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Manufacturing equipments in semiconductor factories (fabs) provide

abundant data and opportunities for data-driven process monitoring and mod-

eling. In particular, virtual metrology (VM) is an active area of research.

Traditional monitoring techniques using univariate statistical process control

charts do not provide immediate feedback to quality excursions, hindering the

implementation of fab-wide advanced process control initiatives. VM models

or inferential sensors aim to bridge this gap by predicting of quality mea-

surements instantaneously using tool fault detection and classification (FDC)

sensor measurements. The existing research in the field of inferential sen-

sor and VM has focused on comparing regressions algorithms to demonstrate

their feasibility in various applications. However, two important areas, data

pretreatment and post-deployment model maintenance, are usually neglected

in these discussions. Since it is well known that the industrial data collected

is of poor quality, and that the semiconductor processes undergo drifts and

periodic disturbances, these two issues are the roadblocks in furthering the

adoption of inferential sensors and VM models.

In data pretreatment, batch data collected from FDC systems usually

contain inconsistent trajectories of various durations. Most analysis techniques
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requires the data from all batches to be of same duration with similar trajec-

tory patterns. These inconsistencies, if unresolved, will propagate into the

developed model and cause challenges in interpreting the modeling results and

degrade model performance. To address this issue, a Constrained selective

Derivative Dynamic Time Warping (CsDTW) method was developed to per-

form automatic alignment of trajectories. CsDTW is designed to preserve

the key features that characterizes each batch and can be solved efficiently

in polynomial time. Variable selection after trajectory alignment is another

topic that requires improvement. To this end, the proposed Moving Window

Variable Importance in Projection (MW-VIP) method yields a more robust set

of variables with demonstrably more long-term correlation with the predicted

output.

In model maintenance, model adaptation has been the standard so-

lution for dealing with drifting processes. However, most case studies have

already preprocessed the model update data offline. This is an implicit as-

sumption that the adaptation data is free of faults and outliers, which is often

not true for practical implementations. To this end, a moving window scheme

using Total Projection to Latent Structure (T-PLS) decomposition screens in-

coming updates to separate the harmless process noise from the outliers that

negatively affects the model. The integrated approach was demonstrated to be

more robust. In addition, model adaptation is very inefficient when there are

multiplicities in the process, multiplicities could occur due to process nonlin-

earity, switches in product grade, or different operating conditions. A growing

structure multiple model system using local PLS and PCA models have been

proposed to improve model performance around process conditions with mul-

tiplicity. The use of local PLS and PCA models allows the method to handle
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a much larger set of inputs and overcome several challenges in mixture model

systems. In addition, fault detection sensitivities are also improved by using

the multivariate monitoring statistics of these local PLS/PCA models. These

proposed methods are tested on two plasma etch data sets provided by Texas

Instruments. In addition, a proof of concept using virtual metrology in a

controller performance assessment application was also tested.
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Chapter 1

Introduction

1.1 Virtual Metrology Motivation

There has been an exponential increase in storage capacity, sensor avail-

ability and computing power in recent decades. Continuous improvements in

energy efficiency, safety, reliability have become performance drivers for many

manufacturing industries, where multivariate process monitoring, model-based

control and plant wide optimization strategies play important roles [5]. The

semiconductor industry in particular provides abundant data and opportuni-

ties for process monitoring and data-driven modeling. Integrated circuit man-

ufacturing takes place in semiconductor factories called fabs. In the manufac-

turing process, a recipe defines a set sequence of unit operations to be applied

to the wafer. Some of the example unit operations are oxide growth, chemical-

mechanical polishing, film deposition of metals, silicon and dielectrics, dopant

ion implantation, lithography, and etching [6]. These unit operations create

multiple layers of specifically patterned films on the wafer surface, forming

the integrated circuit (IC) that enables device function. Typically, more than

a hundred of these unit operations are needed in modern IC devices. The

process tools in a fab require large capital expenses and routine maintenance.

To maximize their utilization, fabs produce multiple products simultaneously

using high-mix threaded manufacturing. The sequence of tools. recipes, and

products involved defines the “manufacturing context”, which may include

1



the tool id, product id, layer id, and so on. The steps or runs with the same

manufacturing context are considered as “one thread”. Advanced scheduling

and recipe management tools keep track of the recipe and progress of each

wafer. From a fixed viewpoint such as a plasma etch tool, the recipe processed

between each run might vary depending on the product type.

To ensure quality and yield, modern fabs typically rely on run-to-run

process control with external metrology. Only the most critical processes have

metrology on every wafer; typically a dynamic sampling algorithm will adjust

the sampling frequency between one wafer per lot and one wafer every three

lots. But even in cases where metrology data is collected on every wafer,

excursions in product quality are not detected until many more wafers have

been processed. The inherent delays in external metrology prolong product

cycle time and introduce additional complexity in run-to-run controller tuning.

Modern semiconductor fab tools are equipped with fault diagnostic sensors

that generate large amounts of real-time data. These trace data have been

shown to correlate with quality relevant outputs[7, 8, 9, 10].

Virtual metrology (or inferential sensors) aim to predict end-of-batch

outputs using trace data and other end-point sensor readings. This concept is

illustrated graphically in Figure 1.1 Having a VM signal would allow the fault

diagnostic system to intervene and limit the quantity of wafers processed under

excursion conditions. This also reduces false alarms by calling for interven-

tions only in cases that directly impact wafer quality. In addition to excursion

prevention, a reduction in the average lot cycle time can be achieved by re-

placing physical metrology with VM on some fraction of the lots, and the

run-to-run system can adjust some recipe set-points to compensate for varia-

tions in product quality that do not reach the excursion limit. However, the

2



Figure 1.1: Conceptual illustration of how VM would improve process capa-
bility of a semiconductor manufacturing process, figure adapted from [1]

raw data collected from the tools are usually low in information. Significant

data preprocessing, cleaning, and modeling have to be done. In this disser-

tation, we focus on improving the development process of data-driven models

and their maintenance with special consideration in plasma etch applications.

1.2 Current Work in Virtual Metrology and Inferential
Sensors

A wide array of published work are available on virtual metrology and

soft sensors in the literature. Table 1.1 summarizes some of the representative

works. The approaches used in these works (such as partial least squares, prin-

cipal component analysis, kernel PCA/PLS, neural networks) are discussed in

the Appendix B in more detail and are omitted here for sake of brevity. A

common theme in these studies is that the methods are mostly focusing on

3



the algorithmic aspects of soft sensor development. Success or failure is largely

dictated by the prediction performance of the developed techniques. However,

as Kadlec et al. pointed out [11], there are inherent trade-offs between model

complexity and prediction performance. With literature results advocating

for more and more complex models in return for marginal improvement in

prediction, it becomes more challenging to maintain the developed models in

online environments. Thus, from a life cycle analysis perspective, the actual

regression algorithm plays a minor role during the development and deploy-

ment processes of a soft sensor model. A typical model development follows

the flow chart in Figure 1.2. It should be emphasized that process knowledge

and the use of engineering judgement are required in many steps of the model

development process; in addition, many of the steps listed are done repeatedly

until a candidate model is able to meet the required performance criterion.

With these factors in consideration, my research objective is to address the

key limiting steps in data-driven modeling of batch processes. Since batch

processes are common in many industries, these techniques are fairly general

and can be carried over without much modification.

1.2.1 Batch data pretreatment

Data preprocessing is one of the critical steps that impacts the per-

formance and interpretability of the derived models [11, 16, 13]. In continu-

ous processes, data quality issues manifest themselves in instrument precision,

sampling frequency, measurement outliers, and missing values in the process

data. A wealth of literature and industry experiences are available to address

most of these challenges [21]. In batch processes such as plasma etch, a mul-

tiway unfolding is usually first performed to convert the measurement at each
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Figure 1.2: Offline and online stages of soft sensor life cycle
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Table 1.1: Select data driven applications in virtual metrology and other in-
dustries

Authors Method Application Description Assessment

Gill and
Edgar [12]

PLS, static
Kalman fil-
tered MLR,
moving win-
dow PLS

Semiconductor
plasma etch

Compares the performance of
PLS models with several other
adaptive approaches

Data pretreatment procedure
was unclear, model not tested
across maintenance cycles

Cheng et
al. [8]

MLR Semiconductor
CVD

Proposes a mechanism to mon-
itor model quality by looking
at the statistical distribution of
the prediction outputs

Assumes Gaussian assumption
in determining if prediction is
reliable, results shown for only
20 wafer samples

Zeng and
Spanos [13]

PLS, MLR,
neural net-
works

Semiconductor
plasma etch

Reviews the overall model de-
velopment process and eval-
uates resulting model (PLS,
PCA regression, and BPNN )
performances

Demonstrates the need for
variable selection and align-
ment, methods description not
detailed enough for reproduc-
tion

Lynn et al.
[14]

PLS, neu-
ral networks,
Gaussian pro-
cess regression

Semiconductor
plasma etch

Compares the performance
of regression methods listed,
also compared cluster, window
adaptation, and static model
performances

Identifies limitation in data
availability for smaller local
models, GPR shown with
promising results but requires
a pre-selected small number of
inputs which makes them chal-
lenging when variable selection
changes

Bleakie et
al. [15]

Growing struc-
ture systems,
MLR

Semiconductor
PECVD

Divide the nonlinear drifting
operating space into smaller
partitions using GSOM

Allows for better adapta-
tion against abrupt process
changes, but suffers in higher
dimensions with more inputs.

Lin et al.
[16]

Dynamic PLS,
Hampel Identi-
fier

Rotary kiln
NOx monitor-
ing

Applies a combination of recur-
sive PCA outlier detection and
a static dynamic PLS model to
predict NOx concentration and
product concentration in a kiln

demonstrates industrial suc-
cess of a NOx soft sensor us-
ing online data, also shows the
need for online outlier removal
and data processing for online
deployment

Kadlec et
al. [17]

Incremental
local learning,
MLR, PLS

Polymerization
reactor cata-
lyst activity

Use fuzzy combination with lo-
cal experts, partitions based on
relative residual change

Works for nonlinear methods
but prone to over-fitting, dif-
ficult for input with higher di-
mensions

Fujiwara et
al. [18]

Just-In-Time
adaptation,
PLS

Chemical refin-
ing, continuous

Locate the most correlated seg-
ment of data and train a model
to make prediction

The Just-in-Time allows for
better adaptation against
abrupt process changes, but
has large memory and storage
requirements

Galicia et
al. [19]

Reduced or-
der, summary
statistics, PLS

Paper industry,
continuous
Kamyr digester

Proposes using time delay esti-
mation first and then introduce
lagged variables to better pre-
dict system dynamics

Simulated case study showed
good performance, but indus-
trial data did not show im-
provement of the RO-DPLS
over traditional methods

Dayal and
MacGregor
[20]

Weighted
recursive PLS

mining process
for online DMC
control

Multioutput PLS (PLS2) pre-
diction of ten process out-
put variables simultaneously,
model is updated using recur-
sive PLS with forgetting factor

The forgetting factor for speed
of adaptation was tuned based
on testing data. The adap-
tive algorithms still experi-
enced numerical difficulties re-
sulting in predictions that
“blow up” occasionally
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time sample into an individual variable [22]. The batch level regression (PLS)

or fault detection model (PCA) then attempts to correlate variations in these

variables to the batch to batch variation in the outputs. While this process

has been demonstrated to work well for a number of problems, the successful

case studies usually assume that the batch recipes run for a fixed duration

with consistent trajectory profiles that can be compared laterally across dif-

ferent batches. This is usually not the case for semiconductor processes. In

addition, to reduce the number of inputs to the regression models, batch pro-

cess models undergo feature extraction and data summarization. These steps

are usually based on intuition and qualitative process knowledge and requires

multiple trial-and-error attempts. The discussions in Chapter 2 focus more

on developing more rigorous methods of performing trajectory alignment and

feature extraction for batch processes.

1.2.2 Model performance degradation

Performance degradation in deployed soft sensors has been a key issue

in soft sensor research. Processes are never truly operating at a steady-state

when examined from a longer time-scale. Equipment maintenance, sensor

degradation, and personnel change all could have an impact on how the sys-

tem is operated. As a result, over periods of time, the process condition usually

deviates from the original process condition when data-driven models are de-

veloped. In addition, multiplicity is an challenge to soft sensor models, where

switching between product grade, recipe and equipment occurs due to sched-

ule or production constraints. Semiconductor data are characterized by both

multiplicity and gradual process drifts.

There have been many work on addressing these challenges [23, 24, 25,
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26, 27, 8, 28]. The main approach is to provide an adaptation mechanism

to allow automatic re-training of the online models. In these cases, data col-

lection and sometimes lab sampling of important quality variables cannot be

displaced entirely and still needs to be performed (maybe at reduced intervals).

Selecting what data to use to update the model becomes a difficult question

to answer. In addition, depending on the type of soft sensor in place, the

difficulty of retraining the model efficiently could range from trivial (simple

least squares) to very challenging (support vector machines, neural networks,

gaussian process regression). Furthermore, since most of these methods are

tested off-line where outlier removal was already done on the entire dataset,

these recursive and adaptive methods do not consider the issue of faulty up-

date data. Process multiplicities could also cause problems for soft sensors.

Multiple model systems and mixture models have been shown to be effective in

dealing with these scenarios. In Chapter 3, the issue with model maintenance

and modeling to deal with multiplicity will be examined in more detail. Two

novel methods are proposed to complement the existing approaches for model

maintenance of batch type processes.

1.3 Dissertation Outline

This next few chapters of this dissertation are organized as follows.

Chapter 2 focuses on the data preprocessing step prior to model de-

velopment. The first section discusses a new trajectory alignment (data syn-

chronization) method named Constrained selective Dynamic Time Warping

(CsDTW). The second section gives a critical overview of existing variable

selection techniques specific to Partial Least Squares (PLS) models. Following

the critical overview, a new technique utilizing a moving-window approach
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is introduced. The proposed new technique aims to address the shortfall of

current methods when selecting variables from industrial process data.

Chapter 3 discusses the topic of model maintenance and advanced mod-

eling frameworks. To improve the robustness of adaptive online PLS models,

a novel technique using total partial least squares (T-PLS) decomposition to

screen out outliers in the update data is proposed. To deal with multiple

operating states and process nonlinearity, a novel framework that combines

growing self organizing map with local PLS and PCA models is developed.

Chapter 4 presents the results of case studies conducted using data pro-

vided by Texas Instruments. The first section discuses the development process

of virtual metrology models for a gate etch and a metal etching process. The

second section discusses an novel application of the VM results in diagnosing

model-plant mismatch and improper tuning of run-to-run controllers. Lastly,

a variable selection case study using industrial process data from a chemi-

cal refining process is presented. This industrial case study demonstrates the

effectiveness of the proposed variable selection method in Chapter 3.

Finally, Chapter 5 details the scientific contributions of this doctoral

research along with a recommendation of future work.
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Chapter 2

Data Preprocessing and Variable Selection

2.1 Batch Data Challenges

Unlike typical time series data that are collected from a system under

continuous operation. There are multiple challenges associated with collecting,

pre-processing and analysis of batch data sets. The main challenges listed here

are by no means exhaustive:

Data Quality Data quality of batch data collected from industry is usually

inferior to its continuous counterparts. This problem has been high-

lighted by many researchers in the area [29, 30, 31, 5]. Because batch

processes usually follow a pre-defined recipe, some of the instrumentation

and sensors available during the design stage of the process are not avail-

able in production environments. This leads observability problems on

some of the critical state variables that are difficult to estimate ex-situ.

Recipe Changes Depending on the specific batch process being analyzed,

the recipe settings could remain fixed or be allowed to adapt. This is a

typical scenario in plasma etch run-to-run control, where the processing

time (or other manipulated variable) will be adjusted depending on final

critical dimension measurement feedback from the previous lots [32, 33].

The changing process conditions results in different length of time-series

data, which requires alignment and synchronization before modeling.

10



Furthermore, most of the multivariate statistical analysis techniques

make the assumption of steady-state operation and homoscedasticity,

meaning that the covariance structure of the data being analyzed is as-

sumed to be relatively constant. The validity of these assumptions are

uncertain in cases where there are constant drift and operational changes

in the batch processes, leading to performance degradation and some-

times failures of the derived models.

High Dimensionality Batch data can be visualized as three dimensional

data cubes(variable, relative sampling time, batch). These three dimen-

sional data structure are difficult to process using existing multivariate

statistical analysis and data-mining techniques. Although methods such

as PARFAC[34] and ALS[35] can deal with these three-way data struc-

tures, the end result and the model are often difficult to interpret and lack

transparency. A more common approach is through multi-way analysis

which unfolds the data into two dimensions. Since one of the dimensions

will be a composite dimension (its size is the product of the two orig-

inal dimensions), the dimensionality of the unfolded data is high, and

frequently exceeds thousands of variables. The high dimensionality of

the input dataset introduces problems in parameter estimation, matrix

inversion and over-fitting, which must be accounted for in modeling and

analysis.

Multiple Phases Having multiple phases in batch processes with unsynchro-

nized phase durations is another problem that needs to be addressed for

batch data [31]. Depending on the specific application, a particular phase

in a batch process can be configured to be open-loop, where a process

is performed for pre-determined period of time, or closed-loop, where a
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certain phase termination criteria must be met (for example, tank level

has to exceed a certain threshold, or the reactor has to be at a certain

temperature). In these instances, many factors could potentially affect

the phase evolution of the batch process. For example, if an end-point

detection sensor is broken or worn out, then during the downtime, the

batch process might be controlled manually and result in drastically dif-

ferent length and properties from runs. In addition, the multiple phases

are not equal in significance on the final product quality. Some of the

phases are simply preparatory or cleaning-up stages, whereas the reac-

tion phase might have the most impact on the product quality.

Nonlinearity and Non-steady state Since batch processes do not operate

at a steady-state, accumulation, depletion or reaction of materials are

always taking place in the sampled duration of each batch. As a result,

it is difficult to determine features to fully capture the variations or the

evolution of the process variable trajectories in a typical batch.

Lack of Quality Measurements In regression problems involving batch data,

the quality variable of interest is measured at the end of the batch, where

one measurement is made for every batch processed. Furthermore, to

save measurement costs, the quality measurement is only done selec-

tively on certain samples in every lot. The lack of available measurement

restricts the amount of data available for modeling and analysis.
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2.2 Trajectory Alignment

2.2.1 Motivating example

As the previous section has discussed, data collected from batch pro-

cesses are inconsistent in duration and across different variables and batches.

In addition, time series data in general also experiences analogous problems

when comparisons are required. In these cases, it is always desirable to make

sure the important trajectory features in the data (rise, overshoot, drop-off,

peaks, valleys) are aligned. Figure 2.1 illustrates the goal of trajectory align-

ment and its impact on subsequent batch process modeling. In batch process

modeling, it is often desirable to not only align geometric trajectory features

(rise, decay, peaks and valleys), but also event boundaries across different

phases.

2.2.2 Overview of existing trajectory alignment techniques

There are many methods in practice that aims to synchronize trajecto-

ries of that are of different durations. These methods differ in computational

complexity and also their alignment objective. Table 2.1 provides a brief sum-

mary of the advantages and disadvantages of each method.

There is no best alignment method that universally applicable. It is

often necessary to attempt multiple alignment solutions to determine the most

appropriate method for the given problem. Below, we briefly introduce the key

concepts and the mechanisms behind each alignment technique.

2.2.2.1 Truncation and padding

In truncation and padding, the alignment technique is very simple and

is based mostly on intuition. The assumption made in truncation and padding
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(a) Actual trajectory from a batch process showing misalignment

(b) Schematic showing the trajectory alignment workflow

Figure 2.1: Motivation for performing batch trajectory alignment
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Table 2.1: Summary and assessment the warping methods for trajectory syn-
chronization

Method Description Advantages Disadvantages Speed

Truncation
and Padding

Delete (longer) the ex-
tra time series or pad
(shorter) time series data
to the same length based
on a golden reference tra-
jectory

Easy-to-
implement

Does not ex-
plicitly align
features

Fast

Linear Time
Scaling

Use a monotonic batch
evolution indicator vari-
able (percent completion,
product concentration,
tank level) and stretch or
shrink linearly to ensure
every trajectory is of same
length

StraightforwardPerformance
dependent
on good
indicator
variable

Fast

Dynamic
Time Warp-
ing

Solves dynamic program-
ming problem to find the
most similar path between
two trajectories

Explicit
feature
alignment

Information
loss, tra-
jectory
distortion,
imple-
mentation
challenge

Medium

Correlation
Optimized
Warping

Solves dynamic program-
ming problem with sub-
optimization routines to
maximize correlation be-
tween trjaectory

Explicit
feature
alignment,
less distor-
tion than
DTW

Information
loss, com-
plex, imple-
mentation
challenge

Slow
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is that the initial and the end of the time series data are not as important as

the middle section of the data. When this assumption is valid, the longer time

series trajectory can be simply shortened by removing the head or the tail of

the data series. For shorter trajectories, average value from the head or tail of

the data series is calculated and then padded on to extend the length of the

trajectory being aligned.

This method guarantees that the processed trajectories are of equal

length. However, this method does not ensure that the dynamic features

within the time series data are properly aligned. As a result, its fidelity is

often not as high as other advanced methods. However, due to its simplicity

and ease of use, simple truncation or padding could serve as an effective first-

pass in assessing the nature of the batch dataset being analyzed.

Lastly, truncation and padding offers the minimal amount of informa-

tion loss and distortion to the given trajectory, and preserves all the dynamic

features provided that the features of interest are not in the truncation region

(head or tail region of the trajectory).

2.2.2.2 Linear time scaling

Linear time scaling (LTS) is another popular alignment technique that

is easy to execute and very efficient. This alignment method has been made

available in many commercial data analysis software packages [22]. In linear

time scaling, a batch maturity variable is chosen from the available measure-

ments. This variable is required to be monotonic and should ideally be in-

dicative of the progress of a batch process. For example, if an accumulation

reaction takes place inside a CSTR reactor with no outlet stream, then the

level of the reactor could be an indicator of the progress of reaction. Since the
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level of the tank will always start empty and increases until it is full, each level

reading corresponds with an unique one-to-one mapping towards the progress

of that particular batch.

To perform alignment, the indicator variable p is discretized from its

initial value to the final value.

δp =
max(p)−min(p)

K − 1

p0 = min(p)

pk+1 = pk + δp

pK = max(p)

The number of discretization points (K) is a controllable parameter,

but is usually set to the average number of samples in each batch observation.

At each discretized value of the indicator variable pk, linear interpolation is

then performed for every measurement xj.

xj,k = xaj + (xbj − xaj ) ∗
pk − pa

pb − pa
(2.1)

where superscripts a and b represents the nearest boundary indices that en-

closes the value pk. This results in K number of measurement vectors xk for

k ∈ (1, K). Since every batch will be interpolated to these K samples after

LTS, the trajectories will be aligned and ready for subsequent analysis steps.

The main advantage of LTS is that this is a very efficient technique

to align multiple trajectories at the same time. Provided that an accurate

linear batch progress indicator variable can be found (meaning that the value

of this variable varies linearly from the start to the end). The main drawback
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of LTS method is the reliance of a maturity variable. Since this variable is

used essentially to replace “time” as an alternative batch progress indicator,

improper selection or unavailability of such a variable greatly affects the result

of LTS method. However, ways to circumvent this problem using with-in batch

PLS models have been reported [36].

2.2.2.3 Dynamic time warping (DTW)

Dynamic time warping (DTW) is an advanced trajectory synchroniza-

tion technique originally developed for synchronization of sound waves in

speech recognition application. In DTW, a optimization problem is formu-

lated to maximize the geometric similarity. An efficient solution of this opti-

mization problem can be found using dynamic programming, hence the name

of the warping technique. Kassidas et. al. first [37] applied this method in

batch type process modeling. Because DTW explicitly defines the trajectory

optimality in the objective function, this method has been very popular in

the academic community. In the original formulation for speech recognition,

a symmetric alignment is performed, meaning that both the reference and the

target trajectory are warped. However, for the purpose of batch trajectory

alignment, an asymmetric version of the alignment technique is often used.

The asymmetric version of the alignment technique is introduced here in more

detail.

2.2.2.4 Correlation optimized warping (COW)

Correlation optimized warping (COW) is a classic segment-wise align-

ment method. Nielson et al. [38] developed this method for the alignment

of wavelength features in chromatography results. DTW without extensive
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Figure 2.2: Example solution of the Dynamic Time Warping Problem, figure
taken from [2]

tweaking and adaptation is not suited for this application because of distor-

tion and artifacts.

To perform COW, the trajectory is first cut into little segments, each

segments are stretched or shrunken to optimize the overall objective function

value (in this case, the correlation between two trajectories). The correlation of

each discretized segment between the reference and the target trajectories are

calculated after each warping step, a dynamic programming scheme similar to

DTW is employed to perform this comparison from the end to the beginning

to select the optimal slack/shift lengths for each segment. Implementation

details of COW can be found in [38, 39].

An advantage of COW over DTW is that COW does not require pre-

processing, such as calculating the derivative, or applying filters to smooth

out the trajectory to be aligned. The tuning parameters of COW also make
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intuitive sense and can be selected by gauging the average width of the chro-

matograph peaks to be aligned. However, the trade-off in COW is that the

method is much more computationally intensive, since correlations are used

instead of geometric distances in the optimization.

2.2.3 Constrained selective Dynamic Time Warping (CsDTW)

As outlined in Table 2.1, the four main types of alignment techniques

all have their advantages and limitations. While LTS and truncation meth-

ods are easy to perform because of their simplicity, the alignment results are

sometimes unsatisfactory. More advanced methods such as DTW and COW

employ optimization to achieve a better alignment, but the algorithms might

create distortion and artifacts. They are also computationally expensive. Fur-

thermore, because of the objective functions in these methods only guarantee

geometric alignment, the end result do not justify why the features should be

elongated or shrunken; thus leading to further scrutiny under first principles

based knowledge.

Figure 2.3 shows a hypothetical scenario during warping where the in-

verse response before the ramp up and the depletion near batch completion

are assumed to be correlated to the product quality. In this case, it is desirable

to truncate head and tail segments while keeping the key batch features (high-

lighted in rectangular boxes) free of distortion. In these cases, it would not

make sense to apply DTW or COW directly on the trajectory, since these key

geometric features will be made identical, thus destroying the information in

the variation across multiple batches. On the other hand, if simple truncation

is applied, the second feature (the depletion step) would be out of alignment

if the initial starting point is truncated, leading to poor alignment affecting
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subsequent analysis.

Figure 2.3: Illustration showing that only select regions in the batch trajectory
are relevant for modeling and monitoring of the batch process

To address these limitations that are encountered for batch data tra-

jectory alignment, a new method based on DTW is developed. The main

motivation is to preserve the information within the dynamics of the trajec-

tory as much as possible during alignment. Since any alignment performed on

the trajectory will always introduce some distortion and information loss, the

new proposed method reduces the distortion on the trajectory by selectively

warping the trajectories at regions of least impact on the output quality. As

a result, the proposed method is called Constrained selective Dynamic Time

Warping (CsDTW). The key assumption in CsDTW is that certain segments

in the batch trajectories are less important and can be allowed to freely warp,

while other trajectory segments are important to the process output and should

be preserved as much as possible. Following this assumption, the problem can

be divided into four steps as shown in Figure 2.4.

Figure 2.4 presents a flowchart detailing the overall procedure of Cs-
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1. Identify alignment markers in reference

2. Find matching markers features in target

3. Formulate constraint to preserve key 

features

4. Perform alignment on trajectory

Figure 2.4: Flow chart of Constrained selective DTW for alignment of a target
trajectory based on a reference trajectory

DTW. In the first step, important alignment markers of the reference trajec-

tory first need to be identified. These alignment markers reveals the location

of the important trajectory features that need to be preserved in the warp-

ing process. First principle knowledge could be incorporated in this step to

highlight important features based on process experience. In the absence of

first principle knowledge, variable selection and variance ratio analysis could

also guide the selection of appropriate alignment markers. The second step

aims to validate the existence of similar features in the target trajectory to

be warped. Since these key features could occur at different locations, this

step requires the efficient search of the entire trajectory length to identify the

correct markers. In the last two step of the process, traditional DTW based

alignment technique is carried out. The initial alignment markers are for-

mulated into the global constraint of DTW optimization to ensure that the

identified features are properly preserved. The rest of the trajectories are then

allowed to freely vary and allow for optimal alignment and synchronization of

batch trajectories.
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2.2.3.1 Mathematical framework of DTW

Before additional details about the proposed warping mechanism can be

discussed, the mathematical framework for warping and alignment in DTW is

introduced here. The nomenclature and the terminology follow the convention

in [3].

First, we define reference trajectory R and target trajectory T of length

N and M respectively as follows:

R := (r1, r2, . . . , rN) , T := (t1, t2, . . . , tM) (2.2)

We assume that the two trajectories are sampled at the same sampling

interval. To measure the quality of alignment, a local cost function (or local

distance measure) c is defined as:

c (rn, tm) = ‖rn − tm‖ (2.3)

This definition assumes that rn and tm is of same dimension (which means

same number of variables being measured).

Using the local cost function definition, we can define an alignment cost

matrix C ∈ RN×M

C (n,m) := c (rn, tm) (2.4)

The goal of DTW is to find a warping path through the local cost

matrix that gives us the minimal cumulative cost between the two trajectory.

The warping path P is a series of pair-wise vectors that map sample indices

from trajectory T to sample indices on R, and is defined as P = (p1, . . . , pL)

and pl = (nl,ml) ∈ [1 : N ] × [1 : M ]. The warping trajectory is constrained

by three conditions:
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• Boundary condition: p1 = (1, 1) and pL = (N,M).

• Monotonicity condition: n1 ≤ n2 ≤ . . . ≤ nL and m1 ≤ m2 ≤ . . . ≤ mL

• Step-size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L− 1]

The boundary condition ensures that the first and the last samples

map to the beginning and the end of the two trajectories. The monotonicity

condition ensures that there will be no backtracking or “folding” of trajectories

during warping. The step-size condition ensures that no sample indices will

be skipped and limits the amount of warping applied to only three directions

(0,1), (1,0) and (1,1).

Given any arbitrary warping path P , the total cost associated with the

warping path and the two trajectories in question can be defined:

cp (R, T ) :=
L∑
l=1

c (rnl
, tml

) (2.5)

With these definitions in place, we can formulate the objective of DTW

warping. The optimal warping path determined through DTW aims to mini-

mize the total cost cp(R, T ).

p∗DTW := arg min {cp (X, Y )} (2.6)

It is not hard to see that it would be very difficult to find p∗ for long

trajectories since the search space would be of dimension RN×M . An efficient

procedure to solve this problem in polynomial time O(M ·N) based on dynamic

programming has been devised.
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From the local cost matrix C(R, T ), a cumulative cost matrix can be

defined as:

D (n,m) := DTW (R (1 : n) , Y (1 : m)) (2.7)

where each element in the matrix D represents the cumulative cost accrued

arriving at (m,n) from the starting point (1, 1) by taking the optimal path

subjected to the three warping constraints.

The elements of the matrix D can be filled out efficiently using the

following relationship:

D (n, 1) =
n∑
k=1

c (rk, t1), n ∈ [1 : N ]

D (1,m) =
m∑
k=1

c (r1, tk) ,m ∈ [1 : M ] (2.8)

D (n,m) = min {D (n− 1,m− 1) , D (n− 1,m) , D (n,m− 1)}+ c (rn, tm)

Mathematical proof on the optimality on the cumulative cost matrix

D can be shown using dynamic programming principles [3]. They are not

provided here for brevity.

To perform DTW, the cumulative cost matrix D can be first calculated

using rules shown in Eq. 2.8. It takes O(M · N) iterations to populate the

entire cumulative cost matrix. After the D matrix is populated, the optimal

warping trajectory p∗DTW can be found by back-stepping from the end (N,M)

back to the starting point (1, 1) using the following rule.

pl−1 :=


(1,m− 1) , if n = 1
(n− 1, 1) , if m = 1
arg min {D (n− 1,m− 1) , D (n− 1,m) , D (n,m− 1)} , otherwise

(2.9)
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Since DTW generates a symmetric warping path (meaning that both

the target and the reference trajectory will be warped to give us the best

alignment), it is not suitable for process data alignment. For process data

alignment, the reference trajectory is usually selected from a set of “golden”

batches that do not need to be distorted; thus, only the trajectories to be

aligned (target) require warping. A symmetric warping path can be converted

to an asymmetric one by applying the following rule:

Rasym = R
tasymi = median

(
tasymj

)
, j ∈ (pj|pr = ri)

(2.10)

Equation 2.10 indicates that if there is a one-to-many correspondence from the

points on the reference to the target trajectory, then the median of the target

trajectory values will be taken as the reference point value. The length and

shape of the reference trajectory itself remains unchanged.

Figure 2.5 shows a result of the asymmetric DTW algorithm on a simple

two-trajectory warping problem. Figure 2.5(a) shows that the target trajectory

has been warped to conform the reference. In this case, the information loss

is apparent in the second peak. The higher amplitude of the target trajectory

was reduced to a single “blip” at the maximum point of the second peak,

which could potentially be filtered out as an outlier in subsequent analysis.

Figure 2.5(b) shows the cumulative cost matrix D for this problem. The

darker and more blue color indicates areas of lower cumulative cost. The

purple line indicates the optimal path which results in the lowest cumulative

cost as defined in Equation 2.5.
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Figure 2.5: Trajectory plot and diagnostics from before and after DTW

2.2.3.2 Step 2. Subsequence marker identification

Under the assumption that a series of identified alignment markers from

Step 1 in Figure 2.4 has been obtained. Step 2 is then to locate the matching

alignment markers on the target trajectory. This requires a fuzzy search of the

alignment markers in the target trajectory. Figure 2.6 illustrates the defini-

tion of the problem graphically. Segments marker 1 and 2 shown in the figure

(the peak and the step change) are first identified in Step 1 either through

process knowledge or statistical analysis (will be discussed later). Using these

segments, a fuzzy search on the target segment is then performed. Because the

reference trajectory segments are most likely to be shorter than the target tra-

jectory to be aligned, this alignment marker search step is called subsequence

marker identification.
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Figure 2.6: Alignment markers (key-feature markers) being assigned to loca-
tion M1 and M2 on the target trajectory

Fortunately, identifying similar subsequences from another longer source

has been a recurring problem in many fields such as speech detection, image

processing and DNA-signature matching [3]. As a result, there has been plenty

of research in identifying subsequences. One of the solution involves modify-

ing the original DTW formulation and can be solved with high efficiency. The

details of this algorithm based on DTW is discussed here.

Define reference alignment marker segment R = (r1, r2, . . . , rN) and

target trajectory T = (t1, t2, . . . , tM) where N � M . The goal is to find

T (a∗ : b∗) := (ta∗, ta∗+1, . . . , tb∗) with a∗ < b∗ and a∗,b∗ ∈ [1,M ].

Using the previous notation introduced, this can be written as a DTW

problem as follows:

(a∗, b∗) := argmin
(a,b)∈[1,M ],a<b

(DTW (R, T (a : b))) (2.11)

The difference between this problem and the original DTW is that we

now have additional two degrees of freedom on the boundary of the target
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trajectory (a and b). In other words, since the segment R is a continuous vec-

tor, DTW optimization constraints can be relaxed to allow for these additional

degrees of freedom.

To relax DTW constraints, alignment costs for the mismatch at the

beginning and the end should be eliminated. This can be done in two phases.

First, the boundary condition for the accumulated cost matrix D at the end

of the trajectory is modified according to the following rule:

D (n, 1) :=
n∑
k=1

c (rk, t1) , n ∈ [1 : N ]

D (1,m) := c (r1, tm)
(2.12)

Recall in Equation 2.8, D (1,m) is defined as
m∑
k=1

c (r1, tk) ,m ∈ [1 : M ]. The

new D definition essentially omits cost incurred by misalignment at the end

of DTW. This allows b to vary freely. The rest of the elements in D can still

be populated using the same update rule in Equation 2.8. As a result, the

optimal boundary location b∗ can be found by solving:

b∗ = argmin
b∈[1:M ]

D (N, b) (2.13)

After the right boundary b∗ has been found, target trajectory can be

truncated T to T ′ = (t1, t2, . . . , tb∗) since the segment between [b∗,M ] do not

contain information of interest. To find left boundary a∗, the optimal warp-

ing path between the segment R and the truncated trajectory T ′ need to be

computed:

pa∗ = argmin
p

DTW (R, T (1 : b∗)) (2.14)

To improve computational efficiency, the matrix D found in the first

step of subsequence marker identification can be re-used here. Since the only
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difference in D occurs during m ∈ [b∗,M ], re-computation of D is not required.

Let the optimal warping path pa∗ be (p1, p2, . . . , pl). This problem can be

solved by back-stepping from the end by setting pl to (N, b∗) and following

update rules given in Equation 2.9.

The left boundary a∗ of the segment is then the largest index value

i that satisfies pa∗i = (i, 1). Figure 2.7 clarifies how the location of a∗ is

determined. Note that the warping path p has been plotted as connecting

lines between the two trajectories. The value of a∗ is the largest index before

the warping coordinates moves onto the second point (when the warping vector

starts showing (. . . , 2) in the target segment).
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Figure 2.7: Determining the marker boundary a∗ in subsequence marker iden-
tification

To modularize and simplify subsequent discussion of CsDTW, the sub-

sequence marker identification algorithm introduced in this section can be

compressed into a function:

(a, b,∆) = subsequenceDTW(R, T ) (2.15)
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where given a shorter feature segment R and a longer full length trajectory

T , a and b are the boundary indices for T that gives us minimal cumulative

difference in distance, ∆, between R and T (a : b). The cumulative distance ∆

is not used in later alignment steps, but it can be kept as a diagnostic indicator

for abnormal batches or runs.

Figure 2.8 shows the subsequence marker identification result of a sim-

ulated case study. On the left figure, both the alignment feature (sharp peak

highlighted in red) and the the target trajectory (blue dotted line) are shown.

In the middle figure, the red alignment marker has been shifted to the location

identified through subsequenceDTW, which can be visually confirmed to be

the correct location. Figure 2.8(b) shows the cumulative cost matrix of the

subsequenceDTW solution. The thick purple line denotes the trajectory of

optimal alignment after solving the DTW problem. It should be noted that

the starting point and the ending point of the optimal path do not occur at

the diagonal vertices of the matrix, which means that the boundary condition

constraint for DTW has been removed and allows for free movement of the

alignment marker segment.

2.2.3.3 Step 3. Generating constraints for feature preservation

After Step 2 is completed, segments of target trajectory that are matched

against the alignment markers can now be located by their boundary indices

(list of as and bs). Since these features should not be distorted during align-

ment, global bandwidth constraints are formulated to prevent warping during

these segments of the trajectory.

Two types of constraints exist in a DTW problem. The first kind

is called local or slope constraint, they limit the range of allowed slope for
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Figure 2.8: Example result of subsequence marker identification using an fea-
ture segment on target trajectory

the optimal path (see Figure 2.9). The second type of constraint is called

global or band constraints. These constraints are defined globally by declaring

certain zones in the cost matrix D to be illegal during the back-stepping path

search. Two popular bandwidth constraints in the DTW literature are shown

in Figure 2.10.

Figure 2.9: Three local/slope constraints typically seen in DTW. (a) No slope
constraint, (b) Slope constraint of (0.5, 2),(c) slope constraint of (1/3, 3) [3].

To restrict warping for segments that were identified as alignment mark-
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Figure 2.10: Three global constraints: (a) Sakoe-Chiba band with width T ,
(b) Itakura constraint,(c) path p∗ in violation of the Sakoe-Chiba constraint
[3].

ers, global constraints can be defined around these key features to restrict the

warping path to only proceed diagonally (meaning that there will be no dis-

tortion). Global constraints can be defined by declaring the local cost of the

illegal zones as infinite:

c (n,m) :=∞ for (n,m) ∈ illegal zone (2.16)

To restrict the warping path to only move diagonally across the region

mapping key alignment features, the following modification to the local cost

matrix is applied:

c (n,m) :=∞ for n ∈ [α, β] ,m ∈ [a∗,b∗]
c (n,m) := 1 for (n,m) in (α : a∗, β : b∗)

(2.17)

where α and β are alignment marker bounds on the reference trajectory R

and a∗ and b∗ are the subsequence found in target trajectory T . The updated

local cost matrix is denoted Cconstraint to distinguish it from the original local

cost matrix. Making the element of a local cost matrix infinity essentially

will remove this element from the backtrack searching of the optimal warping

path. Figure 2.11 shows an example of the global constraint generated using
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information from subsequence marker identification. The two diagonal lines

indicate areas with key trajectory features that should be preserved during

alignment.
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Figure 2.11: Example of the alignment markers being applied as global con-
straints, Warping is only allowed in the black regions.

2.2.3.4 Step 4. Solving the globally constrained DTW

After completing Steps 1-3, all the pre-requisites for the modified DTW

problem are in place. Solution of the modified DTW can be obtained using

the same technique as the original DTW problem described in earlier sections.

Setting the local cost of the illegal zones to infinity implicitly incorporates

the global constraints into the optimization solution. To summarize, detailed

algorithm of CsDTW are tabulated here for completeness:

From Table 2.2, the complexity of CsDTW can be shown to be poly-

nomial time. Since each iteration of subsequenceDTW function requires

executing DTW once, CsDTW will require (I + 1) iterations of the DTW al-
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Table 2.2: The CsDTW algorithm for batch trajectory alignment

Step

1 Given trajectories R := (r1, . . . , rM), T := (t1, . . . , tN), identify key
feature marker bounds (αi, βi), i ∈ I

2 Calculate a∗,b∗ :=subsequenceDTW(R(αi : βi), T ) for each segment
identified in Step 1.

3 Formulate the global constraint matrix according to Equation 2.17
4 Solve the globally constrained DTW problem for optimal path p∗ =

DTW (R, T, Cconstraint)
5 Apply asymmetric conversion from warp path p∗ using Equation 2.10

to obtain final target trajectory

gorithm to complete, where I is the number of feature segments identified in

Step 1. As a result, the total complexity of the algorithm is O(I ·M ·N). In

practice, since the number of alignment markers identified in a batch process

trajectory typically do not exceed five, the proposed algorithm can be solved

just as efficiently as any DTW alignment problem. This efficiency is gained

largely through the use of dynamic programming principles in improving the

efficiency of searching for the optimal path.

2.2.3.5 Performance comparison with DTW, COW, truncation and
interpolation

To compare the alignment performance of CsDTW method, all of the

alignment methods were tested on a simulated dataset and an actual batch

dataset from the semiconductor industry.

The five methods being tested are: simple truncation, LTS (interpo-

lation), DTW, COW and CsDTW. The method for DTW was based on the

algorithm described in [37]. COW was performed using MATLAB library

provided by [40].
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Figure 2.12 shows two sets of trajectories to be aligned. The reference

trajectories are solid red lines and the target trajectories to be warped are in

blue dashed lines.
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Figure 2.12: Reference and target trajectories to be aligned

Figure 2.13(a) shows the comparison results of the five different align-

ment methods on a set of simulated trajectories.

For the first subplot (simple truncation), both the head truncation

and the tail truncation cases are plotted for completeness. In both cases,

the truncation only enforced the trajectory to be of same length and did not
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result in improvement of the alignment of features. In fact, the head-truncation

made the resulting trajectory (green dotted line) even further away from the

reference trajectory, leading to information distortion.

In the interpolation case (2nd subplot), since an indicator variable is

unavailable, the batch lengths are simply “compressed” to be of same length as

the reference trajectory. The resulting warped trajectory still follows the orig-

inal target trajectory closely, but the alignment with the reference trajectory

did not improve.

In the third case, the DTW warped trajectory is identical to the refer-

ence trajectory with the exception of a peak at sample number 200. While the

alignment is highly successful, this outcome is undesirable since the between-

trajectory information has been lost completely during alignment.

In the fourth case, the COW warped trajectory behaves much better

than the previous three candidates, the peaks are aligned at the right loca-

tion and the trajectory length is now synchronized. However, upon closer

inspection, the first peak (sample 80-120) in the warped trajectory exhibits a

slightly heavier left tail than the target trajectory, indicating that COW has

introduced some slight distortion. In addition, the parameters for COW has

been determined through trial and error to achieve the best optimal alignment,

which would be a strenuous tuning step for alignment of larger data sets.

In the last case, the alignment markers from segment 1 (75:120) and

segment 2 (170:250) are used. The purposed method was able to achieve

good alignment with minimal distortion. To show the difference between the

CsDTW versus the traditional DTW formulation, Figure 2.14 shows the cu-

mulative cost matrix comparison and the optimal path (purple line) of both

methods. In both graphs, lower values are represented using colder colors and
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higher values in warmer colors. In Figure 2.14(b), the dark red colored indicate

the enforced global constraint zones. The distinctively colored rectangles are

regions where the trajectories are allowed to warp. In Figure 2.14(a), there are

no restrictions on the warping path; consequently, there are two cases of tar-

get trajectory being compressed into a single point (highlighted in red circles).

These horizontal lines in the warping path indicate that there are information

loss and compression of trajectory taking place; these behaviors are usually

undesirable.
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Figure 2.13: Comparison of the five warping methods on (a) simulated trajec-
tories, (b) voltage probe data

Figure 2.13(b) shows the alignment results of the five warping methods

using voltage probe data from a batch process. Since the trajectories are zero

padded at the beginning and the end to ensure that the entire batch is of

same length. Truncation and interpolation alignment will use the first non-
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Figure 2.14: Warping alignment diagnostics of DTW versus CsDTW

zero values in the trajectory to align the data. Their results are shown in

subplots 1 and 2. Truncation was only able to align the first step change. For

interpolation, the target trajectory was compressed according to the reference

trajectory and resulted in very good alignment. However, the length of the

trajectory has been shortened (the warped trajectory was cut off at 118). The

DTW result (in subplot 3) without any constraint also resulted in a similar

trajectory profile as interpolation. The last two subplots showing both the

COW and the CsDTW gave good alignment results without any changes in the

duration of the warped trajectory length. For CsDTW, the alignment marker

used was segment (26:114) from the reference trajectory since the voltage

probe measures the duration of the plasma chamber activity during this period.

Likewise in the simulated case study, a trial and error procedure was performed

to estimate the slack and the number of segments for the COW algorithm to

optimize for the best alignment results.

In both cases, CsDTW was able to outperform truncation, LTS (or
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interpolation) and DTW alignment, while also achieving similar alignment

results when compared with the COW method. However, CsDTW excels in

computational speed since it only solves a constrained DTW problem and does

not require repeated evaluation of the correlation coefficients. In addition,

CsDTW offers modeling practitioners an intuitive way to specify the method

tuning parameter (just identify key feature markers that should be preserved)

and does not require trial and error to find the optimal tuning parameters.
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2.2.4 Extensions of CsDTW

Optional extensions of CsDTW will be discussed. These extensions are

not required for the main algorithm but can be implemented to allow CsDTW

to deal with several special scenarios.

2.2.4.1 Alignment marker selection

It is common that process knowledge or expertise are not available

to the model developer. Since CsDTW requires identifying the key trajectory

features that need to be preserved, some preliminary analysis can be performed

beforehand to help determine the regions of interest. Here two criteria used in

assisting identification of key alignment markers will be introduced.

Inter-batch vs Intra-batch variance ratio: Calculating the vari-

ance ratio along a batch trajectory is a quick way to filter out non-informative

segments in a batch trajectory. The variance ratio is a ratio of the inter-batch

variance versus the intra-batch variation at different time segments. The tra-

jectory will be first split into N equal-length segments. For each segment, the

inter-batch variance and the inter-batch variance can then be calculated. For

inter-batch variance, the average value of each segment is used in calculating

the variance. For intra-batch variance, the variance of each segment is first

calculated and then averaged. A ratio value of lower than 2 generally indicates

that particular segment is not useful for modeling and can be filtered out. The

remaining segments can then be plotted and used as feature alignment mark-

ers for CsDTW. When there are multiple sensor readings, the variance ratio

vector will become a matrix of dimension RNsegs×Nvariables . The correct trajec-

tory alignment markers can be based on the common regions of high variance

ratio value.
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Variable importance in projection (VIP): A preliminary multiway

PLS model can be constructed by first synchronizing the trajectories using triv-

ial alignment methods such as truncation or interpolation. From this prelimi-

nary PLS model, the variable- importance-in-projection (VIP) of each variable

can be calculated. The VIP criteria is commonly used in PLS model develop-

ment to filter out uninformative variables to simplify the resulting model. In

loose terms, the VIP value is a measure of the contribution of each variable in

the identified overall correlation of the model. Section 2.3 discusses the details

of VIP and PLS model variable selection. For a batch dataset of dimension

X ∈ RI×J×K , where I is batch number, J is variable, and K is the sample

time, the VIP vector for the multiway model will be of dimension R1×J ·K . To

improve visualization, the VIP values of each multiway variable can also be

folded back into their original two-dimensions and becomes a VIP matrix:

V IP1d ∈ R1×J ·K refold−−−→ V IP2d ∈ RJ×K (2.18)

Figure 2.15 shows an example VIP matrix heat map plot for a semi-

conductor process. The red colored cells indicate regions of higher VIP. From

this figure, it is apparent that three segments (durations 20-40, 70-80, and 90-

100) exhibited the most significant correlation. These segments of the batch

trajectory can then be verified visually and used in the CsDTW algorithm for

better trajectory alignment.

However, since performing alignment will alter the structure of the

original training dataset X, this procedure might need to be carried out itera-

tively until convergence. Convergence is defined by checking for changes in the

alignment markers selected. In practice, the number of iterations required to

achieve convergence has never exceeded five. Figure 2.16 shows the flowchart

of iterative process.
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Figure 2.16: Flowchart for iterative marker selection and CsDTW alignment
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2.2.4.2 Local constraints and derivative filters for noisy data

DTW based method has been known to suffer from artifacts and dis-

tortions in aligning trajectories with excessive measurement noise [41]. As a

result, multiple work has been published on dealing with noisy trajectories by

taking the derivative of the time series being aligned, or applying filtering to

the trajectory derivatives [41, 40, 42]. Since the CsDTW formulation is based

on DTW and solves the same optimization problem, these methods can be

easily extended to CsDTW as well. Here the robust derivative dynamic time

warping (RDDTW) method will be briefly introduced [41].

In RDDTW, the algorithm applies a Savitzky-Golay filter to the deriva-

tive of the trajectories before they are aligned using DTW. The SG filter is

widely used filter that combines polynomial regression with moving-window

[43]. The smoothing strength can be adjusted by changing the window size

and the degree of the polynomial. To carry out “robust derivative constrained

selective dynamic time warping (RD-CsDTW)”, one needs to calculate the

derivative of the trajectory and then apply SG filter prior to executing the

CsDTW algorithm.

In addition, since CsDTW utilizes global constraint to preserve align-

ment features in the trajectory. The global constraint will sometimes conflict

with band constraints (a type of global constraint) that are commonly used

in DTW. Although this scenario is extremely rare as CsDTW is designed to

avoid excessive trajectory distortion, local constraints can be implemented in

a similar fashion like regular DTW. Figure 2.9 shows three types of local con-

straints commonly seen in DTW. These local constraints can be implemented

by modifying Equation 2.8 to restrict the search space of the optimal path,

additional details are not discussed here and can be found in literature [3].
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2.3 Variable Selection for PLS Models

2.3.1 Introduction

Data driven soft sensors apply multivariate statistics and machine learn-

ing techniques to find empirical correlations between process variables and

quality variables. Partial Least Squares (PLS) and Principal Component Anal-

ysis (PCA) are two popular techniques for finding these correlations. There

are many publications related to the application of these methods for soft sen-

sors and multivariate monitoring [44, 45, 46, 47]. More recently, reduced order

dynamic PLS based soft sensors have been developed for the monitoring of

processes experiencing large transport delays [19]. PLS regression in particu-

lar is suited to deal with high-dimensional data in the presence of collinearity.

In practice, performance of the regression models could often be improved

when a subset of highly relevant variables is used instead of the whole training

dataset [48]. The reduced models are more resilient to measurement noise and

are often more interpretable. Thus, a successful variable selection procedure

will improve the interpretation and identification of the underlying process

conditions.

The popularity of PLS methods has also generated interest in PLS

variable selection techniques. Mehmood et al. [49] showed that the num-

ber of publications in the field of PLS modeling and related methods has

increased exponentially since 1988. The field of application outlined in this

review ranged from gene selection data to gene expression data, quantitative

structure-activity relationships (QSAR) descriptors selection, spectroscopy wave-

length selection, and bio-marker selection. Kalivas and Sutter provided an-

other review of variable selection in the field of QSAR descriptor selection

[50]. Saeys et al. reviewed popular selection techniques in the field of bioin-
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formatics [51]. While being quite comprehensive in the methods reviewed,

these reviews did not cover PLS variable selection in the context of industrial

process data that involves multiple operating modes. Since multivariate sta-

tistical models are heavily influenced by the properties of the underlying data,

the variable selection methods suited for bio-marker selection are likely to be

inappropriate for process variable selection. As a result, the goal of this section

is to evaluate the existing methods for variable selection of industrial process

data, and to present an improved variable selection method appropriate for

industrial processes with multiple operating modes.

The structure of this section is organized as follows. First, we evaluate

existing variable selection methods; several representative techniques will be

implemented and assessed. Second, we will present our improvements to the

current methods to address their shortfalls. Last, we will present evaluation

results using a set of model-free criteria that help in the assessment of variable

selection performance.

2.3.2 Background

2.3.2.1 Data-driven PLS and variable selection methods

An in-depth introduction of PLS methods is available in [52, 53, 36],

and thus these methods are not discussed in detail here. A brief introduction

of these multivariate methods are also provided in the Appendix B of this dis-

sertation. The soft sensor model development process typically consists of data

gathering, pre-processing, variable selection, model development, and model

validation. Implementation details of each step will vary depending on the spe-

cific application. Kaldec and Sliskovic provided comprehensive reviews of the

soft sensor development process for interested readers [11, 54]. For industrial
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processes, the model development work flow can be summarized in Figure 2.17.

Defining the proper model scope, applying the right pre-processing steps and

performing model validation are critical steps in addition to variable selection.

Expert knowledge and first principles-based understanding of the process are

useful aids in pre-screening variables, transforming nonlinear variables and

validating models. Soft sensor modeling practitioners should maximize pro-

cess knowledge integration to give physical significance to the resulting PLS

models.

Process Scope Definition

Off-line Data Extraction

Data Pre-processing

Variable Selection

Model Parameter Estimation

Good Enough?No

Yes

Implementation and Online 

Validation

Process 

Knowledge

Figure 2.17: Illustration of a typical soft sensor model development process

There are many existing variable selection methods specific to PLS

regression. A general observation made from this body of research is that most

variable selection methods calculate a variable importance ranking metric and

then apply this metric in the subsequent steps to find the optimal variables.

Mehmood et al. and Saeys et al. suggested categorizing these methods based
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on the mechanism of variable ranking and selection into three types - filter,

wrapper, and embedded [49, 51]. Figure 2.18 graphically depicts the major

differences among these three types of selection methods.

Embedded

PLS
Algorithm

WrapperFilter

PLS

Filter based on metric

Update PLS

PLS

Evaluate (metric), Rank, 
Filter (or Permute)

Update PLS

Projection

Variable Selection+
Normalization

Rotation

Deflation

X,Y

XA,Y

X,Y

No
Completed?

(a) (b) (c)

Figure 2.18: Three categories of PLS variable selection methods: (a) filter, (b)
wrapper and (c) embedded

2.3.2.2 Selection method categorization

Filter methods, as the name indicates, will first calculate the variable

importance ranking criteria and then apply a filtering rule, such as threshold

cut-off, to remove the unwanted variables. The threshold calculation and vari-

able importance ranking metrics utilize various filtering methods. The most

popular metrics used are Variable Importance in PLS Projection (VIP), out-
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put correlation coefficient, and normalized beta coefficients. Filtering based

methods are the most common methods used in process chemometrics. Ex-

tensions of the filtering methods include subsets selection by Hoskuldsson [55]

and interval PLS by Norgaard [56], where intervals or subsets of variables

are used instead of individual variables. Filtering methods are implemented

in most commercial modeling software packages such as SIMCA, ProMV or

PLS-Toolbox; these methods are often preferred for their simplicity.

Wrapper methods and embedded methods are more complex than filter

methods. The PLS algorithm itself remains unchanged in wrapper methods.

Instead, wrapper methods focus on optimizing a quality criteria, such as the

prediction performance, by adjusting the variable selection process. The op-

timization routine is often iterative and requires repeated application of PLS

algorithms. Specific examples of this class of variable selection techniques are

stepwise selection (forward and backward) [57, 58], Uninformative Variable

Elimination (UVE-PLS) [59], Subwindow Permutation Analysis (SwPA) [60],

Genetic Algorithms [61, 62, 63] variable selection, and Competitive Adaptive

Resampling (CARS) [64]. The main benefit of using wrapper methods is that

more information can be extracted from the variable selection process. Most

methods in this category can provide suggestions toward the optimal number

of variables. However, wrapper methods are prone to the over-fitting of train-

ing data. In addition, it is often more difficult to interpret exactly why the

variables are included in the final model without going through a strenuous

debugging process.

Lastly, embedded methods perform variable selection directly inside the

PLS algorithm by changing the PLS loading weight vectors (w). Examples of

methods belonging to this class are sparse PLS (sPLS)[65], Iterative Predictor
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Weighting (IPW-PLS)[66], powered PLS (PPLS)[67], and Interactive Variable

Selection (IVS)[68]. The main difference between these methods lies in the way

that the weight vectors are adjusted. The benefit of embedded methods is their

computation speed since variable selection and PLS estimation are performed

concurrently. However, a practical issue that was frequently encountered is in

the tuning of variable selection behavior. The effect of the tuning parameter

(if there is one) on the final variable selection is often unclear and behaves

unpredictably, thus making it difficult to apply embedded methods without

prior knowledge of the expected variable set.

2.3.3 Overview of current methods

Table 2.3 summarizes the selection metrics, tuning parameters, main

advantages and disadvantages of the representative methods from each class.

These methods are chosen based on their popularity in literature citations and

also their ease of implementation for large data sets. Each method was imple-

mented in MATLAB and tested on an industrial data set. For simplicity, we

picked one method from each class for further analysis and summarized the

other potential candidates in Table 2.3. Readers can refer to the original arti-

cles on these methods for a more comprehensive introduction to the methods

and their properties.

2.3.3.1 Filtering method - VIP filtering

Variable importance (or influence) in projection is introduced by Wold

to account for the importance of variables in 3D QSAR drug design [36, 69].

This metric has also been used extensively in process chemometrics. The VIP

calculation is straightforward once the loading, weights and the scores of the

51



Table 2.3: Critical overview and assessment of several selected representative
variable selection methods in filtering, wrapper and embedded categories

Method 
Name 

Selection 
Metric 

Tuning 
Parameter Advantages Disadvantages 

VIP Filtering 
by Wold et al. 

VIP None - Simple, results are interpretable, 
accounts for influence of input 
variables for both explaining X and Y 

- Only a ranking, requires judgment 
and further analysis 
- Collinear variables will bias ranking 

Beta 
coefficient 
filtering 

Beta 
coefficient 

None - Simple, results are interpretable. Can 
be used in conjunction with regression 
parameter significance testing 

- Same as above 
- Subjected to scaling issues as well 

Subwindow 
Permutation 
Analysis 
(SwPA)  
by Li et al 

Rank-sum P 
scores 

Number of 
sampling 
loops, number 
of sampled 
variables, 
percent testing 
data 

- Modeling method independent 
-  Statistical testing based, does not 
utilize existing weightings or 
importance rankings native to VIP 
- Provides graphical visualization of the 
selection process 

- Does not return an optimal set of 
variables 
- Effects of tuning parameters unclear 
- Non-Gaussian residuals (i.e. lots of 
outliers) will reduce the efficiency of 
this method 

Uninformative 
Variable 
Elimination 
(UVE) 
by Centner et 
al. 

VIP/Beta 
coefficient or 
correlation 
coefficient 

Multiplier to 
the cut-off 
threshold 
reliance level 

- Provides a rigorous cut-off criteria for 
uninformed variables 
- Simple, does not require iteration or 
changing the internal PLS algorithm 

- Number of variables selected cannot 
be easily adjusted 
- Collinear variables will bias the 
ranking and filtering of other variables 

Stepwise 
Elimination 
by Frank, 
Fernandez, 
and others 

VIP or beta 
coefficient or 
variable wise-
Q2 

Number of 
variables in 
the final model 

 - Simple and interpretable 
 - Tuning parameter directly relevant 
to the end model 
- Parameter selection / elimination 
based on statistical testing 

 

 - Can get stuck in local optimal 
 - Requires iterative evaluation of 
cross-validated performance metrics 
- Still relies on the same variable 
ranking metrics, so marginal 
performance improvement 

Competitive 
Adaptive Re-
weighted 
Sampling 
by Li et al. 

PLS direction 
weights (w) 
and Q2 from 
different 
sample runs 

Number of 
sample loops, 
number of re-
runs 

- Gives recommended set of variables 
- Visualizes the performance 
improvement against other possible 
models 

 - inconsistent selection results due to 
random sampling 
- random search based, difficult to 
interpret or justify selected variables 
- Prone to over-fitting the training 
data 

Sparse PLS 
(sPLS) 
by Chun and 
Keles 

Weight (w) in 
PLS loop 

Eta (sparsity 
multiplier used 
in determining 
threshold 
weights) 

- Has good theoretical foundation 
- Tuning by adjusting the sparsity 
parameter 
- Requires no iteration 
- Provides a definitive set of optimal 
parameters 

- Prone to collinearity problems in 
selected variables 
- Sparsity tuning parameter is 
nonlinear 
- Difficult to select the right 
combination of PLS latent 
components and sparsity parameter 

Interactive 
Variable 
Selection (IVS) 
By Lindgren at 
al. 

 

Transformed 
PLS direction  
weights (w) 

None (tuning 
parameter is 
optimized by 
the algorithm) 

- Independent variable selection along 
each principal component direction 
- Provides a more rigorous way to 
define the threshold parameter 

- inner cross-validation loop not well 
justified and explained 
- each component will have separate 
set of variables, leading to difficulties 
in interpreting scores and loadings of 
the resulting PLS model 

Powered PLS 
(pPLS) 
by Indahl 

 

Decomposed 
PLS direction 
weights (w) 

Bounds for 
optimization 
of tuning 
parameter 

- Offers an alternative interpretation 
of PLS loading weights, decomposes 
into correlation and variation 
- Tuning parameter optimized over the 
specified space to maximize 
correlation 

- Complex tuning needed with 
confounding tuning parameter effects 
- Performance is poor compared to 
other available methods 
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PLS regression have been determined. The VIP measure for the jth variable

in PLS regression can be calculated as follows:

V IPj =

√√√√p
A∑
a=1

SSa/SST (waj/‖wa‖)2 (2.19)

where p is the number of variables, A is the total number of components,

SSa is the output variance explained by the ath component, SST is the total

output variance,
waj

‖wa‖2
is calculated using loading weight vectors waj for each

component and represents the importance of the variable j for component a.

In Equation 2.19, The VIP is a cumulative measure of the weight of

each variable relative to the other variables. The sum of squares explained by

the ath component acts as weights to account for the diminishing predictive

power of additional principal components.

To select variables using the VIP, the VIP values are sorted in de-

scending order. A cut-off threshold can then be estimated subjectively based

on process knowledge or through iteration to optimize for a certain desired

performance criteria (in which case the VIP filtering behaves like a wrapper

method). The VIP filtering has been the preferred method in most variable se-

lection scenarios because of its speed and efficiency. The results are also easy

to interpret and can be easily decomposed to identify anomalies in loading

weights or principal components.

While VIP filtering provides a relatively strong performance in most

scenarios, the limitations of the VIP filtering method are as follows. First, the

VIP filtering method provides multiple methods to set the variable elimina-

tion criteria, but it is unclear which method works best in a given situation;

previous experience and subjective judgment are often needed to arrive at a
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reasonable answer. Second, filtering variables based on their VIP values could

be inefficient under the presence of collinear variables. The collinear variables

(for instance, redundant temperature measurements) with high correlation to

output will lower the priority of other variables during selection. As a result,

pre-processing and post-processing are often required. In our scenario, we first

pre-processed the dataset to remove extra collinear variables in the input data.

The collinear variables are clustered based on the calculated cross-correlation

values among the input data, a threshold of 0.85 was used to group the highly

correlated variables together. With the exception of one variable (the variable

with the smallest variance), all other variables from each clusters are removed.

An iterative study was also done to optimize the cut-off threshold in order to

maximize the model cross-validation performance.

2.3.3.2 Wrapper method - Subwindow Permutation Analysis (SwPA)

Subwindow Permutation Analysis (SwPA) is a method proposed for

selecting biomarkers by Li et al. [60]. Figure 2.19 illustrates the overall pro-

cedure of the SwPA method. The distinctive feature of this method relies

on using the ranksum test to test for residual distribution shifts. In order to

generate a population of residuals for statistical testing, the SwPA method

uses two nested loops. In the outer loop, N Monte-Carlo iterations generates

N subsets of original data. Each subset is divided into training and testing

portions. A PLS model is then constructed using the training data. The num-

ber of components for this PLS model is determined through cross-validation.

The un-permuted prediction residual Rk for this model can then be calculated

using the testing data. Upon entering the inner loop, each variable xj from

the testing subset k is permuted through random shuffling. The variable-wise
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permutation results in a new testing dataset from which permuted prediction

residual R∗k,j can be calculated. The permutation process scrambles the vari-

able into a noise series with the same mean and variance. If a variable is

important to the PLS model, then the permutation process should result in

an increase in the residuals. Following this argument, the significance of each

variable can then be ranked based on how much each variable permutation

shifts the residual distribution.

The population analysis approach taken in SwPA prevents over-fitting

of variables selected to training data. In addition, the ranksum test is a non-

parametric test for mean-shift, which means SwPA is suitable for cases where

residuals are non-Gaussian. The negative log of the pj-value (probability of

rejecting the null hypothesis) calculated from the test statistic is an indicator of

how much the residual distribution was affected by the permutation of variable

j. SwPA will favor variables that have a large effect on changing the residual

distribution. One disadvantage of the SwPA method is the large number of

tuning parameters. The number of Monte-Carlo iterations (N), the number

of subset variables sampled Qv, and the variable size of the final model are

all tuning parameters. Consequently, sub-optimal selection of these tuning

parameters could negatively affect variable selection results.

In addition, the SwPA ranking was found to be affected by noisy vari-

ables, where the ranking of minor variables (except the first three or four dom-

inating variables) are different each time the SwPA algorithm was executed.

The SwPA method also does not recommend a cut-off point for the model size.

To address these short-falls, we presented a slightly improved iterative version

of the SwPA method (SwPAi). In SwPAi, backward elimination of variables

are added as an additional loop outside the original SwPA algorithm. The
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Figure 2.19: Subwindow Permutation Analysis (SwPA) variable selection al-
gorithm overview

least important variable from each iteration is removed in step-wise fashion.

Cross-validation is used to determine the cut-off point for the model size. The

resulting performance of SwPAi and SwPA are shown in the industrial case

study in Chapter4.

56



2.3.3.3 Embedded method - sparse PLS (sPLS)

Chun and Keles proposed sparse PLS (sPLS) as an embedded method

that perform variable selection alongside regression [65]. This method is suit-

able for problems with more variables than observations (X ∈ RN×P , P � N),

a common issue in batch data sets. In the Nonlinear Iterative partial least

squares algorithm (NIPALS) for PLS regression, the PLS loading weight w

is optimized in subsequent iterations to maximize the covariance between the

latent scores of X and Y. This can be formulated as an optimization problem

[70]:

wk = argmax(wTσXY σ
T
XY w)

s.t. wT (Ip −W(k−1)W
+
(k−1))w = 1,wTΣXXwj = 0

(2.20)

where σXY is the covariance matrix between X and Y, w represents the loading

weight and W represents the loading weight matrices (of all components) at

each iteration k.

The two constraints of Equation 2.20 normalize the length of the loading

weight to be equal one and ensure that the loading weights are orthogonal.

In sparse PLS, the optimization function for the PLS direction weights (w) is

adjusted to include an L-1 norm constraint similar to that of LASSO methods

[71] as follows:
wk = argmax(wTXTYYTXw)

s.t. wTw = 1, |w| 6 λ
(2.21)

where λ is a sparsity tuning parameter and |w| represents the L-1 norm of

the loading weight vector. Figure 2.20 shows the details of the sparse PLS

algorithm adopted from the original paper. For PLS regression of single out-

puts, the optimization problem for w has a straightforward solution, where the
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loading weights wi below a threshold are set to 0. Details of the algorithm and

proofs of the optimization solution simplification can be found in Chun and

Keles [65]. The main advantage of sparse PLS is in its computational speed.

In practice, however, the gain in computation speed is offset by the additional

processing required to perform two-dimensional cross-validation to determine

both the number of components and also the sparsity parameter. The sparsity

parameter (0-1) controls the number of variables in the final model, where a

higher value means more variables will be eliminated.

One of the drawbacks of the sparse PLS is in selecting the right tuning

parameter value for the given problem. Even with the aid of two dimensional

cross-validation, several scenarios were found where a higher sparsity parame-

ter value caused more variables to be selected due to interaction effects between

a number of components and the sparsity parameter.

2.3.3.4 Method similarities

After reviewing the representative methods from each category as shown

previously, several similarities can be identified. First, most of these methods

focused on improving the training prediction performance through the metric

of cross-validated Q2 or other measurements of training performance. Second,

the variable ranking criteria used to select variables are also similar among

these methods. The most common ranking metrics used are VIP, loading

weights (w) and correlation coefficients. Lastly, these methods generally as-

sume that the training data originates from a single operating mode, which

could be true in applications such as QSAR analysis, spectroscopic calibra-

tion or biomarker selection. In the cases of wrapper and embedded methods,

the iterative search algorithms will seek to maximize the overall training data
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Figure 2.20: Sparse PLS variable selection algorithm overview

prediction performance. However, this assumption is not suited for indus-

trial processes as these processes often experience changes in operation due to

varying production demand or changing plant conditions. In our experience,

all of the wrapper and embedded methods produced selected variables that

are biased by a few globally relevant variables and neglected locally sensitive
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variables. Comparisons of standard literature approaches and the prediction

performance in testing data will be addressed in Section 2.3.6. Variable selec-

tion algorithms for industrial data should consider the changes in operating

conditions when performing variable selection.

2.3.4 Moving Window Variable Importance in Projection (MW-
VIP)

2.3.4.1 Clustering and variable selection

The two most common approaches to multiple operating mode model-

ing are local-models and mixed Gaussian or kernel density estimation [5]. In

the first approach, each operating mode is modeled independently and then

combined later. In the second approach, multiple operating modes are modeled

explicitly through additional modal-specific parameters. However, these two

approaches have yet to receive wide-spread industry adoption due to a num-

ber of limitations, such as difficulty in model maintenance and online model

execution. A simpler alternative is to perform periodic model parameter up-

dates based on an original model to correct for drifting biases and correlation

changes. In all of the above scenarios, the optimal variable selection becomes

more challenging due to changing variable importance associated with different

operating modes. A possible variable selection method would be to perform

variable selection in each operating mode independently and then combine

the selected variables in one model. However, performing variable selection

in each operating mode is also challenging. The variable selection process

would depend on the prior clustering of data, which is often times unavailable

or inaccurate. Second, future data or testing data might experience shifts in

clusters which are not captured in individual cluster variable selections. As a

result, variable selection for multiple operating mode data should identify all
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sensitive variables without relying on clustering labels.

Figure 2.21 visualizes a scenario where multiple operating modes exist

in the dataset. In the training data, there are two dominant operating modes

(modes 1 and 2). The testing data still contains the same configuration, but

the length of each mode has changed (mode 2). Variables that show strong

correlation in mode 1 and 2 are favored in conventional variable selection meth-

ods, while mode 3 variables are not selected because they are less significant

in primary operating modes. In this case, the testing performances of models

based on the training data with the overall variable selection scheme would be

poor due to the exclusion of important variables in mode 3.

Mode 1 Mode 2

Mode 3

Training Data – mode 1 and 2 dominates

Testing data – mode 3 more common, causes bias

Figure 2.21: Illustration of the different multiple operating mode dynamics in
training data and testing data

Figure 2.22 shows an example of the moving window VIP plot in three

dimensions, where the VIP values are plotted on the Z-axis. Variables 38 to

51 are the most relevant variables according to their VIP values. However,

during samples 40-60, the VIP values of variables 38 to 51 are much lower.

Meanwhile, another set of variables demonstrated a range of values higher in

VIP during this period. As a result, each operating mode has a set of variables

that is responsible for explaining the correlation between X and Y.
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Figure 2.22: MW-VIP score of a 60 variable dataset as a function of variables
and moving window sample

The MW-VIP variable selection method aims to identify both globally

and locally important correlations that exist in various operating modes in

the training dataset. This method belongs to the wrapper method category

because of the iterations performed around the PLS regression step. The MW-

VIP method differs from previous wrapper methods mainly in its treatment

of the training data. This algorithm takes a set of overall training data and

produces a set of variables based not only on the global importance ranking

of variables, but also on locally sensitive variables. The preference for globally

relevant variables in conventional wrapper methods is compensated in the

MW-VIP method through a moving-window approach.
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Figure 2.23: Moving window VIP variable selection algorithm overview
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2.3.4.2 Moving window VIP variable selection algorithm

Figure 2.23 shows the overview flow chart of the MW-VIP variable se-

lection method. Table 2.4 provides a detailed explanation of each step in the

MW-VIP algorithm. The moving window VIP algorithm contains two itera-

tion loops, the outer iteration loop is similar to the forward stepwise elimina-

tion loop, where the most important variable calculated from the inner loop

is removed from the list of candidate variables in subsequent iterations. The

outer iteration loop ensures that the VIP calculation of weaker variables is not

biased by the presence of existing strongly correlated variables. In addition,

the Q2 of the selected variables will be calculated for each outer iteration. At

the end of the selection process, the Q2 values can be plotted against model

size. The optimal number of variables in the final model can then be deter-

mined graphically by selecting the Q2 . In the inner loop, moving window

sampling is performed to divide the original training data into N partially

overlapping sub data sets as indicated in Figure 3.3. After the PLS regression

estimates are performed on each moving window dataset, the overall dimen-

sion of the VIP matrix will be R(N×P ). The adjusted VIP∗ for each variable

is calculated by taking the pth percentile for all the moving window samples

(V IP (i = 1, 2, ..N, j)). The percentile p acts as a tuning parameter for pri-

oritizing variables with high correlation to the output during specified time

windows or locally. As p approaches 100, variables with locally high correla-

tions will be favored. Conversely, when the p approaches 50, the percentile

calculation returns the median VIP value, which makes the selection results

approximately equivalent to the result from the regular VIP filtering method.

The 85th percentile was used for the industrial case study, providing good

results in the selection of variables. After the VIP∗ is calculated, a simple
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ranking and forward selection scheme is then employed to select the appropri-

ate variables.

X, Y

X1,Y1 X2,Y2  . XN,YN

...Nstep

Nsample

Figure 2.24: The moving window data partition scheme where smaller subsets
of size Nsample offsets neighbouring subset by Nstep samples

The MW-VIP outer iteration determines the optimal PLS model size

based on the cross-validation performance of the models being tested. How-

ever, it is also possible to explicitly specify the size of the final PLS model.

2.3.4.3 MW-VIP tuning parameters

Three tuning parameters can be used to adjust the behavior of the

MW-VIP variable selection. They are the moving window size (Nsample), the

moving window step size (Nstep), and the percentile value in calculating the

adjusted VIP score (p).

Moving window sample size Nsample

The moving window sample size (Nsample) specifies the number of training data

samples to be used in constructing each moving window of the PLS model.

Having a smaller Nsample implies that the PLS model will increase in sensi-
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Table 2.4: The moving window VIP variable selection algorithm

Step

1 Given training data X ∈ RM×P , Y ∈ RM×1, mean center and scale
X, Y to unit variance. Define moving window VIP parameters: Nsample,
Nstep. Let A denote the initial set of variables, A = 1, 2, ..P . Let B
denote the selected set of variables, B = ∅.

2 Divide original data into N smaller sub-dataset pairs (Xi, Yi) using the
moving window partition scheme shown in Figure 3.3.

3 let k = 1, start the outer iteration loop.
4 Derive PLS model using standard PLS algorithm for (Xi, Yi) using vari-

ables in set A.
5 Calculate V IPi,j for j = 1, 2, ..P in moving window sample i according

to Equation 2.19.
6 Repeat steps 4-5 for i = 1, 2, ..N (inner iteration loop), until V IPi,j is

fully populated.
7 Calculate the adjusted V IP ∗j for each variable j by calculating the pth

percentile value of the vector V IP (i = 1, 2, ..N, j).

V IP ∗j = percentile(V IP (i = 1..N, j), p) (2.22)

8 Rank variable importance using V IP ∗j , let Bk = argmax
j

(V IP ∗j ) denote

the most important variable at iteration k. Update current search space
A to A = ArBk (take the set difference).

9 Construct PLS model using B (previously determined peak V IP ∗j vari-
ables), calculate cross-validated Q2

k for each iteration k (outer iteration
loop)

10 k = k + 1, Repeat steps 4-9 up to k = P .
11 Return B as the variable importance ranking based on the order of

addition, the suggested model is the model with minimum Q2.
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tivity for local correlations within the moving window data range. Analogous

to a moving-average filter, a larger moving window sample size reduces the

sensitivity of the variable selection for local correlations and dampens the im-

pact of noise in creating artificial correlations. The limiting case for increasing

Nsample occurs when it approaches the total number of training samples. At

this point, the MW-VIP algorithm will produce identical results compared to

regular VIP filtering. In contrast, having a smaller moving window size will

allow the MW-VIP algorithm to pick up more local correlations. However,

the undesirable side-effect of higher sensitivity is that many intermittent noisy

variables are also selected. Figure 2.25 shows the effect of different moving

window sizes on the VIP value of a process variable under the same train-

ing dataset. As the number of moving window training samples increases for

the MW-VIP method, the VIP trend of the variable being plotted becomes

smoother. This smoothing of the trend shows the filtering effect of utilizing

a larger moving window sample. The optimal choice of Nsample lies between

the two limiting cases. The recommended rule of thumb is that the moving

window sampling size should not be too large to filter out the quality between

operating mode variable dynamics, nor should it be too small to introduce

excessive noise. The ideal Nsample should allow MW-VIP trends to capture the

dynamic in the VIP with less noise. We recommend using a ”time-constant”

calculated from the operating mode changes as an initial estimate for Nsample.

This definition of time-constant is based on first order dynamic systems, where

the time constant of a system is the time it takes to reach approximately 60%

of a new steady-state condition.

Moving window step size Nstep

The moving window step size is the primary tuning parameter for controlling
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Figure 2.25: Moving window VIP contour showing different levels of smoothing
under different moving window size (Nwindow = 500, 1000, 1500, 2000)
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the number of iterations in the moving window regression process. A larger

Nstep reduces the overlapping data between subsequent moving window sam-

ples and results in smaller number of iterations. A smaller Nstep will result

in more overlap and consequently more iterations to loop through the same

dataset. Similar to the Nsample parameter, Nstep has a smoothing effect on the

calculated VIP trends. Nstep is bounded between 1 and Nsample. Our recom-

mended value for Nstep is 10% of the Nsample. At this value, we found that the

MW-PLS algorithm was able to achieve a good balance between computation

speed and variable selection sensitivity.

The p value in percentile calculation

As shown in Table 2.4, the p value is the percentile used in deriving the ad-

justed VIP score (V IP ∗j ). The valid range of p falls between 50 and 100, which

corresponds to taking the median or the maximum of the VIP values as V IP ∗j

respectively. Using a higher p value results in higher sensitivity of MW-VIP

to local correlation changes. In practice, our recommended values for p ranges

from 85 to 95. Since adjusting the p value and utilizing a moving window

sample size achieve the same effect, we recommend fixing the percentile value

p and then adjusting the MW-VIP sample size to allow for optimal tuning of

moving window filtering effects.

2.3.4.4 Rank deficiency in high dimensional data

For data sets with multiple variables and limited samples (large P small

N problem), the applicability of the MW-VIP method could be limited. Al-

though PLS regression is known to be statistically robust against rank-deficient

X matrices [36], the calculated VIPs are less stable and contain excessive noise,

which are undesirable in ranking of variables. In this case, the two possible
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remedies are as follows:

Apply preprocessing to penalize collinear variables Process ex-

pertise, correlation analysis, and signal to noise ratio filtering are useful tools

to eliminate variables prior to applying the MW-VIP variable selection. In cor-

relation analysis, clusters of collinear variables can be identified, in subsequent

PLS iterations, collinear variables in each cluster can be penalized to prevent

them from biasing the VIP calculation towards groups of collinear variables.

In our study, this method was found to be very effective to reduce the impact

of collinear variables on selection results; over half of the variables in the ini-

tial process scope were eliminated by applying these filtering techniques. This

leaves a much smaller set of candidate variables for the MW-VIP algorithm.

Apply sparse PLS instead of conventional PLS as the inner

algorithm In the current MW-VIP selection method, the inner loop utilizes

the conventional PLS and VIP definitions to calculate the local VIP of vari-

ables for each moving window sample. This is not suitable for large P small N

problems (for example, unfolded batch data with limited samples). To accom-

modate the rank deficient moving window samples, sparse PLS can be used as

the inner iteration loop instead [65]. Sparse PLS is suited for high-dimensional

problems and produces a PLS model with a reduced set of variables. There-

fore, the VIP score or the selection frequency from sPLS can also be used

for variable ranking purposes, since they take into account of local operating

modes.

2.3.5 Model evaluation criteria

The current literature in variable selection focuses on evaluating the

prediction performance of models created from the selected variables. While
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prediction is an important criterion for model performance, it could be bi-

ased by the quality of the testing dataset. Four classes of evaluation criteria

are proposed here, in order to assess four aspects of PLS regression models:

prediction performance, model parsimony, parameter robustness and process

monitoring sensitivity.

2.3.5.1 Prediction performance

Model prediction performance is a common metric used to evaluate the

effectiveness of a prediction model. The most common prediction criteria are

the coefficient of determination (R2) for testing dataset, testing data set bias,

and the root mean squared error of prediction (RMSEP). They are defined as

follows:

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

% Bias =

∑
(yi − ŷi)× 100∑

yi

RMSEP =

√∑
(ŷi − yi)2

N

(2.23)

whereN is the total number of samples, and ŷi is the predicted quality variable,

yi is the measured quality variable, and ȳ is the mean.

R2 and RMSEP are regression fit indicators; while the prediction bias

indicates if the model consistently under-predicts (positive-sign) or over-predicts

(negative sign) the measured variable.
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2.3.5.2 Model parsimony

The cut-off for the number of variables selected in the final model varies

among the different selection methods. As a result, the trade-off between

model complexity and parsimony needs to be taken into consideration in per-

formance evaluation. The Akaike Information Criterion (AIC) is a commonly

used model parsimony indicator. The general case of AIC is defined in [72] as

follows:

AIC = 2k − 2 ln (L) (2.24)

where k is the number of parameters in the model and L is the maximized like-

lihood function value. For least squares estimation with normally distributed

errors, the AIC can be expressed as [73]:

AIC = n log
(
σ̂2
)

+ 2K (2.25)

where n is the number of samples, K is the number of parameters in the

model, and σ̂2 = Σ(ε̂i)
2

n
is the estimated variance of the residuals. The most

appropriate model would have the smallest AIC value. An interpretation of the

AIC score as outlined in Akaike [72] can be expressed as a relative likelihood

of model i being a better model (in term of minimizing information loss) than

the model with the minimum AIC:

p (AICi) = exp (AICmin − AICi) /2 (2.26)

where p (AICi) is the probability of model i being better than the model with

the minimum AIC.
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2.3.5.3 Process monitoring sensitivity (T 2 ratio)

The process monitoring sensitivity is defined as the percentage of in-

coming data that fall within the T 2 alarm limit (99% confidence). The Hotelling’s

T 2 statistic monitors the deviation of incoming data from the training data

and is calculated using:

T 2 = xTPΛ−1PTx (2.27)

where the T 2 statistic follows a F-distribution with parameters: N−l
l(N−1)

T 2 ∼

Fl,N−l [74], x is the vector of incoming data, P is the loading matrix from

PCA or PLS, and the Λ is the covariance matrix of Xtraining and acts as a

normalizing factor.

The process monitoring sensitivity (percentage of T 2 violations) is use-

ful in examining the correlation between model prediction performance and

process monitoring sensitivity. Having a model with a strong correlation be-

tween prediction performances and monitoring sensitivity is desirable because

the process monitoring indices (T 2) can then be used to gauge prediction con-

fidence.

2.3.5.4 Parameter robustness through residual distribution test

Another desirable trait of good variable selection is that the selected

variables are robust, meaning that their parameter values do not have to be

updated frequently. Inspired by Li’s work with population analysis techniques

in evaluating variable selection [75], the parameter robustness metric compares

how robust the selected variables are when they are updated with incoming

data. The proposed metric functions by examining how much a model update
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will improve the performance of future predictions.

Figure 2.26 shows the steps to calculate model parameter robustness

score. In our proposed method, Monte-Carlo block sampling randomly selects

a segment of testing data to be used in updating the model. Twenty percent

of the sampled data will be excluded from the model update and to be used

as testing data. The block size is also randomized for each sample to mimic

different durations of operating mode changes. After the model has been

updated, the residual of both the updated model and the original model will be

calculated using the testing data. This process is repeated for N times (where

N is the number of Monte-Carlo sampling loops performed). The iterative

Monte-Carlo procedure generates a population of updated PLS models, the

sum of residuals on the testing data are collected from both the updated model

and the original model. To compare the population of updated models against

the original overall training model, we apply the nonparametric two-sample

Kolmogorov-Smirnov test for distribution equality. The null hypothesis of

this test is that both residual distributions are from the same distribution.

The test statistic p-score can be then used as a measure of the difference in

residual distribution between the updated model and the original model. The

two-sampled Kolmogorov-Smirnov test statistic is defined as follows [76]:

Dn,n′ = sup |F1,n (x)− F2,n′ (x)| (2.28)

where Fn (x) = 1
n

n∑
i=1

IXi<x. IXi<x is an indicator function whose value is 1 if

the condition Xi 6 x is satisfied and 0 otherwise. The null hypothesis is then

rejected at significance level p if Dn,n′ > c (p)
√

n+n′

nn′
, where c(p) is the critical

value for two-sampled test and can be looked up from standard statistics refer-

ence handbooks. Thus, the residual distribution shift score (RDSS) is defined
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as:

RDSS = − log (p) (2.29)

A smaller RDSS score reflects a lesser probability of rejecting the null

hypothesis, which means that the particular PLS model is more robust than

others.

Monte Carlo Block Sampling

Calculate RMSEP

R (N x 1)

Calculate RMSEP*

R* (N x 1)

Iteration > N?

K-S test and Ranksum Test (R vs. R*)

Calculate RS = -log(P) 

(smaller better)

Xtest*,Ytest*

Xtest,Ytest

New PLS model 

with Xtest*,Ytest*

Old PLS model 

with X,Y

Figure 2.26: Flowchart showing the steps to calculate residual distribution
shift score

Figure 2.27 shows an example of the residual distribution test applied
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to two PLS regression models. Figure 2.27(b) shows a more robust model with

negligible shift in its residual distribution when the model is updated. The

RDSS scores calculated using the K-S test for the left and right figures are

respectively 185.3 and 121.3. It is important to note that, the RDSS score

is a relative measure of model robustness given the same set of testing data

(analogous to AIC). The RDSS score cannot be compared for models across

different data sets.
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Figure 2.27: Example of residual distribution shifts calculated using testing
dataset II (a) Residual moved toward the left after parameter updates, (b)
Relatively stationary residuals before and after model parameter updates
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2.3.6 Results and discussion

2.3.6.1 Simulated case study

A simulated case study was performed to illustrate how MW-VIP vari-

able selection differs from conventional VIP variable selection.

The variable trajectories are generated in MATLAB. Each x variable

composes of a random-walk noise series, randomly injected step changes and

white noises to mimic real data collected from plant instrumentation. After

the initial set of X variables (that are independent) are generated, collinear

variables are created by linearly combining the existing trajectories. The coeffi-

cients used in this linear combination are sampled from a uniform distribution

with bounds between -2 to 2 ensuring that the redundant variables will be

within the same order of magnitude with the existing variable trajectories. In

this simulation, six redundant variables are added to the X matrix as collinear

variables. Figure 2.28 shows the correlation map of the X matrix. The num-

ber in each square denotes the correlation value between the two variables.

The variables are arranged in descending order of correlation with adjacent

variables, so the two clusters of variables in the top left corner represent two

groups of redundant variables. Using information from the correlation matrix,

the pre-processing step outlined in Section 2.3.4.4 is applied to eliminate the

redundant variables prior to applying both the MW-VIP and the VIP filtering

methods.

To generate the response variable, two linear models are explicitly de-

fined as follows:

y1 = 10x5 + 5x9 + 3x10 + x13 + ε
y2 = 9x5 − 5x17 + 4x10 + x7 + ε

(2.30)
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Figure 2.28: Variable correlation map of the training data X showing two
clusters of collinear variables

where y1 is the process model for operating mode 1, y2 is the process model for

operating mode 2, and ε is a white noise sequence. Note that the magnitude

of the coefficients in these two operating modes are chosen to contain: two

shared variables (x5, x10) and two sets of variables unique to each operating

mode (x9, x12 for mode 1 and x17, x7 for mode 2). Additional simulation

parameters are listed in Table 2.5.

The generated trajectories for the training dataset are shown in Fig-

ure 2.29. The sharp drop at sample 2000 marks the boundary that separates

operating mode 1 from operating mode 2.

The MW-VIP variable selection was then applied to this dataset using

the tuning parameters listed in Table 2.5. Since the MW-VIP method applies

a forward elimination scheme to remove the most significant variable from par-

ticipating in the next iteration, the variables selected and the cross-validated
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Figure 2.29: Simulated training data trajectories of X and the corresponding
quality variable Y containing two operating modes
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Table 2.5: Simulation conditions and variable selection algorithm settings used
in the simulated case study

Simulation setting / tuning parameter Value

Sample size 5000
Number of X Variables 20
Number of operating modes 2 modes
Percentage of redundant variables 30%

Training data mode distribution
1-2000 mode 1
2001-3000 mode 2

Testing data mode distribution
3001-3500 mode 1
3501-5000 mode 2

MW-VIP moving window size 500
MW-VIP step size 50
MW-VIP percentile p value 95
Number of components for the final PLS model 3

Q2 value at each selection iteration are tabulated in Table 2.6. The rows in

Table 2.6 are arranged in descending order of importance such that the more

significant variables are shown first. Note that variable x5, the most significant

variable according to Equation 2.30 was first selected. Cross-referencing the

order of variable selection with Equation 2.30 shows that the MW-VIP algo-

rithm successfully captures the important variables in both operating modes.

The order of variable ranking also corresponds to the magnitudes of the vari-

able coefficients in Equation 2.30. Table 2.6 shows the variable selection re-

sults for the VIP filtering method. The same forward elimination scheme was

applied to the VIP filtering to determine the model size cut-off. The VIP

filtering algorithm was unable to correctly identify the key variables in the

original equation. In fact, none of the relevant variables were identified in the

top six variables ranked by the VIP filtering. Upon further troubleshooting,

we discovered that the variables ranked highly in the VIP filtering selection
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are variables from collinear clusters as shown in Figure 2.28. Furthermore,

Figure 2.31 plots the trajectories of x12, x4, x1 and y to better illustrate the

correlation between these variables and the output. Since the VIP filtering

method calculates the VIP across the operating mode transition, variables

that are correlated with this sharp change during the transition will be fa-

vored in the VIP ranking. A closer inspection of the variable x12 shows that

this trajectory is not highly correlated to the output with the exception of the

sharp drop at around sample 2000. In contrast, the MW-VIP selection results

were unaffected by collinear variables, even when the same preprocessing steps

are applied to both selection methods.

Finally, to determine the cut-off point for the optimal number of vari-

ables to be selected, Figure 2.30 shows the cross-validated Q2 as a function

of the number of parameters in the PLS model. The MW-VIP series shows

a maximum Q2 occurring at model 4, which corresponds to six variables se-

lected (x5,x9,x10,x17,x13,x7). This result agrees with the original model in

Equation 2.30. On the other hand, the regular VIP method produced similar

Q2 values for the six models, making it difficult to decide which model should

be selected.

This simulated case study shows that the MW-VIP algorithm was able

to select relevant variables in multiple operating mode scenarios. The cut-off

point for the number of variables in the optimal model can also be determined

graphically. Finally, the MW-VIP algorithm was also shown to be effective

in presence of collinear variables, which was not the case for the conventional

VIP filtering technique.
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Table 2.6: MW-VIP and VIP filtering variable selection results

Variables in order of importance Q2

M
W

-V
IP

Model 1 5 9 10 0.11
Model 2 5 9 10 17 0.21
Model 3 5 9 10 17 13 0.63
Model 4 5 9 10 17 13 7 0.85
Model 5 5 9 10 17 13 7 14 0.86
Model 6 5 9 10 17 13 7 14 16 0.85

re
gu

la
r

V
IP

Model 1 12 4 1 0.92
Model 2 12 4 1 15 0.92
Model 3 12 4 1 15 8 0.92
Model 4 12 4 1 15 8 3 0.92
Model 5 12 4 1 15 8 3 6 0.93
Model 6 12 4 1 15 8 3 6 7 0.93
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Figure 2.31: Trajectories of the three highest ranked variables from the VIP
variable selection and the output variable

83



2.4 Summary

In this chapter, two topics related to preliminary data processing steps

are discussed in detail. These preprocessing steps are critical pre-requisites for

a successful data-driven model.

For batch processes, trajectory alignment is one of the first issues that

need to be addressed. In this discussion, we showed that the existing methods

for batch trajectory alignment are sometimes ineffective or inefficient at align-

ing trajectories from batch processes. Consequently, we exploited that fact

that only selective segments of the batch processes contain useful information.

As a result, the constrained selective dynamic time warping (CsDTW) method

first performs a fuzzy search of key alignment markers on the trajectories to

be aligned. Once identified, these alignment markers will be incorporated as

global constraints in formulating a constrained dynamic time warping prob-

lem. The resulting problem can be solved with high efficiency. Results from

the case studies show that CsDTW exceeded truncation, interpolation, linear

time scaling, and traditional dynamic time warping in alignment performance.

In addition, CsDTW exceeded covariance optimized warping in computational

speed and also ease-of-use.

For variable selection, the common techniques assume only one oper-

ating mode exists in the data. This is not a valid assumption for applications

where multiple operating points are present. The MW-VIP method exploits

the time dependency of process data to maximize selection of relevant vari-

ables in each operating mode. Tuning parameters of moving window size and

percentile value can be used to tune the sensitivity of the MW-VIP method

to local correlations. To evaluate the selection candidate models, four types

of performance criteria were proposed. In addition to model performance,
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model parsimony can be assessed by calculating the AIC of each model. The

residual distribution shift score was developed as an indicator for testing the

robustness of candidate models. Lastly, the process monitoring T 2 ratio yields

information on the sensitivity of model prediction quality to excursions and

abnormalities in process data. These four types of evaluation criteria com-

bined can be used to improve assessment of model performances and variable

selection results. Modeling results from the simulated case study and the in-

dustrial dataset show that the moving window PLS produced a better model

than SwPA, VIP filtering and sparse PLS selection methods. To better deal

with collinearity in large data sets, future work on the MW-VIP method will

investigate substituting the standard PLS algorithm in MW-VIP with sparse

PLS to achieve simultaneous variable selection and sparse VIP calculation.
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Chapter 3

Maintaining Quality and Performance of

Data-driven Models

3.1 Introduction

With exponential improvement in computer processing power and data

storage capacity, more and more industries are starting to look for new ways

to utilize the data collected. In the new data-centric era, understanding and

utilizing data better than the competition is seen as a critical factor to success.

In the context of chemical engineering industries, having large sets of data and

better processing power offer us an opportunity to further enhance process

understanding, improve process reliability, optimize operation and improve

safety.

In the last two decades, data-driven techniques have been applied in

developing soft sensors models and multivariate statistical monitoring tools

to monitor and predict difficult to measure processes. These approaches have

been demonstrated in many real world industrial applications [23, 24, 25, 26,

27, 8, 28]. A comprehensive review of soft sensor and their development ap-

proaches is available by Kadlec et al. [11]. However, despite astounding success

in both academia and industry, there are still some issues that are unresolved.

One of the key challenge in soft sensor is the maintenance of their performance

over longer periods of operation.

A intuitive explanation of why performance degradation happens in
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data-driven models is that change happens. Processes are never truly oper-

ating at a steady-state when examined from a longer time-scale. Equipment

maintenance, sensor degradation, and personnel change all could have an im-

pact on how the system is operated. In addition, most systems are also sub-

jected to outside disturbances, such as feedstock changes, weather. As a result,

over periods of time, the process condition usually deviates from the original

process condition when the data-driven models are developed, and the quality

of the data-driven models degrade thereafter.

There has been a lot of work on addressing this issue. The main ap-

proach is to provide an adaptation mechanism to allow automatic re-training

of the online models. In these cases, data collection and sometimes lab sam-

pling of important quality variables cannot be displaced entirely and still need

to be performed (maybe at reduced intervals). Selecting what data to use

to update the model becomes a difficult question to answer. In addition, de-

pending on the type of soft sensor in place, the difficulty of retraining model

could range from trivial (simple least squares) to impossible (support vector

machines). Kadlec provided a comprehensive review of the soft sensor model

update mechanisms in [77]. Some of the notable methods and work associated

with their update mechanisms are listed in Table 3.1.

In this chapter, we focus on addressing the quality degradation and

performance issues of PLS models using two approaches. In the first section, a

more robust version of moving-window PLS update technique is proposed. Us-

ing Total-PLS quality relevant decomposition, the incoming data are screened

for quality issues and outliers that would make the updated PLS more noisy.

The end result is that the PLS model update mechanism is more robust and

resilient to outliers while also being able to keep track with process condition
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Table 3.1: Popular data-driven techniques and their adaptation mechanisms

Method Description Advantages Disadvantages Speed

Recursive
weighing [27,
78, 79, 80]

Augment existing loading
matrices with new data
to recursively update PLS
beta coefficients

Simple, effi-
cient

Usually only up-
dates beta coeffi-
cients, does not in-
clude diagnostics

Fast

Moving Win-
dow [81, 9]

Slide a data window to in-
clude new data and dis-
card older data and per-
form PLS on new window
of data

Straightforward,
easiest to im-
plement

Prone to noise and
data quality issues

Fast

Just-In-
Time Adap-
tive Soft
Sensor [18]

Locate the most corre-
lated segment of data with
the incoming sample and
train a model to make a
prediction

allowed
for better
adaptation
against
abrupt pro-
cess changes

Large memory re-
quirement

Slower

Adaptive
kernel learn-
ing

based on least squares
SVM with both forward
and backward learning
modes

regression
and classifi-
cation

Difficult to imple-
ment, too many de-
grees of freedom

Slow

Incremental
local learn-
ing [17]

Use fuzzy combination
with local experts, par-
titions based on relative
residual change

Nonlinear,
disjointed
data friendly

Difficult for input
with higher dimen-
sions, adaptation
limited

Slow

Growing
Structure
Multiple
Linear Re-
gression
[82]

Use GSOM topology and
multiple linear regression,
new partitions created
based on SOM growth
mechanism

Ensemble-
based,
nonlinear-
ity, flexible
adaptation

Difficult for input
with higher dimen-
sions

Slow
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changes.

In the second section, we address soft sensors challenges for systems

with multiple operating conditions or nonlinear systems exhibiting multi-modal

behaviors. In these systems, simple model update mechanisms such as recur-

sive model update or moving window model update is not sufficient to deal

with abrupt process changes or transitions. For these scenarios, a new method

based on using a divide and conquer approach to train multiple local PLS

models simultaneously is proposed. The novelty of our approach resides in us-

ing projection based local models (PLS or PCA) with growing self-organizing

maps to allow for elastic model complexity tuning during training and online

adaptation. This flexible framework can also be used to explore new datasets

and rapidly develop model prototypes.

3.2 Integrated Moving Window Update Framework

In this section we present a integrated moving window update frame-

work that aims to improve the robustness of recursive PLS models in the

presence of outliers in both input data and output data.

3.2.1 Integrated MW-PLS Model Overview

Moving window PLS is a key part of the proposed integrated framework

that aims to address the issue of process drifts in static PLS models. The inte-

grated framework comprises of preprocessing, model development, and model

maintenance to ensure that the models constructed are suitable for online

adaption. Key problems that this setup aims to address are process drifts and

outliers during model update. Figure 3.1 shows the key information flow in

the integrated online framework and gives an overview of the proposed con-
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figuration. The two major components of the framework are the prediction

model (PLS) and the soft sensor maintenance mechanism. In the prediction

model, an existing PLS model obtained either off-line or from previous online

runs will be used in conjunction with T-PLS update outlier screening. The T-

PLS multivariate statistics serves as a prediction quality alarm that will alert

users of possible prediction quality issues. In the quality maintenance module,

additional metrology data will be synchronized with the corresponding fault

detection trace data to carry out the model maintenance and update tasks.

The same T-PLS statistics will be used to screen out potential outlier batches

that will negatively affect the model update process. Afterwards, the model

simplification step removes redundant variables and uninformative variables

to reduce memory foot-print. The T-PLS statistics control limits are updated

for the new PLS model. The soft sensor maintenance module will run asyn-

chronously from the prediction module, the speed of the model update will

depend on the availability of metrology data. However, one can easily imple-

ment logic to force an model update in cases where excessive alarms are raised

in the prediction module.

3.2.2 Moving Window PLS

Multiway Partial Least Squares (MPLS) Regression Latent

variable methods such as partial least squares (PLS) and principal compo-

nent analysis (PCA) project high-dimensional data onto low dimensional la-

tent subspaces. These methods are widely used to analyze large data sets such

as those encountered in plasma etching ([83, 13, 12]) A typical plasma etch

dataset contains over 30 sensor measurements, which include gas flow, cham-

ber conditions, and RF circuitry readings. When sensor signals are unfolded,
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Figure 3.1: Proposed integrated VM framework using T-PLS multivariate
screening and moving window model updates

these sensor readings result in over 3000 variables. Unfolding transforms a

three-dimensional data array into a two-dimensional matrix for the purpose of

performing PCA and PLS [5]. The feasibility of using a multi-way approach

(unfolding) for PLS/PCA analysis was demonstrated by Wold et al. and

Nomikos et al. in process industry monitoring [84, 85]. Figure B.1 visualizes

the transformation of a three-dimensional data cube into a two-dimensional

matrix. The unfolded data is then analogous to data from a continuous dataset

and can be used directly in PLS modeling. The two mainstream PLS algo-

rithm are the Nonlinear Iterative PLS (NIPALS) and the SIMPLS[53, 52].

Seven additional PLS algorithms are evaluated and reviewed by Andersson

[86]. Both PLS algorithms decompose the mean-centered matrices into the
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following form:

X = TPT+E
y = UQT+F

(3.1)

where T ∈ Rn×A and U ∈ Rn×Aare the X and y scores respectively, P ∈ Rm×A

and Q ∈ Rp×A are the loadings for X and y, respectively. The number of

components in the PLS model is typically determined through cross-validation

or through information criterion such as the Akaike Information Criterion

(AIC) [87]. The PLS algorithm maximizes the covariance between the X-

scores and y-scores; this property leads to PLS requiring fewer components

when compared to principal component regression models [87].

To apply the PLS latent structures in regression, given unfolded input

data matrix x0, the output predictions ŷ0 can be calculated linearly using

ŷ0 = x0β̂pls. The β̂pls can be expressed as a function of the latent variables as

follows:

β̂pls = R
(
TTy

)
= RRTXy (3.2)

where R is the weight matrix in the SIMPLS algorithm. In the NIPALS

method, the weight matrix R can also be calculated iteratively.

PLS faces challenges when the input and output relationship is non-

linear. However, multiple options exist depending on the type of nonlinearity

encountered. Qin and McAvoy developed neural network PLS (NNPLS) that

approximates the latent relationship between the input and output scores us-

ing a feed forward neural network[88]. Using this approach, nonlinearity in the

latent score space can be approximated to arbitrary precision; however, it is

difficult to verify or prevent over-fitting for the latent scores. Kernel PLS maps
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original X space data into a nonlinear feature space F, where the relationship

can be represented linearly [89]. However, selecting the right kernel function

and requirement for large amount of training data (n � m × p) reduces the

practical effectiveness of this method [86]. Another method to approximate

nonlinearity is by constructing multiple models for each operating regime. The

appropriate operating regime can then be selected at run-time based on clas-

sification algorithms such as clustering or decision-trees. The detailed merit

and challenges of this class of methods will be discussed in more detail in

Section 3.3.

Figure 3.2: Unfolding of a three-dimension data array(Rn×m×p) into a two-
dimensional matrix (Rn×mp)

Moving Window Update The moving window and recursive PLS are

two adaptation mechanisms to compensate for process drifts in PLS models.

Recursive PLS was first introduced by Helland[78] and then improved by Qin

[27]. An application of recursive PLS in virtual metrology was demonstrated

by Khan et al. [80] using simulated data. However, the drawback of recursive

PLS is that the multivariate statistics (Hotelling’s T 2 and Q statistics) are

more difficult to adapt. Moving window PLS is an alternative formulation

to recursive PLS that allows for easy update of the monitoring indices. In

MW-PLS, the PLS algorithm itself remains unchanged. As new data are

acquired, the window of training data slides along the data-set. The two tuning
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parameters in moving window PLS are the window size and the window shift

size; these two tuning parameters are graphically illustrated in Figure 3.3.

X, Y

X1,Y1 X2,Y2 …. XN,YN

...
�����

�������

Figure 3.3: Moving window data partition of a dataset using two parameters:
sample size(Nsample) and step size (Nstep)

In addition, to ensure consistency and resiliency against process noise

and disturbance, it might be more desirable to update the model in batches

instead of as soon as new data points are available. Therefore, we use a

block-wise moving window update approach. Considerations to be taken for a

MW-PLS scheme are (1) ensuring incoming data are fault free, and (2) optimal

selection of update parameters such as moving window size and update step

size.

3.2.3 Total PLS Decomposition

To our best knowledge, current literature on recursive or adaptive PLS

models lack an in-depth examination of outlier removal in their implementa-

tions. This could be justified since outliers in offline model building can be

readily identified and removed using a combination of prior knowledge and

statistical screening. However, outlier removal and process monitoring are re-
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quired online for both the input data and the lab sampled output data. For

batch processes such as plasma etching, there are two levels of outlier removal:

the first level focuses on removing spikes/dips temporally; the second level

removal focuses on excluding abnormal batch runs from the training set. First

level temporal spike removal is done routinely by replacing points outside of

the 3σ range with a locally estimated average or median. The second level

outlier detection is particularly important for PLS based methods due to its

least-squares penalty on residual, where a large deviation in X and y can cause

excessive bias in model parameters. To detect these abnormal runs that affect

VM output, we propose using total projected latent structure (T-PLS) mon-

itoring [90] inspired by its application in industrial chemical processes. For

multiple-output PLS regression models, an improved version of T-PLS called

concurrent projection to latent structure (CPLS) [91] could also be used as a

drop-in replacement for the T-PLS method proposed here.

Total projection to latent structure (T-PLS) decomposition further de-

composes the principal and residual subspaces in normal PLS monitoring. The

algorithm for T-PLS by Zhou et al. [90] is described here for completeness in

Table 3.2.

After decomposition, the quality relevant subspaces are separated from

the orthogonal components as follows:

X = TyP
T
y + ToP

T
o + TrP

T
r + Er

y = TyQ
T
y + F

(3.3)

where the subscripts y denote output-relevant, o denote output-orthogonal, r

denote output-residual. This decomposition offers a more intuitive interpreta-

tion of the PLS decomposed subspaces:
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Table 3.2: T-PLS decomposition algorithm for single output PLS models

Step

1 Center the columns of X,y to zero mean and scale them to unit variance

2 Run PLS1 algorithm on (X,y) to estimate T,

{
X = TPT+E
y = TqT+F

where

T ∈ Rn×A,q,P,T are obtained by PLS1, A is the cross-validated num-
ber of principal components.

3 ty = TqT .

4 X̂ = TPT ,py = X̂ty/t
T
y ty.

5 X̂0 = X̂− typ
T
y = ToP

T
o , run PCA on X̂o with A− 1 components

6 E = TrP
T
r +Er, run PCA on E with Ar components, where Ar < m−A

is determined using cross-validation.

Output relevant(spanned by TyP
T
y ): Ty represent variations related

only to y from the original PLS model.

Output orthogonal(spanned by ToP
T
o ): To represent variations or-

thogonal to y from the original T.

Output residual(spanned by TrP
T
r ): To is the majority of the original

residual E and Er is the left over residual.

Through this decomposition, the subspaces that are not relevant to

process monitoring (ToP
T
o and TrP

T
r ) are isolated from the output relevant

subspaces. The resulting monitoring indices are as follows:

T 2
y = tTy Λ−1

y ty ∼
Ay (n2 − 1)

n (n− Ay)
FAy ,n−Ay

Qr = ‖x̃r‖2 ∼ S

2µ
χ2

2µ2/s

(3.4)

where ty and x̃r ae the corresponding T-PLS decomposed output-relevant

scores and residual, respectively; S and µ are the sample variance and sample
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mean of Qr. Qr follows a χ2 distribution and T 2
y follows a Fisher distribu-

tion, which can be then used to calculate the respective control limits given

significance level α.

By monitoring only the quality relevant subspaces shown in Equa-

tion 3.4, we can effectively reduce the fraction of false outliers removed to

maximize data recovery during training; example illustrating the results of

T-PLS compared against traditional Hotelling’s T 2 is shown in Figure 3.4.

Comparing Figure 3.4(a) with the top two subplots in Figure 3.4(b),

we can see that the original Hotelling’s T 2 appears to be a superposition of

the output-relevant and output-orthogonal Hotelling’s T 2 scores; yet, most of

the outliers detected by the conventional Hotelling’s T 2 are outliers that are

orthogonal to output quality. As a result, using T-PLS will reduce the number

of outliers removed while ensuring that the remaining outliers do not affect

PLS regression performance.

3.2.3.1 Moving Window Update with T-PLS

T-PLS decomposition of an PLS model is done here as an illustrative

example, detailed results of this PLS model will be discussed in Chapter 4.

The resulting monitoring indices for the training data are plotted in Figure 3.5.

The figure shows that two wafer samples are out of the control limit for T 2
y ;

this outlier can be interpreted as data batches exhibiting abnormal trends

in predictor variables that are mostly correlated to response variables. As a

result, removing them from the training set improves the PLS model perfor-

mance. This is a useful property in developing moving window update schemes

for PLS models using non-simulated industrial data. Since the data could be

contaminated with noise and disturbances, being able to predict them and re-
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duce their impact in subsequent modeling makes moving window models more

robust against noise.

3.2.4 Integrated Framework Results

The exact steps for implementing the integrated VM framework are

summarized in Figure 3.6. The framework consists of two phases. In the ini-

tialization phase, existing training data is used to create a PLS model and its

corresponding outlier detection limits. Following the initialization, the predic-

tion/execution phase of the integrated framework relies only on future data

and can be run online. The integrated framework is robust against metrol-

ogy delays since the T-PLS outlier detection component will provide abnormal

data or prediction error warnings prior to collection of actual metrology results.

Once metrology results are collected, the data can then be used to update the

model. This proposed framework has been applied and tested on a gate etch

dataset from a plasma etch tool. The results will be presented in Chapter 4.
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Figure 3.4: (a) PLS Hotelling’s T 2 statistic, (b) PLS decomposed subspace
process monitoring indices, top-left: output-relevant T 2, top-right: output-
orthogonal T 2, bottom-left: output-orthogonal residual T 2, bottom-right: left-
over residual Q2

r, red dashed line is the 95% significance level
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Figure 3.5: Time series plot of the training data at the 1st moving window
plus the T-PLS fault diagnostics for the training data

100



���������	
����
�
�����	�������
�


�
�
������������������	������
��������������

�
�������	����
�����
����

�	
��������
���������������	��	���
	�
 ���!��������

�"�����������!������#�������	����������!�

�
����
����

�	
�������
�
�����
��!������������	!$


%���	��������������&��
�


�
����
��������������!���	���&��
�


'�&��
�
�����
��!������������	!$

���	����&��
�


������������
�
�������
����(�������$

��	��	��)"�������������
��

��	��	��*
	�
 �����������������
��������

������	���������!

��������������

	
����������������

Figure 3.6: Flowchart of the combined integrated framework for online moving
window PLS update subjected to T-PLS outlier filtering
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3.3 Growing Self Organizing Map Multiple Model Sys-
tems for PLS models

3.3.1 Motivation for multiple model systems

Industrial manufacturing systems are becoming increasingly complex

and sophisticated due to tighter restrictions on energy efficiency, process in-

tegration and equipment utilization. The additional complexity are possible

due to advancements in control, real-time optimization and continuous pro-

cess improvement. As a result, it becomes increasingly challenging to deal

with monitoring and diagnostics of faults and events in these systems. Many

of these systems operate in multiple production modes which can be charac-

terized by throughput, load, level, recipe and product grades [5]. Traditional

methods such as statistical process control are ill-suited for these complex

systems. Multivariate data-driven models using traditional techniques such

as PCA and PLS also face challenges due to inherent nonlinearity, multiple

operating modes and complex fault signatures [77].

Since the data generated from these systems naturally have multi-modal

distributions [92]. A “divide and conquer” approach is commonly taken to

partition the data into sub-systems that can be approximated using simpler

local models. After satisfactory performance is achieved at the local level, the

operating mode information can then be used to smooth local model results

for better prediction of the overall system. Dunia and Edgar formulated a

multi-state PLS framework where transitions between states are smoothed us-

ing a k-means clustering smoothing mechanism [26]. Kadlec et al. proposed

an incremental learning adaptive soft sensor system that generates operating

modes based on prediction residual performance and combines the local model

predictions using a Bayesian-inference based validity function approach, the
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end result was applied on modeling a catalyst decay problem in a polymeriza-

tion reactor[17]. There are many published works in this area[93, 94, 16, 95].

Common challenges associated with this approach are:

1. Partitioning of the operating space needs to be determined before local

model training

2. Operating modes that do not have sufficient data can lead to numerical

instability

3. No simultaneous training of both local model and structure parameters

4. Final model implementation online is a challenge and requires use of

heuristics and fuzzy logic rules to combine model results.

In another class of methods, mixing Gaussian distributions and ker-

nel density estimates directly assumes that the underlying data distribution

is non-Gaussian and multi-modal without any easily identifiable class labels.

In these cases, mixture based methods are superior as they do not require

apriori definition of a multi-modal structure. Yu and Qin [92] proposed ways

a method using finite Gaussian Mixtures. They obtained superior results than

conventional multivariate monitoring schemes on the Tennessee-Eastman sim-

ulation. Thissen et al. applied finite Gaussian mixture models to industrial

data of a fiber spinning process and found much higher sensitivity to faults

using Gaussian Mixture Models [96]. Some of the other works using mixtures

of distributions are listed here [97, 98, 99, 100]. The main challenges of this

approach are:

1. difficult to troubleshoot due to the lack of transparency
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2. difficult to implement online due to heavier computational requirements

3. stability of online adaptation of these Gaussian mixtures have not been

thoroughly studied.

Batch process data from semiconductor manufacturing are particularly chal-

lenging to model due to the following characteristics:

• high-mix manufacturing, upstream and downstream processes could

change depending on product and production thread. Therefore, unmea-

sured disturbances could affect process modeling results.

• large number of measurements, high dimensional data resulting from

unfolding of batch trajectories

• threaded production, multiple recipes are ran on the same tool. As a

result, some un-popular recipes might have little data available for model

building.

• nonlinearity, input-output relationships are not linear

• process degradation, input-output relationships drift overtime

To improve upon existing work of multiple system model approaches, it is

necessary for a multiple model system to satisfy the following requirements:

• Does not rely on class label information

• Does not require large amount of training data to initialize

• Can be easily extended for online adaptation
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• Produces interpretable local models and diagnostics information

To this end, the work of growing structure multiple model systems proposed by

Liu et al. [94] and Bleakie et al. [15] inspired the development of a hybrid mul-

tiple model system that combines latent projection local models (PLS/PCA)

models with Growing Self Organizing Map to form a integrated framework

suitable for batch data from semiconductor manufacturing.

3.3.2 Growing Self Organizing Map (GSOM)

Growing self organizing map (GSOM) is subclass of self organizing

maps (SOM), a popular unsupervised machine learning technique. SOM can

be categorized as an artificial neural network. Its purpose is to “map” high di-

mensional data onto a lower-dimensional space. It is also called a Kohonen map

after its creator Teuvo Kohonen [101]. Different from clustering algorithms and

other artificial neural networks, a SOM uses a neighborhood function to pre-

serve topological properties of the input space. As a result, these topological

properties can be used in inferring additional information that could be used

in improving prediction, training, and model update. Growing SOM, as the

name implies, makes no prior assumption about the size of the map and allows

the algorithm to learn the optimal structure at run-time. An example of the

topological information in a dataset is given in Figure 3.7, where GSOM is

successfully able to identify the spiral topology of the dataset.

Just like other artificial neural networks; GSOM requires training before

it becomes useful. The classic GSOM undergoes three stages of training:

initialization where small number of nodes and the topological structure

parameters are initialized
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.

Figure 3.7: Example of SOM vs GSOM under different tuning parameters,
figure taken from [4]
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growing where training input is presented to GSOM to successively minimize

the vector quantization error of the input data. Existing nodes will be

relocated to new positions, and new nodes will be added as the algorithm

sees fit

fine-tuning final adjustment of node positions according to training data

In the proposed approach, since the structural learning phase (training

the GSOM) is integrated with the local learning phase (training PLS and

PCA models), both training phases will be discussed together. First, the basic

mathematical description of GSOM is discussed.

Given input and output data X(N × P ) and y(N × 1), we can define

a feature vector for each observation

si = [s1 s2 s3 s4 . . . sK ]i = [P (xi,xi−1, . . .), Q(yi,yi−1, . . .)] (3.5)

where P (·) and Q(·) are features selection functions. These functions can

either reduce feature space dimension by projectingX onto a lower dimensional

space, expand feature space by introducing nonlinear terms or lagged variables.

In practice, using only X variables with no transformation is a good starting

point for exploratory analysis.

Once feature vectors are defined, SOM is then trained in using the

training features. A trained SOM consists of nodes and their topological

neighborhood data. This can be represented graphically in Figure 3.8. At

each node there is a codebook vector and a local model. The codebook vector

contains the position information of the node and has the same dimension as

training feature inputs:

ξm := [s1 s2 s3 s4 . . . sK ] (3.6)
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where m ∈ (1 . . .M), M is the number of nodes in the GSOM.

To partition the feature space into sub-regions, the space belonging to

node m is defined as:

Vm = {s : ‖s− ξm‖ ≤ ‖s− ξi‖ ,∀i ∈ (1,M) , i 6= m} (3.7)

To find the best matching node m (called the best matching unit in

SOM terminology) given an feature vector s, we compare the vector quanti-

zation error of s with all possible SOM nodes ξm,m ∈ (1,M) and look for the

node with the smallest error:

BMU (s) = argmin
m
‖s− ξm‖ ,m ∈ (1,M) (3.8)

The topological relationship of the SOM is stored in a symmetric binary

matrix, called the adjacency matrix A (M ×M), where M is the number of

nodes in the SOM. A node i is said to be connected to node j if A(i, j) = 1

(in this case, A(j, i) also equal to 1). The adjacency matrix can be visualized

as connections between nodes on a SOM. Figure 3.8 illustrates the adjacency

matrix visually using an example with 10 nodes. Each node is numbered

with an index. With respect to node 1, nodes 2,3 are its primary neighbors

(immediately adjacent) while nodes 4,5 are its secondary neighbors (separated

by one node in between).

3.3.3 Growing Structure Multiple Model Systems - GSMMS

Most of multiple modeling techniques divides the training of the model

into two independent phases: structural learning and local model learning as

shown in Figure3.9. Albeit being straightforward and simple to implement,

there are some disadvantages with this approach. For instance, the number of
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.

Figure 3.8: Parameters that need to be specified in a GSMMS system: The
GSOM network, and local model at each node

local models is usually fixed and cannot be changed easily. In addition, there

is no feedback of local model performance to help better guide clustering.

However, in our proposed approach, the two training phases are conducted

simultaneously as shown in Figure 3.10. The overall algorithm initializes with

a small SOM and then iteratively adapts the SOM structure and the corre-

sponding local models in attempt to fit the given input. There are two loops

in the proposed training scheme inspired by GSOM training. The outer loop

incrementally add nodes until the global fitting error reaches a minimum (cor-

responding to the growing phase in GSOM training). The inner loop adjusts

the codebook of each node (ξm) during training to find the optimal placement

of node codebooks. We will first discuss the offline batch training of GSMMS

in detail and then discuss online implementation adjustments.

3.3.3.1 Initialization

To initialize GSOM training, a initial set of SOM structure parameters

need to be generated (the initial node codebooks ξm and the initial adjacency
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Clustering, Density Estimation, 

Validity Function, etc.

Local Modeling

Training

Data

N is fixed after training

Model 1 Model 2 Model N….

Figure 3.9: Basic flow of information in conventional multiple model systems

.

Initialize GSOM

Find best matching units (BMUs)

I. Train local models and calculate 
fitting error

II. Update GSOM network

III. Evaluate global error and 
adjust GSOM net size

Repeat Until Convergence

Figure 3.10: Overall training procedure for GSMMS models
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matrix A). Three initial nodes with codebook vector ξm randomly sampled

from the training input is usually used to seed the GSOM. This size is chosen

as it offers optimal flexibility in adapting to the optimal network topology.

The adjacency matrix A of this initial network is defined as:

A =

 0 1 1
1 0 1
1 1 0

 (3.9)

This definition of A connects all three nodes with each other, forming a trian-

gular network.

After initialization, the BMU of each training input is calculated using

Equation3.8. This returns a vector of BMU for each observation.

BMU = {BMUi, i ∈ (1, Nsamples)} (3.10)

An observation is said to belong to node m if the BMU of this observation is

equal to m. It is important to note that as the SOM undergoes training, the

membership association of each observation will change. The vector BMU

stores the most appropriate node for each observation in the training input

at the current iteration. A Gaussian weighing function wm(BMU,A) can be

defined to calculate the weight of each observation with respect to the specific

node m:

wm (BMUi,A) = exp

(
−dis (m,BMUi,A)

2σ2

)
,m ∈ [1,M ] (3.11)

where σ2 is a parameter that defines the effective range of the weighting func-

tion, and dis(m,BMUi,A) is the topological distance specific to the current

network configuration A. This distance is best explained visually through

Figure 3.11. For primary neighbors of node m, the value is 1, for secondary
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Figure 3.11: Topological distance of each node with respect to node m

neighbors, the value is 2 and so on. This calculation can be carried out ef-

ficiently using Breath-first algorithms commonly used in graph theory [102].

The weighting function Equation 3.11 discounts neighbors that are far away

from the current node m during training. In addition, the weighting scheme

can also be used to vote on final prediction results during model execution.

3.3.3.2 Sample weighted PLS local model fitting

Before going into details of the structural parameter training , the local

model fitting algorithm, sample weighted Partial Least Squares, need to be

introduced. Each observation and its weight are both inputs to the algorithm.

This enables specifying the impact of different training observation on the final

PLS model. In GSMMS, since the neighborhood topology carries information
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of node membership and neighborhood association, the sample weighted PLS

algorithm can be used to integrate these topological information into local

model fitting. The sample weighted PLS can be expressed functionally as:

[P, T,Q, U,W, β] = weightedPLS (X, y, w) (3.12)

where wi ∈ [0, 1] is a vector of weights that has the same dimension as output

variable y.

PLS decomposition is traditionally performed using the Nonlinear It-

erative PArtial Least Squares (NIPALS) algorithm; however, it is difficult to

account for weighting of observations as it iteratively calculates scores, weights

and loadings of each component. Yet, the weighted PCA algorithm accom-

plishes sample weighting by accounting for the sample weights in calculating

the covariance matrix. Following this idea, we discovered that the SIMPLS

algorithm for PLS utilizes input-output covariance deflation to arrive at the

each successive components [53]. The following modified SIMPLS algorithm

shown in Table 3.3 is able to account for the different sample weights in the

training input. The sample-weighted PLS requires mean-centering of variables

and does not enforce unit variance scaling. However, if the range of magni-

tudes for the input-output variables is large, the best practice is always to

scale the variables to the same order of magnitude prior to applying the PLS

algorithm.

3.3.3.3 Combined local model and SOM fitting

After SOM initialization, the inner loop iteration updates the codebook

vectors (ξm) and the local model parameters (P,W, β for PLS, P for PCA)

of each node iteratively:
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Table 3.3: Algorithm details of sample weighted PLS algorithm

Step

1 Construct weighting matrix Ω = diag(w1, w2, . . . , wP )
2 Mean center using weighted mean for X, y matrices as follows:

Xs = X − X̄ ′, X̄ ′ = [1, 1, ..., 1]T [x̄1, x̄1, . . . , x̄M ]
ys = y − ȳ′

x̄m =
N∑
n=1

wnxnm/
N∑
n=1

wn

ȳ′ =
N∑
n=1

wnyn/
N∑
n=1

wn

3 Compute weighted cross product S = XT
s Ωysy

T
s ΩXs

Let a = 1
4 If a = 1, calculate [r, s, c] = SV D(S)

If a > 1, calculate [r, s, c] = SV D(S−P(PTP)−1PTS)
5 Get weights r = first left singular vector
6 Compute scores t = Xsr
7 Compute x-loading p = XT

s Ωt/(tTΩt)
8 Compute y-loading q = s · c/(tTΩt)
8 Store r, t,p,q and p into R,T,P,Q, respectively
9 Let a = a+ 1 until a = A and go to Step 4
10 Compute regression coefficients βPLS = RQT/(TTΩT)
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• For k = 1 : Kmax, perform the following:

1. For each local model m, perform sample-weighted PLS regression

using the entire training dataset and sample weights calculated from

wm(BMUi,A), the number of latent components in the PLS model

is a fixed parameter for all nodes.

2. Calculate the local modeling error as the root mean squared pre-

diction residual of each local model m from training data subset

j ∈ Jm := {i|BMUi == m} (all the observations assigned to node

m):

em =

√ ∑
j∈Jm

(ŷj − yj)2

count (Jm)
(3.13)

3. Update the node codebook ξm using training data belonging to node

m′:

ξm (k + 1) = ξm (k) +
M∑

m′=1

αm′ (µm′ − ξm (k)) (3.14)

where Kmax is a SOM standard parameter that defines the max-

imum number of passes, µm′ is the vector mean of training data

in subset Jm′ and αm,m′ is the learning rate, the learning rate is

defined as the product of the following factors:

iterative decay: h0 exp
(
− k
λ

)
, this is a standard SOM construct

that reduces movement of nodes gradually to eliminate exces-

sive movement due to BMU membership association changes.

local error ratio:
MSEm′

MSEm′+MSEm
, this ratio is tailored specifically

for soft competitive learning of SOM to assign higher weight

for observations that have higher local fitting error.
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topological distance: exp
(
−dis(m′,m)

2σ2(m′)

)
, the topological distance

ensures data from neighborhoods further away will have less

impact.

neighborhood size ratio: Nm

Nm+Nm′
, this ratio accounts for differ-

ences in the number of observations available to each node. A

node with large amount of observation samples will have higher

weight to attract nearby nodes closer toward itself.

• Go to first step and repeat until convergence or k == Kmax. Convergence

is defined as when the change in the ξm is less than predefined tolerance

value ε (a very small value).

Node m

Node m’

Primary 

neighbor

data belonging 

to m’

Figure 3.12: GSMMS inner loop iterative update of ξm as described in Step 3

In Step 3 of the update algorithm, the learning rate balances the trade

offs between training sample size, local model fitting error, neighborhood topol-

ogy and SOM iteration decay. These factors can be visualized in Figure 3.12.
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The orange arrows projecting outward from node m shows directions and mag-

nitudes corresponding to the update vector αm′ (µm′ − ξm (k)). In a highly

nonlinear region such as m′ , the local PLS model for m′ would have large

MSEm′ , this results in higher weight being assigned in the direction of m′.

The higher weight compensates for the high local fitting error around this

node by drawing neighboring nodes closer. In a similar fashion, if a local node

is assigned many training observations in its partition, the node will carry

heavier weight and attract nearby nodes. As a result, data-rich regions (in

terms of training data availability) will attract more SOM nodes, leading to

finer partitions with better local prediction.

To improve the computational efficiency, BMUk from the previous

iteration can be stored and monitored for changes in the current iteration.

PLS regression only need to be recomputed for local models that had changes

in their membership. Minuscule movements and fine tuning of node location

ξm usually do not result in membership changes. This modification improves

the speed of the update step by as much as five times in practice.

3.3.3.4 Network growth mechanism

After the SOM converges, global fitting error is defined as the root

mean squared prediction residual of every observation:

eglobal =

√
M∑
m=1

( ∑
i∈Jm

(ŷi − yi)2

)
N

(3.15)

The global fitting error is used in evaluating the marginal return on prediction

performance by having the additional SOM node. To achieve the most parsi-

monious model, if the improvement in global fitting error does not exceed a
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predefined threshold (for example, 5%), then the simpler SOM structure of the

previous iteration is preferred over the existing more complex SOM structure.

The outer loop then terminates and the SOM training is complete. Otherwise,

a new node is added.

Inspired by the GSOM applications in Liu et al. [82], node insertion

in our proposed method places new nodes near regions with the highest local

fitting error using the following heuristic:

1. Find the node with the largest MSEm, call this node p

2. Find the furthest node q from its primary neighbors based on Euclidean

distance of the codebook vectors: q = argmin
m′

‖ξp − ξm′‖, where m′ be-

longs to the set of primary neighbors

3. Insert a new node at the mid-point ξnew = ξp+ξq
2

4. Connect the new node with neighbors of nodes p and q in the adjacency

matrix A

The above procedure is illustrated graphically in Figure 3.13, where the 11th

node is added and connected to the surrounding neighbors of nodes p and q.

After node addition, the algorithm would return the inner loop to update the

SOM codebook and the local model parameters.

3.3.3.5 PCA local model modification

While the above discussion of the GSMMS framework focuses on mul-

tiple model system using PLS models as local models, this framework can also

be easily adapted to use PCA local models for fault detection and process

monitoring.
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Node p              Node q          New node       New connection

(1) (2) (3)

Figure 3.13: GSMMS node insertion into region with highest local fitting error

To train PCA models as local models, the overall training scheme re-

mains unchanged. However, the local model fitting performance for PLS mod-

els is measured by the mean squared prediction error of that local region.

Since PCA is an unsupervised learning technique, a new local and global fit-

ness measure need to be defined. A PCA decomposition gives the following

result,

X = X̂ + X̃ = TP′ + X̃ (3.16)

where X̂, X̃ are the principal and residual matrices respectively. The magni-

tude of the residual matrix is inversely proportional to the magnitude of the

principal matrix, where the number of components controls the trade-off. Be-

cause the number of components for each local model is specified to be the

same, the magnitude of the residual matrix X̃ is a measure of the local fitting

performance. We define the local fitting error of node m as the mean Frobenius

norm of the residual matrix:

em =

∥∥∥X̃m

∥∥∥
Nm

=

√
Nm∑
i=1

Nm∑
j=1

(x̃i,j)
2

Nm

(3.17)
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The global fitting error is defined as the weighted mean of the residual

matrix norms. The same criteria are applied to ensure that there is acceptable

improvement (5%) in global fitting error for the additional node; otherwise,

the training terminates at the previous SOM structure.

eglobal =

M∑
m=1

Nmem

N
(3.18)

3.3.4 Online update of GSMMS models

One of the key benefits of using GSOM with local modeling is that

GSOM offers the flexibility of adaptation. The GSOM construct allows for

easy ways to alter the structural of the network (by adding or deleting nodes).

However, in GSMMS, the nodes are associated with local models and thus

impose additional constraints. The online update of our proposed GSMMS

system is based on GSOM but undergoes several modifications.

First, an initial GSMMS model needs to be trained using offline training

data. The online update of the GSMMS model therefore takes the following

functional form:

GSMMSk+1 = OnlineUpdateFcn(GSMMSk,Sk+1,yk+1) (3.19)

where k is a counter for the number of updates performed, GSMMSk is the

total GSMMS system including the SOM structural parameters and all the

local models. The Sk+1 is the input features of the newly collected online data

and yk+1 is the new output vector.
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Figure 3.14: GSMMS local parameter update algorithm
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3.3.4.1 Local parameter update

Figure 3.14 lists the overall algorithm to update the GSMMS model.

The update can be separated into two steps. The first step is to update the

local models of nodes that are activated by the new inputs. The local model co-

efficients can be updated efficiently using recursive PLS and PCA algorithms.

Prediction errors for the new feature input are also obtained during the model

update. Since the original training data is not available during online adap-

tation, the new prediction errors are combined with the historical prediction

errors using an exponentially weighted moving average filter as follows:

eEWMA
m (k) = λwm (s (k)) eEWMA

m (k − 1) + [1− λwm (s (k))] ‖em (k)‖ (3.20)

The forgetting factor λ is tuned to allow the effective sample size of the local

node to remain unchanged from the initial training. The effective sample size

is related to the forgetting factor λ through the infinite sum identity of a

geometric series:

Neff =
∞∑
k=0

λk =
λ

1− λ
, λ ∈ (0, 1) (3.21)

Once the local errors are updated, the codebook of each node are then

moved to the new location using a modified version of the codebook update

equation based on Equation 3.14.

ξm (k + 1) = ξm (k) + α̃ (k) [s− ξm (k)] (3.22)

where α̃ is the recursive learning rate, s is the input feature vector, and ξm is

the codebook of the node being updated.

Similar to the batch learning rate α, the recursive learning rate (α̃) is

composed of three components:
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local error ratio:
eEWMA
m′

eEWMA
m′ +eEWMA

m
, this ratio is assigns higher weight to regions

with higher local fitting error using the EWMA filtered error measure.

topological distance: exp
(
−dis(m′,m)

2σ2(m′)

)
, the topological distance ensures data

from neighborhoods further away will have less impact.

dampening factor: exp
(
−k
τ

)
, the k is the number of samples assigned to

the node since the last node addition/removal. This is analogous to the

offline scenario where the number of passes reduces the learning rate.

3.3.4.2 SOM structural parameter update

The above recursive update rules, when applied, are able to update the

local model coefficients and handle slow drifts of operating space over long

periods of time. However, in cases where abrupt changes occur in the system,

the EWMA filtered local errors and the iterative update equations for the

structural parameters are not able to respond quickly enough. In these cases,

new nodes need to be inserted near regions with the highest predictive error.

Here we briefly discuss two ways this can be implemented, these node insertion

heuristics all follow the same general principles that were applied during batch

training.

The first method is to monitor the global prediction error as new update

samples are made available. A spike in global prediction error of the network

would indicate that the current nodes are not able to predict the more recent

events in the process. In this case, a new node can be added near the node

that is closest to these update inputs. If there is an significant improvement

in reducing the prediction error, then the new network structure is kept.

The alternative is to monitor the distance (Euclidean) of new feature
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inputs from the existing SOM node codebook vectors. This is an efficient

calculation since the distances are already computed during the assignment of

the best matching units. The update step then monitors this distance against

a threshold. When the threshold is exceeded, it would be likely that this node

will not be predicted well by any of the existing local models. In this case, a

new node can be inserted at the midpoint between the new observation and

its closest neighbor to initialize a new region.

3.3.5 Prediction and fault diagnostics

Combining local model diagnostics and prediction for any multiple

model system is a challenging task. It is common that local models carry

excessive uncertainty and yield predictions that are unreliable. In addition,

transition regions between operating states are also difficult to predict even

with multiple model systems because of the dynamic and nonlinear nature of

transitions.

As a result, in our proposed framework, the local model prediction and

the SOM node information will be combined using a procedure summarized in

Figure 3.15. The best neighborhood is selected as the best matching unit and

its immediate primary neighbors. The final predictions are then calculated

based on heuristics outlined as follows:

• Calculate the T 2 and Q statistics of the best matching unit m for the

incoming input.

• If these monitoring indices are below their alarm limits, then use the

best matching unit local prediction ŷm as the final output
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• If the monitoring indices are alarming, then use the neighborhood weighted

average prediction as follows:

ŷ =

I∑
i=1

wiŷi

I∑
i=1

wi

wi = exp
(
−dis(m,i)

2σ2(k)

) (3.23)

GSOM

Layer

PLS 2
…

Combining 

Prediction

Update

GSOM

Or

Local Models
PLS 1 PLS 2 PLS M

Find Best Neighborhood

Feature Input

Predicted Output

Figure 3.15: Schematic of the prediction and the online adaptation of proposed
GSMMS framework
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3.3.6 Simulated case studies

Three case studies were performed using simulation to demonstrate the

effectiveness of proposed method:

1. Five multiple operating state steady-state input-output data

2. Nonlinear input-output steady-state operating data

3. Five multiple operating state with overlapping boundaries input-output

data

In these simulated case studies, we attempt to predict the final output

of a simulated process with 10 inputs and one output. The simulated process

with multiple operating states is generated in MATLAB. The steady state data

is generated using an integrated moving average time series subjected to occa-

sional unmeasured disturbances. Three inputs are collinear variables based on

linear combination of the other seven inputs. The final output is generated as

a linear function of the inputs under white noise. While this system does not

simulate the dynamic behavior during state transitions, it represents a typical

set of input-output data for continuous steady-state systems.

The dataset is simulated for 15,000 samples. 5,000 samples are used

as training data and the other 10,000 are used as testing inputs. The initial

GSOM inputs has been reduced using a global PCA model to the first three

components, while the local model inputs still uses the ten raw simulated

inputs. This global PCA model captures 85% of the total variance in the

process inputs.

Figure 3.16(a) lists the GSOM diagnostics of a model just after initial-

ization, the top plot is the number of activations for each node and the bottom
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plot shows the root mean squared error of each node. The node locations are

initialized randomly and the local node error are calculated using the member-

ship association at the time of initialization. Figure 3.16(b) shows the current

network structure as denoted using the first two scores of a principal compo-

nent projection for better visualization. Higher dimensional plot is much more

difficult to interpret visually.
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Figure 3.16: GSOM node error and codebook location just after initialization

After the GSOM undergoes batch offline training, the structural param-

eters and the diagnostics are shown in Figure 3.17. The algorithm determined

that five nodes is required to model the input data, which matches the number

of operating modes specified in the simulation. In addition, the number of acti-

vations and the root mean squared error of each node are inversely correlated.

Nodes with the highest number of activations have lower root mean squared

errors, indicating that their membership association have been optimized for

prediction.
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Figure 3.17: GSOM node error and codebook location after training has been
completed

Figure 3.18 shows the testing dataset mapped onto the trained SOM.

Since this simulated dataset did not include a drifting disturbance, the model

is able to accurately predict the results with a R2 value of 0.91.

In the second case study, simple steady-state process nonlinearity is

also simulated by setting the output as follows:

y = β1 exp (−x1/x2) + β2x3x4 + β3x5
2 + β4x6 + β5x7 + β0 + ε (3.24)

The input and the generated output are plotted in Figure3.19(a). The

trained network structure is shown in Figure 3.19(c), and the final testing

dataset prediction is shown in Figure 3.19(d). In this case, the GSOM divided

the input space into five nodes to better approximate the nonlinearity in the

system. The prediction performance on the testing dataset resulted in a R2

value of 0.81.

128



−100 −80 −60 −40 −20 0 20 40 60
−80

−60

−40

−20

0

20

40

60

 Node 1
 Node 2

 Node 3

 Node 4
 Node 5

Current network with testing input mapped

(a) Testing dataset score plot

0 2000 4000 6000 8000 10000 12000
−20

−15

−10

−5

0

5

10

Samples

O
ut

pu
t

R2 = 0.913

 

 
Predicted
Measured

(b) Predicted and actual values of the test-
ing dataset

Figure 3.18: Testing data score plot and the prediction results using the GSOM
model

The third case study simulates a scenario where there are significant

operating mode overlap. The operating mode boundaries are difficult to iden-

tify, causing degradation of prediction performance if each mode is treated as

independent from other modes. The boundary overlaps are simulated by re-

ducing the variance in the model inputs among different operating modes. The

GSMMS trained network structure and the simulated input data are shown in

Figure 3.20. The GSMMS training algorithm optimized the network size to

be six nodes (greater than five modes used in simulation). The finer partition

allows GSMMS to isolate regions of high overlap and improve on prediction in

regions with less overlap.

The prediction, training coefficient of determination (R2)and prediction

errors are tabulated in Table 3.4. As references for comparison, two additional

model performances are included. The baseline model represents the current

industrial practice of assuming contiguous blocks of training data from a single

129



0 1000 2000 3000 4000 5000
−100

0

100

200

300

In
pu

ts

0 1000 2000 3000 4000 5000
−10

0

10

20

30

Samples

O
ut

pu
t

(a) Simulated inputs and nonlinear output
time series plot

−60 −40 −20 0 20 40 60
−30

−20

−10

0

10

20

30

 Node 1 Node 2

 Node 3

 Node 4

 Node 5

Training completed.

(b) SOM network structure after training

1 2 3 4 5
0

500

1000

1500

# 
of

 A
ct

iv
at

io
ns

1 2 3 4 5
0

0.05

0.1

0.15

0.2

Mode

R
oo

t−
m

ea
n−

sq
ua

re
d 

E
rr

or

(c) GSOM diagnostics information

0 2000 4000 6000 8000 10000 12000
−15

−10

−5

0

5

10

15

20

25

30

Samples

O
ut

pu
t

R2 = 0.805

 

 
Measured
Predicted

(d) Predicted and measured outputs for the
testing dataset

Figure 3.19: Training and testing results of nonlinear simulated case study
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operating mode and creates only a single PLS model. The ideal case assumes

perfect knowledge about the operating mode information and creates a PLS

model for each separate mode based on the true operating mode information.

The GSMMS model behaves close to the ideal case performance for cases 1

and 2. In case 3 with excessive data overlap, the GSMMS suffers a drop

in prediction performance, but it is still performing better than single mode

models. As a result, the multiple model system approach is superior if the

development process can be simplified and streamlined for practical use in

industrial applications.
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(a) Score plot of training data
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(b) SOM partitioning of the input space

Figure 3.20: Score plot and GSOM structure for a case with operating mode
overlap
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Table 3.4: Prediction performance of the GSMMS framework in three simu-
lated case studies

Model # of Nodes Testing R2 RMS Error

Case 1 - Operating Mode with Clear Separation

Ideal case 4 0.97 1.01
Baseline 1 0.7 3.04

Piecewise GSMMS 4 0.97 1.01
Case 2 - Multiple Operating Mode with Nonlinear Output

Ideal case 4 0.98 0.99
Baseline 1 0.76 3.53

Piecewise GSMMS 5 0.91 2.38
Case 3 - Multiple Operating Modes with Overlapping Modes

Ideal case 5 0.96 1.09
Baseline 1 0.52 4.23

Piecewise GSMMS 6 0.85 2.13
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3.3.7 Tennessee-Eastman process simulated case study

The Tennessee Eastman Chemical Process simulation developed by

Downs and Vogel [103] have been used in many fault detection and process

control studies. In this case study, we use the revised TEP code re-written

for MATLAB and Simulink developed by Dr. Ricker. In summary, there are

16 standard process measurements of flow rates, temperatures, pressure, com-

pressor power consumption, and tank levels. The simulated plant is under

PID closed loop control for some of the key process variables. Faults are then

manually injected into the stable steady-state plant. There are a total of 20

fault scenarios. For each fault scenario, the plant was configured to operate

normally for the first 300 samples. The fault occurs at sample 300 and then

progresses onward until the plant destabilizes and trips. The detailed cause

and type of faults injected can be found in [44]. The goal of applying GSMMS

is to diagnose and identify the fault at the earliest possible time. Since each

fault is injected at sample 300, the fault detection response speed is defined as

the elapsed time since sample 300 before the first alarm is generated. In ad-

dition, standard fault detection metrics of false alarm and missed alarm rates

will be calculated as well.

To apply GSMMS-PCA for the TEP, a month of steady-state normal

operating data was first generated. A global PCA model (call this PCAnormal)was

first trained on the normal operating data to define the normal operation. We

then apply the loadings of the PCAnormal model to the 20 faulty cases to

obtain their corresponding scores. Figure 3.21 shows the score plot of the

faulty scenarios being projected onto the first two principal components of

the PCAnormal. The scores of the projection then represents deviation of cur-

rent behavior relative to the initial normal operating period defined using
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PCAnormal.

Figure 3.21: Fault signatures (red crosses) plotted on the principal component
plane of the PCAnormal, green circles denote the normal operating region

A GSMMS framework using PCA as local models was then trained on

the faulty data. The number of components for each local model was set to

three. The maximum network size was set to 20, which is the true number of

fault conditions.

The trained GSMMS framework network structure and the GSOM di-

agnostics are shown in Figure 3.22. The GSOM arrived at a network size of

15 nodes. Using this trained network representation, we can label each node

as either a faulty region or a normal operating region based on the training
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data labels available to us from the simulation.
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(b) SOM network structure after training

Figure 3.22: GSMMS network trained using simulated Tennessee-Eastman
process data

To apply the trained GSMMS in fault detection. The scores of incoming

sample are calculated based on the PCAnormal loadings. Using the scores as

inputs, the best matching unit and its neighbors can be identified on the

existing SOM structure. The T 2 and Q statistics of each local PCA node

within the neighborhood can then be calculated. Using these alarm statistics,

the decision tree shown in Figure 3.23 is used to arrive at the final decision of

whether the input observation is normal or faulty.

The fault detection speeds, the missed alarm rates, and the false alarm

rates results are reported in Table 3.5,3.6 and 3.7 respectively. Two literature

sources (Russel et al. [104] and Zhang [105]) are used as reference benchmarks

to compare the performance of GSMMS-PCA. Russel et al. evaluated the

performances of PCA, dynamic PCA and canonical variation analysis (CVA)

in detecting these faults, whereas Zhang evaluated nonlinear methods of kernel

PCA, kernel ICA and implicit kernel ICA. The false alarm rates are aggregated
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Figure 3.23: Decision tree of the GSMMS-PCA for detecting faults in the
Tennessee-Eastman case study

for all 20 faults to maintain the same reporting format found in the literature

references.

The fault detection speed of the GSMMS-PCA is on average the same

or better than PCA based resources. However, the GSMMS method was

unable to detect faults 4, 9, and 19. These faults are difficult to detect due

to their similarity to the normal operating data in the principal component

space. The fault signatures for these faults are completely overlapped with the

normal operating data (as shown in Figure 3.21). The GSMMS-PCA approach

increases the sensitivity of the PCA model fault detection by dividing the

larger ellipse into many smaller ellipses; but in cases where the normal data

is indistinguishable from faulty data, it becomes a challenge to detect these

faults. A possible solution would be to try to separate the faulty data from the

normal data before applying fault detection methods by introducing lagged
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variables, additional measurements, or nonlinear transformations. However,

these results are outside of the scope of current work and is thus not discussed

here. In addition, as a result of the increased sensitivity in the GSMMS-PCA

model, the missed and false alarm rates of the GSMMS-PCA model on average

are better than the conventional performance reported in the literature sources

as shown in Tables 3.6 and 3.7.
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Table 3.5: Fault detection speed for the Tennessee Eastman Process (lower is
faster, blank means failure to detect)

Russel et al. [104] Zhang [105]
Fault GSMMS Average time PCA T 2 PCA Q DPCA T 2 DPCA Q CVA T 2 CVAT 2

r CVA Q KPCA KICA Imp. KICA
1 24 13 21 9 18 15 6 9 6 15 9 6
2 240 41 51 36 48 39 39 45 75 30 36 33
3 15
4 234 9 453 3 1386 3 9 6 6
5 16 8 48 3 6 6 3 3 0 3 3 3
6 27 9 30 3 633 3 3 3 0 3 3 0
7 7 5 3 3 3 3 3 3 0 3 3 0
8 76 64 69 60 69 63 60 60 63 75 69 60
9 899

10 183 131 288 147 303 150 75 69 132 60 51 42
11 69 271 912 33 585 21 876 33 81 69 57 45
12 162 15 66 24 9 24 6 6 0 9 6 3
13 139 110 147 111 135 120 126 117 129 123 114 99
14 16 6 12 3 18 3 6 3 3 3 3 3
15 323 865 2220 2031 27 27 21
16 328 304 936 591 597 588 42 27 33 27 21 9
17 166 89 87 75 84 72 81 60 69 57 51 51
18 260 242 279 252 279 252 249 237 252 222 198 195
19 140 246 33
20 228 189 261 261 267 252 246 198 216 177 165 135
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Table 3.6: Missed alarm rates in percentages for the Tennessee Eastman Pro-
cess (lower is better, blank means failure to detect)

Russel et al. [104] Zhang [105]
Fault GSMMS PCA T 2 PCA Q DPCA T 2 DPCA Q CVA T 2 CVAT 2

r CVA Q KPCA KICA Imp. KICA
1 1.3 0.8 0.3 0.6 0.5 0.1 0 0.3 0 0 0
2 2.1 2.0 1.4 1.9 1.5 1.1 1.0 2.6 2.0 2.0
3 73.5 99.8 99.1 99.1 99.0 98.1 98.6 98.5 96.0 94.0 92.0
4 95.6 3.8 93.9 0 68.8 0 97.5 91.0 18.0 19.0
5 3.2 77.5 74.6 75.8 74.8 0 0 0 75.0 71.0 71.0
6 0.9 1.1 0 1.3 0 0 0 0 1.0 0 0
7 13.4 8.5 0 15.9 0 38.6 0 48.6 0 0 0
8 2.8 3.4 2.4 2.8 2.5 2.1 1.6 48.6 3.0 3.0 2.0
9 99.4 98.1 99.5 99.4 98.6 99.3 99.3 96.0 95.0 95.0
10 12.4 66.6 65.9 58.0 66.5 16.6 9.9 59.9 57.0 19.0 20.0
11 43.2 79.4 35.6 80.1 19.3 51.5 19.5 66.9 76.0 19.0 18.0
12 1.5 2.9 2.5 1.0 2.4 0 0 2.1 3.0 3.0 2.0
13 2.7 6.0 4.5 4.9 4.9 4.7 4.0 5.5 6.0 5.0 5.0
14 3.2 15.8 0 6.1 0 0 0 12.2 21.0 0 0
15 83.5 98.8 97.3 96.4 97.6 92.8 90.3 97.9 95.0 95.0 94.0
16 92.5 83.4 75.5 78.3 70.8 16.6 8.4 42.9 70.0 20.0 20.0
17 70.3 25.9 10.8 24.0 5.3 10.4 2.4 16.8 26.0 5.0 5.0
18 24.5 11.3 10.1 11.1 10.0 9.4 9.2 10.2 10.0 10.0 9.0
19 99.6 87.3 99.3 73.5 84.9 1.9 92.3 97.0 25.0 23.0
20 23.8 70.1 57.0 64.4 55.8 44.0 34.2 54.7 59.0 42.0 50.0
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Table 3.7: False alarm rates in percentages for the Tennessee Eastman Process
(lower is better)

Methods False Detection Rate

GSMMS-PCA 5.7

Russell et al. [104] PCA T 2 1.4

PCA Q 16.0

DPCA T 2 0.6

DPCA Q 28.1

CVA T 2
s 8.3

CVA T 2
r 12.6

CVA Q 8.7

Zhang [105] PCA T 2 0.5

KPCA T 2 1.52

KICA T 2 0.31

Improved KICA T 2 0.27

140



3.4 Summary

In this chapter, we introduce two methods designed to address the issue

of model quality degradation in inferential sensors and fault detection models.

The two common causes of performance degradation are due to:

• Slow unmeasured process drift with indistinguishable changes in operat-

ing mode or product grade.

• Seasonality or cyclic behavior due to process nonlinearity, multiple op-

erating modes or other external influences.

Data-driven models built on these types of processes will decay over time,

since the process condition usually deviates from the original condition when

the models are developed. To deal with these performance degradations, there

are two approaches in literature.

For slow process drifts, a moving window based model update scheme

is an effective solution to maintain the model quality overtime. A moving

window PLS model is more appealing than recursive PLS models because

moving window approaches allow us to re-compute the T 2 and Q diagnostics

for the updated model. These diagnostics are also an important part of a

projection based data-driven model. They can be used to screen incoming

update data for potential outliers. However, in current implementations, it is

difficult to distinguish whether an outlier actually constitutes an measurement

outlier or a process excursion. Including an measurement outlier (fictitious

alarm) can reduce the prediction performance of the data-driven model, while

including an process excursion will improve the model prediction. To improve

the robustness of the model update, we propose using total projection to latent
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structure (TPLS) decomposition as a more refined screening tool to monitor

for measurement outliers. T-PLS can be performed on an existing PLS model

to divide the incoming data into subspaces that are correlated and orthogonal

to the process output. This scheme gives finer control and allow inclusion of

variations that could further improve the model without introducing excessive

noise.

For processes exhibiting cyclic behavior or multiple operating condi-

tions, “divide and conquer” approaches have been proposed by many re-

searchers in this field. However, most of these methods are not designed to

handle high dimensional input data. In addition, detailed process knowledge

is often required to select the best features for local modeling. Considerable ef-

fort must be taken to determine the appropriate partition scheme to divide the

training data. Lastly, to update these methods online, the supervisory layer

(where operating mode labels are assigned or how local models are combined)

also needs to be considered. To address these problems. We extend a novel

framework that combines growing self organizing map with PLS and PCA lo-

cal models. The proposed framework trains the structural parameters and the

local model coefficients simultaneously and can be updated online. The self

organizing map acts as the supervisory layer and is able to assign data into

a “neighborhood” of models. Using the entire neighborhood for training and

prediction smoothes predictions on the boundary of neighborhoods. The self

organizing map is able to grow new nodes to accommodate previously unseen

process conditions. Two case studies using simulated data have shown that the

proposed technique is able to improve the prediction and the fault detection

capabilities of PLS and PCA models respectively.
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Chapter 4

Industrial Applications

4.1 Introduction

In this chapter, we apply the previously discussed modeling methods in

developing two virtual metrology models for plasma etch processes using data

provided by Texas Instruments. In addition, a novel use of virtual metrology

in controller performance assessment is proposed and tested using a simulated

dataset. Lastly, modeling results using industrial data from a liquid-liquid

separation process in a chemical plant is also provided to demonstrate why

using moving window VIP for variable selection could be beneficial than other

existing techniques.
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4.2 Etch Rate Prediction of a Polysilicon Gate Etch
Process

Plasma etching succeeds traditional wet etching due to its advantages

in etch uniformity, selectivity and non-isotropic process [106]. Figure 4.1 shows

a schematic of a plasma etch reactor, etchant gases (usually fluorine, chlorine

based, halide containing species) enter the reactor through the gas inlet and

turns into plasma under the excitation of the RF power. The plasma gas con-

tains free electronics, ionized molecules, neutral molecules, ionized fragments of

broken-up molecules and free radicals. In addition to reactive chemical etching

(which forms a isotropic etch profile), plasma etch also produces physical etch-

ing effects through sputtering of charged particles. Different etch tools have

been designed with different emphasis on the reaction mechanism. Figure 4.2

illustrates the different geometry from these etching mechanisms. Isotropic

etching could cause undercutting, while physical sputtering can cause trench-

ing; both of which are undesirable geometries. To minimize these effects, the

trim time for the etch step has to be controlled precisely, which requires an

accurate process model.

Several physics based simulation tools can be used predict the shape

and topography of specific etching technologies. The most prominent ones

are SPEEDIE[107], Sentaurus Topography[108] and ATHENA[109]. However,

these simulator relies empirically derived etch models that contain inputs im-

possible to measure online in commercial systems, such as the concentration

of reactant species. In practice, the etch rate is usually estimated by running

test wafers before the a lot of wafers are etched.

Polysilicon gate etch processes define gate transistor structure and pro-

duce other geometries that are important in semiconductor devices. The gate
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Figure 4.1: Schematic of a typical plasma etching system

Figure 4.2: Summary of etching mechanisms and typical problems in plasma
etching
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trim etch process produces a polysilicon line with a width smaller than the

minimum photoresist line. Line-width profiles and critical dimension are criti-

cal parameters that correlate to the performance of the final device. Metrology

stations are used to measure these quality parameters before and after gate

etch to ensure wafer quality. These metrology measurements are illustrated in

Figure 4.3.

Figure 4.3: Transmission Electron Micrograph (TEM) of a polysilicon gate
geometry showing the quality variables of interest

The development inspection critical dimension (DICD) measures the

critical dimension of the wafers following the develop step of the photoresist
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Figure 4.4: CD control flow diagram showing an example scheme utilizing test
wafer FICD and DICD measurements

processing. The DICD measurement is usually made on three “pilot” test

wafers from a lot of 25 wafers. Using the DICD measurements from the test

wafers, the etch time for the gate etch process can be calculated based on a

empirical process model. Control is then used subsequently to compensate

for process drifts in daily operation. Using the estimated etch times, the test

wafers are etched in the plasma etch chamber and then subsequently stripped

and cleaned. The critical dimensions of the etched wafers are then measured.

This measurement is called the Final Inspection Critical Dimension (FICD).

The test wafer FICD and DICD measurements are then used to estimate

the etch time for the rest of the wafers in the lot. In some simple control

strategies, feedback control of the critical dimensions relies solely on the FICD

measurement of the test wafer. In an alternative control scheme, feedforward

control can be realized by combining DICD measurements of subsequent lots

with FICD measurements of the test wafers. A example control block diagram

utilizing DICD and FICD measurements are shown in Figure 4.4

The dataset used in modeling the gate etch process contains 1800 wafers

with metrology measurements of Develop-Inspect Critical Dimension of the re-

sist pattern (DICD) and Final Inspect Critical Dimension (FICD). Modeled
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outputs could be expressed as either the difference between these measure-

ments (etch bias) or the etch bias divided by the trim etch time as the etch

rate.

In this study, the etch rate is selected as the output variable. Fig-

ure 4.5(c) shows the etch rate plot for the entire dataset, where the first 205

wafers are used as training data; the rest of the dataset are used for validation

and testing. The metrology measurements are the response variables in the

model. All of the wafer data are from the same manufacturing thread, but the

tool did not produce all the wafers continuously.

The trace data (input variables) in the model are collected for each

batch in the fault detection and classification (FDC) system of the tool. These

measurements can be categorized into RF circuitry readings, etchant gas flow

rates, temperature, pressure and key actuator movement readings. The data

are collected at 0.5 Hz. Miscellaneous information such as recipe step, process

time and EWMA-estimated disturbances are also appended to the original

data set. In total, batch trajectories from 39 measurements were used as

input variables in attempt to predict the average etch rate of each wafer. An

example plot of the raw trace data is also shown in Figure 4.5.
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Figure 4.5: Raw data plot showing (a) the temporal profiles of six variables
for five wafer batches, (b) A three-dimensional representation of trajectories
from a single batch, and (c) output variable etch rate
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4.2.1 Unfolding and alignment

Each dataset was first screened for missing or redundant data. Redun-

dant and irrelevant variables were removed by manual inspection. Also ex-

cluded from the models were variables with more than 50% data being blank

such as status indicators. Temporal outliers such as spikes in sensor readings

were removed by checking against the confidence limits of corresponding vari-

ables. After initial cleaning, the dataset was then unfolded into a 2-D array

using batch-wise unfolding. The unfolded data then underwent another outlier

removal round to remove batch-wise outliers. Process engineers recommended

using recipe number as a guide to verify data integrity, so the recipe number

trajectory of every run was compared against a prescribed reference trajectory;

large deviations in the reference trajectory raised alarms that label the batch

as abnormal.

After initial trajectory screening, the trajectories are aligned using

robust-derivative dynamic time warping [41] based on the indicator variable

“recipe number”. Univariate scaling and mean-centering were then applied

to the unfolded input-output data to create the X and Y matrices. Three

representative batch trajectories before and after the alignment are shown in

Figure 4.6.
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Figure 4.6: Three representative trajectories before and after alignment
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4.2.2 Full and simplified PLS models

A preliminary PLS model is built using the unfolded dataset to provide

a baseline for PLS model performance. A total of 10 latent components is

used in the preliminary model. The number of components is determined by

minimizing the cross-validated prediction error. Cross-validation is done by

dividing the training data into seven segments of equal length. One of the

seven segments is removed from training data and used as testing data against

the rest of the six data segments. This process is repeated for every data

segment until all the errors are collected. The results are plotted in Figure4.7.

From Figure 4.7(a), the PLS variable is able to achieve a R2 value of higher

than 0.5, this indicates that there are significant correlation between the input

and output that can be refined with additional variable selection and training

data screening.
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Figure 4.7: Raw and simplified PLS model performance on training and vali-
dation data
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To perform variable selection, the VIP values of each multi-way input is

calculated and then refolded back into the original dimensions. The resulting

VIP can be visualized graphically in Figure 4.8. The detailed steps to create

this plot has been discussed in Section 2.2.4.1. This plot can be examined from

two dimensions. From the relative batch time dimension, data from sample

periods 20-30, 50-60, 70-80 and 95-105 are relatively important periods that

correlate with the output variation. From the variable dimension, it can be

seen that variables (4,6,8,11,13,24,29,30,34, and 35) consistently exhibit higher

correlation to the output than the rest. The number of multiway variables in

the simplified model can then be reduced by applying filters to screen out

unimportant time periods and variables. After simplification, the number of

multiway input to the PLS model was reduced from 3605 to 652 variables.

The simplified model performed much better than the raw process

model during training. However, during validation, the model shows signif-

icant degradation of performance as the prediction progresses farther away

from the original training period. This indicates that drifts and disturbances

are present in the dataset and are accounted for by the model.

Drifts and disturbances experienced in the quality variables of plasma

etching can be caused by many factors. For example, having multiple produc-

tion threads, meaning that each plasma tool is used to manufacture different

products using different recipe settings, could contaminate the current pro-

duction thread with residual deposits from another product. The inherent

process nonlinearity of the batch-type dynamic trajectories in plasma etching

also makes it difficult to fully model the plasma etching process on different

time-scales. As a result, slower time-scale dynamics could then appear as a

drifting bias in the etch rate. Preventive maintenance done routinely to clean
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(a) Variable Importance in Projection visualized in two-dimensions
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(b) Box plot of the VIP variation (in time) in each variable across the training batches

Figure 4.8: VIP information derived from the Raw PLS model used in model
simplification
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the plasma chamber of deposits and residues also introduces step change to

etch rates that must be accounted for. Lastly, errors from upstream processes

could also propagate and affect the etch profile in the plasma etching process.

In practice, it is difficult to identify the source of drifts and disturbances, as a

result, our goal is to account for the slow drifts in the process through moving

window model update and to account for the spike disturbances by selectively

removing them according to T-PLS subspace monitoring statistics.

4.2.3 Moving window VIP with T-PLS screening
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Figure 4.9: (a) Effect of moving window PLS update on predicting etch rate
(bottom) compared against PLS without moving window updates (top), (b)
Normalized regression coefficient of top four variables and the bias over the
moving window range

Figure 4.9 shows the comparison between the MW-PLS and the simpli-

fied PLS model. In the MW-PLS model, a PLS model with 200 wafer samples

is first initialized; subsequent models are updated at five lot intervals and the

maximum model training size is fixed at 300 wafer samples. Comparing the

moving window update model results with the fixed PLS model, the MW-PLS

model handles drifts and disturbances much better and is able to track the
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actual metrology measurements (especially after 800 wafer samples) In Fig-

ure 4.9(b), the normalized beta coefficient for the top four variables and the

bias for the moving window PLS model samples has been plotted. The bias

term exhibited the biggest change through performing moving window update.

This observation confirms that the process has undergone a slow drift instead

of a change in the correlation structure identified in the PLS.
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Figure 4.10: Moving Window PLS using TPLS Outlier Screening

As shown in Figure 4.10, in regions with strong outlier presence around

wafer samples 380, TPLS detection indices identified the abnormal runs and

excluded the highlighted wafers from entering the training data samples. Ex-

clusion of abnormal runs is effective at improving prediction quality when the

incoming data quality is poor.

4.2.4 Adaptive GSMMS with PLS local modeling

An adaptive GSMMS model using local PLS models was also trained

for this data set following the same data partitioning scheme (200 wafers for

initial training, then subsequently updated every five lots). Detailed method
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description of the GSMMS framework has been introduced in Section 3.3.

To ensure the same comparison reference point, the trajectory alignment and

variable selection performed for simplifying the raw PLS models are carried

over and applied here for the GSMMS framework model here. The resulting

unfolded multi-way dataset contains approximately 650 inputs. The feature

input into the GSOM model is reduced to 3 inputs through PCA projection.

The initial training returned a network structure with 5 nodes; detailed net-

work structure and the input observations are plotted on the first two principal

component planes in Figure 4.11(a). The first two component planes show a

parabolic shape trajectory evolution for the training dataset, indicating strong

non-Gaussianity in the data. GSMMS-PLS deals with this non-Gaussianity

by partitioning into smaller segments that appears more Gaussian. The adap-

tive GSMMS model update is applied using a sample buffer size of five wafer

lots (the same as MW-PLS). The resulting network structure after iterat-

ing through the entire testing data is shown in Figure 4.11(b). The network

size is increased to six nodes. We also observe an increased density of nodes

around the left “tail” of the parabola, indicating that particular region is be-

ing activated more frequently than the rest of the network. The prediction

performance of the adaptive GSMMS prediction is plotted in Figure 4.12, the

adaptive GSMMS predictions behaved as expected and was able to maintain

tracking of the etch rate across two maintenance events around sample 220

and sample 800. The prediction error and coefficient of determination (R2)

for these models are compared against other popular modeling techniques in

Table 4.1.
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4.2.5 Comparison with other techniques

Principal component regression (PCA), back-propagated neural net-

work (BPNN) , neural network PLS (NNPLS), and moving window partial

least squares without TPLS detection (MW-PLS) were implemented on the

same dataset to compare the results with our proposed framework. Table 4.1

lists the comparison results; the three metrics used to evaluate model perfor-

mances are parameter size, cross-validated coefficient of determination (R2),

and cross validated root mean squared prediction error (RMSPECV).

Table 4.1: Model size, coefficient of determination, and cross-validated root
mean squared residual of candidate models

Method Approx. model size Testing R2 RMS residual
PCA regression 2700 0.425 0.0495
BPNN 2700×Nlayers 0.72 / 0.32 0.0823
Nonlinear PLS with Neural networks 600×A×Nlayers 0.56 / 0.25 0.0623
Static PLS 600 0.142 0.0998
MW-PLS 600 0.442 0.0598
MW-PLS w/ TPLS 600 0.66 0.029
Adaptive GSMMS-PLS 600× 5→ 600× 6 0.812 0.019
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Table 4.2: Qualitative evaluation of the candidate models and their implemen-
tation difficulty

Method
Development
Difficulty

Prediction R2 Implementation Difficulty

PCA regression Easy 0.2-0.5
Medium (large memory re-
quirement)

Static PLS Easy 0.1-0.5 Easy

BPNN Medium 0-0.7
Difficult(nonlinear activation
function)

Nonlinear PLS Medium 0-0.7
Difficult (nonlinear + large
memory requirement)

MW-PLS Easy 0.2-0.6
Difficult (requires online up-
date)

MW-PLS w/ TPLS Medium 0.5-0.6
Difficult (requires online up-
date and filtering logic)

Adaptive GSMMS-PLS Difficult 0.6-0.8
Difficult (requires online up-
date and computationally ex-
pensive)
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The principal component analysis model used the full dataset (without

variable filtering) and was found to be the most effective with 10 components.

The back-propagated neural network model took a reduced set of unfolded

variables as inputs (650 inputs). The reduced set was chosen using the cor-

relation filtering variable selection method. A two-layer structure with ten

neurons in the first layer was adopted to allow for efficient back-propagation.

This network configuration resulted in 6210 weights in the BPNN model. Per-

formance degradation was observed for the BPNN model. The testing R2

in the BPNN model was around 0.72 for about 200 wafers initially, but it

decreased quickly to around 0.32 afterwards. For NN-PLS, 10 outer compo-

nents was used. The inner neural network size varied between 3 to 6, and

was trained using the Levenberg-Marquadt back-propagation. The NN-PLS

was able to provide reasonable approximation initially but also experienced

relatively fast degradation in performance similar to BPNN; the drop in per-

formance indicates that these two models suffer from over-fitting.The PLS

with moving window update model also took the same set of reduced inputs

as the BPNN model. Simply applying moving window update scheme to PLS

models resulted in a much lower R2 due to the effects of outlier and abnormal

runs in future training data. Lastly, the proposed PLS-TPLS with moving

window update results was shown. Overall, the principal component analy-

sis regression model and the PLS-TPLS with moving window update model

had the best performance across 1300 testing wafers. The BPNN was able to

give excellent regression fit but degrades quickly overtime. Alternatively, PLS

with moving window update had poor model fit due to impacts of outlier runs

that affected the model results. Using the proposed MW-PLS with TPLS, the

resulting model was able to maintain its prediction performance across main-

tenance boundary and abnormal wafers. These properties are valuable in an
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online metrology environment where accuracy and certainty of measurement

data cannot be guaranteed. The GSMMS adaptive framework gave the best

prediction performance among the adaptive techniques (MW-PLS and MW-

PLS w/ TPLS). However, the GSMMS model also had the greatest number of

inputs among the three models due to the number of local models it generated

to account for the non-Gaussianity in the system.

In any practical industrial system, it is also important to take into ac-

count the development costs and maintenance costs of an effective data-driven

modeling solution. Table 4.2 lists the qualitative assessment of the evaluated

models and methods in terms of their development difficulty, deployment dif-

ficulty, and modeling performance. These metrics were assessed subjectively

based on our practical development experiences. Based on these results, static

methods such as the PCA regression or PLS regression would be good candi-

date methods to attempt as a “first-check”. If the preliminary modeling show

some correlation, then more advanced techniques can be applied to further im-

prove the performance depending on the level of prediction accuracy required

and the deployment environment (online or offline, etc).
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4.3 Control Performance Monitoring Based on VM Es-
timated Process Gains

Performance degradation in controllers can be caused by lack of con-

troller maintenance, drifts in process conditions, or actuator and sensor degra-

dation. Therefore, control performance monitoring and assessment (CPM/CPA)

is imperative to maintain controllability and reliability of the manufacturing

system. The main objective of CPA is to determine whether current control

performance meets specified performance targets or response characteristics.

The field of CPA has attracted growing interest since the work of Harris[110] in

1989. There are many published work in the past 23 years, and a few selected

work with applications in semiconductor processes are discussed here. A more

comprehensive list of those methods and applications in this field can be found

in the excellent reviews done by Qin[111], Harris et al.[112] and Jelali [113].

There have been several proposed application of virtual metrology mod-

els for advanced process control (APC) and fault diagnostics and classification

(FDC) purposes. For example, VM can be used in a dynamic sampling scheme

to reduce metrology station utilization [81]. VM-assisted run-to-run control

can achieve wafer-to-wafer level control precision as demonstrated through sim-

ulation [9]. The VM models can also be used in fault detection and diagnostics

[15]. However, deploying these algorithms online faces deployment challenges

such as additional IT infrastructure requirements, algorithm stability, model

performance degradation, and high memory and computational costs. Alter-

natively, controller performance assessment and diagnosis (CPA/D) is an area

where offline approaches are more commonly used and practical. As a result,

it would be worthwhile to examine the possibility of using VM to assist in

CPA and CPD.
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Previous efforts in run-to-run control performance assessment (CPA)

has focused on deriving expressions that compares the current control per-

formance against a benchmark performance such as minimum variance bench-

mark or the best-achievable performance benchmark (Bode et al.[33], Chen[114],

Good and Qin[115], Ko and Edgar[116], Prabhu and Edgar[117], Ma[118]).

However, these approaches do not work well under the presence of metrology

delay.

Wang et al. [119] and Jiang et al.[120] analyzed the output error of run-

to-run EWMA controllers and applied closed-loop identification to identify

important process parameters that relates to the control performance. An

ARMAX regression method is applied to the process output error, and process

parameters are estimated. However, When suboptimal behavior is detected,

it is difficult to determine why and how to improve the control performance.

In the gate etch process, a run-to-run controller is used to control the

final inspection critical dimension (FICD). The run-to-run controller takes the

measured DICD from the previous lot and the current estimate of process

gain to calculate the appropriate etch time settings for the next wafer. In this

model, the process gain is usually estimated based on the first three test wafers

in the lot.

4.3.1 Single-input-single-output Run-to-Run control

Here we will briefly introduce the standard EWMA run-to-run con-

troller used in semiconductor manufacturing. In a standard EWMA controller

scheme, the physical process is assumed to be of the form

yk = αk + βuk (4.1)
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Figure 4.13: VM-assisted Controller Performance Assessment Scheme

where β is the process gain of a unit operation and αk is a lumped distur-

bance term to account for unknown disturbance and drifts in the system. The

disturbance is often modeled as a IMA(1,1) series of the form:

αk = αk−1 − θεk−1 + εk (4.2)

where ε is an white noise disturbance with variance σ2
0 and θ is the first order

moving average coefficient. Box and Jenkins shows that the optimal one-step

ahead estimator of this disturbance series takes the form:

α̂k+1 = θα̂k + (1− θ)αk (4.3)

The Greek letter parameters are assumed to be the real, hidden param-

eters of the system, and their alphabetical counterparts represent the approx-

imations that we use. As a result, the system model approximates the real

process as:

ŷk = ak + buk (4.4)
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where b is the estimate of the process gain, and ak is an approximation of

the real disturbance variable αk. The approximate disturbance is updated

according to the optimal predictor Equation 4.3 as follows:

ak+1 = (1− ω) ak + ω (yk − buk) (4.5)

where ω is the EWMA weighting coefficient.

Therefore, after completing run k and measuring output yk, we can

adjust the input to track a target setpoint rk+1:

uk+1 =
rk+1 − ak+1

b
(4.6)

where r is the process target for the next run k + 1. r is usually fixed for the

same production thread.

We can simulate a standard single-input-single-output (SISO) batch

process under EWMA run-to-run control. The simulation parameters are

listed in Table 4.3. The trajectories for the output, the true and estimated

disturbance, calculated inputs, and the output error are shown in Figure 4.14.

Table 4.3: Simulation parameters used in generating Figure 4.14

Simulation
Parameter

Description Settings

N number of runs 500
d sampling time delay 1
θ the IMA(1,1) moving average coefficient 0.85
β the true process gain 2.5
σ standard deviation of the white-noise in IMA(1,1) series 0.1
b est process gain in process model 2.5
ω the forgetting factor for EWMA filter 0.15
r target setpoint in deviation variable 0
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Figure 4.15: Internal Model Control Representation of a Discrete Run-to-Run
Controller

4.3.2 Source of error analysis

The internal model representation of the SISO run-to-run control struc-

ture is shown in Figure 4.15. The transfer functions are defined as:

Gp = β

Ĝp = b

αk =
1− θq−1

1− q−1
εk

Gc =
1

b

Ge =
ωq−1

1− (1− ω) q−1

From Figure 4.15, the closed loop response of the system can be written

using the individual block transfer functions from system inputs rk and εk.

yk =
(β/b) (1 +Ge)

1 + (β/b)Geq−d
q−drk +

Gd

1 + (β/b)Geq−d
q−dεk (4.7)

We can further re-arrange this equation by substituting the definition

of each transfer function block and the output error (ek = yk − rk).
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ek =

{
β
b

(
q−d − q−1−d)− (1− q−1)

1− q−1 + ω β
b
q−1−d

}
rk +

{
1− θq−1

1− q−1 + ω β
b
q−1−d

}
q−dεk (4.8)

The detailed derivation of this system response is provided in Appendix

C.

Equation 4.8 shows that the closed loop system response of the out-

put error is driven by two inputs, the target setpoint rk and the white-noise

disturbance input εk. Under normal operating conditions, rk = rk−1, so the

dynamics due to setpoint changes has settled down to steady-state and can be

eliminated.

ek =

{
1− θq−1

1− q−1 + ω β
b
q−1−d

}
q−dεk (4.9)

The εk is a white noise series and cannot be directly measured. Jiang

et al. [120] has shown that an observer can be created to simulate ε̂k under

ideal R2R control. From which, the IMA coefficient θ of the disturbance series

can be estimated. The other term ω β
b

represents the contribution of improper

tuning of the forgetting factor with the process gain mismatch.

From this input-output system, one can observe that small plant mis-

match (β
b
6= 1) can be compensated by changing the EWMA tuning factor ω,

as long as the ω β
b

remains relatively unchanged. In addition, at optimal con-

troller tuning, the closed-loop residual of this system approaches white noise.

Furthermore, if there is a large metrology delay d, the output error will deviate

away from white noise behavior due to auto-regressive dynamics that cannot

be compensated by the term ω β
b
.
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Following this analysis, given that we have control performance degra-

dation in the process, the possible contributing causes are of the following:

• Process disturbance dynamics has drifted away from the original tuning

of the EWMA filter forgetting factor, ω

• The process gain β of the system has drifted away from the process model

gain b

• The disturbance series no longer satisfies the assumption of IMA(1,1)

time series.

• The metrology measurement delay is too long such that the d-step-ahead

predictions are approaching precision limits.

Using strictly system identification based methods (such as ARMAX

regression), it is difficult to diagnose the exact sources of the performance

error; in addition, since the identification is done in a moving-window fashion,

there will be delay in the response speed of such a system.

4.3.3 Virtual metrology assisted CPA

We have shown in the previous section that VM models for gate etch

process is able to achieve approximately 0.80 R2 value with a standard error

of ±0.02nm/s. Since the etch rate is closely coupled to the process gain of the

gate etch model, we assume that after each wafer run k, the process gain for

that run β̂vm,k can be estimated to within ±0.02nm/s accuracy. In practice,

this could be constructed by using a regression model to predict the process

gain based on the metrology predicted etch rate.
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The EWMA recursive update equation for the estimate of the distur-

bance series bias can be expanded:

ak+1 = (1− ω) ak + (yk − buk)

ak+1 = (1− ω) ak + ω (βuk + αk − buk)

ak+1 = (1− ω) ak + ω [uk (β − b) + αk]

ak+1 = (1− ω) ak + ω [uk (β − b) + αk−1 − θεk−1 + εk] (4.10)

Based on this expansion, the estimated disturbance series update is

based on the term [uk (β − b) + αk−1 − θεk−1 + εk]. If there is model plant

mismatch, then the term uk(β − b) will be nonzero. We can define the distur-

bance bias due to plant model mismatch as:

ξmismatch,k = uk(β̂vm − b) (4.11)

Using the VM estimated process gain, we can approximate the true

process disturbance more accurately using an EWMA filtered estimator avm:

avmk+1 = (1− ω) avmk + (yk − βvmuk) (4.12)

Calculating ξmismatch,k is equivalent to calculating the difference of the time

series ak and avmk as shown in Figure 4.16.

When there is no plant-model mismatch, the controller gain (b) is close

to the true process gain (β), so the calculated mismatch bias series ξmismatch,k

will be close to zero and behaves like a white noise. When there is process gain

mismatch, the disturbance becomes biased due the non-zero term as shown

in Equation 4.10, and the series becomes auto-correlated due to controller

output (uk) reacting to minimize the target offset. Therefore, we can exploit

172



0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Runs

M
ag

ni
tu

de

 

 

a
vm

 − a

ξ
mismatch

Figure 4.16: Comparison of plant model mismatch index ξmismatch,k with the
estimated disturbance difference for mismatch occurring at k = 300

this property to create a controller performance assessment index that checks

for the presence of autocorrelation in plant-model mismatch. Inspired by the

work from Jiang with recursive least square estimates of ARMAX parameters

[120], a quick way to check for auto-correlation is by performing recursive

least squares to estimate ξmismatch,k as a AR(1) time series. If there is auto-

correlation, the first order auto-regressive coefficient will be non-zero. The

algorithm to perform recursive least square (RLS) estimate of AR(1) coefficient

is shown in Table 4.4.

Table 4.4: Using recursive least squares to estimate φ in (1 + φq−1)xk = εk

Step

1 Initialize φ1 = 0, P = 1
2 For k = 2 to N
a Calculate the estimation error: αk = xk − xTk−1φk−1

b Update recursive gain: gk = Pk−1xk−1(λ+ xTk−1Pk−1xk−1)−1

c Update the parameter covariance matrix: Pk = (λ)−1Pk1 − gkxTk−1λ
−1gk

d Update the new coefficient estimate: φk = φk−1 + αkgk

After we obtain a series of φk corresponding to the estimate of the au-

toregressive coefficient at time k. The controller performance index is defined
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as follows:

M = 1− φ (4.13)

We demonstrate the effectiveness of this approach in simulation case

studies. In total, four cases are considered. The first two cases are gain

mismatch and improper tuning with metrology delay of one sample. The

next two cases are for gain mismatch and improper tuning with randomly

sampled metrology delays between 1 and 4 samples. The detailed simulation

parameters are listed in Table 4.5. Figure 4.17 lists the resulting simulated

controller performance index performance (top subplot) versus the filtered

residual CPA II index proposed by Jiang et al. (bottom subplot) [120]. In

all four cases simulated, the VM CPA indices are able to detect the controller

performance degradation clearly. For the plant model mismatch cases (case

1 and 3), the gain difference between the VM estimated and the controller

model results in an instant response in the VM CPA index. The alternative

method required additional samples and took longer to respond. In addition,

VM CPA index showed a less noisy profile than the CPA II index, making it

easier to identify the monitoring cut-off point. In cases with improper control

tuning (subplots b and d), the responses of the proposed VM CPA index is

a gradual decay instead of a sharp drop. This slower response time is due to

the propagation time required for the auto-correlation in the output residual

to affect the input series uk. In these cases, the detection speed of the VM

CPA Index is slightly worse than the CPA II index, but the VM CPA index

is much more stable and does not show oscillation which may obfuscate the

results.
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Figure 4.17: Controller performance assessment of SISO EWMA controller
under scenarios listed in Table 4.5
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Table 4.5: Simulation parameters for Case 1 - Plant/model gain mismatch,
Case 2 - Improper tuning, Case 3 - Varied metrology delay with gain mismatch,
Case 4 - Varied metrology delay with improper tuning

Case 1 Case 2 Case 3 Case 4
Simulation
Parameter

Initial Faulty Initial Faulty Initial Faulty Initial Faulty

d 1 1 1 1 1 randi(2,4 ) 1 randi(2,4 )
θ 0.85 0.85 0.85 0.65 0.85 0.85 0.65
β 2.5 1.5 2.5 2.5 2.5 1.5 2.5 2.5
σ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.l
b 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
ω 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
r 0 0 0 0 0 0 0 0

4.3.4 Impact of VM prediction quality on the VM-CPA perfor-
mance

Furthermore, we investigate the effect of prediction accuracy in the VM

estimated process gain on the performance of the proposed VM CPA index. To

perform this case study, random noise with pre-defined noise level σ is injected

into a baseline VM prediction. The VM CPA index is then calculated based

on the noise level and a range of forgetting factor choices (since the forgetting

factor in the RLS estimate acts as a filter that smoothes out the responses),

the resulting detection time is plotted as a contour plot in Figure 4.18. The

colors of the contours represent the detection speed of the VM CPA index.

The two cases considered are again: (1) with model/plant gain mismatch and

(2) improper tuning. The cold colored contours (cyan - blueish color) represent

regions with false alarms reported by VM CPA index (where actual process

is still in control). Warmer orange and red colored contours represent delays

in the detection response due to excessive filtering, the magnitude (as seen

in the colorbar) represents the number of samples elapsed before the out of

control event is detected. Ideally, it would be best keep the detection speed

as low as possible (without going into negative). Therefore, the cyan/green
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colored contours represent regions with the optimal trade-off between lag in

detection speed and being overly sensitive. As the noise level in the VM

estimated process gain increases (corresponding to a poorer VM model), there

appears to be more false alarms. This agrees with our intuition, since the VM

CPA index will assign the contribution of noises in the gain estimation toward

the auto-correlation of the mnodel-plant mismatch. However, the higher false

alarm rate can be compensated by increasing the RLS forgetting factor to

remove excessive noise. As a result, depending on the prediction quality of

the VM model, the forgetting factor can act as a tuning parameter in the

VM CPA index to control the trade-off between detection sensitivity and false

alarm rate.
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Figure 4.18: The influence of process gain VM prediction error on the detection
speed and false alarm of the CPA VM index
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4.4 Metal Etch Relevant Variable Identification

Sheet resistance metrology and the FDC trace data from a metal etch

tool were provided by Texas Instruments. The goal of this study is to identify

relevant variables that explains the variation seen in the sheet resistance of

the processed wafers.

Sheet resistance is a metrology measurement conducted at the end of

the metal etch. The sheet resistance is measured at device contact points at

multiple site locations on a wafer surface as shown in Figure 4.19. The readings

from multiple sites are then averaged to create an average sheet resistance for

each wafer. The sheet resistance is commonly measured to characterize the

uniformity of a film or coating on the silicon wafer surface, and is often used

in inline process control for quality assurance.

Figure 4.19: Schematic of the sheet resistance measurement contacts on the
device surface from a die on the wafer

Different from gate etch where the trim time is adjusted based on run-
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to-run control, the trim time in metal etch is based on end-point detection

using Optical Emission Spectroscopy signals. As a result, the trim time cannot

be used as an independent manipulated input to control the sheet resistance

of the device at the end of the etch. In this study, we want to identify candi-

date variables (trajectory features) of a certain trajectory that could become

manipulated variables used to reduce variation in the final sheet resistance of

the metal etch process.

The entire dataset comprises of 632 wafers running the same metal etch

recipe. There are a total of 13 manufacturing threads (making 13 different

devices) and the wafers are produced continuously from January till May of

2013. The data was first exported as DAT files through Infincon Fabguard

and then parsed into MATLAB readable CSV files.

Figure 4.20 shows the overall modeling work flow to analyze the metal

etch data. An iterative approach similar to that of modeling gate etch is used.

In the first step, manual screening is performed to remove poor quality data

and non-relevant information:

• Trajectories that do not have any variation across the batch dimension

are removed

• Trajectories that do not have any variation across the time dimension

are summarized using the mean value

• Setpoints, recipe settings that are the same across all batches are re-

moved.

• Runs with no matching contexts information are removed (i.e. have no

associated metrology measurement)
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Figure 4.20: Overall metal etch data analysis workflow schematic

After manual screening, the data is then aligned using the recipe step

number as the key indicator variable. The before and after alignment recipe

number trajectory is shown in Figure 4.21. During dynamic time warping,

several batches that showed high cumulative warping costs (the amount of

shrinking / expansion performed on a trajectory) are identified and removed,

these trajectories were later identified to be following a different etch recipe

and is thus outside the scope of this modeling study.

After trajectory alignment, the unfolded data was then used in a full

variable full duration multiway-PCA model. Figure 4.22 shows the score plot

of the resulting PCA model. The scores are color-coded by the lot ID. Four lots

of wafers are away from the rest of the lots, which were confirmed to be from

a different chamber. These lots were excluded in subsequent PLS modeling.
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Figure 4.21: Metal etch trajectory alignment using DTW and CsDTW
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Figure 4.22: Score plot of the full multiway-PCA model
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A multiway PLS model utilizing all input variables was first constructed.

This preliminary PLS model is used to explore the dataset and not for pre-

diction. Using the trained PLS model, the variable importance in projection

(VIP) can be calculated for each input variable. The VIP inputs are then

folded back into the original dimensions (batch variable and batch time) and

visualized in Figure 4.23. The raw trajectory plots are also shown in the fig-

ure to better interpret the results. As shown in the Figure, contiguous time

ranges of high VIP correlation indicate that the particular segment of batch

trajectory is relevant to the output. These segments are usually ramps, or dips

that contain variations across multiple batches. A more refined PLS model

can then be built on top of the existing preliminary model by eliminating

redundant and uninformative inputs variables, the variables included in the

reduced model is shown in Table 4.6. Note that variables such as chamber

temperature and pressure are absent from the selected variables listed in Ta-

ble 4.6. These process variables are usually held constant and controlled very

well using standard PID controllers within the tool itself. Batch to batch vari-

ations in these process variables are minimal, and thus are identified as not

relevant in the subsequent PLS modeling. However, this does not mean that

these variables are not important or critical to the operating condition. To

fully model the effect of these other influences, design of experiment data or

system perturbation studies are required to explore the full operating range of

these signals.

Figure 4.24 shows the resulting training and validation performance of

the refined PLS model. The right subplot also includes the sheet resistance

specification limit of the process. As we can see, the PLS model was able to

account for lot-to-lot variations in the sheet resistance but was unable to detect
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Table 4.6: List of relevant variables identified through PLS-VIP Variable Se-
lection

Variable Name VIP value

Tool: ThrottleValvePosition 1.1
Tool: OESB1Value 1.92

Tool: ChuckRFVoltageProbeAIReading (V) 1.2
Tool: ChuckESCCurrentMonitor1Reading (uAmp) 1.67

Tool: ChuckESCBiasVoltageReading (V) 1.53
Tool: BiasRFVoltageProbeAIReading (V) 1.3

Tool: BiasRFCurrentProbeAIReading (amp) 1.2

Figure 4.23: Variable Importance in Projection (VIP) map showing key tra-
jectory features that yielded high correlation with the output
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variations that takes place within the lot (wafer-to-wafer level variation).
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Figure 4.24: Sheet resistance prediction performance of a metal etch PLS
model

The score plot of training and testing data for the reduced PLS model

is shown in Figure 4.25. From this plot, we observe that wafers from each

lot are clustered together, and the 95% confidence ellipse around the training

data encloses all the available data. These observations further confirm that

the PLS model is only able to discriminate lot-to-lot differences and does not

explain wafer level variations.

To account for wafer-to-wafer level correlation, a finer PLS model for

each manufacturing thread needs to be developed, however, this is not possible

in a high-mix threaded manufacturing environment since there is not enough

training data for each thread. To get around this problem, we can introduce

a dynamic component for the reduced model by assuming we have access to

metrology measurements from previous runs. A dynamic PLS model can then

be created that takes both the trace data and the sheet resistance from previous

runs as inputs. The resulting training and prediction performance are shown

in Figure 4.26. Table 4.7 lists the training and testing R2 of all seven models.
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Figure 4.25: Score plot of the reduced PLS model

0 100 200 300 400 500 600
-2

0

2

4
Training

0 20 40 60 80 100 120 140
-3

-2

-1

0

1
Testing

Figure 4.26: Reduced dynamic PLS model performance
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To summarize, Table 4.7 lists the performance and description of each

model. The reduced and simplified PLS model using summary statistics of the

selected trajectory features yielded a testing R2 of 0.65, which is satisfactory

in explaining the lot-to-lot variations in the processed wafers.

Table 4.7: Metal etch PLS model performance summary

Model # Model Size Description R2
training R2

testing

1 2600 Raw inputs 0.53 0.45
2 400 Reduced inputs 0.70 0.65
2 8 Summarized mean 0.67 0.69
3 16 Summarized mean + std 0.72 -0.58
4 16 Summarized mean + max 0.68 0.68
5 16 Summarized mean + sum (integral) 0.67 0.69
6 16 Summarized mean + derivative 0.69 0. 59
7 10 Summarized mean + lagged Rs 0.92 0.91
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4.5 Variable Selection Case Studies using Chemical Plant
Data

An industrial dataset of a refinery distillation system was provided by

The Dow Chemical Company. The dataset contained approximately 12,000

samples of hourly process data. The quality variable was measured at a low

sampling frequency through laboratory analysis, which introduced 4-8 hours

of time delay into each measurement sample. The quality variable was in-

terpolated to match the sampling frequency of the process variables. A lag

analysis by fitting lagged values of quality variables by PLS was done to en-

sure that sampling lag and interpolation had minimal impact on regression fit.

Furthermore, the quality variables are then log-transformed to improve the

linear correlation between the input and output. The dataset is divided into

three segments. The first segment from year 2011 is taken as training data.

The second data segment follows the initial training and lasts for five months

(Testing I). The last segment is the second testing dataset (Testing II) and is

approximately one year in duration from September 2012 to May 2013.

The Dow dataset provides an example of the multiple operating mode

scenario in variable selection. Figure 4.27(a) shows the histogram of the quality

variable in the training period, Figure 4.27(b) shows the scatter plot of the

PCA decomposed first two principal components. In Figure 4.27(a), three

Gaussian distributions are estimated to fit the observed tri-modal distribution.

The median for the fitted distributions are 1.5, 3.5 and 5.5 respectively. These

three median were verified as the different operating regimes due to changing

production priorities. In addition, Figure 4.27(a) indicates that a linear PLS

model is not suited to model this process since the resulting prediction will be

a single mode Gaussian distribution. In Figure 4.27(b), the scatter plot of the
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PCA scores also shows the presence of three clusters. The visible separation

between the clusters further indicates that the data are composed of multiple

operating modes.
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(a) Histogram of the quality variable in training data

(b) Scatter plot of the first two components showing the three operat-
ing mode clusters in the training data

Figure 4.27: Multiple operating mode of industrial data visualized in (a) his-
togram plot and (b) PCA score plot
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4.5.1 Optimal model size

Further analysis of prediction performance is based on PLS models with

MW-VIP, VIP, SwPA, SwPAi and sPLS variable selection methods. Other

methods that show similar results to VIP are excluded for simplicity. Since

each model has a different set of tuning rules, comparisons are performed only

on the optimized variable selection sets. To determine the optimal model sizes

for each method, the cross-validated prediction performance as a function of

the number of parameters in each model is plotted in Figure 4.28. The tuning

parameter for the number of selected variables is adjusted to return different

number of selected variables. A PLS model is built for each set of variables,

then the cross-validated Q2 is calculated and plotted. The tuning parameters

adjusted are the filtering threshold for VIP, adjusted VIP ranking for MW-

VIP, the COSS score ranking (significance level of ranksum testing) for SwPA

and SwPAi, and the sparsity parameter η for sparse PLS. From Figure 4.28,

the optimal number of variables is then determined graphically based on visual

estimates of the highest Q2 value. The optimal number of variables for VIP,

MW-VIP, SwPA, SwPAi and sPLS were determined to be 6, 7, 7, 10, and

14 respectively. Among these selected variables, three overlapping variables

that are highly relevant to the output are present in all selection results. The

differences in selection methods therefore resides in the selection of minor

correlations. In addition, we observe that all five models exhibit similar trends

in how the Q2 plateaus; therefore, the traditional means of identifying the best

performing model by selecting for higher Q2 alone is challenging.
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Figure 4.28: Cross-validated Q2 scores of different variable selection methods
as a function of the number of parameters included
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4.5.2 Training and testing results

All of the optimized PLS models are trained using the same train-

ing data. The number of principal components are determined individually

through cross-validation, the number of components were determined to be

around three depending on the number of variables used in modeling. Figures

4.28 and 4.29 show the training performance of the five candidate methods.

The unadjusted Q2 for all methods averaged around 0.50. All PLS models

were able to track most of the trends, except in extreme cases where the qual-

ity variable was close to zero. Training performances of other methods are

similar to VIP and thus are omitted for simplicity.

The calculated models were tested on two testing data sets. Fig-

ures 4.30 and 4.31 show time series plots of the five candidate models in testing

I and testing II data sets, respectively. In Figures 4.30(a) and 4.30(b), all five

candidate models showed bias from the measured value. However, the MW-

VIP model was able to reduce the bias and trend the series closer than the

other methods. The testing II dataset performance, shown in Figures 4.31(a)

and 4.31(b) , contains about 5,500 samples equivalent to about 10 months of

production after cleaning. All five candidate models performed better in the

testing II dataset than previously during testing I, which indicates that test-

ing II dataset has better resemblance to the original training data. Again, the

proposed MW-VIP method behaved better or similar when compared to the

other four candidates. In Figure 4.32, the best performing candidate models

from each variable selection category are shown. These models are the SwPAi

model, the MW-VIP model and the sparse PLS model. From this comparison,

it is clear that MW-VIP outperformed other methods in terms of tracking the

measured quality variable trajectory.
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Figure 4.29: Time series plot of the measured and predicted quality variable
for the training data
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Figure 4.30: Testing data I model validation of the five candidate models (VIP
filtering, MW-VIP, SwPA, SwPAi and sPLS)
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Figure 4.31: Testing data II model validation of the five candidate models
(VIP filtering, MW-VIP, SwPA, SwPAi and sPLS)
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Figure 4.32: Measured and predicted quality variable from VIP filtering, Sw-
PAi, sPLS and MW-VIP models in testing dataset II
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To intuitively examine why the MW-VIP model outperformed other

methods using similar model structure, the variables selected by each method

were further examined. Utilizing the MW-VIP model, the group-to-group

contribution plot for two periods of similar quality variable magnitude is shown

in Figure 4.33. The MW-VIP approach was able to select variables with high

contributions in these specific regions that were not selected in other models.

The second and third highest contributing variables are unique to the MW-VIP

model (tag 7 and tag 30). The resulting improvement in the model prediction

performance shows that selecting locally correlated variables in the overall

prediction model will improve the local performance with the advantage of

training the model using the full dataset.

The advantage of MW-VIP variable selection is that it is able to filter

and select locally correlated variables without performing complex clustering

or supervised labeling of training data. As the data from the same operating

mode with a particular set of locally correlated variables tends to cluster to-

gether, the moving window approach captures the important variables of these

correlations by partitioning the entire training data into subsets and benefiting

of the time dependency of the process data. This is an effective method in

industrial processes since changes in operating conditions can be captured in

a simple way utilizing only one model.

4.5.3 Model evaluation results

Tables 4.8 and 4.9 list the evaluation results of the five candidate mod-

els for testing I and testing II data sets respectively. The bolded cells in each

column highlights the best models for each criterion. In testing I, the MW-VIP

model outperformed other models in prediction, AIC, and parameter robust-
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Figure 4.33: Contribution score plot example of the discrepancies in prediction
due to local variables identified by MW-VIP variable selection
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ness. In testing II, the MW-VIP and SwPA models showed better performance

than other models. Although SwPA method had slightly better prediction (R2

value of 0.46 against 0.45), the robustness score (RDSS) favored the MW-VIP

model for its higher robustness. As illustrated in Figure 2.27, the higher ro-

bustness score in practice would translate to a model that experiences less

degradation in prediction performance over time.

Table 4.8: Results of the evaluation criteria study calculated using testing
dataset I

Method Model Size Bias RMSEP R2 AIC RDSS T2 ratio

VIP 6 10.48 1.08 -0.08 -55.344 198.5 92%
SwPA 8 19.36 1.9 -0.9 -47.627 204.6 0%
SwPAi 10 15.82 1.54 -0.54 -50.488 200.5 6%
MW-VIP 9 3.8 0.78 0.22 -59.725 125.8 37%
sPLS 14 22.43 2.3 -1.3 -45.039 204.6 95%

Table 4.9: Results of the evaluation criteria study calculated using testing
dataset II

Method Model Size Bias RMSEP R2 AIC RDSS T2 ratio

VIP 6 6.65 0.55 0.45 -21.568 50.6 93%
SwPA 8 -1.39 0.57 0.43 -21.418 58.1 86%
SwPAi 10 0.38 0.54 0.46 -21.694 40 96%
MW-VIP 9 -5.15 0.55 0.45 -21.632 32.2 95%
sPLS 14 3.46 0.56 0.44 -21.461 57 95%

The T 2 ratio monitors the multivariate T 2 sensitivity of the trained

model for incoming data differences. A high T 2 ratio value corresponds to

higher percentage of test data being within the training control limits. Fig-

ure 4.34 plots the T 2 ratio as a function of the model prediction performance

(R2) for all three data sets. The expected behavior of the models are outlined
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with the ellipse (Shown in Figure 4.34). The sparse PLS and the regular VIP

filtering models do not exhibit the expected correlation between their R2 value

and the T 2 sensitivities, which indicates that their correlations are abnormal;

these models are unsuited to be utilized in a diagnostic as their T 2 limits are

too insensitive to predict changes in both the process variables of the model

and the quality variable. In particular, the sparse PLS model has a very low R2

value due to a constant prediction bias observed in the second testing dataset

(see Figure 4.31). The reduced sensitivity of the T 2 indices in this model was

caused by the larger model size compared to the rest of the models. The ad-

ditional variables in the sparse PLS model inflated the T 2 confidence limits,

causing abnormal dataset to appear normal. The SwPA and the MW-VIP

models fall within the ellipse and follows the expected correlation between R2

and T 2. Therefore, the MW-VIP and SwPA models have better diagnostic

capabilities and are more desirable than the rest of the models developed.

4.5.4 Process experts validation

The model created with the variables selected from MW-VIP and SwPA

methods were presented and verified with process operation engineers of the

process. Based on a comprehensive evaluation of the material and energy flows

inside this process, the run-plant engineering team was able to rationalize and

explain how the newly identified variables would affect the process. As a result,

the MW-VIP model has been implemented in the plant and utilized to monitor

the quality variable online and perform the diagnostic.
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Figure 4.34: Model process monitoring sensitivity (T 2 ratio) as a function
of the model fit performance, the ellipse highlights the expected correlation
between R2 and T 2 ratio values

4.6 Summary

In this chapter, we presented three applications of the previously dis-

cussed methods using industrial data sets provided by our research collabora-

tors.

In the first application, a set of VM models were developed for a gate

etch tool using fault diagnostics trace and metrology data collected on 1800

wafers. The trained model show that multiway PLS based methods were

able to predict the etch rate with a R2 value of 0.5 to 0.7. However, significant

process drifts cause performance degradation if stationary models (static PLS)

are used. Two adaptive models were therefore implemented to address the

problem. The T-PLS moving window PLS model maintained the R2 value at
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around 0.6. The adaptive GSMMS-PLS model was able to maintain the R2

value at close to 0.8 with less frequent model updates, the adaptive GSMMS-

PLS model was also updated only four times instead of over 30 times in the

moving window case, making it more friendly for on-line implementation.

Using the predicted VM results, we formulated a VM-assisted control

performance assessment criteria that aims to identify model-plant mismatch

and improper tuning of EWMA run-to-run controllers. The proposed method

makes assumption that the VM model can be used to predict the gain of the

process model. A simulated study verified that the proposed technique had

faster response times than other performance assessment methods. Further-

more, the proposed method was found to be robust when the VM prediction

is corrupted with noise.

In the second application, a VM model for a metal etch process was

developed. The VM model for metal etch process aims to identify important

contributing variables that correlate to the process output. Through the use

of variable importance in projection (VIP), trajectory alignment and refolded

VIP visualization methods discussed in previous chapters, the VM model was

able to identify the contributing variables that discriminates the output at the

lot-to-lot level. Wafer-to-wafer level variations were undetectable because of

the limited amount of training data available.

In the third application, data from a chemical process was used to study

the various PLS model variable selection techniques. The results demonstrated

that the proposed moving window VIP method was able to select a robust set of

variables which results in more accurate model predictions while also requiring

less frequent updates. The proposed predictor has been validated by process

experts and is currently implemented online.
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Chapter 5

Summary and Future Recommendation

5.1 Summary of Contributions

With the increasing adoption of data-driven methods in manufactur-

ing industries, the deployment of soft sensors extends beyond the studies of

the regression techniques involved in generating the best performing models.

This dissertation aims at addressing the issues in data pretreatment and post-

model deployment to bridge the gap in wide-spread adoption of data-driven

techniques. Although the models developed are for plasma etch datasets, the

methods themselves are very general and can be extended for use in other

data-driven applications.

First, in dealing with data pretreatment, a new time alignment tech-

nique has been proposed in Chapter 2. The new Constrained selective Dynamic

Time Warping (CsDTW) algorithm solves a subproblem of identifying key tra-

jectory markers and then utilizes the solution in generating a set of constraints

to minimize distortion of the key process trajectories. The warping results in

case studies shown are comparable to that of Correlation Optimized Warping

(COW) and better than other techniques. Because of the dynamic program-

ming principle used, this polynomial time algorithm is solved much faster than

COW and can be implemented online. Chapter 2 also takes a extensive look

at variable selection and feature extraction specific to Partial Least Squares

models. It was identified that existing techniques usually assume the data set
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is stationary and that an optimum combination of variables can be identified

through statistical means. The proposed moving window variable importance

in projection method does not satisfy this assumption and aims to select the

most consistent set of variables for all operating regimes. This selection tech-

nique was found to generalize better where future process data correlations

are subjected to change.

Chapter 3 presents two new methods developed to improve model main-

tenance and performance of models with multiple operating states. The first

proposed method uses a moving window scheme with Total Projection to La-

tent Structure (T-PLS) decomposition to screen incoming data. The quality

output relevant T-PLS decomposition separates the harmless process noise

from the outliers that negatively affects the model. The combination of these

two techniques lead to a model update mechanism that is demonstrably more

robust. In addition, to reduce the number of model updates and account for

multiplicities in the process conditions, a growing structure multiple model sys-

tem using local PLS and PCA models has been proposed. Previous GSMMS

systems uses linear regression local models which limits the number of inputs

and suffers some numerical difficulties during training. This multiple model

system can handle a much larger set of inputs and overcome typical multi-

ple model system challenges as well. In addition, fault detection sensitivities

are increased when using multivariate monitoring statistics of local PLS/PCA

models from the GSMMS system.

In Chapter 4, the proposed methods in Chapters 2 and 3 are tested

using industrial process data. Using a gate etch dataset, we demonstrated

the effectiveness of the proposed trajectory alignment and model update tech-

niques. In addition, the GSMMS model was found to give the best online
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prediction with the minimum number of model updates. Using a metal etch

data set, variable selection techniques were used to identify the discriminating

variables responsible for sheet resistance variations in the final product. Addi-

tionally, a simulated case study demonstrates the use of virtual metrology in

assessing plant model mismatch and improper tuning of run-to-run controllers.

The accuracy versus detection rate trade-off was also investigated.

5.2 Future Work

Despite recent advances in soft sensor and virtual metrology applica-

tions, there still remain a number of challenges that should receive further

attention. In data preprocessing, the conventional methodology is still rely-

ing on multi-way methods by unfolding the process data into two dimensional

data arrays. These unfolding techniques requires synchronization, refolding

and nonlinear transformations which create additional burden in the analy-

sis process. Statistical pattern analysis has been proposed to summarize the

batch profile behavior using summary statistics. But this method targets

niche applications where the batch information can be easily described using

Gaussian statistics. Alternatively, Tucker3 and other three-way decomposi-

tion techniques have been investigated in the context of data visualization

and exploration, which do not unfold the data and perform the decomposi-

tion in three dimensions. An innovation in regression techniques that could

take advantage of three-way decomposed loading matrices would streamline

the development process of batch models tremendously.

In terms of selecting features for modeling, we have shown that process

correlations change with respect to time. For inferential sensor models that

rely on statistics or intuition to reduce the dimensionality, variable selection
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of these models needs to be updated in addition to the model coefficients.

As plants and manufacturing systems become more heavily instrumented, the

number of available inputs variables for models will increase as well; therefore,

it is imperative to understand the trade-off and the effects of updating variable

selection and model adaptation.

On the topic of multiple model systems, the proposed growing struc-

ture multiple model system with local PLS/PCA models does not account for

the time dynamics explicitly. Although one can account for the change in

process behavior by including age of the data point as an input to the grow-

ing self organizing map (GSOM), this solution limits the efficiency of network

in grouping similar process conditions together. There has been considerable

advances in the field of machine learning in dealing with time-dependent data.

Recent works such as neural gas, incremental grid growing, dynamic grow-

ing self organizing map and growing cell structures all have different growing

mechanisms that account for the time dimension explicitly. By studying these

in more detail, the growing structure multiple model system framework can be

refined to handle drifting behavior better than the current implementation.
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Appendix B

Common Multivariate Methods and

Applications

B.1 Principal Component Analysis and Multivariate Mon-
itoring

B.1.1 Principal component analysis

Principal component analysis (PCA) is a widely used dimensionality

reduction and data visualization technique. A detailed discussion on PCA can

be found in [121]. Here we will briefly introduce the key ideas in PCA with

respect to process monitoring. PCA in process monitoring aims to build a

reduced representation of data during normal process operation. PCA is very

effective in extracting variable correlation in the process data. The identi-

fied correlation can then be summarized into compact multivariate monitoring

statistics that can then be used to monitor future data. A change in process

condition usually results in a change in the observed correlation and lead to an

alarm indicating process abnormality. This idea forms the basic methodology

which latent projection based process monitoring utilizes.

Let x ∈ Rm be a sample vector of m measurements from a single time

instance. Assume that we have N samples, then the total data collected dur-

ing this period constitutes X ∈ RN×m. If we convert the measurements in X

into deviation variables with a mean value of 0, then we can apply PCA to

decompose X into a score matrix T and a loading matrix P. This decomposi-
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tion can be performed through NIPALS[86] or singular value decomposition.

The decomposition can be expressed as:

X = X̂ + X̃ = TPT + X̃ (B.1)

where X̂ represents the principal subspace and X̃ represents the residual sub-

space.

If we assume the PCA decomposition is full rank (the number of prin-

cipal component is equal to the number of variables), the following condition

holds:

S =
1

N − 1
XTX = PΛPT (B.2)

where Λ = 1
N−1TTT = diag {λ1, λ2, ...λm}. The PCA decomposition basically

rotates the point of view to where the variations in the first coordinate direction

is maximized. The covariance matrix Λ of the latent scores T is therefore

diagonal.

To perform dimensionality reduction, the first A principal components

and their associated loadings is kept while the rest are truncated. Since the

variance in each latent coordinate direction is sorted in descending order, the

dimensionality reduction will maximize the amount of information retained in

the remaining principal subspace X̂. The number of principal component A

can be determined by calculating percentage of variance explained as follows:

variance explained (A) =
A∑
i

λi/

M∑
i

λi (B.3)
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B.1.2 Squared prediction error

The squared prediction error measures the magnitude of the projection

of an incoming data sample in the residual subspace. It is defined as:

SPE ≡ ‖x̃2‖ = ‖(I−PPT)‖2 (B.4)

A large value of SPE would indicate that the current PCA identified directions

is unable to explain the variance in the incoming data sample. The process is

only considered normal if

SPE ≤ δ2
α (B.5)

where δ2
α is the upper control limit at significance level α. An expression forδ2

α

has been developed by Jackson and Mudholkar [122].

δ2
α = θ1

(
cα
√

2θ2h2
0

θ1

+ 1 +
θ2h0 (h0 − 1)

θ2
1

)1/h0

(B.6)

where θi =
m∑

j=l+1

λij, i = 1, 2, 3, h0 = 1 − 2θ1θ3
3θ22

. l is the number of principal

components and cα is the normal deviate corresponding to the upper 1 −
α percentile, λj corresponds to the eigenvalue of component j in the PCA

decomposition. This control limit assumes the following condition:

• sample vector x follows a multivariate Gaussian distribution

• The distribution is approximated using a polynomial, which is only valid

for large θ1

• The result is suitable for any number of principal components

An alternative upper control limit has been proposed by Eriksson et.

al. [69] called the distance to model residuals in X (DMODX). First the overall
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accumulated residual sum of squared for the PCA model is calculated as:

S0 =

√
ΣΣe2

ij

(N − A− 1) (K − A)
(B.7)

where K is the number of variables, A is the number of principal components

and N is the number of training samples. The ratio of the sample SPE versus

the training total SPE then follows a F-distribution.

(si/S0)2 ∼ F (1− α,K − A, (N − A− 1) (K − A)) (B.8)

where α is the significance level. The actual performance of the DMODX is

identical to the SPE statistic in practice.

B.1.3 Hotelling’s T 2 statistic

Hotelling’s T 2 statistic is complementary to the squared prediction error

statistic. It measures the variation within the projected principal subspace of

a PCA model. The Hotelling’s T 2 is calculated as follows:

T 2 = xTPΛ−1PTx (B.9)

where P is the loading matrix and Λ is a diagonal matrix of the eigenvalues

in the PCA decomposition.

Given that the process is normal and the process data follows the as-

sumption of a multivariate Gaussian distribution, the T 2 statistic follows a

F-distribution of the following form:

N (N − A)

A (N2 − 1)
T 2 ∼ Fα,A,N−A (B.10)

where FA,N−A is a F-distribution with (A,N − A) degrees of freedom, N is

the number of samples and A is the number of principal components. We can
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derive the control limit at significance level (1− α) as follows:

T 2 ≤ T 2
α ≡

A (N2 − 1)

N (N − A)
FA,N−A,α (B.11)

B.1.4 Mahalanobis distance

The Mahalanobis distance is a special case of Hotelling’s T 2 statistic

that uses the full rank of the input matrix X. It is defined as follows:

D = xTS−1x ∼ m (N2 − 1)

N (N −m)
Fm,N−m (B.12)

where S is the sample covariance of x. For datasets with singular covariance

matrix, a pseudoinverse of S can be substituted in place and results in the

reduced rank Mahalanbois distance measure:

Dr = xTS†x ∼ r (N2 − 1)

N (N − r)
Fr,N−r (B.13)

where S† is the Moore-Penrose pseudoinverse[123] and r is the reduced rank

of the covariance matrix S. It can be shown that the Mahalanobis distance is

related to the Hotelling’s T 2 in the following relationship.

D = T 2 + T 2
H (B.14)

where T 2
H is the Hawkin’s T 2 statistics, a symmetric implementation of the

regular Hotelling’s T 2 in the residual subspace [124].

B.1.5 Combined index

A single index that combines the Hotelling’s T 2 and the squared pre-

diction error has been proposed by Yue and Qin [47] that simplifies the need
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for two separate control charts in performing multivariate process monitoring.

The combined index is defined as:

ϕ =
SPE (x)

δ2
α

+
T 2 (x)

χ2
A,α

= xTΦx (B.15)

where

Φ =
PΛ−1PT

χ2
A,α

+
I−PPT

δ2α
(B.16)

The upper control limit for this monitoring index can be derived by using an

approximate distribution as follows:

ϕ = xTΦx ∼ gχ2
h,g = tr(SΦ)2/tr (SΦ) (B.17)

where h is the degree of freedom of the χ2 distribution.

Although the combined index simplifies the use of multivariate control

chart, it is more difficult to interpret the source of problem. An excursion in T 2

indicates extrapolation of the identified correlation, whereas an excursion in

SPE indicates that the incoming data contains a different correlation structure

than the training data. The combined index would alarm in both cases, making

it difficult to pinpoint the root cause of the problems.

B.2 Partial Least Squares Based Prediction and Moni-
toring

Partial least squares (PLS) methods are widely used to analyze large

data sets such as those encountered in plasma etching ([83, 13, 12]) A typi-

cal plasma etch dataset contains over 30 sensor measurements, which include

gas flow, chamber conditions, and RF circuitry readings. When sensor signals

are unfolded, these sensor readings result in over 3000 variables. Unfolding
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transforms a three-dimensional data array into a two-dimensional matrix for

the purpose of performing PCA and PLS [5]. The feasibility of using a multi-

way approach (unfolding) for PLS/PCA analysis was demonstrated by Wold

et al. and Nomikos et al. in process industry monitoring [84, 85]. The two

mainstream PLS algorithm are the Nonlinear Iterative PLS (NIPALS) and

the SIMPLS[53, 52]. Seven additional PLS algorithms are evaluated and re-

viewed by Andersson [86]. Both PLS algorithms decompose the mean-centered

matrices into the following form:

X = TPT+E
Y = UQT+F

(B.18)

where T ∈ Rn×A and U ∈ Rn×Aare the X and Y scores respectively, P ∈ Rm×A

and Q ∈ Rp×A are the loadings for X and Y, respectively. The number of

components in the PLS model is typically determined through cross-validation

or through information criterion such as the Akaike Information Criterion

(AIC) [87]. The PLS algorithm maximizes the covariance between the X-

scores and Y-scores; this property leads to PLS requiring fewer components

when compared to principal component regression models [87].

To apply the PLS latent structures in regression, given unfolded input

data matrix x0, the output predictions ŷ0 can be calculated linearly using

ŷ0 = x0β̂pls. The β̂pls can be expressed as a function of the latent variables as

follows:

β̂pls = R
(
TTY

)
= RRTXY (B.19)

where R is the weight matrix in the SIMPLS algorithm. In the NIPALS

method, the weight matrix R can also be calculated iteratively.
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The multivariate statistics Hotelling’s T 2 and the squared prediction

error can also be calculated in PLS decompositions as follows:

T 2 = tT0 Λ−1t0 ∼
A (n2 − 1)

n (n− A)
FA,n−A

SPE = ‖x0 − t0p0‖2 ∼ gχ2
h

(B.20)

where t0 and p0 are the PLS decomposed scores and loadings for the data

batch being tested, and A is the number of components in the PLS model.

Λ is defined by Λ = 1
n−1

TTT. Given significance level α, control limits for

T 2 and SPE can be calculated from the Fischer and the χ2 distributions re-

spectively. The Hotelling T 2 statistic detect mean shifts from PLS/PCA score

vectors as an indicator of process operation normality. The SPE estimates

the magnitude of model residual for incoming data, where a deviation would

indicate degrading model performance or abnormal incoming data.

Re-writing Equation B.18 into X = TP + E = X̂ + X̃, we denote X̂

as the principal subspace and X̃ as the residual subspace. Since PLS models

maximize the covariance between scores and output, the variations in X̃ are

not minimized in PLS as done in principal component analysis. As a result,

the PLS principal subspace contains excess variation that is not relevant to

output quality changes. Second, the residual subspace (X̃) also contains excess

variation for the same reason; the excess variation causes inflated control limits

and poor detection rates.

B.3 Nonlinear Extensions of PLS and PCA

PCA and PLS faces challenges when the input and output relationship

is nonlinear. However, multiple options exist depending on the type of nonlin-
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earity encountered. Qin and McAvoy developed neural network PLS (NNPLS)

that approximates the latent relationship between the input and output scores

using a feedforward neural network[88]. Kernel PCA and PLS maps original

X space data into a nonlinear feature space F, where the relationship can

be represented linearly [89]. Another method to approximate nonlinearity is

by constructing multiple models for each operating regime. The appropri-

ate operating regime can then be selected at run-time based on classification

algorithms such as clustering or decision-trees.

B.3.1 Kernel based PCA/PLS

Kernel based methods allows linear based classifier and regression algo-

rithms to deal with nonlinear data. Many algorithms such as Support Vector

Machines (SVM), Fisher discriminant analysis (FDA), PCA and PLS can be

modified to use kernels. The main idea of kernel based method is to map a

set of inputs into a feature space F [125]. Inner product operations in this

future space can be defined using the input in the original space (called the

Kernel trick). For example, for kernel PCA, we first define the feature space

covariance matrix as:

C =
1

n

n∑
j=1

Φ (xj) Φ(xj)
T (B.21)

where Φ(·) is a nonlinear kernel function that transforms x into F.

We can then solve for the eigenvectors in the feature space by solving

the eigenvalue problem:

λV = CV =
1

n

n∑
j=1

Φ (xj) VΦ (xj) (B.22)

To avoid computing Φ(·) explicitly, we note that the eigenvectors span the
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feature space, this can be represented as follows:

V =
n∑
i=1

αiΦ (xi) (B.23)

Define the inner product in feature space as:

Kij := (Φ (xi) · Φ (xj)) = k (xi,xj) (B.24)

We can re-write Equation B.22 by multiplying Φ(xk) on both sides.

λΦ (xk) V = (Φ (xk)CV) (B.25)

λ

(
Φ (xk) ·

n∑
i=1

αiΦ (xi)

)
= Φ (xk) · C

n∑
i=1

αiΦ (xi) (B.26)

λα = Kα (B.27)

The system now only depends on the coefficients of the eigenvectors in the

feature space and can be solved like a regular eigenvalue problem. In other

words, every linear algorithm that uses scalar products in F can be computed

implicitly without knowing the mapping function Φ, this is called the Kernel

trick. To ensure normalized scores and centering of data in feature space, a

modified kernel matrix can be used:

K̂ = K − 1nK −K1n + 1nK1n (B.28)

where (1n)ij = 1/n, additional details is provided in [125].

Table B.1 lists some of the commonly used kernel functions:

Kernel methods is not without disadvantages, selecting the right kernel

function is usually a trial-and-error process and can be challenging in real

world applications [86].
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Table B.1: Common kernel functions used in kernel PCA, kernel SVM and
kernel FDA

Kernel Type Expression

Gaussian radial basis function k(x,y) = exp
(
−‖x−y‖2

c

)
Polynomial k(x,y) = ((x · y) + θ)d

Sigmoidal k(x,y) = tanh(κ(x · y + θ)
Inverse Multi-quadratic k(x,y) = 1

‖x−y‖2+c2

B.3.2 Nonlinear neural network PLS

Another nonlinear extension of PLS is nonlinear neural network PLS

(NNPLS) [88]. In NNPLS, the linear latent relationship between the input

scores and the output scores is modeled using feedforward neural network.

Using this approach, nonlinearity in the latent score space can be approximated

to arbitrary precision with increasingly complex neural network structure. A

modified NIPALS algorithm was proposed by Qin and McAvoy to train the

latent nonlinear neural net. The detailed algorithm is available in [88] and not

discussed here.

NNPLS faces challenges when the nonlinearity in data cannot be effec-

tively approximated in the latent projected subspaces. In other words, since

the outer projection in NNPLS is still a linear operation, the nonlinear data

when projected onto the principal component planes just appears as process

noise, and thus cannot be modeled effectively using neural net. This is the

case for batch process data from the plasma etch reactor, where the inner re-

lationship appears noisy rather than nonlinear and cannot be improved with

the application of NNPLS technique.
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B.4 Batch Process Analysis

Batch processes such as the plasma etching usually contains multiple

measurements at multiple time samples for multiple batches, the three di-

mensional data cube cannot be analyzed using conventional multivariate tech-

niques. They need to be converted into two dimensional standard data arrays

through the process of unfolding. The unfolding is illustrated graphically in

Figure B.1. Modeling techniques utilizing unfolded representation of batch

data are called multiway methods.

B.4.1 Data unfolding

Figure B.1: Unfolding of a three-dimension data array(Rn×m×p) into a two-
dimensional matrix (Rn×mp)

Multiway methods have been studied in detail by [126], [127], [128],

[31],[129]. Kourti and MacGregor [126] first applied multiway PLS in pre-

dicting end-of-batch quality variables for a chemical reactor. Wise et al. [22]

applied multiway techniques in modeling a plasma etch process. Chiang et

al. [130] assessed the use of multiway techniques and three-way models for

industrial fermentation processes.

The process of unfolding in multiway methods increases the number of

inputs dramatically, the unfolded X has (N×MP ) dimensions. The high num-
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ber of inputs causes numerous numerical problem in conventional regression

and multivariate techniques.

B.4.2 Three-way models

Three-way models aim to bypass the matrix unfolding step that in-

troduces the dimensionality problem in subsequent analysis. The three most

common three-way methods are Tucker3, Parallel factor and alternating least

squares analysis.

Tucker3

The Tucker3 model with orthogonal factors is also known as three-way

PCA, which allows for different number of factors for each of the dimensions.

Illustration of the Tucker3 analysis is shown in Figure B.2. The Tucker3

decomposition transforms a three dimensional dataset into several matrices.

As a example, given a dataset with dimensionality of N batches, Mvariables

and P time samples, Tucker3 give us the following matrices:

• batch mode loading matrix A: N × I

• variable mode loading matrix B: M × J

• time mode loading matrix C: P ×K

• core matrix G: I × J ×K

• residual matrix E: N ×M × P

Interpreting the decomposition results requires the analysis of the core matrix

G with respect to the loading matrices of each dimension. Generally, biggest
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entry in G corresponds to the most important component in the data [131].

There are several applications of Tucker3 models. Garcia et al. used Tucker3

models in determining Clenbuterol concentration through the analysis of gas

chromatography and mass spectrometry data [132]. Stefanov et al. analyzed

an abnormal process condition called ”cockle” formation in paper production

using three-way models [133]. De Juan and Tauler assessed the uniqueness of

three-way methods using a chemical analyzer dataset [35].

Figure B.2: Tucker3 decomposition of a three-dimensional batch data structure

Parallel factor analysis (PARAFAC)

Parallel factor analysis (PARAFAC) is another three-way data visual-

ization method that decomposes the batch data matrix directly. Krooenberg

[134] showed that Tucker3 model is equivalent to a PARAFAC model when the

rank of the core matrix is 2. The argument for using PARAFAC as opposed to

multiway components is the same as other N-way methods (such as Tucker3)

in a sense that this method is truly designed three dimensional datasets. Wise

et al. has performed a evaluation of this method in comparison with multiway

PCA and regular PCA in monitoring a semiconductor batch dataset [22]. The

challenge with PARAFAC and other three-way models is that the statistical

properties of the loadings and residuals in the resulting decomposition are not
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very well understood. It is difficult to determine the degrees of freedom used in

the calculation. As a result, one often needs to make simplifying assumptions

(such as Gaussian distributions) that defeats the purposes of using a three-way

method.
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Appendix C

Closed Loop Run-to-Run Control System

Responses Derivation

Given the following definitions:

Gp = β

Ĝp = b

αk =
1− θq−1

1− q−1
εk

Gc =
1

b

GE =
ωq−1

1− (1− ω) q−1

and the following internal model control control structure, we can write the

output as system based on white noise input disturbance and the target set-

point offset.
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yk = (rk − ỹk)GcG+ αk

ỹ =

(
yk −GcĜrk

1−GcĜ

)

yk =

[
rk −

(
yk −GcĜrk

1−GcĜ

)]
GcG+ αk

yk = rkGcG−
ykGcG

1−GcĜ
+

(
GcĜrk

)
GcG

1−GcĜ
+ αk

yk

(
1 +

GcG

1−GcĜ

)
= rkGcG

(
1 +

GcĜ

1−GcĜ

)
+ αk

yk =

[
rkGcG

(
1−GcĜ

1−GcĜ
+

GcĜ

1−GcĜ

)
+ αk

]
× 1(

1 + GcG

1−GcĜ

)
yk =

[
rk

GcG

1−GcĜ
+ αk

]
× 1−GcĜ

1−GcĜ+GcG

yk =
GcG

(
1−GcĜ

)
(

1−GcĜ
)(

1−GcĜ+GcG
)rk +

1−GcĜ

1−GcĜ+GcG
αk

Re-arrange for rk − yk

yk − rk =
GcG−G2

cGĜ−
(

1−GcĜ
)(

1−GcĜ+GcG
)

(
1−GcĜ

)(
1−GcĜ+GcG

) rk +
1−GcĜ

1−GcĜ+GcG
αk
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Substituting each respective block using their definition and then further sim-

plify, we obtain the closed loop system error equation:

ek =
1−GcĜ

1 +Gc

(
G− Ĝ

)rk − 1−GcĜ

1 +Gc

(
G− Ĝ

)αk
ek =

1− ωq−1

[1−(1−ω)q−1]

1 + ωq−1

b[1−(1−ω)q−1]
(β − b)

rk −
1− θq−1

1− q−1 + β
b
ωq−1

εk

=
1− (1− ω) q−1 − ωq−1

1− (1− ω) q−1 + β
b
ωq−1 − ωq−1

rk −
1− θq−1

1− q−1 + β
b
ωq−1

εk

ek =
1− q−1

1− q−1 + β
b
ωq−1

rk −
1− θq−1

1− q−1 + β
b
ωq−1

εk
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way principal components-and PLS-analysis. Journal of Chemometrics,

1(1):41–56, 1987.

[85] Paul Nomikos and John F. MacGregor. Multi-way partial least squares

in monitoring batch processes. Chemometrics and Intelligent Laboratory

Systems, 30(1):97–108, November 1995.

[86] Martin Andersson. A comparison of nine PLS1 algorithms. Journal of

Chemometrics, 23(10):518–529, October 2009.
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