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The goal of research in this dissertation is to bring more wind resources

into the power grid by mitigating the uncertainty of the current wind power,

by developing a new algorithm to respond to the fluctuation of the future wind

power, and by building additional transmission lines to bring more wind re-

sources from a remote area to the load center. First, in order to overcome the

wind power uncertainty, the probabilistic and ensemble wind power forecasting

is proposed to increase the forecasting accuracy and to deliver the probability

density function of the uncertainty. Accurate wind power forecasting reduces

the amounts and cost of ancillary services (AS). As the mismatch between the

bid and actual amount of delivered energy decreases, the imbalance between

supply and demand also decreases. If the forecasting ahead is increased up

to 24 hours, accurate wind power forecasting can also help wind farm owners

bid the exact amount of wind power in the day ahead (DA) market. Further-

vii



more, wind power owners can use the parametric probabilistic density of error

distributions for hedging the price risk and building a better offer curve.

Second, a novel algorithm to generate many wind power scenarios as a

function of installed capacity of wind power is proposed based on an analysis

of the power spectral density of wind power. Scenarios can be used to simulate

the power system to estimate the required amount of AS to respond to the

fluctuation of future wind power as the installed capacity of wind power in-

creases. Scenarios have statistical characteristics of the future wind power that

are regressed as a function of the installed capacity of wind power from the

statistical characteristics of the current wind power. This algorithm can gen-

erate many possible scenarios to simulate the power system in many different

situations.

Third, optimal transmission expansion by simulating the power sys-

tem with the multiple load and wind power scenarios in different locations

is planned to prepare the preliminary result to bring more wind resources in

remote areas to the load center in Texas. In this process, the geographical

smoothing effects of wind power and the stochastic correlation structure be-

tween the load and wind power are considered. Furthermore, the generalized

dynamic factor model (GDFM) is used to synthesize load and wind power

scenarios to keep their correlation structure. The premise of the GDFM is

that a few factors can drive the correlated movements of load and wind power

simultaneously, so the scenario generation process is parsimonious.
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Chapter 1

Introduction

Electric energy comes from many primary energy resources. One of

those energy sources is wind energy although strictly speaking wind energy

itself is primarily due to energy from the sun. In the Electric Reliability

Council of Texas (ERCOT), of the 340,033,353 MWh annual total electrical

energy produced in 2014, 36,142,384 MWh, or 10.6% of annual total electrical

energy, came from wind energy [65]. Furthermore, the installed wind power

capacity comprised 14% of the total installed capacity of generators, and the

maximum generation of wind power was 10,957 MW on December 25, 2014,

which comprised 34% of total demand. The total installed wind power capacity

might increase in 2015 because about 3,000 MW of additional wind power is

under an interconnection agreement [64].

In comparison, in 2008, wind energy comprised 2.9% of total annual

energy, and the capacity provided by wind power comprised just 7.1% of total

installed capacity [61]. It is clear that wind energy has increased tremendously

between 2008 and 2014. Why have many companies invested in wind resources,

what are the advantages and disadvantages of bringing more wind power into

our power system, and how can we mitigate its disadvantages and emphasize

1



the advantages? The answers for the first two questions are briefly answered

in this chapter. The rest of this dissertation aims to answer the last question.

1.1 Wind Power in the Electricity Market

The explosive increase of wind energy in the U.S. has been encouraged

by the efforts of the federal and state governments to take advantage of the

benefits of wind power. These efforts have been realized through various eco-

nomic incentives in order to facilitate the appropriate market environment for

wind farm owners and wind turbine generating companies.

1.1.1 Benefits of Wind Power

There are five main benefits of wind energy. 1) Wind energy is sustain-

able as long as the wind blows. 2) Since wind energy is a domestic resource

that does not need to be mined and transported, the U.S. can increase en-

ergy independence and diversify its energy portfolio in order to respond to the

changeable international energy market. 3) Wind turbines generate negligible

amounts of atmospheric emissions that cause greenhouse effects. Reducing the

greenhouse gas emissions can delay the greenhouse effect. 4) Since good wind

sites are often in remote areas, the rural area can benefit from increased prop-

erty taxes and direct lease payments. Moreover, land used for wind farms can

still be used for agriculture. 5) Wind turbines do not require large amounts

of water, in contrast to nuclear power and coal power [128]. In generating the

same amount of energy, a nuclear power plant requires 500 times more water

2



than a wind turbine does.

In spite of these benefits, the leveled cost of wind energy in dollars

per MWh is still higher than that of other energy resources. For example, the

levelized cost of offshore and onshore wind power is $204/MWh and $80/MWh,

respectively although recent costs have declined somewhat [3]. In contrast, the

levelized cost of natural gas combined cycle generator is $64/MWh. Therefore,

in order to realize the benefits of wind energy, it is necessary to facilitate the

participation of wind energy in the electricity market through various economic

incentives.

Before introducing the economic incentives for wind energy, it should be

noted that the development of renewable energy has also been spurred by state

governments by setting specific and mandatory target amounts of renewable

energy, which is called the renewable portfolio standard (RPS) [94]. The RPS

is defined as the target capacity of renewable energy by the target year, or the

target percentage of the capacity of renewable energy with respect to the load

capacity. For example, in Texas, the RPS target is 10,000 MW by 2025, and

it has already been achieved. The economic incentives that will be explained

below have played an important role in satisfying the RPS.

1.1.2 Economic Incentives for Wind Power

There are three economic incentives for wind power. 1) The marginal

cost of wind power is almost zero, so wind power is typically dispatched in

preference to all other resources in an electricity market. In fact, wind farm

3



owners sometimes bid at negative prices due to other incentives that will be

explained below. 2) The federal government gives tax incentives to promote

renewable energy businesses: wind farm owners are eligible for a production

tax credit (PTC) of 2.3 cents per kWh generated for the first ten years. Be-

cause of the PTC, nearly $15 billion was invested in wind power between 2007

and 2014 in the U.S [114]. It should be mentioned that the PTC expired on

December 31, 2013, so new wind resources built after 2014 are not currently

eligible, but debate about the extension is on-going. 3) Wind farm owners

can earn a renewable energy certificate (REC) by selling one MWh. The REC

can be sold in two types of REC markets, the voluntary and the compliance

markets, and the price is always changing according to the year, the type of

REC market, and the state in which the REC is sold. In the voluntary REC

market, many companies buy voluntary RECs to show that they are environ-

mentally friendly, and in the compliance REC market, the RECs are sold to

load entities in each state to satisfy the RPS.

1.1.3 Wind Power As an Electricity Market Participant

As a result of the above-described incentives, wind power has expanded

in the electricity market. However, it has been difficult to handle wind power

in the same manner as conventional power because of wind power’s uncertainty

and fluctuation. Since the wind power is generally determined by wind speed,

which cannot be predicted with 100% accuracy, the wind power prediction

always has a natural uncertainty. In addition, since wind farm owners cannot

4



control the intermittent nature of wind, the wind power output always fluctu-

ates with various ramp rates, although modern wind turbines can control the

ramp rates of wind power penetration to a certain extent.

Because of these two distinguishing characteristics of wind power, as

compared with other generators, relaxed or different market rules have been

applied to wind power in various electricity markets in the U.S. For example, in

the New York ISO (NYISO), there is a penalty for non-compliance to the dis-

patch point outside a 3% margin of error, and the cost of the penalty is the mul-

tiplication of the deviation amount and the regulation clearing price. However,

up to 3,300 MW of installed wind capacity is exempt from under-generation

penalties. In the Midwest ISO (MISO), wind power, which is considered as

the dispatchable intermittent resource (DIR), follows different market rules

compared to conventional generators. For example, DIRs are exempted for

deviations less than 30 MWh. In ERCOT, wind producers are only penalized

if wind power deviates above the expected point, but not for the deviation

below. If wind power deviates more than 10% above the expected point, it

will be charged based on the real-time (RT) price and power balance penalty

curve, and wind power cannot ramp more than 10% of its capacity within a

minute. On the contrary, conventional generators are fined when their gen-

eration outputs deviate more than 5% above or below the expected point.

Moreover, wind power is not allowed to participate in the ancillary service

market. The different wind power market rules in different ISOs are summa-

rized in Table 1.1.
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Generally, participation in the RT market and acceptance of the dis-

patch signal is mandatory in most ISOs, but participation in the day-ahead

(DA) market is voluntary. Furthermore, most ISOs allow a negative price. If

wind power is used to provide the capacity resource, particularly in Pennsyl-

vania New Jersey Maryland Interconnection (PJM) market, then wind farm

owners should offer the capacity resource in the DA market. In PJM, wind

receives capacity credit based on a average of performance over the previous

three summers. If the operation duration is less than three years, wind power

receives 13 percent of nameplate capability [187]. For the unit commitment,

which decides when generators should be turned on and off, wind power is just

considered as a negative load, and the wind power variability is represented

as the net load (load – wind) variability. Sometimes, as in MISO, PJM, and

ERCOT, wind power is curtailed because of transmission constraints or the

minimum generation events. In ERCOT in particular, wind power is often

curtailed because of insufficient capacity of the transmission lines that deliver

much of the wind energy from West Texas to the load centers. In addition,

the centralized wind power forecasting has been used to dispatch wind power

and determine the amounts of regulation services to be procured in various

electricity markets.

1.1.4 Effect on the Power System and Electricity Market

The introduction of wind power might affect the power system in terms

of the wholesale electricity price, system inertia, and amounts of AS. However,
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Table 1.1: Wind Power in Electricity Markets

Electricity Market PJM NYISO ERCOT

Dispatch Must participate in
the RT market.

Must participate in
the RT market.

Must participate in
the RT market.

Day Ahead Market Only as a capac-
ity resource, wind
power must bid in
the DA market.

Voluntary Voluntary

Negative Price Allowed Allowed Allowed

Imbalance Relaxation Costs are charged
for power imbal-
ance.

Wind power is ex-
empt from under-
generation penalty
up to 3,300 MW of
installed capacity of
wind power

During testing
periods, if wind
resource gener-
ates more than
10% above, it will
be charged on
real-time prices.

AS Market Can participate
only in the regula-
tion market.

Can participate
only in the regula-
tion market.

Can participate
in the frequency
response without
payment. Can
provide regulation
service.

Forecasting System Since 2009. Long
term: hourly from
48 hours ahead to
168 hours ahead.
Medium term:
hourly from 6
hours ahead to 48
hours ahead. Short
Term: at every 10
min with forecast
interval of 5 min
for next 6 hours.

It has been used
since 2008. The DA
forecasting is pro-
vided twice in a day
(4am, 4pm), and
the RT forecasting
is provided at every
15 min.

It has been used
since 2008. Hourly
wind power fore-
casting also pro-
vides 50% and 80%
probabilities of
over-forecast for 48
hours.

Ramp Forecasting Updated every 10
minutes at 5-min
intervals for next 6
hours.

No ramp forecast Probabilistic ramp
forecasting is pro-
vided at every 15
min for the upcom-
ing 6 hours.
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determining the direct impact of wind power on the wholesale price might be

difficult because the wholesale prices are also affected by weather, natural gas

prices, transmission constraints, load, and other factors. The wholesale price

in 2012 was lower than the price in 2008. Low natural gas prices and electricity

demand are considered to be two primary contributors to this decrease. How-

ever, it is true that wind power can potentially reduce wholesale electricity

prices since its marginal cost is close to zero, and wind power is sometimes

bid with a negative price. Therefore, the strong impact of wind power on

the wholesale price has not been clearly shown, but it will contribute to a

decrease in the wholesale price as the wind power penetration level increases.

Additional transmission lines might decrease the wholesale price further by

delivering more wind power to the grid.

Another effect that wind energy might have on the power system is re-

garding the system inertia. The system inertia decreases as more wind farms

are integrated into the power system. The inertia is an index to describe the

sum of all kinetic energy in the on-line synchronous generators that are run-

ning with the same 60 Hz frequency. By following Newton’s first law, the

inertia delays the frequency deviation from 60 Hz when there is a power im-

balance between the supply and demand [139]. On the contrary, most wind

turbines, which are inverter-based generators or asynchronous induction gen-

erators, are not synchronized with other generators at 60 Hz, so they cannot

directly provide the inertia to the power system. With reduced inertia, the

system frequency drops faster after a generator contingency than the system
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frequency with normal system inertia, so more responsive services are required

to delay the frequency drop in the system with less system inertia. Although

wind turbines can also provide synthetic inertia, since they require a control

action triggered by the system frequency drop, a market-based procurement

process would likely need to be established in order for wind farm owners to

provide this service.

In addition to affecting the system inertia, increased wind capacity

might also increase the amount of regulation services, which are deployed to

compensate for the power imbalance within each five minute dispatch inter-

val, because the wind power fluctuation within the five minutes can increase

the net load fluctuation. However, the effect of increased wind capacity on the

amounts of ancillary services (AS) has not been shown clearly yet because ISOs

have changed their regulation procurement methodologies as the penetration

level of wind power has increased. PJM has reported that there have been no

serious impacts of wind power on the procured amount of regulation services.

Although ERCOT’s current regulation procurement methodology is also ade-

quate to procure sufficient regulation services [195], ERCOT has increased the

procured amounts of regulation services with respect to the installed capacity

of wind power by following the guidelines in [195].

Furthermore, wind power forecasting has been used for calculating the

amounts of non-spinning reserve services more accurately. The load and wind

power forecast uncertainties are used to calculate the net load uncertainty

and thus the amount of hourly non-spinning reserve services. Therefore, in-
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creased wind capacity might increase the amount of regulation services, and

the improved performance of wind power forecasting is required to estimate

the amounts of non-spinning reserve services more accurately.

1.2 Solutions to Increase the Wind Power Capacity

Three obstacles to increase the penetration level of wind power are wind

power fluctuation preventing participation in the DA market where prices are

less volatile and higher than the RT market, the increasing cost of AS, and

limited transmission resources. There are three key solutions to these ob-

stacles: promoting participation of wind power providers in the AS and DA

markets by improving the wind power forecasting and developing the stor-

age system, developing smart AS procurement methodologies, and building

additional transmission lines.

1.2.1 Advanced Ancillary Services Procurement Process

As the wind capacity increases, the optimal amounts of AS, respon-

sive services, regulation services, and non-spinning services can be procured

based on the installed wind capacity, the inertia, governor response ramp rate,

droop-characteristic, and net load variability [42]. In order to compensate

for the decreasing inertial response capability, a new process to procure the

responsive service can be determined by considering governor response ramp

rates and system inertia so that the responsive service stabilizes the frequency

when a generator trips [43]. The amounts and ramping capability of regu-
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lation services can also be set with respect to the net load variability while

satisfying the Control Performance Standard (CPS) [44]. As the wind pen-

etration level increases, the absolute magnitude of net load variability also

increases, so the required regulation service is also expected to increase. Al-

though wind turbines can only provide down regulation, curtailment of wind

power to provide the down regulation might erode the low-cost advantage of

wind power. The non-spinning service, which compensates for net load vari-

ability and recovers the 60Hz frequency after the resources are deployed, can

be upgraded to procure resources by considering the ramp rates of resources.

For example, ERCOT plans to substitute the current non-spinning service for

the supplemental reserve (SR) service. It should be noted that ERCOT’s new

AS system includes six different services: synchronous inertial response (SIR),

fast frequency response (FFR), primary frequency response, up and down reg-

ulating reserve, contingency reserve, and SR services [63].

1.2.2 Storage System

Participation in the DA and AS markets can be expanded through the

use of the storage systems, which will mitigate the effect of wind power fluctu-

ation and reduce the exposure of wind farm owners to the volatile price in the

RT market. The storage system can also be used to relieve the transmission

congestion of wind power, mitigate wind power fluctuation, and provide AS.

A large capacity storage system, such as the compressed air energy storage

(CAES), can relieve the transmission congestion due to wind power if it is
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installed around the transmission lines and wind farms. Furthermore, by lim-

iting the ramp rate of wind power, the storage system can mitigate the wind

power fluctuation. For example, Xtreme Power installed a storage system of

10 MW power rating and 20MWh storage size on a 21 MW wind farm in

Maui, Hawaii to limit the ramp rates of wind power. The ramp rate limit was

±1 MW / min. Xtreme Power’s storage system can also provide the regula-

tion service because it can respond to the regulation signal very quickly [172].

ERCOT has a plan to introduce the storage system as the fast responding

regulation service (FRRS). This storage system might not substitute for the

inertia completely, but energy that discharges quickly from the storage system

can delay the time when the frequency reaches the frequency nadir. In addi-

tion, the storage system can be used to increase the profits of wind farm owners

by helping them participate in the DA market and hedge the price difference

between the RT and DA markets. Since the energy price in the DA market

is statistically higher than the price in the RT market [58], participating in

the DA market can increase the profit. If wind farms do not generate the bid

amount, they should pay back the cost corresponding to deviation amount at

the RT price. However, if the RT price is much higher than the DA price, they

would lose a lot of money.

1.2.3 Electric Vehicles

Electric vehicles (EVs) can be used to mitigate not only the daily fluc-

tuations of wind power by consuming wind energy at night, which is on average
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the time of peak wind production in ERCOT, but also the instantaneous fluc-

tuations of wind power by providing regulation services [179]. With respect

to the storage application mentioned above, EVs are a good application of a

storage system within the power system since the high cost of the batteries

can be distributed to EV owners. However, in order to provide the regulation

services in the AS market, the minimum capacity requirement should be sat-

isfied, so an aggregator that coordinates EVs and distributes the regulation

signal to the EVs is needed [86]. However, to implement EVs in the AS mar-

ket, it is necessary to estimate the size of the AS market with EVs because

the introduction of fast response devices might decrease the required quantity

of AS procurement and reduce the regulation clearing price. Furthermore, it

is necessary to develop algorithms to dispatch signals and optimal charging

schedules for EVs. Proper incentives for EV owners should be determined to

make EVs follow the charging schedules and the dispatch signal. In addition,

the communication between the aggregator and EVs and metering technol-

ogy need to be developed to measure the regulation performance. Moreover,

regulation policies for interconnection and settlement must be established.

1.2.4 Wind Power Forecasting

Accurate wind power forecasting is beneficial to system operators be-

cause it reduces the imbalance of supply and demand by reducing the net load

variability. It is also beneficial to wind farm owners because it increases the

profits by helping them participate in the DA market, as mentioned above.
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Wind power forecasting in the DA market can reduce the imbalance between

the bidding and delivering amounts. Furthermore, accurate short-term wind

power forecasting is also beneficial to rate payers: the more accurately the

wind farm owners bid, the lower the cost of AS to the rate payers. Wind

power forecasting has been advanced in two different ways. First, ensemble

forecasting, which combines multiple forecasting machines or combines pre-

dictions from multiple numerical weather prediction (NWP) scenarios, can

increase the forecasting performance [157]. Second, probabilistic wind power

forecasting, which provides the error distribution of point-prediction can be

used to statistically build the optimal decision in the electricity market [196].

For wind farm owners, probabilistic wind power forecasting can also provide

opportunities to hedge their losses based on a statistical decision when they

participate in the DA market. For independent system operators (ISOs), prob-

abilistic wind power forecasting can be used in the stochastic unit commitment

and economic dispatch.

1.2.5 Transmission Expansion

In order to utilize the benefits of wind power more, the penetration

level of wind power should be increased by building additional transmission

lines. Particularly, in ERCOT, since there are ample wind resources in west-

ern Texas, new transmission lines have been built through the Competitive

Renewable Energy Zones (CREZ) project [83]. Furthermore, in the Texas

panhandle, additional transmission expansion, which is called the Panhandle
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Renewable Energy Zone, is ongoing [160]. The motivation behind transmis-

sion expansion planning is to ensure a balance between future generation and

load and to decrease the total generation costs by delivering more wind power

and relieving congestion while maintaining the balance between load and gen-

eration and system reliability. The goal of expansion planning is to determine

the locations of transmission lines to be enhanced or newly built. Economi-

cally optimal transmission expansion occurs when the sum of investments in

transmission lines and operating costs is minimized.

1.3 Motivation and Goals

As mentioned previously, the first problem of the current and high

penetration level of wind power is the wind power uncertainty, which inhibits

wind farm owners from bidding larger amounts of energy in the DA market,

and the second problem is the wind power fluctuation, which might increase

the required amounts of AS, because the power imbalance between the supply

and demand within each dispatch interval increases the net load fluctuation.

Then, the first key solution to increase the penetration level of wind

power is to increase the accuracy of wind power forecasting, and this will lead

to the expanded participation of wind power in the DA market and to the re-

duction of the exposure to the price variability in the RT market. Furthermore,

more accurate bidding amounts might reduce the amount of AS. Although

novel methods to estimate the error distribution and to merge multiple fore-

casting machines are well developed in the literature, there is some room to
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upgrade these forecasting methods. The framework should also include var-

ious forecasting techniques as a module so that users can select forecasting

techniques with respect to application cases. A new framework for providing

the point forecast and its distribution should be established by using parallel

programming and high computing resources when wind power from multiple

wind farms is forecasted based on a large amount of historical wind power data.

Recently, off-the-shelf forecasting machines, particularly tree-based forecasting

machines, have been well developed. The performance of ensemble forecasting

machines, including these off-the-shelf machines, should be tested.

Therefore, the first goal is to develop a new framework for probabilistic

and ensemble wind power forecasting in order to provide the accurate prob-

abilistic and point forecasting in an efficient way within a short computation

time. A new framework that consists of multiple modules must be developed

so that users can build case-sensitive forecasting machines by selecting mod-

ules. The modules include the feature engineering techniques, preprocessing

techniques, and various forecasting machines. The framework will provide the

averaged predictions from various forecasting machines and their error distri-

butions by sharing the cross validations of distribution estimating and pre-

diction averaging processes. The shared cross validation can be implemented

through a parallel computing environment in order to increase the computation

speed. In this study, the parametric approach, which presents the distribu-

tion in a closed form and compresses the distribution information, is used to

estimate the error distribution. The parametric approach assumes that the
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error distribution will follow the VG distribution and generates the continu-

ous function of the conditional error distribution. The proposed framework

will also enable ensemble forecasting by averaging predictions from multiple

forecasting units after multiplying weight factors, which are the inverse of the

performance. In ensemble forecasting, seven forecasting machines are used:

ridge regression, support vector machine, gradient boosting machine (GBM),

neural network (NN), random forest(NN), Gaussian process, and bootstrapped

aggregation (BAG).

The second key solution to increase the penetration level of wind power

is to develop a smart AS procurement methodology. The preliminary step in

determining the new rules for procuring AS is to synthesize many different

scenarios of future wind power by forecasting the statistical characteristics of

future wind power. These scenarios will be used to simulate the future power

system with different simulation settings including the future installed capacity

of wind power, seasonal trends, and different geographical dispersions. Fur-

thermore, wind power from integrated wind farms has less fluctuation relative

to the capacity than wind power from a single wind turbine. This is called the

geographical smoothing effect. As more wind farms are built across distributed

areas, the increased geographical smoothing effect should be considered when

future sample paths of wind power are synthesized.

Therefore, the second goal of this dissertation is to synthesize the fu-

ture monthly total wind power scenarios that are representative of the future

diurnal trends, short-term fluctuations, and long-term fluctuations simultane-
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ously. Therefore, scenarios will be synthesized by considering the deterministic

and stochastic portions. In this process, it is assumed that the deterministic

portion of the future wind power, the 24h daily cycle, will change in linear

proportion to the total capacity. For example, wind power in Texas has a

strong 24h daily cycle that peaks at 2:00 a.m. The 24h daily cycle is measured

from the actual wind power and designed under the assumption that it follows

the periodic waveform. On the contrary, the stochastic portion is assumed

to be changed with respect to the power laws of the power spectral density

(PSD). PSDs in a logarithmic plot are approximated by piecewise affine func-

tions through the modified hinges model, and slopes of affine functions are

forecasted as the total wind power capacity increases. The first and last PSD

values are also forecasted with respect to the total capacity. The first PSD

value corresponds to the minimum frequency 32 days−1, and the last PSD value

corresponds to the maximum frequency 2 minutes−1. Then, the wind power

scenario is synthesized by converting the forecasted PSD through the inverse

discrete Fourier transform (DFT). In this process, phase angles are searched

through the genetic algorithm (GA) to satisfy the distribution of wind power

variability. Furthermore, scenarios must be scalable with respect to the fu-

ture installed capacity of wind power while satisfying the forecasted statistical

characteristics of future wind power. In short, works to accomplish this goal

will be to design the 24h daily cycle separately, to model the stochastic portion

by analyzing power laws of the PSD while satisfying the regressed statistical

characteristics, and to reflect the forecasted future statistical characteristics.
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Third, physical transmission lines should be built to bring more wind

power into the grid. Transmission planning can be performed by simulating the

power system with future individual scenarios of wind power and load in order

to consider the net load uncertainty properly. Wind power causes an additional

uncertainty to be considered because wind power is often not generated during

peak load times, and wind power is generated differently at different locations.

Analyzing the total wind power scenarios is not sufficient to capture the spatial

and temporal wind power fluctuation of all wind farms, so sample paths of all

wind farms should be considered simultaneously. Accordingly, sample paths of

wind power from individual wind farms and load from individual weather zones

are synthesized simultaneously while maintaining the stochastic geographical

structure of wind power and load.

Therefore, the third goal is to synthesize individual load and wind power

scenarios by considering the geographical characteristics of load and wind

farms and the correlation structure between wind power and load. This goal

can be accomplished by using the generalized dynamic factor model (GDFM)

that models multiple sample paths as a linear combination of a filter and dy-

namic factors. The filter represents geographical characteristics of load and

wind power. Dynamic factors that represent a few streams of wind speed can

also be represented as the linear combination of dynamic shocks, which repre-

sent the randomness of wind power. The dynamic shocks are assumed to be

uniformly distributed white noises. By changing dynamic shocks and future

nameplate capacities, an infinite number of sample paths of future load and
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wind power scenarios can be synthesized. In this process, the dimension of

dynamic shocks is less than the dimension of the observation data, so it is

expected that the number of variables will be reduced. In order to detect the

dynamic factors and redesign the dynamic shocks, the GDFM decomposes ob-

servation data into a common component, which is generated by the dynamic

movement of dynamic factors, and the idiosyncratic noise component. Then,

the GDFM detects the dynamic factors by applying the dynamic principal

component analysis to the correlation function between common components

of different time series, so it is called a dynamic model. In addition, because

the GDFM relaxes the orthogonality constraint in the idiosyncratic noise com-

ponent by allowing weak correlations among noise components, it is called a

generalized model. The detected dynamic factors are modeled using the vector

autoregressive (VAR) process of dynamic shocks. Furthermore, transmission

expansion planning is formulated to minimize investment costs for new trans-

mission lines, enhancement costs for existing transmission lines, and operating

costs. The transmission planning problem is a mixed integer program, and

it is decomposed into a two-stage problem. In the first stage, investments in

transmission lines are optimized, and in the second stage, operating costs of

the given network from the first stage are optimized, given the realized wind

and load.
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1.4 Organization

The organization of this dissertation is as follows. The first key solu-

tion is to increase the performance of wind power forecasting and provide more

information than the point forecast through the probabilistic wind power fore-

casting. Therefore, in Chapter 2, a new framework for short-term probabilistic

and ensemble wind power forecasting is proposed with various forecasting tech-

niques. The second key solution, which is to develop a new AS procurement

methodology, can be facilitated by simulating power system with many differ-

ent wind power scenarios. Therefore, in Chapter 3, future scenarios of total

wind power in ERCOT are synthesized by forecasting and converting the PSD

of wind power. The third key solution is to plan additional optimal transmis-

sion lines to bring more wind power into the grid via multiple simulations with

different scenarios. To this end, Chapter 4 introduces a GDFM-based algo-

rithm to synthesize individual load and wind power scenarios. The usefulness

of scenarios is also verified by calculating the total generation and transmis-

sion upgrading costs on the IEEE 300-bus benchmark. Finally, Chapter 5

summarizes the dissertation and suggests the future work.
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Chapter 2

Short-Term Wind Power Forecasting

In this chapter, a novel probabilistic and ensemble forecasting algorithm

is suggested to predict the hourly wind power output and its probabilistic dis-

tribution for a month for ten wind farms. The probabilistic distribution is

given as 1% quantiles. Probabilistic wind power forecasting can provide a

solution to reduce the risk to system operations [23] and an opportunity to

maximize wind farm owners’ profits [154]. Furthermore, ensemble forecast-

ing, which combines multiple forecasting machines with different settings [88]

or combines the forecasted wind power of multiple numerical weather pre-

diction (NWP) scenarios, can increase the forecasting performance [157]. The

framework and techniques are verified using data from the 2014 Global Energy

Forecasting Competition (GEFCom).

The probabilistic and ensemble forecasting algorithm is implemented

in a new framework, which consists of multiple modules so that users can

build case-sensitive forecasting machines by selecting modules. The modules

include the feature engineering techniques, preprocessing techniques, and var-

ious forecasting machines with different simulation settings. The framework

will perform the probabilistic forecasting and ensemble forecasting simultane-
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ously by sharing the cross validation. For the probabilistic forecasting, two dif-

ferent parametric approaches to estimate the error distribution are proposed.

It should be noted that approaches to estimate an error distribution can be

classified into the non-parametric approach, in which the prior information

about the error distribution is not assumed, and the parametric approach, in

which the error distribution is assumed to follow distributions in a closed form.

In this study, the parametric approach assumes that the error distribution will

follow the approximated variance gamma (VG) distribution and generates dif-

ferent distributions with respect to different prediction levels. The continuous

function of the conditional error distribution without data classification will

also be proposed. The performance of the probabilistic forecasting will be

measured by the pin-ball loss. For the ensemble forecasting, the weighted av-

eraging, in which the weight factors are estimated by using the shared cross

validations, is used. A forecasting unit in the ensemble forecasting is a single

combination of a forecasting machine, internal parameters, and simulation set-

tings as described in Figure 2.1. The seven forecasting machines are used to

create heterogeneity and to increase the performance. These machines are the

ridge regression, neural networks (NN), support vector machine (SVM), Gaus-

sian process (GP), gradient boosting machine (GBM), random forest (RF),

and boosted aggregation (BAG). Furthermore, the optimal memory length of

wind speed, best forecasting machines, and their internal parameters are also

calculated based on the framework. The proposed forecasting framework is

verified using the data in the 2014 Global Energy Forecasting Competition
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Figure 2.1: The forecasting unit consists of simulation settings, internal parameters,
and forecasting machine.

(GEFCom). The best weekly ranking was second place, and the intermediate

ranking was sixth among 215 participants.

2.1 Introduction

Much of the literature has provided non-parametric and parametric

approaches to estimate the error distribution of wind power. Many algorithms

of the ensemble forecasting have also been proposed.
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2.1.1 Literature Review

To increase the performance of wind power forecasting, probabilistic

and ensemble forecasting techniques have been researched for a long time.

The error distribution of the wind power predictions can be estimated directly

from the training data without estimating the wind power predictions by using

the special structure of a forecasting machine. For example, in [106], the

neural network (NN) is used to generate the prediction interval by building

two-output network since one of advantages of the NN compared to other

forecasting machines is to have multiple outputs simultaneously. The first

output estimates the upper boundary of the given training case, and the second

output estimates the lower boundary of the given training case. Weights are

updated in order to minimize a special cost function, which tries to increase

the probability that the prediction is inside boundaries and to decrease the

width of the error distribution. Since this algorithm is only possible within the

NN, it cannot use other forecasting machines having high forecasting power.

Therefore, it would be beneficial to develop an algorithm to use an ensemble

of multiple forecasting machines having high forecasting power compared to

the NN. Furthermore, instead of estimating quantiles by stacking lower and

upper boundaries, the error distribution can be globally estimated while saving

computation time.

Furthermore, instead of changing the internal parameters, in [99], the

error distribution is generated by changing the input wind speed. Many differ-

ent wind scenarios are generated by putting random noises, which are gener-
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ated by using the Monte Carlo simulation, into the vector autoregressive mov-

ing average-generalized autoregressive conditional heteroscedastic (VARMA-

GARCH) model of wind speed and direction. The error distribution of wind

power is estimated by converting many different wind speed scenarios to wind

power scenarios using the stochastic power curve, which is based on the condi-

tional kernel density. However, this approach might provide the general error

distribution, but it cannot provide the tailored distribution with respect to

the point forecast and explanatory variables.

Without assuming the parametric or non-parametric error distribu-

tions, the quantile can be estimated directly from the explanatory variables.

The quantile regression can be used to estimate the error distribution [142].

In this application, developing separate models for each quantile takes a high

computation time. Furthermore, better forecasting machines than the regres-

sion can be used to estimate the error distribution. The error distribution can

also be determined by solving an optimization problem as described in [196].

For example, a direct optimization of both the coverage probability and sharp-

ness is used to estimate the optimal error distribution with respect to the

performance measure unit of the probabilistic forecasting.

The error distribution can also be estimated independent of forecasting

machines. In [156], the adaptive re-sampling method is used to estimate the

error distribution based on the classification of wind power without prior infor-

mation about the error distribution. On the contrary, instead of re-sampling,

it would be advantageous to get the distribution of the forecast errors through
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the cross validation. However, the data clustering is also used in this applica-

tion in a limited way. For the given prediction, its error distribution is trun-

cated by the minimum and maximum of the actual values in the prediction’s

corresponding cluster. In this paper, an algorithm to estimate the continu-

ous function of the conditional error distribution without data classification

is proposed. Furthermore, it has already been shown that ensemble forecast-

ing can have better forecasting power [119], but the forecasting power can

be further increased by combining tree-based advanced forecasting machines,

such as the random forest (RF), bootstrapped aggregation (BAG), and gradi-

ent boosted machine (GBM), with different simulation settings. Therefore, as

shown in [157], combining probabilistic forecasting and ensemble forecasting

might increase the performance of wind power forecasting.

2.1.2 Global Energy Forecasting Competition

As the training data, four explanatory variables, which are the zonal

and meridional values of wind speed at 10m and 100m, are provided for 10

wind farms, so there are 40 explanatory variables. The error distribution

of one-hour-ahead wind power outputs were forecasted for ten wind farms.

The x-axis and y-axis values of wind speed at 10m and 100m were provided.

Wind speed was also predicted based on one-hour-ahead NWP. The error

distribution was represented as 99 quantiles. This competition consists of 15

competitions for 15 weeks. Every week, one hour-ahead wind power for a

month was forecasted. In the next week, wind power for the next month was
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forecasted, and the testing data in this week became the last month of the

training data in the next week. In this study, the data from the only second

week is used. The training data was measured from 1/1/2012 to 10/31/2012,

and the testing part is from November, 2012.

2.2 Program Architecture

In this section, the architecture of the forecasting program is intro-

duced. In a broad sense, the forecasting program consists of three stages. The

first and second stages share the same internal forecasting process with the

same simulation settings.

2.2.1 External Forecasting Process

In the first stage, the performances of forecasting units are measured

using the root mean square error (RMSE) through the external five-fold cross

validation where the training data is classified into the actual training data

and validation data. In this application, 20% of the data is selected as vali-

dation data recursively. Furthermore, point forecasts for the validation data

are estimated through the ensemble forecasting. In the second stage, the final

point forecasts for the test data are estimated through the weighted ensemble

forecasting, in which weight factors are set as inversely proportional to the

forecasting machines’ RMSEs, which are estimated in the first stage. In the

third stage, the standard deviations (STD) of the error distribution of the test

data are estimated by comparing the point forecasts for the validation data in
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the first stage to their actual values. The step-wise process of three stages is

shown in Figure. 2.2.

2.2.2 Internal Forecasting

As mentioned above, the wind power is actually forecasted by the fore-

casting units in the second and third stages. The forecasting units in both

stages are built according to the same various layers of simulation settings,

which is described in Figure 2.4. Many combinations of different simulation

settings can be structured in a tree, and the tree structure is implemented

in this program through five for-loops that are layered. Since each loop has

multiple options, the total number of simulations is the multiplication of the

number of options in each layer. The five layers consist of system parameter

settings, data transformation, time expansion, outlier detection, and individ-

ual forecasting machines. The structure is shown in Figure 2.3. In the first

sequence, different fixed parameters of forecasting machines are set. Then, the

training data is expanded by adding the quadratic, cubic, and square of root

terms in order to extract the nonlinear relationship between wind speed and

wind power. Furthermore, the wind speed on the target day is expanded by

adding new features that include time information and forecasted weather data

on the day before and the day after the target day. Outliers are also defined

and removed. In the preprocessing, each feature of each class has a zero mean

and uniform standard deviation (STD). For the given actual training data, the

internal cross validation is used to determine the optimal parameters in the
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Figure 2.2: The three-stage program architecture is introduced. The best forecast-
ing units, STDs, minimum, and maximum of quantile for each output groups are
delivered from the first stage to the second stage.
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forecasting machines. Twenty percent of the training data is set aside to verify

the internal parameters. Finally, the predictions are smoothed, the minimum

level of predictions is limited to zero, and the maximum level of predictions is

limited to the maximum value of training data.

2.2.3 First Stage

In the first stage, point forecasts for the training data and the perfor-

mance of the forecasting units are estimated. The external five-fold cross val-

idation is used to measure the performance of the forecasting units. However,

in the internal cross validation, when the internal parameters of forecasting

machines are estimated, different validation data is selected from the actual

training data to select the optimal internal parameters of forecasting machines.

The point forecasts for the training data are generated through the ensemble

forecasting using the predictions of forecasting units. The strategy with en-

semble forecasting is to make as many different input or feature matrices as

possible and run them with different forecasting machines.

Since all forecasting units are evaluated through the same validation

data, the performances are compared fairly. Furthermore, since the validation

set is alternatively built through the external five-fold cross validation, the

point forecasts for all training data can be estimated. Then, the point fore-

casts of training data are estimated by averaging the predictions of forecasting

units with weight factors. Therefore, in the first stage, the performances of

the forecasting units are estimated and used to estimate the point forecasts
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Figure 2.3: The MATLAB code is organized in this way.
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Figure 2.4: The overall forecasting process of each stage is introduced.
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for the training data. The performances are also used to estimate the point

forecasts for the test data in the second stage. In addition, in the third stage,

point forecasts for all training data are used to estimate the STDs of error dis-

tributions, lower boundaries, and upper boundaries by comparing them with

the actual values.

2.2.4 Second Stage

In the second stage, all training data is considered as the actual training

data, and the final point forecasts for the test data are estimated through

the ensemble forecasting by using the RMSEs in the first stage. In other

words, forecasting units are re-trained using all training data. If the number

of forecasting units is high, or if the performances of a few forecasting units

are much lower than those of other forecasting units, a few best combinations

in the first stage are used in the second stage. It should be noted that the

computation time of the second stage is less than that of the first stage since

it does not need to perform the external cross validation.

2.2.5 Third Stage

The point forecast of validation data are compared to the actual vali-

dation data in order to estimate the standard deviation, maximum, and min-

imum values of the error distribution under the assumption that the error

distribution follows the approximated VG distribution. In the non-parametric

approach with the data classification, the point forecast in a different group
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is compared to the validation data in the same group, and each group has

different standard deviation, maximum, and minimum values of the error dis-

tribution. The optimal STD is determined when a candidate STD minimizes

the sum of the quantile errors of the point forecasts in each group. By increas-

ing the STD from zero, the sum of measured quantile errors is calculated with

respect to the STDs. On the contrary, in the non-parametric approach with-

out the data classification, the optimal STDs of each point forecast of the test

case is estimated with respect to the point forecast of the test data through

another forecasting machine. In order to train this forecasting machine, the

optimal STDs of the training data are used as the target data, and the weather

data and point forecasts of the training data are used as training data for this

forecasting machine. In short, this forecasting machine calculates the opti-

mal STDs as a function of weather data and point forecasts. However, in the

non-parametric approach, the data classification is also used to determine the

maximum and minimum values of the error distributions. Therefore, for the

given point forecast of the test data, the minimum and maximum values of

wind power in the cluster that the point forecast belongs to are used to limit

the error distribution of that point forecast.

2.3 Feature Engineering

The goal of feature engineering is to design the number of rows and

columns of the input data matrix to generate the training data. In this section,

feature engineering methods to tailor the input data matrix are explained

35



AMP10  AMP10 2 AMP10 3 AMP100  AMP100 2 AMP100 3

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

0.6

0.65

0.7

0.75

0.8
Correlation Coefficients Analysis

Figure 2.5: Correlation coefficients of transformed amplitudes of wind speed at 10m
and 100m are plotted. The linear, quadratic, and cubic of amplitudes of wind speed
at 10m and 100m are shown respectively.

individually.

2.3.1 Data Smoothing

The absolute value of raw wind speed data is smoothed in order to rep-

resent the dynamic movement of wind speed since NWP data that is generally

sampled at a fixed interval cannot represent the time series characteristics of

wind speed. In the competition, the moving average is used, and the optimal

length of the moving window per wind farm is also decided.
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2.3.2 Data Transformation

The input features are transformed into the quadratic and cubic in or-

der to extract the nonlinear relationship between wind speed and wind power.

The transformed input features include the zonal component, meridional com-

ponent, and amplitude of wind speed at 10m and 100m. For example, the

correlations of amplitudes of wind speed at 10m and 100m are compared to

the correlations of the squared amplitudes and cubic amplitudes in Figure 2.5.

It is observed that the wind speed at 100m is more highly correlated than

the wind speed at 10m, although it is widely known that the cubic of wind

speed is more highly correlated than the linear wind speed. It should be noted

that the interaction terms of multiplication among features are not consid-

ered since including the interaction terms increases the number of variables

exponentially.

2.3.3 Data Expansion

Since wind speed at any given moment is highly correlated with the

wind speed an hour before and an hour after the given moment, in order to

consider the dynamic nature of wind speed, all predictors from t− k to t+ k

are used to predict wind power at t. This data expansion technique can also

control the number of variables, so it can also control over-fitting. The length

of the timespan could differ based on the training data, but generally k is set

at one or two. However, a three-hour timespan deteriorates the forecasting

performance. In the ensemble forecasting, different timespans are used for
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multiple forecasting units, and a few best forecasting units are selected. Fur-

thermore, month, day, days of the year from one to 365, and year are added

in order to extract the seasonal trends.

2.3.4 Outlier Detection

Outliers are defined and removed from the feature space. Predictors are

ranked according to the difference between the target value and the prediction

value forecasted by the ridge regression. The errors are measured as the abso-

lute of this difference, and errors are sorted in descending order. It should be

noted that each wind farm has its own outliers. Furthermore, the fraction be-

tween the outliers and training data should be searched before the simulation.

The top 5% of errors are generally defined as outliers and removed. It is also

interesting to observe that every forecasting machine has a different ability to

resist outliers. For example, the NN seems to be weak for outliers, but the

SVM is resistant to outliers. Furthermore, it is known that the GBM and RF

are typically resistant to outliers [97], but they are susceptible to outliers in

this simulation.

2.3.5 Input Data Classification

Wind power data can be classified into three groups with respect to

the amplitude of wind speed. Generally, the power curve of the wind turbine

can be classified into three ranges: wind speed less than the cut-in speed,

wind speed between the cut-in speed and cut-out speed, and wind speed more
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than the cut-out speed. However, since the performance of a single group is

better than that of three groups, the input data classification is not used in

this application.

2.3.6 Pre-processing and Post-processing

After the simulations, 18 variables have shown the best performance.

They are the zonal component of wind speed at 10m, zonal component of wind

speed at 100m, meridional component of wind speed at 10m, meridional com-

ponent of wind speed at 100m, amplitude of wind speed at 10m, amplitude of

wind speed at 100m, square of zonal component at 10m, square of zonal com-

ponent at 100m, square of meridional component at 10m, square of meridional

component at 100m, cubic of meridional component at 10m, cubic of merid-

ional component at 100m, square of amplitude at 10m, square of amplitude

at 100m, cubic of amplitude at 10m, cubic of amplitude at 100m, angle of

the cylindrical coordinate of wind speed at 10m, and angle of the cylindrical

coordinate of wind speed at 100m. If predictors in the previous hour and next

hour are included, the number of variables increases to 54. Then, predictions

from ten wind farms are aggregated, so the number of variables increases to

544 by including day, month, day of the year, and year. However, since some

features are shared between wind farms, the final number of variables is 528.

However, according to the input data generation method, the number

of total features is changed. Therefore, many options are offered to control

the number of features. For example, the first input data option has only raw
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observation data, the second input data option has linear and quadratic terms

of input data, and options become more complex after that.

Then, training data has a zero mean and has one as the standard de-

viation before it enters into the forecasting machines. After wind power is

forecasted, the final prediction is smoothed. In addition, the prediction per

wind farm is limited by the minimum and the maximum of each wind farm.

2.3.7 Simulation Settings for Individual Forecasting Machines

Different simulation settings are fixed before running the forecasting.

Simulation settings include the ratio of the number of outliers, the outlier

detecting machine, and some fixed internal parameters in forecasting machines.

Some simulation settings that can outperform other settings are set before

the training data enters the loops in order to increase the system efficiency.

Therefore, if the best settings are detected, they are enumerated in the code.

It should be noted that the prediction horizon is not considered, and the

ensembles of NWP with different initial settings are not used in this case

study. If the prediction horizon needs to be considered, it would be preferably

to have different forecasting machines for each prediction horizon.

2.4 Forecasting Machines

In this section, seven forecasting machines are introduced: ridge re-

gression, NN, SVM, GP, GBM, RF, and BAG. The forecasting machines used

in this study can be classified into regression models, kernel-based models,
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and tree-based models. The methods of controlling the internal parameters

to avoid over-fitting are briefly introduced. In this forecasting, the nth target

value tn is estimated as the prediction yn, which can be represented as a linear

combination of weights w and kernel functions of the nth predictor xn as

yn = wφ(xn), (2.1)

where xn = {xn1, xn2, . . . , xnD},w = {w1, w2, . . . , wM}, and φ = {φ1, φ2, . . . , φM}.

Training data consists of a set of target values and predictors.

2.4.1 Ridge Regressions

The ridge regression is a regularized regression that is used to avoid

over-fitting. It minimizes the sum of the squared errors and regularized coef-

ficients, which is

N∑
i=1

(
yi − β0 −

D∑
j=1

βjxij

)2

+ λ
D∑
j=1

|βj|q. (2.2)

In (2.2), q is 2 for the ridge regression. In this study, the shrinkage penalty λ

is selected among different lambda values in the ridge regression through the

cross validation. Furthermore, predictors are standardized since the effect of

the shrinkage penalty might be different with respect to the scale of the pre-

dictors. The (2.2) is minimized by converting it to the quadratic optimization
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problem below:

min
β

N∑
i=1

(
yi − β0 −

D∑
j=1

βjxij

)2

(2.3)

subject to
D∑
j=1

|βj|q ≤ s. (2.4)

For the given budget limit s, the shrinkage penalty λ becomes a Lagrangian

multiplier of the inequality in (2.4). By reducing s, so λ can be increased.

The advantage of the ridge regression is the computation time; thus,

it is very useful for checking the integrity of the forecasting program. In the

ridge regression, it is difficult to suppress the coefficients for less correlated

predictors with the nonnegative coefficients β. The wind power of the first

wind farm is forecasted using the ridge regression in Figure 2.6.

2.4.2 Neural Network

The NN is introduced by focusing on a fast training algorithm, internal

parameter settings, and future modifications. Detailed information about the

NN is well summarized in [90]. In the implementation used here, the NN is

trained by the scaled conjugate gradient (SCG) [135]. The SCG is the fastest

CG, and it consumes less memory than other algorithms. If the NN is designed

with internal parameters w to forecast the observation y, the error function

of the NN can be a function of w. This error function can be approximated

by a quadratic function through the Taylor expansion at the point ŵ as

E(ŵ +w) ' E(ŵ) + bTw +
1

2
(w)THw. (2.5)
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Figure 2.6: The red dotted line is the wind power predictions of the ridge regression,
and the blue line is the actual wind power.

Then, the optimal w is defined as

w∗ = H−1b. (2.6)

However, estimating H is computationally burdensome, so w is recursively

estimated as

wk+1 = wk + αkpk. (2.7)

In the CG, the step size αk is defined through a line search algorithm as

αk = − pkb

pkTHpk
. (2.8)
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This formulation is computationally very burdensome because of the Hessian

H . On the contrary, in the SCG, since the scaling mechanism is used in

estimating αk, the SCG avoids a time consuming line search algorithm, and it

is faster than other CG based algorithms.

Three internal parameters in the NN are set to avoid over-fitting: the

number of hidden neurons, the percentage of total data that is set aside as

the validation data, and the number of validation data violations. First, the

number of hidden neurons is strongly related to the number of parameters in

the NN. In this simulation, the multiplication of the number of input features

and the number of hidden neurons is fixed at 6,500. Furthermore, the per-

centage of total data that is set aside as validation data and the number of

validation data violations are set to perform the early termination to avoid the

over-fitting. Twenty percent of the training data is used as the validation data.

When the weights in the neurons are updated, if the errors of the validation

data increase continuously for 30 iterations, the training is stopped. More-

over, in order to avoid the local minimum, ten different NNs are estimated,

and their results are averaged [124].

In future work, better training algorithms, such as the regularized NN

and radial basis function NN can be used. If these training algorithms are

simulated with combinations of different types of input parameters, and if

additional types of parameters are introduced, the forecasting power can be

increased.
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2.4.3 Support Vector Machines

The kernel function can be used to change the feature space and the

dimensionality of the feature space. The SVM and GP are kernel-based fore-

casting machines. The SVM for the regression minimizes the sum of the upper

and lower deviations between the predictions and target values. The upper de-

viation ξ becomes positive when the target value is bigger than the prediction,

and the lower deviation ζ becomes positive when the target value is smaller

than the prediction.

The SVM takes advantage of the sparsity by setting the upper and

lower deviations in an insensitive region to zeros. The insensitive region is

represented as the ε-sensitive error function below.

E(yn) =

{
0 if |yn − tn| < ε

|yn − tn| − ε otherwise
. (2.9)

Targets on the outside of the insensitive regions are called support vectors,

and they support targets inside the insensitive regions. In short, targets on the

outside of the insensitive regions support the prediction so that the prediction

is located inside the insensitive regions. This process can be represented as

one minimization problem:

minimize
ξn,ζn,W

C
N∑
n=1

(ξn + ζn) +
1

2
‖W ‖ (2.10)

subject to yn − ε− ζn ≤ tn ≤ yn + ε+ ξn, (2.11)

0 ≤ ζn, ξn. (2.12)

The quadratic optimization problem in (2.10) is solved by the sequential mini-

mal optimization (SMO) algorithm [41]. In (2.10), the kernel function φ, cost
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of deviation C, tolerance v for optimization, and size of insensitive region ε

should be determined. In this application, the radial basis function (RBF) is

used as a kernel function whose scale length is set as one over the number of

input features.

C, v, and ε are selected from many combinations of different values

through the cross validation. After splitting the data into training and vali-

dation sets, the SVM is simulated with all possible combinations. Then, the

best combination of minimum error for the validation set is selected. Gener-

ally, C = 0.2, v = 0.0001, ε = 0.0001 is the best combination. It should be

noted that the trade off between the performance and computation time can

be controlled by changing the iteration tolerance. The computation time to

run one SVM problem is 5 seconds.

One advantages of the SVM is that it is very resistant to outliers with

the help of support vectors and loss functions. Without detecting the out-

liers, the SVM achieves 37th, which outperforms other forecasting machines.

Furthermore, its computation time is very short. However, the problem of

the SVM is that it has many internal parameters that should be determined

through the cross validation. Besides, the optimal kernel functions should be

decided before training.

2.4.4 Gaussian Process

The GP also finds the coefficient w in (2.1) using a kernel approach. In

the GP, the prior distribution over w is assumed to be Gaussian. Since y is a
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linear combination of w, y is also Gaussian. Then, for N samples, y becomes

an N dimensional multivariate Gaussian distribution whose mean is zero, and

whose covariance is a Gram matrix of φ(x). In short, the GP defines the

probability of distribution over sample functions that pass near N observation

points [162]. Therefore, y follows the multivariate Gaussian distribution

y ∼ N(0,K), (2.13)

where K is a covariance matrix whose component is given as:

K(xp, xq) = θ2
1 exp(−‖xp − xq‖

2

2θ2
2

). (2.14)

For the new observation x∗, (2.13) can be represented as:[
y
y∗

]
∼ N

(
0,

[
K K∗

K∗ k

])
, (2.15)

where K∗ is the covariance vector between the training data and the predic-

tors, so its element is represented as K(xn,x
∗) for n = 1, . . . , N . It should

be noted that the β variance of measurement errors is not described here. Fi-

nally, if the conditional distribution of the multivariate Gaussian distribution

is found [24], the mean of the prediction becomes

m(y∗|y) = (K∗)T (K)−1y, (2.16)

In order to avoid the over-fitting, internal parameters θ2 and θ1 in (2.14)

are estimated by maximizing the log marginal likelihood

log p(y|θ) = −1

2
yTK−1y − 1

2
log |K| − N

2
log 2π, (2.17)
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where θ includes θ2 and θ1. This equation can be directly derived from (2.13).

Since the computation time to maximize (2.17) is lengthy, 20% of the training

data is randomly selected.

One advantage of the GP is that it can provide the probability distri-

bution of the prediction. Furthermore, the GP is potentially the most cus-

tomizable forecasting machine by selecting suitable kernels that represent the

characteristics of the target signal. On the contrary, the GP also has many

disadvantages. First, a large number of internal parameters that should be

optimized depends on the kernel function, which should be selected before the

training. Furthermore, optimizing the internal parameters is computationally

burdensome. Although the GP is almost identical to the linear regression, its

performance is better than the ridge regression because of its nonlinear ker-

nels [161]. Therefore, the performance of the GP eventually depends on the

selection of the kernels and parameters. In this study, the sum of the Gaus-

sian, linear, and a quadratic ratio kernels is used. Thus, in order to make the

GP a powerful tool, it is necessary to develop a method to address the model

selection problem.

2.4.5 Bootstrap Aggregation (BAG)

The BAG, RF, and GBM forecasting machines are based on a regres-

sion tree, in which the training data is partitioned into multiple rectangles.

Each rectangle corresponds to a node in a tree, and the sides of the rectangles,

which are determined by splitting the variables and their values, correspond
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to a junction in a tree. The trees are partitioned into two branches by a bi-

nary question at every junction [111]. A leaf, which is the terminal node,

has a value that is the average of the training data corresponding to the leaf.

The regression tree has a few advantages. a) the tree is built fast; b) the av-

eraged trees can be resistive to outliers and irrelevant explanatory variables;

and c) tree based machines are non-parametric, so the number of features can

be bigger than that of observations. One disadvantage of a regression tree is

that it suffers from high variance and over-fitting.

A better idea is to bootstrap the training data, to train trees with

different subgroups of training data, and to average the results of the trees as

f(x) =
1

B

B∑
b=1

fb(x), (2.18)

where B is the number of trees and fb represents the tree. This idea is known as

the bootstrapped aggregation (BAG). In the BAG, other machines can be used

as weak learners, but the regression tree is the most widely used. Generally,

a shallow tree, which has few branches, is preferred because it is resistant to

over-fitting and is easy to interpret.

2.4.6 Random Forest

A random forest is comprised of regression trees whose features are

randomly selected and whose predictions are averaged to create one prediction

for the forest. These randomly selected m features are different combinations

of correlated and uncorrelated features and result in de-correlated trees. On
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the contrary, in the BAG, all features are used to split branches, and then its

predictions are driven by a few highly correlated features. However, averaging

the predictions of de-correlated trees can increase the forecasting power and

further reduce the variance of predictions at the expense of a small increase in

bias. The key algorithms of the RF are introduced in [88].

There are three internal parameters in RF. They are m, node size, and

the number of trees. The variable m is set as m = p/3, but the optimal m per

wind farm is determined through the cross validation. The node size deter-

mines the number of leaves and hence the size of the tree. In this simulation,

the node size is set as seven. The third parameter is the number of trees.

Since the RF is not easily over-fitted, increasing this parameter will guarantee

better performance. However, many trees will require high computation time.

The number of trees is set between 200 and 500.

One of advantage of the RF is that it is not over-fitted. An additional

advantage of the RF is that it can be used to decide the importance of the

variables. The disadvantage of the RF is that it cannot forecast outputs beyond

the range of the training data. Furthermore, the values of nodes are determined

by averaging the outputs of the training data on the target nodes. This usually

makes the forecasts under-predicted for bigger values and over-predicted for

smaller values. It should be noted that the performance of the RF depends

on the number correlated features and the m parameter. For example, when

there are many features but few highly correlated features, the RF performs

poorly with the small m because features that have strong forecasting power
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are seldom selected.

2.4.7 Gradient Boosting Machines

The GBM builds a regression function f by summing multiple weak

learners. If regression trees are used, the GBM is also called the multiple

additive regression trees (MART). Compared to other tree-based forecasting

machines, the GBM does not change individual trees but builds fm recursively

by adding different trees with different coefficients that are changed at every

iteration. Generally, a shallow tree is used in the GBM. On the contrary, a

deep and leafy tree is used in the BAG. The key idea of the GBM is to train

the next tree using residuals between the target values and outputs of fm−1,

so the GBM has a feedback system to improve the prediction power above

samples that are not well trained by the fm−1. The prediction power increases

by assigning bigger weight factors for untrained samples and assigning smaller

weight factors for well-trained samples.

The ultimate goal of the GMB is to minimize the loss function L,

which is the quadratic function in this application. In order to minimize the

loss function, f is updated by the steepest descent −ρmgm, where gm is the

vector of gradients for fm−1 at every input data, and ρm is the step length,

which is estimated by solving

ρm = arg minL(fm−1 − ρgm). (2.19)
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Then, the f is updated as

fm = fm−1 − v · ρmgm. (2.20)

Unfortunately, the gradient is only calculated at values of training data,

and the GBM is a non-parametric machine. Therefore, a continuous function

is required to have similar prediction power for new data.

The trick in the GBM is to build a tree Tm, whose outputs are gradients,

at every iteration so that new data corresponding to a certain node will have

the same gradients of input features in that node.

At the mth iteration, the element of gm is given at nth input data as

gnm = −
[
dL(tn, f(xn))

df(xn)

]
f=fm−1

. (2.21)

Then, T partitions input features into J nodes that have similar gradients.

For the jth node, the steepest descent γjm, which corresponds to ρmgm, is

estimated by minimizing the sum of the loss function for the training data in

that node at fm−1. In short, optimal offsets of the fm outputs of the training

data, whose gradients are similar, are estimated. The basic algorithm of the

GBM is summarized in Algorithm 1. The detailed derivation of the equations

used in this algorithm is introduced in [88].

Four internal parameters in the GBM, shrinkage v, the number of it-

erations m, the sampling rate, and the minimum node sizes, are controlled to

avoid over-fitting. First, the GBM is not easily over-fitted when the v is low

even with the big m. Therefore, a low v and high m is used in order to increase
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Algorithm 1 Gradient Tree Boosting

1: Initialize f0(x) = arg minγ
∑i=1

N L(yi, γ)
2: for m = 1 to M do

1. For i = 1, 2,. . . , N , compute

gim = −
[
dL(ti, f(xi))

df(xi)

]
f=fm−1

.

2. Fit a regression tree to learn gim and to give terminal regions Rjm,
j = 1, 2, . . . , Jm.

3. For j = 1, 2, . . . , Jm, compute

γjm = arg min
γ

∑
x∈Rjm

L(yi, fm−1(xi) + γ).

4. Update
fm(x) = fm−1(x) + v ·

∑Jm
j=1 γjmI(x ∈ Rjm).

3: end for
4: Output f̂(x) = fM(x).
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the forecasting power while avoiding the over-fitting. In this application, the

v is set between 0.01 and 0.05, and the number of iterations is set between

2,000 and 4,000 depending on the quality of the input data. Bad quality data

requires more iterations. It should be noted that the higher the v, the more

computation time is required. Third, the sampling rate is set at 0.5. In each

generation, only a small number of sampled training cases are used to train

the tree. Using a fraction of the training data can reduce the computation

time and improve the performance by reducing the variance [76]. Finally, the

minimum node size of the regression tree is set at five. It should be noted that

the early termination can be used through the cross validation in the training

process, but it is not used in this application.

2.5 Ensemble Forecasting

In this section, the performances of individual forecasting machines

and the ensemble forecasting algorithms are introduced. Furthermore, the

performances of simple averaging ensemble and weighted averaging ensemble

are compared, and this leads to the performance comparison between a single

forecasting machine and an ensemble of forecasting machines. It is worth

noting that the results could differ according to different internal parameters.

2.5.1 Analysis of Individual Forecasting Machines

The performances of the forecasting machines are compared by eval-

uating the prediction using the wind power from the first wind farm. The
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training data of the second week in the competition is used in order to in-

crease the computational speed. The performance of each forecasting machine

is compared under the same simulation conditions, and the performance is

shown in Table 2.1. The 528 features that are mentioned in above section are

used, feature selections and data classification are not used, and the ratio of

the number of outliers is 5%. In addition, five-fold cross validation is used

to measure the performance of each forecasting machine. It should be noted

that the performance difference coming from the different configurations of the

training data will not be discussed in this dissertation.

The GBM shows the best performance of all the configurations of the

training data. The second best is the BAG. Furthermore, the NN, RF, and

SVM perform similarly, but the NN and RF are better than the SVM. As

mentioned above, since the performance of the RF is affected by the number of

correlated variables in the feature space, having the better m can improve the

performance. The worst performing forecasting machine is the ridge regression.

Among the three best models, the GBM requires the most computation time,

which is around two hours. On the contrary, the ridge regression is the fastest

machine.

Forecasting machines can be further researched. The ridge regression

strongly depends on the length of training data; thus the ten-fold internal cross

validation is used to select the optimal regularization coefficient in order to

maintain the data length. Furthermore, the performance of the ridge regression

does not vary with respect to the configurations of the training data. In the
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Table 2.1: Performance of forecasting machines. The wind power from the first wind
farm is used.

Number Method Computation Time (s) RMSE

1 Ridge 67 0.1593

2 SVM 244 0.1561

3 NN 136 0.1546

4 RF 189 0.1553

5 GBM 821 0.1537

6 GP 887 0.1600

7 BAG 301 0.1535

7 Simple Averaging 0.1556

7 Weighted Averaging 0.1554

GP, the best kernel is the sum of the Gaussian isotropic, linear, and constant

kernels. The GP is very sensitive to the number of features. Furthermore, the

SVM and NN are resistant to outliers. However, the NN is easily over-fitted

without the early termination.

2.5.2 Ensemble Algorithms

Ensemble algorithms can be classified into four methods. The first one

is the BAG algorithm, in which many weak learners are trained by different

subgroups of randomly selected training data. Then, predictions from many

weak learners are simply averaged. The second method is the boosting. As

the number of iterations increases, the next learner is trained by focusing on
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the cases that were not learned well by the previous learner. Generally, the

regression tree is used as a weak learner in the first and second ensemble

methods. Third, the predictions are simply averaged. Fourth, the predictions

are averaged after multiplying weight factors that are the inverse of their error

rates. In this dissertation, the third and fourth method are compared since

the first method is implemented in the BAG, and since the second method

is implemented in the GBM. The performance of ensemble algorithms is also

compared in Table 2.1. The performance of weighted averaging ensemble is

better than the performance of simple averaging ensemble. Moreover, it is

clearly shown that the performance of the combination of multiple forecasting

machines is always better than the performance of a single forecasting machine.

In addition, the forecasting power can be increased by using the k-fold

cross validation, where k is bigger than five, on multiple combinations, but

the computation time increases exponentially, so it is difficult to forecast the

hourly wind power for real-time application. Therefore, users should consider

the trade-off between the weighted averaging method that uses the few best

forecasting machines and the simple averaging method that uses all possible

forecasting machines.

2.6 Quantile Estimation

In this section, error distributions for every point forecast are estimated

and represented as 1% quantiles under the assumption that the error distri-

bution follows a parametric distribution in a closed form. The performance of
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the error distribution, which is calculated by the pinball loss function, is mea-

sured with respect to four different distributions: uniform, Gaussian, Laplace,

and approximated VG distribution. In order to narrow the width of the error

distribution, different error distributions per cluster of point forecast or the

continuous function between the point forecast and the STD of the error dis-

tribution can be estimated. The performances of these different methods are

compared. In all methods, the error distribution per cluster is truncated by

the minimum and maximum of actual values of each cluster.

2.6.1 Pinball Loss Function

The pinball loss function is defined as

L(qb, y) =

{
(1− b

100
)× (qb − y) if y < qb

b
100
× (y − qb) if y ≥ qb

, (2.22)

where n represents a quantile percentage between 1 and 99, qb represents the

quantile prediction, and y represents the target value. The quantile value qb

represents the value of the random variable when its accumulated probability

occupies b percentage. The Gaussian distribution and its quantile function

are plotted in Figure 2.7. The (2.22) tries to set the actual value at the mean

of error distribution. For the over-forecasted quantile, which corresponds to

the upper equation, b, which is greater than 50, can minimize the (2.22). On

the contrary, for the under-forecasted quantile, which corresponds to the lower

equation, b, which is less than 50, can minimize the (2.22). In short, when b

is greater than 50, the over-forecasted quantile has a lower loss, and when b

is less than 50, the under-forecasted quantile has a lower loss. Consequently,
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slightly bigger quantiles have better performance with respect to the testing

data.

2.6.2 Probabilistic Forecasting in the Ensemble Forecasting

Forecasting machines that are based on Bayesian statistics or neural

networks generally provide the distribution of predicted values. However, in

the ensemble forecasting, predictions of multiple forecasting machines are av-

eraged, it is hard to find the meaning and usage of error distribution that is

estimated based on Bayesian statistics or neural networks. Instead of using

error distribution that is estimated based on the structure of the individual

forecasting machine, estimating the error distribution through the compari-

son between the point forecasts and actual values can be estimated by taking

advantage of high forecasting performance of the ensemble forecasting.

2.6.3 Parametric Approach

The error distribution of the point forecast can be estimated by finding

the STD of the error distribution, which follows the parametric distribution in

a closed form. This is called the parametric approach. In this dissertation, the

candidates of the parametric distribution are the uniform, Gaussian, Laplace,

and approximated VG distributions. The performance of these distributions

are compared, and it is shown that the approximated VG distribution has the

minimum loss function.
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Figure 2.7: The Gaussian distribution and its quantile function are plotted. (a)
Gaussian distribution (b) Quantiles function of the Gaussian distribution
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2.6.4 Distributions

The characteristics of the distributions mentioned in the previous sub-

section are explained in this subsection. First, the probability distribution

function of the uniform distribution is given as

f(x) =

{
1
b−a a ≤ x ≤ b

0 otherwise
, (2.23)

The variance of the uniform distribution is

V [X] =
1

12
(b− a)2 (2.24)

and the mean is given as

E[X] =
1

2
(a+ b). (2.25)

The mean is the same as the point forecast, so

ŷ =
1

2
(a+ b). (2.26)

For the given V [X] and ŷ, the a and b in (2.23) can be estimated by using

(2.26) and (2.24). Second, the PDF of the Gaussian distribution is

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2.27)

where µ is the mean of the Laplace distribution. Suppose the mean is the same

as the point forecast µ = ŷ. Then, for the given STD, the distribution and its

quantiles can also be estimated. Third, the PDF of the Laplace distribution

is given as

f(x) =
1

2b

(
−|x− µ|

b

)
, (2.28)
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where µ is the mean of the Laplace distribution. The variance of the Laplace

distribution is given as

V [X] = 2b2. (2.29)

For the given STD, the b can be estimated, and the distribution and its quan-

tiles can also be estimated.

The PDF of the VG distribution, which is introduced in [169], is de-

scribed here as

f(x) =
(α2 − β2)

λ

√
πΓ(λ)(2α)λ−0.5

|x− µ|λ−0.5Kλ−0.5(α |x− µ|) exp(β(x− µ)), (2.30)

where K(z) is the modified Bessel function of the second kind. Its mean is

given as

µ+
2βλ

α2 − β2
, (2.31)

and the variance is given as

2λ

α2 − β2

(
1 +

2β2

α2 − β2

)
. (2.32)

µ determines the location of the median, α determines the length of tails,

β determines the asymmetry, and λ determines the scale. As λ increases,

the distribution becomes more similar to the Gaussian distribution, and as λ

decreases, the distribution becomes more similar to the Laplace distribution.

As α decreases, the distribution has a fatter tail, and as β increases, it becomes

more skewed. The VG distribution whose µ is 0.12, α is 0.07, β is 0.1, and λ

is 1, is shown in Figure 2.8.
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Figure 2.8: The VG distribution is shown. The approximated VG distribution can
be represented as the combination of two exponential distributions with different
standard deviations.

Since the VG distribution is designed through multiple internal parame-

ters, it is hard to find the optimal combination of multiple internal parameters,

which minimize the pinball loss function. Therefore, in this dissertation, the

VG distribution is approximated with two exponential distributions with dif-

ferent STDs, which is called the asymmetric Laplace distribution [108]. Then,

the STD of each exponential distribution needs to be estimated. Furthermore,

without loss of generality, the µ is set at the prediction value. However, it

should be noted that the asymmetric Laplace distribution does not exactly
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match to summation of two exponential distributions with different STDs.

Since each exponential distribution with a different STD covers 0.5 probability,

the asymmetric Laplace distribution cannot be fully implemented by adding

two exponential distributions with different STDs. Although the quantiles of

two different exponential distributions are attached at the mean value in this

dissertation, building the asymmetric Laplace distribution by attaching two

different exponential distributions with different STDs should be addressed in

detail in the future work.

2.6.5 Estimation of the Standard Deviations: Discrete Cluster Case

For each exponential function, the optimal STD of the exponential

function, which minimize the sum of total pinball losses, is found by checking

various STDs from a small value to a large STD with a fixed step. For the given

candidate STD, the sum of total pinball losses was measured by comparing

the point forecast to the actual values. It should be emphasized again that

the point forecast for each actual value is estimated through the external cross

validation. By comparing the sum of total losses, the optimal STD for each

side is estimated. The sum of total pinball losses is plotted against different

candidate STDs in Figure 2.9. In order to plot in a limited space, among ten

clusters, only six clusters are plotted. It is clearly observed that the STD of

the first cluster, whose point forecasts are less than 0.1, is smaller than the

STDs of the second, third, fourth, and fifth clusters, whose point forecasts are

between 0.1 and 0.6. Furthermore, the STD of the third cluster, whose point
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forecasts are between 0.2 and 0.3, has the biggest STD. Therefore, the STDs

of error distributions are different with respect to the level of point forecasts.

The loss graph is a convex function, so an advanced optimization algorithm,

such as the binary search, could be used to find the optimal STD in a faster

time. This should also be addressed in detail in the future work.

2.6.6 Point Forecast Clustering

In order to narrow the ranges of the error distribution, the error dis-

tribution is estimated for each cluster of point forecasts. If a point forecast

is confined, the actual value of the point forecast might be confined. The

point forecasts are classified with respect to their own values, and the overall

cluster process is well described in Figure 2.10. For example, suppose that

the point forecasts are classified into ten clusters. The point forecasts in the

first cluster are between zero and 0.1, and the point forecasts in the second

cluster are between 0.1 and 0.2. Then, the maximum and minimum of actual

values of point forecasts in the same cluster can be estimated, and they will be

used to truncate error distribution since actual values might be confined if the

point forecast is confined. Therefore, each group has its own error distribution,

whose STDs are estimated by using point forecasts in the same cluster. If the

error distribution is assumed to follow the uniform, Gaussian, and Laplace dis-

tributions, a single STD is estimated, but if the error distribution is assumed

to follow the approximated VG distribution, two STDs are estimated. In this

dissertation, one, five, ten, and 20 clusters are tested. The process of data
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Figure 2.9: Quantile errors with respect to the STDs for different groups
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clustering is briefly shown in Figure 2.10.

2.6.7 Truncating Distribution

The maximum and minimum values of actual data in each cluster are

measured as shown in Figure 2.10, and these values are used to truncate error

distributions. For example, suppose that the actual values of point forecasts

in the third cluster are 0.25, 0.27, and 0.29. The error distribution of the

point forecast in the third cluster is limited by 0.25 and 0.29. Consequently,

quantiles of error distributions of the point forecast in the third cluster are

truncated by 0.25 and 0.29. A truncated and approximated VG distribution

is plotted in Figure 2.11.

2.6.8 Estimation of the Standard Deviations: Continuous Case

The optimal STD of the given point forecast can also be estimated by a

continuous function. This function is trained to find the connectivity between

the point forecasts and the optimal STDs, which are estimated by comparing

the point forecast and its actual value. Then, the continuous function can

provide the optimal STD of the point forecast without data clustering. The

training data for the continuous function is the weather information and the

point forecast of the validation data; the target data for the continuous func-

tion is the optimal STD of point forecast of validation data. All forecasting

units can be used to train this function, but the ridge regression shows the

best performance. Since the ridge regression provides the averaged STD, the
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Figure 2.10: The point forecasts are clustered into ten clusters with respect to their
power levels.
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Figure 2.11: A truncated VG distribution is shown.

noise in the test data can be mitigated. The data clustering is also used in

this function in a limited way. For the given point forecast, its error distribu-

tion is truncated by the minimum and maximum of the actual values in the

prediction’s corresponding cluster.

2.6.9 Simulation Results

The performances of probabilistic forecasting algorithms are measured

in Table 2.2. The algorithms for estimating quantiles can be classified with

respect to the distribution and the number of clusters. The performances of the
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Table 2.2: Performance of the quantile estimation methods. The performances of
the five best teams in the competition is 0.03942, 0.04040, 0.04102, 0.04133, and
0.04494.

Distribution 1 5 10 20 Continuous

1 Uniform 0.0408 0.0402 0.401 0.0400 0.0423

2 Gaussian 0.0403 0.0398 0.0397 0.0396 0.0421

3 Laplace 0.0401 0.0397 0.0396 0.0396 0.0417

4 VG 0.0400 0.0398 0.0398 0.0398 0.0406

five best teams in the competition is 0.03942, 0.04040, 0.04102, 0.04133, and

0.04494. Therefore, the performance would have been second if the quantiles

had been estimated under the assumption that the error distribution follows

the approximated VG distributions with ten data clusters.

The approximated VG distribution outperforms other distributions.

Furthermore, it is clear that the grouping with more than ten clusters does

not improve the performance. One interesting result is that the error dis-

tributions with data clustering outperforms the continuous STD estimation

function between the optimal STD and point forecast. The problem of the

continuous function is that it is not trained to respond to the external noise

in the test data. The STD should be able to respond to the ranges of noises

in the target value, but the optimal STD, which is the training data for the

continuous function, is determined by only the given point forecast. On the

contrary, in order to determine the range of the error distributions, multiple

STDs of point forecasts should be searched. In short, the performance of the
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continuous STD estimation function is not better than the performance of the

error distributions with data clustering. Besides, the continuous function takes

more time to estimate than the discrete STD estimation function with data

clustering does.

2.7 Conclusions

In this dissertation, monthly future wind power outputs on ten wind

farms and their error distributions are predicted. First, point forecasts of wind

power are estimated through the ensemble forecasting. In order to increase the

number of forecasting units, multiple combinations of different settings, inter-

nal parameters, and forecasting machines are used. Second, by comparing the

point forecast and actual values, the optimal STDs of error distributions are

estimated under the assumption that the error distribution follows one of four

distributions: a uniform, Gaussian, Laplace, or approximated VG distribution.

In order to narrow the ranges of error distributions, an error distribution is

estimated for each cluster of point forecast. The point forecasts are clustered

with respect to their power level in one, five, ten, or 20 clusters. Then, er-

ror distributions are truncated by the minimum and maximum of the actual

values in the prediction’s corresponding cluster.

Various forecasting machines have different advantages and disadvan-

tages. The ridge regression has the lowest computation time, and its fore-

casting power is not far behind other forecasting machines. The tree-based

forecasting machines, such as the RF, GBM, and BAG, outperform other fore-
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casting machines, but they take more time to forecast than other forecasting

machines do. By considering all aspects, the ridge regression, GBM, RF, SVM,

and NN are the best five forecasting machines. In conclusion, the quantiles

of the approximated VG distribution outperform other distributions. In this

process, the performance of error distributions with ten data clusters is the

best. The continuous STD estimation function does not outperform the dis-

crete STD estimation function with data clustering since it is not designed

to find the proper width of quantiles, which should be wide enough to cover

measurement errors. The optimal STD of each point forecast results from

observing a single training case.

In field applications, the simple ridge model might be sufficient to fore-

cast wind power since it is fast and accurate. However, in order to use this

model in a real time simulation, a few things should be updated. First, the

weight factor should be multiplied to the forecasted predictors since the quality

of predictors deteriorates as the forecast horizon increases. Second, the pro-

gram architecture should be recursively changed to learn new training data and

discard old data. Third, depending on the sampling period of wind power, the

computation time should be considered. By trading off between the compu-

tation time and the performance of the forecasting machine, the prediction

should be finished within the sampling period.

In conclusion, as the first step and at a shorter timescale to increase the

penetration level of wind power, short-term probabilistic and ensemble wind

power forecasting algorithm is proposed in this chapter to increase the perfor-
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mance of wind power forecasting. Probabilistic wind power forecasting can be

used to analyze the price risk and bid the wind power so that the wind farm

owners bid more wind power in the AS and DA markets in order to maximize

their profits. As the second step and at a longer timescale, sample paths of

total wind power are synthesized. Scenarios can be used to simulate the power

system so that the power system planners can determine the proper amounts

of regulation service, storage size, and incentive signals for EVs. Toward this

end, the next chapter discusses total wind power scenario generation.
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Chapter 3

Total Future Wind Power Scenario Generation

This chapter describes the synthesis of the future total wind power

scenarios with respect to the future installed capacity of wind power. These

scenarios can be used to forecast future wind production trends, design new

AS procurement methodologies, estimate the required amounts of ASs, and

determine the incentives for EV owners. First, the wind power is normalized

by its capacity, and the 24h daily cycle is subtracted. Then, the PSD of the

normalized wind power is estimated by using the multitaper algorithm. The

estimated PSDs are approximated as six piecewise affine functions through

the modified hinges model. Approximated PSDs are used to design training

data that will be used to analyze the wind power fluctuation and the trends

of the PSDs. Training data is generated by successively omitting wind farms

from a pool of all 70 wind farms in the 2010 ERCOT interconnection. As

each wind farm is omitted, for the given number of wind farms, 100 cases of

different combinations of wind farms are generated. Consequently, wind power

outputs for almost 6,000 combinations of farms and their PSDs are generated.

Simultaneously, the statistical characteristics are measured and regressed for

the target installed capacity of wind power. Then, the statistical characteris-

tics and wind power fluctuation are analyzed with respect to the geographical
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smoothing effects in the frequency domain. Then, the power law in the PSD

is analyzed with respect to frequencies as wind capacity increases. Finally,

the future PSD is forecasted by forecasting the slopes of the affine functions.

By converting the forecasted PSD through the inverse DFT, three wind power

scenarios are synthesized to verify the suggested scenario generation method

in this dissertation. First, a wind power scenario in April 2010 is synthesized

using actual wind power in April 2010. Second, a wind power scenario in April

2010 is synthesized using actual wind power in April 2009. Synthesized sce-

narios are compared to the actual wind power in 2010. Third, the future wind

power at 10,000 MW wind power capacity is synthesized. In this process, the

genetic algorithm (GA) is used to find phase angles that make the distribution

of wind power variability follow the empirically observed Laplace distribution.

It should be noted that “fluctuation” is used to represent the general

variation of wind power and that “variability” is used as a fluctuation index

to represent the wind power fluctuation quantitatively. The definition of wind

power variability in [195] is adopted, where variability is defined as the stan-

dard deviation of the difference between wind power outputs over successive

one minute intervals.

3.1 Introduction

To simulate the power system with increased wind capacity, much of

the literature has generated current or future total wind power scenarios by

considering the current or future wind power variability. These scenarios have
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been used in stochastic optimization problems for power system operations

and planning.

3.1.1 Literature Review

Much of the literature has modeled the wind power variability and syn-

thesized wind power scenario by considering these following models of wind

power variability [188]. First, short-term scenarios have been modeled via a

stochastic process based on the Monte Carlo simulation [132]. For example,

Tuohy et al. [192] generated wind power and load scenarios through Monte

Carlo simulations of the forecast errors through a time series analysis. How-

ever, formulations in time series analysis can only model the characteristics of

a short-term period. The spinning reserve requirement is estimated in [27,145],

under the assumption that both the wind power and its prediction errors fol-

low the normal distribution. However, wind power is not normally distributed,

and prediction errors have a heavy tail [78]. Furthermore, scenarios in the far

future are typically forecasted by multiplying empirical time series by a con-

stant. In this process, the variability of the scenario can be modeled via the

Markov Chain based on the patterns of the forecasting errors of past data [32].

However, wind power forecasting based on the meso-scale model with a coarse

geographical and temporal resolution does not provide the fluctuation within

a short time, and these methods do not consider the variability of future ag-

gregated wind farms distributed geographically [110].

The future fluctuation of wind power is also important to estimate the
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required amounts of regulation and other ancillary services due to the increased

wind power. Currently, the ERCOT protocols specify that ERCOT must

procure regulation capacity equal to 98.8 percent of the net load (wind-load)

fluctuation, and in order to consider increased wind capacity, ERCOT added

additional amounts that are specified in the table in [62] to the regulation

capacity. The historical net load forecast error is used to calculate the non-

spinning reserve requirements, which should be enough to cover 95 percent of

the forecast error in the historical net load. This process is a kind of brute force

method, and the fluctuation is not modeled quantitatively [188]. Therefore,

there is a need to accurately synthesize wind power scenarios for future wind

power considering the variability of wind power.

Not only wind power scenarios, but also wind fluctuation and wind

power fluctuation have been analyzed in the frequency domain by focusing

on finding the power law in the PSD of wind and wind power. Power laws

have been observed in the spectral density in the frequency domain in several

applications. For example, 1/f frequency scaling of spectral density has been

observed in electroencephalograms of brain signals [20]. A power law has

also been observed in wind power. Nanahara et al. in [141] observed the

smoothing effects of wind power from a large number of wind turbines through

the PSD analysis and analyzed theoretically the reduction of power level by

aggregating distant wind farms. Moreover, they analyzed the cross spectral

density between two wind speed outputs in the far distance and found that

the cross spectral density of wind speed has a power law that depends on
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the distance between measurement points. The power law in the PSD of

wind power has also been analyzed on the wind turbine levels. Joaquin and

Angel in [140] researched the PSD slope changes with respect to the number of

interconnected wind turbines. When N wind turbines are interconnected, they

also found that the distribution of PSD values of uncorrelated wind turbines

has a
√
N times smaller standard deviation than the distribution of PSD

values of correlated wind turbines. They also found that the distribution of

PSD magnitudes follows the Rayleigh distribution.

Apt [8] estimated the PSD of wind power and found that the slope of a

line fitted to the PSD in a logarithmic plot follows a Kolmogorov slope −5/3

over a period of 30 seconds to 2.6 days [107]. The Kolmogorov slope repre-

sents the ratio of the energy dissipation of wind turbulence with respect to the

turbulence size. However, Apt’s research was limited to analyzing the slope of

the PSD using a few wind turbines and wind farms, making it difficult to fully

characterize the PSD of the total wind power. Furthermore, Katzenstein [104]

discovered that the PSD slope becomes more negative as a) correlation co-

efficients corresponding to the 15 minutes period increase, b) the number of

interconnected wind farms increases, and c) the ratio between the capacity of

wind farms increases. However, in order to fully follow the trend of the PSD

slope, the number of samples should be increased: the 400 or fewer samples

used in [8, 104] is an insufficient amount.

Summarizing, a new algorithm to synthesize the total wind power sce-

nario should model the 24h daily cycle, the short-term fluctuation, and long-
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term fluctuations. In order to develop the new algorithm, wind power scenarios

are generated based on the PSD analysis. Furthermore, by using the PSD anal-

ysis, the variability can be analyzed quantitatively through the magnitudes of

coefficients in the PSD.

3.1.2 Preprocessing

Wind power from all wind farms in the ERCOT interconnection is used

to verify the approach. Wind power for 2009 and 2010 is sampled at every

minute. In 2009, 73 wind farms were in ERCOT, and in 2010, 81 wind farms

were installed in ERCOT. However, the data measured only for a year is not

able to represent variability over multiple years, so wind power outputs with

different capacities are generated by adding actual wind power outputs from

randomly selected farms. The wind power output in the training data is nor-

malized by its capacity, which is the sum of the capacities of corresponding

wind farms. Furthermore, under the assumption that there is only one deter-

ministic signal for a 24-hour period, the 24h daily cycle of normalized wind

power is calculated by averaging daily wind power at a given minute over a

month. Then, wind power is deseasonalized by subtracting this 24h daily cycle

from the normalized wind power. The 24h daily cycle are estimated from the

monthly wind power data that is sampled at every minute. A 24h daily cycle

is estimated by averaging wind power for a given minute in the day over all

days in the month. Therefore, there are 1,440 means that are calculated for

each month of data. A more concrete explanation follows for a month with 30
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days. The vector of monthly wind power X ∈ R24·60·30 is reshaped into the ma-

trix Y ∈ R24·60×30. The minute-by-minute mean of Y is defined as Z ∈ R24·60

which is averaged over 30 days. The future 24h daily cycle is generated under

the assumption that the 24h daily cycle follows the sinusoidal waveform. The

amplitude and mean of the future 24h daily cycle are regressed at the target

installed capacity of wind power, and the synthesized future 24h daily cycle is

added to the synthesized normalized waveform.

Statistical information of each wind power output in the training data is

also measured from the actual wind power. Statistical characteristics include

the variability, standard deviation (STD), maximum wind power, minimum

wind power, mean, monthly ramp size, monthly ramp rate, amplitude of the

daily cycle, and mean of the daily cycle. The 24h daily cycle is assumed to be

a sinusoidal waveform having forecasted amplitude and mean, and it is added

to the synthesized waveform.

3.2 Power Spectral Density Estimation

Spectral density is the spectrum of power of periodic signals with re-

spect to frequencies. When a discrete signal is represented as a superposition of

the sinusoidal components of the DFT, spectral density represents the square

of amplitudes of the sinusoidal components. The PSD of zero-mean stationary

sequence x[n] can be estimated by the DFT of the autocorrelation function as
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defined in [57]:

P (ejω) =
∞∑

q=−∞

r[q] exp [−jωq] , (3.1)

where r[q] is the sample autocorrelation sequence of x[n]. For a finite sequence,

it can be redefined as

r̂ [q] =


1
N

N−q−1∑
n=0

x [n+ q]x [n] 0 ≤ q ≤ N − 1

r̂ [−q] −(N − 1) ≤ q ≤ 0
0 elsewhere,

(3.2)

where N is the data length. Then, the PSD of the finite duration sequence

x[n] can be estimated as

P̂ (ejω) =
N−1∑

q=−(N−1)

r̂[q] exp [−jωq] . (3.3)

3.2.1 Periodogram

The PSD in (3.3) can be directly estimated by x[n]. Since the auto-

correlation sequence r̂ is the convolution of x[n] [89], the PSD can also be

estimated by squaring the magnitude of the DFT of the signal; this is called

the periodogram. The equation (3.2) can be rewritten as

r̂[q] =
1

N

∞∑
n=−∞

x [n+ q]x [n] =
1

N
x [q] ∗ x [−q] , (3.4)

under the assumption that

x[n] =

{
x[n] 0 ≤ n ≤ N − 1

0 elsewhere.
(3.5)

Then, (3.3) can be rewritten as

P̂
(
ejw
)

=
1

N
X
(
ejw
)
X
(
e−jw

)
=

1

N

∣∣X (ejw)∣∣2, (3.6)
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where

X
(
ejw
)

=
N−1∑
n=0

x[n] exp[−jωn]. (3.7)

In order to reduce leakage and increase the resolution, windows are

used as

xω [n] = x [n]w [n] , (3.8)

where w is the window. Furthermore, when angular frequency ω is discretized

as

ωk =
2πk

N
, (3.9)

where 0 < k < N − 1; then, the PSD of the finite-duration sequence can

be represented as the square of magnitude of the DFT, which is a sequence

corresponding to equally sampled frequencies.

P̂ (fm) =
1

NFs

∣∣∣∣∣
N−1∑
n=0

xw [n] exp
(
−j2πnm

N

)∣∣∣∣∣
2

. (3.10)

Since frequency is also discretized as

fm = m
Fs
N
, (3.11)

where Fs is the sampling frequency, (3.10) can also be represented as

P̂ (fm) =
1

NFs

∣∣∣∣∣
N−1∑
n=0

xω [n] exp

(
−j2πnfm

FS

)∣∣∣∣∣
2

. (3.12)

The periodogram is an asymptotically unbiased estimator of the PSD.

However, since the variance of the periodogram is not reduced as the length
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of the data sequence increases, the periodogram is not a consistent estima-

tion [57]. There are some algorithms to reduce the variance and bias of es-

timated PSDs. For example, Welch’s algorithm can reduce the variance of

the PSD by partitioning a signal into equal segments and averaging PSDs of

each segment. However, in the next section, the multitaper algorithm is used

instead because of its superior performance.

3.2.2 Multitaper Algorithm

The multitaper algorithm is used to estimate the PSD of wind power

output in order to maintain information in the low frequency ranges and reduce

variance [191]. This contrasts with several previous approaches to estimating

the PSD of wind power. For example, Apt [8] used Welch’s algorithm to re-

duce the variance and bias of the PSD. However, even though Welch’s method

can reduce the variance of the estimate, since it partitions a signal into equal

segments with windows having the same size and form, it loses spectrum in-

formation on the low frequency range. Since low frequency issues are also

important, it is necessary to preserve low frequency information. Further-

more, Katzenstein [104] used the Lomb periodogram [123] to compensate for

irregularly sampled data. However, it is hard to convert the PSD from the

Lomb periodogram into a signal since it is based on the least squares of sinu-

soids. In contrast, the multitaper can maintain the signal information of the

low frequency while reducing the variance at the same time.

The multitaper estimates multiple periodograms using different orthog-
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onal tapers (which correspond to windows in Welch’s algorithm) on the full

length data, and then averages periodograms to find the multitaper PSD.

If properly designed orthogonal windows known as tapers are used, spectral

density estimates at every frequency become uncorrelated to each other [191].

Averaging the uncorrelated PSD estimates using those tapers can reduce the

variance, bias, and power leakage [190]. In particular, the variance of uncorre-

lated spectral densities is reduced by a factor 1/K, where K is the number of

tapers. Since the full length of each window is used, the multitaper algorithm

can maintain the signal information in the low frequency ranges. Tapers have

different frequency responses with various mainlobe widths W with respect to

the taper number k. For the given k, the mainlobe bandwidth W is given as

W =
Fs
2N

(k + 1), (3.13)

where Fs is the sampling frequency, and N is the data length. A wider main-

lobe can help to suppress sidelobes and reduce the power leakage, but its

resolution is lower. It is worth noting that a higher taper number will smooth

out the PSD when averaging periodograms because of the lower resolution. In

this application, k = 9 tapers are used. Furthermore, tapers are orthogonal,

so they can generate independent periodograms at all frequency ranges, so

averaging them reduces variance while keeping low frequency information.

Thomson in [191] suggested discrete prolate spheroidal sequences (DPSS)

as tapers. In spite of the absence of a closed form, the kth taper wk is defined
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in [190] as

wk[n] =
1

λk

N−1∑
m=0

sin 2πW (n−m)

π(n−m)
wk(m), (3.14)

where each λk is an eigenvalue of a matrix Λ. The eigenvalue λk can be

calculated from the matrix Λ, which is saved as a table. The Λ is defined

in [82] as

{Λ(N,W )}i,j =


1
2 i(N − i) if j = i− 1(

N−1
2 − i

)2
cos(2πW ) if j = 1

1
2(i+ 1)(N − 1− i) if j = i+ 1

0 otherwise,

(3.15)

where i, j = 0, ..., N − 1. The eigenvalues can be estimated using the inverse

iteration. Further detail is explained in [82]. Furthermore, different tapers are

orthogonal, so that:

N−1∑
n=0

wk[n]wl[n] =

{
1, if k = l
0, if k 6= l,

(3.16)

Then, the PSD of the discrete wind power sequence xw[n] in (3.8) is estimated

in [89] as

P̂k(fm) =
1

NFs

∣∣∣∣∣
N−1∑
n=0

xw [n] exp

(
−j2πnfm

FS

)∣∣∣∣∣
2

. (3.17)

Furthermore, the xk[n] is the product of sequence x[n] and a kth taper wk[n]

and defined as

xk[n] = x[n]wk[n]. (3.18)

Samples outside of the finite duration sequence are set to be zero. With K

tapers, the multitaper PSD is calculated by averaging (3.17) over the K tapers
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and is defined in [57] as

P̂MT (f) =
1

K

K∑
k=1

P̂k(f). (3.19)

The characteristics of the multitaper PSD, which have non-smoothed

waveforms and less variation in the low frequency range, are shown in Fig-

ure 3.1 for a particular wind farm. According to (3.19), the unit of the PSD

should be Unit2/Hz. Since wind power is a “signal” in this application, and

its unit is MW, the unit of the PSD becomes MW2/Hz. For the normalized

signal, (Normalized Power)2/Hz is used. It is assumed that wind power data

is wide-sense stationary and ergodic in the mean, since the autocovariance of

wind power converges to zero quickly with increasing data length and depends

only on the time difference.

3.3 Piecewise Modeling of the PSD

The modified hinges model based on the original hinges model in [167]

is used to approximate the PSD with six piecewise affine functions on the

logarithmic-scaled axes.

3.3.1 Hinges Model

The hinge Hn(kn, hn) is the point where the slope in the frequency

domain changes angle. The value kn, which is the frequency-axis location

of hinge Hn is called a knot and is associated with the frequency interval of

the discrete Fourier transform (DFT). The value hn, which is the spectral-
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density axis location of hinge Hn, is the spectrum density associated with a

given knot kn, and it is calculated to minimize the MSE compared to the

PSD of two linear pieces between hinges Hn−1 and Hn and between hinges

Hn and Hn+1 respectively. Since the power law in the PSD in Figure 3.1 can

explain the hidden connection between wind power fluctuation and frequencies,

power laws are represented as various slopes of affine functions, and the PSD

can be approximated with those affine functions. Seven hinges including the

first and last hinges (with fixed frequency locations of 32−1day−1 and 2−1m−1,

respectively) are used. The original hinges model determines the number of

hinges and the frequency-axis location of hinges in every PSD. For the given

number and frequency-axis location of hinges, the modified hinges model fits

every PSD as six piecewise affine functions by finding the spectral-density axis

location of hinges by solving an unconstrained quadratic problem.

3.3.2 Original Hinges Model

The original hinges model consists of four steps.

1) Smoothing Step: The PSD is smoothed by the moving average in

order to reduce the PSD variation.

2) Growing Step: All samples are considered as hinges. For N sam-

ples, there are N − 1 piecewise functions and N hinges.

3) Pruning Step: In the pruning step, a hinge is deleted one by one

from the first one to the last one. For every deleted hinge, the total mean

square errors (MSE) between the hinges model and actual data is measured.
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Figure 3.1: PSD of wind power and six slopes fitted to the PSD are plotted.

In this process, the hinge that increases the total mean square errors (MSE)

minimally is deleted until the first and last hinges remain. After this process

is finished, the number of hinges is set to be the number of hinges when the

MSE increases drastically as hinges are deleted. The more hinges, the better

the model fits, but many hinges will over-fit the data, so the number of hinges

should be limited to 10 to reduce the computational complexity.

4) Refitting Step: Frequency-axis and spectral-axis location of the

hinges are recursively found. For a given PSD, the spectral-density axis lo-

cation hn is determined to minimize the MSE between the fitted line and
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scatter points, which are located between two adjacent hinges. Let’s assume

that there are three consecutive hinges Hm−1(km−1, hm−1), Hm(km, hm), and

Hm+1(km+1, hm+1). For the mth hinge Hm(km, hm), km is the frequency-axis

location of the hinge and hm is the spectral density-axis location of the hinge

with respect to km. Suppose that the location of this hinge needs to be de-

cided. First, locations of (m−1)th and (m+1)th hinges are fixed. Second, the

original hinges model searches the km among samples between (m−1)th hinge

and (m + 1)th hinge so that it minimizes the MSE. Then, hi is calculated by

solving an unconstrained quadratic optimization to minimize the MSE of the

PSD and samples between hinges Hm−1(km−1, hm−1) and Hm+1(km+1, hm+1).

The MSE of the fitted line among three hinges is defined as

MSE =

Nl∑
i=1

[(yl,i − hn−1) + al,i (hn − hn−1)]2

+
Nr∑
i=1

[(yr,i − hn+1) + ar,i (hn − hn+1)]2,

(3.20)

where

al,i = −xl, i − kn−1

kn − kn−1

,

ar,i = −xr, i − kn+1

kn − kn+1

.

(3.21)

The xl,i ∈ Xl for

Xl = {xi|kn−1 < xi < kn, ∀i = 1, . . . , Nl} (3.22)

are the horizontal frequency axis locations of points between hinges Hn−1 and

Hn, where Nl is the number of points, and yl, i are their vertical axis locations.
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The xr,i ∈ Xr for

Xr = {xi|kn < xi < kn+1,∀i = 1, . . . , Nr} (3.23)

are the horizontal axis locations of points between hinges Hn and Hn+1, where

Nr is the number of points, and yr, i are their vertical axis locations.

The spectral density-axis location hm for a fixed frequency-axis location

km is calculated as

hm = −

Nlm∑
n=1

al, n bl, n +
Nrm∑
n=1

ar, n br, n

Nlm∑
n=1

a2
l, n +

Nrm∑
n=1

a2
r, n

(3.24)

where

bl, n =

(
xl, n − km−1

km − km−1

)
hi−1 − hm−1 + yl, n , (3.25)

br, n =

(
xr, n − km+1

km − km+1

)
hi+1 − hm+1 + yr, n . (3.26)

In (3.21), lm represents the PSD values on the left side of hinge Hm up to the

previous hinge Hm−1, and rm represents the PSD values on the right side of

hinge Hm up to the next hinge Hm+1. The refitting step is repeated for all

hinges by fixing two adjacent hinges until the difference between the previ-

ous and present total MSE becomes less than 0.001. It is worth noting that

although each PSD could have a different optimal number of hinges, the num-

ber of hinge is fixed at the mean of optimal number of hinges, which is seven

including the first and last hinges.
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3.3.3 Modified Hinges Model

In order to compare slopes of all PSDs, the number and frequency-

axis location of hinges should be fixed to be able to compare slopes for given

frequency-axis locations. To unify the number of hinges over all PSDs, the

means of every frequency-axis location of hinges for all PSDs are set as the

frequency-axis location of hinges. Then, frequency-axis locations are adjusted

to well reflect the trends of the PSD. Using the fixed number and frequency-axis

location of hinges, every PSD as six affine functions is approximated. These

frequency-axis values are held constant and used for the rest of the dissertation.

They are shown in Table 3.1. For the fixed number and frequency-axis location

of hinges, the spectral density-axis location can be estimated by solving the

unconstrained quadratic problem below:

min
hm

M−1∑
m=1

Nm∑
n=1

(
hm+1 +

hm − hm+1

km − km+1

(xmn − km+1)− ymn
)2

, (3.27)

where m is the tag of data between hinges, M is the number of hinges, and

Nm is the number of samples between the mth hinge and (m + 1)th hinge.

In addition, hm is the spectral density-axis location of the mth hinge. Fur-

thermore, xmn is the x-axis location of nth data between the mth hinge and

(m+ 1)th hinge, and ymn is the spectral density axis location of the nth hinge

between the mth hinge and (m+ 1)th hinge. In Figure 3.1, the line on the log

scaled axis is indicative of a power-law.

The hinges model in this section is used to approximate the PSD. In

order to estimate the PSDs of future wind power, the trends of slopes of affine
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Table 3.1: Frequency-axis hinge locations

Hinges Frequency (Hz) Period Hinges Frequency (Hz) Period

1st 3.6169e-7 32 days 2nd 5.7870e-6 2 days

3rd 3.4722e-5 8 hours 4th 4.6296e-5 6 hours

5th 0.0011 15 min 6th 0.0033 5 min

7th 0.0083 2 min

functions in the hinges model should be observed for the PSDs of various

wind power outputs with different installed capacity of wind power. The next

section introduces how various wind power outputs are generated with respect

to different installed capacity.

3.4 Training Data Generation

Training data provides trends of the statistical characteristics of wind

power as the total wind capacity increases, and trends are used to forecast the

statistics of future wind power scenarios that are used to estimate the required

amounts of future AS. Increasing penetration level of wind power might change

the wind power fluctuation because of the geographical smoothing effects, so

it might affect the amounts of regulation services. Therefore, tracking the

changes of the statistical characteristics of wind power is very important for

synthesizing future wind power scenarios. The basic idea is to omit wind farms

from a pool of all wind farms in the 2010 ERCOT interconnection. Wind farms

are clustered based on their similar fluctuations through a hierarchical cluster
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algorithm, and wind farms are omitted from clusters. The exclusion order is

decided by the capacity size and cluster tag. The number of wind farms that

should be omitted is equally allocated to clusters. If the number of omitted

wind farms is not a multiple of the number of clusters, additional wind farms

are omitted from clusters with smaller tags. The larger the number of wind

farms in a cluster, the smaller the given cluster tag. When wind farms are

omitted from a certain cluster, the smaller the capacity size, the earlier it

is subtracted. Seventy wind farms are used to generate training data. For

each number of wind farms, 100 cases of wind farm configurations are used to

reduce the computational complexity. Among the 100 cases, wind farms are

selected to maximize the geographical smoothing effects for the given number

of wind farms, since geographical smoothing effects increase as the capacity

increases. When 100 combinations are made, the number of wind farms to be

omitted increases.

This clustering will maintain the correlations between wind power fluc-

tuation in low frequency ranges but does not affect the wind power fluctuation

in high frequency ranges since all wind farms have different fluctuations for

high frequency signals. Similar patterns of wind power fluctuation are mea-

sured by factor loadings estimated through factor analysis. Suppose that there

are a few air masses in Texas and that they are sources of the main wind

streams. Since wind moves with a high inertia [87], if local weather events are

neglected, It can be assumed that the speed and direction of wind streams do

not change much over a long period of time. If wind streams sweep a group
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of wind farms simultaneously, those wind farms generate similar wind power.

The movement of wind streams is not observed directly through the data,

but their existence can be inferred by the co-movements of wind power data.

Therefore, wind streams can be represented as time-varying factors. Wind

farms distributed in Texas will be affected by those streams to varying de-

grees according to their location relative to wind streams. In addition, factor

loadings are fixed coefficients of factors and represent geographical character-

istics [164]. The key ideas of factor analysis are introduced in the subsequent

subsections.

3.4.1 Factor Analysis

The emphasis in this subsection is on the definitions of factor analysis

and estimation of factors and factor loadings. Suppose the observation data

x ∈ RN×T have an N cross-sectional dimension and T time dimension. Each

data in X can be represented as

X = {xit|i = 1, . . . , N , t = 1, . . . , T} (3.28)

The x can be partitioned into common components χ ∈ RN×T and idiosyn-

cratic noise components E ∈ RN×T . At the given time t, (3.28) can be rewrit-

ten as

Xt = χt + Et, (3.29)

where Xt = (x1t, · · · , xNt)′, χt = (χ1t, · · · , χNt)′, and Et = (e1t, · · · , eNt)′. If

χt is represented by a linear combination of factor loadings Λ ∈ RN×P and
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factors F ∈ RP×T , (3.29) becomes

Xt = Λ× Ft + Et, (3.30)

where Ft = (f1t, · · · , fPt)′, and where P is the number of factors.

Factor analysis accounts for the covariance matrix of observation data

through the specific variance and factor loadings. The auto covariance of X is

given as

cov(X) = cov(ΛF + E) = cov(ΛF) + cov(E) (3.31)

= Λ cov(F)Λ′ + Ψ = ΛΛ′ + Ψ, (3.32)

where Ψ = cov(E), and cov(F) = IP .

The factor loadings capture the covariances between observation vari-

ables, and the specific variance Ψ captures the variance of independent noise

for each variable [24]. Therefore, the multiplication of the factor loadings and

their transpose explains most of the covariance of observation data.

Factors, factor loadings, and specific variance can be estimated through

the principal factor method iteratively. At the nth iteration, the approximated

covariance matrix is given as

Σn = ΛnΛn
′ + Ψn. (3.33)

Suppose that the approximated covariance matrix Σn is the same as the covari-

ance matrix S. Then, the multiplication of the loading factor and its transpose

is defined as

ΛnΛn
′ = S−Ψn. (3.34)
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Since the estimation starts from the initial Ψn, Ψn+1 should be redefined as

Ψn+1 = diag (S −ΛnΛn
′) , (3.35)

where diag represents the diagonal matrix. Factor loading is estimated from

(3.34) using the eigenvectors.

In (3.33), an infinite number of sets of factor loadings is possible, since

multiplying an orthogonal matrix by a factor loading Λ does not change the

covariance matrix. Suppose that the Λ is the un-rotated factor loading. Then,

the rotated factor loading Λ∗ by the transformation matrix T is given by

Λ∗ = ΛT. (3.36)

Factor loadings are rotated so that they have the maximum variance

of squared loadings. This will make them distinctive, so it would be easy to

cluster wind farms based on factor loadings. The promax rotation [102] is

used to maximize the variance among factor loadings. Since squared factor

loadings lie between 0 and 1, pushing them into one of these two boundary

numbers will maximize the variance of squared factor loadings [116]. Then,

elements of rotated factor loadings are exponentiated by a coefficient, which

is generally four, to make them become more bipolar. Factors that are esti-

mated through the Factor Analysis in this subsection are clustered through

the Cluster Analysis that are explained in the subsequent subsection.
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3.4.2 Cluster Analysis

The basic concept of the agglomerative hierarchical cluster analysis is

that it finds the two closest lower clusters and combines them as new upper

clusters. First, the pair with the least dissimilarity comprises the first clus-

ter. Then, the dissimilarities between clusters is calculated. In this process,

the distance between clusters are called the linkage, which is calculated from

the dissimilarities between pairs of all observation points, so the clustering

algorithm is called the “agglomerative” algorithm [96]. The dissimilarity cal-

culates the distance between factor loadings, and the linkage calculates the

distance between clusters. In this dissertation, the dissimilarity is defined as

the Minkowski distance of order p, which is measured by

d(x,y) =

(
P∑
j=1

|xj − yj|p
)1/p

, (3.37)

where P is the number of factors, and where x and y are a vector of the factor

loading of each wind farm. In addition, the linkage is defined as the minimum

distance between observation x in one cluster X and the other cluster Y

D(X, Y ) = min{d(x,y) ; x ∈ X and y ∈ Y } (3.38)

Two clusters having minimum single linkages are merged and become a new

cluster.

3.5 Wind Power Ramp Modeling

In order to reflect the long-term wind power fluctuation in synthesized

waveforms, the statistical information about ramp events is analyzed and fore-
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Figure 3.2: Wind power and its smoothed wind power are plotted. Red dots represent
the inflection point where the direction of ramps changes.

casted. In [51], a ramp event was defined as wind power fluctuation whose

amplitude is bigger than 75% of the capacity and whose duration is longer

than three hours. In this application, a ramp event is defined as changes be-

tween two adjacent inflection points of smoothed wind power. Wind power

is smoothed by passing through a low-pass filter, following [25]. The cut-off

frequency is set as three hours. The filtered wind power and its inflection

points are shown in Figure 3.2. Ramp size is defined as the power difference

between inflection points, ramp duration is defined as the time difference be-
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tween inflection points, and the ramp rate is defined as the ramp size over

the ramp duration. By following the definition of the ramp event in [51], only

ramp events whose ramp duration is longer than three hours are selected. The

STDs of ramp size and ramp rate are measured and, and wind power sce-

narios that are satisfying the STDs are found through the GA. Therefore, in

the wind power synthesizing process, signal components in the low frequency

are modeled by analyzing ramp events, signal components in the middle fre-

quency are modeled through the PSD analysis, and signal components in the

high frequency are considered through the variability analysis.

3.6 Analysis of Slopes

In this section, the wind power fluctuation is analyzed with respect to

the changes of overall PSD slopes. Then, the slopes of affine functions are

analyzed and regressed at the target wind capacity.

3.6.1 Wind Power Fluctuation

In this section, the fluctuation of un-normalized wind power with re-

spect to the geographical distribution of wind farms is analyzed in the fre-

quency domain. The variability of un-normalized wind power is well-fitted to

a quadratic function with a small negative quadratic coefficient as shown in

Figure 3.3. This can be interpreted to mean that the fluctuation of wind power

with respect to the wind capacity decreases relatively as the wind capacity in-

creases.
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Figure 3.3: The variability of un-normalized wind power as the wind power capacity
increases is plotted. It follows a square root function.

Wind farms in a larger area as well as wind farms in a smaller area are

under the same effects of long-term weather phenomena, such as fronts, con-

vective outflow, and air masses. Wind farms under these weather phenomena

show similar wind power patterns in the low frequency since those phenomena

last a long period of time. As wind farms are integrated, sinusoidal com-

ponents of the DFT of wind power in the low frequency are highly positively

superposed with similar phase angles since long-term weather phenomena start

in a wider area at a similar time. Since sinusoidal components are positively
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Figure 3.4: Initial and final values of PSD. (a) The initial value of PSD is plotted
against the total wind power capacity. The initial PSD follows a quadratic function.
(b) The final PSD is plotted against the total wind power capacity. The final PSD
is approximately linearly proportional to the wind power capacity.
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superposed, the amplitude of sinusoidal components of aggregated wind power

in the low frequency increases in proportion to the total wind capacity. Con-

sidering that the square of an amplitude is the PSD level, the PSD level of

un-normalized wind power increases in linear proportion to the square of the

total wind capacity as shown in Figure 3.4(a), so the first PSD values (that is,

for period 32 day) of normalized wind power are almost constant.

Wind farms are also affected by local weather phenomena, such as gusts,

turbulence, and the wake effect. Since they happen in a short time, they will

affect the sinusoidal components of the DFT in high frequency ranges. Since

they happen independently in a local area, they start at different times at dif-

ferent wind farms, so phase angles of sinusoidal components in high frequency

ranges are different. Then, when wind farms are integrated, sinusoidal com-

ponents are less positively superposed, so the increasing speed of amplitudes

is less than the increasing speed of capacity. Amplitudes of sinusoidal com-

ponents in high frequency ranges increase approximately in linear proportion

to the square root of the total wind capacity as shown in Figure 3.4(b). This

means that the last PSD values (that is, for period 2 min) of un-normalized

wind power increase in linear proportion to the total wind capacity, so the first

PSD values of normalized wind power are inversely proportional to the wind

capacity.
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Figure 3.5: Slope becomes more negative as more wind farms are interconnected.

3.6.2 Slope Change Analysis

Since the first PSD value of wind power increases faster than the last

PSD value of wind power, overall slopes of the PSD become more negative as

more wind farms are integrated as shown in Figure 3.5. Under the assump-

tion that phase angles are randomly distributed, if the PSD level decreases,

amplitudes of sinusoidal components of the DFT decrease, and their power

differences also decrease. Therefore, the normalized variability decreases as

more wind farms are interconnected. Figure 3.6 shows that the standard devi-

ation of the histograms of power differences at every one-minute time interval
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Figure 3.6: The power difference follows the Laplace distribution. The variability of
normalized wind power decreases as more wind farms are interconnected.

decreases as the number of interconnected wind farms increases. In short, the

overall slopes of affine segments become more negative, and the relative vari-

ability decreases as the number of interconnected wind farms increases. This

is also supported by Ernst’s empirical observation in [66] because correlation

coefficients of wind power variability ∆P decrease as time steps decrease. The

goal of the below section is to reveal this relationship quantitatively.

104



3.6.3 Regression

As the number of interconnected wind farms increases, sixteen response

variables from the training data are modeled through the linear regression

models: five slopes (not including the third slope), the first and last PSD

values, the variability, the STD, the maximum wind power, minimum wind

power, the mean of future output, the monthly ramp size, the monthly ramp

rate, the amplitude of the daily cycle, and the mean of the daily cycle. These

variables are fitted using a quadratic function, and regression coefficients are

estimated by the least squares method [112]. The explanatory variable is

selected as the capacity. It is assumed that wind farms in ERCOT will keep

a similar configuration of turbine types and a similar configuration of wind

farms in the future, although this may not be true and will affect result.

Figure 3.7(a) shows the slope of the first affine function whose frequency

range has period between two days and one month. It is observed that the first

slope does not change much as capacity increases, which means that the power

outputs over longer periods are highly correlated with many wind farms. In

Figure 3.7(b), the slope of the second affine function whose frequency range

has period between eight hours and two days is shown. It is fixed around −2.4

relatively independent of capacity. Since the second slope is around −2.4,

power dissipation to the higher frequency starts from a period of two days.

Figure 3.8(a) shows the slope of the third affine function whose fre-

quency range has period between six hours and eight hours. This segment

works as a joint between the PSD pattern in the low and middle frequency.
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Figure 3.7: Slopes of first and second segments. (a) The slope of the first segment
is plotted against the total installed capacity of wind power. (b) The slope of the
second segment is plotted against the total installed capacity of wind power.
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Figure 3.8: Slopes of third and fourth segments. (a) The slope of the third segment
is plotted against the total installed capacity of wind power. Slopes do not follow
a specific trend. (b) The slope of the fourth segment is plotted against the total
installed capacity of wind power.
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The first two segments start from the first PSD and have a distinct pattern.

On the contrary, the last three segments start from the last PSD value and

also have a distinct pattern. To satisfy two patterns at the same time, a

piecewise function in a short frequency range is required to connect these two

patterns. Since the third affine function will be used as a degree of freedom,

patterns and fitted functions are not searched for the third slope. Figure 3.8(b)

shows the slope of the fourth affine function whose frequency range has pe-

riod between 15 minutes and six hours. It is observed that the fourth slope

drastically decreases as capacity increases. The frequency range of the fourth

segment might correspond to periods of short-term weather events in differ-

ent local areas. Since those weather events are not strongly correlated, wind

power fluctuation in this frequency range is canceled out when wind power in

those areas is aggregated. Therefore, the power level in this frequency range

is reduced. Fourth slopes appear to converge to a constant negative value, but

further investigation with more wind power data is necessary. If it converges

to a certain negative value, it means that wind power variability could not be

reduced significantly with greatly increased total capacity. It also means that

the geographical smoothing effect is saturated, so there is always a certain

amount of wind power variability.

Figure 3.9(a) shows the slope of the fifth affine function whose frequency

range has period between five minutes and 15 minutes. To detect trends of

the fifth slope clearly, 100 wind farm integration orders are simulated, the

mean of linear slopes of fifth slopes is measured. Then, it is observed that
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the fifth slopes slightly increase as wind power capacity increases with a slope

of 0.017 per GW. Figure 3.9(b) shows the slope of the sixth affine function

whose frequency range has period between two minutes and five minutes. It

should be noted that signals corresponding to the sixth slope are affected by

independent local weather events. Sixth slopes are also fitted by a quadratic

function.

In summary, the five slopes (not including the third slope) are fore-

casted through the regression analysis. The first, second, fifth, and sixth slopes

are fitted to a linear function, but the fourth slope is fitted to a quadratic func-

tion. Furthermore, the initial and final PSD are fitted to a quadratic func-

tion. Other statistical characteristics are also analyzed through the regression

model. Variability of actual wind power is linearly proportional to the square

root of capacity. The following statistical characteristics are all linearly pro-

portional to the capacity: the maximum value, minimum value, mean, STD

of wind power, amplitude of the daily pattern, STD of the monthly ramp size,

and STD of the monthly ramp rate.

3.7 Scenario Synthesis

In this section, three wind power scenarios are synthesized based on

the forecasted PSD at the target installed capacity to verify the suggested

method. When the forecasted PSD is converted to the wind power waveform,

the phase angles are estimated using a genetic algorithm (GA) with to match

the distribution of the wind power differences to a Laplace distribution. Three
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Figure 3.9: Slopes of fifth and sixth segments. (a) The slope of the fifth segment is
plotted against the total installed capacity of wind power. (b) The slope of the sixth
segment is plotted against the total installed capacity of wind power.
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scenarios are as follows. First, a wind power scenario in April 2010 is synthe-

sized using actual wind power in April 2010. Second, a wind power scenario

in April 2010 is synthesized using actual wind power in April 2009. These two

scenarios are compared to the actual wind power in 2010. Finally, the future

wind power at 10,000 MW wind power capacity is synthesized.

3.7.1 PSD Forecasting

An intermediate sample path is synthesized from the forecasted PSD

through several steps. An intermediate sample path is a waveform converted

from the forecasted PSD. The process of forecasting the PSD as follows. a) The

slopes of six segments, the first PSD value, and the last PSD value are esti-

mated from the linear regression analysis at the target installed capacity of

wind power. b) The first three segments are concatenated and anchored at the

initial PSD value, and the last three segments are concatenated and anchored

at the final PSD value. c) A DFT of the normalized waveform is rebuilt from

the forecasted PSD. The conversion equation is as follows:

|X(f)| =

√
P̂x(f)× L× Fs

2
, (3.39)

where Px(f) is the PSD and L is the length of the data, which corresponds to

the total number of minutes in a month. Fs is the sampling frequency, so it

is 1/60. Then, the DFT is converted to amplitudes of sinusoidal components

using the inverse-FFT. d) Since the transformed waveform has a normalized

value, it is recovered to the original scale by multiplying by the future capacity.
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After these processes, the 24h daily cycle should be added back to the

synthesized intermediate sample path. The amplitude and mean of the daily

deterministic signal are used to synthesize the daily signal. It is well known

that wind tends to blow strongly at night in Texas [195]. The mean of hourly

wind power is calculated, and it is found that wind tends to blow most strongly

at two a.m. Then, it is assumed that a daily cycle of a sample path also peaks

at two a.m. Therefore, its phase angle is set at 30◦, which shifts the cosine

function of the daily pattern to two a.m. Finally, the negative power output is

set at zero, and generated power that is bigger than the capacity is curtailed

to the capacity.

3.7.2 Phase Angle Generation

To transform the forecasted PSD to a waveform, phase angles of the

FFT are required. However, phase information is lost when the PSD is esti-

mated. Since the phase angle is a random signal itself, if it is not modeled

stochastically, one realization of phase angles should be chosen from an infi-

nite number of ensemble phase angles satisfying the conditions of future wind

power output. In this paper, the GA is used to search phase angles. The termi-

nation conditions are that the searched phase angles have the same statistical

characteristics as actual phase angles, and that wind power scenarios have

the forecasted statistical characteristics. Constraints to satisfy termination

conditions are as follows: a) Phase angles are almost uniformly distributed,

b) The histogram of ramp rates of transformed wind power should follow the
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Laplace distribution, c) The mean of restored signals should match the fore-

casted mean, d) The maximum value of the restored signal should be less than

the capacity, and finally, e) since the phase angle corresponding to a 24-hour

period has a fixed angle of 30◦, a 24-hour period daily deterministic signal

with an angle of 30◦ will be added.

3.7.3 Genetic Algorithm

Searching phase angles that satisfy the conditions mentioned above

is designed as an optimization problem in a GA. The objective function is

designed based on the second condition, so it minimizes the MSE between

two distributions: a) the Laplace distribution with the forecasted STD, and

b) the minute to minute power difference of synthesized wind power. This

objective function will make the power difference of wind power follow the

Laplace distribution. Other conditions are described as inequality constraints

and added to the objective function with Lagrange multipliers. Searching

phase angles is an optimization problem to satisfy several objective functions

at the same time. In this kind of problem, defining optimality and comparing

local optimums is difficult. One approach to this kind of problem is to use a

GA. A phase angle of a given frequency is considered as a gene, and a collection

of genes with respect to all frequency ranges is considered as a chromosome.

Therefore, phase angles are searched using the GA in this paper.

1) Initialization: Uniformly distributed phase angles corresponding

to the length of the FFT are initially generated and considered as a population
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of chromosomes. The size of the population is 1000, and their values are limited

between −π and π.

2) Evaluation: Chromosomes in a pool are used to transform the

PSD in the wind power, and the wind power is evaluated by the objective

function. The objective function of the GA is decided by considering the con-

straints mentioned above. The inverse of the output of the objective function

is called the fitness value of given chromosome. Since the ramp rates of wind

power follow the Laplace distribution, the mean of the Laplace distribution

of training data is measured. The realized waveform of a certain chromosome

should follow the Laplace distribution with the same parameters as the train-

ing data. The objective function is the mean square of errors between two

Laplace distributions.

3) Evolution: According to fitness values, the 20% of the population

having minimum fitness values are selected. The selected chromosomes evolve

through three evolutionary steps: generation, mutation, and adoption. The

surviving chromosomes generate children using the crossover. Furthermore,

randomly selected genes of a selected chromosome are mutated. Finally, the

GA receives new randomly generated chromosomes which occupy 20% of all

chromosomes and are mixed with surviving chromosomes. Mixing purely ran-

domly generated phase angles with surviving ones can allow the randomly

generated ones to survive; otherwise, they would never be able to survive in

the competition against the naturally surviving ones. Mixing phase angles

in this manner generates new patterns which guarantee a more accurate final
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solution.

4) Termination: When the values of the objective function are con-

verged to the local minimum, or when the program reaches the maximum

iteration number, the program terminates. The maximum iteration number is

set as 1,000, and conversion is detected when iterated values change less than

a certain error.

3.7.4 Phase Angle Analysis

To verify the hypothesis that there is a strong diurnal period, the means

of the STDs of phase angles versus frequency are plotted in Figure 3.10. The

STD of phase angles from all wind farms is calculated for every frequency

in order to observe how phase angles are distributed with frequencies. This

process is repeated for monthly wind power for seven years, and the mean

of the STD of phase angles versus frequency is obtained. It is observed that

phase angles are more dispersed as the frequency increases. It should be noted

that the STD of uniformly distributed phase angles is 1.813 and that the STD

is close to 1.813 for high frequencies in Figure 3.10.

3.8 Validation

The first scenario with 8,728 MW target capacity in April 2010 is syn-

thesized based on wind power in April 2010. It is synthesized to validate

whether the suggested method can regenerate wind power with forecasted

statistics. The second scenario of 8,728 MW capacity is synthesized based on
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Figure 3.10: The means of the STDs of phase angles per frequency.

wind power in April 2009. It is synthesized to show that the approach can

forecast future statistics and synthesize the waveform satisfying forecasted

statistics. It should be noted that the capacity of wind power in 2009 is 8,120

MW capacity. Both scenarios are compared to actual wind power in April

2010. Finally, the third scenario is synthesized with 10,000 MW capacity to

show the reliability and stability of the approach. It is assumed that the

geographical distribution of wind farms is the same as current wind farms.

The actual wind power scenario sampled in April 2010 is plotted in

Figure 3.11. Furthermore, the second scenario is plotted in Figure 3.12. It
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Figure 3.11: The actual wind power scenario sampled in April 2010.

is clear that both scenarios are very similar in variability. However, although

the wind power fluctuation in Figure 3.11 is concentrated on early in the

month, the wind power fluctuation in Figure 3.12 is spread over a month.

Furthermore, although the frequency of minimum wind event of the actual

wind power is equally distributed, the frequency of minimum wind event of the

second scenario is concentrated in the middle of month. The third and fourth

scenarios are plotted in Figure 3.13 and Figure 3.14. The third scenario has

less fluctuation than the actual wind power, but it has the similar frequency for

the minimum wind power occurrence. For the fourth scenario, the maximum
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Figure 3.12: The wind power scenario in 2010 with the installed capacity in 2010 is
plotted. This scenario is synthesized based on the wind power in 2009.

wind power is around 7,500 MW because of the low capacity factor of wind

power although the total capacity is 10,000 MW. It is interesting to note that

there is still zero wind power in spite of the 10,000 MW installed capacity of

wind power. Furthermore, the minimum of actual wind power was 100 MW,

and the minimum of scenario is zero, so they have a similar minimum value.

Moreover, periodic patterns for two days are strongly observed in Figure 3.11

and 3.14, and patterns correspond to the low standard deviation at the two

day period in Figure 3.10. Therefore, scenarios in Figure 3.12, Figure 3.13,
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Figure 3.13: The wind power scenario in 2010 is synthesized based on the wind
power in 2010. This scenario is synthesized based on the wind power in 2010.

and Figure 3.14 are similar in general pattern to the actual wind power in

Figure 3.11.

The actual distributions of wind power differences and phase angles

are plotted in Figure 3.15. It is clearly shown that the wind power differences

follow the Laplace distribution as mentioned above, and the phase angles are

uniformly distributed. For the wind power scenario that is synthesized based

on the 2010 wind power, the distributions of wind power differences and phase

angles are plotted in Figure 3.16. The distribution of the synthesized scenario
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Figure 3.14: The wind power scenario of 10,000 MW installed capacity in 2030 is
plotted. This scenario is synthesized based on the wind power in 2010.

also follows the Laplace distribution, but has heavier tails than the distri-

bution of the actual measured scenario. Accordingly, the peak value of the

distribution of synthesized scenario is also less than that of the distribution

of the actual scenario. However, it is clearly shown that the distribution of

the synthesized and actual scenarios are very similar. The phase angles of the

synthesized scenario are also uniformly distributed, but they are less smooth

than the actual phase angles.

Statistical characteristics of synthesized wind power are enumerated in
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Figure 3.15: (a) The distribution of actual wind power ramp rates. (b) The distri-
bution of actual phase angles. The phase angles are uniformly distributed.
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Figure 3.16: (a) The histogram of ramp rates of wind power scenario per minute is
plotted. (b) The phase angles of the synthesized PSD of the wind power scenario are
plotted. The phase angles are almost uniformly distributed.
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Table 3.2. In the second column of Table 3.2, the statistical characteristics

of actual wind power in April 2010 are described, and the actual wind power

in April 2010 is shown in Figure 3.11. The first scenario in the third col-

umn of Table 3.2 is synthesized by actual wind power in April 2009, and the

synthesized wind power is plotted in Figure 3.12. Furthermore, the second

scenario in the fourth column of Table 3.2 is synthesized using wind power

from the month of April for years through 2010, and the synthesized wind

power is plotted in Figure 3.13. Statistical characteristics of the third scenario

are closer to those of actual wind power than those of the second scenario

since the third scenario is trained with wind power from the month of April

2010. It is also observed that properties of the second scenario are similar to

actual ones although the statistical characteristics in the second scenario are

estimated except for the variability. Since wind power in 2009 was relatively

less than the yearly trend of wind power, statistical characteristics might be

under-estimated. Therefore, this suggests that multiple years of data should

be utilized to synthesize future year.

3.9 Ancillary Service Estimation

The required amounts of CPS1-compliant regulation service is deter-

mined based on the synthesized scenarios in this dissertation [44]. The variabil-

ity that is extracted from the synthesized scenarios at every installed capacity

of wind power is used to represent the required amounts of regulation ser-

vice. Since the wind power variability is defined as the standard deviation of
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Table 3.2: Statistical characteristics of actual and synthesized wind power

Type Actual Scenario Scenario Scenario

Target Month 4/2010 4/2010 4/2010 4/2015

Last Training Year 2009 2010 2010

Capacity [MW] 8,728 8,728 8,728 10,000

Mean [MW] 3,478 3,350 3,493 4,061

STD [MW] 1,666 1,394 1,640 1,743

Max [MW] 6,393 6,166 6,459 7,388

Min [MW] 24.87 0 1.9536 25.729

Mean of Daily Pattern [MW] 3,478 3,355 3,494 4,061

Amplitude of Daily Pattern [MW] 559.82 446.65 509.94 634.56

STD of Ramp Size [MW] 1,816 1,776 1,822 2,076

STD of Ramp Rate [MW/min] 4.001 3.3982 3.23 4.887

Variability [MW/min] 18.986 19.598 18.798 19.4334

power difference, it can be assumed that the variability is the forecast error

when the persistent forecasting model is used. Since the regulation service

is used to mitigate the fluctuation from the net load variability, and if the

load variability is assumed to be fixed, the STD of the future net load can

be calculated. Furthermore, the criteria of the required amounts of the regu-

lation service is to satisfy the CPS1 score, which depends on the variance of

the system frequency. The simulation was performed under the assumption

that the installed wind capacity becomes 18 GW. Then, the required amounts

of regulation service will be slightly increased compared to the 2010 installed
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wind capacity of 8,728 MW. The estimated amount of regulation service is 632

MW, but the actual amount of regulation service in 2010 is 585 MW. This is a

good example that shows how the wind power scenario generation algorithms

can be used to determine the required amounts of future ancillary services.

3.10 Conclusion

The algorithm to synthesize the future wind power scenario with respect

to the installed capacity of wind power is summarized. As a future work, the

unsolved problem that should be handled in future is introduced.

3.10.1 Summary

Wind power scenarios are synthesized by considering the forecasted

future PSD and various statistical information, which includes the variability,

STD, maximum wind power, minimum wind power, mean, monthly ramp

size, monthly ramp rate, amplitude of the daily cycle, and mean of the daily

cycle. The variability of un-normalized wind power is linearly proportional to

the square root of capacity. Other statistical characteristics are all linearly

proportional to the capacity. Slopes of the PSD follow different trends. The

slopes of the first and second segments stay at similar values through each

simulation. The slope of the third segment shows an unpredictable trend, so

its frequency range is set short, and it is just used as a connector between

other slopes. The slope of the fourth segment becomes more negative as the

penetration level of wind power increases. The slope of the fourth segment
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appears to converge to a constant negative value. Therefore, the frequency

range corresponding to the fourth segment is important when wind farms are

integrated. Finally, the slopes of the fifth and sixth segments stay at similar

values as the total capacity increases. As a result, the monthly future wind

power output is rebuilt using the forecasted PSD. Furthermore, as shown in

the above section, the future wind power scenarios can be used to estimate the

required amounts of future regulation services. Even though this study focuses

on a particular case in ERCOT, these results suggest a general framework for

analyzing wind power in the frequency domain and generating typical scenarios

in the far future by considering future fluctuations.

In conclusion, as the second step to increase the penetration level of

wind power, sample paths of total wind power are synthesized In this chapter.

Scenarios can be used to simulate the power system so that the power system

planner can determine the proper amounts of regulation service, storage size,

and incentive signals for EVs. As the third step, improved transmission ex-

pansion planning to bring more wind resource to the load center can provide

the accurate sum of generation and transmission investment costs by simulat-

ing the power system based on the load and wind power scenarios that are

synthesized by keeping the stochastic correlation structure between load and

wind power. Toward this end, the next chapter discusses the transmission

expansion planning based on load and wind power scenarios.
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Chapter 4

Scenario Generation through GDFM and

Transmission Expansion Planning

Optimal transmission expansion plans to bring more wind resources to

the load center can be determined by testing the power system using many

possible load and wind power scenarios [121]. The optimal plan to expand

transmission lines to include additional wind power should secure the system

reliability and minimize the total costs of expansion and system operation. In

this process, load and wind power scenarios should be represented with their

actual correlation coefficients to estimate total costs accurately. For example,

positively correlated wind farms sharing the same transmission lines might

cause congestion and thus curtailment. Furthermore, negatively correlated

load and wind power can reduce the generation adequacy and thus cause higher

operation costs [198]. Quantitatively addressing the future variability could

affect the plan of the transmission line upgrades when screening sites of new

wind farms since additional transmission lines are required to take advantage

of the wind diversity over a wide area [33].
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4.1 Literature Review

Many algorithms have been developed to generate many wind power

or load scenarios with a correlation structure. First, negatively correlated

total load and wind power were synthesized in order to plan the transmission

expansion in [150]. The normalized load and wind power were multiplied by

the future total demand and wind power capacity and were graphed in a scatter

plot. Samples in the scatter plot were divided into a few partitions so that

every partition had the same number of samples. The averages of all samples

in each partition were selected as point-wise scenarios, and the probabilities

of all partitions were equally set as an inverse of the number of partitions.

However, instead of the total load and wind power, it would be advantageous

to use higher dimensions of the probability by considering individual wind

farms and load zones.

In [149], instead of forecasting individual wind power outputs, the cor-

relation structure among wind farms was incorporated into a special power

curve that was designed to match average wind speed to average wind power

in California. Average wind speed was modeled as the Autoregressive (AR)

process, and then new wind speed scenarios were generated by changing the

noise terms in the AR process. Wind speed scenarios were converted to wind

power through a special power curve. Wind power scenarios were then used to

estimate the reserve requirements for the high penetration level of wind power.

In this example, although total wind power in California was synthesized, a

better result could be obtained if the correlation between load and wind power
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is considered.

Morales et al. [138] synthesized wind speed by considering the cross-

correlations of wind speed values at different locations. In [138], wind speed

was modeled as the multivariate autoregressive moving average (ARMA) pro-

cess, and then it was approximated to the univariate ARMA process. Many

scenarios were generated using correlated noise terms. These scenarios were

used to solve the probabilistic power flow model [137] in which correlated load

and wind power scenarios were used to estimate the mean and standard devia-

tions of power flows. However, parameters in the ARMA model were estimated

under the assumption that noises are independent. Scenario generation based

on an assumption of correlated noise terms could yield better results.

Block scenarios based on historical data were used in [16] to decide

optimal locations of wind farms and required transmission lines. Five blocks

of different load levels had three different load capacity factors, and each 15-

load block had six wind capacity factors, so 90 total load and wind scenarios

were used, resulting in a tree graph. Although scenarios consisted of several

values, using multiple scenarios that have been generated on each bus might

be more practical. Furthermore, instead of the same correlation between wind

and load, various correlation coefficients among wind farms and load zones

might generate more realistic scenarios.

Recently, power spectral density (PSD) analysis has also been used to

synthesize the wind power. Since all time series structures can be converted

to transfer functions in the frequency domain, the PSD analysis can also ana-
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lyze the temporal correlation in a time series. In [120], under the assumption

that wind power consists of discrete sinusoidal waveforms, the temporal cor-

relation in wind power was investigated by analyzing the relationship among

amplitudes of sinusoidal waveforms, and this mined relationship was used to

synthesize the sample paths of future wind power. However, a single total

wind power from wind farms, not multiple sample paths, was synthesized, and

phase information was lost in the PSD estimation. On the contrary, the cross-

PSDs (CPSD) that are estimated by the Fourier transform of cross-correlation

functions can retain phase information, so not only the temporal correlation

but also the spatial correlation among wind farms can be maintained, which

is beneficial for synthesizing multiple sample paths from wind farms.

As shown above, scenario synthesis has evolved from point values, such

as maximum and minimum, to a single time series. Recently, advances in data

mining have made it possible to record thousands of wind turbine outputs

and load zones. Thus, it might be possible to synthesize huge amounts of

time series individually, but the correlation between time series cannot be

easily synthesized. Since both wind farms and load are affected by weather,

if common factors can be extracted, the computation time and number of

parameters can be reduced while keeping the correlation structure among time

series. The GDFM analyzes those common factors.

The GDFM has been used widely in forecasting economic indexes [143].

It evolved from the static factor model, which has been used to find latent

factors in observation data [164]. In factor models, data is decomposed into the
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common component and idiosyncratic component. The common component is

assigned by concurrent factors through the factor loading, in which the cross-

sectional correlation of data is incorporated. The idiosyncratic component

is assumed to arise from measurement errors in individual time series. In

order to model not only the cross-sectional correlation but also the temporal

correlation, Sargent and Sims [168] proposed the dynamic factor model where

time lag and lead structures were implemented in factor loadings.

One unrealistic assumption in both the static and dynamic factor mod-

els has been that noise vectors are orthogonal, which makes the covariance

matrix of noises diagonal [116]. The effort to relax this condition started

from [39] and led to the generalized factor model, in which the covariance ma-

trix of idiosyncratic components is not diagonal. Finally, the GDFM, which

combines the dynamic factor model and relaxed condition on noise terms, was

proposed in [74]. In short, “Generalized” means that the covariance matrix of

idiosyncratic components is not diagonal, and thus idiosyncratic components

are weakly correlated noise terms. “Dynamic” means that dynamic factors

are loaded with time lag and lead in factor loadings. Since the dimension of

dynamic factors is generally less than that of the observation data, a reduction

in dimension is expected.

The GDFM has been enhanced to allow it to integrate multivariate

time series [75]. It is more parsimonious than the multivariate time series

itself because the cross-sectional dimension of factors is generally less than

that of observation data. If dynamic factors are designed as a time series
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process, dynamic factors can be represented as white noise, which is called

the dynamic shock, and thus the common components can be driven by dy-

namic shocks. For other examples, Bernanke et al. [21] implemented the AR

process in factors and observation in order to model observation as time se-

ries and to use additional information contained in factors. This is called the

Factor-Augmented Vector Autoregressive (FAVAR) because the joint dynam-

ics of observation and factors are implemented simultaneously. Furthermore,

the GDFM was approximated in [73] by relaxing the assumption of an infi-

nite dimension of observation data and an infinite order of time lag in factor

loadings in [74]. The approximated GDFM is used in this dissertation.

Dimension reduction in the GDFM creates one additional advantage,

but at a cost. It was found that the time series structure in the static factor

model has an inherent zeroless transfer function that is represented only as

the AR process [7]. The AR process is obviously simpler than other time

series models. However, if the number of dynamic factors is less than the data

dimension, the covariance of dynamic factors becomes singular, so the time

series becomes a singular AR process, which could be unstable [55]. However,

an insufficient rank on the common component can be increased by adding an

idiosyncratic component to the common component.

4.2 Additional Motivations and Goals

In this study, scenarios of multiple time-series are synthesized by a

systematic process that formulates load and wind power through the GDFM.
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The premise of this research is that a few dynamic factors drive the correlated

movements of many time series. This process can generate an arbitrary number

of scenarios of load and wind power simultaneously by changing the dynamic

shocks. The wind power scenarios can be verified by evaluating trajectories of

wind power [155], but this study mainly focus on verifying the correlations and

statistical information of wind power and load. Furthermore, the importance

of representing the correlation structure is verified by solving the economic

dispatch and transmission expansion planning with synthesized scenarios. The

application of the GDFM to load and wind power is a plausible approach.

Since [35], load and wind power have been modeled as the time series model. It

was also shown in [117] that factor analysis is a plausible approach to estimate

curtailed wind power by using wind power from surrounding wind farms.

4.3 Preprocessing and the GDFM

In this section, load and wind power are normalized, and then the

periodic component is extracted. The remaining data is decomposed into

the common and idiosyncratic components. Then, dynamic factors and their

factor loadings are extracted from the common component. Furthermore, the

dynamic factors are modeled as the vector autoregressive (VAR) process of

dynamic shocks.
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4.3.1 Preprocessing Wind Power & Load Data

Wind power data from 96 wind farms and load data from eight areas in

ERCOT are used. Data is sampled at every hour in 2013. The eight areas are

the Coast, East, Far West, North1, North2, South1, South2, and West. Total

wind power capacity is 10,407 MW, and the peak demand is 50,698 MW. Data

is normalized by its maximum value. Then, the sum of periodic components is

extracted under the assumption that they consist of the harmonics of diurnal

periodicity. The sum of periodic components is estimated by averaging data

for the same hour every day. In more detail, the each observation of wind or

load data X ∈ R24·365×104 is reshaped into the matrix Y ∈ R24×365×104. The

means of every hour are stacked in Z ∈ R24×104, which is averaged over a days.

After the periodic component is extracted, residuals are standardized: means

are subtracted, and residuals are divided by standard deviations.

4.3.2 Introduction to the GDFM

Suppose that the matrix X ∈ RN×T is observed from N sources for T

hours, and rows of X are time series of wind power and load. The column

of X sampled at time t is denoted as Xt = {x1t, x2t, . . . , xNt}T , where a

doubly indexed sequence is used for the scalar value xit for i = 1, . . . , N and

for t = 1, . . . , T . The structural assumption of X is that it consists of the

common component χ ∈ RN×T and the idiosyncratic component ξ ∈ RN×T as

in [74]:

Xt = χt + ξt, (4.1)
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where χt is the column of χ sampled at t, and ξt is the column of ξ sampled

at t.

The structural assumption of χ is that it has Q dimensional dynamic

factors, so it can be decomposed into the dynamic factor loading A(L) ∈

RN×Q×(2S+1), which is a set of polynomial matrixes of time leads and lags, and

the dynamic factors f ∈ RQ×T as:

χt = A(L)ft

= A−Sft−S + · · ·+A0ft + · · ·+ASft+S,
(4.2)

where L denotes the forward and backward shifts for t = −S, . . . , S, and where

ft is the column of f sampled at t. The polynomial matrix is a matrix that has

a polynomial for each of its entries. The general assumption is that Q < N , so

the common components can be described with fewer dimensions. Since the

moving-average structure is encapsulated into A(L), Xt is represented as the

moving-averaged ft. Since the starting point of designing the GDFM is Xt,

it is reasonably assumed that there is a filter B(L) ∈ RQ×N×(2S′+1) that can

extract ft from Xt:

ft = B(L)Xt. (4.3)

It is also assumed that f has a time-series structure. f is driven by

innovation ε through the AR process with an order R through parameter

matrix C(L) ∈ RQ×Q×(R+1) as:

εt = C(L)ft

= ft −C1ft−1 +C2ft−2 + · · ·+CRft−R,
(4.4)
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where εt is the column of ε sampled at t. The time series in (4.4) has only time

lags because of the causality, although f can also be modeled with time leads

and lags. An additional assumption is that ε is driven by dynamic shocks δ

as

εt = Zδt, (4.5)

where δt is the column of δ sampled at t. The shocks δ are assumed to be

white noise whose spectral density is constant. The matrix Z is used to make

ε have the same correlation structure of the actual observation data since

δ is the uncorrelated white noise. It should be noted that ε is an estimated

value. Then, the correlation structure is extracted from ε through the Cholesky

decomposition, and it is denoted as Z [138]. The combination of (4.2), (4.4),

and (4.5) is called the GDFM.

It should be noted that although the ARMA process is more advanced,

the AR process is sufficient to describe the stochastic process in load and wind

power. When X is represented parsimoniously so that N > Q, the GDFM

has a tall transfer function in which the number of output variables is bigger

than the number of input variables. When a tall transfer function in the

time domain is transformed to a spectral density in the frequency domain, the

spectral density becomes zeroless. The zeroless spectral density is equivalent

to the AR process, so the AR process can be used to model the dynamic

factors [46].

Additional assumptions are required to build the GDFM. It is assumed

that ξ is weakly correlated as mentioned above and that f is orthogonal to

136



the idiosyncratic component as:

E [χjξk
′] = 0, (4.6)

for j = 1, . . . , N and for k = 1, . . . , N . It is also assumed that the spectral

density of the common component Sχ(ω) ∈ RM×N2
is a rational spectral den-

sity, which can be represented as a fraction. M is the number of frequencies.

Every rational transfer function can be realized by the time series process by

a left or right matrix fraction description [6]. A rational spectral density can

have a state space representation in the time domain as:

χt = A(L)[C(L)]−1Zδt. (4.7)

Then, (4.7) can be decomposed into (4.4) and (4.2), and the rational spectral

density can lead to the AR process.

4.3.3 Decomposition

The observation data X is decomposed into χ and ξ by decomposing

the spectral density of the observation data, SX(ωm) ∈ RM×N2
, into Sχ(ωm)

and the spectral density of the idiosyncratic component, Sξ(ωm) ∈ RM×N2
,

through the dynamic principal component analysis (DPCA) in [31], where

ωm is the discretized frequency for m = 1, . . . ,M , so it is defined as ωm =

2 ∗m/(24 ∗ 60).

By following the spectral density definition, SX(ωm) can be estimated

by the Fourier transform of the covariance matrix of the observation data
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ΦX ∈ RT×N2
. Therefore, the decomposition of SX(ωm) can be processed

by decomposing the ΦX , and the appropriateness of the decomposition is

supported by the assumption in (4.6). The ΦX is decomposed as:

ΦX = E [XtXt−k]

= E [χtχt−k] + E [ξtξt−k]

= Φχ + Φξ,

(4.8)

where k is the time lag, Φχ is the covariance matrix of χ, and Φξ is the

covariance matrix of ξ. The covariance matrix ΦX is estimated by calculating

the correlation functions of all pairs of two time series. Since the number

of time series is N , there are N2 correlation functions including the auto-

correlation functions, so the column dimension of ΦX is N2. It should be noted

that SX(ωm) has the CPSD to keep the phase information among time-series,

because that ΦX contains the cross-covariance function between different time

series and because the Fourier transform of the cross-covariance function is the

CPSD.

The assumption in (4.6) and thus the decomposition in (4.8) can be

realized by splitting the eigenvalues of SX(ωm) through the DPCA in the

frequency domain, because eigenvectors corresponding to different eigenvalues

are orthogonal to each other. For the given frequency ωm, SX(ωm) ∈ R1×N2

can be reshaped as Y ∈ RN×N . Then, the Q largest eigenvalues of SX(ωm) and

their eigenvectors consist of Sχ(ωm), and the rest of the smaller eigenvalues
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and their eigenvectors consist of Sξ(ωm) as:

SX(ωm) =V χ(ωm)Ωχ(ωm)V χ(ωm)∗

+ V ξ(ωm)Ωξ(ωm)V χ(ωm)∗

=Sχ(ωm) + Sξ(ωm),

(4.9)

where V χ(ωm) ∈ RN×Q is a matrix of eigenvectors corresponding to the Q

largest eigenvalues, Ωχ(ωm) ∈ RQ×Q is a diagonal matrix of Q largest eigen-

values, V ξ(ωm) is a matrix of the remaining eigenvectors, and Ωξ(ωm) is a

diagonal matrix of the remaining eigenvalues per ωm. It should be noted that

∗ represents the conjugate transpose but that T represents the transpose of a

matrix. This decomposition process continues for all ωm.

4.3.4 Estimation

The time series f and χ can be estimated by the linear combination of

X through (4.2) and (4.3). When χ of rank Q is estimated, without loss of

generality, the sum of the auto-covariances of ξ is minimized. ξt is defined as

ξt = Xt −A(L)B(L)Xt. (4.10)

Since the sum of the auto-covariances of ξ is the sum of the diagonal terms of

Φξ, the problem of minimizing the sum of auto-covariances can be described

as

minimize
Φξ

tr(Φξ), (4.11)

where Φξ is defined as

Φξ = E[(X −A(L)B(L)X)(X −A(L)B(L)X)T ]. (4.12)

139



Since the trace is the same as the sum of the eigenvalues, the solution of (4.11)

is to select the smallest N −Q eigenvalues of ΦX when the eigenvalues of ΦX

are sorted in ascending order. Therefore, the obvious solution is to select the

Q largest eigenvalues of ΦX for Φχ and the rest of the eigenvalues for Φξ.

Likewise, in the DPCA, minimizing the largest eigenvalues of Sξ(ωm) per ωm

will also minimize (4.11) [56].

A(L) and B(L) can be estimated through a similar process as the

static principal component analysis (SPCA). In the SPCA, A without time

lags is given as Λχ ∈ RN×Q, which is the Q largest eigenvectors of ΦX , and B

without time lags is given as (Λχ)T ∈ RQ×N [183]. Similarly, in the DPCA,

A(L) is given as V χ(L) ∈ RN×Q×2S+1, which is the inverse Fourier transform

of V χ(ωm) per ωm, and B(L) is given as (V χ(L))T ∈ RQ×N×2S+1, which is the

inverse Fourier transform of V χ(ωm)∗ per ωm [31]. It should be noted that the

time lag is limited to S because of finite data lengths although the number of

discrete frequencies is M(M > S). Finally, χ can be estimated as:

χt = V χ(L)(V χ(L))TXt. (4.13)

This estimation creates a causality problem when the GDFM is used to forecast

the future values because L represents the time lags. This problem leads to the

discussion in [73]. However, ignoring the causality might not cause a problem

in this dissertation since the GDFM is used to synthesize load and wind power

scenarios.

The next step is to represent χt as the function of δt. If (4.4) is com-
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bined with (4.2), then χt can be represented as a function of δt as (4.7). In

order to generate χ, f is calculated using C(L) for the given δ. Then, χ is

calculated through (4.2).

Here, C(L) is estimated by the Yule-Walker equation. Since N > Q,

the variance matrix of εt in the VAR becomes singular, which means that the

covariance matrix does not have an inverse matrix. For the singular process,

the Yule-Walker equation provides the best stable solution [54]. The stability

condition implies that the model can be converted to a moving average form

of dynamic shocks because of the Wold theorem. This condition is important

in this study because all scenarios are derived from white noise. Besides, the

Yule-Walker equation is faster than other methods.

4.4 Load and wind power Scenario Generation

The process to synthesize scenarios is briefly summarized. First, χ, ξ,

and f are estimated from X. Second, f is modeled as the VAR process, and ε

and Z are estimated simultaneously. Third, δ is generated under the assump-

tion that it is normally distributed. Through the (4.13), χ̂ is built, and X̂

is synthesized by adding ξ̂, which is synthesized by following the multivariate

normal distribution with the covariance matrix of ξ. Finally, X̂ is scaled up

to its original magnitude, and the periodic component is added.
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4.4.1 Number of Dynamic Factors

Before synthesizing load and wind power, the penalized information

criterion (IC) is used to decide Q. The ICs, such as the Akaike information

criterion (AIC) and Bayesian information criterion (BIC), have been widely

used in time-series applications to obtain the optimal number of orders. The

criterion to decide Q is set based on [11]. When the sum of idiosyncratic errors

and penalties on the number of variables is minimized, Q is decided. The IC

is given as:

IC(P ) = log[
1

NT

N∑
n

T∑
t

(ξnt)
2] + P × p(N, T ), (4.14)

where the penalty function p(N, T ) is given as

p(N, T ) = k
log(min[N, T ])

NT/(N + T )
. (4.15)

It is found that 18 is the optimal number of dynamic factors.

4.4.2 Scenario Generation

First, the χ̂ is estimated. For example, the χ̂ of load in the Coast area

is plotted in Figure 4.1. Although the χ̂ of the load follows the diurnal peri-

odicity of the actual load clearly, it does not explain idiosyncratic movements.

Load waveforms follow the weekly trends too. For example, the 41st day in

Figure 4.1 corresponds to February, 10, 2013, which was a Sunday. Further-

more, the χ̂ of wind power is estimated and plotted in Figure 4.2. It can be

seen that there was a sudden wind power die off on the 39th day in 2013.
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Figure 4.1: Coastal load data and common component. The blue dashed lines rep-
resent actual data, and the red lines represent the common component. The actual
load and common component of load are plotted.

Considering that the duration was very short and that wind power around the

39th day was very high, it can be assumed that the wind farm was shut down

when wind speed went over the cut-out speed. Since it is an idiosyncratic

event, the χ̂ of wind power does not model it.

Second, scenarios are synthesized and plotted in Figure 4.3 and Fig-

ure 4.4. The load scenario in the Coast area is plotted in Figure 4.3. It follows

the diurnal periodicity clearly, but it also has more severe peaks and bottoms

on different days. It is observed that the weekly trend in the actual load, and
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Figure 4.2: The blue dashed lines represent actual data, and the red lines represent
the common component. The actual and common components of the 10th wind farm
are plotted. Its capacity is 79.3 MW.

the synthesized load also closely follows it. The load on weekends is relatively

lower than the load on weekdays. For example, the 68th day in Figure 4.3 cor-

responds to March, 9, 2013, Saturday, and the load on that day was relatively

lower than the load on other days. The wind power scenario on the 10th wind

farm is also synthesized and plotted in Figure 4.4. The wind power scenario

has similar ramp rates, maximum values, minimum values, and overall shape

to the actual scenario. The scenarios are curtailed at minimum and maximum

values in the post processing. Many zero values in both the actual wind power
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and wind power scenario can be observed.

4.4.3 Statistics & PSD Analysis

Statistics of the scenarios are also compared to actual statistics in Ta-

ble 4.1. Analyzed statistics are mean, median (MED), standard deviation

(STD), coefficient of variation (CV), variability (V), maximum (Max), mini-

mum (Min), 25% value, 75% value, kurtosis (Kur), and skewness (Skw). The

variability is defined as the STD of the hour to hour difference between data.

Furthermore, the difference of wind power scenarios follows the Laplace dis-

tribution just as actual wind power does [189]. Since there are many time

series, averaged statistics of scenarios are compared to averaged statistics of

actual waveforms, and the normalized root mean square errors (NRMSE)s are

also estimated in percentage to measure relative errors. Load and wind power

scenarios are separated and averaged because they have different scales. Statis-

tics of the actual waveforms and scenarios are very similar. Although scenarios

satisfy most statistics, load scenarios have significant errors in variability and

skewness.

In order to verify the periodic component and temporal correlation of

an individual scenario, the PSDs of monthly scenarios are measured through

the multi taper algorithm and compared to actual PSDs in Figure 4.5 and

Figure 4.6. The PSDs of the load scenario and actual load in Figure 4.5 have

similar periodic components. Since the periodic component is the sum of the

harmonics of diurnal periodicity, the PSD of load scenarios has similar PSD
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Figure 4.3: The blue dashed lines represent actual data, and the red lines represent
the final synthesized scenarios. The actual load and load scenario are plotted. It is
observed that the load scenario not only follows the diurnal and weekly periodicities
but also represents sudden ramps because of weather changes.

peaks to the PSD of the actual load. Furthermore, the PSD of the wind

power scenario is plotted in Figure 4.6. It has a strong amplitude in the 24h

period. The PSD of wind power also closely follows the overall shape of the

PSD of actual wind power. That is, both PSDs of the wind power scenario

and the actual wind power have low-pass filtered waveforms, which are typical

AR processes. Through the PSDs, it is also verified that the AR process is a

reasonable assumption. In addition, the stability of multivariate time series is
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Figure 4.4: The blue dashed lines represent actual data, and the red lines represent
the final synthesized scenarios. The actual wind power and wind power scenario of
the 10th wind farm are plotted.

checked by testing the eigenvalues of the block companion matrix ofC(L). The

modulus of eigenvalues should be less than one, and the maximum eigenvalue

was 0.971.

4.4.4 Correlation Coefficient

Correlation coefficients of actual waveforms and synthesized scenarios

are plotted on shaded surfaces in Figure 4.7 and Figure 4.8 in order to see the

relationship among time series. The darkest red in a diagonal represents the

147



2D 24H 12H 8H 6H 4H 2H

10
6

10
8

10
10

10
12

PSDs of Actual load and Scenario in Coast Area

Period

P
o
w

e
r
  

2
/H

z
 

 

 

Actual

Scenario

Figure 4.5: The blue dashed lines represent the PSDs of the actual data, and the
red lines represent the PSDs of scenarios. The PSDs of actual and synthesized load
are plotted. They have a similar strength as the PSDs of the harmonics of the 24th
hour period.

most positive correlation, one. The darkest blue represents the most negative

correlation. Among 104 time series, the last eight time series are the load.

Figure 4.7 shows the correlation coefficients of actual waveforms. It is observed

that load and wind power generally have a negative correlation. However, wind

farms around the 70th are negatively correlated with other wind farms, but

they are slightly positively correlated with the load. The latitude of 70th

wind farm is 26N, and the longitude is 97W, so it is located on the Gulf of
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Figure 4.6: The blue dashed lines represent the PSDs of the actual data, and the
red lines represent the PSDs of scenarios. The PSDs of actual and synthesized wind
power are plotted. They have a similar strength as the PSDs of the 24th hour period
and time periods when there are low frequencies.

Mexico. It is shown that offshore wind farms are positively correlated to load.

Similarly, Figure 4.8 shows the correlation coefficients of scenarios. The shaded

surfaces in Figure 4.7 and Figure 4.8 are similar to each other although some

wind power scenarios are more positively correlated to each other than actual

wind power outputs are, and some offshore wind farms are more positively

correlated to load. On the contrary, although it is not shown here, scenarios

that are synthesized from individual time series processes are uncorrelated to
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Table 4.1: Evaluation of Statistical Characteristics

STAT Wind Load

Index Actual Scen NRMSE Actual Scen NRMSE

Mean 42.11 42.63 1.721 4.07e3 4.04e3 0.765

Med 34.37 34.42 0.141 4.05e3 4.05e3 0

STD 35.05 35.75 2.318 6.06e2 5.69e2 4.669

CV 0.856 0.861 0.595 0.144 0.138 3.916

V 14.96 13.54 9.425 1.13e2 1.03e2 2.432

Max 109.2 108.9 0.195 6.45e3 6.05e3 5.061

Min 0 0 0 2.82e3 2.63e3 6.709

25% 9.630 10.03 12.34 3.68e3 3.65e3 0.894

75% 72.16 72.44 0.377 4.41e3 4.37e3 0.719

Kur 1.893 1.929 2.473 3.561 3.454 3.047

Skw 0.464 0.464 2.799 0.585 0.478 30.88

each other, so the shaded surfaces are filled with light blue. Therefore, it can

be said that the GDFM can synthesize correlated scenarios.

It is also observed that the periodic component and stochastic process

have different effects on scenarios. When the load scenario is synthesized, the

periodic component has greater effects than the stochastic process. As shown

in Figure 4.5, the periodic component of load consists of multiple harmonics of

diurnal periodicity. When the wind power scenario is synthesized, the stochas-

tic process has greater effects than the stochastic process has. As shown in

Figure 4.6, the low-pass filtered PSD is generated by the AR process, but the
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Figure 4.7: The correlation coefficients of actual waveforms are plotted in shaded
surfaces. Red shifted colors represent a more positive correlation, and blue shifted
colors represent a more negative correlation. The diagonal line represents a perfect
correlation.

periodic component generates only a peak value at the 24th hour. For corre-

lation coefficients in Figure 4.7 and Figure 4.8, scenarios that are synthesized

using only the stochastic processes create better correlation coefficients than

those created using only periodic components. Because periodic components

are similar to each other, it is difficult to make different and non-zero correla-

tion coefficients using only periodic components, so the stochastic component

is required to have different and non-zero correlation coefficients.
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Figure 4.8: The correlation coefficients of synthesized scenarios are plotted in shaded
surfaces. Red shifted colors represent a more positive correlation, and blue shifted
colors represent a more negative correlation. The diagonal line represents a perfect
correlation.

4.5 Generation & Transmission Upgrading Costs

In this section, the GDFM scenarios are utilized in a transmission and

generation planning problem. The generation and transmission upgrading

costs of scenarios of the GDFM are compared to those of uncorrelated, corre-

lated, and actual scenarios. The generation and transmission upgrading costs

are calculated by solving the DC optimal power flow (OPF) on the IEEE 300-

bus benchmark. The benefits of transmission projects are determined in this
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case study by measuring the short-run marginal production costs. It is also

observes the effects of the correlation structure in load and wind power to the

operation and planning costs.

4.5.1 Simulation Settings

The generation cost is calculated by solving the linear programming,

and the upgrading cost is calculated by solving the linear mixed integer pro-

gramming (LMIP). It is assumed that only existing lines are upgraded, and

building new wind farms and transmission lines is not considered. The up-

grading cost is levelized as an investment cost for three months. The costs do

not include the cost of ancillary services, value of lost load, cost of wind power

curtailment, or congestion revenue rights. It should be noted that the LMIP is

decomposed by Bender’s decomposition because the LMIP has a huge number

of variables.

Five different scenarios are generated. First, 104 uncorrelated random

signals are generated. Second, uncorrelated total load and wind power outputs

are synthesized and equally distributed on buses. The third scenarios are the

same as the second scenarios except that total load and wind power outputs are

negatively correlated. The correlation coefficient is -0.2. The fourth scenarios

are generated by the GDFM, and the fifth scenarios are actual measurements.

In order to consider the high penetration level of wind power, wind power

is scaled up to double. Furthermore, in order to magnify the transmission

expansion, load buses do not have generators. It should be noted that scenarios

153



are normalized by the actual measurements so that all scenarios have the same

amounts of wind and load.

4.5.2 Simulation Results

The linear mixed integer model is as follows.

min
x

∑
(p,q)∈Λ

L(p,q)x(p,q) +
720∑
t=1

πt
∑
g∈G

Gg(Pg
t) (4.16)

subject to

Pp
t −

∑
q∈B(p)

Xp,q(θp
t − θqt) = Dp

t ∀p ∈ B (4.17)

− C(p,q)(x(p,q) + 1) ≤ X(p,q)(θ
t
p − θtq) ∀(p, q) ∈ Λ (4.18)

C(p,q)(x(p,q) + 1) ≥ X(p,q)(θ
t
p − θtq) ∀(p, q) ∈ Λ (4.19)

Ng ≤ P t
g ≤Mg ∀g ∈ G,∀t ∈ T (4.20)

For line (p, q), where p and q are buses, L(p,q) is an upgrading cost, C(p,q) is the

line capacity, and Xp,q is the line admittance. For bus p, Pp is the generation,

Dp is the load, and θp is the bus angle. For the generator g, Gg is the cost

function, Pg is the generation, Ng is the generator minimum output, and Mg

is the generator maximum output. Furthermore, the probability πt is set at

one to compare the total generation cost to the upgrading cost.

Simulation results that are averaged over ten runs for 720 hours are in

Table 4.2. For the generation cost, the first scenarios have the lowest cost.

The GDFM scenarios can be verified since the generation cost of the GDFM
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scenarios is similar to that of the actual scenarios. For the second and third

scenarios, the total load and wind power are equally distributed on the buses,

so sample paths have a perfect correlation. The generation costs of the second

and third scenarios are similar and most expensive since all wind power are

perfectly correlated. Furthermore, the generation cost of the third scenario is

more expensive than the second scenario, since the wind power in the second

scenario is negatively correlated with the load in the second scenario.

For transmission upgrading, the sum of upgrading and operation costs

is smaller than the generation cost without the transmission upgrading for

all scenarios. The GDFM and actual scenarios have similar upgrading and

operation costs. These scenarios have the most expensive transmission up-

grading cost since actual scenarios have extreme wind power and loads due to

extreme weather. By considering that these costs are the optimal solutions of

stochastic optimization, for actual scenarios, more money should be invested

in the transmission lines more in preparation for extreme cases. In short, the

correlation among individual scenarios affects the generation and upgrading

costs more than the correlation between the total load and wind power. For

more realistic scenarios, wind power is more dynamic and has more peaks, so

the peaking characteristic should be reflected on generation and transmission

costs.
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Table 4.2: Results of Economic Dispatch and Transmission Expansion

Scenario Number Generation Cost
Transmission upgrading cost

Upgrading Operation

Purely randomly gener-
ated scenarios

$3.6157 M $ 0.018 M $ 3.459 M

Total load and wind power
scenarios are uncorrelated

$3.7784 M $ 0.122 M $ 3.108 M

Total load and wind power
scenarios are negatively
correlated

$3.7974 M $ 0.113 M $ 3.114 M

GDFM scenarios $ 3.7153 M $ 0.189 M $ 2.150 M

Actual measured scenar-
ios

$ 3.7180 M $ 0.187 M $ 2.098 M

4.6 Conclusion

In this study, load and wind power scenarios are synthesized through

the GDFM, in which observation data is decomposed into the periodic, com-

mon, and idiosyncratic components. The common component consists of dy-

namic factors and dynamic factor loadings, and dynamic factors are derived

from the dynamic shocks, which are white noise terms, through the VAR

process. Since the dimension of the dynamic factor is less than that of the

observation data, the number of variables and parameters is reduced. The

study also verifies that scenarios have satisfactory statistical characteristics,

PSDs, correlation coefficients, generation, and transmission upgrading costs.

Furthermore, the GDFM scenarios have similar simulation results with the ac-

tual scenarios, as demonstrated in an generation and transmission upgrading

case study.
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Chapter 5

Conclusion

In this dissertation, the short-term probabilistic and ensemble wind

power forecasting algorithm is proposed to overcome the wind power uncer-

tainty. Then, the novel algorithm to generate many wind power scenarios

based on the PSD analysis of wind power is also proposed to use scenarios to

develop methods for mitigating the wind power variability. Furthermore, it is

beneficiary to build the transmission expansion planning based on load and

wind power scenarios, which are synthesized through the GDFM by keeping

their stochastic correlation structure. In this chapter, these studies are sum-

marized, and additional work that can be done in future work is enumerated.

5.1 Short-Term Wind Power Forecasting

Wind power fluctuation prevents the participation of wind farm own-

ers in the AS market and the DA market where prices are less volatile and

higher than the RT market. In order to promote participation of wind farm

owners in the AS and DA markets, wind power and its error distribution are

forecasted through novel probabilistic and ensemble forecasting algorithms in

the first chapter. The performance of this algorithm is verified through the
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data in the wind power competition that was organized by the PES. For the

probabilistic forecasting, the error distribution is assumed to follow parametric

distributions in the closed form. Training data is clustered in a few clusters,

and the error distribution is estimated per cluster in order to reduce the STD

of the distribution. Furthermore, error distributions are truncated by the min-

imum and maximum of the actual values of the point forecast’s corresponding

cluster.

5.1.1 Key Results

The tree-based forecasting machines, such as the RF, GBM, and BAG,

show the best performance among the seven forecasting machines although

it takes a lot of time to train them. The second best are the kernel-based

forecasting machines, such as the NN and SVM. The performance of the GP

varies with respect to the data set, and it takes the longest computation time.

For the ensemble forecasting, the weight averaging outperforms the simple

averaging. Furthermore, fitting the model of the error distribution with the

VG distribution outperforms the model of the error distribution with other

distributions. In this process, the parametric approach with clustering data

in ten clusters shows the best performance. Finally, the discrete STD estima-

tion function with data clustering outperforms the continuous STD estimation

function without data clustering.
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5.1.2 Future Work

Five unsolved issues with this algorithm are enumerated. a) The per-

formance of the parametric approach should be compared to the performance

of the nonparametric approach. b) A single step process to estimate the error

distribution in the ensemble forecasting should be developed. Although the

parametric approach needs additional steps to estimate the error distribution,

forecasting machines can be trained to estimate distributions directly without

forecasting point forecasts. c) For the GP, a better combination of kernels that

are fitted to the wind power forecasting. should be found. d) A representative

data set that works as the validation data in the cross validation should be

selected to reduce the cross validation computation time. The representative

data should have all statistical characteristics of actual data. e) One-hour-

ahead point forecast can be used to forecast the wind power at the given time

in order to utilize the temporal correlation structure in wind power outputs

since wind power strongly depends on hour ago wind power. If these future

work are accomplished, the performance of probabilistic wind power forecast-

ing will increase and participation of wind power owners in the AS and DA

markets will be encouraged.

5.2 Long-Term Wind Power Scenario Generation

In order to develop smart AS procurement methodologies, the power

system should be simulated with many future wind power scenarios. Therefore,

in the second Chapter, scenarios of near future wind power are synthesized by
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considering the PSD, statistical characteristics, and the future capacity. The

PSD of the wind power follows different power laws over different frequency

ranges and is approximated by a piecewise function. A scaling exponent of the

power law for a particular piece can be approximated by the slope of an affine

function fitted to a logarithmic plot of the PSD. Each piece of the function

has a different trend as the total capacity increases. Slope trends, the first

PSD value, and the last PSD value are regresed to forecast the PSD. Then,

future wind power scenarios are synthesized from the forecasted PSD. In this

process, phase angles are searched using a genetic algorithm while satisfying

forecasted statistical characteristics for the given capacity. This approach is

simulated and validated for wind power for seven years in ERCOT and is used

to synthesize a future wind power scenario at 10,000 MW capacity.

5.2.1 Key Results

As the penetration level of wind power increases, the absolute magni-

tude of wind power variability increases, but the relative magnitude of wind

power variability with respect to the installed capacity decreases. The dis-

sipation ratio of wind power variability corresponding to the low and high

frequency ranges does not change as the installed capacity of wind power in-

creases. On the contrary, the dissipation ratio of wind power variability corre-

sponding to the middle frequency range increases, indicating that the relative

amplitudes of wind power variability corresponding to the middle frequency

range decrease as the installed capacity of wind power increases. Furthermore,
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the PSD slope of the third segment decreases and converges to a certain value.

This means that the relative amplitude of wind power variability in the middle

frequency range will be fixed at a very high penetration level. Therefore, the

absolute amplitude of wind power variability increases as the penetration level

of wind power increases. This means that although the wind power fluctua-

tion decreases because of the geographical smoothing effects, certain amounts

of wind power variability always remain in the power system, and the abso-

lute magnitude of that wind power variability increases continuously as the

installed capacity of wind power increases.

5.2.2 Future Work

Instead of using the GA to search for phase angles, the possibility of

modeling phase angles will be investigated by analyzing their stochastic struc-

ture. The goal of the future work is to design the stochastic structure of phase

angles of the PSD following the power law so that the power differences of the

transformed waveform have a certain distribution. The stochastic structure

of phase angles of wind power should be able to generate arbitrarily many

sample phase angles by changing noise terms as generated phase angles satisfy

the distribution of the power difference. Characteristics of phase angles can

be inferred from the Laplace distribution of wind power differences. In order

for the Laplace distribution to have a heavy tail there must be few big power

differences, but many small power differences. A big power difference can be

generated by assigning similar phase angles to sinusoidal components of ad-

161



jacent frequencies in low frequency ranges so that the sum of the derivatives

of sinusoidal components becomes large enough to have a big power differ-

ence. Furthermore, big power differences that are generated by the sinusoidal

components of adjacent frequency ranges are rare, so the collection of those

power differences from all sinusoidal components can have a heavy tail. At

the same time, randomly generated phase angles of sinusoidal components in

high frequency ranges generate a lot of small power differences. Therefore,

a better, systematic method for estimating phase angles can synthesize total

wind power scenarios more realistically.

5.3 Load and Wind Power Scenario Generation and
Transmission Expansion Planning

The direct way to increase the penetration level of wind power is to

build more wind farms and connect them by building more transmission lines.

In Chapter 4, therefore, the transmission expansion planning is established

based on the load and wind power scenarios that are synthesized through the

GDFM and verified through statistics, spectral density analysis, and correla-

tion analysis. The GDFM preserves the correlation structure between load and

wind by representing load and wind power as the sum of the periodic compo-

nent, common component, and idiosyncratic noise component. The periodic

component is considered as the sum of the harmonics of the diurnal periodicity

and is estimated by averaging data for the same hour every day. The common

and idiosyncratic noise components are estimated after extracting the peri-
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odic component. The common component consists of the dynamic factors, or

is white noise, and the polynomial matrix, which represents the temporal and

geographical correlation between load and wind power. Dynamic factors are

derived from the dynamic shocks, which are white noise terms, through the

VAR process. Factors, factor loadings, and thus the common component are

estimated through the DPCA. Furthermore, an infinite number of scenarios

can be synthesized by generating different dynamic shocks. The dimension of

the GDFM is less than the dimension of observation data, so the scenarios are

generated from a parsimonious system.

5.3.1 Key Results

The usefulness of scenarios is verified by calculating the total generation

and transmission upgrading costs on the IEEE 300-bus benchmark. The load

and wind power scenarios that are synthesized by considering the stochastic

correlation structure between them require higher generation and expansion

costs than purely randomly generated scenarios require. If the total load

and wind power scenarios are equally distributed to multiple buses, they are

perfectly correlated to other scenarios although total load and wind power are

negatively correlated. In this case, the generation and transmission investment

costs are highest. In short, purely randomly generated scenarios or perfectly

correlated scenarios on multiple buses can also have similar simulations results

to the simulation results of the actual scenarios. However, in order to have

more accurate simulation results when scenarios are synthesized, the stochastic
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correlation structure should be considered.

5.3.2 Future Work

The transmission expansion planning can be expanded to a problem

with scenario trees for multiple stages, and it can be solved through the

stochastic dual dynamic programming (SDDP) by considering multiple macro

scenarios of gas prices, demand level, and installed capacity of wind power.

For the given transmission plan from the previous stage, the transmission plan

at the current stage is determined by solving the stochastic economic dispatch

with multiple micro scenarios of load and wind power for the given macro

scenario. It should be noted that micro scenarios of load and wind power are

synthesized through the GDFM. One advantage of the SDDP is to decompose

the problem into multiple sub-problems according to stages and to change the

main objective function by generating cuts using dual variables in the sub

stages. Finally, the usefulness of the SDDP can be verified by calculating

the total generation and transmission upgrading costs on a simplified electric

network in the ERCOT interconnection. Therefore, the proposed transmis-

sion expansion planning should be extended to the multistage transmission

expansion planning, which is closer to the actual transmission problem than

the proposed one, and the multistage planning can be simulated on a simpli-

fied electric network in the ERCOT interconnection to build the more realistic

transmission expansion planning.
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