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Multiazimuth seismic data contains information about how the Earth’s seismic response

changes with azimuthal direction. Directional-dependence of the seismic response can be caused by

anisotropy or heterogeneity, associated with subsurface features such as fractures, stresses, or struc-

ture. Characterizing azimuthal variations is done through velocity analysis, which provides a link

between an acquired data set and its image, as well as between the image and subsurface geology.

At the stage which conventional velocity analysis is applied, it is difficult to distinguish the geologic

cause of observed azimuthal velocity variations. The inability to distinguish the similar effects of

anisotropy and heterogeneity leads to positioning errors in the final image and velocity estimates.

Regardless of the cause, azimuthally variable velocities require at least three parameters to charac-

terize, as opposed to the conventional single-parameter isotropic velocity. The semblance scan is the

conventional tool for seismic velocity analysis, but it was designed for the isotropic case. For multiple

parameters, the semblance scan becomes computationally impractical. In order to help address the
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issues of geologic ambiguity and computational efficiency, I develop three methods for multiazimuth

seismic velocity analysis based on “velocity-independent” imaging techniques. I call this approach,

velocity analysis by velocity-independent imaging, where I reverse the conventional order of velocity

estimation followed by image estimation. All three methods measure time-domain effective-velocity

parameters. The first method, 3D azimuthally anisotropic velocity-independent NMO, replaces the

explicit measurement of velocity with local slope detection. The second method, time-warping, uses

local slope information to predict traveltime surfaces without any moveout assumption beforehand,

and then fit them with a multiparameter velocity model. The third method, azimuthal velocity

continuation, uses diffraction image focusing as a velocity analysis criterion, thereby performing

imaging and velocity analysis simultaneously. The first two methods are superior to the semblance

scan in terms of computational efficiency and their ability to handle multi-parameter models. The

third method is similar to a single multi-parameter semblance scan in computational cost, but it

helps handle the ambiguity between structural heterogeneity and anisotropy, which leads to better

positioned images and velocity estimates.
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Chapter 1

Introduction

Seismic Imaging

Seismic imaging plays an important role in geosciences, particularly in problems of charac-

terizing the earth’s subsurface. The general seismic experiment consists of a seismic source (natural

or artificial) and seismic receivers (geophones, hydrophones, seismometers, etc.) on or within the

earth. Seismic waves propagate from the source, through the earth, to the receivers, and the objec-

tive is to use wave physics to explain the observed waveforms (Aki and Richards, 2009; Stein and

Wysession, 2003). In exploration seismology, which is the main context of this work, the source

is artificial with known timing, and both the source and receivers have known positions (Yilmaz,

2001). With this information controlled and known, explaining observed waveforms is a matter of

characterizing the subsurface with parameters that affect wave propagation. Under the commonly

assumed linear elastic model, propagation is only affected by the distribution of 21 independent

elastic parameters (scaled by density) within the subsurface (Green, 1839).

The primary product of seismic imaging is an image of the subsurface geologic structure.

Waveforms have both amplitude and traveltime information, but for structural imaging, accounting

for the observed traveltimes is far more important. So to further simplify the problem, wave prop-

agation can be mathematically separated into two equations: one describing amplitudes (transport

equation) and one describing traveltimes (eikonal equation) (Červený, 2001). Despite (or perhaps

because of) their high sensitivity to the elastic parameters, amplitudes are often neglected aside
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from geologically simple cases with nearly regular acquisition. Recorded amplitudes are related to

particle displacements, which in turn relate to local strains caused by an incident wavefield. Under

linear elastic theory, wavefield stresses determine strains via the constitutive relation (Hooke, 1678),

and since both stresses and strains are directional, amplitudes should be treated as vectors. Prop-

erly treating amplitudes using both magnitude and polarization leads to the Christoffel equation,

which reveals the existence of wave modes, such as P-waves and fast and slow S-waves (Stokes, 1845;

Christoffel, 1877). Still, in the cases where they are used in practice, amplitudes are commonly

approximated as having magnitude alone (pressure) which simplifies the problem further to the

single-mode acoustic approximation.

However, this “simplified” problem, is often still not simple enough. Because the distribu-

tion of elastic parameters in the earth is highly heterogeneous and unknown, modeling and predicting

traveltimes alone is difficult. Hence, in addition to the acoustic approximation, fully elastic wave

propagation is simplified by assuming increasing orders of anisotropic symmetries. In order of in-

creasing symmetry, fewer and fewer parameters are needed: triclinic (21 parameters), monoclinic

(13 parameters), orthorhombic (9 parameters), transverse isotropic (5 parameters), and isotropic (2

parameters) (Tsvankin, 2005). For the acoustic isotropic case, wave propagation can be described

by one parameter: the seismic velocity. This single-parameter approximation of a vastly more com-

plicated process is the conventional choice in industry to approximate how seismic waves propagate

through the earth’s subsurface, and has been so since the first seismic exploration surveys of the

early 1900’s.

In the context of inverse theory, the seismic velocity estimation problem can be generally

written as,
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d = G[m]. (1.1)

By using the eikonal equation and geometrical approximations of wave physics (G) to explain ob-

served waveforms (d), it is possible to estimate the distribution of elastic parameters (m) in the

subsurface as an inverse problem:

m = G−1[d]. (1.2)

Because the fully elastic parameter distribution of the subsurface is often reduced to a single-

parameter velocity distribution, the model vector in equation 1.2 is often just referred to as the

estimated velocity. The additional parameters needed for anisotropic models describe how veloc-

ity changes with direction, so I will continue to refer to these parameters as the velocity estimate

throughout this dissertation, even in multi-parameter cases.

Velocity estimation is the most important step in seismic imaging, as an accurate velocity

estimate yields better positioning of reflection events and better focusing of diffraction events in the

final image (Claerbout, 1999). Estimating the subsurface velocity from seismic data is conventionally

done by relating observed traveltime event geometries to assumed moveout models. In exploration

seismology, special attention is given to the moveout geometry of reflections. The relation between

reflection traveltime event geometries and velocities was originally documented by Rieber (1936) and

Slotnick (1936) in the first volume of the journal Geophysics. To this day, most practical velocity

analysis methods depend on similar velocity-geometry relations. The term, “moveout”, refers to

following a particular wave event as source-receiver distance increases. When the arrival time, t(x),

of a pure-mode reflection event is plotted as a function of source-receiver distance, d = |x|, its
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geometry is usually assumed to be hyperbolic, and is said to have hyperbolic, or normal, moveout

(commonly abbreviated as NMO). In this notation, x is the source-receiver offset vector,

x =
(
x1

x2

)
, (1.3)

where x1 and x2 are the components of full source-receiver offset in the orthogonal surface survey co-

ordinates. In practice, seismic data are regrouped into synthetic aperture common midpoint (CMP)

gathers, in which traveltime events associated with flat reflectors often do have nearly hyperbolic

geometries. The conventional velocity analysis procedure (Yilmaz, 2001) is to simply search for the

best-fitting hyperbola to each reflection event, following the so-called “NMO equation”,

t (x,W0) =
√
t20 + xTW0x, (1.4)

where superscript T denotes transpose, and the scalar W0 = 1/v2, with v as the isotropic seismic

velocity. Equation 1.4 describes a 3D surface that is circular-hyperbolic (hyperbolic in cross-section,

and circular in map view). One can also view equation 1.4 as a truncated (two-term) Taylor series

expansion for t2.

Finally, once the velocity is estimated, the structural image is created by transforming the

observed seismic data from its recorded positions to its image positions. This image transformation

is called seismic migration, and has many theoretical and practical variants. Migration can be

broken into a sequence of steps or it can be done all at once. When it is done all at once, migration

is a transformation operator, Fmig, that uses the velocity model to transform recorded data into

an image. Historically, breaking migration into a sequence of steps has had intuitive and practical
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benefits. The most common decomposition is to approximate migration as a series of three major

steps,

Fmig ≈ FNMO + FDMO + FZOM (1.5)

(Forel and Gardner, 1988; Fowler, 1997). The first two steps are traveltime corrections which trans-

form data to as if they were all acquired at zero-offset (source and receiver positions coincident).

These two steps are the NMO correction FNMO, which removes hyperbolic moveout from reflection

events (accurate for flat reflectors), and the dip-moveout (DMO) correction FDMO, which accounts

for traveltime variations from dipping reflectors. The third step is zero-offset migration FZOM , which

transforms the moveout-corrected data to the image by collapsing diffraction events to image points.

Since data are collected at many locations on the earth’s surface, most regions of the subsurface are

illuminated more than once. At some point during imaging, an additional step called “stacking” is

used to combine data illuminating the same image location. When migration is decomposed into the

three steps in expression 1.5, stacking is usually performed after NMO and DMO, but before zero-

offset migration. Hence, the decomposed approach is usually referred to as “post-stack” imaging,

simply because of the order of steps. The alternative is therefore referred to as “pre-stack” imaging,

which postpones summing the data until they have been completely transformed (Yilmaz, 2001).

Regardless of the variant, all conventional approaches to imaging estimate the velocity model

first, and then perform migration. Even for pre-stack imaging, the velocity is first estimated by

isolating the steps of migration most sensitive to velocity. As discussed above, the NMO correction

is the step most commonly used, because of its sensitivity to velocities that influence events from

naturally common flat geologic reflectors. The basis of reflection velocity estimation is to analyze
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traveltime moveout with offset, so pre-stack migration algorithms which preserve offset information

through the entire process can also be used for velocity analysis. Zero-offset migration is also sensitive

to velocity, but it is not as commonly used for velocity analysis, because under the conventional

imaging flow, NMO must be done first anyway. Hence, the most critical step of time-domain seismic

imaging—velocity analysis—is almost always first performed by NMO-based reflection traveltime

moveout analysis.

NMO is a velocity analysis tool for the pre-stack migration case, and both an imaging step

and a velocity analysis tool for post-stack migration flows. As an imaging step, NMO performance

is judged on how well events become flattened on CMP gathers, as the result is summed over offset

(stacked). If a reflection event is flat before stacking, it will constructively interfere while being

stacked into the zero-offset image, whereas events with residual moveout will produce a degraded

stack. Since NMO is sensitive to the velocity used to perform it, event flatness is therefore useful in

choosing the optimal velocity model.

When viewing event flatness as a velocity analysis criterion, a distinction must be made

between the physically meaningful near-offset hyperbolic velocity and the best “flattening” velocity.

For near-offset data and a vertically-heterogeneous medium, the hyperbolic velocity, v from equation

1.4, is related to a time-weighted average velocity between the earth’s surface and the reflection,

referred to as the root-mean-square (RMS) velocity (Yilmaz, 2001). The RMS velocity can be used

to solve for geologically meaningful interval velocities using the Dix inversion method (Dix, 1955).

However, in field-data CMP gathers, reflections often deviate from hyperbolic moveout as offsets

increase. As farther offsets are included, fitting a nonhyperbolic event with a hyperbolic surface will

change the estimated velocity. It then becomes advantageous to view the traveltime (squared) surface

as a polynomial function of offset, which is approximately second-order (hyperbolic) at near offsets,
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and influenced by quartic and higher-order terms at farther offsets (Taner and Koehler, 1969). In the

near offsets, the second-order “NMO velocity” (vNMO) is accurate, and can be physically related to

the RMS velocity, which in turn, physically relates to interval velocities. Among all single-parameter

models, applying the best-fit hyperbolic moveout correction over all offsets will by definition always

produce the flattest event and the best stack, but the velocity parameter will lose physical meaning

as offsets increase. For this reason, the best flattening hyperbolic velocity v is often called the

“stacking velocity”, as it is usually close to, but slightly higher than, the near-offset vNMO for

common geologic scenarios (Dobrin and Savit, 1988).

Converting stacking velocities to interval velocities by Dix inversion is the conventional

approach to obtaining geologic parameters, but this can be physically inaccurate for far-offset data

and nonhyperbolic events. A better approach as farther offsets are included, is to measure the

higher-order moveout terms in addition to the hyperbolic term (Tsvankin and Al-Dajani, 1998;

Tsvankin, 2005). One common parametrization of nonhyperbolic moveout is from Alkhalifah and

Tsvankin (1994), who proposed a two-parameter velocity model (vNMO, η) to effectively characterize

both the near- and far-offset moveout separately. Alternative parametrizations include the shifted

hyperbola of Castle (1988), the moveout-acceleration approximation of Taner et al. (2007) and

the generalized approximation of Fomel and Stovas (2010). Nonhyperbolic moveout is generally

a result of heterogeneity or a common type of seismic anisotropy (vertical-transverse isotropy–

VTI) associated with flat, relatively thin geologic layering (Fomel and Grechka, 1996)∗. Under the

VTI anisotropy assumption, seismic velocity varies with the vertical propagation direction, but not

with azimuth. A major improvement in velocity analysis would be to measure nonhyperbolic and

azimuthally-variable moveout simultaneously, leading to an effective orthorhombic velocity model

∗Stanford Exploration Project references can be found online at http://sepwww.stanford.edu/oldreports

7

http://sepwww.stanford.edu/oldreports


(Vasconcelos and Tsvankin, 2006). However, as I show in the next section, the case of azimuthal

anisotropy alone remains challenging for practical parameter estimation.

Azimuthal Anisotropy

Although anisotropic wave propagation has been well understood for much longer, attempts

to use lower symmetries of anisotropy have only made practical progress since the 1980’s, with the

key works of Muir and Dellinger (1985), Thomsen (1986), and later Alkhalifah and Tsvankin (1994).

The paradigm shift from works like these was to begin deriving simplified parametrizations for

anisotropic wave propagation, rather than attempt to directly measure the elastic parameters them-

selves. These simplified parametrizations are theoretically not as accurate as the full 21-parameter

elastic description, but they are far easier to measure from seismic observations, and perhaps more

importantly, their use has definitively improved seismic images. Whether through deriving ever sim-

pler anisotropy parametrizations, improving survey designs, or advancing computational algorithms,

increasing the ability to actually measure anisotropic velocity models has continued to be a fruitful

research direction within seismic imaging (Tsvankin, 2005).

Many of the most useful advancements in seismic imaging have come from trying to handle

difficult geological situations. For example, the anisotropy approximations introduced by Thomsen

(1986) and Alkhalifah and Tsvankin (1994) took the effects of common geologic layering on seismic

wave propagation into special consideration, which has led to dramatic improvements in imaging

deep reservoirs, where these effects are magnified. Often in addition to being deeper, modern

hydrocarbon exploration targets are in increasingly subtle and complicated geology—instead of broad

structural traps containing reservoirs where porosity contains hydrocarbons, modern targets are often

stratigraphic traps, with fractures or micro-porosity controlling fluid flow. Fracturing is among the
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many common geological occurrences that can lead to seismic azimuthal anisotropy, in which case

the seismic velocity is, or appears to be, azimuthally-dependent (Grechka and Tsvankin, 1998).

Failure to account for azimuthal velocity variations in the seismic velocity often leads to improper

time-to-depth conversion, inaccurate amplitude analysis, and overall poorer image results (Williams

and Jenner, 2002). The fastest and slowest directions of observed azimuthal anisotropy are often

related to the preferred orientation of vertical fractures (Crampin, 1984), but may also correspond

to other geologically meaningful factors, such as the strike and dip directions of a reflector (Levin,

1985), or the regional stress directions (Sicking et al., 2007b). Therefore, measuring azimuthal

anisotropy and identifying its cause not only improves the seismic image, but also provides valuable

geologic information. Despite its relatively high costs, multiazimuth acquisition—both onshore and

offshore—has gained popularity recently, partially because of its ability to capture this valuable

azimuthal information (Etgen and Regone, 1998; Manning et al., 2007).

In the case of azimuthal variations alone, at least three parameters are needed at each

subsurface location to parametrize the velocity model. The NMO equation can be derived to allow

elliptical variation of velocity with azimuth using a truncated 2D Taylor series expansion (Grechka

and Tsvankin, 1998). As a result, the multiazimuth NMO equation can be written as:

t (x,W) =
√
t20 + xTWx, (1.6)

where, W is the slowness matrix,

W =
(
W11 W12

W12 W22

)
. (1.7)
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The three independent parameters of W have units of slowness-squared. In most common geo-

logic situations, the eigenvalues of W are positive (Tsvankin, 2005), and equation 1.6 describes an

elliptical-hyperbolic traveltime surface in 3D—hyperbolic in cross-section view and elliptical in map-

view—so is often referred to as the equation of the “NMO ellipse”. W11 and W22 are the squared

moveout slownesses along the respective survey coordinates, x1 and x2. The third parameter, W12,

arises from observing the ellipse in the x1-x2 survey coordinates, which are generally rotated relative

to its major and minor axes (Figure 1.1).

If the ellipse happens to be aligned with the survey coordinates, W12 = 0. The semi-

major and semi-minor axes of the ellipse correspond to the slowest and fastest moveout velocities,

respectively, as well as their orientations. Physically, these directions indicate the symmetry axes of

the effective anisotropic medium. Therefore, finding the rotation angle which properly diagonalizes

W allows one to predict the orientation of the symmetry axes. This amounts to an eigenvalue

problem, where the fast and slow velocities can be found as the eigenvalues and eigenvectors of

W. The eigenvalues, Wfast and Wslow, of the slowness matrix can be found following Grechka and

Tsvankin (1998),

Wslow,fast =
1
2

[
W11 +W22 ±

√
(W11 −W22)2 + 4W 2

12

]
. (1.8)

Since the eigenvalues have units of slowness squared, the smaller eigenvalue is Wfast = 1/v2
fast.

One can solve for the angle β between the acquisition coordinates and the symmetry axes by using

geometric arguments and well-known relations between the formulas for a rotated ellipse and its

unrotated equivalent as,
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β =
1
2

tan−1

(
2W12

W11 −W22

)
− c, (1.9)

where c = π/2 when W11 < W22 and c = 0 when W11 ≥ W22 (Weisstein, 2009) . If W11 is equal

to W22, then the arc-tangent argument goes to infinity, corresponding to β = π/4. In equation

(1.9), β is the angle from a survey axis measured counter-clockwise† toward the slow symmetry axis.

Equation (1.9) is equivalent to that found by Grechka and Tsvankin (1998), who define the same

angle as,

β = tan−1

W22 −W11 +
√

(W22 −W11)
2 + 4W 2

12

2W12

 . (1.10)

Finally, the eigenvalues can be used together with β to solve for the NMO slowness S = 1/v as a

function of source-receiver azimuth (counter-clockwise from x1) θ:

S2(θ) = Wslow cos2(θ − β) +Wfast sin2(θ − β). (1.11)

Equations 1.8-1.11 allow one to convert the mathematically convenient parameters of W to

more intuitive parameters, such as the fastest and slowest propagation velocities (vfast,vslow), the

fast azimuth (α = β+π/2), and the percent anisotropy (φ = 100× (1− vslow/vfast)). Alternatively,

W can be converted into other parametrizations such as the Thomsen (1986) parameters, or even into

estimates of the physical elastic parameters following Grechka and Tsvankin (1998). For example,

Grechka and Tsvankin (1998) show that once the effective parameters W have been converted to

†The rotation angle β is counter-clockwise from the x1 axis to the x′
1 axis, assuming the mapview layout shown in

Figure 1.1. If one, and only one, of either the x1 or x2 axes reverses direction, β represents a clockwise rotation from
x1 to x′

1.
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Figure 1.1: Sketch of slowness ellipse, W. The acquisition coordinates, x1-x2, are generally not
aligned with the symmetry axes, x′1-x

′
2. The rotation angle β is measured counter-clockwise from

x1 to x′1 (The value of β shown in the figure is positive). chapter-introduction/. W-ellipse

slowness as a function of azimuth by equation 1.11, they can be expressed in terms of horizontal

transverse isotropy parameters as,

S2(θ) =
1
V 2
P0

1 + 2δ(v) sin2(θ)
1 + 2δ(v)

, (1.12)

where δ(v) is the Thomsen-style parameter introduced by Tsvankin (1997), and VP0 is the vertical P-

wave velocity. Like the final seismic image, the more intuitive parameters are themselves a valuable

product of seismic imaging and analysis because they are easily understood across disciplines. After

interpretation in the context of geologic and engineering data, they can provide valuable informa-

tion about subsurface structures, fractures, or stresses. However, while a single velocity parameter

is easily estimated from seismic data, measuring a three-parameter velocity model is both computa-
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tionally and operationally unreasonable using the conventional approach and modern resources. A

short review of conventional seismic velocity analysis methods reveals the basis for this claim.

The Semblance Scan

Conventional velocity analysis is assisted computationally through a variety of tools that

help the processing geophysicist select the best velocity for each reflection event. The semblance

scan (Taner and Koehler, 1969; Neidell and Taner, 1971) is a manual grid-search method for finding

velocity parameters, and is the most common tool. Semblance scans have maintained their popularity

for decades because they are intuitive, interactive, and robust. Even in the presence of strong

noise, semblance scans can detect hyperbolic events and indicate their velocities. The output of

a semblance scan is a 2D panel which can be interactively displayed on a computer screen. This

allows geophysicists to interpret the results and include physical insight (or bias) into the final chosen

velocity model.

The semblance panel is a time versus velocity plot displaying values of semblance, σ(t0, v),

for a range of test t0 and v. For the isotropic case, the semblance for each test t0-v point is computed

using the formula,

σ(t0, v) =

[
N∑
i=1

di(t0,W0)
]2

1
N

N∑
i=1

d2
i (t0,W0)

, (1.13)

where di(t0,W0) are data from all N -points in an input CMP gather which satisfy equation (1.4)

parametrized by t0 and W0 = 1/v2. The highest semblance values indicate likely velocities, as a

high semblance value means that the data closely resemble a hyperbola with the t0-coordinate as its

intercept, and the v-coordinate as its velocity. The processing geophysicist then selects maxima on
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the semblance panel from t0 = 0 down to the bottom of the gather. The result is typically a single

velocity profile, v(t0), which characterizes the moveout velocity for the given CMP location.

Commonly, semblance maxima are picked by hand, which involves careful manual inspection

of the seismic data along with the semblance panels, and because of the typically large size of seismic

data sets, velocities can only be picked at relatively sparse locations. This manual process is time-

consuming and, to some extent, subjective. The manual part of velocity analysis may take weeks

or months to characterize a modern 3D seismic data set, even when velocities are picked on just

a small subset of the CMP gathers, and for the simple isotropic case. However, semblance-based

velocity analysis can be semi-automated by instead allowing a computer program to select the most

likely velocities. Besides the maximum values on the semblance map, additional constraints can be

included to make the automatic selection more realistic (Fomel, 2009). Automating the semblance

scan and velocity picking has made dense isotropic velocity model estimation possible, even for large

3D data sets (Siliqi et al., 2003). Assuming a perfectly automated semblance-based velocity analysis,

we can ignore the time it takes for manual picking, and express the computational complexity of

a single parameter scan as O(Nx × Nt0 × Nv). This cost estimate comes from observing that a

semblance scan must sum over Nx data points to compute each of Nt0 ×Nv values. Overall, we can

see that the semblance scan cost is proportional to the size of the data set multiplied by the number

of tested velocity models. For the isotropic case, only one velocity parameter must be scanned,

and typically the number of test velocities (Nv) is on the order of 102. This makes the automated

semblance scan reasonably efficient, for the single-parameter isotropic case.

In the 3D anisotropic case, the semblance between reflection events and a range of hyper-

boloid or hyperboloid-like surfaces can yield velocity models for anisotropic and heterogeneous media

(Dewangen and Tsvankin, 2006; Wang and Tsvankin, 2008). However, semblance scans become com-
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putationally expensive, as the scan must be performed over several parameters. The computational

complexity becomes O(Nx × Nt0 × N
Np
v ), where Nv now represents the number of test parameter

increments, and Np is the number of velocity model parameters. This complexity assumes that Nv is

roughly the same for each velocity model parameter, around 102. In the isotropic case, there is only

one parameter, so Np = 1, and the complexity reduces to the previous cost expression. However,

in the multi-parameter case, the total number of tested velocity models increases dramatically with

the number of model parameters. In the azimuthally anisotropic case, for example, Np = 3, so for

a reasonable Nv = 100, the overall cost increases by four orders of magnitude. Assuming one has

the computational power to complete a multi-parameter semblance scan for a full seismic data set,

the memory required to store the semblance volumes would be unreasonable. Unlike the isotropic

case, where the computed semblance values take up Nt0 ×Nv space in memory (roughly the same

size as the input data set), the multi-parameter semblance volumes would occupy Nt0 ×N
Np
v space

in memory—roughly 104 times the size of the input data set for a three-parameter model. With

a typical modern 3D seismic data set being on the order of a terabyte in size, this is clearly not

yet feasible. Furthermore, assuming sufficient computational resources to both compute and store a

multi-parameter scan, it would still be challenging to interpret or pick the optimal velocity model as

a function of time. Instead of selecting maxima from a 2D panel, the user, or automating program,

would have to select a smooth, geologically reasonable profile out of a four-dimensional hypercube,

at every CMP analysis location.

There are shortcuts for multi-parameter semblance scans which can make the problem

tractable. For example, using external information, such as borehole measurements, can help con-

strain the range of the scan. Or in the azimuthally anisotropic case, performing a 2D azimuthally-

sectored scan in three or more different directions can provide an estimate of anisotropy. Shortcuts
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like these are the conventional approach to multi-parameter measurements in industry, but they do

not guarantee the correct velocity model will be found. Al-Dajani and Alkhalifah (2000) and Lynn

(2007) have suggested that using more or all available azimuths leads to more accurate parameter

estimates than sectored analysis.

Velocity-independent Imaging

From the discussion above, it is clear that even using oversimplified physical assumptions,

velocity analysis is an important yet time-consuming step in seismic imaging. It is also clear that the

connection between the measurable seismic velocities and the physical properties that we care about,

can be misleading in many common geologic cases. Recognizing these challenges along with the need

for improved images and subsurface information, geophysicists have generally taken two different

approaches to advancing the field of seismic imaging: a physics-driven approach and a data-driven

approach. An example of a physics-driven method, full-waveform inversion, has recently become

popular in research, because it is theoretically almost ideal for treating seismic data. Full-waveform

inversion could potentially yield valuable physical properties of the subsurface as well as a nearly ideal

image. The strategy behind full-waveform inversion is to include as many physical aspects of wave

propagation as possible to directly predict recorded data. There are many issues to handle, however,

before full-waveform inversion by strict definition becomes practical. Aside from computational cost,

many of these issues are fundamental and well-known to exploration seismology, such as incomplete

source and receiver distributions and limited bandwidth of recorded data.

Full-waveform inversion represents the goal of a physics-driven approach to seismic imaging,

yet the realities of field acquisition severely limit its application. These realities have historically

forced the more pragmatic data-driven approach to seismic imaging (described in the previous sec-
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tions), where assumptions about wave propagation and subsurface properties are relaxed to the

point that the measured effective parameters are often physically ambiguous, yet they can be used

produce an interpretable image. Most conventional imaging flows take the data-driven approach,

where effective imaging parameters are measured and then subsequently related to useful physical

properties. If the image is the main objective of exploration seismology (historically the case), data-

driven imaging provides the interesting possibility of completely ignoring physical properties such

as velocity, and only producing an image. Since the amount of both computational and manual

work required by velocity analysis is so high, geophysicists have explored this possibility by devising

several so-called “velocity-independent” imaging methods which attempt to bypass velocity analysis

altogether.

Imaging techniques taking the velocity-independent name—most arising over the past thirty

years or so—have many different underlying strategies. Regardless of the strategy, their most obvious

potential benefit is the possibility of completely automated imaging, with no need for costly velocity

estimation. In each strategy however, the term “velocity-independent” is a bit misleading, because

in each case, the velocity model is still implicitly estimated. This leads to a less obvious (and

almost ironic) potential benefit of velocity-independent methods: automated velocity analysis. I will

examine several velocity-independent imaging strategies and their applications to velocity analysis.

The velocity-independent imaging techniques in my research embrace the pragmatic data-

driven approach to seismic data analysis, which makes it possible to apply in practice. The moti-

vation for this research, however, is aligned with the physics-driven ideal, in that I recognize the

measurement of subsurface physical properties as a worthy goal. In fact, physics-driven methods

often need initial estimates of the subsurface properties just to start, and data-driven imaging may

be the best route to providing them. With this long-term goal in mind, I will focus on data-driven
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velocity-independent methods which measure effective velocity parameters—not physical interval

velocities. I will briefly mention potential options for converting these effective parameters into

interval estimates along the way (such as the generalized Dix inversion above), but my main focus

is on measurement.

Amongst the variety of velocity-independent strategies, I first focus on those using direc-

tional attributes. The fundamental principle behind directional attribute methods is explained by

Rieber (1936), namely, the connection between seismic event slopes and seismic velocities. This

approach was developed further in the Soviet Union through the Controlled Directional Reception

(CDR) method (Riabinkin, 1957; Hermont, 1979; Sword, 1981). Historically, imaging methods ex-

ploiting seismic event slopes have relied on plane-wave decomposition (Ottolini, 1983a). Plane-wave

decomposition assumes an entire range of slopes is present in the data, each of which is assigned

a global amplitude based on a sum of contributions from throughout the input data. Plane-wave

decomposition is often performed using the f -k transform (2D or 3D Fourier transform) (Yilmaz,

2001) or the τ -p transform (Stoffa et al., 1981). The plane-wave domain has several processing

advantages over the time-distance (t-x) domain. Many of these advantages are based on the link

between the plane-wave dip and the ray parameter (Stoffa et al., 1981), while others take advantage

of convenient traveltime curve geometries or periodicities in the plane-wave domain (Liu, 1999).

A modern complement to plane-wave decomposition is available through local slope mea-

surement tools such as plane-wave destruction (PWD) filters (Claerbout, 1992; Fomel, 2002). In this

approach, each data point is assigned a dominant slope based only on near-by data. Local slopes are

stored as volumetric attributes of the data set (Fomel, 2007b), allowing spatial, temporal, and direc-

tional flexibility in applied processes. This makes directional attribute velocity-independent imaging

well suited for multiazimuth data sets. When viewed as components of 3D surface gradients, local
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slopes provide a natural, directionally flexible 3D formalism for seismic imaging. Conventional veloc-

ity analysis for large multiazimuth 3D data sets does not truly take advantage of the rich azimuthal

information because it is simply too time-consuming to measure directionally-dependent properties

manually. By exploiting the benefits of automated velocity extraction from directional attributes,

this conventional limitation may be avoided.

Aside from azimuthal flexibility, local directional attribute techniques also offer other pow-

erful benefits (Cooke et al., 2009). Techniques involving local slopes often have analogous tech-

niques in the well-understood τ -p and f -k processing domains. Local slopes can even be measured

within the τ -p domain, where additional benefits for velocity analysis are found (Casasanta and

Fomel, 2010). In fact, local slopes can be measured for a variety of unconventional velocity analysis

and imaging approaches, including the “multifocusing” method (Berkovitch et al., 2008) and the

common-reflection surface (CRS) method (Gelchinsky, 1988). Another benefit is the possibility of

attribute-based localized processing (Sun et al., 2000). In this case, local slopes and curvatures can

be used to effectively interpolate between a sparse subset of image points (Yilmaz and Taner, 1994)

through the use of image basis functions such as seislets (Fomel and Liu, 2010). Rather than process

each individual data point, “packets” of information can be processed to increase computational

efficiency (Sherwood et al., 2008; Burnett and Fomel, 2008b).

Combining the benefits of local slope-based velocity-independent imaging may lead to sig-

nificant advances in seismic imaging efficiency and quality. In this dissertation, I focus mainly on

the benefit of azimuthal flexibility for multiazimuth velocity analysis in the t-x domain. I also refer

to related extensions of these methods in other domains, including related work on localized, τ -p,

and multifocusing imaging strategies using directional attributes.

The second type of velocity-independent method I examine is focusing-based. Instead of
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measuring the velocity beforehand, this approach performs imaging with a whole range of possible

velocities, and then measures which regions of each test image are best-focused (Fowler, 1984). I

extend this idea to 3D using the framework of velocity continuation (Fomel, 1994, 2003b). This leads

to an application of another velocity-independent imaging strategy, based on path-integral imaging

(Landa et al., 2006), where the images corresponding to all velocities are summed to estimate the

correct image.

Problem Statement and Outline

The value of azimuthal information from seismic data has justified the development and

deployment of novel multiazimuth acquisition methods, yet this information remains difficult to

extract because it must be described by a multi-parameter velocity model. I claim that the semblance

scan is not suitable for multi-parameter seismic velocity analysis. Even in the still geologically

oversimplified assumption of azimuthal anisotropy alone, the velocity model requires at least three

parameters, which makes the semblance scan impractical. As alternatives to the semblance scan,

I propose three methods for the measurement of azimuthally anisotropic velocity parameters from

seismic data. These methods all use velocity-independent imaging techniques,which I have adapted

to return implicit effective-medium-based velocities. Unlike the conventional imaging flow, which

measures velocity first, and then performs imaging, the philosophy shared by these methods is to

image first, and then determine the velocity that connects the recorded data to the image.

All of the proposed methods also use volumetric 3D local slope measurements, but each

for a different purpose. The first method, azimuthally-anisotropic velocity-independent NMO, uses

local slope measurement as a direct replacement for velocity estimation. Since local slopes capture

the 3D geometry of reflection traveltime surfaces, they also contain complete velocity information.
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The second method, time-warping, uses local slopes to predict reflection traveltime surfaces them-

selves. Again, knowledge of the surface geometry yields complete velocity information, even in the

azimuthally anisotropic case. The third method, azimuthal velocity continuation, uses local slopes

of stacked seismic data to separate diffractions from reflections. Diffractions themselves are then

imaged while the azimuthally anisotropic velocity model is simultaneously estimated. Unlike the

first two methods which use NMO for stacking velocity analysis, this third method exploits the

velocity sensitivity of zero-offset post-stack migration.

I devote a chapter to each method, including individual introduction, theory, examples,

and discussion sections. In the chapter on azimuthally-anisotropic NMO, I include a comparison

with the semblance scan in terms of computational efficiency, which is also valid for time-warping.

In the chapter describing time-warping, I focus on t-x domain CMP analysis. I demonstrate the

unique flexibility of time-warping with examples of trace-sorting options such as “spiral-sorted” CMP

gathers. In the chapter on velocity continuation, I include a section on path-integral similarity, which

also serves to illustrate the possibility of future variants of diffraction imaging. I also discuss some

of the possible geologic features that may be generating diffractions in the example field data sets.

I conclude with a summary of the methods and key results, along with a qualitative comparison of

the three methods.
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Chapter 2

3D azimuthally anisotropic velocity-independent NMO

Background*

I have shown in the introduction that the traveltimes in observed seismic waveforms contain

velocity information. Extracting this information amounts to measuring reflection event geometry

and relating it to a moveout model. The conventional semblance scan measures event geometry by

directly searching for a moveout surface which best resembles its traveltime surface. In 3D, just

a single velocity value parametrizes a circular-hyperbolic surface, which describes isotropic NMO.

However, in the case of azimuthally anisotropic NMO, at least three parameters must be measured to

capture the associated elliptical-hyperbolic traveltime surface geometry. Even three parameters are

difficult to measure with a semblance scan, so alternative approaches to velocity analysis are needed

for anisotropic cases. In this chapter, I present the first of three alternative approaches to azimuthally

anisotropic velocity analysis. The basic philosophy of this first method is the same as semblance-

based analysis: measure reflection event geometry, and relate it to a moveout model. However, rather

than scanning for surface geometry, I measure local slopes of traveltime surfaces throughout each

CMP gather. Local slopes are simply an alternative way to measure surface geometry and therefore

velocity. As I demonstrate though, they have powerful advantages over the semblance scan for

measuring azimuthal anisotropy. Before this, I will first review some of the practical disadvantages

of the semblance scan, and then introduce the concept of local-slope-based velocity independent

*Parts of this chapter are published in Burnett and Fomel (2009).
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imaging.

Conventional manual velocity analysis by semblance scanning takes up a significant part of

the time needed to process seismic data. Even with semi-automated picking tools, this phase of a

typical processing flow alone may take weeks or even months for modern 3D data sets. Accurate

automated traveltime picking algorithms are the main tools for modern velocity analysis, and have

greatly reduced the time and manual work required to hand-pick velocities (Siliqi et al., 2003).

However, these tools may still require significant manual inspection and editing for quality control.

The conventional production processing flow does not include picking azimuthally-dependent

velocities, but two approaches are commonly used to handle and characterize azimuthal variations

in velocity. The first, and historically more popular approach, is to sort CMP gathers into azimuth

sectors, and then perform isotropic velocity analysis, processing, and migration on each sector. The

individual moveout parameters from all sectors are plotted together, and then fit with a sinusoid to

characterize the principal (fastest and slowest) moveout directions and the percentage of anisotropy.

Grechka et al. (1999) describe another approach, where NMO is first performed with a smooth global

velocity model. If apparent anisotropy is detected, trace-to-trace traveltime shifts are estimated

automatically, and each traveltime surface is fit with an ellipse characterized by the moveout slowness

matrix W. The second approach has become more popular in production because of its robustness.

In a case-study comparing the two approaches, Lynn (2007) provides an example where the non-

sectoring approach yields a more reliable azimuthal velocity model.

The concept of local slope-based velocity-independent imaging (Ottolini, 1983b) is attractive

because it can be very efficient when compared with the time and manual work required to hand-

pick velocities (Fomel, 2007b). The underlying strategy of velocity-independent imaging relies on

measuring traveltime slopes throughout the data set rather than hyperbolic traveltimes or velocities
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themselves (Wolf et al., 2004). Fomel (2002) demonstrates that plane-wave destruction filters provide

an automated and effective way to measure local slopes in a seismic volume. Measured slopes can

then be used to automate any common time-domain imaging step (Fomel, 2007b). Previous work

concerning automatic moveout corrections does not extend to the 3D case. In doing so here, I

demonstrate that the azimuthal flexibility of automatic moveout correction in 3D is especially useful

in the presence of real or apparent azimuthal anisotropy.

Rather than using a single picked velocity profile to apply the NMO correction, using the

local slopes of a given 3D reflection event allows the event to be flattened regardless of azimuthal

variations in stacking velocity. In practice, these slopes can be measured automatically throughout

the volume, so no traveltime surfaces need to be picked. Although originally designed to bypass the

velocity analysis part of seismic imaging, the velocity-independent approach can actually be used

to extract moveout or interval velocities throughout the data set as data attributes (Fomel, 2007b;

Burnett and Fomel, 2008a; Casasanta and Fomel, 2010). The method proposed in this chapter

also suggests that, in the azimuthally anisotropic case, the orientation of the symmetry axes can

automatically be estimated as an attribute in theory by measuring local curvatures throughout a

multiazimuth CMP gather.

I first present theoretical expressions for azimuthally anisotropic moveout parameters as

volumetric attributes. These attributes are theoretically interesting and may have applications in

localized imaging strategies, but they are generally not stable at far offsets. So, I also demonstrate

a novel, more robust, least-squares fitting scheme for matching the elliptical-hyperbolic moveout

parameters with the local slope information. Synthetic and field examples are used to validate 3D

azimuthally anisotropic velocity-independent NMO and show the variety of potential applications.
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Theory

Equation 1.6 can be expanded to the form,

t (x,W) =
√
t20 + x2

1W11 + 2x1x2W12 + x2
2W22. (2.1)

Geometrically, equation 2.1 predicts an elliptical-hyperbolic traveltime surface on a CMP gather for

the variety of cases where either real or apparent azimuthal anisotropy is present. The local inline

and crossline slopes of traveltime events can be measured automatically by PWD filters, which can

then be related to the conventional moveout slowness parameters by taking the derivative of 2.1 with

respect to x1 and x2. Ignoring higher order terms or assuming the parameters vary slowly along x1

and x2, gives a first-order approximation of how the measured slopes relate to conventional moveout

parameters:

p1(t,x) =
∂t

∂x1
=
W11x1 +W12x2

t
, (2.2)

p2(t,x) =
∂t

∂x2
=
W22x2 +W12x1

t
. (2.3)

By substitution back into 2.1, I arrive at the velocity-independent expression for 3D elliptical move-

out in terms of local slopes:

t0 =
√
t2 − t (p1(t,x)x1 + p2(t,x)x2). (2.4)

Equation 2.4 is a 3D extension for the 2D equation from Ottolini (1983b). Notice that only two

parameters (p1 and p2) must be measured to completely predict the NMO corrected time. These
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parameters can be measured automatically using a local slope estimation algorithm, such as plane-

wave destruction (Fomel, 2002). Replacing a three-parameter model with two parameters may

seem counter-intuitive in terms of completely describing a surface. However, one must keep in

mind that the slope estimates are functions of the data coordinates—they are volumetric attributes.

In other words, instead of parametrizing the entire surface with three single-valued parameters

(W11,W12,W22), I use two functions: p1(t,x) and p2(t,x). These two functions actually contain far

more geometric information than the three-parameter model, as I demonstrate further in Chapter

3.

As equation 2.4 suggests, azimuthally anisotropic NMO can indeed be performed automat-

ically, without ever measuring the velocity model. Automated processes allow one to save time,

but it may seem that the insight and information gained during a more interactive conventional

processing flow would be lost through automation. A significant part of production velocity analysis

involves picking or examining the velocity model directly, which provides an early and intuitive link

between the seismic data and the subsurface geology. The velocity model may also be useful in sub-

sequent conventional imaging steps. Further, as discussed in the introduction, the velocity model

and anisotropy information are themselves invaluable sources of geologic information, so an ability

to extract these parameters is desirable.

Local slopes naturally measure surface geometry—regardless of actual surface type—but if

the events are elliptical-hyperbolic as described by equation 2.1, then the local slope functions can

be analytically related to the velocity model parameters of W. The relation between local slopes

and moveout velocity has been documented for the 2D isotropic case (Ottolini, 1983b; Wolf et al.,

2004; Fomel, 2007b). In the 3D case where apparent or real azimuthal anisotropy is present, we

must relate each of the three parameters of W to the slope functions. Simply rearranging equations
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2.2 and 2.3 gives expressions for W11 and W22:

W11 =
tp1 −W12x2

x1
(2.5)

and

W22 =
tp2 −W12x1

x2
. (2.6)

Both of these parameters require an estimate of W12. A first-order approximation of W12 can be

found by differentiating equation 2.2 with respect to x2 or equation 2.3 with respect to x1:

W12 = t
∂p1

∂x2
+ p1p2 = t

∂p2

∂x1
+ p1p2 = tp12 + p1p2. (2.7)

Since local slopes are measured as a volumetric attribute, the inline and crossline local slopes com-

prise volumes with the same dimensions and coordinates as the input CMP gather. Applying a 1D

derivative filter to these volumes allows one to obtain either mixed-derivative in equation 2.7, and

solve for the apparent anisotropy angle β using equation 1.9 or 1.10. Like the other velocity model

parameters, this angle can also then be expressed in terms of local slopes. Combining equations 2.5,

2.6, and 2.7 yields

W11 −W22 =
t

x1x2
[x2p1 − x1p2 + (p12 + (x2

1 − x2
2)
p1p2

t
)]. (2.8)

Now everything needed to express β independently of velocity is found in equations 2.7 and 2.8.

Combining them with equation 1.9 gives,
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β(t,x) =
1
2

tan−1

(
2x1x2(tp12 + p1p2)

t(x2p1 − x1p2) + (tp12 + p1p2)(x2
1 − x2

2)

)
− c. (2.9)

where c = π/2 when W11 < W22 and c = 0 when W11 ≥ W22. Implementing equation 2.9 creates

an attribute β(t,x) for each input data sample describing the counter-clockwise azimuthal angle

from the acquisition coordinates to the symmetry coordinates. Applying the NMO correction to

this attribute volume yields β(t0,x), which should theoretically be constant at each time-slice if the

moveout were exactly described by equation 2.1.

Finding local estimates of slowness and anisotropy parameters using equations 2.5-2.9 re-

mains at this point only an interesting theoretical idea, but may find application in localized pro-

cessing strategies. A more robust and practical approach to extracting velocity and anisotropy

parameters is to exploit the shear number of volumetric slope measurements made to perform the

velocity-independent NMO correction. For each event, the NMO correction applies a shift of time-

squared,

∆(t0,x) = t2(x)− t20(x), (2.10)

which can be automatically computed for every output coordinate using equation (2.4) and stored

as another volume of the same dimensions. Once NMO is applied, the time axis of the CMP gather

represents t0, so the slowness matrix W and β should each theoretically be constant for a fixed t0

value. Given a CMP gather with dimensions (nx1×nx2×nt), each time-slice from either the data or

one of the attribute volumes can be viewed as an (nx1 × nx2) matrix, which can be re-indexed into

a vector of length (nx1 × nx2). If the x1 and x2 indexes from the time-slice are i and j respectively,

then the value from position (i, j) in the matrix is mapped to the k = i + jnx1 position in the
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vector. Using this notation, a highly overdetermined problem follows from writing equation 2.1 as

a matrix-vector multiplication:

∆ = Xw. (2.11)

where the kth element of ∆ is,

∆k = ∆(t0, x1i, x2j), (2.12)

the kth row of X is given by the vector,

xk = (x2
1i x2

2j 2x1ix2j ) , (2.13)

and

w =

W11

W22

W12

 . (2.14)

Linear system 2.11 has (nx1 × nx2) equations with only three unknowns. By solving 2.11 for each

time-slice in the output CMP, I construct the slowness matrix W(t0), and use it with equations 1.9,

1.8, and 1.11 to extract the coordinate rotation angle β(t0), the principal velocities, and the NMO

slowness as a function of azimuth, S(t0, θ).

Examples

I provide two examples to illustrate the performance of the 3D azimuthally anisotropic

velocity-independent moveout correction and velocity analysis. In the first example, I consider a

29



simple 3D synthetic CMP gather with four events, labeled A-D from earliest to latest, each with

a different degree of apparent azimuthal anisotropy (Figure 2.1(a)). The synthetic CMP gather in

Figure 2.1(a) was created by first specifying the moveout slowness matrix, W for each event. Each

of the four events was modeled individually by applying inverse 3D NMO to a flat reflection based

on equation 1.6. The exact parameters used to model the four events are specified in Table 2.1.

The four events were then added together into a single CMP gather with a small amount of random

noise (10% of the signal amplitude). The result of this modeling approach differs from real cases in

that the traveltime surface for each of the events is completely independent from overlying events.

However, this simple modeling is sufficient to specify the exact moveout slownesses of each event for

testing purposes.

Event Moveout Parameters
Event t0 (s) W11(s2/km2) W22(s2/km2) W12(s2/km2) β(◦)

A 0.59 0.14 0.16 -0.01 14.0
B 1.53 0.30 0.30 -0.04 -44.3
C 2.51 0.32 0.26 -0.03 -21.8
D 3.41 0.24 0.25 -0.005 26.57

Table 2.1: Moveout parameters used for events in Figure 2.1(a).

Conventional velocity semblance scans may yield multiple peaks for the same event when

apparent azimuthal anisotropy is present. One must interpret the correct velocity in these areas,

which can lead to inconsistent results between different processing geophysicists. The cause of

multiple semblance panel peaks can also be ambiguous (multiples, noise, anisotropy, etc.), and

properly resolving this ambiguity can add even more time and work to the production approach.

So I first examine the effect of picking a single-parameter isotropic velocity on a 3D CMP gather

where azimuthal anisotropy is present. Figure 2.1(b) shows a possible result of picking a single

velocity profile which flattens certain events in either the inline or crossline view. If an intermediate
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(a) (b)

Figure 2.1: (a.) A synthetic 3D CMP gather with four events of varying apparent elliptical anisotropy
(Events A-D ordered from top to bottom). The three panels in the display show a time-slice view
(upper square panel), a crossline view (central panel), and an inline view (right panel) of the same
volume. (b.) An isotropic NMO correction using a picked velocity function appropriate for flattening
certain events. At best, isotropic NMO can flatten either the inline or crossline directions well, but
there is no single velocity function that will flatten both. chapter-pnmo/synthetic cmp3d,nmo063d

(a) (b) (c)

Figure 2.2: The (a.) inline and (b.) crossline slopes of the CMP gather from Figure 2.1(a).
(c.) These slopes are used with equation 2.4 to automatically perform the proposed elliptically
anisotropic moveout correction. All four events are flattened perfectly where the slopes are not
aliased. chapter-pnmo/synthetic pxsmooth3d,pysmooth3d,PNMO3d
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velocity value is chosen for each event, both directions are flattened poorly. Event B represents a

particularly difficult case for the production approach; the symmetry axes are nearly 45◦ from the

acquisition axes, which makes the apparent moveout velocities along the x1 and x2 axes practically

equal. A production velocity analysis is likely to not even detect the anisotropy in this case, because

viewed from the acquisition axes, event B appears isotropic. The time-slice panel of Figure 2.1(b)

reveals the poor performance of the isotropic NMO correction for event B along other source-receiver

azimuths.

By measuring the local slopes of an input CMP gather as volumetric attributes, the geometry

of each traveltime surface is captured, even away from the x1 and x2 acquisition axes. Figures 2.2(a)

and 2.2(b) show sections of the automatically measured inline and crossline slope volumes for the

CMP from Figure 2.1(a). The time-slice views clarify that the slopes are measured in the x1 and

x2 directions throughout the volume, not just along the x1 and x2 zero-offset axes. Comparison

of the slope volumes with Figure 2.1(a) also shows that there are clearly non-zero slopes in areas

without data. No initial slope fields were used to get these measurements, but the plane-wave

destruction filter results were regularized with a smoothing constraint via shaping regularization

(Fomel, 2007b,a). This constraint is enforced to help ensure that the moveout correction varies both

spatially and temporally in a stable fashion. In Figure 2.2(c), the velocity-independent elliptically

anisotropic moveout correction is applied using these slopes, and all of the events are flattened well

in all azimuths.

The time-slice view of Figure 2.2(c) now shows the overall superior performance of the

velocity-independent correction, but also reveals its limitations. As events become steep relative to

the trace spacing, local slope measurements can be aliased. Towards the corners of the example

gather, the slopes become too steep to be measured reliably, and in these areas, the automatic
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moveout correction performs poorly. In field data, crossline trace spacing is often much coarser than

inline spacing, which may lead to similar aliasing problems. However, the effects of aliasing can often

be mitigated with a few simple extra steps. By first applying a constant-velocity isotropic NMO

correction to the data before measuring slopes, the events will be flatter and less likely to have aliased

slopes at far offsets. An inverse NMO correction using the constant velocity can then be applied

to the measured slopes. The constant velocity can then be converted to p1 and p2 components and

added to the slope measurements to obtain the unaliased slope fields of the original input CMP

gather.

A common-offset gather perspective of the same test is shown in Figures 2.3(a) and 2.3(b).

The traces from the synthetic CMP gather have been binned into offset and azimuth coordinates to

display the sinusoidal signature of azimuthal traveltime variations. The various squared traveltime

shifts applied by the automatic NMO correction were computed during implementation using equa-

tion 2.4, and then stored as a volumetric attribute (∆(t0,x)) . For each of the events, time-slices

of this volume are shown in Figures 2.4(a)-2.4(d). The elliptical variation is clearly displayed for

events A, B, and C, but the subtle variation for event D makes it difficult to detect the apparent

anisotropy using conventional methods.

Each time-slice from the time-shift volume was re-indexed into a vector following the scheme

described in the previous section, and then equation 2.11 was used to yield W(t0) by least-squares

fitting. The results of this inversion are displayed in Figures 2.5(a)-2.5(c). At the times of the

events, all three parameters have been extracted accurately. The shaping regularization used to

ensure smooth slope fields also leads to similar smoothness in the W estimates. Because of the

random noise in the synthetic data, slope measurements away from events appear also random. The

best-fit surface through these random slopes tends to be a flat plane, which is characterized on a
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CMP gather by zero slowness, causing the W11 and W22 estimates to tend toward zero between

events. It is important to note that the values shown in Figures 2.5(a)-2.5(d) each rely on the

accuracy of the NMO shifts computed at the corresponding value of t0. Only the sparse times of

this synthetic CMP gather with data have meaningful slope estimates and therefore meaningful W

and β estimates.

(a) (b)

Figure 2.3: (a.) A common offset (0.75 km) display of CMP from Figure 2.1(a) with azimuth on the
horizontal axis. (b.) The same traces after the automatic moveout correction. All events are shifted
up to their appropriate t0 and flattened. chapter-pnmo/synthetic oacmp,oaPNMO

The extracted moveout slowness matrices W(t0) are used with equation 1.9 or 1.10 to

estimate β(t0). The results of estimating β(t0) are displayed in Figure 2.5(d), and the values at the

times of each event are accurate. I conclude this example by solving for NMO slowness-squared as

a function of azimuth using β(t0) and the corresponding eigenvalues at each t0 with equation 1.11.

These results, shown in Figures 2.6(a)-2.6(d) show that for all four events, the angle of anisotropy is
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(a) (b)

(c) (d)

Figure 2.4: Traveltime squared shifts (∆(t0,x)) for each event. (a.) Event A. (b.) Event B. (c.)
Event C. (d.) Event D. chapter-pnmo/synthetic deltaTslice1,deltaTslice2,deltaTslice3,deltaTslice4
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detected. From this volume, the principal moveout directions are readily determined, the fast and

slow axes are resolved, and the percentage of anisotropy (φ) is measurable.

I next demonstrate a potential application of the automatic moveout correction on a real data

example. In this case, I apply the automatic elliptically anisotropic moveout correction as a residual

moveout correction. A subset of the McElroy data set from West Texas was formed into a supergather

seen in Figure 2.7. Figure 2.8(a) shows a common offset (3.6-4.0 km) time-versus-azimuth display

of the same data, where azimuthal anisotropy is evident for several events. In Figure 2.8(b), the

magnitude of the local slope is shown for the initial data. The areas with higher slope values

highlight areas that were not ideally flattened by the prior isotropic NMO correction. The region

of the highest slopes along the top of the figure is due to the proximity of the prior NMO mute

at about 0.8 s. Figure 2.8(c) shows the results of applying two iterations of the proposed moveout

correction. Further iterations will continue to flatten later events as distortions from overlying layers

are removed. The events in the results are already noticeably flatter, and will therefore produce a

cleaner stack. In this example, I have applied the method to a supergather, which makes azimuthal

anisotropy measurements more robust for low-fold data sets, but supergathers cover a very broad

region of the subsurface. In more modern multiazimuth data sets, we can apply the method to

high-fold 3D CMP gathers, which will allow better resolution of the velocity model.

Discussion

Many advancements have been made in semi-automated traveltime picking schemes which

have made the velocity analysis phase of a conventional seismic data processing flow much more

efficient. However, considerable time is still required to manually check the quality of the assisted

picking, and this remains a time-consuming step in the conventional processing flow, especially in
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(a) (b)

(c) (d)

Figure 2.5: Elements of W(t0) inverted from ∆(t0,x) surfaces: (a.) W11(t0). (b.) W22(t0). (c.)
W12(t0). (d.) Azimuth angle β(t0) computed from W(t0). Red circles indicate correct parameters.
chapter-pnmo/synthetic W11-LSfit,W22-LSfit,W12-LSfit,Beta-LSfit
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(a) (b)

(c) (d)

Figure 2.6: Timeslice views of NMO slowness-squared values computed for each
event. (a.) Event A. (b.) Event B. (c.) Event C. (d.) Event D.
chapter-pnmo/synthetic slowsqrdslice1,slowsqrdslice2,slowsqrdslice3,slowsqrdslice4
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Figure 2.7: 3D view of a supergather from the McElroy data set, West Texas, US. Although the
data have been isotropically NMO corrected, the time-slice view shows a subtle directional trend to
the flatness of an event at 0.978 s. chapter-pnmo/../nmo3/mcelroy supercube
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(a) (b) (c)

Figure 2.8: A time-versus-azimuth panel of traces for a range of offsets from 3.6-4.0 km from the
McElroy data set. The central panel shows local slope magnitudes corresponding to the left in-
put panel. The slope magnitude was computed as

√
p2
1 + p2

2. The same data after azimuthal
velocity-independent NMO has been applied as a residual moveout correction are shown on the
right. chapter-pnmo/../nmo3/mcelroy super21anisow,pmag3anisow,pnmooa2anisow
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3D. Still, the ability to manually asses the quality of the results will always be important, so a

similar procedure can be used for 3D velocity-independent NMO. In production applications, the

automatically measured slope fields from a subset of CMP gathers should be inspected manually.

Slopes are very intuitive to understand and easy to compare to the input data. An overlay or side-

by-side display of the two, combined with the automatic NMO performance provides efficient and

accurate quality control criteria.

Plane-wave destruction filters provide a truly automated approach to velocity analysis, as

they can be used without any user-selected input parameters. Here, I have used finite-difference

plane-wave destructors, which, as described by Fomel (2002), can be given a user-supplied initial

estimate of the slope field. Providing an initial slope estimate helps improve the efficiency of the

slope-detection and can help estimate conflicting slopes. In all of the examples above, no initial

slope field was provided. The output slope fields are computed using smoothing regularization,

which helps make the moveout correction more robust, and provides a way for the user to interact

with the slope detection performance. If the seismic data are particularly noisy, a more aggressive

smoothing can help make a more consistent automatic NMO correction, while for clean data, less

smoothing yields a better resolved localized slope field.

Since the velocity model is estimated by NMO flattening, the results are effective stacking

parameters. In realistic geologic cases containing a stack of layers, each layer may have a different

orientation of azimuthal anisotropy. The azimuthally-dependent traveltime variations caused by

wave propagation in the upper layers will be superimposed on the reflection events of underlying

layers. While measuring the stacking parameters is shown to be straightforward through the velocity-

independent approach, inverting for interval parameters would require these effects to be unraveled

through the use of layer-stripping (Hake, 1986), a Dix-type inversion (Grechka et al., 1999; Grechka
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and Tsvankin, 2002), or taking the derivative of the slope field with respect to time (Fomel, 2007b).

If the effects from overlying layers distort later traveltime surfaces enough such that they are no

longer elliptical-hyperbolic as suggested by equation 2.1, then the moveout correction will not be

complete for the later events. However, as seen in the field data example, the velocity-independent

moveout method can be used as a residual correction, with no changes to the procedure. The later

events with incomplete moveout correction can therefore be corrected with iterated applications of

the method. Another complication arises in the residual moveout case though, if one wants to extract

velocity parameters such as the azimuth angle or moveout slownesses. The equations presented here

for parameter extraction were derived for a single-pass NMO correction. Extending the parameter

estimation method to the residual moveout case requires summing all applied traveltime shifts (initial

and residual) before fitting with parameters. I could not recover velocity parameter estimates on the

McElroy supergather, as the initial NMO correction and its corresponding velocity were unknown.

Conclusions

Measuring local slopes is a thorough and azimuthally flexible way to characterize traveltime

surface geometry, which, in the 3D case, provides useful information about azimuthal variations in

moveout velocity. I have demonstrated an application for this feature in performing an azimuthally

anisotropic moveout correction in 3D. No velocities are picked in order to perform this moveout

correction, and since I use plane-wave destruction filters to measure local slopes, the entire process

is automated. Still, local moveout velocities can be estimated from this method in two ways. First,

velocity parameters can be calculated directly as a function of the local slopes, and the azimuthal an-

gle of anisotropy can be estimated locally if one measures the first mixed-derivative of the traveltime

surfaces at each point. Second, by recording the traveltime shifts applied by the automatic NMO

correction, I have formulated a highly overdetermined linear system to solve for moveout parameters
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as a function of time. This inversion scheme was shown to be very accurate on a synthetic data

example.

Even in multi-layer cases, where conflicting azimuthal anisotropies are present, the pro-

posed moveout correction itself can be performed accurately and automatically without velocity or

parameter estimation. Further, the effective moveout parameters can be estimated by fitting the

shifts applied by the automatic correction. This shows the first example of the common strategy

shared among methods in this dissertation: perform a velocity-independent imaging step first (here,

slope-based NMO), then find the effective parameters which correspond to that correction (here, by

least-squares fitting of NMO-corrected traveltime surfaces). Extensions of this method following an

iterative scheme analogous to a layer-stripping or Dix-type inversion strategy may provide a powerful

option to automatically recover interval parameters as well.

The computational cost is one of the main advantages of velocity-independent NMO over

the semblance scan. In Chapter 1, I explained the multi-parameter semblance scan cost to be

O(Nx×Nt0×N
Np
v ). In the azimuthally anisotropic case, Np = 3, and for a reasonable Nv = 100, the

approximate cost can be written as Nx×Nt0×1, 000, 000. For azimuthal velocity-independent NMO,

the dominant cost by far, is slope estimation. Slope estimation also has a complexity proportional

to the dataset, but then instead of scanning parameters, there is the cost of applying a nonlinear

filter. This results in a complexity of O(Nx × Nt0 × Nf × Ni), where Nf is the number of filter

coeficients and Ni is the number of iterations (both typically on the order of 101). So, for 3D

azimuthally-anisotropic velocity-independent NMO, the approximate cost of Nx ×Nt0 × 100, which

is about the same as a single-parameter isotropic semblance scan, and four orders of magnitude less

expensive than a three-parameter scan.

In this chapter, I have applied an automatic, velocity-independent physical NMO correction
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to seismic gathers and their recorded time-attribute volumes. The physical NMO correction still

assumes hyperbolic moveout based on simple midpoint reflection geometry, which commonly fails

at far offsets. In the next chapter, I generalize the linear parameter estimation approach developed

here by employing a non-physical event flattening technique called “warping”. This extends my

approach to the problem of fitting an arbitrarily-shaped event surface in an arbitrary gather type.
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Chapter 3

Moveout analysis by time-warping

Background

In the previous chapter, I assumed only azimuthal variations in the reflection hyperbolic

moveout velocity. The ideal moveout model should account for azimuthal variations, but it should

also account for nonhyperbolic behavior. Semblance-based methods are already inefficient in ob-

taining just the three-parameters needed to describe azimuthal variations. Measuring a more ideal

elliptical-nonhyperbolic model may require five or more parameters (Vasconcelos and Tsvankin,

2006; Fomel and Stovas, 2010). In this chapter, I propose a traveltime inversion approach to move-

out parameter estimation using automatic flattening of gathers. Like the velocity-independent NMO

correction in Chapter 2, I directly measure local slopes to obtain event geometries which can then

be used to extract velocity information. I again use plane-wave destruction filters to automatically

measure local slopes throughout an input gather, but instead of directly relating the slopes to a

hyperbolic moveout velocity, I use the slopes to predict the traveltime surfaces themselves. This

leads to a method which permits azimuthal and/or nonhyperbolic variations.

Here, traveltime surfaces are first predicted, and then flattened by a nonphysical flattening

method called warping (Lomask et al., 2006; Fomel, 2008). Warping is “nonphysical” in the sense

that it is purely a signal processing correction—not based on traveltime geometries predicted by

CMP reflection physics. By applying the same warping correction to a time attribute volume, the

time shifts needed to flatten each event can be computed, similar to the fitting method described
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in Chapter 2. From these shifts, best-fit physical parameters of any type of moveout curve—from

circular-hyperbolic to elliptical-nonhyperbolic or beyond—can theoretically be found using a linear

or non-linear least-squares fitting scheme.

While the need to characterize the effects associated with azimuthal anisotropy is increas-

ingly common, it is also common to have the effects of vertical-transverse isotropic (VTI) media

present in the seismic records. VTI type anisotropy is so common that it is often synonymous

with the term, “seismic anisotropy” (Thomsen, 1986), as it is usually associated with thin (relative

to the seismic wavelength) horizontal bedding—a geologically common case. VTI type anisotropy

or heterogeneity may introduce nonhyperbolic moveout effects on the far offsets of CMP gathers,

which can be superimposed on top of any effects of real or apparent azimuthal anisotropy. Sublette

et al. (2008) show that azimuthal variations in moveout behavior can be masked by the effects of

nonhyperbolic moveout. It can therefore be expected that the benefits of multiazimuth acquisition

will not be fully realized until an efficient, multiazimuth, nonhyperbolic velocity analysis method

becomes practical. The approach to velocity analysis in this chapter is well-suited for efficient and

automatic estimation of dense, multiazimuth, nonhyperbolic, 3D velocity models. I provide 3D syn-

thetic and field data examples using elliptical-hyperbolic moveout, and a 2D field data example of

nonhyperbolic moveout.

Time-warping

The concept introduced here called time-warping evolved from the velocity-independent

imaging strategies originating with Ottolini (1983b) discussed in Chapter 2. These velocity in-

dependent strategies rely on the connection between the slopes of traveltime surfaces and their

corresponding moveout velocities. Local slope detection tools such as plane-wave destruction filters
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(Fomel, 2002) are used to automatically measure these slopes, which can then be used to perform

any time-domain imaging step (Fomel, 2007b). In the case of the NMO correction, the local slopes

can be used to directly estimate hyperbolic moveout velocities or to automatically apply the move-

out correction without knowledge of the velocity model. The result is a flattened CMP gather

with an associated velocity model, in which stacking velocity information is stored as a volumetric

attribute, W0(t0, x1, x2), or multiple attributes, W(t0, x1, x2), in the azimuthally anisotropic case.

Conventional processing flows require a velocity profile rather than this attribute format, therefore

I developed a simple method in equations 2.10-2.14 to solve for the best-fit elliptical-hyperbolic

velocity profile for a given gather. In general though, the elliptical-hyperbolic NMO equation 2.1 is

only one out of many options to use as “the NMO equation”. Any other NMO equation can also

be rearranged into a similar form to 2.11. Fixing t0 gives the linear system in the same notation as

equations 1.1 and 2.11,

∆ = X [m] , (3.1)

where X is now generally equivalent to G from equation 1.1, but is now viewed as any linear

or nonlinear operator describing the assumed event geometry. If the case of NMO, X is more

specifically of the same form a FNMO from equation 1.5. The vector m is again a list of moveout

model parameters such as stacking velocities and/or anisotropy coefficients.

This simple moveout parameter fitting scheme was only possible in Chapter 2 because I

extracted the time shifts, ∆, automatically using a velocity-independent NMO correction. However,

in order to apply a velocity-independent moveout correction, one must assume a physical moveout

behavior beforehand (hyperbolic, non-hyperbolic, etc.). It is possible to bypass making any assump-
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tion about the moveout behavior by flattening the data first using a nonphysical method (Bienati

and Spagnolini, 1998; Lomask et al., 2006; Gulunay et al., 2007; Fomel, 2010). Here, I use predictive

painting (Fomel, 2008), which combines a reference trace with volumetric local slope information to

predict the geometry of traveltime surfaces throughout a CMP gather. These prediction surfaces

are then warped until they are flat. The warping process can be viewed as the application of a

nonstationary shifting filter, and I store this filter to help measure the traveltime shifts ∆ without

any moveout assumptions.

Measuring ∆ can be visualized by viewing t and t0 themselves as volumetric attributes.

For an input CMP gather, the time axis represents t defined in equation 2.10. This axis is the

same for each trace, and if t is stored as an attribute for each sample in the CMP, it will form

a laterally-invariant vertical gradient, t(t,x) (see Figure 3.1(b)). More interesting though, is what

the volumetric attribute of t0(t,x) looks like for an input CMP, as seen in the 3D example of

Figure 3.1(c). I estimate t0(t,x) by iteratively projecting the input time-axis, t, along the local

slope fields measured by plane-wave destruction filters. This technique is called predictive painting

(Fomel, 2008), and I assume that isosurfaces of the predictive painting result follow the arbitrary

geometries of each event. In this case, the corresponding synthetic data in Figure 3.1(a) were

modeled using inverse NMO, so the isosurfaces of t0(t,x) perfectly follow traveltime surfaces.

The next step is to apply warping to each of the volumes in Figures 3.1(a)-3.1(c). After

the flattening correction is applied to either the input data or its time-attributes, the time axis

corresponds to t0. As an attribute of the output CMP coordinates, t0(t0,x) now monotonically

increases downward (Figure 3.2(c)), which of course looks identical to t(t,x) (Figure 3.1(b)). The

warping filter itself is actually designed by optimizing the mapping between the predictive painting

result t0(t,x) and this ideal vertical-gradient output attribute. Once designed, the warping filter will
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flatten the events seen in Figure 3.1(a) to the results in Figure 3.2(a). However, the most valuable

time attribute volume, t(t0,x) is shown in Figure 3.2(b). This volume comes from applying the

stored warping filter to shift t(t,x) by the same amounts used to flatten the data; hence the name

“time warping”. Finally, the left-hand side of equation 3.1 is found by subtracting the squares of the

two warped time-attribute volumes, ∆(t0,x) = t2(t0,x) − t20(t0,x), and taking time-slices through

constant values of t0.

(a) (b) (c)

Figure 3.1: Uncorrected volumes of (a) synthetic data, (b) t-attribute, and (c)
t0-attribute. Note that these volumes are defined in input t-x coordinates.
chapter-timewarp/../timewarp/elliptical cmpcube,timecube,t0oftcube

(a) (b) (c)

Figure 3.2: Warped volumes: (a) data, (b) t-attribute, and (c) t0-
attribute. Note that these volumes are defined in output t0-x coordinates.
chapter-timewarp/../timewarp/elliptical flat3cube,warpedtimecube,t0oft0cube
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The method of time-warping can be summarized as a sequence of three techniques. First,

predictive painting uses local slopes to delineate traveltime surfaces. Second, warping uses the

predictive painting results to design a filter which optimally flattens the traveltime surfaces. The

flattening predicted by the warping filter yields the time-shift information ∆. Third, the method of

least-squares fits the time-shift information with a velocity model (m) based on any desired moveout

model (X).

Time-warping allows the left-hand side of equation 3.1 to be estimated at each t0, but,

unlike the fitting approach developed for velocity-independent NMO, time-warping does not impose

a hyperbolic assumption beforehand. This is the key advantage of time-warping which allows it to

capture arbitrary surface geometries in any domain where flattening-based analysis or traveltime

prediction is used. In other domains, X may be any of a broad range of imaging operators, not

necessarily related to the conventional FNMO. Casasanta and Fomel (2010) have extended the

time-warping approach to the τ -p domain where X is more closely an elliptical moveout operator

than hyperbolic. Kazinnik and Burnett (2010) have applied time-warping to multifocusing and

common reflection surface (CRS) imaging methods (Gelchinsky et al., 1999; Jager et al., 2001) where

traveltime surfaces are parametrized across multiple CMP gathers. In the the following sections, I

provide a brief “tour” of CMP-based time-warping applications, each of which is a special case of

equation 3.1, where X remains related to FNMO.

Isotropic NMO

The simplest example of the time-warping method can be seen by re-writing the circular-

hyperbolic NMO equation 1.4 as,
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∆(t0,x) = W0|x|, (3.2)

where |x| is the magnitude of the source-receiver offset. In the notation of 3.1, the kth row of the

isotropic NMO operator becomes,

Xk = |x|2k, (3.3)

and the model parameter vector becomes the single-element,

m = W0. (3.4)

The offset coordinates x of each trace are of course known, and for a fixed t0, the left-hand side

of equation (3.1) can be obtained from the first two steps of time-warping. Therefore, for each

event in a gather of N -traces, we have a highly overdetermined system of N -equations with only

one unknown (W0). Solving this system for each t0 gives the isotropic velocity profile W0(t0).

Azimuthally Anisotropic NMO

For the many cases which give rise to apparent azimuthal anisotropy, I again re-write the

elliptical-hyperbolic expression of Grechka and Tsvankin (1998) as:

∆(t0,x) = W11x
2
1 +W22x

2
2 + 2W12x1x2. (3.5)

Decomposing this expression into a vector multiplication reveals its appearance in terms of equation
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3.1, where the function ∆(t0,x) becomes a vector ∆ at each t0. The linear hyperbolic offset-

dependence dictates the moveout operator X applied to the kth-trace,

Xk = (x2
1i x2

2j 2x1ix2j )k , (3.6)

where indexes k, i, and j are related by the indexing scheme described in Chapter 2. W11, W22, and

W12 comprise the now three-parameter model vector m,

m =

W11

W22

W12

 . (3.7)

This notation describes exactly the same linear system as equations 2.10-2.14, but the difference

between time-warping and velocity-independent NMO lies in how ∆ is extracted. I have rewritten

the system here in terms of time-warping notation to emphasize that the three-parameter elliptical-

hyperbolic surface is just a special case of moveout model, chosen after ∆ is extracted.

The volume in Figure 3.1(a) is a synthetic 3D CMP gather in which seven events were

modeled with elliptical-hyperbolic moveout. Each event has a different orientation of its principal

moveout axes. I applied the time-warping procedure as described above, which yields an estimate

of ∆. I then used a linear least-squares solver with equations 3.1, 3.6, and 3.7 to obtain the

three elements of W(t0). The results of this procedure are shown in Figures 3.3(a)-3.3(c). For

the elliptical-hyperbolic model of azimuthal anisotropy, three parameters have easily been recovered

from the overdetermined system.

Although challenging for semblance-based azimuthal analysis, the synthetic example in Fig-

ure 3.1(a) is trivial for time-warping. So I next apply time-warping with azimuthally anisotropic
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(a) (b) (c)

Figure 3.3: Least-squares fitting results for elliptically anisotropic moveout parameters.
Solid line shows exact model parameters. These three values comprise the 2×2 slow-
ness matrix, W(t0), which can be used following Grechka and Tsvankin (1998) to di-
rectly determine principal moveout directions and moveout velocity as a function of azimuth.
chapter-timewarp/../timewarp/elliptical Wxcompare,Wycompare,Wxycompare
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parameter fitting to the Durham Ranch field data set from northwest Colorado, U.S.A.. This data

set was provided by GXT/ION to help test the performance of the time-warping method. Details

about geologic setting, and the acquisition and processing of this data set are provided by Schapper

et al. (2009). I was given a single 2D line of 3D gathers—each of which is a pre-stack time migrated

CMP gather where an azimuthally-variable NMO correction has been removed by GXT. This pro-

vided a clean, realistic data set, with a known amount of azimuthal anisotropy. My goal then, was

to measure the velocity and anisotropy parameters of the removed NMO correction, and ultimately

compare them with the GXT model.

The left side of Figure 3.4 shows a typical Durham Ranch CMP gather. Because this data

set was migrated using offset-vector-tile binning (Cary, 1999; Vermeer, 1999; Schapper et al., 2009),

it has the benefit of being regularly sampled in x1-x2—each gather in the data set is about 16×16

traces, which are evenly spaced in the inline and crossline directions. This allows straightforward

application of time-warping, starting with 3D slope estimation, also shown for a typical gather Figure

3.4. The volumetric slopes are used in predictive painting, and the result is used to design a warping

filter. The performance of the warping filter is judged by how well it flattens reflection events. A

satisfactory result for most events is seen in the right side of Figure 3.4.

Like conventional velocity analysis methods, time-warping should be subjected to manual

quality control (QC) steps. Time-warping offers several opportunities for QC. First, slope estimates

should be inspected for their consistency with qualitative expectations. Slope estimation is not

only the most computationally expensive part of time-warping, it is also the step which most in-

fluences predictive painting, and subsequently warping and parameter estimation. It is therefore

worth spending time to get the PWD filter parameters right for one or more representative gathers,

which is fortunately an intuitive procedure. In the Durham Ranch case, I first tested the entire
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time-warping flow on a single representative gather. Once I was satisfied with the qualitative ap-

pearance of the slope estimates, I examined the predictive painting and warping performance. This

second opportunity for QC can be taken by overlaying predictive painting contours on the input

data, or by examining event flatness after warping. Both painting and warping are more influenced

by the slope estimates than their own regularization parameters, so in practice, if their results are

unsatisfactory, the PWD parameters should be adjusted first, before fine-tuning the painting and

warping parameters. Once slope estimates, painting results, and event flatness are all satisfactory,

I apply the warping filter to the input time-attribute volume and fit the output with velocity pa-

rameters. Finally, once a geophysically reasonable stacking velocity profile emerges from the test

gather, I apply the flow to the entire data set, and adjust parameters on other CMP gathers locally

if necessary.

The results of applying time-warping to the entire Durham Ranch data set are shown in

Figures 3.5 through 3.9, including the least-squares error in the best-fit traveltime surfaces. The

parameters displayed in these images are the percent anisotropy φ, the slow azimuth β, and the fast

and slow velocities, which were converted from the best-fit effective slowness model, W following

equations 1.8-1.11. It is important to remember when interpreting these results, that these are

effective parameters, not interval parameters. The estimated stacking velocities associated with

each reflector are time-weighted averages of the velocities in all layers in the overburden. If one

assumes the estimated stacking velocities are close to the near-offset NMO velocities, then they are

close to the RMS parameters, and therefore can be related to interval velocities via Dix differentiation

(Dix, 1955; Dobrin and Savit, 1988). In the azimuthally anisotropic case, we can use the technique of

generalized Dix inversion (Grechka et al., 1999) to first convert effective slowness matrices W(t0) to

interval slowness matrices Wint(t0), and then subsequently convert the interval matrices to intuitive
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parameters following equations 1.8-1.11.

Figure 3.4: Typical CMP gather and slope fields from Durham Ranch data set. The right image
shows the same gather after warping. chapter-timewarp/../durham/test warp3

The images in Figures 3.10 through 3.13 show the results of applying generalized Dix inver-

sion to the effective sections. Generalized Dix inversion is a differentiation that is most stable when

applied as a discrete difference operator over relatively large steps in time (Grechka et al., 1999).

Since time-warping outputs velocity estimates which are relatively smooth due to the influence of

regularized slope estimation, I found it was fairly stable to apply generalized Dix inversion on the

Durham Ranch data set as a vertical sample-by-sample differentiation operator,

W−1
int,i =

(t0)iW−1
i − (t0)i−1W−1

i−1

(t0)i − (t0)i−1
, (3.8)

where i indicates the current time sample index and i − 1 is the previous time index. The results
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Figure 3.5: Effective fast velocity estimates from time-warping on Durham Ranch mi-
grated CMP gathers. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest V-fast
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Figure 3.6: Effective slow velocity estimates from time-warping on Durham Ranch mi-
grated CMP gathers. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest V-slow
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Figure 3.7: Effective anisotropy estimates from time-warping on Durham Ranch migrated
CMP gathers. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest aniso-effective
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Figure 3.8: Effective β estimates from time-warping on Durham Ranch migrated
CMP gathers. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest beta-effective
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Figure 3.9: L2-norm fitting error (|∆fit−∆obs|2 summed over offset) from time-warping on Durham
Ranch migrated CMP gathers. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest Error

61



in Figures 3.10 through 3.13 are the actual differentiation results with a small amount of post-

inversion smoothing. The geologic interpretation of the results is still somewhat uncertain without

comparison to borehole, core, or engineering data, but it is encouraging to see how changes in

the interval parameter estimates tend to correlate with the imaged structures. There are several

pronounced parameter contrasts at event boundaries, and the lateral distribution of the parameter

estimates seems to be related to the fault block structures. One of the theoretical benefits of offset-

vector-tile migration is that it allows azimuthal analysis post-migration, which helps mitigate the

influence of structure (in terms of causing apparent anisotropy) on parameter estimates. The results

I have obtained here clearly correlate with the subsurface structure, which can be explained either as

residual apparent anisotropy not fully mitigated by migration, or by true anisotropy under geologic

structural controls.

To conclude this example, I take the three-parameter velocity model W(t0) estimated by

time-warping at Durham Ranch, and use it to apply a physical NMO correction based on equation

1.6. The final azimuthally-anisotropic NMO-corrected stack is shown in Figure 3.14.

Spiral-sorting

The Durham Ranch data set is nearly ideal for multiazimuth parameter estimation, mainly

because the gathers have been migrated using an offset-vector tile binning scheme which preserves

azimuth and offset information. Post-migration gathers are generally cleaner, more regularized,

and better sampled in a balance between azimuth and offset than their pre-migration counterparts.

Further, since migration inherently adjusts the time-domain structural positioning of each event, the

influence of heterogeneity is reduced, making any estimated parameters more likely related to true

azimuthal anisotropy. However, post-migration analysis is not usually the case in practice unless

62



Figure 3.10: Interval fast velocity estimates from time-warping and generalized Dix
inversion. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest Vint-fast
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Figure 3.11: Interval slow velocity estimates from time-warping and generalized
Dix inversion. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest Vint-slow
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Figure 3.12: Interval anisotropy estimates from time-warping and generalized Dix inversion over-
laid on wiggle-trace image. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest anisotropyi
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Figure 3.13: Interval β estimates from time-warping and generalized Dix inversion overlaid
on wiggle-trace image. The top shows the stack image using warped gathers for reference.
chapter-timewarp/../durham/fulltest betai
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Figure 3.14: Durham Ranch post-migration stacks from time-warping. Top: Stack created by
summing non-physically warped CMP gathers over offset. Bottom: Stack created by applying
physical elliptical-hyperbolic NMO using the velocity model parameters found by time-warping.
chapter-timewarp/../durham/fulltest physical-nmo
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azimuthal analysis is a primary objective. Trials of the time-warping method on other field data sets

(all pre-migration) revealed practical limitations related to the realities of seismic data acquisition.

First, field gathers are usually not regularly spaced in both inline and crossline directions. Second,

typical multiazimuth gathers do not have high fold in all azimuths—even in the 256-fold case of

the Durham Ranch gathers (relatively high for modern land surveys), there are at most 16 traces

in a given azimuth. For these reasons, it is not always reasonable to try and arrange traces within

multiazimuth gathers into the 3D orthogonal x1-x2 offset geometry discussed in all cases above. If

CMP traces are not arranged in this orthogonal grid, however, then local slope estimates cannot be

directly related to hyperbolic velocity or moveout, as required by velocity-independent NMO from

Chapter 2.

Unlike velocity-independent NMO, I have claimed that time-warping does not assume a

moveout model before hand; it works based on aligning events between neighboring traces, regardless

of the physical or spatial relations between them. Therefore, time-warping can be applied to the

traces of a CMP gather, no matter how they are arranged, as long as predictive painting can follow

the events from trace-to-trace. In this section, I explore a few options for reorganizing CMP traces

into gather formats which have advantages over the orthogonal offset grid. These organizations are

2D, but I will still fit them with the 3D elliptical-hyperbolic model.

A reasonable first attempt to exploit the flexibility of time-warping is to completely bypass

arranging a given CMP gather, and keep its traces ordered based solely on absolute value of offset.

Offset-sorting is typically how traces are arranged when put through a semblance-scan because

it clearly emphasizes the offset-dependence of reflection moveout. Figure 3.15a shows an offset-

sorted Durham Ranch CMP gather. When compared to the same gather gridded in 3D orthogonal

offset, seen in Figure 3.4, the events are clearly more visible from trace-to-trace, which suggests
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that 2D predictive painting will likely work well on the offset-sorted version. This leads to another

practical advantage of offset-sorting, in that by performing slope-estimation only along the offset

direction, neighboring gathers can be computationally juxtaposed along the third axis of the input

data volume, where they can be used to enforce shaping regularization during slope estimation (the

first and second axes being time and offset, respectively). Event visibility itself is also useful for

warping performance QC, so offset-sorted gathers are an attractive option for time-warping analysis.

However, from trace-to-trace in the offset-sorted format, the events frequently have discontinuous

moveout, making slope estimation still difficult. Many of these discontinuities are easily removed

by first applying a smooth isotropic NMO correction to the gathers, and estimating slopes (and

afterward performing time-warping) as an anisotropic residual process. The results of estimating

slopes for the gather in Figure 3.15a (after an initial isotropic NMO correction) are shown in Figure

3.15b.

Figure 3.15c-d show the results of applying time-warping to the offset-sorted gather. The

resulting fast and slow velocity profiles fit to the offset-sorted gather are very stable, but there

is almost no difference between them. This means that azimuth β estimates are typically very

unstable, which suggest that a weakness of offset-sorting is an inability to reliably detect azimuthal

variations in moveout velocity. This is not surprising when we consider the most important step of

time-warping: slope estimation. The PWD filter tool in Madagascar (the software package used in

this research) allows shaping regularization to be applied along three axes. We gain the advantage

of gather-to-gather regularization by sorting physically 3D gathers into a 2D organization such as

offset sorting. However, regularization along the offset axis is still necessary to ensure robust slope

estimates from trace-to-trace within each gather. The more smoothing enforced by regularization,

the more robust the slope estimates, which is critical for application to field data. If no smoothing
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is enforced, then slopes are independently estimated from sample to sample throughout the gather,

which might be ideal for perfectly clean data, but is unstable for most field data. With this trade-off

in mind, a small amount of regularization cannot be avoided, which means that subtle trace-to-trace

shifts will be smoothed-through by the PWD filters.

Figure 3.15: Offset-sorted gather example. a.) Same gather as seen in Figure 3.4, but traces are
sorted by absolute value of offset. b.) Slope field measured on the offset-sorted gather after an
initial isotropic NMO correction. c.) Fast and slow velocity estimates overlaid on the same plot. d.)
Offset-sorted gather after warping. chapter-timewarp/../durham/offset offset-test

The overall event moveout is easily detected on an offset-sorted gather by smooth slope
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Figure 3.16: Spiral-sorted gather example. a.) Same gather as seen in Figures 3.4 and 3.15, but
traces are now sorted by spiral indexing scheme. b.) Slope field measured on the offset-sorted gather.
c.) Fast and slow velocity estimates overlaid on the same plot. d.) Spiral-sorted gather after warping.
Notice the overall flattening performance is similar to the offset-sorting results in Figure 3.15, but
the trace-to-trace continuity has improved. chapter-timewarp/../durham/spiral spiral-test
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estimates, but neighboring traces in this format may be from completely random azimuths, even in

most synthetic cases. To see this, I have drawn a diagram in Figure 3.17(a) showing a map-view of

trace positions in an ideal 10×10 3D CMP gather. Each trace is placed in a bin on the orthogonal

x1-x2 offset grid. I have numbered each trace location by its offset magnitude (
√
x2

1 + x2
2)—lower

numbers corresponding to smaller offsets, and equal numbers corresponding to equal offsets. It is

easy to see from this diagram that if the traces are perfectly-spaced (located at the exact center of

each bin), then 2D sorting by absolute value of offset is non-unique. In most field gathers, there

will be variations in azimuths among neighboring traces, which will on average, be random. For

example, if we look at say, all traces labeled 9 on the diagram, and where they end up in a purely

offset-based 2D sorting, they will be neighbors, but their azimuths will likely be sequenced randomly.

This azimuthal effect is well-known, and often referred to as “trace jitter” (Jones, 2010). Since trace

jitter is difficult to robustly capture with PWD filters, it explains why offset-sorted time-warping is

reasonable for finding the average hyperbolic velocity, but at the same time cannot “see” azimuthal

moveout variations.

We can summarize the problem of trace jitter as the result of traces being generally well-

sorted, but because of their random azimuths, neighboring traces have no guarantee of spatial

proximity. Although time-warping conceptually works on an arbitrary sorting, we see that the

sorting of traces has practical importance in slope-estimation. We can then logically devise an

alternative 2D sorting which has the QC benefits of offset-sorted gathers, yet accommodates the

capture of azimuthal information. The ideal sort will vary smoothly in both offset and azimuth,

while maintaining a minimum physical spacing between neighboring traces. By assuming that a

given field 3D CMP gather is spatially gridded similar to Figure 3.17(a), we can reorganize it into

a well-known path that meets our ideal criteria: the spiral. Re-indexing the grid in Figure 3.17(a)
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as an integer spiral is shown in Figure 3.17(b)∗ Under this spiral-sorted order, each trace in a 3D

CMP gather has an unique index determining its position in a 2D sort, that smoothly varies in both

offset and azimuth.

(a) (b)

Figure 3.17: CMP trace sorting diagrams. These are plan-view diagrams where the midpoint is
conceptually at the center of each, and bins represent the physical orthogonal offset-grid trace loca-
tions. The index in each bin dictates its order in a particular sort. Left: Offset-sorted. Sequentially
or equally-numbered bins indicate traces which will be neighbors on an offset-sorted gather, despite
their azimuthal variations. Right: Spiral-sorted. Now each trace has an unique index, and neighbors
are similar in both offset and azimuth. chapter-timewarp/. offsort-grid,spiralsort-grid

Instead of literally sorting real gathers onto a perfect integer spiral, I wrote a simple sorting

code in Madagascar which sorts 3D gathers into an approximate spiral arrangement (sfspiral).

This is necessary, because unlike the migrated Durham Ranch gathers, typical field gathers do not

fit perfectly into the orthogonal-grid sorting to begin with. My code is based on the equation of an

Archimedean spiral (Weisstein, 2003),

∗The numbered grid in Figure3.17(b) is coincidentally a well-known mathematical diagram known as Ulam’s Spiral
(Stein et al., 1964). While bored during a mathematics conference, Ulam sketched this integer spiral on a napkin and
started shading-in prime numbers. He noticed that the locations of prime numbers on the spiral exhibited a strong
“non-randomness”! If you feel compelled to deface my dissertation and shade in the primes, notice for example, the
diagonal from 91-73.
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R = r + cθ, (3.9)

where R is the radius of the spiral, r is an initial rotation (by default 0), and c is an adjustable

parameter to set the spiral cycle-spacing in terms of offset. My spiral-sorting code simply groups

all traces that share the nearest spiral cycle, and then sorts the grouped traces by azimuth. All

same-cycle groups are then re-combined according to increasing offset, resulting in a spiral-sorted

gather.

The same gather shown offset-sorted in Figure 3.15a is shown after spiral-sorting in Figure

3.16a. The trace jitter has been reduced, and the corresponding slope estimates in Figure 3.16c

can be dramatically refined to capture the trace-to-trace moveout as well as the overall moveout.

The results shown in Figures 3.16c-d are similar to the results from the offset-sorted results, but

the azimuthal variations in velocity are again resolved. In this case, the Durham Ranch gathers

are clean, regularized, and well-sampled, making the 3D orthogonal grid-sorted results still better

compared the spiral-sorted results. I would again like to comment though, that on other field data

cases without the benefits of being post-offset-vector tile migration, spiral-sorting may provide a

helpful alternative to orthogonal grid-sorting. In any case, spiral-sorting clearly demonstrates the

flexibility available with time-warping, which may lead to even more unusual but purposeful data

organizations in future applications.

Nonhyperbolic Moveout

Taner et al. (2005, 2007) and Blias (2007) observe that nonhyperbolic moveout can be

geometrically described as an increase in moveout velocity with offset. They use a second moveout

parameter, a(t0), to account for effective “moveout acceleration”. Their moveout expression,
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t(t0,x) =

√
t20 +

|x|2

W−1
0 (1 + a|x|2)

, (3.10)

is also easy to arrange as a linear system similar to the form 3.1,

|x|2

t2 − t20
= W−1

0 + b|x|2, (3.11)

if we invert the usual time-shift vector ∆, and scale by offset-squared. In equations 3.10 and 3.11,

W0 describes short-spread hyperbolic moveout, and b = aW−1
0 characterizes the increase in moveout

velocity with offset. In terms of time-warping, the k-th element of the data vector becomes,

∆k =
|x|2

t2 − t20
, (3.12)

the k-th row of the operator matrix becomes,

Xk = ( 1 |x|2k ) , (3.13)

and the model vector becomes,

m =
(
W−1

0

b

)
. (3.14)

I applied the time-warping method to a single field CMP gather from the Elf data set in

Figures 3.18-3.20. After these parameters are obtained by the time-warping process, I use them to

apply a physical NMO flattening based on equation 3.11.
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Figure 3.18: (a) Field CMP gather from Elf data set. Corresponding attribute sections (b) t0(t) and
(c) t(t0). chapter-timewarp/../timewarp/elf t2
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Figure 3.19: (a) Conventional velocity scan semblance panel with automatic picks. (b) v2(t0, x)
estimated from time-warping. (c) Dashed line indicates semblance scan picks next to best-fit v0
parameter of equation (3.11). chapter-timewarp/../timewarp/elf v2
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Figure 3.20: Field CMP gather flattened by (a) conventional NMO and (b) non-physical flattening.
The moveout parameters v0 and a were extracted and used in a physical NMO equation to obtain
(c). chapter-timewarp/../timewarp/elf nmo3
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Discussion

Predictive painting and warping can capture arbitrary surface geometries without prior

moveout assumptions. The geometry information is then fit with an assumed moveout model, which

can be multi-parameter at no extra computational cost. This sequence of three steps—painting,

warping, and fitting—I refer to as time-warping, and propose as a powerful traveltime inversion

velocity analysis approach. My method is also easily implemented in other analysis domains. I have

demonstrated through several examples that time-warping is useful for characterizing moveout that

varies with either azimuth or offset, corresponding to apparent azimuthal anisotropy or nonhyper-

bolic moveout, respectively. A straightforward extension is possible to describe azimuthally-variable

or nonhyperbolic moveout using an effective orthorhombic moveout model. Events in the τ -p do-

main, in CRS gathers, and in common image gathers are also commonly flattened to obtain useful

parameters. The method is identical in these other domains; rather than an NMO equation though,

the right-hand side of 3.1 would represent the physical flattening equation for the appropriate gather

type.

In the examples included above, I fit the difference in time-squared ∆ = t2 − t20, but t0 can

be just as easily treated as a parameter to be fit as well. This can be useful for data where near

offset traces are unavailable or overwhelmed with noise such as ground-roll. The procedure would

remain the same, but in the simple cases, ∆ would become just a list of t2 values, and the matrix

X would contain an extra column of ones (or another coefficient associated with t20).

Time-warping provides the same computational cost improvements over the semblance scan

as velocity-independent NMO does, but potentially more so as the number of parameters increases

beyond three. However, flattening based analysis still requires significant post-imaging interpretation

to distinguish between potential geologic causes. In the next chapter, I will examine diffraction
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focusing as a velocity analysis criterion alternative to event-flattening. Although not as efficient as

the event-flattening methods, diffraction focusing may help position imaging events and azimuthal

velocity estimates more accurately, as it may help reduce the ambiguity between the various geologic

causes.
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Chapter 4

Azimuthally anisotropic 3D velocity continuation

Background*

As I have discussed in previous chapters, velocity analysis is commonly first performed

on pre-stack CMP gathers, where the geologic cause of any observed azimuthal velocity variation is

ambiguous. Without the help of additional diagnostic gathers such as hybrid or cross-spread gathers

(Dunkin and Levin, 1971), or an interpretive comparison between picked root-mean-square (RMS)

and interval velocities (Jenner, 2008), the cause of azimuthal variations in velocity can be identified

only after migration.

Azimuthal seismic imaging commonly requires iterations between velocity analysis and imag-

ing to help distinguish between the effects of anisotropy and heterogeneity, Residual azimuthal vari-

ations in traveltime after migration can be measured by using migration binning schemes which

preserve both offset and azimuth information (Cary, 1999; Vermeer, 1999). This is the type of anal-

ysis I performed using time-warping on the Durham Ranch gathers in the previous chapter. After

the first pass of (isotropic) migration, azimuthal variations in velocity are detected from residual

moveout, which then provides the velocity model for anisotropic migration. Iterative processing

flows that use these strategies are popular not only because they are fairly efficient and intuitive,

but also because they can be implemented with minimal modification to existing software. How-

ever, iterative imaging flows cannot guarantee convergence to the correct or optimal velocity model

*Parts of this chapter are published in Burnett and Fomel (2011).
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(Deregowski, 1990). The method I will discuss here is based on velocity continuation (Fomel, 1994,

2003b), which has the underlying strategy of performing velocity analysis and imaging simultane-

ously, and can thus be used to directly find an optimal velocity model without iteration (Yilmaz

et al., 2001). Sicking et al. (2007a) have demonstrated the success of a similar strategy of using

imaging as a velocity analysis tool for 3D multiazimuth reflection seismic data. Azimuthal velocity

continuation can provide a theoretical framework for this approach. With these benefits as motiva-

tion, I extend diffraction imaging with time-domain velocity continuation to 3D, accounting for the

case of azimuthally variable migration velocity.

In the previous chapters, the velocity analysis methods were based on traveltime event-

flattening. In this chapter, I use a different criterion, image-focusing, to estimate the seismic velocity

model. Image focusing as a tool for velocity analysis is not new. Harlan et al. (1984) introduce many

of the key concepts in focusing analysis, including a quantitative focusing measure based on cross

entropy or “non-Gaussianity” More recently, Sava et al. (2005), Fomel et al. (2007), and Biondi

(2010) have demonstrated successful image-focusing techniques for seismic data.

Harlan et al. (1984) point out that the separation of diffractions from reflections could be

useful in focusing based velocity analysis, as diffractions are more sensitive to migration velocity

errors than reflections. More recent works have demonstrated diffraction velocity analysis in 2D and

for ground penetrating radar (Novais et al., 2006; Fomel et al., 2007; Novais et al., 2008), as well as

to the azimuthally anisotropic case (Al-Dajani and Fomel, 2010; Burnett and Fomel, 2010). Harlan

et al. (1984) separate diffractions using a local slant stack technique, which distinguishes reflection

events from diffraction events based on local slopes. But unlike the PWD filter method for local

slope detection, their local slant stack technique is not subject to regularization, and therefore may

have difficulty in estimating smooth slope fields robustly. Because of this, diffraction separation
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has not necessarily been a standard step of image-focusing analysis methods. Fomel et al. (2007)

demonstrate PWD filtering as a robust and efficient tool for diffraction separation on 2D field data.

In this chapter, I extend their image-focusing method to 3D with diffraction separation as the first

step. For the third time in this dissertation, I will use PWD filters to measure local slopes, but

this time, I use the slopes for 3D diffraction separation, rather than a direct measure of traveltime

geometry. In order to understand the benefits of diffraction separation, it is helpful to first briefly

review how diffractions differ from reflections.

Diffractions are seismic energy scattered by subsurface discontinuities—geologic features

such as faults, pinch-outs, channels, and so on. Specular reflections from flat layers are well-predicted

by Snell’s Law, which is the basis for CMP analysis and NMO. Even dipping layers can be treated

by the same physical concept with a proper application of DMO. Snell’s Law states that incident

wave energy will reflect symmetrically about the normal direction of a surface, but it does not state

what happens at say, a discontinuity, where the normal direction is undefined. At discontinuities,

wave energy scatters in all directions that are away from the edge or point. We observe this scat-

tered diffraction energy during seismic acquisition, but it is often neglected during processing, as

conventional imaging flows are purposefully designed with reflections in mind.

The NMO and DMO corrections are imaging steps designed to effectively transform the

recorded seismic data set into what it would look like if it were recorded with only coincident (zero-

offset) source-receiver pairs at each CMP location. Once all data are transformed to zero-offset, offset

itself becomes redundant, and therefore traces are summed over offset in the conventional imaging

step of stacking. The stacked data set is usually the first approximated image of the subsurface

recovered during a seismic imaging flow. Reflection geometries are approximately correct on stacked

data, with some (often significant) positioning errors associated with dipping events and structures
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(Yilmaz, 2001). Diffraction energy however, still remains scattered across midpoint locations on

the stack image. This scattering across midpoints is geometrically similar to the moveout behavior

associated with CMP reflections—that is, diffraction surfaces are approximately hyperbolic over

midpoint on zero-offset data. However, unlike normal reflections on CMP gathers, one generally

cannot assume to know the spatial location of a particular diffractor within the stack. Nonetheless,

this diffraction moveout over midpoints provides another opportunity for traveltime velocity analysis.

Harlan et al. (1984) suggest an option for velocity analysis using separated diffractions.

They show that when the correct migration velocity is used to image diffractions, they become well-

focused, and thus their quantitative non-Gaussianity focusing measure becomes a proxy for velocity

estimation. On large field data sets, especially modern 3D data sets, testing a range of velocity

models could become computationally prohibitive. In addition to suggesting the use of PWD for

diffraction separation, Fomel et al. (2007) also suggest velocity continuation as a means for efficiently

testing a range of migration velocities.

Velocity continuation (Fomel, 1994, 2003b) provides a framework for describing how a seis-

mic image changes given a change in the migration velocity model. Similar in concept to residual

migration (Rothman et al., 1985) and cascaded migrations (Larner and Beasley, 1987), velocity

continuation is a continuous formulation of the same process. Velocity continuation has found appli-

cations in migration velocity analysis (Fomel, 2003a; Schleicher et al., 2008a) and diffraction imaging

(Novais et al., 2006; Fomel et al., 2007).

Fomel (1994) and Hubral et al. (1996) point out that velocity continuation is a wave propaga-

tion process. Instead of wavefronts propagating as a function of time, images propagate as a function

of migration velocity. Recent work has extended the concept to heterogeneous and anisotropic ve-

locity models (Alkhalifah and Fomel, 1997; Adler, 2002; Iversen, 2006; Schleicher and Alexio, 2007;
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Schleicher et al., 2008b; Duchkov and de Hoop, 2009). To account for anisotropy, the seismic velocity

model must become multi-parameter. Consequentially, velocity continuation generalizes to a process

of implementing image transformations caused by changes in multiple parameters rather than the

single isotropic velocity alone.

I begin below with a section on the theory of azimuthally anisotropic velocity continuation.

I then discuss implementation of azimuthal velocity continuation using a spectral method. I provide

synthetic examples to analyze the behavior of azimuthal velocity continuation and demonstrate

focusing analysis by kurtosis. I then provide a field data example which shows diffraction separation

and velocity estimation results. This field data example leads to the development of an alternative

approach to focusing analysis using path-integral imaging, which I will discuss to conclude the

chapter.

THEORY

The theory of velocity continuation formulates the connection between the seismic velocity model and

the seismic image as a wavefield evolution process. In doing so, the process can be implemented in the

same variety of ways as seismic migration. Seismic migration in its many forms is commonly derived

starting from the wave equation, which is approximated by its time and amplitude components by

the eikonal and transport equations, and if necessary, a system of ray tracing equations. Velocity

continuation is derived in the opposite order (Fomel, 2003b). Starting with a geometrical description

of the image, a corresponding kinematic equation for traveltime is derived to describe how the image

moves according to changes in imaging parameters. Subsequently, the kinematic equation is used

to derive a corresponding wave equation, which describes the dynamic behavior of the image as

an evolution through imaging parameter coordinates. This section outlines the key steps of this
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derivation, starting with a traveltime equation that permits azimuthal variations in velocity.

Grechka and Tsvankin (1998) truncate a two-dimensional Taylor series expansion for a

generally inhomogeneous anisotropic media to derive the “NMO ellipse” moveout equation. Geo-

metrically, the NMO ellipse model still assumes that events have hyperbolic moveout with offset, but

it allows the velocity to change with azimuth. I start here by using the same truncated 2D Taylor

series expansion to describe an azimuth-dependent traveltime equation for the diffraction traveltime

or the summation surface of zero-offset time migration,

T 2(x,y,M) = 4
(
τ2 + (x− y)T M (x− y)

)
, (4.1)

where τ is the one-way vertical traveltime after migration, x is the (x1, x2) surface position of the

zero-offset receiver in survey coordinates, y is the surface position of the point source image, and

superscript T denotes transpose. The three independent elements of the symmetric slowness matrix,

M =
(
M11 M12

M12 M22

)
, (4.2)

have units of slowness-squared, and the eigenvalues and eigenvectors of M determine the symmetry

axes of the effective anisotropic medium (Grechka and Tsvankin, 1998). The migration slowness

matrix M has identical form and mathematical significance as the azimuthal reflection moveout

slowness matrix W, so though they are both denoted W when discussed separately in the literature.

But M physically describes a different parameter, so I have changed the migration slowness symbol

to M here, to maintain a self-consistent notation, as both parameters are discussed within this

dissertation. Regardless of their differences in physical meaning, W and M both geometrically
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parametrize an elliptical-hyperbolic surface. The formulas relating W to more intuitive parameters

(equations 1.8-1.12) are all valid for M as well.

Conventionally, one assumes that equation 4.1 characterizes a particular event defined in

image coordinates (x, τ), but one can also describe how that event would transform given a change

in the image parameters M. Regardless of the velocity model, the observed traveltime T must

remain unchanged between different images. From this observation, I arrive at the following set of

conditions:

∇xT
2 =

(
∂T 2

∂x1
∂T 2

∂x2

)
= 8τ∇xτ + 8M(x− y) = 0, (4.3)

and,

∇MT 2 =

(
∂T 2

∂M11

∂T 2

∂M12
∂T 2

∂M12

∂T 2

∂M22

)
= 8τ∇Mτ + 4(x− y)(x− y)T = 0. (4.4)

Combining and reducing these conditions yields a system of equations that are defined only in the

image parameter coordinates,

2
∂τ

∂M11
+
τ
(
M22

∂τ
∂x1

−M12
∂τ
∂x2

)2

(M2
12 −M11M22)

2 = 0, (4.5)

2
∂τ

∂M22
+
τ
(
M12

∂τ
∂x1

−M11
∂τ
∂x2

)2

(M2
12 −M11M22)

2 = 0, (4.6)

and,
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2
∂τ

∂M12
−

2τ
(
M12

∂τ
∂x1

−M11
∂τ
∂x2

)(
M22

∂τ
∂x1

−M12
∂τ
∂x2

)
(M2

12 −M11M22)
2 = 0. (4.7)

The system of kinematic equations describing azimuthally anisotropic velocity continuation is then

found by combining equations 4.5-4.7. In a vector notation, this becomes

∇Mτ +
τ

2
M−1∇xτ (∇xτ)

T M−1 = 0, (4.8)

where ∇x and ∇M are in the form given by equations 4.3 and 4.4.

The method of characteristics (Courant and Hilbert, 1989) provides a link between a kine-

matic equation (such as 4.8) and its corresponding wave-type equation. Fomel (2003b) demonstrates

specifically how the method can be used to derive a velocity continuation wave equation from its

kinematic counterpart. By first setting the characteristic surface condition,

ψ = t− τ(x,M) = 0, (4.9)

and replacing τ with ψ and t, I obtain an alternative form of equation 4.8,

ψt∇Mψ +
t

2
M−1∇xψ (∇xψ)T M−1 = 0. (4.10)

Equation 4.9 guarantees that the wavefronts of time-domain image wavefield P exist only where

the arrival time τ is equal to the recorded time t at a given location. Now take both ξi and ξj

to represent each of t, M11, M12, M22, x1, and x2. According to the method of characteristics, if

Λij is the coefficient in front of ∂ψ
∂ξi

∂ψ
∂ξj

from kinematic equation 4.10, then the corresponding wave
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equation will have the same coefficients Λij in front of each ∂2P
∂ξi∂ξj

derivative. The time-derivative

ψt is equal to 1 given equation 4.9, and is included in the first term of equation 4.10 to facilitate the

use of the method of characteristics. Then, by introducing Pxx as the spatial Hessian matrix of the

wavefield,

Pxx =

(
∂2P
∂x2

1

∂2P
∂x1∂x2

∂2P
∂x2∂x1

∂2P
∂x2

2

)
, (4.11)

we arrive at the azimuthally anisotropic post-stack velocity continuation wave equation,

∇MPt = − t
2
M−1PxxM−1. (4.12)

In the isotropic case, M is diagonal and M11 = M22. Equation 4.12 then reduces to the isotropic

velocity continuation equation first derived by Claerbout (1986).

Implementation

Since velocity continuation is described by a wave equation, it can be implemented in anal-

ogous ways to seismic migration. Here, I demonstrate a spectral implementation of equation 4.12.

By first stretching the time coordinate of an input image from t to t̃ = t2/2, and then taking its 3D

Fourier transform, equation 4.12 becomes the reduced partial differential equation,

iΩ∇MP̂ =
1
2
M−1kkTM−1P̂ , (4.13)

where Ω is the Fourier dual of t̃ and k is the wavenumber vector (Fourier dual of x). Equation 4.13

has the analytical solution,
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P̂ (Ω, k1, k2,M) = P̂ (Ω, k1, k2,M0)e
−i
2ΩkT(M−1−M−1

0 )k, (4.14)

which shows that continuation of an image from an arbitrary M0 to M can be achieved by mul-

tiplication with a shifting exponential in the Fourier domain. One can also directly migrate an

unmigrated image (stack) by using the 2×2 matrix M−1
0 = 0 for the initial velocity. In practice,

the coordinate stretch from t to t̃ should be carefully applied as data will be compressed along the

time-axis for early samples.

With a range of slowness matrices M, equation 4.14 can be used to quickly generate the

corresponding range of anisotropically migrated images. When the correct velocity model is used,

diffractions collapse to points, which we recognize as the image coming into focus. Although constant

velocity models are used for each image, this type of spectral implementation can still be useful in

the heterogeneous case, as different parts of the image will come into focus locally as the appropriate

velocity is used (Harlan et al., 1984; Fowler, 1984). Once the range of images is generated, I search

for the best-focused image at each output location. Image focusing may be measured in various

ways, but I will start by using the image attribute of kurtosis. I will present an alternative or

supplemental focusing measure using path-integral imaging in a later section. Kurtosis is defined as,

Φ(M) =
∫ ∫

P 4(x, t,M) dx dt[∫ ∫
P 2(x, t,M) dx dt

]2 , (4.15)

(Wiggins, 1978; Levy and Oldenburg, 1987; Fomel et al., 2007). Including integration limits speci-

fies a window size for locally measuring kurtosis in the image. In application, the integration limits

control either the size of a “sliding window”, or when viewing kurtosis as a local attribute (Fomel,

2007a; van der Baan and Fomel, 2009), they can be used to control the smoothness enforced by
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shaping regularization. In either case, the integration limits control a trade-off between the robust-

ness of the focusing measurement and the resolution. From experience, typical limits for field data

correspond to window sizes on the order of 101 samples in each dimension. It should be noted that

the traveltime approximation of equation 4.1 loses accuracy in the presence of strong lateral hetero-

geneity (Grechka and Tsvankin, 1998), but is commonly used to estimate smooth effective parameter

models. Following the maximum values through the resulting six-dimensional kurtosis hypercube,

Φ(t,x,M), and then slicing corresponding pieces from the output images volume, P (t,x,M), reveals

a composite effective medium based heterogeneous velocity model and a well-focused composite im-

age. This spectral implementation and slicing procedure is similar to searching through a set of

constant-velocity f -k migrations, and can be completed without any prior knowledge of the velocity

model (Fowler, 1984; Mikulich and Hale, 1992).

Synthetic Examples

Two simple synthetic examples are provided below to illustrate 3D velocity continuation over

a range of velocity models. In the first example, I apply velocity continuation to a point diffractor. In

the second example, I apply the method to a synthetic post-stack image of a set of faults. The second

example illustrates fracture characterization through diffraction imaging as a potential application

for 3D azimuthal velocity continuation. The data in both examples are modeled using equation

4.1, which geometrically approximates a diffraction surface as an elliptical-hyperbolic surface. Field

data and more accurately modeled data will generally also exhibit nonhyperbolic moveout, for which

equation 4.1 does not account. The physical validity and limitations of equation 4.1 are thoroughly

discussed by Grechka and Tsvankin (1998), but I focus here on how well diffractions can be collapsed,

and how well the velocity parameters can be measured, if the data are ideally described by equation

4.1.

91



Figure 4.1a shows a single diffraction event. The fastest direction of propagation is at

α=105◦ counter-clockwise from the x1 axis, with Vfast=3.50 km/s. The data in Figure 4.1a were

modeled with φ=7% anisotropy, which may be quite high for most field cases, but it was chosen to

allow the azimuthal variations in diffraction moveout to be visibly pronounced. As described above,

we first stretch the time axis from t to t̃ and take the 3D Fourier transform of the data. Then I

apply the phase-shift prescribed by equation 4.14 for a range of M. I found it more intuitive to

specify the parameter ranges in terms of Vx1 , α, and φ, and then convert them at each step into the

three parameters of M for use in equation 4.14. The inverse of the in-line velocity squared 1/V 2
x1

is

equivalent to M11, which, along with a given fast azimuth α and percent anisotropy φ, can be used

to calculate M12 and M22 using equations 1.8-1.11. Last, I apply the 3D inverse Fourier transform

and unstretch from t̃ to t to obtain the 6D image volume. Examples from the image volume using

incorrect parameters are shown in Figures 4.1b-4.1c. The correct parameters are used in Figure

4.1d, where the image is well-focused.

Since only a single diffraction is present in this example, we can measure kurtosis over a

window spanning the entirety of each 3D image, reducing the kurtosis volume from 6D to 3D. Figure

4.2 is a 2D slice of the kurtosis volume at the correct M11 = 1/V 2
x1

value of 0.0935 = 1/(3.27 km/s)2.

The peak of the kurtosis map is near the correct values of φ=7 and α=105◦. Once the peak of the

kurtosis map is identified, one could refine the increments around the peak to yield more accurate

estimates. The physical limitations of resolving azimuthal velocity parameters are discussed by

Al-Dajani and Alkhalifah (2000).

In practice, a conventional in-line 2D velocity analysis directly yields M11 from 1/V 2
x1

, so

Figure 4.2 could illustrate a realistic scenario for using 3D velocity continuation to improve upon

a previous isotropic velocity model. In such a case, one would use previous Vx1 picks to hold M11

92



Figure 4.1: (a) A single azimuthally anisotropic diffraction. (b) The diffraction migrated by ve-
locity continuation using correct parameters except φ=10, resulting in overmigration along x2.
(c) Migration using the correct M11, but assuming isotropy. The result is now undermigrated
along x2. (d) Migration using correct parameters. The image is well focused in both directions.
chapter-velcon/../seg10/threedim images
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constant, and then effectively test a variety of M12 and M22 values. Since M11 and M22 are measured

with respect to the survey coordinates, either (or both) can be measured independently via a single-

azimuth semblance scan, along x1 or x2, respectively. The best isotropic velocity based on a fully

multiazimuth 3D semblance scan will generally not represent either M11 or M22, but it can help limit

the range of test parameters. Note that this method does not require prior knowledge of the velocity

model, but without prior knowledge, the kurtosis measure remains a 6D volume. Although more

difficult to visualize, the 6D kurtosis volume is computationally just as easily scanned for optimal

imaging parameters as the 2D map in Figure 4.2.

Figure 4.2: Kurtosis values for the velocity continuation of the diffraction in Figure 4.1a. The map
covers a range of anisotropy and fast azimuth values with an increment in α of 5◦ and an increment
in φ of 0.5%. The correct values at 105◦ and 7% anisotropy (indicated by crosshairs) coincide with
the peak of the kurtosis map. chapter-velcon/../seg10/threedim focus

In the next example, I illustrate the concept of applying 3D anisotropic velocity continuation
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to diffraction imaging and fracture characterization. Figure 4.3a shows a 3D synthetic post-stack

diffraction data set, equivalent to the ideal separation of diffractions from specular reflections in

post-stack data following Fomel et al. (2007). A fault map from Hargrove (2010) (shown in Figure

4.3a) was digitized and used to create a 3D fracture model. Each fault location was used to generate

a point diffraction in a homogeneous anisotropic background via equation 4.1. A timeslice of the

modeled diffraction data is shown in Figure 4.3b. The faults in the model typically have a strike of

112◦, and in cases where faults and nearby fractures (which more likely influence the seismic velocity)

are similarly aligned, the fast direction of seismic wave propagation tends to align with their strike.

By assuming a typical tight sandstone velocity of Vfast=4.0 km/s with 3% anisotropy, I choose the

modeling M to be comprised of M11=0.0659, M22=0.0631, and M12=0.0014 (all in s2/km2). This

results in a fast velocity direction along the strike of the faults. In Figure 4.3d, we see that 3D

velocity continuation using the correct parameters (again found by maximum kurtosis) allows the

faults to be clearly imaged. If an intermediate isotropic velocity model is used, as in Figure 4.3c,

the diffractions are still imaged, but they are not as well-focused compared to the anisotropically

migrated diffractions in Figure 4.3d. Conventionally, diffraction arrivals such as those in Figure 4.3a

may be viewed as noise, but by separating them and treating them as signal, we can see here that

imaging of steep and detailed features while simultaneously extracting anisotropy information may

be possible.

Field Data Examples

Next, I apply velocity continuation to the Gibson Gulch data set from the Piceance Basin in

Northwest Colorado, USA. This data set was provided by the Bill Barrett Corporation and Antero

Resources as part of a research project sponsored by the Research Partnership for Securing Energy for

America (RPSEA). One aspect of the RPSEA project is to develop and evaluate fracture detection
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Figure 4.3: (a) Fault map from Northwest Scotland from Hargrove (2010) used to model diffrac-
tion data. (b) Synthetic post-stack diffraction data modeled using equation 4.1 and a 3D
model based on the fault map in (a). (c) Diffractions from (b) migrated using an isotropic
velocity model. (d) Diffractions from (b) migrated by anisotropic 3D velocity continuation.
chapter-velcon/../seg10/fracs images-mig-all
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tools using surface seismic data, so for this data set, I will also discuss the geologic implications of

my analysis below.

I begin with the provided stacked volume and measure local slopes throughout the stack

using plane-wave destruction (PWD) filters (Fomel, 2002). A timeslice from the stack volume is

shown in Figure 4.4(a). Following Fomel et al. (2007), we assume reflection energy determines the

dominant slope fields measured by PWD filters. I use the inline and crossline slope fields to design a

structure enhancing filter to predict reflection energy (Liu et al., 2010). I then subtract the predicted

reflections from the input stack to isolate diffraction energy. The same timeslice from the stack is

shown for the separated reflection and diffraction energy after velocity continuation in Figures 4.4(b)

and 4.4(c), respectively. Notice the fault in the bottom right of the diffraction image. By measuring

kurtosis throughout images generated using a range of azimuthally anisotropic velocity models, I

extract the azimuthal anisotropy parameters throughout the image (Figures 4.4(d)-4.4(f)).

The diffraction image in Figure 4.4(a) clearly shows a fault passing through the lower right,

and seems to have a texture suggesting features of a dominant strike parallel to the crossline axis

(left to right). However, the image is quite noisy, mainly because spectral imaging of diffractions

suffers more from migration artifacts than reflection imaging does. The amplitudes of separated

diffractions in field data are generally the same strength as their own spectral imaging artifacts, and

they do not benefit from spatial amplitude tapering techniques that help with reflection imaging.

One effective approach to producing a cleaner image is extensive zero-padding on the time-axis

before taking the data to the Fourier domain, which is fortunately still relatively inexpensive in

terms of computational cost.

The velocity estimates obtained using kurtosis have an unusual pattern for a velocity model,

which may be a signature of detailed diffraction-generating features, or an unwanted side-effect of
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: The same timeslice from image and attribute volumes found by velocity continuation.
a.) Timeslice from stack. b.) Separated reflections imaged though velocity continuation. c.) Sep-
arated diffractions imaged through velocity continuation. d.) Background velocity estimated from
kurtosis. e.) Slow azimuth estimated from kurtosis. f.) Percent anisotropy estimated from kurtosis.
chapter-velcon/../eage11/figures data,refdata,difdata,velocitymap,azimuthmap,anisotropymap
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the analysis. Although not likely a problem here, diffractions are often sparsely located throughout

an image after separation, and focusing analysis can give misleading velocity estimates in between

diffraction events. Even for reflection images, in regions with few events (e.g., inside Gulf of Mexico

salt bodies), the correct image can appear “de-focused” according to any quantitative focusing

measure. Kurtosis, for example, is effectively a measure of how poorly data locally correlate with

a constant (Levy and Oldenburg, 1987), so if the correct image is nearly a constant, then kurtosis

may predict incorrect velocities attributed to noise or diffraction flanks in that region. Because of

this possibility, kurtosis-based focusing analysis is probably best used as a residual imaging tool, for

cases where a reasonable migration velocity estimate is known. This is of course almost always the

case post-stack, as the reflection moveout velocities from NMO analysis are readily available. In the

Gibson Gulch case however, the stack was prepared before it was given to our group at UT, and the

velocity model was not readily available.

The issues of poor signal-to-noise and velocity uncertainty lead me to investigate a poten-

tially more robust focusing measure which could be used as an alternative or as a supplement to

kurtosis. I will describe this focusing measure next, which is based on the concept of path-integral

imaging—a concept that will itself need a brief introduction, as I provide below.

Path-integral Diffraction Imaging

Using path-integrals in seismology was originally used for forward modeling of seismic data

and wave propagation by various authors (Sen and Frazer, 1991; Schlottmann, 1999; Lomax, 1999;

Botelho, 2010). Using a path-integral formulation for seismic imaging, however, was introduced

by Keydar (2004) and Landa (2004), who show that an accurate version of the subsurface image

can be found by summing a set of possible images with different velocity models. Landa et al.
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(2006) generalize path-integral imaging further to pre-stack time and depth imaging by considering

appropriate image-weighting functions.

Path-integral imaging works on the premise that the correct image remains stationary over

various imaging parameter models. For zero-offset data, diffraction apexes remain stationary re-

gardless of migration velocity, making zero-offset diffraction imaging a suitable application for path-

integral imaging strategies. Velocity continuation provides an efficient means to generate the many

image realizations required for path-integral imaging. Path-integral imaging is in theory a homeo-

morphic imaging strategy—truly independent of velocity model knowledge (Landa, 2009)—but the

velocity model itself can provide valuable information concerning subsurface geology. The ability to

extract velocity model parameters via path-integral imaging is therefore useful, and has been previ-

ously investigated by Schleicher and Costa (2009). Combining path-integral imaging with velocity

continuation also provides an option for extracting velocity information.

Here, I view the output images from velocity continuation as “test” images, each of which

is associated with its corresponding constant migration velocity. I first sum all test images to

produce a path-integral image, and assume it to be an approximation of the optimal subsurface

image. Path-integral diffraction imaging also helps attenuate spectral migration artifacts as they

are attenuated by the image summation. Only the parts of each test image may be focused properly

by their constant velocity, whereas the path-integral image approximates the result of using a fully

heterogeneous velocity model. I then find regions within each test image that resemble the path-

integral image using the nonstationary measure of local similarity (Fomel, 2007a). High similarity

to the path-integral therefore provides an alternative to focusing for indicating the correct velocities

throughout the image.

I begin by introducing the path-integral image P̌ as,
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P̌ (t,x) =
∫ Mb

Ma

F (t,x,M)P (t,x,M) dM, (4.16)

where P (t,x,M) are test images found from the inverse Fourier transform of the result from equa-

tion 4.14, and the difference in the integration limits Mb−Ma defines a “velocity aperture”. Equa-

tion 4.16 represents a zero-offset imaging path-integral, as defined by Landa et al. (2006), where

F (t,x,M) is a user-specified weighting function to help constrain the summation to more likely

velocities. Landa et al. (2006) discuss several weighting function options, including the limiting case

of F (t,x,M) = δ(t,x,M−Mp), which is equivalent to the classical imaging approach when Mp is

equal to a picked velocity model. I will examine diffraction path-integral images below using either

no weighting, (F (t,x,M) = 1), or the real-valued Einstein-Smoluchovsky exponential weighting

functions borrowed from particle physics,

F (t,x,M) = ecL(t,x,M), (4.17)

where c is an empirical user-selected parameter and L(t,x,M) is some likelihood function such as

a semblance output (Landa et al., 2006). In the examples where I use the Einstein-Smoluchovsky

weighting function, I use kurtosis as the likelihood function. If the weighting function is set equal

to 1 for all t-x-M image locations, the integration described be equation 4.16 can alternatively be

performed in the Fourier domain by substitution into equation 4.14.

In practice, the integral in equation 4.16 is replaced by a discrete summation, where a finite

number of constant-velocity images generated by continuation are stacked. I store the constant

velocity images as well, and then measure local similarity between the path-integral image and
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each of the individual images. This results in a volumetric attribute γ(t,x,M) for each test image

P (t,x,M),

γ(t,x,M) = S
[
P̌ (t,x), P (t,x,M)

]
, (4.18)

where S is the local-similarity operator as defined by Fomel (2007a). For each t-x location, the

maximum similarity among all test-images can be used to indicate which image is best-focused, and

its corresponding velocity can be assigned as the migration velocity at that location. Repeating for

all locations conceptually defines a surface of maximum similarity in the t-x-M space. This surface

represents the heterogeneous effective migration velocity model, and can be used to “slice” along

the best-focused points in the P (t,x,M) test image volume in the same way as kurtosis was used

previously, thus creating a composite version of its corresponding migrated image.

The synthetic data set in Figure 4.5a was created by modeling a single zero-offset diffraction

with a constant velocity of 4.0 km/s. The same data migrated using the correct velocity are shown

in Figure 4.5b. I use the spectral implementation of velocity continuation from equation 4.14 to

generate 201 images corresponding to range of velocities between 3.0-5.0 km/s. A sparse subset is

summed and displayed in Figure 4.5c. When the full dense range of velocity-continued images is

summed, the flanks of diffraction—whether over- or under-migrated—destructively interfere, and

only the stationary apex remains. This full path-integral image (with no weighting) is displayed in

Figure 4.5d, and compares favorably with the ideal result from Figure 4.5b.

The path-integral image has suppressed spectral imaging artifacts, as these are also not

stationary with respect to velocity, and therefore cancel. From this perspective, the artifacts familiar

to f -k or Stolt migration can be viewed as ringing due to sharp imaging discontinuities along the
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Figure 4.5: Single synthetic diffraction illustrating the path-integral method. a.) Input diffraction
modeled at 4.0 km/s. b.) Input migrated using the correct velocity. c.) Path-integral image using
only a sparse set of test images. Notice the diffraction apex remains in place, regardless of the velocity
model. d.) Path-integral image using full dense range of test images. chapter-velcon/. figure-single

Figure 4.6: Local similarity to path-integral at the diffraction apex. Each test image corresponds to
a homogeneous migration velocity on the horizontal axis. chapter-velcon/. simil-diff
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velocity axis. However, careful comparison of the point diffractor images in Figures 4.5b and 4.5d

shows that the path-integral image is not as spatially well-focused as the ideal result. The spatial

focusing of the path-integral image is related to the frequency content of the diffraction, as well as

velocity summation aperture.

I next use expression 4.18 to measure local similarity between each test image and the path-

integral result. In Figure 4.6, we have plotted the local similarity at a fixed t-x location (in this case,

at the center of the diffraction) for the entire range of test images. Each test image corresponds to

a constant-velocity, shown on the horizontal axis of Figure 4.6. The images near the correct velocity

of 4.0 km/s smoothly and significantly increase in similarity to the path-integral image, and the

correct velocity corresponds to the maximum.

Fomel et al. (2007) provide a 2D field data example of diffraction focusing analysis, which

they also made available as a reproducible experiment in Madagascar∗. As a second path-integral

imaging example, I reproduce their experiment, but substitute path-integral similarity for kurtosis as

the focusing measure. Since the example is 2D, I will perform only isotropic velocity continuation,

so the migration velocity M0 takes the place of the velocity parameters M in the path-integral

formulation. Figure 4.7(a) shows the diffractions separated following Fomel et al. (2007). These

diffractions are the input to velocity continuation, and the results are summed to create the path

integral images in Figure 4.8. The Einstein-Smoluchovsky path-integral image in the right of Figure

4.8 was created using kurtosis as the likelihood function. To help compensate for the slightly blurred

result, I sharpened the path-integral image before comparing it to the test images by local similarity.

Figures 4.7(b)-4.7(d) show the velocity estimates and images found by slicing velocity continuation

∗Reproducible document available at http://www.reproducibility.org/RSF/book/jsg/diffr/paper_html/

104

http://www.reproducibility.org/RSF/book/jsg/diffr/paper_html/


test images along maximum values of similarity to the sharpened Einstein-Smoluchovsky path-

integral. Individual picks throughout the data set are shown in Figure 4.9.

(a) (b)

(c) (d)

Figure 4.7: (a) Separated unmigrated diffractions. (b) Migration velocity esimated by path-integral
similarity. (c) Composite diffraction image from path-integral similarity. (d) Composite migrated
stack. chapter-velcon/bei bei-pwd,simpik,bei-simslice,bei-stack-simslice

For the field data example beginning with the stacked volume in Figure 4.10(a), the correct

velocity model is unknown to the authors. This stacked volume was separated into its reflection and

diffraction components using the method of Fomel et al. (2007) and structure-enhancing filters (Liu
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Figure 4.8: Path-integral images. Left: Path-integral using no weighting function (F (t,x,M0) = 1).
Right: Einstein-Smoluchovsky path-integral using kurtosis as the likelihood function and c = 0.7
(F (t,x,M0) = e0.7Φ(t,x,M0)). chapter-velcon/bei paths

et al., 2010). The unmigrated separation results are shown in 4.10(b) and 4.10(c). Although the

reflections are of course valuable, we discard them here and focus on the diffractions. The velocity

continuation and summation procedure is applied over a broad range of velocities (3,000:50:5,000

m/s) to reveal the path-integral image shown in Figure 4.11(a). Each test image generated by velocity

continuation is compared to the path-integral image using 3D local similarity. At each location, the

velocity of the test image with maximum local similarity is assigned to the output velocity model.

Local similarity is subject to shaping regularization to enforce a smooth output, resulting in the

estimated effective heterogeneous migration velocity model for same diffraction volume, shown in

4.11(b). By also slicing through the test images along maximum similarity in the t-x-v space, I

construct the corresponding composite diffraction image shown in 4.11(c).

The diffraction image in Figure 4.11(a) contains several interesting features which may be

explained in the context of the geologic setting. Most of the image shows the upper Cretaceous
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Figure 4.9: Path-integral similarity gathers (SIGs) at various locations in the data set. Background
color indicates similarity for a given migration velocity, and the overlaid curves indicate auto-picking
results from the similarity volume. chapter-velcon/bei simpanel
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(a) (b)

(c)

Figure 4.10: Diffraction separation. a.) Input stack containing both reflection and diffraction data.
b.) Separated unmigrated reflections. c.) Separated unmigrated diffractions and other energy that
does not follow the dominant slope fields. chapter-velcon/. stack4,filt,diff
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(a) (b)

(c)

Figure 4.11: Path-integral image and results. a.) Diffraction path-integral image using full velocity
range described in text. b.) Composite velocity model found by slicing test image coordinates along
maximum similarity. c.) Composite diffraction image found by slicing test images along estimated
maximum similarity. chapter-velcon/. dif-stat-vol,vel3D-composite,dif3D-composite
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Williams Fork Formation of the Mesaverde Group, which is a known reservoir target in the Piceance

Basin deposited in alluvial and coastal-plain settings (Pranter et al., 2007). Within these settings,

braided channels were often deposited, as well as point-bar sand bodies on the convex banks of

meandering streams and rivers. Point-bars are valuable reservoir targets in the Piceance Basin,

but they are often isolated within less permeable mud and silt (Pranter et al., 2007), and therefore

predicting their locations is itself valuable. Further, sands within the Mesaverde Group are commonly

fractured along the regional stress direction of 110◦ (Heidbach et al., 2009; Lewallen et al., 2008),

making point-bar deposits potential contributors to azimuthal anisotropy. The large-scale faulting

features imaged in Figure 4.4(c) are aligned approximately perpendicular to the regional stress

direction. In Figure 4.11(a), there is a region of intense scattering that sweeps down (increasing

seismic arrival time, from about 0.3-0.8 seconds) from the east-southeast to the west-northwest.

These diffractions could be generated from a migrating point-bar system moving towards the east-

southeast over geologic time in the late Cretaceous. This movement could be part of a transgressive

sequence on the western shore of the Western Interior Seaway (Pranter et al., 2007). If so, the

diffraction imaging techniques presented here may provide direct imaging of potential drilling targets

that cannot be reliably predicted from well information because of their laterally discontinuous

nature.

Discussion

The zero-offset path-integral image can be recovered without any knowledge of the true het-

erogeneous migration velocity model, but the image is spatially blurred in the completely velocity-

independent case. By constraining the velocity aperture, the stationary image becomes better fo-

cused, and as the aperture goes to zero around the correct velocity, the image becomes completely

focused. This amounts to a trade-off between velocity-independence and spatial focusing.
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The path-integral approach simplifies diffraction imaging when combined with velocity con-

tinuation by producing an estimate of the ideal image without the need to estimate velocity. The

summation of zero-offset images in the velocity continuation space amplifies diffraction apex signals,

while attenuating spectral migration artifacts. This is a key benefit of my method, as migration ar-

tifacts from diffractions are of comparable strength to the diffraction events themselves, and cannot

be attenuated by tapering techniques designed for reflection imaging. I showed that for a reasonable

range of velocities, the path-integral image is indeed blurred compared to the ideal result, but can

serve as an estimate to compare each test image to, using local similarity. At each location in the

path-integral image, the most similar test image yields a local velocity estimate, which combine with

other local velocities to make a heterogeneous, effective-medium based, composite time migration

velocity model. The final image can either be constructed as a composite image by slicing regions

of the test images along the velocity model, or by using the estimated velocity model for a different

variable-velocity migration algorithm.

By extending time-domain velocity continuation to the azimuthally anisotropic 3D case,

I have combined the concepts of azimuthal imaging and diffraction imaging. I assume a three-

parameter migration slowness model that allows velocity to vary elliptically with azimuth. I have

provided simple examples to illustrate the potential application of this method to fracture char-

acterization through diffraction imaging. By treating diffractions as signal, the method performs

azimuthal analysis on post-stack data, without the requirement for common-offset-vector or offset-

vector-tile binning schemes. This is possible because, unlike reflections, diffractions can preserve

azimuthal information post-stack. Post-stack data volumes have obvious advantages over pre-stack

data for analysis, including smaller memory size, and improved signal-to-noise ratio.

Allowing azimuthal variation in the migration velocity will result in improved imaging, which
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is clearly a benefit of 3D velocity continuation. However, the potential for fracture characterization

may be even more useful. The proposed method has many of the same ideas as the azimuthal

imaging and fracture characterization flow proposed by Sicking et al. (2007a) for reflection data.

Under the velocity continuation framework, I have extended the azimuthal imaging idea to 3D

diffraction imaging. Since diffraction-generating fractures and faults are often nearly vertical and

preferentially aligned, they can be associated with azimuthal anisotropy. Al-Dajani and Fomel (2010)

have successfully demonstrated zero-offset diffraction image focusing as a fracture detection attribute

on azimuth-sectored 3D field data. The method proposed here uses multiazimuth image focusing

primarily as a velocity analysis criterion, but kurtosis itself could also be used as an image attribute.

In cases where subsurface fractures cause azimuthal anisotropy, kurtosis as an attribute may be

indicative of fracture intensity (Al-Dajani and Fomel, 2010). By applying velocity continuation

to 3D diffraction imaging, one may be able to estimate both the orientation and the intensity of

fractures from the resulting anisotropic velocity model and maximum kurtosis volumes, respectively.

This information can be useful in reservoir development, as it can provide insight to subsurface fluid

flow behavior.

Although the spectral implementation of azimuthal velocity continuation allows a range of

possible images to be computed efficiently, it demands large amounts of memory to store a suite

of images as well as the kurtosis volume. Modern computational hardware makes this approach

feasible as-is, especially for target-oriented imaging and analysis strategies. Future studies may lead

to better optimization-based approaches to finding local kurtosis maxima, in which case, this method

could be practical for dense parameter estimation throughout full 3D volumes.

The underlying strategy of velocity continuation is to simultaneously estimate the velocity

model as the data are imaged. This is beneficial in the case of azimuthal anisotropy, as the am-
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biguity between structural heterogeneity and anisotropy is resolved without the need for iteration.

Other multi-parameter seismic imaging problems, such as converted-wave imaging, which are also

conventionally handled by iterative flows, could benefit from pre-stack versions of the 3D velocity

continuation strategy.
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Chapter 5

Conclusion

Summary

I have presented three novel data-driven approaches to time-domain azimuthally-anisotropic

velocity analysis. I have chosen to investigate the case of azimuthal anisotropy because of its imme-

diate importance in modern reservoir characterization, but in principle, the strategies used by my

methods could be applied to other cases as well. Physically, all three methods estimate effective-

medium approximations of the seismic wave group (ray) velocity. In the first two methods, the

slowness ellipse, W is related to the NMO or stacking velocity, while for velocity continuation, the

slowness ellipse, M is related to the migration velocity. The difference between stacking and migra-

tion velocities is discussed in Dobrin and Savit (1988). In cases with only v(z) variations, both are

related to the RMS velocity in the overburden. The RMS velocities in these cases can be related

to interval parameters for different layers in the overburden using generalized Dix-type inversion,

subject to stability requirements described by Grechka and Tsvankin (1998). Cameron et al. (2008)

extend the Dix-type connection between the RMS velocities and interval velocities to cases with

lateral variations as well. Aside from the image itself, subsurface interval parameters are the ideal

information that seismic data analysis strives to provide. Rather than attempting to directly mea-

sure the interval parameters through physical modeling and inversion, I have taken a data-driven

approach starting with velocity-independent imaging techniques. This has provided practical meth-

ods for extracting effective parameters which could then be converted to interval parameters using
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a Dix-type inversion, or they could be used as an initial estimate for physics-driven velocity analysis

and imaging.

It is worth commenting that each method can build upon a previously estimated velocity

model by implementation as a residual analysis. Slopes can be measured on NMO-corrected gathers

for time-warping and velocity-independent NMO, and the estimated residual traveltime shifts can

be added to those applied by the initial correction. This residual analysis proved useful for both

methods on field data, and even synthetic data, as slope detection becomes more stable for gently

sloping events. In the velocity continuation case, focusing analysis is essentially a parameter scan—

exactly the type I aimed to avoid in the first two methods. So, to gain its inherent benefits without

making the computational cost unreasonable, one can limit the range of velocity continuation around

an initially migrated image created with a representative velocity.

All three methods use local slopes estimated by PWD filters, but each for a different reason.

In the first method, 3D azimuthally anisotropic velocity-independent NMO, local slopes are directly

related to an assumed hyperbolic reflection moveout velocity. In the second method, time-warping,

local slopes are used to predict reflection event surfaces, which are then fit with velocity parameters.

In the third method, azimuthally anisotropic 3D velocity continuation, local slopes are used to

predict dominant energy on a stacked section which is assumed to be reflection energy. Reflections

are removed, leaving diffractions behind, which still contain velocity information post-stack.

Velocity-independent NMO is a physically-based method which makes it inherently the least

complicated in application, as it is most closely related to conventional NMO. For the same reason,

it is the most intuitive of the three methods presented in this dissertation. However, because it

is physically-based, it must be applied in domains where the traveltime surfaces have an assumed

geometry, and where the analytical description of that geometry has stable and meaningful first
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derivatives. However, slopes are often physically meaningful throughout the seismic imaging flow,

which allows velocity-independent NMO to fit into a larger framework of velocity-independent imag-

ing (Fomel, 2007b). Further, local slopes are key information in imaging algorithms such as Gaussian

beam migration (Hill, 1990), which has many variants, all of which assume some degree of localized

imaging strategy. Velocity-independent NMO could also be performed in a similar localized sense,

by using the local slope information in a gather to first decompose the gather into beamlets, and

then to prescribe a mapping into the output domain. In this case, the output domain is just the

NMO-corrected image, but subsequent steps could be included to perform azimuthally anisotropic

migration in an approximate but efficient way.

Time-warping is non-physically based, which makes it more complicated in application, as it

replaces assumptions with a sequence of domain-independent steps. It is probably the least elegant

of the three methods I have presented, but I have had the most success applying it to field data. The

feature of time-warping that makes it practical above velocity-independent NMO, is its flexibility.

It is theoretically limitless in cases where event-flattening is a parameter estimation criterion. Time-

warping has already been extended to nonhyperbolic moveout in the τ -p domain (Casasanta and

Fomel, 2010), and to 3D (9-parameter) CRS/multifocusing methods (Kazinnik and Burnett, 2010),

and there are still more gather types to try, such as image gathers. In just the t-x CMP space

alone, I discussed isotropic, nonhyperbolic, and azimuthally-anisotropic moveout with 3D-, offset-,

or spiral-sorting.

Velocity continuation uses event focusing as its velocity analysis criterion, which is best

used on diffractions—not reflections as in the first two methods. I use the same three-parameter

elliptical-hyperbolic surface as I did for CMP reflections, to describe diffraction geometry. The

main strengths of azimuthally-anisotropic velocity continuation are that it reduces the total cost of
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velocity analysis by operating on the stacked data rather than CMP gathers, and that it performs

imaging and velocity analysis simultaneously. In this way, it simplifies the conventional approach to

azimuthal imaging where velocity analysis and imaging are iterated to resolve intrinsic anisotropy

effects from the similar effects and positioning errors caused by structural heterogeneity. Still,

there are geologically common cases such as gas clouds and strong lateral heterogeneity, where the

ambiguity will persist for both iterative imaging schemes or the velocity continuation approach.

Another strength of azimuthal velocity continuation arises specifically from using diffraction

energy. Many of the same geologic conditions that are associated with azimuthal anisotropy are also

commonly associated with diffraction-generating features such as faults, fractures, channel systems,

and subsurface stress regimes. Path-integral imaging provided several surprises which led to further

diffraction imaging insights. First, the diffraction path-integral image itself can be an interpretable

image of diffraction-generating features which would be difficult to detect otherwise. Second, it

was surprising to see the types of features which generated diffractions were not just large scale

discontinuities, but also mid-scale features such as possible point-bar systems in the Gibson Gulch

data set. However, the path-integral result is spatially blurred compared to the ideal result, so I

have used it primarily as an intermediate image to which I compare all images generated by velocity

continuation. This approach proved to be an effective velocity analysis tool with similar performance

to kurtosis, and in my best example, I was able to use both in a complimentary technique, where

kurtosis supplied the image likelihood function to use inside the velocity path-integral.

The review of results I have provided above can be reduced to the main novel conclusions

and contributions of this dissertation. These main contributions and conclusions can be summarized

as:
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• Three novel data-driven approaches to time-domain azimuthally-anisotropic velocity analysis.

– A method and formulation directly relating local slopes to azimuthally-variable reflection

moveout velocities in 3D.

– A reflection traveltime-fitting scheme using local slopes to pick traveltime surfaces.

– A diffraction focusing method which accounts for azimuthally-variable velocity.

• Measuring inline and crossline local slope fields can be used as an alternative to semblance for

capturing traveltime surface geometry and therefore azimuthally-variable velocity.

• The pre-stack reflection analysis methods I have developed are up to four orders of magnitude

faster than the comparable full semblance scan in the azimuthally-anisotropic case.

• 3D diffraction focusing can be used to image discontinuities and map out regions of intense

seismic energy scattering associated with juxtaposed lithologies.

The natural next step for any of these methods is to test their practical validity further using

multi-disciplinary field data. I have provided three methods for efficiently measuring time-domain

effective-medium-based parameters, which are geophysically useful for improving the seismic image,

and theoretically useful for describing detailed subsurface information. It is my hope that having

these efficient geophysical measurement techniques now readily available, will lead to more routine

comparisons between azimuthal seismic information and other types of data such as outcrop or

borehole measurements (core, well logs, and so on). Future multi-disciplinary studies should make

it possible to determine to what degree azimuthal-seismic information is actually able to provide the

types of geologic information predicted by theory.
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Limitations and Best Practices

I have demonstrated most examples in this dissertation assuming CMP-gather reflection or

stacked-diffraction surfaces are elliptical-hyperbolic, but the three methods could be applied using

other geometric models. The limitations of the elliptical-hyperbolic approximation come from its

inherent assumptions, such as mild vertical and lateral heterogeneity and the absence of nonhyper-

bolic moveout (Grechka and Tsvankin, 1998). Slope-estimation is a critically important step in each

method, and I have found several practices useful to help avoid common pitfalls. First, steep events

can appear aliased to plane-wave destruction filters, which are more accurate for gentle slopes. This

has led me to the routine practice of applying an initial isotropic constant-velocity NMO correction

to CMP gathers before I measure their slopes. Both time-warping and velocity-independent NMO

can be applied in the residual moveout case, and for parameter estimation, the traveltime shifts asso-

ciated with the isotropic NMO and the velocity-independent flattening are simply added. The only

PWD parameter I frequently adjust between applications is the filter size, and I have consistently

found success when the filter is about 30-50 time samples by 3-10 spatial samples. Again, increasing

the size of the filter will increase the robustness of the slope estimation, but it will decrease the

resolution.

Each of the methods also has its own limitations in practice, and some of these limitations

are shared between methods. For example, velocity-independent NMO and velocity continuation

require the traces to be on a regularized grid, whereas time-warping does not. If an unusual trace

sorting is used during time-warping though, one must also sort any pertinent header information

in the same way to perform parameter fitting. Velocity-independent NMO is limited in that it

assumes a moveout model beforehand, and therefore it is best-suited for short-spread gathers where

hyperbolic moveout is reliable. This also helps avoid another limitation of slope estimation at far
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offsets, which is handling crossing events with conflicting slopes. Both velocity-independent NMO

and time-warping are susceptible to the issue of conflicting slopes, which, if necessary, can be handled

in two ways. First, if one event is preferred in terms of imaging and parametrization, plane-wave-

destruction filters may be given an initial estimate of the slope field associated with the preferred

event, and will tend to converge to the nearest dominant slope. Second, following the idea used

in diffraction separation, an initial slope field may be used to remove the dominant events on a

CMP gather, leaving the secondary conflicting events. Slope estimation could then be repeated on

these residual events to characterize the conflicting slopes. Velocity-independent NMO and time-

warping also share susceptibility to coherent noise (for example, multiples), where local slopes may

correspond to unwanted events. Therefore, any multiple-attenuation steps should be done before

slope detection whenever possible.

Velocity continuation on the other hand, is sensitive to random noise which will often be

separated from reflections and imaged along with the diffractions. I have found that applying a

simple low-pass filter to the diffraction data after separation can help attenuate random noise while

preserving the lower-frequency diffraction events for velocity continuation. Velocity continuation

also has the limitation of being applied to zero-offset data. Although stacking helps with reflection

imaging, one must carefully apply NMO and DMO pre-stack with the goal of diffraction preserva-

tion in mind. Velocity continuation also has pitfalls such as imperfect diffraction separation and

migration artifacts that are relatively powerful compared to diffraction signal. Again, careful pre-

stack processing will influence the success of the diffraction separation, and a practical solution to

attenuating migration artifacts is to zero-pad the data along the time axis before transforming it to

the Fourier domain.
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Extensions

I anticipate a variety of applications of time-warping simply because of its flexibility. One

of the next most important steps would be to try fitting orthorhombic parameters to the painted

surfaces. These estimated values will of course still be effective parameters, but it is not well-

discussed how to use effective orthorhombic parameters, possibly because there is not yet a reliable

way to measure them efficiently. Time-warping may open the door to this line of research.

In velocity continuation, the main limitation with the current method is the ability to store

all generated images. This is a limitation for a single workstation, or a shared cluster (on which I

performed these experiments), but for most practical cases, this is easily overcome with increasingly

inexpensive disk space. Nonetheless, disk space is often still a concern, but the kurtosis map in

Figure 4.2 is clearly well-behaved in the neighborhood of the correct velocity, which could lead to

an optimization approach to finding focusing maxima.

Path-integral imaging is a theoretically homeomorphic imaging strategy, but has difficulty

handling reflections and pre-stack data properly. Zero-offset diffractions, on the other hand, are

ideally suited for path-integral imaging. When combined with velocity continuation, path-integral

imaging may provide a fruitful research topic in diffraction imaging and velocity analysis, as there

are still many questions to answer. Are there minimum velocity sampling requirements for creating

a path-integral image? Can we deterministically account for (and remove?) the spatial blurring

associated with the path-integral image? If so, diffraction imaging may be simplified dramatically,

and velocity analysis could be further improved.

Finally, all of the field data examples I have shown in this dissertation were of course

carefully processed by their respective owners, but none were processed with diffraction imaging in
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mind. Further research and application of diffraction-friendly pre-stack processing and imaging may

yet further improve the results presented here.

Velocity analysis by velocity-independent imaging

Many authors have used the “velocity-independent” term before, and I have done so here,

hopefully in a general sense. The original motivation of velocity-independent strategies was to bypass

velocity estimation altogether, as it is still one of the most time-consuming steps in the conventional

flow. Historically, the velocity model may have been viewed as an inconvenience of necessity, but in

modern reservoirs, the velocity model itself may contain critically valuable sub-seismic-wavelength

geologic information. Therefore, even with an ideal velocity-independent imaging strategy, we will

still often want to recover the velocity model.

All three of the proposed methods in this dissertation share the philosophy of velocity-

independent imaging (Ottolini, 1983b; Fomel, 2007b; Fowler, 1984; Landa et al., 2006). In the

first method, we see that we can avoid explicitly measuring velocity by instead measuring slopes.

Of course, slopes contain complete geometry information, and therefore velocities as an attribute as

well, but it is an elegant automated alternative. In the successful application of velocity-independent

NMO, I abandoned the attribute-based approach in favor of using the velocity-independent NMO

correction itself to shift the data and then fit the applied shifts with a velocity model. This was the

first example of what I call velocity analysis by velocity-independent imaging.

The purpose of seismic imaging is to transform the recorded data into an image of the

subsurface. In the context of the conventional seismic imaging flow, velocity is a prerequisite of

imaging—velocity analysis comes first. In all of the approaches here, I perform the imaging step

first, and then subsequently recover the velocity model that would have transformed the original data
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into the velocity-independent result. In the first two methods, the imaging operation was reflection

flattening (either physical or non-physical), and in the third method, the imaging operation was

diffraction focusing. These imaging operations are possible to do first without knowledge of the

velocity model using velocity-independent NMO, warping, or velocity continuation and path-integral

imaging, respectively. In the first two cases, I was able to record to the traveltime shifts applied by

each imaging step once I viewed time itself as an attribute. In the third case, I simply measured

which image among all possible images was best-focused, or which one was most similar to the

path-integral image estimate.

I have found that velocity analysis by velocity-independent imaging has inherent benefits

over the semblance scan, mainly through computational efficiency and automation. These bene-

fits are amplified in the context of multi-parameter velocity models, as I have shown here for the

simple three-parameter case of azimuthal anisotropy. The characterization of lower symmetries of

anisotropy could benefit from this approach, as well as other multi-parameter estimation problems

such as CRS/multifold analysis or converted-wave analysis. As exploration and development tar-

gets increase in complexity, the demand for detailed information in the velocity model will come as

well. There is still a tremendous gap between the reality of conventional velocity analysis and the

ideally accurate velocity model estimates required by next-generation-geophysical methods such as

full-waveform inversion. The strategies I have proposed here may help bridge this gap and reveal

detailed subsurface insights along the way.
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