. The performance of these designs is also 

evaluated using finite element analysis. The results of these two approaches are strongly 

correlated, and suggest that the path length metric can be used to evaluate a channel 

configuration’s cooling performance, at least as an estimating tool to explore varied 

channel configuration design spaces. Interestingly, the leaf-like channels have a 
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qualitatively natural appearance that is highly analogous to the veins of a biological leaf, 

thereby affirming the biological analogy.  
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Chapter 4: A Systematic Method for Design Prototyping2 

OPENING REMARKS  

This chapter pursues development of a systematic method to guide application of 

individual or hybrid techniques as part of an overall prototyping strategy in which many 

individual prototypes may be produced. The contributions of this chapter include a 

deeper review of several key individual techniques. The empirical data on these 

techniques is then synthesized into key heuristics. Further experimental studies are 

reported to compare the effects of these individual techniques. A systematic method for 

developing a prototyping strategy is also presented. It is based on direct application of the 

key heuristics. Finally, prototyping performance outcome is compared between a control 

group and an experimental group which has been exposed to the method. The method is 

correlated, through experimental investigation, with increased application of these best 

practices and improved design performance outcomes. These observations hold across 

various design problems studied. This method is novel in providing a systematic 

approach to prototyping.  

4.1 INTRODUCTION  

Background 

Sensitivity analysis of product development cycles shows that experimental 

prototyping plays a key role in determining outcome [5]. In this context, prototyping is 

the systematic development and testing of a new product design concept to establish its 

                                                
2	  	  B.	  Camburn,	  B.	  Dunlap,	  T.	  Gurjar,	  C.	  Hamon,	  M.	  Green,	  D.	  Jensen,	  et	  al.,	  "A	  Systematic	  Method	  for	  

Design	  Prototyping,"	  Journal	  of	  Mechanical	  Design,	  2015.	  
	  
Contributions:	  B.	  Camburn	  lead	  researcher,	  article	  author;	  B.	  Dunlap,	  T.	  Gurjar,	  C.	  Hamon,	  M.	  Green,	  
provided	  assistance	  in	  experimental	  execution;	  D.	  Jensen,	  R.	  Crawford,	  K.	  Otto,	  K.	  Wood	  provided	  
research	  guidance	  and	  editing. 
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feasibility and enhance detailed design of pre-production models. It has also been 

empirically validated that different approaches to prototyping can have a significant 

impact on both short- and long-term outcomes [114]. Yet, prototyping efforts are 

typically ad-hoc and implemented through the experiential base of the developer. There 

is an inconsistent success rate in product development [5]. Planning tools are needed to 

help manage the uncertainty in these processes. Therefore, it is critical to pursue research 

on systematic approaches to prototyping [154]. Several individual techniques to plan 

prototyping efforts have been proposed [1, 10, 84]. However, clarification and empirical 

testing of these techniques must continue so that successful outcomes are more likely and 

reproducible [47].  

Drezner identifies of a broad range of the factors in a strategic prototyping effort 

through a large-scale review of military technology development efforts [42]. Identified 

factors include testing of parallel concepts, iterative testing, cost of each prototype, 

fabrication process, experience of the designer, requirement specification, and use of 

planning. Drezner also offers empirical evidence, including the observation that 

prototyping efforts in later stages of the overall product development process will incur 

larger costs. This list of practices is expanded by Viswanathan, in an extended review to 

identify practical means of implementing prototypes and benefits thereof [6]. Moe has 

also proposed a methodology for factoring a prototyping effort into “partitions.” The 

approach provides a framework to select between single and multiple iterations, single 

and multiple design concepts, and flexible or rigid scheduling. Moe’s proposed approach 

was evaluated through an applied case study and met with positive feedback [10]. 

Christie expands on this work further to identify additional guidelines, in the form of a 

directed list of prompts to encourage consideration of these techniques in a prototyping 



 91 

effort. This list includes the choice between physical or virtual prototypes as well as 

others [84].  

Other valuable research insights include identification of some general success 

factors in prototyping. Yang observed that prototypes with fewer parts are more 

successful [58]. Jang conducted empirical studies to find that successful teams employed 

physical prototypes more often and hand-written notes less often. Jang’s study also 

identified that prototyping later in the design process was associated with lower 

performance [34]. Häggman confirms this observation: early prototyping leads to a 

higher rate of success [283]. In a general sense, early prototyping occurs in the first half 

of a design phase and late prototyping in the second half. Additionally, Viswanathan 

experimentally reports that reduced time spent on each individual prototype actually 

correlates with improved design outcomes [72]. There are also studies of prototype use in 

ideation [284], exploring fixation [70], and analogy use [273].  These studies indicate the 

potential to strategically allocate prototyping resources early and often in the design 

process, but also warn about factors that will facilitate and inhibit this allocation.   

While there have been many studies investigating specific aspects of the 

prototyping process and their connections to successful product development (as detailed 

above), there is not a widely applicable and accepted method for determining prototyping 

strategies that assists designers in making a variety of prototyping decisions. Such a 

method is proposed based on synthesizing identified best practice, with the intent of 

improving the likelihood of success of a product’s development. The method is tested in 

a number of experimental scenarios. Thus, the motivation of this research is to provide 

systematic means to improve prototyping outcomes in a scientifically repeatable way. 

Within the scope of this work prototyping is considered for the purpose of concept 

development and functional testing. This particular work will not explore the 
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relationships between early stage prototyping as used in concept development (ideation) 

or later stage prototypes such as those for pre-production testing. Furthermore, this work 

is oriented towards product design in the electro-mechanical domain.  

Research Motivation and Approach 

As outlined in the introduction, there is a need for the development and critical 

evaluation of strategic prototyping methods. This work, in particular, explores a process 

to develop prototypes that meet measurable design requirements with higher repeatability 

than a traditional, ad hoc approach. This process should also ideally meet these 

requirements with less expenditure of time and resources. To achieve this goal, several 

research hypotheses are formulated to guide the research effort: 

1. Prototyping techniques, taking into account studied prototyping principles, 

correlate with successful design outcomes. 

2. These techniques can be induced in designers’ activities through exposure to a 

developed design method. 

3. Use of this method correlates positively with direct measures of prototype 

performance. 

To evaluate the first research hypothesis, a literature review is employed to 

discover techniques for prototyping that are correlated with success. The results of 

various studies are synthesized into heuristics that provide an understanding of best 

practices. The heuristics form the basis of a strategic prototyping method. This method, 

and the heuristics, are evaluated via experimentation. Research hypotheses two and three 

are likewise addressed through experimentation. Relevant data are collected during each 

experiment so that the three research hypotheses can be tested directly. This approach is 
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outlined in Figure 4.1. This work represents the expansion and new analyses and 

synthesis of information shown in previous works by the authors [26, 27, 30, 82].  
 

 

Figure 4.1:  Representation of overall research method employed in this study. 

Identification of Heuristics and Formation of Method 

To generalize the concept of prototyping best practices, the term individual 

technique is introduced and the term prototyping strategy is adapted from Drezner. 

Individual techniques provide a means of enhancing the prototyping process. However, 

the applicability of each individual technique is dependent on context. There is also 

possibility for variable implementation of the individual techniques (e.g. 1:100 scale, 

versus 1:5 scale). A prototyping strategy represents the specific plan for implementing 

prototyping across a product development effort [42]. A planned approach consisting of a 

combination of choices for applying several individual techniques can be used in the 

formation of a prototyping strategy. For example, there is a range of possible sizes or 

scales for a prototype. There is also a range in the potential number of times a prototype 

may be improved or altered and then iteratively rebuilt and tested. This section reports 

key findings from the literature, exploring empirically validated best practices in detail. 

This literature has been critically synthesized to form heuristics that describe best 
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practices, which in turn form the basis for a systematic prototyping method. Discussion 

of the synthesis process and presentation of the method itself follows at the end of the 

section. A set of variables that quantify the individual techniques, as well as identified 

metrics of performance, are listed in Table 4.1. Iterative and parallel prototyping are 

intended to directly lead to improved performance. Scaling, subsystem isolation, and 

requirement relaxation are complementary techniques, intended to reduce cost and time 

expenditure. Thus multiple concepts and iterative testing can be a viable avenue, even in 

cases of limited time and budget. Furthermore, as the literature has shown that faster 

prototyping can reduce fixation [72], these techniques could potentially lead to more 

novel concepts as well. 
 

Specific Process Variables number of iterations 
number of parallel concepts 
use of scaling 
use of subsystem isolation 
use of requirement relaxation  
use of virtual prototypes 

Outcome Assessments performance of each prototype 
time to build each prototype 
cost of each prototype 
adherence to suggested approach 

Table 4.1:  Metrics, both for process and outcome. 

Iteration 

In this context, iteration is defined as the cycle of building, testing, and improving 

as applied to a single design concept. A basic, small-scale illustration of this concept is 

the iterative design of a novel conveyor belt geometry to reduce stress and improve 

performance (Fig. 4.2). In another example, Drezner oversaw a US Department of 

Defense (DoD) study reviewing full-scale projects that included prototypes for complex 
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designs, such as helicopters and autonomous aircraft systems. This study identifies that 

prototypes can be used in build-test cycles to systematically advance towards a mature 

design [42]. Glegg suggests product development projects are best served by a 

progression of three design iterations: the base idea, the first embodiment and the 

contemporary embodiment [285]. Ulrich identifies that a firm has the choice of 

developing prototypes sequentially or in parallel with different cost, benefit, and time 

implications. The number of iterations may be given by the timeline divided by the 

expected duration of the prototyping cycle [285].  
 

 

Figure 4.2:  Use of iteration in design for spoke holes on a conveyor belt: (left) 
schematics of four tested design generations, and (right) image of the final 
design. Through iteration, performance was increased to an acceptable 
threshold.  

Thomke observed, from an industry case study, that there is a difference in the 

number of iterations designers apply depending on the fabrication tools employed. For 

two different fabrication processes, differing patterns in iteration were observed. For 

programmable circuits, an average of 13.90 iterations were made, but for hardwired 

application-specific circuits only 1.49 were employed [114]. Notably, Thomke explores 

the effects of cost on iteration from a theoretical perspective [85]. Viswanathan confirms 

the relationship between method and speed of iteration, noting that teams given a less 
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complex fabrication process produced more iterations, and more prototypes overall than 

an equivalent group with a more complex or more time intensive fabrication process [72].  

Dow also experimentally validated that iteration improves performance. Teams in 

one group were required to pursue at least three design iterations, within an equal 

timeframe to a second group that produced only one. The iteration group achieved a 

significant increase in performance for a design task compared to the control group [113]. 

In summary, the research highlights that exploring multiple iterations is significantly 

beneficial depending on the factors of sufficient time and other resources 

(materials/funding/personnel).  

Parallel Concepts 

The exploration of parallel design concepts is defined as the fabrication and 

testing of two or more diverse or fundamentally different core design concepts to achieve 

the same function or affordance properties during one product development project. For 

example, the design of an inverted pyramidal structure to prototype prostheses can 

benefit from examination of several concepts in parallel (Fig. 4.3). Badri identifies, from 

an industry study, that multiple research teams working concurrently enhance the design 

outcome [5]. Ulrich notes that typically, a firm has a choice of developing prototypes 

sequentially or in parallel with different cost, benefit, and time implications [113]. Riek 

adds that the total number of prototypes may be given by the size of the budget divided 

by the expected prototyping cost. In an industry case, the design team built three designs 

in parallel, each with apparently equal potential. This permitted exploration of the design 

space in the limited amount of time available [154]. Thomke finds that industry projects 

typically explored many design concepts in parallel. However, he notes that integration of 

the information produced by each effort is critical and may not always occur [122]. The 
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implication is that co-operative, rather than competitive, parallel prototyping, mitigates 

this problem (which the method applies). 
 

 

Figure 4.3:  Use of parallel prototyping for strut design in a prosthetic limb: (top row) 
three concepts before load is applied; (bottom row) three concepts after load 
is applied. Parallel testing highlights differences in performance; clearly 
only one concept (right) held the load.  

Additional insight in this area is provided by Dahan and Mendelson, who derive a 

modeling equation to provide a guide for the number of concepts to pursue in parallel 

[115]. Moe summarizes these observations in a prescriptive approach as follows: the 

number of concepts pursued in parallel can be proportional to the current available 

budget [10]. Christie also observes that although only one or two concepts are likely to be 

finalized, developing multiple prototypes at an early stage can help provide critical 

design feedback [84].  

Dow experimentally validates that pursuit of multiple concepts enhances 

performance in advertising design. In a study, two groups of designers developed ads for 

a website. The experimental group was required to present several concepts at each of 

their design reviews. The other teams presented only a single concept at each review. The 

experimental group achieved much higher success rates, on average 264 ad-clicks, while 
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the control group received only 158 ad-clicks [117]. Neeley confirms that pursuit of 

multiple concepts also increases performance for physical product design. Teams in an 

experimental group were instructed to design up to five concepts for a tower, while teams 

in the control group produced only one with otherwise equal conditions. While only 

about 34 percent of teams completed all five concepts, the experimental teams reached a 

tower height of 40.53 inches on average. This was greater than the control teams, which 

reached 31.55 inches on average, with statistical significance [119]. This research 

indicates that parallel concepts can significantly improve performance, improve concept 

evolution, assist in making decisions between multiple concepts under uncertainty, and 

reduce errors in a design.  

Scaling 

A scaled prototype, in this context, is one that has been physically reduced or 

increased in size while retaining the original proportions and relationships (scaling laws) 

between components and the underlying working principles of the system. For example, 

in the design of a chamber for contained fluid flow, a significant amount of material cost 

and time were saved to validate system interfaces with a scaled model (Fig. 4.4). Moe 

proposes several open design questions regarding the potential of scaled designs. 

However, strategic prototyping methods are required to identify the conditions for these 

choices [10]. Viswanathan provides observations from an in situ study of designers. 

When scaling a model, loads and related boundary conditions should also be scaled 

accordingly [6]. This condition is most often accomplished through the use of 

dimensionless parameter groups, scaling laws, or mappings of performance parameters 

across functional testing [101, 106, 109, 110].  Christie provides further scenarios for the 
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use of scaled models, such as ships or aircraft, where creation of a full size prototype for 

testing may not be feasible prior to manufacture [84].  
 

 

Figure 4.4:  Use of scaling in design of a fluid flow chamber: (left) scaled model, and 
(right) full size model. Use of a scaled model saved time and material during 
tests of system interfaces.  

Cho explores the capability of similitude methods (based on the use of 

dimensionless groupings as mentioned previously). Similitude is a property shared 

between a physical system and a model which has been engineered to mimic the real 

system via scaled parameters for testing. He also introduces an advanced technique of 

empirical similitude that involves multiple parallel models, each scaled with respect to 

one aspect of the final system. For instance, the first model may be constructed with the 

correct geometry but made from basic materials, while the second model is made from 

the final materials but constructed with a simpler geometry. Traditional similitude models 

reach about 97% predictive fidelity, while empirical similitude models can attain more 

than 99% [110]. These sources highlight that scaled models can reduce costs on complex 

designs and still return valuable design insights.  
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Subsystem Isolation 

Subsystem isolation, in this context, refers to a prototype that models the 

performance and function of a single subsystem in isolation, rather than a full design 

concept. For example, it might save effort to produce one or two components and test the 

design of a joint without producing the entire system (Fig. 4.5). Christie notes that 

prototypes can be of a single subsystem, of a set of subsystems, or of the entire system. 

When prototyping a large or complex system, it may be beneficial to break the effort 

down into smaller subsystems that can each be approached with an optimal local strategy 

for the corresponding components. Depending on the interfaces, this approach may allow 

for easier testing of prototypes. However, effective re-integration is critical.  This 

technique can be especially effective when one subsystem of an existing product is being 

evolved but the remainder of the system remains unchanged or has only small changes 

[84].  
 

 

Figure 4.5:  Use of subsystem isolation in design of a joint. Several joint concepts are 
pictured. These isolated prototypes were significantly easier to test without 
encumbrance of the full system.  
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Drezner elaborates through an experimental case study that some defense systems 

are generally too costly to prototype at the system level (e.g., large naval surface vessels 

or complex satellites). In such systems, subsystem isolation is a cost-effective approach 

to reducing uncertainty [42]. For example, a naval project for a destroyer class vessel 

successfully used a series of critical subsystem prototypes, including elements such as the 

hull form, advanced gun and its munitions, composite deck house, peripheral vertical 

launch missile system, and radars, among others, to reduce technical risk and refine each 

subsystem’s design [42]. This experience and results from a similar study of a United 

States Air Force program suggest that under appropriate conditions, useful testing data 

might be obtained for about 60 percent of the cost of a fully integrated prototype [42]. 

This approach also reduces time to market. These and other sources show that subsystem 

isolation can reduce complexity and allow productive exploration of a subsystem at lower 

cost than a full system model.    

Requirement Relaxation 

Relaxation of requirements indicates that a prototype will operate to meet some 

(perhaps a reduced) percentage of the initial functional requirements. This may mean that 

other requirements are not tested at all (for a given prototype) or that the intention for 

such a prototype may be to meet certain requirements only partially.  For example, an 

acrylic box meant to withstand substantial forces might first be prototyped in cardboard 

to examine the size of the box and joint design (Fig. 4.6). Relaxed requirement prototypes 

are a subset of low fidelity prototypes in that the functional requirements are reduced, or 

a subset of requirements is addressed. Low fidelity prototyping is a more general form of 

relaxation in which any aspect(s) of the design could be relaxed. Drezner observes that 

prototypes are used to demonstrate critical attributes of the final product in a realistic 
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environment. However, the prototype should focus specifically on those informational 

aspects about which there is the most uncertainty [42]. Christie elaborates that the early 

prototypes should achieve threshold (as opposed to objective/final) design requirements. 

These threshold requirements will likely be tailored to each specific subsystem. This 

approach also permits earlier stage results. Therefore, for a prototype, each requirement 

should be specifically defined a priori according to the needs of the problem or scenario 

to ensure effort and resources are not wasted [84].  
 

 

Figure 4.6:  Use of requirement relaxation in design of an acrylic box: (left) cardboard 
relaxed requirement prototype, and (right) full prototype. The cardboard 
model took significantly less time and budget to produce but gave valuable 
design insights.  

Thomke and Bell explore analytical models based on the value added through 

testing. In essence, each test reduces some uncertainty in design performance, and 

removes a subsequent cost of resolving errors arising from that uncertainty. These models 

identify that significant savings can be achieved through multiple low fidelity prototypes. 

Furthermore, it is found that tests with partial fidelity are beneficial when multiple low 

cost designs are evaluated [85]. This result should be highlighted in synthesis with the 

observation that low fidelity prototypes reduce cost to permit faster prototyping [42], and 

that faster prototyping reduces design fixation [72]. This research indicates that 
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requirement relaxation, a subset of low fidelity prototyping, is a viable approach to 

reduce costs and provide useful information during design development.   
  

Virtual Prototyping 

A virtual prototype evaluates some aspect of the real-world behavior of a design 

via simulation on a computational platform [131]. Virtual prototyping is typically 

implemented through the use of analytical models, computer-based simulation, and 

visualization techniques. A prototyping effort may involve both physical and virtual 

models. For example, the design of a Baja vehicle may at different times include both 

physical and virtual design prototypes before full implementation (Fig. 4.7). Ulrich and 

Eppinger propose that a designer select either virtual or physical prototypes by attempting 

to reduce effort and increase modeling accuracy. Specifically, the ratio of accuracy of the 

model to effort of construction is used to guide the choice. This is essentially a 

recommendation for the approach that is easier and more accurate [285]. Two key 

benefits of virtual prototyping are reducing effort in cases where physical testing is 

prohibitively expensive [93], and in providing data which would be infeasible to collect 

from a physical model due to geometric constraints [128]. 

Clin demonstrates the versatility and uniqueness of virtual prototypes for complex 

and highly customized situations, such as developing braces to treat spinal deformities in 

scoliosis [131]. Goldstein also provides an example design scenario in which virtual 

models can be created within hours for complex 3D objects that would otherwise take 

weeks to physically embody [146]. In some cases, it should be noted that production of a 

physical model might be faster. Wang expounds that one of the greatest benefits of 

virtual prototyping is the possibility of synthesizing design with testing [286]. Wen 
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details that virtual models are critical for finite element analysis. Such analyses can be 

correlated to field test data for validation, and then the models can be expanded to help to 

identify weak structural elements that would normally only surface with full life use 

[129]. Christie proposes that the implementation of prototypes as either physical or 

virtual should be a strategic one. Since computers have enabled reduced effort for 

complex calculations, CAD models can translate into reduced cost or enhanced accuracy. 

However, designers note that there are limitations to the virtual approach. Virtual models 

require a substantial time expenditure on interaction with the tool interface [41]. The 

outcome may be critically dependent on the selection of parameters which will be 

modeled [152]. Since a virtual model is based only on phenomena which are incorporated 

in the model, if a physical phenomenon is relevant to the behavior of the real world 

design, but not included in the virtual model, there is no way the virtual solution can 

include those effects [152].  An example would be not including aerodynamics in the 

model of a chassis, but only accelerations due to nonlinearities in the road. 
 

   
 

Figure 4.7:  Use of virtual and physical prototypes in Baja vehicle design: (left) virtual 
prototype, (center) physical prototype, and (right) final prototype. The 
virtual prototype permitted a rapid system overview and permitted iteration 
with reduced effort.  

Sefelin evaluated the use of physical and virtual prototypes in a controlled 

experiment. Participants designed both a touch screen system and a novel calendar. The 
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results indicate that performance was about 15% higher for the virtual prototyping 

condition, but the results were not statistically significantly. In accord with this finding, 

exit interviews confirmed that most designers preferred the flexibility and reduced effort 

of the virtual models [93]. The research indicates that for certain design problems, virtual 

prototypes can save cost and provide novel information (such as large perturbation 

studies) that are not feasible to acquire with physical models.  

Outcome Assessments 

The first three outcome assessments: performance, time to build each prototype, 

and cost of each prototype are used based on the precedence of previous literature. 

Performance, i.e., the degree of meeting design requirements, is a direct measure of the 

success of the projects. Time, i.e., person-hours spent on fabrication or blueprint design, 

and cost, i.e., budget spent in dollars, are metrics which may be direct if there are 

requirements of such for the project. Time and cost also help to evaluate the prototyping 

process. Finally, adherence to the suggested approach (from the method) is a self-

reported measure of how closely a participant observed their team to utilize the method or 

if instead a different approach was chosen. Adherence to the suggested approach is used 

to compare how closely use of the method is connected to increase or decrease of the 

other metrics.   

Summarized Heuristics and Systematic Method 

The observations from the literature were critically evaluated and combined to 

develop a set of conditions to guide when and to what extent each of the techniques has a 

high potential to positively influence the design process. Iteration and parallel concept 

testing directly improve performance, while virtual prototypes, scaling, subsystem 

isolation, and requirement relaxation can permit reduction of cost and time expenditures 
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without loss of performance. These latter four techniques are critical because they may 

enable iteration and parallel concept testing, even in situations of constrained budget and 

time. See Table 4.2.  
 

Individual Technique When to apply  
Test Multiple Iterations  The problem is difficult relative to experience, e.g., 

uncertainty is high 
Explore Parallel Concepts  Material, budget and time resources permit multiple 

concepts 
Ideation has produced multiple promising concepts 

Scale the Prototype  Scaling laws permit construction of an accurate 
model 
Scaling appears likely to save cost and time 

Isolate a Subsystem  Interfaces are predictable 
There is a critical subsystem 
Building the critical subsystem will save time 
An isolated system will provide useful information 

Relax Design Requirements Requirement relaxation will permit valuable 
information gain 
Requirement relaxation appears likely to save cost 
and time 

Use a Virtual Prototype A virtual prototype will permit valuable information 
gain 
A virtual prototype appears likely to save cost and 
time 
Time permits later construction of a physical 
prototype 

Table 4.2:  A summary of key heuristics. 

Figure 4.8 represents the simplified systematic method. The method is a 

systematic tool that can be used as a source of guidance for design in the development of 

a prototyping strategy. The method synthesizes these best practices; however, there are 

potentially a number of different ways to do this. Other format options might include 

flowcharts, equations, or prompts to guide team discussion, etc.; the key is to provide 

designers with a basic approach for considering and evaluating key insights of the 
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literature findings. The method expands beyond the traditional view of a stage-gate 

process with a ‘proof of concept’, then ‘alpha’ and ‘beta’ level prototypes to include a 

large potential ‘prototyping space’, defined by six independent variables that represent 

independent techniques. The method is a translation of the empirical evidence found in 

the literature into a form that can be applied in general to a design problem. This method 

combines the available theoretical information for each of the six key techniques. Each of 

which has a potentially variable application. This information is presented to the designer 

as several questions that each require a Likert scale response. The average of these sub-

question scores then provides a single value, used to indicate a suggested approach.  

 

Figure 4.8:  Survey tool for implementation of prototyping method. See Appendix for 
full page version 
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Iteration (performance) There is potential for significant performance increase

(fabrication) A fabrication method can be chosen that will permit iteration.
(resources) The expected cost of iteration is relatively small compared to the total budget.
(time) The expected time to iterate is relatively small to the total project timeline
average the above Low average: pursue one only. <--> High average: pursue several iterations. 

Parallel Concepts (resources) There are sufficient resources to prototype multiple concepts.
(time) There is sufficient time to prototype multiple concepts.
(ranking) Rankings of several concepts are very close (e.g. from Pugh chart).
average the above Low average: pursue one only. <--> High average: develop multiple concepts.

Scaling (models) Scaling law(s) will permit accurate system modeling via a scaled build.
(feasibility) Scaling will significantly increase the feasibility of prototyping.
average the above Low average: use a full size model. <--> High average: use a scaled model. 

Subsystem Isolation (interfaces) Interfaces between subsystems are predictable and re-integrable. 
(requirements) 1 or 2 subsystems embody the critical design requirements.
(resources) Testing a subsystem would substantially reduce expense of resources
(testing) Testing of an isolated subsystem will validate a key function
average the above Low average: integrate the system. <--> High average: isolate subsystems. 

Requirement Relaxation (requirements) The requirements require refinement 
(concept) At this stage, concept development is the most critical
(resources) A reduced requirement prototype will significantly reduce resource usage. 
(usage) At this stage it is important to simulate usage scenarios
average the above Low average: use rigid requirements. <--> High average: relax requirements.

Virtual Prototypes (effort) Virtual prototype(s) will reduce effort compared to a physical one(s).
(availability) The required tools to develop a virtual model are available
(data) A vritual model will provide accurate test data
(design) A virtual model will facilitate other needs: complex topology, integrated testing
average the above Low average: use a physical model. <--> High average: use a virtual prototype.

Assessment
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 Each individual technique is given a full question in the survey tool. To 

determine the suggested approach for an individual technique, the designer answers each 

Likert prompt under a heading then takes the average of those scores. The average of the 

Likert score is then mapped onto the given scale, which provides a unique approach for 

each technique. Note there is a relevant magnitude which indicates the degree to which 

that approach is likely to benefit the process. When a neutral response is identified, the 

designer must reconsider the questions until an indication towards either approach is 

given. This combination of multiple prompts allows for competing elements of the design 

context to be weighed against each other and still permit a clear plan for each technique. 

From the method there are 46 implementable unique strategies that could be indicated. 

This approach saves significant time over memorizing and attempting to individually 

weigh all of the information identified in the literature review. Typically, the method is 

presented by providing examples as shown in Figure 4.2 through 4.7, and then the 

method in Figure 4.8 is provided to the designers. The method provides guidelines for 

implementing each individual technique, where the combination of these techniques 

constitutes a suggested approach. The suggested approach is then translated into the 

context of a specific problem as a complete prototyping strategy through the efforts of the 

designer. This concept tends toward a dimensionally enhanced approach as compared to 

the traditional strategy of achieving stage gate objectives in sequence (from alpha level to 

beta level prototyping, etc.).  

Case Studies: Prototyping Efforts 

The method (as shown in Figure 4.8) guides application of each technique. 

Execution of a complete strategy can become complex. Two case studies are reviewed in 
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which strategic prototyping was applied. The first case is the architectural renovation of a 

historic structure in Beijing. The second is a pre-commercial product from SUTD. 

A large scale renovation project is currently underway in Beijing. The firm 

executing this renovation has asked that details of the project remain anonymous until the 

project is complete; however, their strategy can be discussed. Production of a full scale 

prototype is impossible in this case for two reasons. First, it would exceed the budget of 

the project. Second, it is too dangerous to risk damaging the original structure. To address 

these issues, a more systematic strategy was adopted. For concept selection, several 

parallel, relaxed requirement prototypes were compared. The final concept is a synthesis 

of these parallel-developed concepts.  

Prototyping for the final concept was segmented into two isolated subsystems. 

The first was a virtual model representing the full system, including the original structure 

as well as the enhancements. It is a four dimensional model that represents dynamic 

(electronic) surfaces that will be installed over the existing structure, in a virtual 

environment. The environment can be navigated. It also simulates external inputs such as 

sunlight. This full-scale, virtual, simulation was iteratively developed. Simultaneously, a 

series of full scale, physical, parallel subsystem prototypes were pursued. Production 

material samples were used to prototype each interface. For example, a single tile of the 

holographic flooring was fit to the stone wall. This isolated interface prototyping 

provides precision to the detailed virtual simulation. This strategy permitted detailed 

prototyping of the design with reduced risk. For example, subsystem isolation was critical 

because of the delicate and critical nature of interfaces with the original structure.  

Considering a second case, Idea cube is a hand held three dimensional white 

board in a pre-commercial product development phase at SUTD. It can be used for 

concept sketching or for representational drawing of objects. The cost of prototyping this 
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design at full scale is a fraction of the project budget. However, the initial prototype was 

produced with relaxed requirements to save time and explore functionality. Next, the 

project was split into three isolated subsystem prototyping efforts. First is the whiteboard 

cube. It was iteratively refined over several full scale, full requirement prototypes. 

Various aspects of durability were tested. Several features such as ruled edges, and a 

sliding hinge were also added to this subsystem. The second isolated subsystem was a 

small sculpture that fits inside the cube to demonstrate the impact of viewing angle. At 

first, four different concepts for the sculpture were prototyped in parallel at full scale, 

with relaxed requirements. A form inspired by Escher’s ‘impossible staircase’ was 

selected. This concept was iterated several times, with non-relaxed requirements. Over 

the iterations, varying aspects of geometry and material selection were refined. The third 

subsystem was a custom packaging, iteratively developed from lasercut cardboard. The 

dimensions of the cube were set to enable isolated simultaneous development of the 

sculpture, cube and packaging. This approach was driven by the strategy method, for 

instance, iteration was recommended because of the relatively low cost per test.  

4.2 EXPERIMENTAL EXPLORATION AND VALIDATION 

To investigate the proposed method and its elements, it was necessary to construct 

several complementary experiments. These experiments were each designed in a similar 

manner with variations in type of design requirements and length of study to permit a rich 

understanding of the effects of the method. This section details each of the experiments 

that were constructed to test the research hypotheses. There were three shorter-term, 

design challenge type experiments, and one long-term in-situ study. Multiple design 

problems were explored. This experimental approach reduces the potential that results 

could be skewed by the selection of a particular design problem. A high-level, contrasting 
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overview of the unique objective for each study is presented in Table 4.3. Particularly the 

binary and controlled performance measure studies permit a clear quantification of 

performance effects, while the in-class study provides a deeper view of cost and time 

expenditure factors for the scaling, subsystem isolation, and requirement relaxation 

strategies. The following section details objectives, data recording techniques, metrics, 

design problems, participants, time allotments, and material allotments for each study. 

Note that there were no repeat participants between any of the four experiments. Also, for 

each study, participants consisted of a random mixture of male and female junior and 

senior university students majoring in either mechanical engineering or industrial design. 

The number of participants varies slightly due to the fact that participation was on a 

voluntary basis for each study.  
 

Title Unique Objective 
Study 1 - Binary Design 
Objective  

Explore a problem with strict pass/fail or 
‘binary’ measure of performance 

Study 2 - Open Design 
Objective 

Explore a problem where there is no 
practical upper limit on design 
performance 

Study 3 - Virtual Prototyping Explore a problem for which either 
physical or virtual prototypes appear 
applicable 

Study 4 - Capstone Design  Explore a context in which the 
prototyping efforts occur over an extended 
period 

Table 4.3:  Overview of Studies. 

Study 1 - Binary Design Objective  

In the first two controlled studies, an experimental group was exposed to the 

method, while a control group was left to develop their own approach to prototyping (as 

typically occurs in most design contexts). The first study evaluated impact of the method 
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on performance for a ‘binary’ design requirement. That is, this requirement simply had a 

pass/fail condition. This generally mimics binary (hard) design requirements. For this 

study, a researcher observing each team measured and recorded the performance 

distance, in this case using a caliper. The participants kept a log of their iterations and 

concept testing. The metrics and conditions are listed in Table 4.4. 
 

 
Measured: 
• Performance 
• Number of 

Iterations 
• Number of 

Concepts 

Conditions: 
• Experimental: 

Method 
• Control: No-method 

Table 4.4:  Metrics and conditions of Study 1 - Binary design objective. 

For the first controlled study, teams were asked to build a device that starts within 

a bounded area on the floor and then moves a given object, a US quarter-dollar coin, to 

cover a target. It was required to stay within bounds and operate using the system’s stored 

energy (i.e., teams could not push the device to actuate, rather they were required to pull 

a release pin). Figures 4.9 and 4.10 illustrate the problem. There were 15 minutes for 

introduction of the problem, followed by 30 minutes for method instruction (experimental 

group) or free ideation (control), then there were 180 minutes for building. Each team 

was supplied with the following materials in a pre-made kit: cardboard, rubber bands, 

paper clips, paper, cardboard, foam, CDs (compact discs), pencils, pipe cleaner, PVC 

pipe, masking tape, box cutter, scissors, marker. There were 36 participants in this study, 

equally divided between experimental and control groups. Participants completed the 

design problem in teams of two persons [82]. 
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Figure 4.9  Depiction of design problem for Study 1 - Binary design objective. 

 

 

Figure 4.10:  Example prototype from Study 1 - Binary design objective. This design acts 
like a drawbridge - dropping the coin into place.  

Study 2 - Open Design Objective 

The second controlled study evaluated the impact of the method on an open-ended 

design performance requirement. This requirement had no theoretical limit on 
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performance. This generally relates to variable (soft) type design requirements. For this 

study, a researcher observing each team recorded the performance of each iteration (in 

this case distance, determined by tape measure), changes made, and time of testing. The 

metrics and conditions are listed in Table 4.5. 
 

 
Measured: 
• Build Time (each iteration) 
• Performance (each iteration) 
• Number of Concepts 
• Number of Iterations 

Conditions: 
• Experimental: Method  
• Control: No-method 

Table 4.5:  Metrics and conditions of Study 2 - Open design objective. 

The second controlled study is complementary to the first, with the only 

difference that teams were required to move an object, a piece of paper, as far as possible 

down a hallway. Again, the device was required to start within a bounded box, operate 

using stored energy, and not pass over the sidelines. Figures 4.11 and 4.12 show this 

experiment. The problem introduction was 15 minutes long, followed by 5 minutes for 

method instruction (experimental group) or free ideation (control); there were then 50 

minutes for building. Each team was supplied with the following materials in a pre-made 

kit: cardboard, rubber bands, paper clips, paper, cardboard, foam, CDs (compact discs), 

pencils, pipe cleaner, masking tape, box cutter, scissors, marker. There were 64 

participants in this study, equally divided between experimental and control groups. 

Participants completed the design problem in teams of two persons [27]. 
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Figure 4.11:  Depiction of design problem for Study 2 - Open design objective. 

 

 

Figure 4.12:  Example prototype from Study 2 - Open design objective. This design acts 
like a ramp, guiding a disc into a rolling motion along the track.  

Study 3 - Virtual Prototyping 

The third controlled study evaluated differences between physical and virtual 

prototypes. Some design problems are impractical to solve solely with virtual or physical 

modeling respectively. However, the objectives of this study were to evaluate 

performance differences for a problem that could readily be solved by either, and whether 

the method encourages virtual prototyping or not. For this study, a researcher observing 

each team recorded the time to complete the design. The researcher also measured and 
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recorded performance of the physical prototypes, while the virtual prototype performance 

was extracted by the researcher from the simulation software. Participants were provided 

with the method and were allowed to subsequently choose physical or virtual prototyping 

but not both. The metrics and conditions are listed in Table 4.6. 
 

 
Measured: 
• Build Time (until finish) 
• Performance (final 

design) 

Conditions: 
• Selection of Physical  
• Selection of Virtual 

Table 4.6:  Metrics and conditions of Study 3 - Virtual prototyping. 

In this third controlled study, participants were required to design a four-bar 

linkage that traces a path. The design performance metric for this problem was the ratio 

of horizontal (x) motion to vertical (y) motion. The primary objective was to obtain the 

highest ratio in the allotted time. Figures 4.13 and 4.14 provide details. Individuals were 

introduced to the design problem for 15 minutes, then given the design method and 

allowed to choose between virtual or physical prototyping. Individuals were separated 

according to their selection and given a 5 minute introduction to either the physical 

prototyping tools or the linkage design software. Each participant was provided with 

either a computer terminal and access to the linkage simulator for virtual prototyping, or 

a hole punch, scissors, plastic rivets, cardboard and pencil for physical prototyping. Then 

all participants were given up to 50 minutes to prototype. There were 32 participants in 

this study. Each participant completed the design problem individually [30].  
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Figure 4.13:  Depiction of design problem for Study 3 - Virtual prototyping. 

 

 

Figure 4.14:  Example prototype from Study 3 - Virtual prototyping. This physical 
prototype traces the pencil in a desired pattern on the sheet of paper.  

Study 4 - Capstone Design  

This study consisted of providing the method to students in a senior mechanical 

engineering capstone design course. The objective of the in-class study was to evaluate 

the impact of the method and use of the various approaches supported by the method. In 

particular scaling, subsystem isolation, requirement relaxation, and physical or virtual 

prototypes were implemented in full for this experiment. Many of the projects in this 
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course are industry sponsored and teams often produce high-end custom fabricated 

prototypes. This permitted deeper exploration of the approach taken by participants, as 

well as the observation of additional quantitative information such as the cost of each 

prototype. For this study, researchers conducted individual interviews with each team to 

collect data. Two researchers worked with the teams while they completed an evaluation 

of the cost of each prototype (in US dollars), the time to produce each prototype (in 

hours), and the team-perceived performance of each prototype and value of information 

gained from each prototype. The metrics are listed in Table 4.7. 
 

Measured: 
• Performance of Each Prototype 
• Use of Scaling, Subsystem Isolation,  

Requirement Relaxation, and 
Virtual Prototyping 

• Cost of Each Prototype 
• Time to Construct Each Prototype 
• Adherence to Suggested 

Approach 
• Number of Prototypes 

Constructed 

Table 4.7:  Metrics and conditions of Study 4 - Capstone design. 

For the in-class study, each team was matched with an industry or research 

sponsor and provided a unique design problem. These ranged from development of 

sealing valves for offshore mining rigs to prototypes for medical equipment. This was an 

advantage in that it also permitted validation of the methodology for a broad segment of 

the design problem space, thus reducing any potential influence due to a specific 

problem. At the beginning of the semester, two researchers introduced the methodology 

through a lecture and provided the survey tool. The teams then had 3 months to build 

various prototypes. The researchers returned to conduct interviews at the end of the 
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semester with each team, to assess their prototyping effort. Figure 4.15 shows an 

example. There were 105 participants in this study. Participants completed their design 

projects in teams of 3 to 5.  
 

 

Figure 4.15:  An example prototype from the capstone design study, a cam phaser. 

4.3 RESULTS AND DISCUSSION 

This section reports results from all four experiments. For convenience, the results 

section is mapped to the research hypotheses. Data pertinent to each hypothesis are 

presented in sequence. The pursuit of several experiments permits each research 

hypothesis to be evaluated. This section is organized to first report results of the influence 

of each individual technique on performance; this relates to the first research hypothesis. 

Next, results relating to the second hypothesis regarding increased use of the techniques 

with exposure to the method is evaluated. Finally, results pertaining to the third research 

hypothesis are presented, regarding effects of the method on overall design performance. 

It is observed that each of the individual techniques can have a positive impact on design 

outcome. These results are reported with a new level of detailed quantification. 

Furthermore, the method increases use of the individual techniques and improves overall 

performance.  
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Throughout this section, both the Student’s t-test and the test of two proportions 

are employed. The Student’s t-test is applied for hypothesis testing in cases where a 

performance measure and thus resulting difference of means can take on variable values. 

For the purposes of this work, it is assumed that any value for p less than 0.05 will suffice 

to reject the null hypothesis with statistical significance for the Student’s t-test. Secondly, 

for instances in which there is a binomial distribution (only two possible values) the 

results are analyzed using the comparison of two populations' defective proportion. This 

test uses a transformed z-test to test the hypothesis that two samples are from the same 

population. For the purposes of this work, it is assumed that any value for p less than 0.05 

will suffice to reject the null hypothesis with statistical significance for the test of two 

populations' defective proportion.  
 

Hypothesis 1: Individual Techniques Improve Outcome 

Iteration 

The influence of iteration on design performance was measured in the variable 

performance controlled study. The literature indicates that iteration improves 

performance [72, 113]. This correlation was observed here also. The open-ended nature 

of this problem allows for quantification of the marginal effects of iterations, which are 

reported here for the first time (Fig. 4.16). Repeated tests without design changes are 

excluded. Performance continues to increase with many iterations. The performance 

value can increase to 400% of the initial test performance. Another way of looking at this 

result is that on average, each iteration provides a 12% increase in performance. The r2 

value is 0.85 for mapping the results to the line equation of gradient 12%, and intercept at 

19 feet (computed average for initial performance).  
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Figure 4.16:  Performance with respect to increasing number of cycles of iteration. ±1 
standard error shown. Source: Study 2 - Open design objective. Each point 
represents the average performance of the ith iteration, across all teams.  

In remarkable complement to the increase in performance observed with iteration 

is the decreasing cost of execution in terms of time to complete each iteration (Fig. 4.17). 

The first build takes significantly more time than subsequent, evolutionary builds. 

Furthermore, there is also a general trend of decreasing time to build each ith iteration. 

There are some outliers at higher numbers of iteration, thus large standard error at these 

points. From experimental observations, these were instances where a prototype failed 

and required significant repair time. Another way of looking at these results is that the 

time to build each iteration decreases by about 8% for each iteration (excluding the initial 

build). 
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Figure 4.17:  Time spent to develop each iteration with respect to ith iteration. ±1 standard 
error shown. Source: Study 2 - Open design objective. 

Parallel Concepts  

As would be expected from the existing literature [117, 119], exploration of a 

second concept was also correlated with a performance increase beyond the first concept. 

Figure 4.18 shows that the average performance of a team’s second concept is higher 

than their first. This was significant with Student's t-test at p < 0.001.   
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Figure 4.18:  Average performance for first and second concept within each team. ±1 
standard error shown. Source: Study 2 - Open design objective. 

Interaction of Iteration and Parallel Tests 

Several interesting results were found in terms of comparing iteration and parallel 

concept development, from analyzing results of Study 2 - Open design objective. This 

study permits some basic comparative evaluation of these two techniques as the 

performance metric is a continuous. On average, teams which included an additional 

concept introduced it on the 3rd iteration. Furthermore, the average score for the first two 

iterations in teams that attempted two or more concepts (19 ft.) was significantly lower 

than the average scores of the first two iterations for those that only iterated (29 ft.). This 

difference was significant with a Student’s t-test at p = 0.05. One possible interpretation 

of this result is that the teams chose to explore a second concept after observing that the 

first concept was not working well.  

Although the second concept typically performed much better relative to the first, 

in this study, there was no statistically significant difference in final performance 

between teams purely iterating and those developing multiple concepts (across all teams). 

One explanation for this finding is that since a large quantity of iterations was permitted 

(up to 30 in one case), the effects of parallel prototyping may have been less pronounced 
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(the largest number of parallel concepts was three). The average number of total 

iterations was 11 whether teams tested a second concept or not (for Study 2 - Open 

design objective). This result indicates that teams strictly iterating improved one concept 

over 11 iterations while those changing concepts only produced on average 8 iterations of 

the second concept; which might also account for the outcome.  

In the experiments, exposure to the method has been controlled; however, teams 

are given freedom of choice in pursuing a prototyping strategy, where the objective is to 

simulate as realistic a design experience as possible. Based on the distributed usage of 

iteration and parallel testing, the experiment is fractional factorial. Main effects are 

reported in the preceding section. 

In terms of time expenditure, the first iteration of the second concept only took an 

average of 12 minutes to fabricate. This time duration is significantly less than the time 

required to produce the first iteration of the first concept (30 minutes). This difference is 

statistically significant at p = 0.04. This result is intriguing in that it suggests that as 

participants build the first concept they may be learning the tools and design problem 

more deeply, so that development of a new concept does not take much more time than 

an additional iteration of one concept. 

One final, practical observation is that even during development of a single 

concept, some teams implemented isolated subsystem development in parallel. For 

example, one member might be developing the base, while the other develops the 

projectile. In this sense, there are even ‘mixed’ forms of iteration and parallel 

prototyping.  
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Scaling 

The results for scaling, subsystem isolation and requirement relaxation were 

collected from the in-class study. To evaluate the main effects of scaling, subsystem 

isolation, and requirement relaxation, single factor ANOVA and pairwise Student’s t-

tests are employed. Participants were interviewed and completed a form detailing 

performance and value of information on a ten point Likert scale, and cost and time spent 

as dollars and hours respectively for each prototype built in the experiment. For scaling, 

as would be expected from the literature [101, 106, 109, 110], there was a reduction in 

the cost to produce each prototype. Scaled prototypes cost teams significantly less than 

full-size physical prototypes with p = 0.003. There was also a reduction in time to build 

each prototype, but not quite significantly so, at p = 0.058. There was no significant 

difference in performance of scaled prototypes. However, there was a significant increase 

in the value of information gained, at p = 0.039 for the t-test that scaled models afford 

more useful information (Fig. 4.19).  
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Figure 4.19:  Four metrics to evaluate prototypes with regards to scaling, subsystem 
isolation, and requirement relaxation.  ±1 standard error shown. Results are 
for each prototype on average in class study with regards to: (top left) cost 
expended, (top right) time spent, (bottom left) performance achieved, 
(bottom right) information gained. Source: Study 4 - Capstone design. 

Subsystem Isolation 

The mean cost and time to produce prototypes of an isolated subsystem were less 

than that of producing a full system. However, these differences were not quite 

significant (Student's t-test at p = 0.07 for each). There was not any significant reduction 

in performance or information gained (t-test values are p = 0.40 and p = 0.255, 

respectively). Only a small percentage of prototypes were produced as isolated 

subsystems; thus, there were not enough data points for statistical significance (Fig. 
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4.19). However, based on the trends of the other results, it appears that with more data 

points these differences would likely become significant.  

Requirement Relaxation 

For requirement relaxation, there was an expected significant savings in cost 

(Student's t-test, p = 0.01) and time (Student's t-test, p < 0.001) to produce a prototype as 

compared to prototypes constructed without requirement relaxation. There was no 

significant difference in the information gained with relaxed prototypes. As would be 

supported by the literature [42], however, there was a significant reduction in 

performance of these prototypes (t-test p = 0.009). This is exactly what is expected for 

relaxed requirement prototypes, as it is intended that the saved time and cost will offset 

the performance. The final performance of teams that pursued at least one prototype with 

a relaxed requirement was slightly higher on average than those that only pursued full 

scale prototypes, but not significantly so (t-test value is p = 0.16). This approach allows 

for additional iterations or more budget allocation to the final prototype (Fig. 4.19).  

The possibility of testing for interaction effects between scaling, subsystem 

isolation, and requirement relaxation was also evaluated. In Study 4 - Capstone design, 

the teams were free to ultimately choose their own strategy, after exposure to the method. 

As a result of this freedom of choice, some of the factor trials for an ideal 23 factorial 

experiment are not present which would be required to evaluate a bilinear (or greater 

order) regression model of the interaction effects of these three techniques. For instance, 

there were no cases of scaling without requirement relaxation. Thus, the experiment is 

equivalent to a fractional factorial approach. The significant main effects have been 

identified and reported in the preceding section.   
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Virtual Prototyping 

There was a large reduction in cost observed with virtual modeling compared to 

physical modeling observed in Study 4 - Capstone design. This result was significant for 

the Student's t-test at p = 0.005. It is important to note for this result that modeling 

software was already available to the teams. In some cases modeling software may not be 

available and would require purchase. There was no reported difference in time required 

to build prototypes for each iteration. There was a significant increase in performance at 

p = 0.009 for the Student’s t-test (Fig. 19). There was a small increase in value of 

information gained for virtual prototyping but not significantly so, at t-test p = 0.061.  

For Study 3 - Virtual prototyping, the task was to design a four-bar linkage to 

produce the highest ratio of horizontal to vertical travel within a cycle. Figure 4.20 and 

Figure 4.21 show the results of this assessment. There was a significant increase in 

performance for participants who chose to pursue a virtual prototype, as well as a 

reduction in time to finish. Of course, the results of this study are highly dependent on the 

specific design problem being addressed.   
 

 

Figure 4.20:  Time to complete the target task and surpass a minimum ratio of 5:1 in the 
controlled linkage study. ±1 standard error shown.  Source: Study 3 - Virtual 
prototyping. 
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Figure 4.21:  Performance as ratio of lateral to vertical distance achieved with linkage 
design at the end of the prototyping session in the controlled linkage study. 
±1 standard error shown. Source: Source: Study 3 - Virtual prototyping. 

Hypothesis 2: Use of Individual Techniques Increases with Exposure to Method 

This section reviews whether participating designers applied the techniques more 

often when exposed to the method. The next section will evaluate impact on outcome.  

Regarding the use of iteration, Figure 4.22 shows that the experimental teams 

iterated more than the control teams during Study 2 - Open design objective. The 

difference of means was significant using Student's t-test with p = 0.006. On average, the 

experimental teams iterated on their design concepts 13 times while the control group 

only iterated 9.3 times. Teams in Study 1 - Binary design objective also pursued more 

iterations on average: 6.1 for experimental versus 3.7 for control, also significant at p < 

0.001 for Student’s t-test. 
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Figure 4.22:  Average number of iterations on original concept observed in each 
condition. ±1 standard error shown. Source: combined results of Study 1 - 
Binary design objective, and Study 2 - Open design objective. 

When comparing the number of concepts developed in parallel by the 

experimental and control groups, it was observed that the average number of concepts 

pursued per team was higher in the experimental group for the variable performance, 

Study 2 - Open design objective. This difference was significant with the Student's t-test 

at p = 0.005. Figure 4.23 shows the average number of concepts pursued per team. Teams 

in the experimental group of Study 1 - Binary design objective also pursued more 

concepts: 3.2 on average versus 1.6 in control, which was significant for Student's t-test 

with p < 0.001. This result is seen as a positive result as the literature identifies that 

pursuing multiple design concepts in parallel prototypes is correlated with increased 

performance [117, 287].  
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Figure 4.23:  Average number of concepts pursued control versus experimental groups. 
±1 standard error shown. Source: Study 2 - Open design objective. 

For scaling, from Study 4 - Capstone design, there was a significant observation 

that teams adhering to the method (high Likert-scale response, i.e. ‘4’ or ‘5’) used scaled 

prototypes more often than those that diverged (low Likert-scale response, i.e. ‘1’ or ‘2’), 

with p = 0.04 for test of two populations' defective proportions. It was noted that 

significantly more teams used subsystem isolation when they adhered to the suggested 

approach, but still less often than they employed other techniques like scaling. Similarly, 

significantly more teams used requirement relaxation when they adhered to the suggested 

approach. Finally, it was observed that teams adhering to the suggested approach applied 

virtual prototyping more often than those that diverge from the method. Additionally, 

Study 3 - Virtual prototyping also indicates that significantly more individuals select 

virtual prototypes when presented with the method. From the total set of participants, 

only 9 individuals selected to pursue physical and 23 individuals selected virtual 

prototypes (test of two proportions, p < 0.001). See Table 4.8.  
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Adherence to Method 
Likert scores:  
1, 2 = diverged   
3 = neutral or N/A 
4, 5 = adhered 

% 
Prototypes 

% 
Prototypes 

% 
Prototypes 

% 
Prototypes 

Scaling Subsystem 
Isolation 

Requirement 
Relaxation Virtual 

Adherence scores 1, 2 33% 0% 50% 43% 
Adherence scores 4, 5 54% 48% 86% 77% 
Test of Proportions p 
value 0.0427 0.0001 0.0278 0.0176 

Table 4.8:  Use of scaling, subsystem isolation, requirement relaxation and virtual 
prototypes with respect to adherence to the suggested approach for Study 4 - 
Capstone design. Note that those adhering to the method used these 
practices significantly more often. Source: Study 4 - Capstone design. 

Hypothesis 3: Use of the Method Improves Outcome 

Overall, observations indicate that teams exposed to the method started 

prototyping sooner. This result is seen as a positive result as reducing time to begin 

testing of the first prototype has been correlated with success in the previous research 

[34, 58]. Figure 4.24 shows that the mean time passed from the start of the prototyping 

session to test of the first prototype was only 19 minutes for the experimental group, 

which was 22 minutes faster than the control group for Study 3 - Virtual prototyping. In 

other words, the experimental group produced prototypes in less than half the time it took 

the control group. This difference is statistically significant at p = 0.01, Student’s t-test. 

Time to first test was also faster for experimental groups in Study 2 - Open design 

objective. 
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Figure 4.24:  Time to start in the controlled study. ±1 standard error shown. Note that the 
experimental teams started testing in roughly half the time it took control 
teams. Source: Study 2 - Open design objective. 

In terms of direct performance measure outcomes, the experimental teams also 

outperformed the control teams in both of the controlled experiments that allowed this 

comparison. For Study 1 - Binary design objective, where teams were required to ‘cover 

a target’, all of the experimental teams met the target requirement while only 56% of the 

control teams met the target performance. This percentage is the raw percent of teams 

that were able to build a device to move a quarter to cover the target ‘X’, under its own 

power, and within the allotted time (Fig. 4.25). This difference in percentages is 

significant using the test of two proportions at p = 0.0044.  
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Figure 4.25:  Raw percentage of teams able to cover the target within the allotted time. 
Note that all experimental teams completed the goal. Source: Study 1 - 
Binary design objective. 

There was also a significant difference between the experimental and control 

groups for Study 2 - Open design objective. This challenge was to move an object as far 

as possible (Fig. 26).  On average, the experimental teams moved the object 50 feet, 

while the control teams moved the object 41 feet. This difference is significant using 

Student’s t-test at p = 0.018.  
 

 

Figure 4.26:  Mean distance each team propelled the supplied object. ±1 standard error 
shown. Note that the experimental teams moved the object 9 ft. farther than 
control, on average. Source: Study 2 - Open design objective. 
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For Study 4 - Capstone design, it was observed that there was a correlation 

between adherence to the method and prototype performance. Each team addressed a 

unique design problem. This is advantageous, as it permits the method to be evaluated in 

a broad range of design problems. However, each team has different relevant 

performance metrics. Therefore, general metrics were used for Study 4 - Capstone 

design. Each team was asked several questions, including: (1) “How closely did your 

team follow the method?” and (2) “What was the outcome performance of your 

prototyping efforts?” The results in Figure 4.27 highlight that performance was directly 

proportional to how closely teams adhered to the approach suggested by the method, for 

their specific problem. The difference between close adherence (‘4’ or ‘5’, on Likert 

scale) and low adherence (‘1’ or ‘2’, on Likert scale) was significant for Student’s t-test 

at p < 0.001. These problems were also much longer term than the controlled problems.  
 

 

Figure 4.27:  Comparison of how closely teams followed their suggested approach, and 
outcome performance of prototyping efforts. ±1 standard error shown. 
Source: Study 4 - Capstone design. 
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4.4 CONCLUSIONS 

Regarding the first research hypothesis, “Prototyping techniques, taking into 

account studied prototyping principles, correlate with successful design outcomes,” an 

extensive literature review was conducted and six key individual techniques were 

identified. For each of these techniques, there was substantial empirical literature that 

identified a ‘best practice’ approach to its implementation. In addition to the literature 

findings, several effects of these techniques on the prototyping process were also 

experimentally evaluated.  

In Study 2 - Open design objective, it was observed that iteration and multiple 

design concepts improved design performance significantly. Specifically, for the first 

time, the quantitative value of continued iteration has been reported. It was observed that 

performance continued to increase with multiple iterations, even to the point of a 400% 

performance increase at the 20th iteration on average; and notably, the time expenditure of 

each test is decreased with increasing iterations.  

From Study 4 - Capstone design, it was observed that the use of scaling and 

requirement relaxation significantly reduced the cost of a prototype as well as the time to 

construct it. For requirement relaxation, there was a slight decrease in performance of 

that prototype, as would be expected from the literature [17, 42, 85], since by definition a 

relaxed prototype requires less rigorous performance; however, this had no significant 

effect on final performance. Subsystem isolation was also correlated with reduced time 

and cost, but not significantly so, as fewer instances of this were pursued comparatively. 

Virtual prototyping was correlated with drastically reduced prototyping costs. For scaling 

and virtual prototyping, there was no significant loss of performance. Performance 

actually increased for virtual prototypes. 
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A controlled experiment, Study 3 - Virtual prototyping, also confirms and 

expands these results about virtual prototyping. Participants designed a linkage in this 

study. Individuals employing virtual prototyping achieved higher performance, and also 

produced their final design in less time than those using physical prototypes. These 

individuals reported that virtual prototypes “required less unnecessary effort” than 

physical ones for the problem. The particular design problem of this study is well suited 

for both physical and virtual models; however, in some cases either may be infeasible and 

there is not a need to choose between the two.  

Regarding the second research hypothesis, “These practices can be induced in 

designers’ activities through exposure to a developed design method”, these best 

practices were reformulated as heuristics and finally translated into a general 

methodology. Next, this method was introduced to designers in several controlled design 

studies as well as an in-situ experiment. The results of these studies indicate with 

statistical significance that each of the six key techniques were applied more often in the 

experimental groups that were exposed to the method in the controlled studies. 

Additionally, for Study 4 - Capstone design, it was observed that teams which reported 

adhering to the suggested approach also applied each of the individual techniques more 

often than those that reported diverging from the method. This refers to adherence to the 

approach suggested through completion of the survey tool.  

Regarding the third research hypothesis, “Use of the method correlates positively 

with direct measures of success”, teams exposed to the method achieved greater final 

design performance than control groups with the same material and time allotments. This 

was observed for Study 1 - Binary design objective, as well as Study 2 - Open design 

objective. Teams also started prototyping significantly sooner in the experimental group. 

It was also observed for Study 4 - Capstone design that teams adhering to the method 
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performed better than teams which diverged from the method. The approaches of scaling, 

subsystem isolation, and requirement relaxation work in concert with the benefit of 

iteration and parallel concept exploration. Scaling, subsystem isolation, and requirement 

relaxation approaches drastically reduce the time and cost to develop each prototype. 

Furthermore, pursuit of parallel concepts, as well as iteration, significantly improves 

performance. Thus, the simultaneous use of several of these approaches can permit the 

pursuit of multiple prototypes and subsequent performance enhancement, even when time 

and budget are limited.  

Limitations to the Study 

It may be argued that an empirical design study is limited by selection of the 

design problem. One of the challenges of design problem selection is in identifying which 

results are generalizable, and into what other contexts. One possible approach to address 

this issue is to explore several unique problems and contexts.  In this work, several 

different and complementary design problems were evaluated in multiple, parallel 

controlled studies. In a fourth, in-class study, participants of this study addressed a large 

variety of design problems. This in-class study also occurred over a longer term. 

Comparable effects were observed between Studies 1-3, and Study 4 - Capstone design. 

Further, the results regarding each of the individual techniques match what would be 

expected from the literature. The literature includes results drawn from analysis of full-

scale industry projects. A remaining challenge is to quantify to what limit, in terms of 

design context, the results are generalizable.   

The research studies only address six techniques while there may in fact be a large 

number of other valuable techniques. However, the literature identifies these techniques 

as critical with significant empirical support. By forming a method from strategies that 
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are well founded on empirical results from the literature, chances are increased for 

success and potential value. This approach matches well with the results that indicate 

performance increase associated with the method. Although it was possible to identify the 

marginal benefits of iteration, it would be equally interesting to explore the marginal 

benefits for additional concepts in parallel. For the current work it was difficult to 

encourage teams to produce more than two designs and too few teams explored three or 

more concepts to return statistically significant results. Additionally, it would be valuable 

to develop a more strategic method for guiding integration of subsystems. The current 

method does not provide any specific guidelines for which system to isolate, or how to 

later integrate it. Finally, detailed implementation of the requirement relaxation technique 

is also left to the designer. It would be ideal to also develop specific approaches to 

defining how to relax a requirement and to what degree.   

The fundamental assumption of this work is that context can be effectively 

evaluated to determine a suggested approach towards a prototyping strategy. In some 

cases the context may be somewhat vague, ambiguous or unclear. Engaging in a 

miscalculated retyping strategy could result in loss of time or resources. An example 

would be underestimating the cost of iterating on a relaxed requirement prototype and 

later not having enough budget to build the second iteration. Therefore the context must 

be carefully evaluated to ensure that an appropriate strategy is identified. 

Future research 

There are several interesting avenues now open for future research. It was noted 

in the literature review that there is significant impact on outcome with regards to the 

type of fabrication process employed. It is known that faster fabrication is preferable; 

however, there may be many techniques to achieve this. The following chapter explores 
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additional sources of design information regarding best practices for prototype design and 

fabrication. In addition to the experiments described above, versions of the method have 

been deployed at universities and design seminars around the world, from the University 

of Tsinghua in Beijing, community design seminars in Papua New Guinea, to advanced 

coursework at the United States Air Force Academy. Feedback by participants of all 

backgrounds, from Air Force colonels to native entrepreneurs, indicates that the 

individual techniques are critical for prototyping, yet the method of transmitting this 

information can be further simplified. Possible variations could include simplifying the 

heuristics into demonstrative ‘cards’ with graphic examples or something more naturally 

integrated with the design process, such as an annotated ‘prototyping notebook’ for 

tracking and planning prototypes. Finally, there is also an opportunity to integrate this 

method, or analogous methods, with other processes in design. Other areas open for 

advancement include: examination of performance and cost effects of utilizing mixed 

prototypes (a mixed prototype is distinct from a virtual or physical prototype but has 

elements of both); evaluation of early stage strategies including exploration of prototypes 

for ideation and fixation reduction; or a heavily controlled study in which a full 

regression model could be obtained for the interaction effects of the techniques, with the 

caveat that such a proscribed experimental model may have other effects on the 

progression of an in-situ design problem.  
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Chapter 5: Principles of DIY Prototype Design and Fabrication: 
Analysis of a Crowdsourced Design Repository3 

OPENING REMARKS 

This chapter explores the relatively open prototyping design research problem of 

guiding design and fabrication of individual prototypes. Previous chapters provide 

individual and integrated techniques which can be used to achieve certain objectives 

related to planning prototype development, which are typically at a systems level. 

Specifically, this chapter investigates project articles on the open source, Do-It-Yourself 

(DIY) database: Instructables.com. The database consists of guides for producing low 

cost functional prototypes. This database is a unique repository of design data as the 

design process to develop the prototypes is documented along with the final build 

information. Through a systematic research methodology, five prototype fabrication 

principles are extracted from this repository. Online crowdsourced assessment enables 

refinement and validation of the principles. Based on the refined principles, one of two 

groups in a controlled study was exposed to the principles. The study evaluates 

connectivity, successful adoption of the method by participants in the experimental 

group, and resulting design performance. Two case studies of prototypes are also 

provided. Application of the principles appears to positively impact prototyping 

outcomes.  
 

                                                
3	  B.	  A.	  Camburn,	  K.	  H.	  E.	  Sng,	  K.	  B.	  Perez,	  K.	  Otto,	  D.	  Jensen,	  R.	  Crawford,	  et	  al.,	  "The	  Way	  Makers	  

Prototype:	  Principles	  of	  DIY	  Design,"	  ASME	  international	  design	  engineering	  and	  technology	  
conference,	  draft	  accepted,	  Boston,	  MA,	  2015.	  
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5.1 INTRODUCTION 

Prototyping is critical to success in the early stages of design. For example, 

projects without a working prototype are rarely funded on the incubation platform 

Kickstarter.com. Empirical design research of prototyping has provided: strategic 

methods [10, 26, 27, 30, 82, 84, 288]; effects of timing efforts [58, 60, 63, 119, 283]; 

outcomes of process techniques such as iteration or parallel prototyping [117, 288]; and 

studies of fixation [70, 173, 289]. Existing methods [10, 26, 27, 30, 82, 84, 288] provide 

high level planning of the prototyping process. These recently developed methods 

indicate a substantial opportunity to explore systematic and strategic approaches to 

design and fabricate prototypes. Knowledge of means to reduce effort and improve build 

quality of prototypes complements existing research. What, then, are fundamental 

principles for successful prototype design and fabrication? One avenue for exploring this 

question is to review emergent do-it-yourself (DIY) design repositories. This work 

follows a systematic investigation of the open source database Instructables.com in order 

to extract principle means of prototype design and fabrication. This particular repository 

was chosen not only for the rich variety of entries, but also for the intense detail in which 

projects are described. The users who frequently generate successful content on the 

platform are typically professional designers and engineers from a variety of 

backgrounds, although electrical, industrial, and mechanical designers are most prevalent. 

This information can be obtained from user profiles. Numerous users also employ the site 

as a testing ground for launching designs which are then sent to market. This database is 

explored through careful article selection algorithms and repeated testing procedures. 

These procedures are designed to reduce noise in results from the study.  
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The DIY Design Movement 

What is DIY design? DIY design is typically implemented outside of the 

framework of professional design, for the purpose of practical gain [290]. It may often be 

an individual activity; however, sharing communities have recently evolved [291]. 

Although research suggests that DIY communities are social in origin [292], there are 

currently numerous platforms with a high technology orientation. Information moves 

organically in these communities. Experts may seed forums with extensive topic 

knowledge [293]. This exchange can directly lead to the mutual benefit of participants 

[294]. In turn, a forum of creativity is emerging where open-sharing is highly valued 

[295]. The paradigm permits individuals a self-reliance to modify or develop certain 

technologies [296]. It is possible for individuals without a technical background to 

fabricate a cellphone, or other complex tools [297]. This movement does not eliminate 

the need for large-scale manufacture of basic components; however, it does act to 

democratize technology through information sharing [297]. The DIY development can 

share benefits of craft such as high quality aesthetic [298]. The opportunity is much 

greater than this alone however. Genuine technological advancements are within the 

scope of non-experts [296].  

What opportunities does the DIY movement present for design research? Often in 

a traditional design scope, needs assessment is conducted in partial isolation from the 

user [299]. For DIY projects, the designer is often also the final user. Open sharing 

permits iterative evolution as each participant advances a design to fit their needs [300]. 

The development of personal fabrication also provides a novel design arena. Open source 

part databases (e.g. Thingiverse, Shapeways), in combination with free modeling 

software [301], and low cost digital manufacture (3D printers or laser cutters), make 

design and fabrication of geometrically complex parts a desktop activity [301]. 
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Distributed manufacturing networks (e.g. Alibaba) provide means of accessing 

components and materials in low volume directly from suppliers [302]. Other platforms 

(e.g. Instructables, Make, Highlowtech, Reprap, Opendesk, DIYlife) provide project 

guidance [301]. There are companies deploying DIY centered hardware and software 

(e.g. Arduino, Adafruit). Labs are also experimenting with DIY, enabling hardware 

development, including paper mechatronic platforms [303], or haptic interface designs 

[166]. Open source software likewise permits algorithmic generative design, to reduce 

the effort of digital modeling [304]. Hacker-spaces, incubators, and online platforms 

exhibit creative and inquisitive design. The results of these efforts can be seen as 

functioning in parallel to industry and research [305]. In this framework, designer, 

manufacturer, supplier, and consumer act as distributed networks. There is thus an open 

opportunity to connect directed research with these emergent activities [306]. 

Design Principles Extraction 

Koen identified heuristics, or principles, as fundamental to the engineering 

approach [21]. Other seminal works, including Pahl and Beitz' work on engineering 

design [307], Blessing and Chakrabarti's design research methodology [308], and Suh's 

axiomatic design theory [309] have also laid foundations for research in design 

principles. Principles provide aid in the solution of a problem, but may not directly 

provide a solution themselves [21]. Contextual flexibility is a property of design 

principles. One means of identifying principles is through categorization and 

classification. These are critical as mechanisms to represent large amounts of information 

in a compact form [22, 310]. Recent work in principles of transformable design [311] and 

product flexibility [312] provide near-field analogies for extracting principles from a 

design database. This work expands preliminary efforts [80, 81] to identify implicit 
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principles for prototype design and fabrication through analysis of a DIY, open source 

sharing platform, Instructables.com. It has been observed that radical innovation is 

human centered, and includes novel interpretation of meaning [313]. This study has 

potential to combine these two elements.  

5.2. OBJECTIVES AND APPROACH 

The study reported in this chapter consists of three elements. The first is an 

iterative extraction of principles from the online Instructables database. In the second 

phase, multiple parallel online raters help to test and refine the principles. The third phase 

is an experimental evaluation of the principles as part of design activities. Figure 5.1 

provides an overview of this three-stage process. The goal of this research is to identify 

core practices embedded in the DIY movement. The objective of these efforts is to 

identify principles of prototype design and fabrication, and to explore their effects on 

design outcome. These objectives are stated as research questions in the following: 

1. What fundamental principles exist for prototype design and fabrication, as 

embedded in Instructables’ articles? 

2. Do independent raters repeatably identify the same principles? 

3. Is there a positive impact of applying the principles in design activities? 

This project is scoped to explore Instructables in the Technology category of the 

web site as the prototypes in articles from this category closely map to prototypes of 

electro-mechanical products. The scale is similarly limited to hand-held and human-scale 

devices, as this is the focus of content in the Instructables database. This study is also 

restricted to principles of prototype design and fabrication. There may be other valuable 

process design insights in the database. 
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Research Approach 

The three objectives of this two-year study, as outlined in the research questions, 

also map to the following sections. Section 3 provides a summary of the extraction 

process of the principles through iterative refinement and testing phases. This 

identification process is guided by foundational classification research [311, 314]. 

Section 4 provides results from multiple parallel online raters' validation and refinement 

of the principles. Section 5 reports observations from a controlled empirical study with 

comparative review of two groups of prototyping teams. Only one set of teams was 

exposed to the principles. The research methodology is graphically depicted from a high-

level perspective in Figure 5.1.  
 

 

Figure 5.1:  Overview of research methodology. 
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This section begins with an overview of the process by which principles were 

extracted from the Instructables repository. The following subsections report additional 
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details regarding the construction of the repository itself, and details of the extraction 

procedure. The section concludes with definitions and examples for the principles.  

A multi-stage procedure was employed to extract, refine, and validate principles 

from the Instructables repository. Literature review was employed to define a set of 

criteria for an actionable principle. The population size of the database was measured and 

an initial sample size for principle extraction was explored. Data saturation testing was 

employed on the results of this initial set. To refine the principles and remove potentially 

redundant concepts, a set of quantified tests was employed. Detailed information about 

each article was recorded to determine if a principle was present, as well as to more 

precisely define the principles. The quantified testing data was used as a starting point to 

bin separate potential principles which actually describe the same core phenomena. This 

binning process resulted in a set of five core principles. Finally, to achieve more 

significant results and to test the hypothesis that the principles are present across the 

population, a second and much larger set of articles was evaluated. These steps are 

graphically depicted at a high level in Figure 5.2. Note that several other validation 

procedures, other than the extended database testing, were performed as part of the 

overall study and are described in Sections 4 through 7.  
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Figure 5.2:  Overview of principle extraction and testing 

Overview of Repository 

Instructables.com was conceived at MIT Media Lab and developed by Squid Labs 

(Alameda, CA, USA). It is an online database for documentation and sharing of open 

source prototype designs. Articles on Instructables consist of a mixture of text, images, 

and often video instructions to guide construction of a design prototype. Although there is 

no formal requirement for the format of an article, the typical content consists of: 

required components, required tools, instructions for custom part fabrication and 

assembly, and documentation of the final design. Articles may also provide 

supplementary files such as .STL files for 3D components, PCB board design files, or 

programs for upload to a controller. The site reports meta-data on the articles. Meta-data 

includes the total number of views an article has received, as well as the total number of 

times a registered user has bookmarked the article for reference. Figure 5.3 overviews the 

categorization, and provides a screenshot from an article [315].  
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Figure 5.3:  An overview of the Instructables repository. There are categories, channels, 
and individual articles. Note that only a sample is shown of the listings in 
each. The right hand side is a screen shot of a few steps within an article for 
prototyping a paper touchpad mouse. The article 'Tailored Touch' is an 
article in Assistive Tech, Technology [315]. Note the mixture of images and 
text for instruction.  

As of January 9th, 2015 there was a total of 152,729 articles stored in the 

repository. Of the total, 37,370 were listed in the Technology category. Categories are 

independent groupings of articles. For example, another category is Workshop. Articles 

are not listed in more than one category. Articles in the Technology category map well to 

the scope of this study, which is the electro-mechanical product domain. The Technology 

category is further divided into 38 specific channels (e.g. Sensors, Biotech, Arduino). 

Articles from each of these channels were explored in the initial principle identification 

tests, details of which follow in the next section.  
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A set of criteria for defining a potential prototype design and fabrication principle 

were developed from review Koen's definition of engineering heuristics [21], as well as 
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other seminal works on design principles [22, 80, 81, 307-309, 311-313]. These criteria 

are as follows: 

1. Design oriented - the principle relates to an aspect of fabrication or design 

2. Actionable - the principle describes a series of steps or actions 

3. Objective paired - a specific benefit or objective is expected as a result of 

implementing the principle 

4. Recurrent - the principle occurs in multiple articles 

The first criterion is specific to the scope of this study, wherein only principles 

that relate to prototype design and fabrication are explored. Criteria two and three, are 

given requirements of design principles theory. A principle should be actionable and lead 

to a specific goal. The fourth criterion satisfies the requirement that a principle is not a 

specific solution, but a general guide that aids in developing a solution across varied 

contexts.  

An initial set of articles was selected to explore the database for principles, and to 

determine the prevalence of principles within the population. To acquire this initial set, 

an equal number of articles (two) were selected from each of the Technology channels. 

This resulted in an initial sample size of 70 articles. Articles are only listed in a single 

channel, there is no cross listing. The content of articles between channels covers a large 

range of project type, from basic sensor design to articles for prototyping assistive 

technology. By taking articles from each channel, a higher degree of variety is expected. 

Articles were selected that described complete electro-mechanical prototypes. Articles 

which referred to other topics such as repair or supplied user-guide type instructions were 

not evaluated. Three channels did not contain any relevant articles, e.g. Linux. It is also 

important to note that the initial sample set of articles were the highest rated articles in 

the database with regards to meta-data (highest number of views, and bookmarks). 
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Although the meta-data may not be a direct measure of quality, it functions to filter 

incomplete or poorly constructed articles. For this initial test, the researchers closely 

examined these 70 articles, and listed detailed steps from each. Steps that described 

potential principles, i.e. met criteria one through three above, were highlighted and saved 

for continued analysis. Then potential principles that only occurred in a single article 

were removed to satisfy criterion four, above.  

Data saturation was employed to determine if a sufficient sample set of articles 

had been evaluated to identify all of the potential principles. Figure 5.4 depicts the total 

number of unique principles found, after additional sequential analysis of each article in 

the sample set. It can clearly be seen that the number of unique potential principles 

reached a point of relative data saturation by the end of this initial study. Therefore, 70 

articles was sufficient for initial testing.  
 

 

Figure 5.4:  Data saturation for extraction of specific practices, or 'potential principles'. 
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Quantification of Principles 

The set of potential principles were identified based on detailed process 

evaluation of the researchers. An additional series of tests was employed on the initial set 

of 70 articles to quantify the potential principles more precisely. This study consisted of 

identifying a concrete parameter that can be listed from each article in more detail to 

determine whether a principle was present or not. For each potential principle, a set of 

required test data was listed. These parameters are listed in Table 5.1 
 

Feature Recorded Parameter 
All components Source, cost, and function 
Planning  Representation tools used 
Custom components Fabrication, and sequence 
Structure Reinforcement techniques 

Table 5.1:  List of data collected in the quantification study 

From Table 5.1, features refer to a feature of the article and parameters of that 

feature which were recorded. Each component of each article was listed. Then the source, 

cost (when cited), and function of each of these components were also listed. This can be 

used to quantify the most common sources of components across the sample set. Planning 

refers to use of schematics, stencils, and CAD tools in the design. The use of these types 

of tools, as well as their stated objective were listed for each article. For custom 

fabricated components, the fabrication process used and fabrication sequence were also 

recorded (in addition to the source and cost of material and function of the component). 

The structure of the final design was also recorded. Components or features used to 

increase strength and durability were listed. This included listing joint types, use of 

fasteners, and placement of support members. 
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Synthesis of Core Principles 

Information from the quantified testing was used to guide a synthesis, or binning, 

process. Potential principles which were found to functionally overlap were combined 

into a single core principle. Figure 5.5 represents a sample of several potential principles 

which were grouped under a single core principle. This process resulted in a final set of 

five principles. Inter-rater testing was employed to evaluate whether independent 

researchers would also identify the same principles. Independent raters were supplied 

with the criteria, a sample set of articles and asked to list potential principles. These 

independent raters found each of the five principles, after review of the articles. Although 

the additional raters used slightly different wording, agreement was reached that the core 

concept was the same.   
 

 

Figure 5.5:  Sample of synthesis process. Three individual practices grouped into one 
generalized principle.  

Extended Testing of Instructables Population  

An additional set of articles was examined to determine if the principles occur 

outside of the initial sample set, and to add statistical significance to the testing. Sample 

size calculation was employed to determine the minimum sample size required to be 

confident that the sample set is representative of the instructables population. The goal 

was to achieve the 99% confidence level with a margin of error, or precision, of 0.05. For 

this calculation, Equation 5.1 was employed [316]: 

 

Include Lattices Employ Repeated Thin Walls Employ Shells

Include Structural Voids

+
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𝑛 ≥ !!!(!!!)
!!

 ;                                                (5.1) 

where n is the minimum sample size, 𝑍! is the statistic for a level of confidence 
(for 95% confidence, Z = 1.96; for 99% confidence Z = 2.58), P is the expected 
prevalence or proportion (which ranges from 0 to 1; for example if the prevalence 
is 20%, P = 0.2), d is the precision. 

This equation requires an initial estimate of the prevalence of each principle in the 

repository (percentage of cases in which each principle is present). Therefore from the set 

of 70 articles, the prevalence of each principle in the sample set was calculated. Then this 

prevalence value was used in Equation 5.1 to determine a minimum sample size for each 

principle that would be required to achieve the target confidence levels. Since the 

prevalence varies by principle, so does the required sample size. The largest minimum 

sample size was 653 articles. However, to achieve a substantial safety factor, 1000 

articles were reviewed. The first 30 articles (those with the most views and bookmarks) 

were taken from each Technology channel. Again, this approach is taken to ensure 

variety in the sample. To increase relevance to the electro-mechanical product domain, 

only articles with complete prototypes were included (this excludes articles focused on 

repair, or instruction manuals).  

A reviewer closely examined each article in this expanded sample set to 

determine whether each principle was employed or not. As a result, a table of principle 

usage across the entire sample was constructed. This cataloguing procedure quantifies use 

of the principles with significant confidence levels. The results are summarized in Table 

5.2. The goal of this analysis was to determine the relative prevalence of the principles 

across the database. Results were quality tested through inter-rater agreement. Pearson’s 

correlation was r = 0.68 between raters for a sample set of 30 articles. This can be 

considered substantial agreement.  The raters achieved full agreement after discussion.   
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Observations indicate that hack commercial products, and employ basic crafting 

are the most frequently present, and critical principles. Most articles employed several 

principles. The average was 3.84 principles per article (with N = 1,000), and the standard 

deviation is 1.2. These principles are introduced and defined in the following section.  
 

Principle Articles that employ given principle 
Employ basic crafting 947 
Hack commercial products 895 
Prepare fabrication blueprints 734 
Repeat fabrication processes 695 
Include structural voids 105 

Table 5.2:  Results from extended sample study. 

Introduction and definition of the principles follows immediately in the next 

subsection. 

Definition of Principles  

This section details the extracted principles. One approach for defining a principle 

is as a directive to achieve a given objective. In other words, a principle is a 'what' 

combined with a 'how'. This approach is used to present the five DIY prototype design 

and fabrication principles. A consistent linguistic and logic format is applied. Examples 

of each of the principles are provided in Table 5.3. Each of the principles can be applied 

to a varying degree. Examples of each are provided.  
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List of Extracted Principles: 

• Hack commercial products to reduce the effort and cost required to achieve 

functionality (Table 5.3a). An existing product (or product subsystem) is 

repurposed, modified, and re-deployed as a subsystem in the prototype.  

 Hacking is a means to reduce effort and cost required to achieve 

subsystem functionality. Hacking does not imply illegal modification of systems. 

Using commercial parts, as intended for a subsystem, does not constitute hacking.  

• Employ basic crafting to reduce cost and effort required to acquire materials 

(Table 5.3b). Readily available materials are used to achieve complex function 

with reduced cost.  

 Basic crafting implies use of tools and components that are readily 

available, easy to use and require little overhead maintenance or special training 

to operate; for the objective of reducing cost and effort. It is critical to have a deep 

understanding of relevant physical phenomena to avoid failure modes. Use of 

machinery, e.g. CNC milling, would typically not be considered basic crafting.  

• Prepare fabrication blueprints to manage complexity and increase accuracy of 

fabrication (Table 5.3c). Sketches (sometimes even made onto components), 

stencils, CAD models, and schematics are used to directly aid in fabrication. 

 This principle implies the use of any representation of the design for the 

purpose of managing fabrication complexity. An abstract design concept sketch 

would not be an example of this principle. 
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• Repeat fabrication processes to increase the efficiency of fabrication (Table 5.3d).  

Repetition is a means to reduce overall costs from fabrication. Multiple, 

functionally distinct components are made with a single fabrication process. 

  The objective of this approach is to reduce startup costs. Preparing any 

machine or toolset for use has a certain associated cost. This principle strictly 

applies to custom component fabrication (not the purchase of COTS).  

• Include structural voids to increase strength-to-weight ratio of the prototype 

(Table 5.3e). Elements such as lattices, hollow shells, or repeated thin walls are 

examples of structural voids. 

 Aligning supports in a lattice can increase the strength-to-weight ratio of a 

prototype. Steel suspension bridges demonstrate structural voids, while traditional 

stone or concrete bridges typically do not.   
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(a) Examples of hacking commercial products: (from left-to-right) candy bottle as 
casing for inductively chargeable flashlight [317]; DVD read head as probe controller 
for atomic force microscope [318]; flexible tubing as supports for third hand tool 
[319]. 

    

(b) Examples of employing basic crafting: (from left-to-right) cardboard as structure 
for projector [320]; acrylic sheet, permanent magnet, and laser pointer for 3D 
magnetic field mapping tool [321]; aluminum foil, cardboard, and Arduino for 3D 
motion capture interface [322]. 

   
 

(c) Examples of preparing fabrication blueprints: (from left-to-right) CAD model of 
robotic lamp [323]; schematic star map for fiber-optic star portrait [324]; paper stencil 
for gear fabrication [325]. 

   
 

(d) Examples of repeating fabrication processes: (from left-to-right) 3D printed 
components of a clamp for a modular quad-copter design [326]; custom printed circuit 
board, and light stencil both fabricated with an inkjet etching process [327]; several 
components for a CNC mill that were produced from a laser cutter [328]. 

 
(e) Examples of including structural voids: (from left-to-right) a display with repeated 
thin walls for support [327]; A paper mechatronic system with paper repeated thin 
walls [329]; a laptop stand with structural lattices [330]. 

Table 5.3:  Example instructables that exhibit the fabrication principles. 
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5.4 ONLINE RATER STUDIES 

This section will report results of a study using an online survey tool. The 

objective of this study is to test whether a set of reviewers, who have not been exposed to 

the research hypotheses, will identify the same principles as the researchers found during 

analysis of the sample set of articles. As seen in Figure 5.1, the online study provides 

potential for validation and refinement of the principles. The section begins with an 

overview of the benefits and limitations of crowdsourced analysis, then follows with a 

brief discussion of pilot studies. The section concludes with design of the complete online 

study and results.  

Introduction to Crowdsourcing 

Online crowdsourced analysis combines parallelization of computational analysis 

with the advantages of human reasoning [331]. Parallel decomposition of problem 

solving is inspired by the search for extra-terrestrial life at home or ‘SETI@home’ 

project. In this effort, millions of individuals shared the computational power of their 

home PCs for an astronomy data mining task [332, 333]. 

Parallel decomposition has also been demonstrated with tasks requiring human 

intelligence. One example is the Foldit project. In this project, individuals solved 

complex protein folding problems via a game-like environment. A result of this project 

was successful identification of the precursor pathway for a critical enzyme that could 

potentially lead to renewable fuel production [334]. Online raters have volunteered to 

provide distributed ecological monitoring [335], identification of astronomical bodies, 

and quantum physics modeling [336].  

Crowdsourced analysis provides refinement and validation of the DIY prototype 

design and fabrication principles. This approach helps in refinement and error checking 

[337]. This method has potential risks, as anonymity of the workers may influence 



 160 

participation styles [338]. Workers are the anonymous participants who complete the 

online surveys. A subset of workers provide blank responses or copy text using 

automated submission algorithms or 'bots' [339]. It is critical to employ a design task and 

reimbursement structure that encourages quality responses [339, 340]. Design of the 

survey can also affect outcome. General observations of this research and previous 

studies are that less abstract tasks achieve higher result quality [341, 342]. For this study, 

Amazon's Mechanical Turk platform was employed. This platform was chosen because 

of its relatively large user base and flexible design interface.  

Pilot Studies 

A series of pilot studies was conducted to inform design of the surveys. Previous 

research provided some insights on basic details such as reward levels [340]. Pilot 

surveys were also conducted in which various question formats were evaluated. One 

observation of online survey design is the important consideration that the audience will 

have no context for the survey. In many studies, the researchers may approach a design 

firm, or work with students in a design class, wherein these is some implicit expectation 

that the survey will relate to design. With online studies there is no such context and the 

survey itself must fully orient respondents with the nature of the work. However, with 

several iterations a survey design was achieved for which 91% of responses were relevant 

to the study. A relevant response is both not blank, and directly addresses the topic of the 

question. 

Data saturation testing was also employed to determine how many parallel raters 

should answer each survey. A sample set of surveys was posted to the online tool. 

Parallel raters were permitted to respond to the same survey. Then the researchers 

counted the number of unique solutions provided by each additional rater for each survey. 
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This was used to compose a data saturation test. A logarithmic curve was fitted to the 

data. If more than 25 raters evaluate the surveys, the expected marginal gain of new 

unique solutions per new rater is less than 1% of the total number of unique solutions 

found by the first 25 raters. Therefore, 25 raters is taken as sufficient for data saturation. 

The r2 value for the equation fit was 0.99.  

Full Online Study and Results 

There were two sets of surveys deployed in the full study. The first set of surveys 

acheives high depth of analysis from a set of raters. The second survey set receives a 

higher level asssessement from a larger set of raters. This format helps ensure that there is 

both detailed analysis and statistical significance to the study.  

In the first stage, five articles were selected for each of the five principles. 

Twenty-five raters assessed each article. For these articles, control was introduced by 

posting all five of the principle variant surveys for each example. Some of the examples 

exhibit up to three principles but the researchers did not identify all five principles in any 

of the posted samples. Therefore there is an opportunity to match both positive and 

negative identifications between the respondents and the researcher. This initial set of 

twenty-five examples was evaluated using a survey where respondents provide an open-

ended response to determine presence of a principle. A corresponding binary ‘yes/no’ 

indication of principle presents is provided afterwards. This provides an initial test for 

matching with detailed answers from the respondents. There was a high degree of 

matching between the open-ended reply and binary testing for the principle.  

The second, large sample size, survey set was deployed with a binary principle 

test. For this set, there were 125 example articles that had each been rated by the 
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researcher to contain one of the principles. There were 25 examples for each principle. A 

total of 4,385 online assessments was made accross both of these stages. 
 

 

Figure 5.6:  Schematic layout of the survey design. Each survey was populated with 
images and description from a specific article. The questions at the end of 
the survey varied, and are described in Table 5.4. 

introduction to task  

•  description of full build process, pulled from instructables 
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topic prompt 
 
question 
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Topic 
prompt 

Question Clarification 

Design What do you notice to be most clever 
about the design or construction of this 
prototype? 

Describe it generally- so that 
someone else might be able to 
do the same thing for a 
similar design. 

Part 
Selection 

What was clever about the selection or 
fabrication of parts for this prototype? 

Describe it generally- so that 
someone else might be able to 
do the same thing for a 
similar design. 

Fabrication What was most clever about the 
construction process used for this 
prototype? 

Describe it generally- so that 
someone else might be able to 
do the same thing for a 
similar design. 

Schematics What was clever about the choice of 
schematic, or to not use a schematic, in 
this process? 

Describe it generally- so that 
someone else might be able to 
do the same thing for a 
similar design. 

Structure What is the most clever structural 
(strength adding) feature in this 
prototype? 

Describe it generally- so that 
someone else might be able to 
do the same thing for a 
similar design. 

Table 5.4:  Question Variants for the full online survey. Each article was posted five 
times, once with each set of questions. 

 
The technique of multiple raters is adapted from Green [343]. Fleiss' Kappa is a metric 

for determining the level of agreement between many parallel raters. It is analogous to 

Pearson's correlation. Fleiss' Kappa was employed to evaluate the agreement between 

parallel online raters. Due to design of the crowdsourced platform used, each of the raters 

did not necessarily complete more than one article. For this case, since the minimum 

number of assignments given by a rater is only one (n = 1), the form for Fleiss’ Kappa is 

simplified as in Equation 5.2 (below).  
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𝑃! =

!
!(!!!)

𝑛!"!!
!!! − 𝑛 = 𝜅 ;                                 (5.2) 

where Pi is the agreement for raters on a given topic (principle), n is the number 
of subjects (articles) evaluated by each rater, the categories are indexed by j from 
1,..,k; and 𝑛!" represents the number of raters who assigned the ith subject to the 
jth category; Note that  𝑃! =   𝜅 only in this special case where N = 1. 

 

The Fleiss' Kappa is used to develop a ‘Synthesized Rater’. In effect, only those 

results with high agreement can be considered as significant. These significant positive 

identifications are compared against the researcher's initial observations for identifying 

the principles. In this study, a positive identification of a principle in an example is 

considered only in cases where Fleiss’ Kappa agreement is above k = 0.8 between raters 

that the principle was present.  

Agreement results are shown in Table 5.5. Table 5.5 provides a summary of 

agreement and disagreement between the researcher and the Synthesized Rater. For each 

principle, 30 articles in which the researcher found the principle were also assessed by 

the online raters (as detailed above). Table 5.5 reports the number of matched ratings for 

each of the principles. For example, for the principles Hack commercial products, both 

the researcher and the Synthesized Rater agree that a principle was present in 29 cases. 

There were also 18 negative cases (without principle) explored. These are not included in 

the table for the purpose of clarity. Pearson’s correlation between the researcher and the 

Synthesized Rater is r = 0.85 for across the full set of samples. Overall, this study 

provides confirmation that the researcher and outside raters agree on presence of the 

principles.  
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Principle 
Synthesized 
Rater found 

Synthesized Rater 
did not find 

Hack commercial products 29 1 
Employ basic crafting 29 1 
Prepare fabrication blueprints 28 2 
Repeat fabrication processes 29 1 
Include structural voids 29 1 

Table 5.5:  Principle identification matches between researcher and Synthesized Rater. 
Thirty articles were tested for each principle. 

5.5 EXPERIMENTAL EVALUATION 

A controlled experiment was employed to evaluate use of the principles in design. 

Participants were undergraduate students in engineering product development at the 

Singapore University of Technology and Design (SUTD) in their second year. Participant 

demographics were not controlled or selected for; the only requirement was participation 

in the design project. Participants took one week to intensively design and construct a 

prototype. The groups completed their design projects independently. For the control 

group, a traditional stage-gate prototyping methodology was adopted [1, 287].  

In the experimental group, the principles were introduced via presentation and 

examples. Participants in the experimental group also provided self-evaluation via 

survey. There was a total of 550 individual participants in the study. Participants were 

those students who opted to provide data for the study. The design tasks were completed 

by teams of five individuals. The control group had 61 teams, and the experimental group 

had 49 teams. This difference is due to the volunteer nature of providing data. The 

control and experimental groups focused on design of a cooling system for automated 

milk delivery and design of systems that demonstrate a phenomenon in mechanics. These 

projects were both part of the 'designette' curriculum [53, 54, 344]. Scope, requirement 

stringency, and variety among solutions were equivalent from the projects. Project 
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budget, time allocation, and prototyping requirements were also the same. Participants all 

had equal opportunity to prototype. Figure 5.7 shows an example solution from an 

experimental group. The principle Repeat fabrication processes applies to the wheels, 

structural supports, and inertial energy storage flywheels, which were all laser cut. The 

principle Include structural voids applies to the chassis. 
 

 

Figure 5.7:  Sample prototype from experimental group. 

Experimental Results and Findings  

The experimental group implemented significantly more principles in their 

prototypes. This finding was determined by two independent raters who listed the total 

number of principles implemented in each physical prototype. Prototypes were analyzed 

by reviewing photographs of the prototypes and through review of each team's final 

reports. Pearson's correlation between the raters was r = 0.85. This analysis provides an 

evaluation of the connectivity of principles. This difference is significant with Students t-

test at p < 0.01 (shown in Table 5.6). The control groups did on average apply two or 

three of the five principles in their prototypes. This result indicates that the principles can 

Repeat fabrication processes

Include structural voids
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be utilized, at least in part, through intuition or experience. However exposure to the 

method can increase the degree of implementation. Teams in the experimental group 

implemented roughly the same number of principles in each prototype as were found in 

Instructables on average for the extended study. There was no significant difference 

between the experimental group prototypes and Instructables in number of principles.  
 

Group 
Average number of 

principles Standard Error 
Experimental group 4.0 0.13 
Control group 2.9 0.14 
Instructables articles 3.9 0.04 

Table 5.6:  Implementation of principles across groups. 

Prototypes in the experimental group were also rated by a panel of external judges 

at the end of the project (the control group finished their prototypes in an earlier term). Of 

all teams in the experimental group, eleven were chosen to enter a final competition 

round as part of the design project. This decision was based on design and execution. It 

was observed that the teams in the final competition employed more principles in their 

prototyping, on average, than other teams. These results are summarized in Table 5.7. 

The difference is significant with Student’s t-test at p = 0.05.  
 

Group 
Average number of 

principles Standard Error 
Teams in Final 
Competition (n = 13) 4.4 0.14 
Other Teams (n = 37) 3.9 0.16 

Table 5.7:  Principle use between teams in the final competition and other teams. 

A third metric used to evaluate design outcome was the number of teams that 

completed physical prototyping. A certain percentage of teams only provided a design 
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concept rather than a working prototype. This is a performance measure for overall 

success of the process. A direct comparison is made between the normalized percentage 

of teams that completed a prototype between the experimental and control groups. In the 

control group, 51% of teams provided evidence of prototyping (documentation of a 

physical build). In the experimental group, 91% of teams provided evidence of 

prototyping. Using a transformed z-test for difference of proportions of two defective 

proportions the p value is < 0.001. This is sufficient to reject the null hypothesis that the 

difference in prototype fabrication occurred by chance.  

Evaluation of Surveys 

Self-assessment survey results indicate specific effects of implementing the 

principles. Survey questions were designed to evaluate the impact of each individual 

principle. This survey was completed by participants of the experimental group. Results 

are grouped by those teams that reported use of a principle or not. Participants gave a 

Likert reply from the range: (-2) strong disagreement, (-1) disagreement, (0) neutral, (1) 

agreement, and (2) strong agreement. These replies correspond to each of the column-

questions (individual metrics) in Table 5.8. Use of the principle was reported as yes/no 

only by participants. There were a significant number of reports that applying the 

principles leads to increased durability and accuracy of prototyping. Several of the results 

were inconclusive, which may be due to sample size or the inherent limits of self-

assessment.  
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Principle 
Condition 

Question A Question B 

Hack commercial 
products 

Components were easy to 
find 

Component quality 
was high 

used hacking principle 0.1 0.6 
did not use 0.1 0.4 
Student’s t-test, p = 0.482 0.313 
Employ basic crafting Fabrication required 

minimal effort 
Fabrication quality 
was high 

used basic crafting 
principle 

0.8 0.5 

did not use 0.6 0.7 
Student’s t-test, p = 0.356 0.304 
Prepare fabrication 
blueprints 

Schematics were 
accurate 

Schematics were 
helpful 

used blueprint principle 1.2 1.4 
did not use 0.7 0.7 
Student’s t-test, p = 0.010 0.003 
Repeat fabrication 
processes 

Fabrication required 
minimal effort 

Fabrication quality 
was high 

used repetition principle 0.5 0.7 
did not use 0.2 0.4 
Student’s t-test, p = 0.239 0.126 
Include structural voids The prototype was 

durable 
The prototype was 
light 

used structure principle 0.9 0.6 
did not use 0.3 0.3 
Student’s t-test, p = 0.013 0.186 

Table 5.8:  Results of surveys, significant results in bold font. 

5.6 APPLIED CASE STUDIES 

Two case studies are reviewed in this section in which the researchers employed 

the DIY fabrication principles. The first prototype was designed to serve as an example in 

a fluid mechanics course at SUTD (Figure 5.8). The course project was to develop a 



 170 

cavity flow system. The prototype was of a lid-driven type cavity flow system. Three 

principles were applied in the development of this prototype. The Prepare fabrication 

blueprints principle was employed to design the interfaces and system structure before 

fabrication began. The Hack commercial products principle was employed for the casing. 

It requires significant time and iteration to build aesthetically clean water-proof 

chambers. By recycling a fish tank as the casing, the effort to develop a highly visible 

waterproof chamber was vastly reduced. The Repeat fabrication processes principle was 

used in several components. The drive shaft, passive rollers, and structural supports were 

produced with a fused deposition modeling machine. The timing belt and inner casing 

components were laser cut. This approach significantly reduced the number of 

components that needed to be purchased or fabricated with other processes.  
  

 

Figure 5.8:  Case study, development of a lid driven cavity flow chamber. 

Repeat fabrication processes

Hack commercial products

Repeat fabrication processes
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The second case study is a hand-held optical mouse (Figure 5.9). This example 

was adapted from an Instructable. It is designed to be a mouse for presentation and large-

screen Internet browsing. Several principles were applied. The Hack commercial 

products principle was essential as the track ball is actually harvested from a personal 

care product and attached to the mouse. Additionally, the mouse is not custom designed, 

but rather repurposed. The Employ basic crafting principle was critical to simplifying the 

process. The only custom fabrication involved was using scissors to adjust the shape of 

the track ball base, and adhesive to attach the trackball to the mouse. This level of 

simplicity is directly inspired by the principles. It is a general observation that the 

principles can vastly reduce the effort of prototyping. Potential limitations were also 

observed and are included in the discussion section.  
 

 

Figure 5.9:  Case study; development of a handheld optical trackball mouse. 

5.7 DISCUSSION 

Five unique DIY prototype design and fabrication principles were identified. 

These were extracted through iterative analysis of the open source database Instructables. 

Hack commercial products

Hack commercial products

Employ basic crafting 
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The assessment of multiple parallel online raters provided substantial validation and 

refinement of the principles. The outcome of introducing the principles in a design 

context was also tested. There was generally a high of adoption of the principles by 

participants in the experimental group (high connectivity). Teams in the experimental 

group successfully prototyped more often than the control. Teams that were selected for 

final competition in the experimental group also employed more principles, on average, 

than teams that did not. Each of the principles has unique benefits and possible 

limitations.  

The Hack commercial products principle can result in reduced effort of 

development. It may at times be challenging to identify sources of components to hack. 

This in and of itself is also a skill that requires some experience. The Employ basic 

crafting principle is effective to reduce the cost and effort of fabrication. It may be 

difficult to produce prototypes that are durable over long cycle lives using this method. 

The Prepare fabrication blueprints principle can aid in the management of complexity. It 

may enable the production of complex shapes without digital manufacture. It may 

potentially incur additional design time to develop schematics, stencils or blueprints, and 

there is a subsequent tradeoff between time spent and quality increase. The Repeat 

fabrication processes principle may reduce the cost of fabrication. It can also save wasted 

material to use one process, and potentially make custom fabrication more viable for 

prototyping. However, there are times that is simply not feasible to produce all parts with 

one process. The Include structural voids principle is critical to develop light and durable 

structures. Including lattice structures or repeated thin walls can improve the strength-to-

weight ratio of the prototype as a whole. This approach may increase fabrication time or 

complexity.  
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Limitations and Future Work 

One limitation of the study is a potential variable in the prototypes due to the fact 

that the experimental and control groups addressed slightly varied design problems. This 

aspect may have implications in the results via indirect influence. This limitation is 

mitigated by the relatively similar design context of the two course projects. Although 

they are slightly different, they are both designette activities, conducted with similar 

sample sizes, participant skill levels, available materials, processes, and final 

requirements for providing a design concept and final report.  

The research approach taken was to test for repeated principle use in the database. 

This approach, however, does not allow for identification of approaches that have 

potential to positively impact design, but were only present in a very small number of 

cases. One benefit of this approach is that it substantially reduces the risk of a 'false 

positive' or identifying a principle that is not generalizable. However, future research 

could potentially explore evaluating the potential for non-repeated principles. One 

possibility to achieve this goal would be to extend the crowdsourcing analysis to include 

sorting and selection of articles as well as analysis of articles.  

Open avenues include examination of other databases, identifying marginal 

effects on cost and time expense associated with each principle, and exploring means of 

representing the principles for use in design contexts.  
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Chapter 6: Conclusion 

CONCLUDING REMARKS 

The design prototyping methods explored in this work are intended for integration 

with a comprehensive design approach. Such a method involves careful consideration of 

the design problem, and establishment of the true stakeholder requirements. Other factors 

such as manufacturing, or logistical concerns of product deployment are also critical to a 

comprehensive method. There are seminal works on the broader topic of engineering 

product design [1, 287]. The intention of this work is to expand and explore techniques 

within the critical subtopic of design prototyping.  

The traditional engineering design approach strongly emphasizes the importance 

of testing. However, there are not currently any widely accepted methods to 

systematically guide prototyping efforts. This work functions to enable systematic testing 

of design concepts with a well-planned prototyping effort.  In particular, the traditional 

stage gate approach, which progresses in a sequential fashion from low-fidelity models to 

functional prototypes, is re-visited and expanded into a larger dimensional space; as 

described in the strategy method. This approach directly encourages deeper consideration 

of the objectives of a prototyping effort. It also guides the designer through identification 

of techniques which may reduce cost, or improve performance of the final outcome. In a 

complementary fashion, the DIY principles provide a unique set of tools to inform the 

development (embodiment) of prototypes.  

Often, in challenging design contexts, the development of a prototype can seem 

daunting or logistically infeasible. However, the DIY principles (in concert with the 

strategy method) provide an avenue for producing functional prototypes with increased 

efficiency. The methods function to codify the leap between the logical objectives of the 
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design effort, with an individual's intuitive design and fabrication experience. This 

codification also addresses the critical need of enabling prototyping in cases where a 

project has apparently high risk or uncertainty and the design team may be averse to early 

testing. Although there is an apparent increase in time expenditure when exploring 

strategy methods or parallel concepts, there is often a potential for improved 

performance. It is also essential to support these efforts with techniques such as 

requirement relaxation, subsystem isolation, or scaling to reduce time and resource 

expenditure. Low risk prototyping is ultimately an enabler of innovation. 

The methods may also enable designers to explore techniques with which they are 

not familiar, or to re-evaluate potentials strategies for a given context. The techniques are 

presented both individually, and in one integrated version (the strategy method). An 

individual or design team can use the presented information as the foundation to develop 

a novel or customized strategy and/or hybrid methods in their own context. The design 

team might also potentially revisit the index tool, strategy tool, or DIY principles 

throughout the prototyping process and employ them at multiple stages. The development 

of physical models is enabled through implementation of prototyping techniques, and 

methods.  

This work was constructed to closely map evaluation of individual research 

objectives to individual contributions. The individual contributions support the overall 

research objective to identify, evaluate, and expand upon methodological tools and 

techniques for design prototyping. They are as follows: 

• Review and evaluation of existing methodological tools and individual 

techniques for design prototyping and summary for key empirical research 

insights with indexed overviews of subtopics. 
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• Deployment and evaluation of a novel geometric path length technique for 

modeling a particular design case. This method is a hybrid technique 

consisting of relaxation of requirements and virtual prototyping.  

• A series of empirical studies was conducted to evaluate the marginal 

effects of iteration and five other individual prototyping techniques. 

Alongside this evaluation, a strategic method based on heuristics for best 

practices from the literature was also developed. The outcome effects of 

introducing this method to experimental teams were also determined.  

• The Instructables repository was extensively reviewed to determine five 

novel design and fabrication principles for prototyping. Open sourced 

crowdtesting was used to validate the presence of these principles. The 

design outcome effects of employing these principles by design teams was 

also compared to a control set of teams deploying a stage gate prototyping 

method.  

These individual findings provide a groundwork for evaluating several important 

aspects of prototyping. The objectives and best practices of prototyping are provided at 

high level. This summary of foundational information provides insights for continued 

research in prototyping, as well as the practice of design prototyping. The strategy 

method provides guidance for implementing these practices in design contexts and also 

functions as a datum for comparison with future methods. The DIY principles provide a 

novel means to achieve lower cost, rapid prototyping, with high functionality.  

This work as a whole provides a substantial contribution to research in the field of 

design prototyping. Previously there were no tools to cross-evaluate the existing 

techniques and empirical findings, to plan a strategic effort for a specific design problem, 

or to increase efficiency and functionality of prototype fabrication.  
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LIMITATIONS 

The research reported in this dissertation is limited in several aspects. The first is 

a limitation of scope. The studies are all restricted to the development of electro-

mechanical products. The controlled studies are also limited to products on the human 

scale. However, the empirical research and case studies include investigation of large 

scale products (e.g. ships), software interface design, and architectural design cases. The 

controlled studies do include variance in problem type and duration. This limitation of 

scope is intentional, as this work is primarily intended for use by electro-mechanical 

product developers. There may be parallel research opportunities in other product 

domains.  

The second overall limitation is in experimental design. Most of the tests for 

significance in this research involve use of the p = 0.05 value as sufficient to reject the 

null hypotheses for various testing procedures. However, the expected robustness of this 

value is that only nineteen out of twenty cases of null hypothesis rejection are accurate, 

from the fundamental statistical view point. To mitigate this limitation, multiple studies 

are conducted in parallel. Each individual study has several detailed limitations which 

were reviewed in the respective chapters.  

DIRECTIONS FOR FUTURE RESEARCH  

This research has provided an empirical foundation for a number of future 

directions. These directions include both enhancement and refinement of existing 

knowledge as well as potential identification of fundamental new areas of research.  

Several specific insights for future research which emerged as part of the studies in this 

dissertation are as follows: 
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Individual techniques 

• What are the marginal effects of individual techniques other than iteration, such 

as a parallel prototypes, scaling, etc.? 

• What are differences in the problem solving style between virtual and physical 

prototyping, and other individual techniques, as determined by detailed time 

tracking protocol studies? 

• Given the variance in each individual's fabrication skill, could an instrument (such 

as a basic fabrication task) be developed to add assessment an individual's 

prototyping experience level within protocol studies?  

• What are the effects of implementing each individual technique in early design 

stages versus later stages? 

• What are the capabilities and limitations of various hybrid individual techniques? 

• Can a full regression model with interaction effects be determined for individual 

techniques, with respect to design outcome? 

Strategic methods 

• What additional insights could be gained regarding the strategy method through 

conduction of time-dependent protocol studies? 

• Can a more complete strategy method be developed that includes additional 

individual techniques, material selection, or fabrication method? 

• How might the strategy method be altered to adapt to a design problem as it 

changes over time? 

• How can strategic methods be integrated with other design tasks? 

• Are other representations of the strategic method more effective (e.g. exemplar 

cards, design tracking notebook)? 
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DIY inspired design 

• How can design research evolve with concepts emerging in the DIY design 

community? 

• What are marginal effects and interaction effects of the DIY principles identified 

in this dissertation? 

• Are there other design repositories that would offer unique design insights (e.g. 

Shapeways, Kickstarter)?  

• How can principles be identified which occur only in single design cases? 

• Can more detailed methods (e.g., strategic methods) guide execution of the DIY 

principles in more detail?  

Other prototyping topics  

• What other possible directions can be explored with parallel human intelligence 

task decomposition (crowdsourcing and crowdcrafting)? 

• Can advanced ideation methods (e.g., C-Sketch) be mapped to prototyping?  

• How can more detailed insights be gained from protocol and even neurological 

observation studies of prototyping activities?  

• What design tools would aid in capturing and developing full capabilities of 

additive manufacturing? 

• What additional insights emerge when the methods are applied to larger scale and 

longer term case studies? 

There are many possibilities for developing tools and methods relating to 

prototyping. The above list is not meant to be exhaustive, but rather to open consideration 

of potential areas which may offer insightful results in the near future.   
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Appendix 

 
Technique

C
ontext Variable

H
euristic

Disagree Strongly

Disagree

Neutral

Agree

Agree Strongly

-2
-1

0
1

2
Iteration

(perform
ance)

There is potential for significant perform
ance increase

(fabrication)
A fabrication m

ethod can be chosen that w
ill perm

it iteration.
(resources)

The expected cost of iteration is relatively sm
all com

pared to the total budget.
(tim

e)
The expected tim

e to iterate is relatively sm
all to the total project tim

eline
average the above

Low
 average: pursue one only. <--> H

igh average: pursue several iterations. 
Parallel C

oncepts
(resources)

There are sufficient resources to prototype m
ultiple concepts.

(tim
e)

There is sufficient tim
e to prototype m

ultiple concepts.
(ranking)

R
ankings of several concepts are very close (e.g. from

 Pugh chart).
average the above

Low
 average: pursue one only. <--> H

igh average: develop m
ultiple concepts.

Scaling
(m

odels)
Scaling law

(s) w
ill perm

it accurate system
 m

odeling via a scaled build.
(feasibility)

Scaling w
ill significantly increase the feasibility of prototyping.

average the above
Low

 average: use a full size m
odel. <--> H

igh average: use a scaled m
odel. 

Subsystem
 Isolation

(interfaces)
Interfaces betw

een subsystem
s are predictable and re-integrable. 

(requirem
ents)

1 or 2 subsystem
s em

body the critical design requirem
ents.

(resources)
Testing a subsystem

 w
ould substantially reduce expense of resources

(testing)
Testing of an isolated subsystem

 w
ill validate a key function

average the above
Low

 average: integrate the system
. <--> H

igh average: isolate subsystem
s. 

R
equirem

ent R
elaxation

(requirem
ents)

The requirem
ents require refinem

ent 
(concept)

At this stage, concept developm
ent is the m

ost critical
(resources)

A reduced requirem
ent prototype w

ill significantly reduce resource usage. 
(usage)

At this stage it is im
portant to sim

ulate usage scenarios
average the above

Low
 average: use rigid requirem

ents. <--> H
igh average: relax requirem

ents.
Virtual Prototypes

(effort)
Virtual prototype(s) w

ill reduce effort com
pared to a physical one(s).

(availability)
The required tools to develop a virtual m

odel are available
(data)

A vritual m
odel w

ill provide accurate test data
(design)

A virtual m
odel w

ill facilitate other needs: com
plex topology, integrated testing

average the above
Low

 average: use a physical m
odel. <--> H

igh average: use a virtual prototype.

A
ssessm

ent
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[158] J. Verlinden, I. Horváth, and T.-J. Nam, "Recording augmented reality 
experiences to capture design reviews," International Journal on Interactive 
Design and Manufacturing, vol. 3, pp. 189-200, 2009. 

[159] M. Evans, D. Wallace, D. Cheshire, and B. Sener, "An evaluation of haptic 
feedback modelling during industrial design practice," Design Studies, vol. 26, pp. 
487-508, 2005. 

[160] F. Ferrise, M. Bordegoni, and U. Cugini, "A Methodology Based on Interactive 
Virtual Prototypes for a Better Design of Consumer-Product Interaction," in 
ASME 2012 International Mechanical Engineering Congress and Exposition, 
Houston, TX, 2012, pp. 433-440. 

[161] F. Bruno, F. Cosco, A. Angilica, and M. Muzzupappa, "Mixed prototyping for 
products usability evaluation," in ASME 2010 International Design Engineering 
Technical Conferences and Computers and Information in Engineering 
Conference, Montrel, Canada, 2010, pp. 1381-1390. 

[162] L. X. Ng, S. K. Ong, and A. Y. C. Nee, "Conceptual design using functional 3D 
models in augmented reality," International Journal on Interactive Design and 
Manufacturing (IJIDeM), pp. 1-19, 2014. 

[163] S. Wiedenmaier, O. Oehme, L. Schmidt, and H. Luczak, "Augmented reality 
(AR) for assembly processes design and experimental validation," International 
Journal of Human-Computer Interaction, vol. 16, pp. 497-514, 2003. 

[164] E. J. Haug, K. K. Choi, J. G. Kuhl, and J. D. Wargo, "Virtual Prototyping 
Simulation for Design of Mechanical Systems," Journal of Vibration and 
Acoustics, vol. 117, pp. 63-70, 1995. 

[165] T. Murakami and K. Fujii, "Internal video analysis for product usability 
evaluation at early stage of design," International Journal on Interactive Design 
and Manufacturing, vol. 3, pp. 165-175, 2009. 

[166] C. Moussette and R. Banks, "Designing Through Making: Exploring the Simple 
Haptic Design Space," presented at the Fifth international conference on tangible, 
embedded, and embodied interaction, 2011. 

[167] S. A. Panëels, P. D. Ritsos, P. J. Rodgers, and J. C. Roberts, "Prototyping 3D 
haptic data visualizations," Computers & Graphics, vol. 37, pp. 179-192, 2013. 



 192 

[168] S. Filippi and D. Barattin, "A selection algorithm for prototyping activities," 
International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 8, 
pp. 1-11, 2014. 

[169] C. Hartney, E. Agasid, and S. Hovsepian, "Multi-Purpose Avionics Core Element: 
Using Digital Materials and Advanced Manufacturing to Rapidly Develop Cube 
Satellite Subsystems and Components," in ASME 2013 Conference on Smart 
Materials, Adaptive Structures and Intelligent Systems, 2013, pp. V001T04A007-
V001T04A007. 

[170] P. Song, C.-W. Fu, and D. Cohen-Or, "Recursive interlocking puzzles," ACM 
Transactions on Graphics (TOG), vol. 31, p. 128, 2012. 

[171] M. Ruffo, C. Tuck, and R. Hague, "Make or buy analysis for rapid 
manufacturing," Rapid Prototyping Journal, vol. 13, pp. 23-29, 2007. 

[172] K.-S. Chin, "Implementation of rapid Prototyping technology—A Hong Kong 
manufacturing industry's perspective," The International Journal of Advanced 
Manufacturing Technology, vol. 14, pp. 570-579, 1998. 

[173] V. Viswanathan and J. Linsey, "Design fixation in physical modeling: an 
investigation on the role of sunk cost," in ASME-IDETC, Washington, DC, 2011, 
pp. 119-130. 

[174] T. E. Endres, "Advantages of Rapid Prototyping," SAE Technical Paper1999. 
[175] Q. Liu, M. C. Leu, and S. M. Schmitt, "Rapid prototyping in dentistry: technology 

and application," The international journal of advanced manufacturing 
technology, vol. 29, pp. 317-335, 2006. 

[176] G. Ryder, B. Ion, G. Green, D. Harrison, and B. Wood, "Rapid design and 
manufacture tools in architecture," Automation in construction, vol. 11, pp. 279-
290, 2002. 

[177] G. Blauvelt, T. Wrensch, and M. Eisenberg, "Integrating craft materials and 
computation," Knowledge-Based Systems, vol. 13, pp. 471-478, 2000. 

[178] M. M. Tseng and F. T. PIller, The Customer Centric Enterprise: Advances in 
Mass Customization and Personalization. Berlin: Springer, 2003. 

[179] K. E. MacLean and V. Hayward, "Do it yourself haptics: Part ii [tutorial]," 
Robotics & Automation Magazine, IEEE, vol. 15, pp. 104-119, 2008. 

[180] B. Pettis. http://www.thingiverse.com/about [Online].  
[181] M. B. Wall, K. T. Ulrich, and W. C. Flowers, "Evaluating prototyping 

technologies for product design," Research in Engineering Design, vol. 3, pp. 
163-177, 1992. 

[182] M. Frank, S. B. Joshi, and R. A. Wysk, "Rapid prototyping as an integrated 
product/process development tool an overview of issues and economics," Journal 
of the Chinese Institute of Industrial Engineers, vol. 20, pp. 240-246, 2003. 

[183] I. Fidan, "Rapid prototyping for DFM," presented at the 2004 SAE World 
Congress, Detroit, Michigan, 2004. 

[184] J. W. Schmidt, "CNC Machining - The Other Rapid Prototyping Technology," 
presented at the International Congress & Exposition, Detroit, Michigan, 1997. 

[185] D. A. Summers, Waterjetting technology: CRC Press, 2003. 



 193 

[186] I. Shatz, A. Tal, and G. Leifman, "Paper craft models from meshes," The Visual 
Computer, vol. 22, pp. 825-834, 2006. 

[187] S. Dritsas and S. Kashyap, "Scripted Mockups: Bridging Digital and Physical 
Through Computation," in CAADRIA 2005: Proceedings of the 10th International 
Conference on Computer Aided Architectural Design Research in Asia, 2001, pp. 
351-357. 

[188] L. Sass, K. Shea, and M. Powell, "Design production: constructing freeform 
designs with rapid prototyping," Digital Design: The Quest for New Paradigms, 
pp. 261-268, 2005. 

[189] J. Nguyen, S.-i. Park, and D. Rosen, "Heuristic optimization method for cellular 
structure design of light weight components," International Journal of Precision 
Engineering and Manufacturing, vol. 14, pp. 1071-1078, 2013. 

[190] T. Le-Nguyen, K. Low, C. Ruiz Jr, and S. Le, "Automatic paper sliceform design 
from 3d solid models," 2012. 

[191] J. McCrae, K. Singh, and N. J. Mitra, "Slices: a shape-proxy based on planar 
sections," ACM Trans. Graph., vol. 30, p. 168, 2011. 

[192] K. Hildebrand, B. Bickel, and M. Alexa, "crdbrd: Shape fabrication by sliding 
planar slices," in Computer Graphics Forum, 2012, pp. 583-592. 

[193] C. R. Ruiz, S. N. Le, J. Yu, and K. L. Low, "Multi‐style paper pop‐up designs 
from 3D models," in Computer Graphics Forum, 2014, pp. 487-496. 

[194] K. Griffith, L. Sass, and D. Michaud, "A strategy for complex-curved building 
design: Design structure with Bi-lateral contouring as integrally connected ribs," 
in SI-GraDi 2006-Proceedings of the 10th Iberoamerican Congress of 
DigSantiago de Chile-Chile, 2006, pp. 21-23. 

[195] L. Sass, "Wood Frame Grammar," in Computer Aided Architectural Design 
Futures 2005, ed: Springer, 2005, pp. 383-392. 

[196] Y. Schwartzburg and M. Pauly, "Design and optimization of orthogonally 
intersecting planar surfaces," in Computational Design Modelling, ed: Springer, 
2012, pp. 191-199. 

[197] Y. Schwartzburg and M. Pauly, "Fabrication‐aware Design with Intersecting 
Planar Pieces," in Computer Graphics Forum, 2013, pp. 317-326. 

[198] M. Lau, A. Ohgawara, J. Mitani, and T. Igarashi, "Converting 3D furniture 
models to fabricatable parts and connectors," in ACM Transactions on Graphics 
(TOG), 2011, p. 85. 

[199] Y. Oh, G. JOHNSON, M. GROSS, and E. Y.-L. Do, "The Designosaur and the 
Furniture Factory," in Design Computing and Cognition’06, ed: Springer, 2006, 
pp. 123-140. 

[200] K. Yihong, "Chocolate Printing," in International Conference on Progress in 
Additive Manufacturing, NTU, Singapore, 2014. 

[201] M. Fantini, F. D. Crescenzio, and L. Ciocca, "Design and Rapid Manufacturing of 
anatomical prosthesis for facial rehabilitation," International Journal on 
Interactive Design and Manufacturing, vol. 7, pp. 51-62, 2013. 



 194 

[202] M. Eigensatz, M. Kilian, A. Schiftner, N. J. Mitra, H. Pottmann, and M. Pauly, 
"Paneling architectural freeform surfaces," in ACM Transactions on Graphics 
(TOG), 2010, p. 45. 

[203] D. Jensen, C. Randall, J. Feland, and M. Bowe, "A study of rapid prototyping for 
use in undergraduate design education," presented at the ASEE Annual 
Conference and Exhibition, Montreal, Canada, 2002. 

[204] L. Sass, "Design for self assembly of building components using rapid 
prototyping," in Architecture in the Network Society [22nd eCAADe Conference 
Proceedings] Copenhagen (Denmark), 2004, pp. 15-18. 

[205] Z. Doubrovski, J. C. Verlinden, and J. M. Geraedts, "Optimal design for additive 
manufacturing: Opportunities and challenges," in ASME 2011 International 
Design Engineering Technical Conferences and Computers and Information in 
Engineering Conference, 2011, pp. 635-646. 

[206] H. Wang, Y. Chen, and D. W. Rosen, "A hybrid geometric modeling method for 
large scale conformal cellular structures," in ASME 2005 International Design 
Engineering Technical Conferences and Computers and Information in 
Engineering Conference, 2005, pp. 421-427. 

[207] Y. Norouzi, S. Rahmati, and Y. Hojjat, "A novel lattice structure for SL 
investment casting patterns," Rapid Prototyping Journal, vol. 15, pp. 255-263, 
2009. 

[208] S. R. Johnston, D. W. Rosen, M. Reed, and H. V. Wang, "Analysis of 
mesostructure unit cells comprised of octet-truss structures," in Proceedings of the 
The Seventeenth Solid Freeform Fabrication Symposium Austin, TX, 2006. 

[209] D. W. Rosen, "Thoughts on hierarchical modeling methods for complex 
structures," Computer-Aided Design and Applications, vol. 6, pp. 419-430, 2009. 

[210] D. W. Rosen, "Computer-aided design for additive manufacturing of cellular 
structures," Computer-Aided Design and Applications, vol. 4, pp. 585-594, 2007. 

[211] J. Chu, S. Engelbrecht, G. Graf, and D. W. Rosen, "A comparison of synthesis 
methods for cellular structures with application to additive manufacturing," Rapid 
Prototyping Journal, vol. 16, pp. 275-283, 2010. 

[212] Y. Chen and S. Wang, "Computer-aided product design with performance-
tailored mesostructures," Computer-aided design and applications, vol. 5, pp. 
565-576, 2008. 

[213] C. Chu, G. Graf, and D. W. Rosen, "Design for additive manufacturing of cellular 
structures," Computer-Aided Design and Applications, vol. 5, pp. 686-696, 2008. 

[214] C. C. Kai, G. G. Jacob, and T. Mei, "Interface between CAD and rapid 
prototyping systems. Part 1: a study of existing interfaces," The International 
Journal of Advanced Manufacturing Technology, vol. 13, pp. 566-570, 1997. 

[215] A. M. Phatak and S. S. Pande, "Optimum part orientation in Rapid Prototyping 
using genetic algorithm," Journal of Manufacturing Systems, vol. 31, 2012. 

[216] A. Dolenc and I. Mäkelä, "Slicing procedures for layered manufacturing 
techniques," Computer-Aided Design, vol. 26, pp. 119-126, 1994. 



 195 

[217] K. Mani, P. Kulkarni, and D. Dutta, "Region-based adaptive slicing," Computer-
Aided Design, vol. 31, pp. 317-333, 1999. 

[218] P. Kulkarni and D. Dutta, "An accurate slicing procedure for layered 
manufacturing," Computer-Aided Design, vol. 28, pp. 683-697, 1996. 

[219] Z. Zhao and Z. Luc, "Adaptive direct slicing of the solid model for rapid 
prototyping," International Journal of Production Research, vol. 38, pp. 69-83, 
2000. 

[220] G. Jin, W. Li, and L. Gao, "An adaptive process planning approach of rapid 
prototyping and manufacturing," Robotics and Computer-Integrated 
Manufacturing, vol. 29, pp. 23-38, 2013. 

[221] J. Hao, L. Fang, and J. Wang, "Research on model partition for large-scale rapid 
prototyping," in Computer Engineering and Technology (ICCET), 2010 2nd 
International Conference on, 2010, pp. V2-114-V2-118. 

[222] G. E. Knoppers, J. W. Gunnink, J. v. d. Hout, and W. P. v. Vliet, "The reality of 
functionally graded material products," presented at the Intelligent Production 
Machines and Systems-First I* PROMS Virtual Conference, 2005. 

[223] K. Vidimče, S.-P. Wang, J. Ragan-Kelley, and W. Matusik, "Openfab: A 
programmable pipeline for multi-material fabrication," ACM Transactions on 
Graphics (TOG), vol. 32, p. 136, 2013. 

[224] S. Kiefer, L. Silverberg, and M. Gonzalez, "A case study of prototyping methods 
and design for manufacture: electrostatic window blinds," Journal of Engineering 
Design, vol. 15, pp. 91-106, 2004. 

[225] C. K. Chua, S. H. Teh, and R. K. L. Gay, "Rapid Prototyping Versus Virtual 
Prototyping in Product Design and Manufacturing," The International Journal of 
Advanced Manufacturing Technology, vol. 15, pp. 597-603, 1999. 

[226] C. Chua, S. Chou, and T. Wong, "A study of the state-of-the-art rapid prototyping 
technologies," The International Journal of Advanced Manufacturing Technology, 
vol. 14, pp. 146-152, 1998. 

[227] X. Yan and P. Gu, "A review of rapid prototyping technologies and systems," 
Computer-Aided Design, vol. 28, pp. 307-318, 1996. 

[228] K. G. Swift and J. D. Booker, "Chapter 8: Rapid Prototyping Processes," in 
Manufacturing Process Selection Handbook, ed ScienceDirect.com: Butterworth-
Heinemann, 2013. 

[229] D. Systems. (2014). http://www.3dsystems.com.  
[230] R. H. Crawford, J. J. Beaman, D. L. Bourell, and K. L. Wood, "Advances in 

Multiple Material Solid Freeform Fabrication," presented at the Society of 
Manufacturing Engineers RPA 2002. 

[231] D. Pham and R. Gault, "A comparison of rapid prototyping technologies," 
International Journal of Machine Tools and Manufacture, vol. 38, pp. 1257-1287, 
1998. 

[232] H. Brooks and D. Aitchison, "A review of state-of-the-art large-sized foam 
cutting rapid prototyping and manufacturing technologies," Rapid Prototyping 
Journal, vol. 16, pp. 318-327, 2010. 



 196 

[233] C. L. Thomas, T. M. Gaffney, S. Kaza, and C. H. Lee, "Rapid prototyping of 
large scale aerospace structures," in Aerospace Applications Conference, 1996. 
Proceedings., 1996 IEEE, 1996, pp. 219-230. 

[234] B. Khoshnevis and G. Bekey, "Automated Construction Using Contour Crafting--
Applications on Earth and Beyond," NIST SPECIAL PUBLICATION SP, pp. 489-
494, 2003. 

[235] B. Delebecque, Y. Houtmann, G. Lauvaux, and C. Barlier, "Automated 
generation of assembly features in layered manufacturing," Rapid Prototyping 
Journal, vol. 14, pp. 234-245, 2008. 

[236] Y. W. Yee, J. Yong, and M. Shyan, "Hybrid approach in prototyping functional 
medical safety devices: A case study," Virtual and Physical Prototyping, vol. 3, 
2013. 

[237] A. Ecker, K. N. Kutulakos, and A. D. Jepson, "Shape from Planar Curves: A 
Linear Escape from Flatland," in CVPR, 2007. 

[238] H. Fuchs, Z. M. Kedem, and S. P. Uselton, "Optimal surface reconstruction from 
planar contours," Communications of the ACM, vol. 20, pp. 693-702, 1977. 

[239] S.-W. Hsiao and R.-Q. Chen, "A study of surface reconstruction for 3D 
mannequins based on feature curves," Computer-Aided Design, vol. 45, pp. 1426-
1441, 2013. 

[240] L. Chen, C. Quan, C. J. Tay, and Y. Fu, "Shape measurement using one frame 
projected sawtooth fringe pattern," Optics communications, vol. 246, pp. 275-284, 
2005. 
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