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This dissertation explores some aspects of the central dynamics of glob-

ular clusters. Surface brightness profiles are measured with a newly developed

technique that yields accurate, high resolution density profiles. The technique

uses integrated light measured with a robust statistical estimator, and it is

applied to images obtained by the Hubble Space Telescope. Surface brightness

profiles are presented for 39 globular clusters belonging to the Milky Way,

21 to the LMC, 5 to the SMC and 4 to the Fornax dwarf galaxy. Results

show that the central structure of some globular clusters departs from the

predictions made by classic dynamical models. When the distribution of cen-

tral logarithmic slopes is analyzed, instead of finding a bimodal distribution

between flat cores and steep cusps (as expected for post core-collapse clus-

ters), a continuous distribution of central slopes is observed. A new sub-class

of objects is found that have intermediate slopes between flat cores and the

expected post-core collapse central slope. In total, 45% of the sample is not

consistent with having King-type profiles in the center. Omega Centauri, the

largest Galactic globular cluster, is one of the objects that deviates from a flat
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core, having a central logarithmic slope clearly different than zero. In order to

further explore the dynamical state of this cluster, central kinematic measure-

ments are obtained. Spectroscopic measurements come from the GMOS-IFU

on the Gemini-south telescope. Line-of-sight velocity dispersions from inte-

grated spectra are measured in an area of 5×5 arcseconds around the center

and also 14 arcseconds away. A clear rise in dispersion from 18.5 to 23 km s−1

is observed between the outer and the central fields. The observed velocity

dispersion profile is compared with dynamical models containing central black

holes of various masses. Observations are best explained by the presence of

an intermediate-mass black hole of 4 × 104M⊙ at the center. It is crucial to

investigate the central regions of globular clusters in great detail in order to

find the causes for the observed photometric and kinematic peculiarities.
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Chapter 1

Introduction

Globular clusters orbiting the the Milky Way galaxy are old, nearly

spherical stellar systems that populate the Galactic halo. They appear to

have been formed on a single burst of star formation at the time when the

first structures appeared in the universe. The distribution of globular clusters

around the galaxy is spherical and concentrated toward the galactic center.

The masses of globular clusters range three orders of magnitude from 103 to

106M⊙. Most of the globular clusters orbiting the Milky Way are older than 10

Gyr, but clusters as young as 3 Myr are known to exist orbiting other galaxies

in the local group. The fact that they are numerous (∼150 in our Galaxy) and

nearby (few kpc) self-gravitating stellar systems makes them unique objects

for the study of stellar dynamics since we can, in principle, follow the motions

of each individual star and compare it to predictions by dynamical models.

There are fundamental connections between globular clusters and their

host galaxies. It is thought that globular clusters are among the first structures

to have been formed in the universe and that they are part of the building

blocks of the galaxies we see today, particularly of the central bulge and the

halo. The study of the globular cluster systems around different galaxies has

provided important constraints for galaxy assembly models. It is crucial to

understand their dynamical evolution in the context of interactions with their

host galaxy since this can provide further knowledge about how mass has
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assembled through the history of the universe. What we learn about globular

clusters has generic implications for structure formation.

This dissertation presents surface brightness profiles for 69 globular

clusters orbiting around our galaxy, the large Magellanic cloud, the small Mag-

ellanic cloud and the Fornax dwarf galaxy; as well as kinematic measurements

for the globular cluster ω Centauri. A brief historic review and a summary of

classic results in dynamics of star clusters are presented in this chapter.

1.1 History

The famous catalog by Charles Messier (Messier, 1784), which contains

the first systematic search for ‘nebulous’ celestial objects, contains 28 Galac-

tic globular clusters that are visible from the northern hemisphere. William

Herschel (Herschel, 1814) was the first person to identify these objects as large

groups of stars. The first star counts for the two richest Galactic globular

clusters, ω Cen and 47 Tuc, were done from photographic plates in the 19th

century Pickering et al. (1898). At the beginning of the 20th century, studies

tried to estimate the density distribution of stars from the observed projected

profile, while the important developments in the field of kinetic theory for

gases had an impact on the theoretical study of small stellar systems. Jeans

(1913) remarked the importance of stellar collisions in clusters, and Plummer

(1915) tried to find the physical basis behind the stellar distribution inside

these systems. Eddington (1916) combined the most detailed observations at

the time in order to explore the theoretical basis for the observed stellar dis-

tributions. During the late 1930s and 1940s, fundamental theoretical studies

were carried out by Ambartsumian (1938), Spitzer (1940) and Chandrasekhar

(1942), who investigated the effect of stellar encounters in dense star clusters.
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By the late 1950s and 1960s, more efficient contact between improved

observational work and more sophisticated theoretical studies was established.

M3 and ω Cen, in particular, were the subjects of detailed studies combining

improved observations and theoretical models (Oort & van Herk, 1959; Dickens

& Woolley, 1967). King and Michie produced a burst of papers (some of

which will be discussed in detail below) during this time that are still today

the basis of many dynamical studies for globular clusters. It was at this time

that the first N-body calculations with N=16 stars started to be carried out

(von Hoerner, 1960). Even with such a small number of particles, the N-body

simulations already gave some important results like evaporation timescales

and confirmation of analytical formulas for the relaxation time. This seminal

work also helped to establish the fact that the evolution of N-body systems

can be studied with a statistical approach, saving a lot on computing time.

During that time, the fundamentals of dynamical theory and observations

for globular clusters were established. Many of the results and techniques

established during that time are being used nowadays.

1.2 Dynamical Evolution

Globular clusters are among the most dense stellar systems in the uni-

verse, this produces a large number of close gravitational encounters between

its members stars. The timescale on which these close encounters affect the

structure of the system is known as the relaxation time (discussed in detail

below). The estimated relaxation times for many globular clusters are shorter

than their estimated ages, which implies that interesting dynamical processes

have occurred and can be studied in these systems. There are a number of

issues under study today that affect dynamical evolution, like the nature of the
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initial mass function as well as its dependence on metallicity, the way stellar

evolution affects dynamical processes, and the content and dynamical effects

of primordial binaries. Globular cluster dynamics is a field of astronomy that

continues to be relevant through time.

The earliest dynamical effects in star clusters come from stellar evo-

lution. There are various formation models for globular clusters, which are

not discussed here, but independently of the way a cluster is originally assem-

bled, once it is formed, the first important dynamical effect will occur when

the most massive stars evolve away from the main sequence, they rapidly lose

mass, which results in expansion of the cluster. Chernoff & Weinberg (1990)

and Fukushige & Heggie (1995) model the evolution of clusters during this

rapid mass loss period. They find that clusters with a flat mass function

(α < 1.5; for dN/dM ∝ m−α) are destroyed during this process, while clusters

with steeper mass functions can survive if they have a large initial concentra-

tion. Formation models suggest that the gaseous clouds from which globular

clusters form have to be about two orders of magnitude more massive than

the currently observed clusters in order for them to survive the evaporation

process caused by stellar evolution and collisions with other clouds (Searle &

Zinn, 1978). During this rapid mass loss period, there are important changes

in the gravitational potential of the clusters, the orbits of stars change on a

timescale of the order of the crossing time. This period is related to ‘violent

relaxation’ (Lynden-Bell, 1962; Hénon, 1964).

The period after violent relaxation leads to a smooth mass distribution

which is governed by dynamical relaxation due to weak gravitational interac-

tions between stars. The interactions are small-angle deflections produced by

the gravitational pull of nearby stars. The relevant timescale for this part of
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the evolution is known as the ‘relaxation time’; it can be thought of as the

amount of time it takes weak gravitational interactions to remove the history

of a star’s original velocity. The relaxation time is estimated as

trel ≃
N

8lnN

R

v
,

(Binney & Tremaine, 1987) where N is the number of stars, R is the size of

the region and v is the average velocity of a star. Evidently, this quantity

depends on the local density and velocity, so it is different for different radii.

A global estimate of the relaxation time is the half-mass relaxation time, which

is calculated as

trh = 0.138
M1/2R

3/2

h

〈m〉G1/2lnN
,

(Spitzer, 1987) where M is the total mass of the cluster, Rh is the half-mass

radius, 〈m〉 is the average stellar mass, and G is the gravitational constant.

A globular cluster containing 105 stars has a global relaxation time of ∼ 1010

yr, but if the relaxation time is calculated for the central density and velocity

dispersion, it is considerably shorter. For this reason, the relaxation process

is particularly important for the central regions of star clusters. A direct

consequence of relaxation is kinetic energy equipartition, which affects stars

of different masses in a different way. Heavier stars tend to lose kinetic energy

and sink to the center, while lighter stars gain kinetic energy and go to the

outskirts of the cluster. This process is known as ‘mass segregation’. Star

clusters are expected to reach equipartition in the core much more quickly

than in the outskirts.
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Relaxed clusters are described by single-mass King models (King, 1966).

These models describe a distribution of stars in which the central regions are

isothermal and the outer regions are tidally truncated by the galaxy. King

models provide an important theoretical base for the study of globular clusters.

The family of models are described by three parameters: a central density, a

radial scale, and a concentration. Single-mass King models are unable to

fit the entire radial density distribution of some clusters; therefore a more

sophisticated description known as King-Michie models has been developed.

These models include multiple masses, a certain degree of anisotropy, and a

more extended tidal radius.

Every gravitationally bound system has a negative heat capacity, which

has very important consequences for its dynamical evolution. The kinetic

energy of a cluster of stars is written as K = 1/2(mv2) = 3/2(NkBT ) where T

is the temperature, and kB is the Boltzmann constant. The total energy of the

cluster is given by E = W +K = −K (where W is the potential energy) due to

the Virial theorem. The specific heat is defined as Cs = ∂E/∂T which is equal

to −3/2(NkB), always a negative number. The fact that stellar clusters have

a negative specific heat implies that when energy is taken out of their core,

the clusters increase their temperature (i.e. the velocity dispersion increases),

and inversely, when energy is injected into the core, it cools the system down.

When this fact is put together with the process of relaxation, the consequence

is that energy is driven from the core to the outer halo of the cluster. After

many relaxation times, and due to the negative heat capacity of the system,

an increase in central density and central velocity dispersion takes place while

the core radius decreases. The continuation of this process implies that the

center reaches an infinite density on a finite amount of time. This is known
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as the ‘gravothermal catastrophe’ or core collapse. Core collapse occurs in a

timescale of ∼ 16trel for a cluster formed by stars of the same mass (Heggie,

1979). If stars of various masses are present, mass segregation occurs; this

drives energy from the core to the outer halo faster than the relaxation process

for a single-mass component cluster does. The energy exchange increases the

velocity dispersion in the core while it makes it contract, so the timescale for

core collapse to occur is shorter for a cluster with different masses than for a

cluster with stars of the same mass.

A number of simulations have been carried out to provide a detailed

description of core collapse using both N-body codes (Makino, 1996) and nu-

merical integrations of the multi mass Fokker-Planck equation (Cohn, 1980;

Murphy et al., 1990; Chernoff & Weinberg, 1990; Cohn et al., 1989). They

all show that the projected radial density of the cluster will have a shallower

central slope for the lower mass stars compared with the high mass stars.

Cohn (1985) calculate the precise slope for each stellar mass. The logarithmic

slope depends on the mass of the heavy remnants dominating the core in the

following way

β = −1.89
m1

m2

+ 0.35

where m1 is the observed mass group and m2 is the heaviest mass group domi-

nating the core population. This slope obviously depends on the assumed mass

function, the stage of core-collapse, and the spatial resolution of the measure-

ments. The fact that ∼ 20% of the Galactic globular cluster population show

central cusps instead of the flat King-type core has been taken as observational

evidence that core collapse has occurred in these clusters (Trager et al., 1995;

Meylan & Heggie, 1997).
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The presence of binary systems in the core of globular clusters has im-

portant effects on core collapse evolution. The presence of primordial binaries

has the effect of delaying core collapse, but even if there are no primordial

binaries present in the cluster core, hard binaries are formed by three body

encounters once core collapse begins. These binaries act as an energy source

for the core, cooling it, this in turn reverses the contraction process and pro-

duces an expansion. Once the binaries have been depleted by ejection or by

merging, the core contracts again and the whole process happens periodically,

which results in what is known as ‘gravothermal oscillations’. At this stage,

the cluster successively goes in and out of core collapse. (Breeden et al., 1994)

perform Fokker-Planck simulations containing binaries and show that core-

collapse occurs on a very short time scale. The core quickly re-expands and

spends a longer time in a state similar to pre-collapse between the successive

contractions, but with a much smaller core with radius of a few percent the

half-mass radius.

Measuring surface brightness profiles is a first step when trying to char-

acterize stellar systems. SB profiles are also a key ingredient of dynamical

models. Today, most surface brightness profiles come from ground based data

and the input to dynamical models are parametric fits to the observations in-

stead of the observed profiles themselves. These data needs to be updated in

order to perform dynamical models and to study the central parts of globu-

lar clusters. This dissertations aims to obtain surface brightness profiles with

high spatial resolution in order to test the validity of different dynamical mod-

els and to explore possible connections of the profile with physical quantities

related to formation and location in the galaxy.
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1.3 Black holes

Another dynamical scenario that has been explored as part of the evo-

lution of globular clusters is the possible presence of a central black hole. Silk

& Arons (1975) suggested that central X-ray sources in clusters could be pro-

duced by gas fed into a 100-1000M⊙ black hole. These X-ray sources were later

proved to be comprised of multiple fainter individual sources, but the original

observation inspired a number of theoretical calculations of the possible effects

of a black hole at the center of star clusters.

Bahcall & Wolf (1976, 1977) calculate the effect on the stellar distri-

bution for a cluster if a black hole is present in its center. They solve numeri-

cally the coupled time-dependent Boltzmann equation for a system containing

two different masses. They predict the formation of a cusp near the center

with a logarithmic slope of about −1.75 for the most massive stars in the 3-

dimensional density, while the limiting slope for least massive stars is about

−1.5. The predicted slope of the surface brightness distribution is very close

to that predicted for core-collapse for the dominant stellar components in the

core, but the variation with mass is less dramatic than for the core-collapse

case. Most observable mass groups would have a projected logarithmic slope of

−0.7 (Sosin & King, 1997). Later calculations (Shapiro, 1977; Lin & Tremaine,

1980) explore the mass loss of a star cluster due to scattering from the central

black hole. They find that a possible fate for the cluster is the total destruc-

tion due to ejection by close encounters and tight binaries forming in the cusp

around the black hole. Yuan & Zhong (1990) find a limit mass for a black

hole such that if it is smaller, the cluster expands until evaporation, but if it is

larger, the core contracts and forms a cusp around it. The mass of the black

hole depends on the initial conditions of the cluster.
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One of the reasons for the difficulty of detecting a black hole has to do

with the size of its sphere of influence, which is the region where the presence

of the black hole will affect the stellar distribution. The radius of the sphere

of influence of a black hole can be calculated as

rBH =
GMBH

σ2
.

where MBH is the mass of the black hole and σ is the velocity dispersion of

the stars around the black hole. Then, rBH ≃ 1′′ for a globular cluster at 10

kpc distance containing a black hole mass of ∼ 1000M⊙ and having a velocity

dispersion of 10 km s−1. This type of scale cannot be resolved with ordinary

ground-based telescopes, but with HST or adaptive optics assisted observa-

tions, it is possible to resolve individual stars inside the sphere of influence if

the mass of the black hole is ∼ 103M⊙ or larger.

Several authors have explored the possible formation channels for an

intermediate mass black hole in a star cluster. A possible avenue of formation

for such a black hole is a series of runaway collisions and mergers of young stars

on a very dense environment (Gürkan et al., 2004). One necessary condition

for this to happen is that the core-collapse time has to be shorter than the

evolution timescales for the most massive stars to explode as supernovae. A

large number of simulations with varying initial conditions are carried out

to estimate which are the adequate circumstances for a central intermediate

black hole to form. They find that a number of clusters with realistic initial

conditions did end up forming a black hole by a runaway process. They also

find that the mass of the black hole is ∼ 10−3 times the total mass of the

cluster for all realistic initial conditions. Another explored avenue for the

formation of an intermediate mass black hole in a star cluster is the collision
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and merging of stellar-mass black holes (Miller & Hamilton, 2002). Mouri

& Taniguchi (2002) estimate that such merging has to occur in a runaway

fashion since stellar-mass black holes present in the cluster will sink to the

center due to mass segregation, and they will therefore have a larger density

than other stars. If the stellar mass function in a cluster is very shallow, a

third avenue of formation can occur, the accretion of gas by a stellar-mass

black hole (Kawakatu & Umemura, 2004).

We know that supermassive black holes (SMBHs) are located at the

center of some elliptical galaxies and bulges. It is still unknown how those black

holes formed and grew to the sizes observed today. For any formation scenario,

an intermediate mass black hole is needed as a seed to form supermassive black

holes. If globular clusters contain intermediate mass black holes (IMBHs),

they could be a crucial ingredient in finding the formation process of SMBH.

They could also be important sources for gravitational wave detectors. Finally,

if clusters contain IMBHs, these will have important effects in the dynamical

evolution of the cluster, in particular for the central regions. It is important to

find out if and which globular clusters contain IMBHs in them. If intermediate

mass black holes are present in relatively high numbers, then it is easy to invoke

merger process that could drive these black holes to the galactic centers. In

the local universe, globular clusters are the best place to look for an IMBH.

They have high central densities and are at the low mass end of isolated self

gravitating systems. In this dissertation, we obtain kinematical measurements

for the largest globular cluster in the galaxy in order to find out if there is a

black hole present at its center.
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1.4 Outline

During the last decade, improved instrumental capabilities like the

Hubble and Chandra space telescopes and various 10-meter class telescopes

have allowed the field of globular clusters dynamics to gain a new fresh look.

The improved spatial resolution of space-based images, from visual to x-ray

wavelengths, and the improved spectral resolution of large ground-based tele-

scopes, have unveiled a whole set of new issues to investigate. The present

work makes use of new technology in order to explore the central regions of

globular clusters in the local group with the aim of better understanding the

dynamical processes taking place there. In chapter 2, surface brightness pro-

files obtained measuring integrated light from HST images for a sample of 38

Galactic globular clusters are presented. Chapter 3 contains similar measure-

ments for a sample of 30 clusters belonging to the LMC, SMC and Fornax

dwarf galaxy. Chapter 4 presents photometric and kinematic measurements

for ω Centauri that suggest the presence of an intermediate mass black hole

at the center of the cluster. Chapter 5 presents a discussion of the results in

the context of recent results for globular cluster dynamics.
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Chapter 2

Surface Brightness Profiles for a sample of

Galactic globular clusters

Lo que irradia esta noche es especial

sobre el lago resplandece

esperaba una tenue aparición

nebulosa como siempre

una crema de estrellas parece cubrirlo todo

en mi constelación

G. Cerati

2.1 Introduction

Globular clusters (GC) are nearby, isolated, and relaxed systems, which

makes them good laboratories to study stellar dynamical processes. As a first

step for any dynamical model, we require a measure of the surface brightness

profile. Dynamical processes such as core-collapse, influence of a central black

hole, and the physics of the initial collapse (Bahcall & Wolf, 1977; Cohn, 1980;

Gnedin et al., 1999) will influence the central surface brightness profile, while

tidal influences and evaporation leave noticeable effects at larger radius. The

standard view is to assume that the central regions are isothermal and the

outer regions are tidally truncated by the galaxy. King models (King, 1966;

Meylan & Heggie, 1997) provide a theoretical base for their study. However,

∼20% of the galactic globular clusters show deviations from King models by
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having steeper central surface brightness profiles (Djorgovski, 1995). These

clusters have historically been called post-core collapse since this steeping of

the central profile is the expected behavior during core-collapse (Cohn, 1980).

Given the large amount of data collected from the Hubble Space Telescope

(HST ), our goal here is to characterize the central profile in a non-parametric

way, thereby testing whether the cores are in fact isothermal or consistent with

the expected post-core collapse morphology.

The surface brightness (SB) profile provides a fairly simple way to ob-

tain the mass distribution through deprojection; therefore, reliable SB profiles

of any stellar system are necessary for detailed dynamical modeling. In the

case of globular clusters, most dynamical studies use parameters such as cen-

tral surface brightness and half light radius obtained from King model fits to

the observed SB. Trager et al. (1995) provide the most complete catalog for GC

radial profiles. This catalog contains profiles constructed from ground-based

images using a combination of star counts and integrated light; they also pro-

vide King model fits to determine core radius (rc), concentration (c=log(rt/rc);

where rt is the tidal radius) and central surface brightness (µ0). It is worth

noting that the concentration is the only parameter they obtain directly from

the King model fit; the other two parameters are obtained from a Chebychev

polynomial fit to the photometric points. They report uncertainties from a

variety of sources, some are relevant to the outer part of the profiles like sky

brightness determination, while others are particularly important for the inner

parts of the profile such as center determination and crowding correction for

star counts. They report a seeing of 2′′−3′′for the observations. While this

catalog is extremely useful for analyzing the outer parts of the SB profile, it

is necessary to update the data for the innermost regions using HST ’s resolu-
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tion. Another study using ground-based images in the U filter is performed

by Lugger et al. (1995) on 15 core-collapse clusters. They fit pure power-law

and modified power-law (which allows the existence of a core) to the central

surface brightness of these objects. They find that nine have unresolved cores,

three have marginally resolved cores, and three have clearly resolved cores.

The average slope of the power-law fits is ∼ −0.8. They conclude that clus-

ters in their sample, with the exception of one object (NGC 6752), have cores

consistent with expectations for a post-collapse bounce.

Some specific clusters have been studied in more detail. Particularly,

M15 has been the subject of many studies trying to obtain a reliable radial

profile (either in light or in star counts) near the center. Lauer et al. (1991),

using WFPC, claimed to see a core of 1.1′′; later analysis by Guhathakurta

et al. (1996) using WFPC2 found a steep cusp into the smallest resolution

element with a slope of −0.7. This result is similar to that of Sosin & King

(1997) using FOC images. Our results agree with those of Guhathakurta et al.

(1996), as discussed in Section. 2.4.3.5 Less detailed studies have obtained SB

profiles from HST images for M30 (Yanny et al., 1994; Sosin, 1997), NGC

6397 (King et al., 1995) and NGC 6752 (Ferraro et al., 2003).

Baumgardt et al. (2004) perform extensive simulations of star clusters

containing an intermediate mass black hole (IMBH). They find that the pres-

ence of the black hole induces the formation of a cusp whose 3-dimensional

density profile has a −1.55 slope. In projection the slope of the cusp is much

shallower, yet different than zero. Recently, there have been two claims for

the presence of a medium size black hole at the center of two globular clusters.

One is for M15 (Gebhardt et al., 2000a; Gerssen et al., 2002, 2003) and the

other one is for the giant globular cluster G1 in M31 (Gebhardt et al., 2002).
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Although this is still a very controversial subject (Baumgardt et al., 2003b,c),

it is crucial to be able to differentiate between the two possible dynamical

states (i.e. core-collapse vs. intermediate mass black hole). Having reliable

SB profiles near the center of GCs will be a key part of future dynamical

modeling.

2.1.1 Non-parametric Models

The way in which light profiles are characterized has important conse-

quences for dynamical analysis. The advantage of using parametric models lies

in the fact that they provide a smooth profile even for sparsely sampled data,

and that they have an analytical deprojection. However, the quality of the

data is now good enough that it is not necessary to use a parametric profile.

Furthermore, small differences or biases between the parametric fits and the

data will be greatly amplified during deprojection, causing the luminosity den-

sity to be possibly poorly represented by King models. Parametric fits have

a side effect of underestimating the confidence intervals for three dimensional

distributions, since the range of possible solutions is always larger for non-

parametric analysis than for a parametric one. The draw-back of not forcing a

functional form to the distribution is that the data always have some amount

of noise. Deprojection involves a derivative of the surface brightness profile;

therefore, any amount of noise will be greatly amplified during the depro-

jection. Thus, non-parametric algorithms require some degree of smoothing,

and the reliability of the result depends on the technique and the amount of

smoothing used. Ultimately, there is a problem of assessing whether the fluc-

tuations in the data are real or not. This is particularly important when the

focus of the study is the inner parts of globular clusters. In this work, we use a
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non-parametric approach to analyze our data, similar to that used for galaxies

in Gebhardt et al. (1996).

2.2 Simulations

There have been a variety of techniques used in the literature to measure

radial profiles for globular clusters, both with star counts and integrated light.

We performed extensive simulations in order to test the reliability of different

methods for obtaining accurate surface brightness profiles, which we describe

below.

The two most complete studies to date base results on star counts and

both correct for completeness. Sosin & King (1997) use artificial star tests

in order to obtain a SB profile for M15. They add synthetic stars over their

image of M15 and measure the recovery rate of their photometry software. A

problem in this case is that it is hard to know the effect of the underlying

stellar distribution on the results, since the true stellar distribution is not

known. Guhathakurta et al. (1996) perform simulations over a blank image,

controlling all the input variables. They compare the photometry of input and

output stars one by one, calculate a completeness factor for the number of stars

in a given annulus and construct the SB profile from star counts using those

correction factors. This is a standard procedure that has been tested by many

authors, but it does not test for degeneracy that could arise from different

underlying profiles yielding the same final result. Since our goal is to provide

a general prescription by studying the full range of profile slopes, our method

should not depend on the type of profile for each cluster (i.e. cusp vs. core).

We perform simulations over blank images, thus having control over the input

parameters such as the stellar profile, luminosity function and total number
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of stars. Below we outline each step. We argue that using integrated light is

superior for measuring an unbiased SB profile (compared to star counts) if the

cluster contains a large enough number of stars.

2.2.1 Image Construction

In order to test alternative methods for measuring surface density pro-

files, our goal is to create images that resemble those obtained by the PC chip

as closely a possible. The first step toward creating images is to produce an

input list of stars. We start with a luminosity function for M5 (Jimenez &

Padoan, 1998) and a desired surface brightness profile. The effect of mass

segregation is not included in these simulations. From the functional form of

the luminosity function and the SB profile, we construct a probability distri-

bution for a star having a certain magnitude (from the luminosity function)

and radial distribution (from the surface brightness profile). Stars are gener-

ated randomly around a given center from those probability distributions. By

performing star counts in magnitude bins we confirm that our resulting star

list represents the supplied luminosity function. The same test is performed in

radial bins for surface brightness. With this method, we create various master

lists of stars of a given surface brightness profile. Results with fainter and

brighter versions of the luminosity function are discussed below. We use five

different power-law profiles Σ(r) = r−β, with β of 0.1, 0.3, 0.5, 0.7 and 1.0 as

the supplied functions for the surface brightness. We also create images for a

King profile with a core radii of 90 pixels. The images have 200,000, 50,000,

10,000, and 1,500 input stars within a 200 pixel radius (20′′ for WFPC2 pixel

scale). Five individual realizations are created for each pair of input number

of stars and profile shape with the goal of performing statistical analysis.
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The images are created using the DAOPHOT (Stetson, 1987) routine

“ADDSTAR”. For a base image, we use an actual WFPC2 image containing

very few stars that are cleanly subtracted. This process results in a realistic

background including cosmic rays and bad pixels. The routine adds Poisson

noise and read out noise as well. The supplied point spread function (PSF) is

constructed from the base HST image. We do not include spatial variation of

the PSF. The PSF radius defined for DAOPHOT when building these images

is 9 pixels.

2.2.2 Center Determination

Having a good estimate of the center position of a cluster is crucial to

obtain an accurate surface brightness profile. Using the wrong center typically

produces a shallower inner profile. We design a technique to measure the center

that assumes the cluster is symmetric. A guess center and a radius from that

center are chosen. The circle defined by the guess center and the chosen radius

is divided into eight segments where we count stars and then we calculate

the standard deviation of the eight number counts. This same calculation is

performed for various center coordinates distributed around the initial guess

center with the same defined radius. The grid of the centers consists of every

five pixels near the center in all directions and every ten pixels further away

from it. This produces a map of coordinates with a standard deviation value

associated to them. If the cluster is symmetric, the standard deviation of

the eight segments should reach a minimum value at the center of the cluster

and have larger values anywhere else. We fit a surface to this map using a

two-dimensional spline smoothing technique developed by Wahba (1980) and

Bates et al. (1986). The minimum point in the surface is our chosen center.
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The method can be used iteratively until the minimum lies in the finely spaced

part of the grid.

All the simulated images have the center in the same position right in

the middle of the chip. The size of the circle we use for our octants method

is 170 pixels, which is slightly smaller than the radial extent of the simulated

clusters. We calculate the distance between the measured and the real center

(in x and y positions separately) for each of the five individual images in a

given setup, then calculate the average and the standard deviation. Figure 2.1

shows the accuracy of the center measurements for all input power-law and

King profiles. Results are shown for both the x and y coordinates in the

case where we input 10,000 stars. We observe that the largest deviation is

equivalent to 5 pixels for this group of simulations (0.5′′ on the pixel scale of

WFPC2). The center estimation improves with the degree of concentration

of the cluster and with increasing number of stars. Similarly, the quality

of the estimation decreases with decreasing number of stars and degree of

concentration. As expected, this method works best when the SB distribution

is not flat in the entire image.

2.2.3 Surface Brightness Profile

We test several different ways to obtain radial profiles on the simulated

images. The profiles are obtained by measuring both integrated light and star

counts. We note that both techniques have their advantages and disadvan-

tages; for example, star counts can measure different radial profiles due to

mass segregation while integrated light cannot. However, we argue that star

counts are significantly less reliable compared to integrated light when trying

to measure the global radial profile. When measuring integrated light, we use
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Figure 2.1 Comparison between the measured and input center for various
sets of simulations with 10000 input stars. Zero slope is for the King profile
case and the rest are for power laws. The average distance between the actual
and measured center is shown for the x (solid points) and y (open points)
coordinates in pixels. A small horizontal offset is introduced for clarity. Error
bars are the standard deviation of the five individual measurements for each
case. Each WFPC2 pixel is 0.1′′.

21



two different statistical estimators—the average and the biweight (Beers et al.,

1990)—to get counts per pixel in a given annulus. Although the average is an

optimally efficient estimator for central location when dealing with Gaussian

distributions, it can be very biased when the underlying distribution is not

Gaussian (i.e. having outliers). The biweight provides a robust estimate of

the central location (i.e., mean) even when including a significant number of

outliers because it is a robust estimator that de-weights the data points that

lie far away from the mean. Since our images are made from discrete sources,

there are a large number of ‘background’ pixels and a large number of ‘star’

pixels in each annulus, so the distribution is certainly not Gaussian. It is

important to explore the effect of using a robust estimator versus using the

average.

To measure star counts, we have to first measure the locations and

brightness of all stars using DAOPHOT. We perform PSF fitting star subtrac-

tion on the images using the ALLSTAR routine with the same PSF we used

to construct the image. This does not make the subtraction perfect since we

introduced Poisson noise when constructing the images. Crowding and read

noise have an important effect on DAOPHOT’s abilities to find stars. We

observe this by comparing the number of input versus found stars in each sim-

ulated frame. For the 200,000 input stars case, ∼ 3800 are found, while for the

50,000 input stars case, ∼ 3000. To avoid confusion in the following we refer to

the groups of simulated images by number of input stars instead of number of

detected stars. We now can measure integrated light in two different images,

the original one with all the stars included (from now on called ‘full image’)

and the one with stars subtracted, which includes only the background light

and it is smoother (from now on called ‘subtracted image’). We use two sets
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of annuli to measure SB from integrated light; one has steps of three pixels

from 1 to 20 pixels radius and the other has steps of twenty pixels between

10 and 200 pixels radius. The sizes of these annuli are a compromise between

measuring at the smallest possible resolution and providing a smooth curve.

The radius associated to each annulus is the midpoint between the outer and

inner radii, while the surface brightness value is the number of counts per pixel

divided by the number of pixels in a given annulus. We find that when using

the average estimator, the profile obtained for integrated light is slightly biased

and is very noisy, while the biweight estimator yields much smoother profiles

with very little bias. The measurements on the subtracted image always yields

a smoother profile than that obtained from the full one. Figures 2.2 and 2.3

show the input profiles together with the five individual measured profiles for

various simulations with 50,000 input stars. We show a King profile, and the

0.5 and 1.0 power laws. In the cases of concentrated profiles and large number

of input stars, both estimators produce shallower profiles toward the center

for the subtracted images. The reason for this bias appears to be an over-

subtraction near the center of the cluster stars where the crowding problems

are worse. The program subtracts part of the background starlight as part of

the stars which in turn produces a flatter looking profile near the center of the

cluster. We also observe that the profiles obtained from the full image tend

to look steeper than the input profile for the steepest power laws (inner slopes

in the range 0.5 − 1.0) as it can be seen in the leftmost panel of Figures 2.2

and 2.3. This is likely due to the contribution of the brightest stars near the

center where integrated light is being divided into very few pixels, so the pro-

portional contribution from the presence of a bright star is much larger near

the center than in the outskirts. This effect can potentially be even larger for

real clusters since they are known to have a degree of mass segregation (Howell
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et al., 2000), and therefore they have a larger relative number of bright stars

near the center.

Since our goal is to obtain an unbiased smooth profile, we attempt

alternative ways to measure integrated light profiles. One is to subtract only

a percentage of the found stars, just enough to remove noise, but not so many

that we get over-subtraction problems. We test for different percentages and

compare them with a histogram of found stars in order to assess which stars

are contributing to the observed bias. After extensive testing, we conclude that

subtracting the 10% brightest stars is optimal. This normally subtracts the

giant and horizontal branch stars leaving most of the main sequence. Another

approach consists of masking a smaller percentage of bright stars. We choose

a masking radius of 5 pixels; this takes care of a large portion of the light in

each star, but it is small enough to avoid having too few pixels to sample in the

central regions. In this case we obtain profiles with some amount of noise, but

we eliminate the over subtraction problem. By eye inspection of the profiles

(Figs. 2.2 and 2.3), it appears that the subtracted or the partially subtracted

profiles are the least biased and/or least noisy way to recover the input profile

for the shallower power-laws, while the masked profile is optimal to recover

the higher power-laws. We qualitatively test the quality of measurements from

these profiles below.

We test the effect of changing the faint end of the luminosity function for

the steepest power-law case by decreasing the number of faint stars. Our goal

is to explore the effect of a change in background light on the final profile. We

normally use a luminosity function that rises all the way to stars 6 magnitudes

fainter than turnoff stars (∼ 18 mag). We change this to a flat distribution for

the faint end (21−24 magnitudes), therefore having a lower contribution from
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Figure 2.2 Surface brightness profiles for three groups of simulations with
50,000 input stars. For each case (King profile, 0.5 power-law, and 1.0 power-
law) five individual measurements (thin lines) are plotted against the input
profile (thick solid line). The profiles are measured from four different images:
full, subtracted, 10% brightest stars subtracted and 3% brightest stars masked.
The vertical axis is on an arbitrary magnitude scale.
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Figure 2.3 Same as previous figure but for simulations of fainter clusters. The
groups of simulations were constructed by decreasing the brightness of stars
by two magnitudes.
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background light. We find that the effect is negligible on the final profile; the

shape of the measured SB profiles was not affected by this change. Therefore,

we conclude that the background light from very faint stars is not an important

contributor to the SB profile when measuring integrated light. This result

implies that the possible effects of mass segregation are reduced when we

measure the profile from integrated light, since the contribution to the profile

comes from stars with very similar masses. Therefore, the variations in the

radial profile between the masses of those stars contributing to the integrated

light are minimal. We also test for the effect of distance by using the same

input lists for all cases, but making the stars two magnitudes brighter in one

case and two magnitudes fainter in another. We obtain smoother profiles for

the brighter case and a noticeable bias at large radii, where the profile is

slightly underestimated. For the fainter case the profiles are noisier, but the

bias at large radius seems to disappear (Fig 2.3). The over-subtraction related

to crowding is amplified for the brighter case and smaller for the fainter case.

M5 (the source of our luminosity function) has one of the brightest apparent

magnitude horizontal branches in the galactic globular cluster system, so most

of the actual observations will be better represented by the simulated images

created with the original and fainter star lists.

Star counts profiles are obtained in the same sets of annuli we use

for integrated light. Due to crowding near the center of the images, only a

fraction of the faintest stars are detected there. If we include those stars in

the star counts, they tend to flatten the overall profile, particularly for the

steep profiles and large number of input stars. As a consequence, we decide

to use only the 50% brightest stars to construct this profile, since this is the

limit where the shape of the input profile is recovered. In general, the star
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counts profile, as we construct it, can be used only as a comparison tool since

it is too noisy to provide a robust result. It is worth clarifying that we do

not apply any correction to star counts due to crowding, which is the normal

procedure used by other authors to obtain star counts profiles in these type

of fields. At large radii, star counts are probably the only way to obtain

a surface density profile. They are certainly the only way to measure the

variation in profiles between different stellar groups within a cluster, which is

something that cannot be measured with integrated light. However, at small

radii, crowding effects severely limit the usefulness of star counts since they

require a significant correction.

Surface brightness profiles obtained from integrated light can be noisy

for some cases (least concentrated objects, lower signal-to-noise). Therefore,

in order to measure inner slopes, we have to apply some kind of smoothing

and check whether that smoothing biases our measurements. The smoothing

technique is the one-dimensional version of spline smoothing mentioned in

Section 2.2.2. It is based on the work by Wahba & Wang (1990) and described

in detail in Gebhardt et al. (1996). We choose to apply a fixed amount of

smoothing to every profile obtained in order to be consistent. The central

slope is calculated by taking the derivative of the smooth profile on the few

innermost points, which is equivalent to measuring at a radius of 3 pixels (0.3′′

with the WFPC2 scale). Results are shown in Figure 2.4 for the 50,000 and

the 10,000 input star cases. We plot input versus the average slope measured

for the five realizations. The error bars represent the standard deviation of

these measurements. Results confirm what the eye inspection of the profiles

suggest. The subtracted and partially subtracted images yield a more reliable

inner slope measurement than the full and masked image for the shallow slope
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Figure 2.4 Input versus measured surface brightness slope for two groups of
simulations. The open points show results for 10,000 input stars, the solid
points show those for 50,000 input stars. A small horizontal offset is intro-
duced for clarity. We show the average measured slope of the five individual
profiles for each case. Error bars represent one standard deviation for the five
measurements.
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cases (β < 0.3), which seem to have larger error bars, particularly for the

50,000 input stars case. We confirm that using the masked profile for those

with steep slopes is more reliable; subtracted and partially subtracted cases

tend to underestimate the slope. In order to further estimate the scatter,

we created twenty images using 50,000 input stars and 0.7 power law. These

twenty cases do not include the five cases already analyzed. The standard

deviation of the slope is slightly smaller for the twenty cases as for the five

images, so the error bars calculated for the five simulations case are an upper

limit.

Besides measuring the core radius (radius where the luminosity drops

by half the central value) we are interested in measuring the turnover radius

(radius of maximum curvature) of the profiles. We do this by finding the

minimum of the second derivative for the smooth profile. We created groups

of simulations with small flat cores to test if we could detect such turnovers.

Our results show that we can detect cores as small as 1′′ with our spatial

sampling.

Given these results, we use the same four images (full, subtracted,

partially subtracted, and masked) for the real data. If the four profiles obtained

from these images are consistent we take the smoothest version (in general,

this is the masked case). If they differ near the center (as it is expected for

concentrated cases) then we take the profile produced from the masked image

since that is the one that traces the cusps best. As a general rule we do not use

the profiles obtained from the full image and from star counts because they

appear to be biased for some cases and generally noisier than the rest.
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2.2.4 Uncertainties in the Simulations

The uncertainties in the surface brightness are due to two sources when

using integrated light: the photon noise and the shot noise from having a

limited number of stars (i.e., surface brightness fluctuations). Thus, in order

to get the real uncertainties, we have to estimate the shot noise from stars.

Star counts, on the other hand, directly recover the appropriate noise, but

at the expense of higher uncertainties due to the difficulties in measuring the

individual stars (i.e., completeness due to crowding).

For the simulations, we have the knowledge of the actual shot noise

since we know the input number of stars. In order to determine how to in-

clude shot noise, we run simulations with the same input parameters but a

different star list. The scatter from these different realizations then provides

the actual uncertainties including both photon noise and shot noise from the

stars. However, with real data we do not have the luxury of running different

star lists; therefore we have to find a way to determine the shot noise directly.

We use a biweight estimate of the scatter and then apply a correction factor.

The biweight scatter is determined from the scatter in the photon counts in

the pixels for a given annulus. We then compare the biweight scatter with the

scatter of the photometric points between the five different realizations. The

ratio of the real scatter to the biweight scatter is larger for the simulations

with smaller numbers of stars. Thus, we have to correct the biweight scat-

ter by the appropriate amount. When using the data, we do not necessarily

know the underlying stellar surface density, making it difficult to determine

the appropriate scaling for the biweight scatter. However, we use an alterna-

tive method that relies on assuming a smooth radial profile. We discuss this

method for real data in Section 2.3.5. Both methods give the same range in
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scalings, implying we have an robust estimate of the true uncertainties.

Alternatively, we could run proper completeness corrections and deter-

mine the corrected star counts. The standard technique would be to apply this

as a function of magnitude and radius in order to determine the underlying

luminosity function. With that in hand, one can straightforwardly measure

the additional uncertainty due to shot noise alone. However, this will create

an additional source of uncertainty due to the estimate of the completeness

corrections themselves (the correction factors depend on the underlying distri-

bution of stars which is precisely what is being measured, thereby causing a

possible degeneracy). Another source of uncertainty is that star counts will al-

ways miss the contribution from the unresolved stars, which is not an issue for

integrated light measurements. Therefore, we rely on the above approach, and

the one outlined in Section 2.3.5, where we calibrate the uncertainty estimates

for the actual data with the simulations presented here. Since the simula-

tions demonstrate that we recover the central shape accurately, our adopted

approach is reliable.

2.3 Data acquisition and analysis

2.3.1 Sample

HST has imaged a large fraction of all globular clusters in our galaxy.

Piotto et al. (2002) obtained color magnitude diagrams for 74 galactic GCs

from WFPC2 images. In addition, Mackey & Gilmore (2003b,a) obtained sur-

face brightness for clusters in the LMC (53 objects), SMC (10 objects), and

Fornax dwarf galaxy (5 objects), which we analyze in Chapter 3. Based on

our simulations only a subset of the Piotto snapshot observations will pro-

vide a reliable SB profile since a minimum number of counts are needed in the
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frame. Given the distribution of concentration, total magnitude, and apparent

magnitude of the horizontal branch only a fraction of the imaged clusters are

useful. The requirement is to have enough total counts in the frame. This can

be achieved by the cluster being near (bright horizontal branch), containing

a large number of stars, or being very concentrated (but not dominated by

one star). In general, detecting stars six magnitudes fainter than the hori-

zontal branch with a signal to noise of 20 is a minimum requirement for low

concentration clusters. The criteria can be relaxed for highly concentrated

clusters (c>2.0) and those with a large number of stars (MV < −7.5). Using

these criteria we gather from the HST archive a sample of 38 GC imaged with

WFPC2. It is ideal to perform the study with images in U-band (F336W)

since giant stars contribute the same amount of light as main sequence stars

at this wavelength, thus minimizing shot noise. Unfortunately, there are few

images available with enough signal in U-band. Our selection criteria is using

images observed in either V (F555W), R (F666W), or I (F814W) filters and

to have an exposure time of at least 100 seconds, although most of the images

have exposure times over 500 seconds (see Table 2.1). After testing for con-

sistency between filters (details below), we realize we can also include images

in the U filter with long enough exposure times (> 1000 sec). The field of

WFPC2 is 2.6′ in size, which is adequate to measure out to ∼2.5 half-light

radius of most clusters but not out to the tidal radius. The scale of the CCD

is 0.1′′/pixel for the WF chips and 0.046′′/pixel for the PC chip.

We use the WFPC2 associations from the Canadian Astronomy Data

Center website1. These images are spatial associations of WFPC2 images

from a given target, normally coming from a single program. The individual

1http://cadcwww.dao.nrc.ca/
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raw data are processed through the standard calibration pipeline, grouped in

associations and combined. The available data are multi-group image with the

images for the three WF and the PC chips.

2.3.2 Image Processing

We analyze the WFPC2 images using the same method applied to

simulated images described in the previous section. Once we have an individual

image for each chip, we trim the edges due to increased noise there. We use

the “FIND” task on DAOPHOT to obtain a list of stars, followed by the task

“PHOT” to perform preliminary aperture photometry. We construct a PSF for

each of the four chips. After extensive testing for methods to automatize this

process, we conclude that the best way to obtain a reliable PSF subtraction

is to choose PSF stars by hand. A single bad PSF star has an important

effect on the quality of the subtracted image. Once we have the list of PSF

stars, we use an iterative procedure where a preliminary PSF is constructed,

neighbors to the PSF stars subtracted, and recalculate the PSF. We also test

constructing a PSF with spatial variations but in the end this does not have

an effect on the quality of the measured profiles, so we construct a constant

PSF for all images and chips. In the end we have an image for each chip

with all the stars subtracted and only background light remaining. We also

produce images with only 10% of the brightest stars subtracted, and 3% of the

stars masked as described in Section 2.2.3. A geometrical transformation of

the individual images produces a mosaic image. We end up with four mosaic

images for each cluster; one with all stars included, all stars subtracted, 10%

of the stars subtracted, and with 3% brightest stars masked.
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2.3.3 Cluster Center Determination

To determine the cluster center, we first transform all found stars to a

combined coordinate list. We use transformations identical to those applied

when making the mosaiced frame. With this master list we calculate both

the center and radial density profile from star counts. The center is obtained

with the method described in Section 2.2.2. The first guess center is made

by visual inspection of the image when possible, then iterated until we find

the best center. For the least concentrated cases (∼ 30% of the clusters) we

have to make our initial guess using Digital Sky Survey images with a larger

field. The radius for our method is chosen so that all the stars counted would

lie within the chip containing the center of the cluster and it is always larger

than the core radius. For two of the clusters (NGC 6624 and M69), the center

is too close to the edge of one of the chips, so we had to use stars on the

adjacent chip to find the center. For another case (M13) the core is larger

than the chip so we also had to use stars in the adjacent chips. Three of the

clusters have too big and sparse cores for this method to work (NGC 5897,

M10, NGC 6712). For these cases we used the center indicated in the Harris

catalog (Harris, 1996); these cases are marked in Table 2.1 with an asterisk.

It is worth mentioning that the sky coordinates reported in our table come

directly from the WCS information contained on the header of the images,

so they should be used only in the context of that specific image. We have

noticed that the sky coordinates of a specific star can change by as much as

1.8′′ in two images with different headers due to HST pointing uncertainties.

The differences between our center coordinates and those contained in Harris’

catalog are discussed in Section 2.4.1.
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2.3.4 Surface Brightness Profiles

With the center from the star counts data, we obtain a surface bright-

ness profile from the integrated light in each of the four images. We do this by

measuring a biweight (see Section 2.2.3) of counts per pixel on a given annulus,

and then dividing that over the total number of pixels on the annulus. We use

a different set of annuli for each object. Our goal is to obtain the best possible

spatial resolution, while keeping the noise as low as possible. For each case

there is a trade off between these two quantities. We also bin in order to have

a good sampling around the ‘turnover radius’. In the end we define three sets

of concentric annuli: 3− 7 pixels steps at 1− 20 radius, 6− 15 pixels steps at

15 − 35 radius, and 30 − 60 pixels steps extending the radial coverage to 800

pixels.

When we calculate the star count profile, as the analysis in Section 2.2.3

suggest, we cut the PSF subtracted star list to keep only the 50% brightest

stars when we construct the profile. Stars are counted in the same annuli

as the integrated light measurements and divided by the number of pixels in

each annulus. In the end we obtain five profiles for each cluster from the full,

subtracted, partially subtracted, masked images, and star counts. For most

clusters the SB profile obtained from the full image or from the star counts

are noisier compared to the others, so we never use them as the final profile.

For the cases with steep cusps, there is always a difference near the center

between the masked, partially subtracted, and completely subtracted profile,

as observed for the simulations. In this case we always choose the result from

the masked image since simulations show this is the least biased. For the cases

where the masked, subtracted and partially subtracted profile have the same

shape, we take the masked profile if it has the same amount of noise as the
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rest; but for a few cases we take either the subtracted (M3, NGC 6287, M92,

and NGC 6388) or the partially subtracted (47Tuc, M79, M5, M80, M62, M9,

M69, and NGC 6712) because they are smoother. These are all cases where

the central profile is nearly flat.

If a very bright or saturated star lies near the center of the cluster

it can have an important effect on the final profile, either because the PSF

subtraction is poor or because of the presence of diffraction spikes that are

not included in the PSF. From tests where we mask bright stars near the

center of a cluster, we determine that they only affect the shape of the final

profile if they are within 1 arcsecond from the center. M70 is the only case

where we had to mask a bright star located within this region. Since this is a

saturated star, we also mask the diffraction spikes. This occurs at the cost of

decreasing spatial resolution because we cannot use the inner 5 pixels for our

measurements.

The profiles that we recover sometimes differ greatly from previous

ground based data. In order to check that this is due to improved spatial

resolution, we bin one of our high signal to noise WFPC2 images to the re-

ported pixel scale (0.4′′) of the data used in Trager’s catalog (Djorgovski &

King, 1986); we then convolve this image to account for the typical seeing re-

ported for the observations in Trager’s catalog (∼ 2′′). We compare the profile

obtained from this binned-convolved image with that obtained from the HST

image. Figure 2.5 shows that the effects of pixel scale and seeing can hide a

shallow cusp that can be well measured with HST resolution. While this effect

has been well demonstrated for galaxies (Lauer et al., 1995), it has not been

appreciated for clusters. The profile obtained from binning and convolving

the image lies on top of the Chebychev polynomial fit to Trager’s photometric
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Figure 2.5 Surface brightness profiles for M54. The vertical axis shows a mag-
nitude scale. The squares show the Chebychev polynomial fit from Trager’s
catalog. The thick line shows the profile obtained from a WFPC2 image with
our method. The thin line shows the profile obtained from the same WFPC2
when it is binned and convolved to mimic a ground based image. The change
in the central SB profile is due primarily to improved spatial resolution from
HST .
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points, while the HST profile is brighter near the center.

Another important test is to check for a possible filter dependence of the

shape of the SB profile. M80 has observations available on F666W (780 sec),

F555W (96 sec) and F336W (11,000 sec) filters. Figure 2.6 shows the SB

profiles for each. We observe that the three profiles are consistent throughout

the radial range, and they differ by the same amount from Trager’s Chebychev

fit. Thus, we use results from various filters (F336, F439W, F555W, F675,

and F814). We always choose the image with the highest signal to noise when

images in multiple filters are available. 80% of the images we use are taken

with the F555W filter. Obviously, color properties will cause some variations.

Guhathakurta et al. (1998) report a ∆B−V ∼ 0.3 mag from 1′′ to 10′′ for M30,

which is the Galactic globular cluster with the larges measured radial color

variation. Other clusters are expected to have smaller color gradients. Since

our main objective is to obtain the central slopes, the small color gradients

will have little effect.

We also require surface brightness profiles extending out to large radii.

The WFPC2 camera only covers the central region, and we must rely on

ground-based observations. For this, we use the Chebychev polynomial fit to

the photometric points from Trager et al. (1995). We use our photometric

points for the inner ∼ 20′′ and the Chebychev fit for the outer region. In a

few cases the agreement between the polynomial fits and our results is good

throughout, but for many cases there are discrepancies. We normalize the

HST surface brightness to the ground based data by matching the two en-

closed light profiles, calculated by integrating the SB profiles. As expected,

the enclosed light curves differ in shape at small radius, but for most clusters,

the curves have the same shape at large radius. Regardless of which filter is
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Figure 2.6 Surface brightness profiles for M80. The different lines show profiles
in various filters (F336W, F555W and F665W). The vertical axis shows a mag-
nitude scale. The squares show the Chebychev polynomial fit from Trager’s
catalog (measured in V band).
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used to construct our profiles, the fact that they are all matched to photomet-

ric points in V and that the profiles are consistent between filters, brings all our

photometric points to V magnitudes. There are a few clusters for which our

normalization procedure is complicated (M70, NGC 6535, and M15). They

all show a very steep profile through the entire radial range available in our

images; since the ground based data show a core, the shape of the enclosed

light profile obtained from HST doesn’t quite match that of the ground-based

case. Uncertainty in this normalization does not affect the shape of the inner

profile, but it will affect the value of central surface brightness.

After normalizing, the final surface brightness profile is made from the

combination of our photometric points in the center and Trager’s Chebychev

fits outside. Once we have a reliable surface brightness profile, we deproject it

to obtain the luminosity density profile. This is done by numerically calculat-

ing the first Abel integral, as in Gebhardt et al. (1996). The Abel integral uses

the derivative of these SB profile so any amount of noise in the profile is greatly

amplified. Therefore, we have to apply some amount of smoothing before de-

projecting it (as described in section 2.2.3). Some clusters, particularly the

ones with shallow cores, yield very noisy profiles near the center, making the

process of deprojection challenging. For these cases we apply a pre-smoothing

process where we substitute the innermost three or four photometric points

by the average between their two adjacent points. In this way we can apply

a similar amount of spline-smoothing to every profile in the sample. For a

few cases, even if we apply the pre-smoothing procedure, we obtain a surface

brightness profile that decreases slightly near the center, which produces a

luminosity density profile with a negative density in the center and we cannot

achieve a proper deprojection. For these cases, we set the central luminosity
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density slope to zero (marked with italics in Table 2.2).

We measure the central logarithmic slope of the smoothed surface

brightness and luminosity density profiles by taking a first derivative with

respect to the logarithmic radius. In the inner part of the profile, there is

often a range where this derivative is constant, which implies that the profile

has a constant slope in that region. We take the value of the derivative in

this region as the inner slope for each cluster. The only exceptions are the

objects which have steep cusps; for these cases, the slope changes through the

entire radial range, so we take the value of the innermost points as the inner

slope. Central slope measurements by other authors might be steeper for a

given object, because they tend to fit a power-law in a more extended radial

range (see example in section 2.4.3.5). For the cases where the SB logarithmic

slope is slightly positive and we cannot achieve a deprojection, we just assign

a zero value for the slope of the luminosity density. For these cases the values

are written in italics on Table 2.2. We also measured the values of slopes in

the region outside the core. In this case, since the values of the first derivative

of the profile vary through this radial range we perform a least square fit to a

line for the smooth profile.

Since we are re-deriving SB profiles, we need to measure core radius

as well. Historically, the core radius has been considered as the radius where

the value of the flux falls by half the central value. The radius often coincides

with the radius where the profiles seem to turn over and change slope, which

we call break radius. We distinguish these two radii for our profiles. The

core radius is calculated by taking the central surface brightness and finding

the radius where the flux falls by half this value. We should note that the

central surface brightness is measured as the value for our innermost data
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point, therefore, this value of core radius is resolution dependent for the non-

zero slope cases. We also calculate a break radius by finding the radius that

corresponds to the minimum of the second derivative of the smooth profile.

This is the radius where the slope of the profile changes by the largest amount,

so it can be seen as the turning point for the curve. Both radii are presented

in Table 2.2. For the cases with slopes less steep than −0.5, where we can

measure a break radius, we compute the ratio of the smallest resolution radius

with break radius. For all cases this ratio is smaller than 0.15, which means

that the break radius is at least 6 times larger than our smallest resolution

radius. We plot this ratio versus the measured value of central SB slope and

find no correlation. In this way we are confident that our reported values for

central slopes in the weak cusps cases are well within the observed core of the

clusters and the slope value is not due to lack of resolution.

2.3.5 Uncertainties for the Data

In Section 2.2.4, we describe how we estimate uncertainties for the sim-

ulations. our method is based on different realizations where we can include

the shot noise from stars directly. Here we describe the method we used to

calculate the uncertainties for real data and we calibrate these method against

that used for the simulations. We assume that the underlying stellar radial pro-

file is smooth, then the uncertainties of the photometric points should reflect

deviations from a smooth curve in a statistically meaningful way (i.e., have a

Gaussian distribution around the mean value). From the photometric points,

the biweight yields an estimate for the central location and scale (scatter);

this scale value is divided by the square root of the number of sampled pixels

and used as the initial uncertainty for individual photometric points. We then
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calculate the root mean square (RMS) difference between the smooth profile

and the data points for the central region. The ratio of the biweight to the

RMS should represent our lack of inclusion of shot noise from the stars.This

ratio depends on the extent of the radial bins (i.e, the number of pixels used),

therefore we use two different scalings for the different binning. The average

scaling for the inner points is about 2 and about 7 for the outer points. This

numbers are consistent with what we found in the simulations. Thus, we are

effectively including shot noise from stars. The largest scalings occur for sparse

clusters (NGC 6397, NGC 6535 and NGC 6752), as expected.

We calculate the uncertainties on slope measurements from a bootstrap

technique and compare these with the values measured for simulated images.

The bootstrap approach follows that in Gebhardt et al. (1996). From the

initial smooth profile, we generate a new profile by generating random values

from a Gaussian distribution with the mean given by the initial profile and the

standard deviation from the photometric uncertainties. We generate a hundred

profiles in this way and measure the 16−84% quartiles for the errors. Indepen-

dently, each cluster is associated to one of the simulated cases according to its

concentration and number of detected stars, and the standard deviation from

Fig 2.4 is taken as the uncertainty. These two independent error measurements

agree quite well, which gives us the confidence that the uncertainties calcu-

lated with the bootstrap method are reliable. Table 2.2 presents this results.

The uncertainties for luminosity density slope measurements is also obtained

from the bootstrap calculation. We do not estimate uncertainties in luminos-

ity density slope for those cases where we cannot achieve a deprojection. We

performed one more sanity check on our slope uncertainties by measuring the

effect of increasing the uncertainties on photometric points by a factor of two.
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From the bootstrap method, we find that the slope uncertainties increased by

a modest factor, less than two, for most clusters. Thus, the slope uncertainties

are not too sensitive to individual photometric errors.

2.4 Results and Discussion

2.4.1 Surface Brightness and Luminosity Density Profiles

We compare our measured centers (Table 2.1) with those listed in Har-

ris’ catalog (Harris, 1996). For 66% of the sample the difference is less than five

arcseconds, 24% of the objects have a difference between 5′′ and 10′′and only

10% have a difference larger than 10′′ (NGC 1851, M3, NGC 6541 and M2).

As mentioned before in Section 2.3.4, for three of the clusters (NGC 5897, M10

and NGC 6712) we used the center listed in the catalog as our center. For the

most concentrated clusters, even a one arcsecond miscalculation of the center

can flatten the central part of the profiles; so this might be another cause for

missing weak cusps in previous measurements.

The SB profiles for the whole sample are shown in Figures 2.7 to 2.11.

For each cluster we show the SB values measured from the image, the smooth

profile, and the Chebychev polynomial fit obtained by Trager et al for com-

parison. We warn the reader that, as explained in detail on section 2.3.4,

the photometric points beyond ∼ 20′′ do not participate in the fitting of the

smooth curve, instead, the Chebychev fit is used in this region. For most ob-

jects the agreement between the ground based data and ours is very good at

large radii (> 10′′). There are a few cases that show disagreement between

the two profiles; these clusters tend to show a steep inner profile (NGC 6284,

NGC 6535, M70, M15), with the largest discrepancies in the inner 10 arcsec-

onds. As we already discussed (Section 2.3.4) these differences may be due
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to PSF effects. We observe that for 70% of the sample the central photomet-

ric points are brighter than the polynomial fit obtained from ground based

photometry, sometimes changing the shape of the previously measured central

surface brightness (i.e, making it steeper). The remaining 30% agree with pre-

vious measurements or have fainter photometric points near the center. For

the extreme cases, the difference between the central SB value with previous

reports is larger than 1.7 magnitudes (NGC 6284, NGC 6535, NGC 6652 and

M15).

In order to check for any potential biases from our smoothing in the

central regions, we compare with single-mass King profiles (King, 1966) fitted

to the combination of our photometric points and Trager’s Chebychev fit. For

these fits we keep the value of the tidal radius fixed (from Trager’s values)

since our data is only in the central regions. Figure 2.12 shows representative

fits for three clusters, 47Tuc, NGC 2808, and NGC 6293. For 50% of the

sample, our smooth profile and the King fit are equally good fits to the data,

as in the case of 47Tuc. For the other 50%, we obtain either a small departure

from a flat core, as in the case of NGC 2808, or a clear large departure as

in the case of NGC 6293. These departures are always in the same sense,

i.e., the photometric points are brighter than the King fit towards the center

and the deviation increases as radius decreases. We also performed power-law

plus core fits with the functional form used by Lugger et al. (1995). We only

performed these fits for the cases that depart from a King profile. The fits are

performed using only the data points for the central arcminute, since we do

not expect the outer part of the profiles to be described by a power-law. For

most cases, the power-law plus core fit follows the same trend as the King fits,

but NGC 6397 and NGC 6652 these fits are as good as our non-parametric
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Figure 2.7 Surface brightness profiles for the entire sample. For each cluster we
show our photometric measurements (solid points), our smooth profile (solid
line), and Trager’s Chebychev polynomial fit (dotted line). The smooth profile
comes from a fit to our photometric points inside ∼ 20′′ and the Chebychev
fit outside that region. For every panel the SB units are V mag/arcsec2. We
mark the location of the core (thin vertical line) and break (thick vertical line)
radii. The core radius is where the central flux falls by half its value and the
break radius is where the second derivative of surface brightness with respect
to radius reaches a minimum.
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Figure 2.8 SB results continued
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Figure 2.9 SB results continued
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Figure 2.10 SB results continued

50



Figure 2.11 SB results continued
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Figure 2.12 Representative single-mass King fits for 47Tuc, NGC 2808, and
NGC 6293. The top panel shows the photometric points (triangles) along
with our smooth fit (solid line) and a King fit (dotted line). The bottom panel
shows the residuals for the smooth fit (solid points) and for the King fit (open
points).

profile. We discuss the details for each object in Section 2.4.3.

All of the clusters previously reported as core-collapse show cusps, with

the exception of NGC 6752, which shows a flat core. Only four of them

(NGC 6652, M70 M15, and M30) show a ∼ −1.6 central logarithmic slope

in luminosity density, which is normally assumed for objects in this state

(Breeden et al., 1994). The rest have slopes between −1.2 and −1.4. We

consider all objects with luminosity density slopes more negative than -1.0

to have ‘steep cusps’; they constitute 34% of the sample. 24% show weaker
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cusps with luminosity density slopes between −0.2 and −1.0; many of these

have been previously reported as flat cores or were marked as possibly core

collapse on Trager’s catalog. We consider these objects to have ’weak cusps’.

Finally 42% of the objects in the sample show flat cores consistent with an

isothermal distribution, even when their inner photometric points are brighter

then previous measurements. If we group the weak cusps with the steep cusps,

in total 58% of the sample do not show isothermal cores. The presence of so

many non isothermal cores will have important consequences for the dynamical

evolution of the clusters. No dynamical model or simulation predicts this

distribution of slopes for GCs. Grillmair et al. (1995) make a detailed study

of large radial structure for 12 galactic clusters. They obtain surface density

profiles from star counts and find that most of the clusters depart from the

King models previously fit to them because they contain stars in the extra

tidal region. This result put together with the fact that more than half of

the objects in our sample are not represented by isothermal cores leads us to

think that King models do not describe well the surface density profile of many

globular clusters.

Our measured errors for surface brightness slopes are on average 0.1

and the largest is 0.18. For the luminosity density slope the average is 0.28

and the largest error is 0.54. For the cases with steep cusps, the error is always

under 0.35. Those with measured SB slopes under −0.2 are all 2σ+ detections,

implying that they show a deviation from an isothermal core. Assessing the

uncertainties for the flat cases is particularly relevant since we want to evaluate

the possibility of having positives slopes. Luminosity densities with a central

minimum have been observed in a handful of galaxies (Lauer et al., 2002).

These have been interpreted as two possible scenarios: one where a stellar
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torus is superposed on a normal core due to a recent merger (this is quite

unlikely in a globular cluster), and the other scenario where stars are depleted

from the center due to a binary black hole interaction. Unfortunately, the

uncertainty in our measurements for cores with positive slope is large enough

to include zero slope.

For each profile on Figs 2.7-2.11, we mark both the core and the break

radius. Seven of the steep cusp cases do not have a measured break radius

because they do not show a clear turning point in the profile. We observe that

for the rest of the sample these two radii do not always coincide. For all but

six cases, the break radius is larger than the core radius, while for five cases

the two are the same. The core radius that we report is a non-parametric fit

as opposed to its historical value as one of the parameters for King fits.

We also check whether our limited spatial resolution (about 0.3′′) has

an effect on being able to resolve a core. We plot the ratio of our smallest

resolution over the measured break radius against various properties; this ratio

is always smaller than 0.2 implying we have at least five resolution elements

inside the break radius for those clusters that have a turn-over in the light

profile. We find no correlations; if all clusters have King-type profiles with

small core radii, we would expect to see correlations.

2.4.2 Slopes Distribution and Correlations

Figures 2.13 and 2.14 show histograms of the surface brightness and

luminosity density logarithmic slopes. There is no clear separating line for

two classes of objects, so the sample cannot be cleanly divided into isothermal

and core collapse profiles. Since our sample is only ∼ 30% of the full galactic

globular cluster system, we have to determine potential biases. Trager et al.
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Figure 2.13 Histogram for surface brightness central logarithmic slopes. In-
dividual clusters are shown in each bin. The name of the cluster is coded
according to previously reported dynamical state in Trager’s catalog. Marked
with a ‘c’ for core collapse , ‘c?’ for possible core collapse and just the name
for flat cores.
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Figure 2.14 Histogram for luminosity density central logarithmic slopes. Clus-
ter names are coded as in previous figure. Clusters in italics are those for
which deprojection cannot be achieved due to diverging density profile near
the center.
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classify 16% of their sample as core collapse clusters and 6% as possible core

collapse (’c’ with a question mark in his catalog). Our subsample has 21%

objects considered core collapse and 8% possible core collapse from Trager et

al. Thus, our sample resembles the distribution for the full sample with a

slightly larger number of core-collapse cases. All but one (NGC 6752) of the

objects marked as core collapse fall in our ‘steep cusp’ category, while those

clusters marked as possible core-collapse are found in all three categories. We

find 17 objects previously classified as flat cores (i.e. classic King models)

that are consistent with an isothermal profile. We can determine the fraction

of clusters that have isothermal cores by comparing our SB histogram with

that expected given our measurement uncertainties for the clusters that have

nearly flat cores. Our average slope uncertainty is about 0.1. A Gaussian that

contains 50% of the sample with mean 0 and sigma 0.06 (the average slope

error for flat cores) matches the flat end of the slope distribution very well.

The remaining population (∼ 50% of the objects in the sample) shows a fairly

uniform number of objects between slopes −0.2 and −0.8. Thus, only half the

objects in our sample are consistent with a King-type profile.

We plot logarithmic SB and LF central slopes against a variety of global

properties of clusters taken from Harris’ catalog or measured in this work.

Figures 2.15 and 2.16 show these plots for both central slope values versus

central surface brightness, total V magnitude, metallicity, logarithmic physical

core radius, logarithmic physical break radius, logarithmic half-light relaxation

time, velocity dispersion and age. Fig 2.15 also shows the relation between SB

slope and LF slope. We observe some global trends. As it is to be expected,

the clusters with steep profiles tend to have brighter central surface brightness

values, although the very sparse cluster NGC 6535 is an outlier. There is an
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indication that objects with steeper cusps are found in smaller objects (i.e.

higher total magnitude); this trend is more clear for luminosity density slopes.

Metallicity measurements do not appear to show any trend. The same is true

for galactocentric distance, except that the objects with steeper cusps are all

close to the center of the galaxy, but given the size of our sample this might

just be a small number effect. Half-light relaxation time seems to be shorter

for the steep cases. As it is to be expected, the core radius is smaller for

clusters with steep profiles, while the break radius shows no correlation with

slopes. Velocity dispersion and age show no correlation with slopes. Finally,

the relation between surface brightness and luminosity density slope is not

linear, as expected, and is similar to that observed for galaxies (Gebhardt

et al., 1996).

The measured values for outer slopes range from −1.0 to −2.5 for the

clusters in the sample. When we plot these outer slopes values versus global

properties, and in particular versus either central SB slope or concentration,

we find no correlations. So as far as this sample goes, we cannot distinguish

between King-type or core-collapse objects from the outer slope of the profiles.

This is illustrated on Figure 2.17 where we overplot all the observed profile,

scaled in surface brightness and either their break radii (when they exist)

or core radii (for the others). The profiles are color coded according to the

classification given above for flat cores, weak cusps and steep cusps. It can

be observed that although the different groups can be separated in the inner

region, they do not seem to split into groups in the outer region. This figure

confirms once again that the profiles cannot be clearly divided into flat cores

and steep cusps, but that they span a continuous range of central profiles.
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Figure 2.15 Surface brightness central logarithmic slope versus central surface
brightness, absolute total V magnitude, metallicity, logarithmic core radius
(in parsecs), logarithmic break radius (in parsecs), half light relaxation time,
velocity dispersion, logarithmic age and luminosity density slope (the solid
line represents ‘LD slope = SB slope + 1’). The distances to the clusters
were obtained from Harris’ catalog. There is a trend between central surface
brightness and slope (with one obvious outlier). There is also a trend with
core radius and relaxation time.
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Figure 2.16 Luminosity density central slope versus central surface brightness,
absolute total V magnitude, metallicity, logarithmic core radius, logarithmic
break radius, half light relaxation time, velocity dispersion and logarithmic
age.
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Figure 2.17 Surface brightness profiles for the entire sample. The profiles are
normalized to a common point, therefore the units in the axis are arbitrary.
Profiles are color coded according to their central slopes. Flat cores are shown
in red (dashed lines), shallow cusps are shown in green (solid lines), and steep
cusps are shown in blue (long dashed lines).
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2.4.3 Individual objects

2.4.3.1 NGC 6397

NGC 6397 is a peculiar object because it has always been considered

to be in core collapse due to its steep inner profile, but unlike other objects

considered to be in core-collapse, this one shows a sizable core. Lugger et al.

(1995) report measuring a 4−10′′ core. Our measurement for the break radius

for this cluster is 2.1′′. We fit a power-law plus core function for the central

region of the profile and we find that the fit with a 4.5 ′′ core radius is a good fit,

but only for the central 10′′. It could be the case of a partially resolved core.

In previous studies the inner slope is measured in a radial range extending

well beyond the measured core radius (as far as 100′′). We measure inner

slopes at the central few arcseconds for all objects in our sample, therefore

our slope value for this object is much shallower than previous measurements.

Our −0.37 central slope value places this object in the weak cusp category.

2.4.3.2 NGC 6535

NGC 6535 contains very few stars, therefore the image has low signal

and the measured profile looks very noisy. We decided to include it in the

sample because despite having so few stars, it shows a very steep central

surface brightness profile. The photometric data shown in Trager’s catalog

for this cluster shows an important deviation (∼ 0.8 mag) with respect to the

Chebychev polynomial fit between 2′′ and 15′′, where the photometric points

are brighter than the polynomial fit. PSF effects might have been responsible

for missing a cusp in this measurements.
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2.4.3.3 NGC 6652

NGC 6652 is not considered to be in core collapse, but it shows a very

concentrated profile in our measurements. Trager et al. (1995) report a 4′′

core for this object. Our power-law plus core fit finds a 1.15′′ core and it is

consistent with the photometry within the error bars. This could be another

case of a partially resolved core. The central slope from the smooth profile is

−0.57.

2.4.3.4 NGC 6752

NGC 6752 has been subject to a number of studies. This is the only

cluster in our sample for which we only analyzed the PC chip, without includ-

ing analysis of the WF chips. Lugger et al. (1995) analyzed a ground-based

U-band image of the cluster and conclude that the surface brightness profile

does not present a core-collapse morphology. Ferraro et al. (2003) constructed

a surface density profile for this cluster based on star counts. They fit the

central region with two separated King models, which they interpret as the

cluster being in post-core-collapse bounce. Our results indicate a flat core

with a slope near zero for both the surface brightness and luminosity density

profiles. Our difference from Ferraro et al. is likely due to noise in the star

counts that they use.

2.4.3.5 M15

There are a variety of WFPC2 images available for M15. For this

reason we applied the exact same procedure to each of them in order to test

the reliability of the profiles. We have a high signal-to-noise F555W image,

a F336W image and a snapshot (60 sec) F555W image. In Figure 2.18 we
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show our results for the inner part of the cluster, where we compare them

with previously obtained profiles by Lauer et al. (1991), Guhathakurta et al.

(1996) and Sosin & King (1997). Lauer et al’s analysis used a WFPC1 image,

where they subtracted stars and measured the background starlight. Sosin &

King’s curve comes from star counts in a narrow magnitude range and does

not have any kind of smoothing applied to it, which is the reason why it

looks much noisier than the other curves. Guhathakurtha et al’s curve comes

from corrected star counts and includes smoothing. All three curves have

an arbitrary vertical scaling. It can be seen that the profiles are consistent

in shape trough this radial range (inner 5 arcseconds), with the exception of

Lauer’s profile, which appears flat toward the center. The center we measure

is within 0.1 from that obtained by both Guhathakurta and Sosin & King,

so we are confident that center estimation is not a problem for this highly

concentrated object.

When measuring logarithmic inner slopes, the choice of the radial ex-

tent used for the slope measurement is crucial. Sosin & King measure a

−0.7 ± 0.5 logarithmic slope by fitting a power-law over a large radial extent

between 0.3′′ and 10′′. Guhathakurta et al. report a slope of −0.82 ± 0.12,

again by fitting a power-law between 0.3′′ and 6′′; this power-law fits the star

counts near 6′′but it is steeper than the points in the inner 0.5′′. We measure

the slope only for the innermost points (< 0.5′′) were it is a constant and get

a value of −0.62 ± 0.06. If the same procedure is applied to Guhathakurta et

al.’s profile, we get a shallower slope of −0.46.
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Figure 2.18 Surface brightness profiles for the central region of M15. Previ-
ously obtained profiles obtained by Guhathakurta (dashed dark blue), Sosin
& King (dotted light blue) and Lauer et al. (long dashed red) are plotted
with our results from various images: long exposure V image (solid black),
long exposure U image (dotted -dashed green) and short exposure V (medium
dashed magenta).
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2.5 Summary

We obtain central surface brightness profiles for 38 galactic globular

clusters from HST/WFPC2 images in various filters. Generally, we obtain

reliable profiles into 0.5′′. Based on extensive simulations, we conclude that

measuring integrated light with a robust statistical estimator is superior for

estimation of the profiles compared to star counts when high signal to noise

images are available. Profiles obtained from images taken with different filters

are consistent and all are normalized to V-band by matching large radii results

to profiles obtained from ground-based data.

When compared with previous ground based measurements, some of

our profiles show different shapes for the inner regions. Most central surface

brightness measured are brighter than previously reported with values up to

two magnitudes brighter. The main reason for this difference is the increased

spatial resolution of HST , but also because we use a non-parametric estimate

as opposed to the traditional King model fits. The full distribution of central

slopes is not consistent with that expected from evolution of isothermal cores.

About half of our sample have a slope distribution consistent with King models

(i.e. having a flat core) within our measurement uncertainties. The remaining

50%, however, have a distribution of surface brightness logarithmic slopes that

are fairly uniformly distributed from −0.2 to −0.8. Our direct deprojection

of the SB profiles produces similar results for the luminosity density. About

half of the sample have luminosity density logarithmic slopes that range from

−0.4 to −1.7.
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Table 2.1. Milky Way Sample.

NGC other name filter exp. time image name α center δ center

104 47Tuc F555 723 u5470112b 00:24:05.47 -72:04:52.16
1851 · · · F439 1200 u2va0103b 05:14:06.95 -40:02:44.61
1904 M79 F555 306 u3ki0201b 05:24:11.03 -24:31:29.50
2298 · · · F814 905 u3kt010gb 06:48:59.44 -36:00:19.52
2808 · · · F555 314 u4fp0105b 09:12:03.09 -64:51:48.96
5272 M3 F555 1260 u4r00101b 13:42:11.33 28:22:37.81
5286 · · · F555 530 u3um0201b 13:46:26.73 -51:22:28.77
5694 · · · F555 310 u2y70105b 14:39:36.29 -26:32:20.19
5824 · · · F555 320 u2y70205b 15:03:58.63 -33:04:05.59
5897 · · · F555 608 u3kt0204b 15:17:24.50 -21:00:37.00*
5904 M5 F336 1200 u3ki0302b 15:18:33.36 02:04:55.19
6093 M80 F675 780 u3mu0104b 16:17:02.48 -22:58:33.18
6205 M13 F555 2056 u5bt0104b 16:41:41.05 36:27:36.19
6254 M10 F336 1500 u3ki0102b 16:57:08.9 -09:05:58.0*
6266 M62 F555 562 u67e0209b 17:01:12.96 -30:06:46.20
6284 · · · F555 164 u2xx0302b 17:04:28.51 -24:45:53.54
6287 · · · F555 3160 u37a0106b 17:05:09.13 -22:42:30.14
6293 · · · F555 202 u2xx0202b 17:10:10.31 -26:34:57.77
6341 M92 F555 428 u2z50109b 17:17:07.34 43:08:10.08
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Table 2.1 (cont’d)

NGC other name filter exp. time image name α center δ center

6333 M9 F555 2105 u28q030lb 17:19:11.26 -18:30:57.41
6352 · · · F555 100 u2kl0205b 17:25:29.50 -48:25.19.65
6388 · · · F336 1060 u63t0301b 17:36:17.18 -44:44:07.83
6397 · · · F555 249 u33r010kb 17:40:41.57 -53:40:26.03
6441 · · · F336 1060 u63t0401b 17:50:12.91 -37:03:06.67
6535 · · · F555 1128 u3kt040gb 18:03:50.66 -00:17:53.03
6528 · · · F555 814 u61v0101b 18:04:49.64 -30:03:22.55
6541 · · · F555 596 u28q050hb 18:08:02.66 -43:42:52.92
6624 · · · F555 1478 u28q0604b 18:23:40.22 -30:21:41.32
6626 M28 F555 1128 u3kt050gb 18:24:32.81 -24:52:11.20
6637 M69 F555 1690 u28q0704b 18:31:23.17 -32.20:54.59
6652 · · · F555 1989 u3m8010ib 18:35:45.64 -32:59:26.99
6681 M70 F555 100 u24s0103t 18:43:12.83 -32:17.33.38
6712 · · · F814 120 u2of0205t 18:53:04.30 -08:42:22.0*
6715 M54 F555 1850 u37ga40cb 18:55:03.29 -30:28:46.10
6752 · · · F555 5246 u2hO010cb 19:10:52.237 -59:59:03.81
7078 M15 F555 400 u2hr0102b 21:29:58.40 12:10:00.26
7089 M2 F555 106 u67e0303b 21:33:27.00 -00:49:25.71
7099 M30 F555 1192 u5fw010nb 21:40:22.16 -23:10:47.64
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Table 2.2. Measured parameters

NGC other µV (0) rc rb SB slope error LD slope error
number name (mag/arcsec2) (arcsec) (arcsec) logarithmic logarithmic

104 47Tuc 14.35 20.9 16.4 0.00 0.04 0.11 0.15
1851 · · · 13.30 2.0 4.6 –0.38 0.11 –1.03 0.11
1904 M79 15.67 5.6 14.8 –0.03 0.07 –0.01 0.39
2298 · · · 18.72 16.3 17.4 0.00 0.07 0 .00 · · ·
2808 · · · 14.89 12.4 36.1 –0.06 0.07 –0.66 0.54
5272 M3 15.72 14.6 46.9 –0.05 0.10 –0.39 0.45
5286 · · · 15.19 4.2 25.1 –0.28 0.11 –1.17 0.30
5694 · · · 15.62 2.2 2.6 –0.19 0.11 –0.73 0.41
5824 · · · 14.17 1.4 4.0 –0.36 0.16 –1.11 0.36
5897 · · · 20.47 84.9 119.0 –0.04 0.03 0 .00 · · ·
5904 M5 16.13 25.7 18.1 0.05 0.07 0 .00 · · ·
6093 M80 14.56 4.5 6.1 –0.16 0.07 –0.77 0.28
6205 M13 16.41 34.4 79.4 –0.10 0.15 –0.71 0.32
6254 M10 17.68 43.4 22.4 0.05 0.07 0 .00 · · ·
6266 M62 14.78 6.6 13.8 –0.13 0.08 –0.74 0.40
6284 · · · 14.66 1.1 · · · –0.55 0.14 –1.39 0.19
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Table 2.2 (cont’d)

NGC other µV (0) rc rb SB slope error LD slope error
number name (mag/arcsec2) (arcsec) (arcsec) logarithmic logarithmic

6287 · · · 18.32 11.3 34.4 0.00 0.07 –0.04 0.30
6293 · · · 14.43 1.0 · · · –0.67 0.08 –1.27 0.18
6341 M92 15.29 11.0 17.15 –0.01 0.04 0 .00 · · ·
6333 M9 17.01 19.1 41.8 0.00 0.13 0 .00 · · ·
6352 · · · 18.31 23.2 24.0 0.02 0.17 0 .00 · · ·
6388 · · · 14.68 4.4 5.0 –0.13 0.07 –0.57 0.21
6397 · · · 15.29 3.7 2.7 –0.37 0.11 –1.16 0.20
6441 · · · 14.76 5.8 12.6 –0.02 0.12 –0.02 0.35
6535 · · · 19.35 1.7 21.2 –0.50 0.18 –1.28 0.38
6528 · · · 16.56 3.9 6.7 –0.10 0.14 –0.23 0.29
6541 · · · 14.38 2.0 · · · –0.41 0.09 –1.32 0.22
6624 · · · 14.35 1.7 4.28 –0.32 0.16 –1.15 0.31
6626 M28 15.55 9.8 8.9 0.03 0.05 0 .00 · · ·
6637 M69 16.71 16.4 49.5 0.09 0.13 0 .00 · · ·
6652 · · · 13.93 1.2 0.7 –0.57 0.12 –1.44 0.20
6681 M70 13.68 1.1 · · · –0.82 0.09 –1.75 0.10
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Table 2.2 (cont’d)

NGC other µV (0) rc rb SB slope error LD slope error
number name (mag/arcsec2) (arcsec) (arcsec) logarithmic logarithmic

6712 · · · 18.57 37.3 68.6 0.02 0.05 0 .00 · · ·
6715 M54 14.12 3.2 8.2 –0.12 0.07 –0.71 0.35
6752 · · · 14.56 6.53 3.2 –0.03 0.15 0 .00 · · ·
7078 M15 12.45 0.98 · · · –0.66 0.11 –1.56 0.22
7089 M2 15.19 12.9 20.8 0.05 0.11 0 .00 · · ·
7099 M30 14.22 1.6 · · · –0.57 0.11 –1.42 0.18

Note. — col 1-2 are NGC and other names, col 3 is central surface brightness in V, col 4 is core radius,
col 5 is break radius (as defined on Section 2.3.4), col 6-7 are logarithmic central surface brightness slope
and uncertainty, col 8-9 are logarithmic central luminosity density slope and uncertainty.
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Chapter 3

Surface brightness Profiles for a sample of

LMC, SMC and Fornax Dwarf galaxy

Globular Clusters

3.1 Introduction

The observational study of internal dynamics of globular clusters (GCs)

has benefited from imaging from space as well as enhanced spectroscopic ca-

pabilities in the ground. Noyola & Gebhardt (2006) (from now on called chap-

ter 2) measured surface brightness profiles (SB) from Hubble Space Telescope

(HST ) images for a sample of 38 galactic globular clusters. The results from

that work show that half of the objects in the sample are not consistent with

having central flat cores, but instead, the distribution central surface bright-

ness logarithmic slopes is continuous form −0.2 to −0.8. The ages of the

Galactic clusters are all confined to a narrow range older than ∼10 Gyr (Salaris

& Weiss, 2002; De Angeli et al., 2005). It is desirable to measure central SB

profiles of globular clusters with younger populations to find out if these cen-

tral cusps are also observed in less evolved clusters. Globular clusters around

Milky Way satellites are ideal targets for this task since they have a larger

age range, they are relatively near, and most of them have been observed with

HST .

Surface brightness profiles have been obtained for GCs in the Large

Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Fornax dwarf
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galaxies in various studies using ground-based data. For the LMC clusters,

star counts (Kontizas et al., 1987), aperture photometry (Mateo, 1987; Elson,

1991) and hybrid techniques (Elson et al., 1987) have been used to obtain

surface density profiles for a variety of subgroups (rich, old, young, disk, and

halo clusters). For the SMC clusters, only a few studies have measured density

profiles from star counts (Kontizas & Kontizas, 1983; Kontizas et al., 1986).

A couple of studies measured density profiles from aperture photometry for

globular clusters around the Fornax dwarf galaxy (Smith et al., 1996; Rodgers

& Roberts, 1994). All of these studies are very useful for studying SB profiles

at large radius, but at small radius they suffer from the usual seeing and

crowding problems associated with ground-based observations.

A large systematic study of surface brightness profiles obtained from

space-based imaging was carried out by Mackey & Gilmore (2003b,a,c) (from

now on collectively referred to as MAC03). They gathered a broad sample

of LMC, SMC and Fornax galaxy GCs imaged with WFPC2. They obtained

SB profiles by measuring star counts weighted by brightness from which they

derived fundamental quantities like central density and core radius by fitting

EFF profiles (Elson et al., 1987; Elson, 1991), which are power-law plus core

profiles with three parameters: core radius, central surface brightness, and

slope of the power-law. They determine that 20±7% of the clusters in their

sample are consistent with a post-core-collapse morphology, a similar number

to the one found for Galactic clusters (Trager et al., 1995). When they com-

pare their profiles with previous results obtained from ground based images,

they find that important aspects of the nature of the profiles can be measured

by improving the spatial resolution. McLaughlin & van der Marel (2005) (from

now on called MVM05) combine the data from MAC03 with star count pro-
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files from ground-based data in order to obtain a more accurate photometric

normalization. They fit the re-normalized de-reddened resulting profiles with

variety of models such as King fits (King, 1966), an alternate modified isother-

mal model by Wilson (1975), which has more extended envelopes than a King

model, and a power-law plus core model like the one used in MAC03. They

conclude that The Wilson fits provide the best description of the outer part

of the clusters for both old and young populations.

Elson et al. (1989) and Elson (1992) found an interesting relation be-

tween core radii and age for a sample of LMC globular clusters in which the

core radius seems to increase with ages between 1 Myr and 1 Gyr and then

decreases again after that. Using HST data, de Grijs et al. (2002) explore the

matter for a sample of rich LMC globular clusters and find that young clusters

tend to have small core radii while older clusters have an increasingly large

spread of core radii. MAC03 explored this relationship and found that the

relation is also valid for globular clusters around other Milky Way satellites

besides those in the LMC.

We concentrate in the central parts of the clusters because this is the

region in which our technique has found differences in the SB shape when com-

pared to profiles found by fitting parametric models containing flat cores (i.e.

King (1966) models or other type of core profiles) for some clusters. Improv-

ing the measurements in this region and merging the results from our Galactic

sample with those of this new sample, can help to understand the central re-

gion of globular clusters in order to understand their dynamical evolution. The

LMC, SMC and Fornax galaxy globular cluster systems offer a unique window

of opportunity to test if there are fundamental differences between systems

due to their age.
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3.2 Simulations

In chapter 2 we performed a large number of simulations in order to

establish the best method for measuring surface brightness profiles from HST

images and also to estimate the uncertainties of our measurements. Results

from that paper indicate that the only way to measure reliable surface bright-

ness profiles from integrated light is by using high signal to noise images. In

order to evaluate how our findings for galactic GCs translate to clusters further

away, we again perform extensive simulations, which we describe in detail in

this section.

3.2.1 Image Construction

The way we create a simulated image is by adding synthetic stars on a

background image using the task ADDSTAR in DAOPHOT (Stetson, 1987).

The background image we use is a WFPC2 image of a very unpopulated field

for which the few present stars have been cleanly subtracted. The input star

lists are created in the same way as in chapter 2. With a given SB profile

and a luminosity function, stars are generated randomly around a given cen-

ter (the middle of the chip) following the two probability distributions, the

surface brightness for radial distribution, and the luminosity function for the

magnitude distribution. The supplied luminosity function comes from Jimenez

& Padoan (1998) and it is corrected by the distance modulus of the LMC.

In chapter 2, we simulated SB profiles with the shape of various power

laws. This gave us a good feel for our ability to recover a given central slope,

but we could not test our ability to measure turnover radius. In order to better

test our method this time we create a series of profiles formed by two power-

laws joined at a break radius with a variable sharpness of break known as

75



Nuker profiles (Lauer et al., 1995). A Nuker profile is defined in the following

way

I(r) = Ib2
(β−γ)

α

(

r

rb

)−γ (

1 +

(

r

rb

)α)

(γ−β)
α

,

where rb is the break radius, Ib is the surface brightness at the break radius,

−γ is the asymptotic inner slope, −β is the asymptotic outer slope, and α

is the sharpness of break. By using these type of profiles we are capable of

reproducing the characteristics of observed profiles for the sample. We create

six different input profiles, whose parameters are summarized in Table 3.1.

The radial extend of the simulated clusters is 400 pixels, which is equivalent

to 18.4′′ with the PC pixel scale (0.046 arcsec/pixel).

Once we have the input profiles we proceed to create multiple real-

izations of a given model including different numbers of stars. Using various

DAOPHOT tasks we add synthetic stars onto the background image. We

use as the input point spread function (PSF) the one calculated for the LMC

cluster NGC 1835 with a PSF radius of 9 pixels. Judging by the number of

found stars in the real data, we create images with three different amounts

of input stars: 200,000 input stars, which yields ∼10,000 found stars; 50,000

input stars, giving ∼ 6,000 detected stars; and 10,000 input stars, for which

we find ∼ 2,000 stars. The vast majority of the real clusters in the sample are

comparable to the first two cases. The different realizations have the exact

same input parameters but come from different, non-overlapping star lists. We

create 10 realizations for the 200,000 input stars case, and 20 for the other two.

It is worth noting that the number of found stars decreases with increasing

input central slope for the same number of input stars. For the steepest cen-

tral slope ∼8,000 stars are found compared to the ∼10,000 for the zero central
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slope cases. To avoid confusion, we always refer to the simulated datasets by

the number of input stars rather than the number of found stars.

3.2.2 Center Determination

Having an accurate measure of the center is a key step to measuring

an accurate density profile. Our technique for finding the center of a cluster

is described in detail on chapter 2. We take a guess center, divide the image

in eight sectors converging at that center, count the stars in each sector and

calculate the standard deviation of those eight numbers. We change to a

different guess center and perform the same operation. In the end we have a

grid of guess centers with a standard deviation value associated to them. We

fit a surface using a spline smoothing technique (Wahba, 1980; Bates et al.,

1986) and choose the minimum of this surface as our center.

We test the accuracy of our center determination technique by applying

it to these simulated images. Figure 3.1 shows the average measured center and

the standard deviation of the measurements for different groups of simulations.

The maximum deviation observed is of ∼7 pixels, which is equivalent to ∼0.3′′.

These results are better than those in chapter 2. We believe the reason for

this is that there are more stars enclosed in the same projected radius due to

the distance difference, therefore the center estimation is improved.

3.2.3 Surface Brightness Profiles

We compare the results of measuring the density profile from integrated

light versus doing it using star counts. We refer the reader to the detailed

discussion in section 2.4.1 about the strengths and weaknesses of each method.

Results from that paper indicate that using a robust estimator to calculate
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the number of counts per pixel in a given area is the best way to recover the

central part of the profile. For that reason we use the same robust estimator,

the biweight (Beers et al., 1990), for our measurements in this work.

We measure the brightness of stars as well as their location from the

constructed images. We use a series of DAOPHOT tasks to find stars and per-

form PSF fitting photometry with the same PSF that we used to construct the

images. Since Poisson noise was included when constructing the images, this

does not make the subtraction perfect. The process produces an image where

all the stars have been subtracted and only the background light remains. We

call these images ‘subtracted’, while we refer to the original unsubtracted im-

age as ‘full’. We measure a surface brightness profile in concentric annuli from

the center of the cluster by calculating the biweight of the counts in an annu-

lus and dividing by the number of pixels. We use two sets of annuli for these

measurements. The first set goes from 1 to 25 pixels in steps of 4 − 6 pixels,

and the second set goes from 20 to 100 in steps of 20 pixels. The assigned

radius of a given annulus is the average between the inner and outer radii. In

chapter 2 we note that, for the input profiles with steep cusps, the subtracted

images produce a flatter central profile than the input. This is because crowd-

ing produces and over subtraction after the PSF fitting process. As done in

chapter 2, we decide to produce alternative images with only the 10% bright-

est stars PSF subtracted and an image where we mask the 2% brightest stars

with a radius of 3 pixels to try to avoid the over subtraction problem.

Once we have the catalog of found stars we can compare it to the

original input list and estimate how many of the input stars are found for

different magnitude a radial bins. For the cases with 200,000 input stars We

find that bright stars are found with an efficiency higher than 100%, meaning
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that more stars are found to be in the brightest magnitude bin than the number

of stars that were input for that same magnitude bin. This effect is more

pronounced in the central part of the cluster, where crowding problems are

worse. The effect is easy to explain since one or more faint stars are likely to

fall within the PSF disk of the bright stars and their light is measured as if

it was part of the bright stars. The difference between input and measured

magnitudes is topically ∼0.1 mag, which is enough to make a number of stars

from a fainter magnitude bin be measured in a brighter one. For intermediate-

magnitude stars, the same effect happens, for the regions in and around the

core; the efficiency for finding these stars falls to 50 − 70% depending on the

case. The efficiency for finding the fainter stars is lower in any radial bin; it

is a few percent in the center and up to 50% for the regions at large radii.

As expected, these numbers become more extreme for the cases with steeper

central slopes, since crowding is worse then. For the case with 50,000 input

stars, the trends are similar, but the numbers are less extreme. Stars in the

brightest magnitude bin are found with an efficiency close to 100% for the

cases with flatter central slopes. The efficiencies for the cases with steeper

central slopes are very similar to those with 200,000 input stars. Finally, for

the cases with 10,000 input stars. The efficiencies for finding the input stars

are all close to 100% except for the faintest stars in the central region of the

cluster, which go from 70 − 80% depending on how steep the central slope is.

The conclusion from this analysis is that when correction factors are calculated

for star count measurements, the factors are dependent on the shape of the

density profile and the number of existing stars. If one assumes the wrong

shape or the wrong number of stars in the cluster, the correction factors will

be wrong.
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Stars are counted in and divided by the area of each annulus. The

above discussion about the efficiency for finding stars suggests that the stars

below a certain brightness are never found with 100% efficiency, therefore we

exclude them from the star lists. We compare the obtained star count profiles

with those obtained by measuring integrated light from the four different im-

ages (full, subtracted, 10% subtracted and 2% masked). Results from these

measurements are shown in Figure 3.2 for the 200,000 input stars case and

Figure 3.3 for the 50,000 input case. In both figures we are showing models

1, 4, and 5, which have central slopes of 0, −0.4 and −0.7 respectively. We

find that, depending on the shape of the input model, the profile measured in

the subtracted, partially subtracted, or masked images follow the input profile

best. For the least concentrated cases, the measurements from the subtracted

and 10% subtracted image seem to follow the profile best, but for the more

concentrated cases, the subtracted and 10% subtracted cases tend to look flat-

ter in the center than the input profile. For these cases, the profile from the

masked image seems to be a better choice. The star counts profiles are always

much noisier than the light profiles in the central regions and they show a

consistent bias in the central regions for the cases with steep central slopes.

We test how well we recover the input central slope for the different

shapes of input profiles and for the different measurement methods. Since we

measure the central slope by taking a first derivative of the profile we need a

smooth version of it. For this, we apply the one dimensional version of the

spline smoother mentioned in section 3.2.2. This allows us to recover infor-

mation from the profile without fitting any parametric model to the data. We

exclude the star count profiles from these measurements because the central

parts of the profiles are too noisy for the spline smoother to get a reasonable
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profile. The first derivative of the smooth profile shows a section toward the

center where it is constant; we take this constant value as the measured cen-

tral slope. After measuring the central slope for the different realizations, we

calculate the average and the standard deviation for each case. We show the

input versus measured central slopes in Figure 3.4.

We observe that the uncertainty on the slope measurements increases

as the number of input stars decreases. For the 10,000 input stars case, the

profiles from the subtracted and 10% subtracted images yield smaller uncer-

tainties. These two cases tend to underestimate the central slopes for the

concentrated and rich (200,000 and 50,000 input stars) cases, while the slopes

recovered from the masked images seem to follow the input better. For all

the rich cases, the measurements for the model with the steepest central slope

overestimate the slope, we think this can be due to the fact that so many stars

are being input at the center that not enough stars are being input for the

outer parts, which would explain the fact that we find fewer stars for this case.

We test our ability to measure the input break radius by measuring the

minimum of the second derivative, which is the radius at which the curvature

is maximum. Our results show that we can measure the break radii for the

simulated clusters to within 10% accuracy. The majority (all except two) of

the observed clusters have a reported core radius larger than the one for our

simulations, so we are confident that we can measure such break radii.

3.2.4 Uncertainties

We refer the reader to the detailed discussion in section 2.2.4 of chap-

ter 2 about the sources for uncertainty when measuring surface density profiles

from integrated light versus measuring it from star counts. In order to prop-

84



0

0.5

1

0

0.5

1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1 0 0.5 1

input slope

original

subtracted

10% sub

masked

200,000 50,000 10,000 

Figure 3.4 Input versus measured surface brightness slope for the different
groups of simulations. A small horizontal offset is introduced for clarity in
the case of the two models with central zero slopes. We show the average
measured slope of the individual profiles for each case. Error bars represent
one standard deviation for all the measurements.

85



erly estimate our uncertainties, we compare the photometric scatter between

different realizations having identical input parameters with the biweight scat-

ter estimate. In chapter 2 we find that the biweight scatter has to be scaled

in order to match the photometric scatter measured from the different real-

izations. For these new simulations we find that the scaling factors change

due to the differences in our input shapes and of simulating clusters at larger

distances (the number of stars on a given annulus and differences in PSF). As

done in chapter 2, we compare these scaling factors with those obtained for

real data from an alternative method discussed in section 3.3.5.

We also estimate the error in our central slope measurements by com-

paring the scatter of measured slopes with the known input slope for every

simulated cluster. The results are shown in Fig 3.4. We confirm what we

learned from analyzing Figs 3.2 and 3.3. The slope uncertainties are smaller

for the subtracted and partially subtracted cases, but they are biased low for

the cases with steep cusps and large number of input stars. Also, the slope

measurements are more uncertain for the clusters with 10,000 input stars. The

figure suggests to take the measurements from the masked image for the cases

with steep central profiles and the subtracted or 10% subtracted for the oth-

ers. In the case of 10,000 input stars, the subtracted case always seems to be

better and not biased.

3.3 Data and Analysis

3.3.1 Sample

As mentioned in chapter 2, there are minimum requirements for an

image to be suitable for measurements with our technique. The image needs

to have a minimum number of counts, which we can obtain by having a large
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number of stars present due to richness, high concentration, or by having long

exposure times. We established that detecting stars six magnitudes fainter

than the horizontal branch with a signal to noise of 20 is a minimum require-

ment for low-concentration clusters. This criterion can be relaxed for highly

concentrated clusters and for those with a large number of stars (MV < −7.5).

Taking into account these requirements, we gather 30 clusters from the HST

archive. The sample contains 21 clusters in the LMC, 5 in the SMC and 4

in the Fornax dwarf galaxy. When images are available in two filters (F555W

and F814W), we align and combine the images in order to improve signal to

noise. We believe we are justified in doing this because the color gradients

for the radial range that we are measuring are smaller than the photometric

uncertainties. If no alternative image is available, we use the single F555W

dataset. In general we analyze only the chip in which the center of the cluster

lies, the only exception is the cluster Kron 3, for which we use all four chips.

The size of one WFPC2 chip is large enough to contain a few core radii for

every cluster in the sample. The scale of the CCD is 0.1′′/pixel for the WF

chips and 0.046′′/pixel for the PC chip.

We use the WFPC2 associations from the Canadian Astronomy Data

Center website1. These images are spatial associations of WFPC2 images

of a given target. The raw data frames are processed through a standard

reduction pipeline, grouped in associations and combined. The available data

are a multi-group image with frames for the three WF and the PC chips. It is

straightforward to align and combine two of these images from different filters

if they belong to the same program, which is the case for every object with

two images available in our sample.

1http://cadcwww.dao.nrc.ca/
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3.3.2 Image Processing

We process the data in the same way we do for the simulated images.

We choose the frame where the cluster center is located, this is usually the

PC frame, but for a few cases, it is one of the WF frames. We trim the

image in order to eliminate the noisy edges and then proceed to perform basic

photometry with various DAOPHOT tasks. First, we use the “FIND” task to

make a preliminary list of detected stars, then we perform aperture photometry

with the task “PHOT” in order to choose candidates for PSF construction.

We find that PSF stars have to be chosen by hand because a single bad PSF

star can have an important effect in the PSF construction. Once we have a

list of PSF stars, we perform an iterative procedure in which we subtract the

neighbor stars to the PSF stars and then recalculate the PSF. In this way, the

PSF construction is less affected by crowding. Using the final constructed PSF

we subtract all the stars from the image, leaving behind an image containing

only background light. We also create an image with the brightest 10% stars

subtracted and another one with the brightest ∼2% stars masked.

Some of the data frames contain a small number (2 to 6) of very bright

stars that appear saturated in the images. These bright stars are found at

various locations on the image, but the closer they are to the center, the

larger the effect they can have on our measurements by creating bumps in the

profile. We decide to exclude these stars from our measurements by masking

them with a larger masking radius than the one used for the 2% brightest stars.

The clusters for which this extra step was taken are NGC 1818, NGC 1984,

NGC 2100, NGC 2214, and NGC 330.
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3.3.3 Center

As discussed in chapter 2, it is crucial to measure the center of the

cluster accurately in order to measure a reliable surface brightness profile. We

use the method outlined in section 3.2.2. Many clusters in the LMC are known

to have an elliptical shape. Our method is not affected by this as long as the

cluster is symmetric in two dimensions. The first guess center is always chosen

by eye, and the radius for counting stars is chosen so that the circle lies entirely

inside the image, therefore, it is larger if the center is closer to the middle of

the chip. For one cluster (NGC 1868), the center of the cluster is very near the

edge of one of the chips. In this case, we calculate the center from a different

image with lower exposure time, but with the center located in the middle of

the chip. We report our measured centers in table 3.2. We warn the reader

that special care should be taken when using these coordinates. These centers

are valid only using the world coordinate system (WCS) information contained

in the header of each image. The WCS information for two different images

can make the coordinates for same location vary by a few arcsec. The center is

always measured on the primary dataset (the F555W image) when two images

were combined.

3.3.4 Surface Brightness Profiles

Once we have measured a center, we calculate the surface brightness

profile from the four different images of each cluster. We calculate surface

brightness by estimating the biweight (as explained in section 3.2.3) of the

number of counts per unit area in a series of concentric annuli. The choice

of the size of annuli in which we measure the profile is given by a trade off

between spatial resolution and noise. For images with very high signal to noise,
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we can use smaller steps, while for more sparse cases, smoother profiles are

obtained by increasing the size of the bins at the cost of decreasing the spatial

resolution. We use three different sets of annuli, the first one goes from 1-25

pixels with steps of 4-6; the second goes from 20-100 pixels with steps of 12-15;

and the third one from 100-380 pixels with steps of 40-60.

In section 3.2.3 we observe that for the simulated images the star counts

profile tends to underestimate the profile at the center and it is noisier than

the integrated light profile. For this reason, we decide not to calculate the star

count profiles for these datasets. Also, we observe that the profiles coming

from the unsubtracted image are always noisier than those obtained from the

other images, so we never use the ‘full’ profile as our final result. For every

set of simulations, the subtracted and 10% subtracted images always yield

smoother profiles, unfortunately they show to be biased toward the center for

the profiles with central slopes different than zero, so we can only use them

when all four profiles are consistent with a central flat profile. If there are

systematic differences between the original and masked profiles and the two

subtracted ones in the sense that the first two are steeper than the latter two,

then we use the profile from the masked image, since this is the one that traces

the central cusp best.

In chapter 2 we find the photometric zero point by integrating our

measured light profiles and comparing them to previously obtained profiles

from ground based data. We cannot do the same thing here because our

profiles have a smaller radial extent. For the cases in which our central profile

differs significantly from previous measurements, the radial extent in which the

two profiles agree is not large enough for us to make a meaningful comparison

of enclosed light. We also observe that the differences in shape between our

90



measurements and those obtained by MAC03 are always inside the turnover

radius. We therefore use the data points outside the core radius to normalize

our profiles to the EFF fits by MVM05. We choose to normalize to these

profiles because MVM05 use the MAC03 photometric points, but they re-

normalized them using ground based data and they correct for reddening.

This brings all our measurements to a common scale on Vmag/arcsec2.

We want to make measurements of central and outer slopes, but our

images are radially limited, so we construct radially extended profiles by using

our measured profile inside ∼ 10′′ and the MVM05 EFF fits outside that

radius. We measure slopes by taking a first derivative of the profiles, which

requires a smooth version of the profiles since noise is greatly amplified when

taking derivatives. The smoothing is done by using the one dimensional spline

mentioned in section 3.2.3 (Wahba & Wang, 1990). For most profiles, there is

a region in the center for which the first derivative is constant. We take this

value as the central slope. For the clusters that show a steep central cusps,

the slope sometimes changes through the entire radial range. In this case we

take the central most value of the derivative as the inner slope. Since we use

EFF fits at large radius, we expect the first derivative to reach a constant

value outside. The measured value is expected to coincide with the slope of

the power-law for the EFF fits, which it indeed does. We take the value of

the first derivative at the half-light radius as the outer slope. It is worth

noting that the measured outer slope will be very different to that measured

for Galactic clusters, since the profiles for those clusters are calculated from a

King fit, which does not have a constant outer slope.

We deproject the profiles after smoothing in order to obtain a lumi-

nosity density (LD) profile for each cluster. For the clusters with flat central
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profiles we often cannot obtain a proper deprojection due to noise, because

the noise sometimes makes the central points be slightly fainter than the rest,

which produces a positive slope in the smooth profile and that cannot be

deprojected numerically. For the cases in which we do obtain a proper depro-

jection, we measure the central slope of the LD distribution in the same way

as we measure the central SB slope, by taking a first derivative.

The traditional measurement of core radius as the radius for which the

central luminosity value falls by half loses meaning when the central slope

is not zero. If the central profile shows a cusp, then the core radius will be

resolution-dependent. For this reason, we decide to measure what we call a

break radius instead. The break radius is defined as the radius of maximum

curvature, the one in which the second derivative reaches a minimum. This is

a more systematic measure for a set of non-parametric profiles with different

central slopes. Even after applying the smoothing procedure, there is still a

certain amount of noise present in the second derivative, for this reason, we

fit a high order polynomial and take the minimum of the fit instead of the

minimum of the second derivative as our break radius. In chapter 2 we find

that the core and break radius coincide for the clusters having a flat core, but

the do not coincide for the cases presenting a cusp.

The difference in shape from our measurements and the parametric fits

will affect the measurement of the half light radius. Since we are using EFF

fits for the outer part, and these fits are formally infinite, we have to truncate

them in order to measure the total enclosed light. We use the tidal radius

measured by MVM05 as a truncation radius and measure the half light radius

for our smooth profiles. Having an estimate of the total luminosity and using

the M/L values calculated by MVM05 we can estimate the total mass of each
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cluster and thus estimate the median relaxation time as described in Binney

& Tremaine (1987)

trh =
2.06 × 106

ln(0.4Mt/〈m〉)
〈m〉−1M

1/2

t r
3/2

h .

We assume a mean mass of 0.5M⊙ as in MVM05. Results from these calcula-

tions are presented in table 3.3.

3.3.5 Data Uncertainties

We describe how we estimate uncertainties for the simulations in section

3.2.4. The method is based on different realizations for which shot noise from

stars can be estimated directly. We use an alternative method to calculate

the uncertainties for real data and we calibrate this method against that used

for the simulations, as we did in chapter 2. We assume a smooth underlying

stellar radial profile, so the uncertainties of the photometric points should

reflect deviations from a smooth curve in a statistically meaningful way (i.e.,

have a Gaussian distribution around the mean value). We calculate the root

mean square (RMS) difference between the smooth profile and the data points

for the central region. The biweight yields an estimate for the central location

(SB value) and scale (scatter); this scale value is divided by the square root of

the number of sampled pixels and used as the initial uncertainty for individual

photometric points. We then calculate the ratio of the biweight to the RMS,

which should represent our lack of inclusion of shot noise from the stars. This

ratio depends on the extent of the radial bins (i.e, the number of pixels used),

therefore we use two different scalings for the different binning. We estimate

this scale for the simulations using the different realizations, in order to make

sure that these two scalings coincide. The average scaling for the inner points
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is about 3 and about 10 for the outer points. These numbers are consistent

with what we found in the simulations. Thus, we are effectively including shot

noise from stars. The largest scalings occur for sparse clusters, as expected.

In the same way as in chapter 2, we calculate the uncertainties on slope

measurements from a bootstrap technique. The bootstrap approach follows

that in Gebhardt et al. (1996). From the initial smooth profile, a new profile

is created by generating random values from a Gaussian distribution with

the mean given by the initial profile and the standard deviation from the

photometric uncertainties. A hundred profiles are generated in this way and

the 16 − 84% quartiles are measured for the errors. These estimated errors

are compared with the scatter measured for the simulated cases in fig 3.4 and

the two independent error measurements agree quite well, which gives us the

confidence that the uncertainties calculated with the bootstrap method are

reliable. In chapter 2 we perform one more check on our slope uncertainties by

measuring the effect of increasing the uncertainties on photometric points by a

factor of two. From the bootstrap method, we find that the slope uncertainties

increased by a modest factor, less than two, for most clusters. Thus, the slope

uncertainties are not too sensitive to individual photometric errors.

3.4 Results and Discussion

3.4.1 Surface Brightness

The measured surface brightness profiles for the entire sample are shown

in figs 3.5 to 3.9. For each cluster we show our normalized photometric points

with error bars, and a smooth profile made from the combination of our pho-

tometric points inside ∼10′′ and MVM05 EFF fits outside that radius. For

comparison we show the MVM05 EFF fit and the central photometric point
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used for that fit. We would like to stress that the photometric points at

radii larger than ∼10′′ do not participate in the construction of the smooth fit,

instead the EFF fits are used in that region. For about half the sample (17 ob-

jects), the agreement between our measurements and the EFF fits of MVM05

is excellent, even for those cases in which the central photometric point by

MAC03 is barely inside the turnover radius (such as Fornax 2) or it does not

lie on top of the EFF fit (such as NGC 1651, NGC 1898, or 2100). There is

only one case (NGC 1754) for which our photometric points are fainter than

the EFF fit. For the remaining 12 objects, our photometric points are brighter

than the EFF fit by more than 0.5 mag/arcsec2, with three objects (NGC 2019,

R136, and Fornax 3) having differences larger than 2 mag/arcsec2.

MAC03 identify a few clusters that they think agree with the expected

post core-collapse (PCC) morphology by showing a power-law cusp in their

central profile. NGC 2005 and NGC 2019 are identified as clear cases of

PCC morphology with central power-law slopes of −0.75. NGC 1835 and

NGC 1898 are marked as good candidates for PCC morphology, but they

measure lower power-law slopes of −0.45 and −0.30 for them. Three more

clusters, NGC 1754, NGC 1786, and NGC 1916 have incomplete profiles and

are classified as intriguing due to their small cores, but are not placed as

firm PCC candidates. Fornax 5 is also considered a good candidate for a

PCC cluster based on it’s small core and central profile shape. Our results

for these seven clusters confirm the presence of a steep cusp for NGC 2005,

NGC 2019, and NGC 1916; and a shallow cusp for NGC 1786. The rest of the

cases all show flat central cores. Our reported values of the central slopes are

different from the power-law slopes of MAC03, this makes sense since they are

fitting a power-law to photometric points on a larger radial range than that
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Figure 3.5 Surface brightness profiles for the LMC clusters. For each cluster we
show our photometric measurements (solid points), our smooth profile (solid
line), and the EFF fit by MVM05 (dotted line). The smooth profile comes
from a fit to our photometric points inside ∼ 10′′ and the EFF fit outside that
region. For every panel the SB units are V mag/arcsec2.
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Figure 3.6 SB profiles continued.
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Figure 3.7 SB profiles continued.
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Figure 3.8 The same as in Fig 3.5 for the SMC clusters.
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Figure 3.9 The same as in Fig 3.5 for the Fornax dwarf galaxy clusters.
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in which we are measuring central slopes. We identify a few more clusters

as having clear central cusps (with central slopes steeper than −0.20) such as

NGC 1866, NGC 2031, Fornax 3 and Fornax 4, and some showing shallow cusps

(with central slopes flatter than −0.20) such as NGC 1868, NGC 2214, and

Fornax 2. When the luminosity density central slopes are taken into account,

a similar classification arises, NGC 1866, NGC 1916, NGC 2005, NGC 2019,

and Fornax 3 have steep cusps with LD logarithmic slopes steeper than −1.00,

while NGC 1754, NGC 1868, NGC 2031, and Fornax 4 show shallow cusps with

slopes between −0.2 and −1.0. The cluster R136 is discussed in a separate

section (3.4.2).

3.4.2 R136

R136 is known to be an extremely young object at the center of the 30

Doradus nebula in the LMC. It is considered to be a young version of a globular

cluster due to its large content of O type stars. Main sequence star with masses

as high as 120M⊙ have been detected in it (Massey & Hunter, 1998). The

estimated age for the most massive stars is < 1−2 Myr and the mass function

agrees very well with a Salpeter initial mass function (IMF). This makes R136

a unique and very peculiar object because it allows us to study star clusters

in the way they looked just after formation. The surface brightness profile

that we measure has a logarithmic central slope that is steeper than anything

measured before for a globular cluster and steeper than anything predicted by

dynamical models like core-collapse. This makes us suspect that we are not

resolving a core or a turnover radius for this object and that our central slope

measurement corresponds to the slope just outside the turnover radius for the

other objects. We decide to include R136 in every systematic measure we
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Figure 3.10 Histograms for surface brightness (top) and luminosity density
(bottom) central logarithmic slopes for the LMC+SMC+Fornax sample (left
panel) and the Galactic sample (right panel).
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made for other clusters, but we caution the reader that its location in different

distributions, particularly those dealing with central SB slope, should be taken

with a grain of salt for this reason. The central surface brightness value for

this object implies a central density of 8 × 106M⊙/pc3.

3.4.3 Combining Two Samples

In order to explore possible correlations between physical quantities,

we combine the results for this sample with those for the Galactic sample

from Chapter 2. From now on, we will refer to the objects in the LMC, SMC,

and Fornax dwarf galaxy as the ‘satellite sample’ or ‘satellite clusters’. We

compare the central slope measurements for both samples by plotting the slope

histograms side by side (Fig 3.10). We note that in both SB and LD central

slopes, the satellite sample extends to steeper slopes than the Galactic sample.

In total, 63% of the satellite sample is consistent with having flat cores, the

remaining objects display a continuous distribution of central slopes between

0 and −1.4 for surface brightness, and between 0 and −2.2 for luminosity

density. From Noyola & Gebhardt (2006), we know that 50% of the Galactic

sample is consistent with having flat cores, a smaller fraction than for the

satellite sample. For the Galactic sample we do not find any object with

central slopes steeper than −0.8 for SB or −1.8 for LD, we find two objects

(R136 and Fornax 3) steeper than that in the satellite sample. Even when

these differences are taken into account, the main conclusion that the slope

distributions are inconsistent with a bimodal distribution of flat and PCC

cores is the same for both samples.

We plot a variety of physical quantities against each other in order to

explore for possible correlations in both samples. We observe in Figure 3.11
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Figure 3.11 Surface brightness central and outer logarithmic slopes, logarith-
mic break radius (in parsecs), central surface brightness, metallicity, logarith-
mic age, and total mass plotted against each other for the LMC+SMC+Fornax
sample (open points) and the Galactic sample (solid points). We also show
on the top right corner two panels with SB slope versus half-light relaxation
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1’). The distances to the clusters are assumed to be 45 kpc for the LMC, 60
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that the younger clusters, which belong to the satellite sample, have a narrower

metallicity and total mass ranges (−1 <[Fe/H]< 0 and 3 × 103M⊙ < Mtot <

105M⊙ respectively) than the old ones. Both metallicity and total mass do

not show any clear correlations with other physical quantities. The outer slope

shows weak correlations for the satellite sample in the sense that clusters with

steeper outer slopes seem to be older, have fainter central surface brightness,

and larger break radius. The Galactic clusters appear to have shallower outer

slopes than the satellite ones, but this can be an effect of the different models

fitted for the two samples (see section 3.3.4). We note that there seems to be

a narrow range of outer slopes between −2 and −3 for the clusters with steep

central slopes for both samples. There is a clear correlation of central slopes

with the value for central surface brightness in which clusters with steeper

central slopes have brighter central surface brightness values. Central surface

brightness seems to be fainter for older clusters, but this is only observed for

the satellite sample. Regarding the break radius, we should clarify that the

lack of clusters with break radii larger than ∼4 pc in the Galactic sample is a

selection effect due to the fact that we required the core radius to fit on the

WFPC field of view. Since the satellite galaxies are 4− 14 times further away

than the average Galactic cluster, we can include clusters with larger break

radius for the satellite sample. We note that all the clusters with a central

surface brightness brighter than ∼16 mag/arcsec2 have break radii smaller

than ∼2 pc. Our measured break radius follows the same trend observed for

core radius versus age by other authors Elson et al. (1989); Elson (1992); de

Grijs et al. (2002). Clusters younger than 1 Gyr have break radii smaller than

4 pc, while older clusters span a wide range of break radii. WE notice that

every cluster with central SB slope steeper than −0.5 has a half-light relaxation

time shorter than 1 Gyr. Finally, the SB slope versus LD slope relation for
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the satellite clusters lies right on top of the one observed for Galactic clusters,

which in turn is similar to the one observed for galaxies (Gebhardt et al.,

1996).

3.5 Summary

We obtain central surface brightness profiles for 21 clusters in the Large

Magellanic Cloud, 5 in the Small Magellanic Cloud, and 4 in the Fornax dwarf

galaxy. We construct and analyze a large number of simulated images in order

find the most suitable way to obtain surface brightness, as well as to estimate

our uncertainties. The profiles are constructed by measuring integrated light

with a robust statistical estimator. We combine HST/WFPC2 images in two

filters (F555W and F814W) when available and present profiles normalized to

V-band magnitudes.

When our results are compared with previous results that use different

analysis techniques, we find very good agreement for ∼60% of the sample. For

the remaining 40%, our central photometric points are brighter than previous

measurements. For some objects, changes are observed in the shape of the cen-

tral surface brightness profile making them no longer compatible with a flat

core parametric fit. We confirm the existence of a steep central cusp for three

clusters previously classified as post core-collapse. We also find a subpopu-

lation of objects with shallow cusps with logarithmic central slopes between

−0.2 and −0.5. When we plot a variety of physical quantities searching for

correlations, we find indications that the younger clusters tend to have smaller

break radius, shallower outer slopes, and brighter central surface brightness.

In particular, the youngest cluster in the sample, R136, shows the steepest

central profile and the brightest central surface brightness. We also observe a
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clear correlation in which the clusters with the steepest central slopes are the

ones with the brightest central surface brightness.
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Table 3.1. Simulations input.

model inner slope outer slope break radius hardness of brake
γ β (pixels) α

model 1 0.0 1.8 85 2
model 2 0.0 2.5 340 3
model 3 0.2 2.5 90 1
model 4 0.4 1.6 90 2
model 5 0.7 1.8 90 2
model 6 0.9 2.0 90 1
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Table 3.2. LMC, SMC and Fornax Sample.

name primary filter exp. time secondary filter exp. time α center δ center
dataset (sec) dataset (sec)

NGC 1466 U2XJ0105B F555 3520 U2XJ0108B F814 4520 03:44:32.75 -71:40:16.53
NGC 1651 U2S75801B F555 1000 U2S75803B F814 1000 04:37:31.95 -70:35:06.99
NGC 1711 U2Y80501B F555 1520 · · · · · · · · · 04:50:39.95 -69:59:06.60
NGC 1754 U2XQ0103B F555 1540 U2XQ0109B F814 1860 04:54:18.35 -70:26:31.60
NGC 1786 U2XJ0205B F555 3520 U2XJ0208B F814 4520 04:59:07.58 -67:44:44.96
NGC 1805 U4AX0204B F555 435 U4AX020AB F814 960 05:02:21.48 -66:06:41.60
NGC 1818 U4AX3603B F555 2500 U4AX3703B F814 2500 05:04:10.58 -66:26:26.63
NGC 1835 U2XQ0203B F555 1540 U2XQ0209B F814 1860 05:05:06.97 -69:24:13.28
NGC 1866 U5DP020TB F555 2512 U5DP020PB F814 2620 05:13:29.00 -65:27:15.37
NGC 1868 U4AX5803B F555 2500 U4AX5903B F814 2500 05:14:34.53 -63:57:14.68
NGC 1898 U2XQ0303B F555 1540 U2XQ0309B F814 1860 05:16:41.92 -69:39:23.96
NGC 1916 U2XQ0403B F555 1549 U2XQ0409B F814 1860 05:18:37.79 -69:24:27.05
NGC 1984 U5AY0901B F555 1410 U5AY0904B F814 1410 05:27:39.97 -69:08:02.14
NGC 2004 U2Y80201B F555 1520 U2Y80204B F814 1510 05:30:40.24 -67:17:15.64
NGC 2005 U2XQ0503B F555 1540 U2XQ0509B F814 1860 05:30:10.32 -69:45:08.82
NGC 2019 U2XQ0603B F555 1540 U2XQ0609B F814 1860 05:31:56.47 -70:09:32.48
NGC 2031 U2Y80301B F555 1520 U2Y80304B F814 1510 05:33:40.70 -70:59:07.44
R136 U2HK030JB F555 1211 U2HK0317B F814 1205 05:38:42.52 -69:06:02.98
NGC 2100 U5AY0701B F555 1410 U5AY0704B F814 1410 05:42:07.66 -69:12:43.47
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Table 3.2 (cont’d)

name primary filter exp. time secondary filter exp. time α center δ center
dataset (sec) dataset (sec)

NGC 2214 U5AY1101B F555 1410 U5AY1104B F814 1410 06:12:56.92 -68:15:37.92
NGC 2257 U2XJ0505B F555 3520 U2XJ0508B F814 4520 06:30:00.89 -64:19:23.26
KRON 3 U26M0G02T F555 300 · · · · · · · · · 00:24:46.03 -72:47:35.09
NGC 121 U3770501B F555 1840 U377050BB F814 2080 00:26:48.62 -71:32:09.10
NGC 330 U5AY1001B F555 1410 U5AY1004B F814 1410 00:56:18.41 -72:27:49.65
NGC 411 U26M0302T F555 300 · · · · · · · · · 01:07:56.35 -71:46:01.59
NGC 416 U26M0502T F555 200 · · · · · · · · · 01:07:59.30 -72:21:17.43
FORNAX 2 U30M020EB F555 5640 U30M020IB F814 7720 02:38:44.26 -34:48:27.11
FORNAX 3 U30M030EB F555 5518 U30M030IB F814 7720 02:39:48.22 -34:15:26.87
FORNAX 4 U2LB0203B F555 2400 U2LB0205B F814 2400 02:40:09.01 -34:32:19.81
FORNAX 5 U30M040EB F555 5640 U30M040IB F814 7720 02:42:21.14 -34:06:04.32
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Table 3.3. Results

name µV (0) rb rh lgtrh SB slope error LD slope
(mag/arcsec2) arcsec arcsec years logarithmic logarithmic

NGC 1411 18.4 13.2 24.3 9.21 -0.02 0.18 0
NGC 1651 20.5 16.6 71.2 9.63 0.08 0.20 0
NGC 1711 17.0 11.7 30.7 8.96 0.00 0.18 0.00
NGC 1754 17.4 5.6 15.2 8.81 -0.01 0.12 -0.23
NGC 1786 15.0 7.6 14.9 9.04 -0.13 0.14 -0.70
NGC 1805 16.4 10.4 17.0 8.33 0.01 0.13 0.04
NGC 1818 16.4 10.5 26.9 8.92 0.07 0.14 0
NGC 1835 15.4 7.5 11.4 8.89 -0.04 0.16 0
NGC 1866 16.2 19.4 49.7 9.52 -0.32 0.12 -1.24
NGC 1868 16.7 6.3 16.2 8.59 -0.19 0.13 -0.76
NGC 1898 18.2 9.7 42.0 9.62 -0.04 0.13 0
NGC 1916 13.1 3.0 8.2 8.75 -0.45 0.16 -1.15
NGC 1984 15.8 3.1 18.4 8.48 0.14 0.08 0
NGC 2004 15.3 5.5 21.0 8.77 0.08 0.16 0
NGC 2005 14.2 0.7 10.6 8.80 -0.44 0.13 -1.21
NGC 2019 13.2 4.9 11.3 8.04 -0.83 0.15 -1.77
NGC 2031 17.4 13.3 59.6 9.50 -0.20 0.11 -0.61
R136 8.3 1.9 8.4 8.40 -1.16 0.21 -2.11
NGC 2100 15.2 6.0 25.6 8.89 0.07 0.14 0
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Table 3.3 (cont’d)

name µV (0) rb rh lgtrh SB slope error LD slope
(mag/arcsec2) arcsec arcsec years logarithmic logarithmic

NGC 2214 17.7 10.4 42.6 9.08 -0.01 0.13 -0.06
NGC 2257 21.0 28.3 68.7 9.82 0.03 0.16 0
KRON 3 20.1 27.2 44.4 9.76 -0.14 0.17 0
NGC 121 17.6 13.3 23.2 9.54 0.08 0.14 0
NGC 330 16.4 11.1 29.4 9.29 0.04 0.12 0
NGC 411 19.1 13.2 30.1 0.27 0.08 0.25 0
NGC 416 18.1 15.1 18.1 9.30 0.09 0.24 0
FORNAX 2 20.0 16.0 12.4 9.48 -0.12 0.13 0
FORNAX 3 14.6 2.2 5.2 9.10 -1.00 0.19 -2.01
FORNAX 4 16.8 2.3 6.1 9.09 -0.26 0.13 -0.70
FORNAX 5 16.8 0.8 5.8 9.02 -0.06 0.10 0.00
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Chapter 4

Possible Intermediate Mass Black Hole in

Omega Centauri

Now there’s a look in your eyes

like black holes in the sky

DG, RW, RW.

4.1 Introduction

The globular cluster ω Centauri (NGC 5139) is the largest and most

massive member of the Galactic cluster system with a tidal radius of 69 parsecs

(Harris, 1996), an estimated mass of 5.1 × 106M⊙, and a measured central

velocity dispersion of 22 ± 4 km s−1 (Meylan et al., 1995). The cluster shows

global rotation, measured with radial velocities, of 8 km s−1 at a radius of 11

pc from the center (Merritt et al., 1997) and confirmed with proper motions

(van Leeuwen et al., 2000), which makes it one of the most flattened galactic

globular clusters (White & Shawl, 1987). A rotating flattened model including

proper motion and radial velocity datasets by van de Ven et al. (2006) calculate

total mass of 2.5 × 106M⊙, lower than previous estimates, and confirm the

central line-of-sight velocity dispersion value of 20 km s−1. They measure a

dynamical distance of 4.8 ± 0.3 kpc. ω Centauri has a peculiar, highly bound

retrograde orbit (Dinescu et al., 2001).

ω Centauri has a stellar population that makes it stand out from the
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rest of the Galactic globular clusters due to its complexity. It shows a broad

metallicity distribution (Bedin et al., 2004; Norris et al., 1996), as well as a

kinematical and spatial separation between the different subpopulations (Pan-

cino et al., 2003; Norris et al., 1997). All these results have led to the hypothesis

that ω Centauri is not a classical globular cluster but instead is the nucleus

of an accreted galaxy (Freeman, 1993; Bekki & Freeman, 2003; Meza et al.,

2005). The hypothesis of being the product a merger of two globular clusters

(Icke & Alcaino, 1988) and of self-enrichment (Ikuta & Arimoto, 2000) have

also been proposed to explain the stellar populations.

The high measured velocity dispersion together with the possibility of

being a stripped galaxy make ω Centauri an interesting candidate for harboring

a black hole in its center. The extrapolation of the M•−σ relation for galaxies

(Gebhardt et al., 2000a; Ferrarese & Merritt, 2000; Tremaine et al., 2002)

predicts a 1.3 × 104M⊙ black hole for this cluster. The sphere of influence of

such a black hole for a star cluster at the distance of ω Centauri with a velocity

dispersion of 20 km s−1 is ∼ 5′′, making it an excellent target for ground-based

observations.

Two globular clusters have been suggested as harboring intermediate

mass black holes in their nuclei. One is the galactic cluster M15 (Gebhardt

et al., 2000a; Gerssen et al., 2002, 2003) and the other is G1, a giant globular

cluster around M31 (Gebhardt et al., 2002, 2005). M15 is considered to be the

proto-typical post-core-collapse cluster, but its dynamical state has been de-

bated between harboring a black hole or containing a large number of compact

remnants in its center (Baumgardt et al., 2003b,a). Unfortunately, observa-

tional constraints between these two hypothesis remain inconclusive (van den

Bosch et al., 2006). G1 on the other hand, has a core with characteristics closer
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to those of ω Centauri, and observations support the black hole interpretation

for G1. The G1 black hole models are preferred since the M/L profile is ex-

pected to be flat in its core, so any rise in the velocity dispersion is unlikely

to be due to remnants that concentrated there from mass segregation. The

situation is similar in ω Centauri. In this paper we report photometric and

kinematical measurements that suggest the presence of a central black hole in

ω Centauri.

4.2 Surface Brightness Profile

The surface density profile at large radii for ω Centauri has been mea-

sured from a combination of star counts and aperture photometry from ground

based images (Meylan, 1987; Trager et al., 1995; van Leeuwen et al., 2000). We

measure the central part of the profile taking advantage of Hubble Space Telescope

(HST ) spatial resolution. We measure integrated light from an ACS F435W

image (340 sec) applying the technique described in detail in Noyola & Geb-

hardt (2006), which uses a robust statistical estimator, the bi-weight, to cal-

culate number of counts per pixel on a given annulus around the center of the

cluster. As a test, we also measure the profile from a narrow-band H-alpha

image from the Rutgers Fabry-Perot (Xie et al., 2006) with lower spatial reso-

lution. Since both images have a limited radial coverage, we use the Chebychev

fit of Trager et al. (1995) for the surface brightness profile to cover the full,

radial extent of the cluster. All profiles are normalized to the Trager profile,

which brings them to V−band mag/arcsec2.

Having accurate coordinates for the center of the cluster is crucial when

measuring density profiles. Using the wrong center typically produces a shal-

lower inner profile. We use a technique where we take an initial guess center,
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divide the cluster in eight concentric sectors around this center, and calculate

the standard deviation of the sum of stars for the eight sectors. The radius of

the sectors is chosen to be as large as the image will allow, in this case it is

∼2′. We repeat the procedure for a grid of center coordinates and use the one

that has the minimum standard deviation. Details about the technique can be

found in Noyola & Gebhardt (2006). The coordinates for our center are RA

13 : 26 : 46.043 and DEC −47 : 28 : 44.8 on the ACS dataset J6LP05WEQ

using its WCS zero point.

The measured profiles from the B-band and H-alpha images are con-

sistent as can be seen on Figure 4.1. The H-alpha profile follows the turnover

around the core radius very well up to 100′′ and it also shows the rise toward

the center, but it is noisier than the ACS profile. The solid line is a smooth fit

made to the combination of the photometric points from ACS inside 40′′ and

Trager et al. Chebychev fit outside 40′′. For comparison, we include the

Trager et al. (1995) photometric points in the plot. The surface brightness

profile shows a continuous rise toward the center with a logarithmic slope of

−0.08 ± 0.03, which is in contrast to the common notion that ω Centauri has

a flat core. Van Leeuwen et al (2000) perform star counts for giant stars and

notice that they are more concentrated than previously thought. Our result

is consistent with their finding. Baumgardt et al. (2005) performed N-body

models of star clusters with an initial King profiles and containing a central

black hole. They predict the formation of a shallow cusp of −0.1 to −0.3 log-

arithmic slope after 1.5− 4 relaxation times. Our observed surface brightness

profile is intriguing considering these models, but of course, only kinemati-

cal measurements can determine the mass profile, including the existence of a

central black hole.
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Figure 4.1 Surface brightness profiles for ω Centauri. The circles show our
measured photometric points from the ACS (filled) and H-alpha (open) images.
The triangles show photometric points obtained from ground based images by
Trager et al. The dashed line is Trager’s Chebychev fit. The solid line is
our smooth fit to the combination of the ACS points inside 40′′ and Trager’s
Chebychev fit outside.
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4.3 Kinematic Measurements

Obtaining kinematic information of the central regions of Galactic glob-

ular clusters is a challenging task since the brightest stars dominate with typ-

ical ground-based conditions and the extreme crowding produces confusion.

Measuring individual radial velocities requires a spatial resolution that can

only be achieved with adaptive optics or from space. On the other hand,

measuring velocity dispersion from an integrated spectrum is subject to shot

noise due to giant stars whose contribution dominates the light. Dubath et al.

(1997) calculate the relative contribution to integrated light by different stellar

groups. They find that the contribution from the few brightest stars is equal

in weight to that of the much larger numbers of fainter stars. Therefore, the

only way to obtain accurate radial velocity dispersion measurements from an

integrated spectrum is if the participation of the brightest stars can somehow

be avoided or at least minimized. One way to do this is by observing crowded

regions with an integral field unit (IFU) which produces individual spectra of

subsections in the region (typically ∼0′′.2 in size). One can exclude the spectra

affected by the brightest stars when measuring the integrated background light

and thus decrease the shot-noise contribution to the uncertainty. The Gemini

telescopes operate primarily using a queue scheduling, which makes them an

excellent tool to measure integral field spectra of globular clusters since ob-

serving constraints (such as excellent seeing) can be specified in advance, and

data are only taken when the required observing constraints are met.

As part of the Science Verification program for the Gemini GMOS-

South IFU, we obtained nod-and-shuffle observations on February 29 2004

(program ID: GS-2003B-SV-208). We use the IFU in 2-slit nod-and-shuffle

mode, which gives a field of view of 5x5 arcsec, comprised of 700 individual
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lenslets plus fiber elements, each of which covers approximately 0.2 arcsec

on the sky. We use the R600 grating, yielding a resolving power R=5560,

which we measure from the arclamp spectral lines, along with the Calcium

Triplet filter to give a wavelength coverage of 7900-9300Å. Three fields are

observed, each for a total integration time of 900 sec on source and 900 sec on

sky. The observations are made using the nod-and-shuffle technique with 30

sec sub-integrations observed in a B-A-A-B pattern, where A is the on-source

position and B is the sky position, located 498” away. The nod-and-shuffle

technique improves the sky subtraction, especially in the presence of CCD

fringing, by sampling the object and sky on exactly the same CCD pixels,

with exactly the same light path, on timescales comparable to those of the

sky emission line variability. The first of the three fields is located at the

cluster center, and the second field is centered 14” away. The third field

appears to have been pointing somewhere else but, despite much effort, we

cannot determine exactly where the IFU observations are pointed (they do

not match anything in the acquisition image for this field). The reconstructed

IFU image for this third field contains fewer stars and the PSF is obviously

broader than for the other two. It is clear that the exposure was taken during

much worse seeing conditions than the other two fields, so shot-noise effects

are likely to be important; for this reasons we exclude the third field from

further analysis. Using the standard tasks from the IRAF-GEMINI package

we sky subtract, flat-field, and extract the spectra for each fiber and apply a

wavelength calibration.

The standard flat subtraction does not remove all of the fringing pattern

in the image. As a result, a constant number of counts have to be subtracted

from the data frames before flattening in order to reduce fringing problems.
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Relative to the bias frame, the amount of additional counts from scattered light

is about 8%. Even after this procedure, there is some residual fringing that

can only be alleviated by combining individual fibers over the full field into

one spectrum. To combine individual fibers we first divide by the continuum.

The intention is to de-weight the bright stars with respect to the fainter ones,

which helps to lessen the problems due to shot noise. For the continuum fit,

we run a boxcar of dimension 111×1 over the reduced image, and then divide

the central pixel by the median of the pixels in the box. This procedure brings

all spectra to the same continuum level. We then combine every individual

fiber with the six adjacent ones, since this represents one seeing disk for the

observations.

Figure 4.2 shows the reconstructed image from the IFU fibers for the

central frame and the acquisition image as well as the same region on the

ACS image. We also show a convolved image (with the reported seeing for the

observations) of the ACS frame. The same match is performed for the field 14′′

away (Fig 4.3). Both ACS fields contain ∼ 100 resolved stars. We construct

a luminosity function for the detected stars for each field and compare it to

the luminosity function of the entire cluster core. The luminosity function

is consistent between the two fields. The brightest stars detected in both

fields are two magnitudes fainter than the brightest stars detected in the core

of the cluster. This excludes the possibility of the integrated spectra being

artificially broadened by the presence of more blue straggler stars in the central

field compared to the field 14′′ away. Using the photometric measurements of

individual stars together with the reported seeing, we calculate how many stars

contribute to each fiber. Excluding the fibers which are dominated by a single

star we estimate that the integrated spectrum of the background unresolved
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light represent about 60 stars in both fields.

We focus on the Ca triplet region (8450Å-8700Å) for our analysis. We

measure the relative velocities between each fiber for the two fields and obtain

velocity distributions from the individual fiber velocities. We fit a Gaussian

to the velocity distributions and observe that the one for the central field

is clearly broader than for the one 14′′ away. The largest relative velocity

between two fibers is 80 km s−1 for the central frame, and 60 km s−1 for the

other one. Using the dispersion of the individual fiber velocities as a measure of

the cluster velocity dispersion will be biased. Since multiple stars, in general,

provide light to an single fiber, the measured velocity in that fiber will be

pulled toward the cluster mean as opposed to representing one star. Thus, the

dispersions of the fiber velocities will be biased significantly low. This is what

we find although the central frame does have a obviously larger spread in fiber

velocities.

To properly estimate the velocity dispersion we have to rely on the

integrated light, and require template stars in this case. Unfortunately, we

do not have isolated stars that are free from the fringe problems mentioned

earlier, so we cannot accurately use template stars observed with the same

instrument. We rely on the template stars observed by Walcher et al. (2005),

from VLT-UVES observations at around R=35000. We convolve the spectra

to our measured resolving power. To extract the velocity dispersion from

the integrated light we utilize the non-parametric, pixel-based technique as

described in (Gebhardt et al., 2000b; Pinkney et al., 2003). We choose an initial

velocity profile in bins, convolve it with the template (or set of templates), and

calculate residuals to the integrated spectrum. The parameters for the line of

sight velocity distribution (either velocity bin values or, if desired, a parametric
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Figure 4.2 The central field observed with the GMOS-IFU. The green box
represents the GMOS field of view. Top left: ACS image of the observed
region. The red circle marks the center of the cluster. Top right: Convolved
ACS image to reproduce the reported seeing during observations. Bottom left:
GMOS acquisition image. Bottom right: Reconstructed GMOS-IFU image.
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Figure 4.3 Same as fig 2 for the field 14′′ away.
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Gauss-Hermite expansion) are varied to provide the best match. Monte Carlo

simulations determine the uncertainties, and use the measured noise in the

spectrum.

The dispersion fitting routine allows for a mismatch in the equivalent

width between the object and template. In this case, there is a 30% difference

in the equivalent width of the calcium triplet lines. We do not know whether

this is caused by the scattered light (unlikely given the amplitude), the specific

templates we used, ω Centauri’s particular composition, or a combination of all

three. We have run a variety of tests to determine whether stars of difference

equivalent widths would cause a bias in dispersions, and find no such bias. We

have also measured the dispersions using template stars from the same IFU

data, since there is at least one star that is fairly isolated. The uncertainties

are larger due to the scattered light problems, but the value of the dispersion

remains the same. Thus, we conclude that template issues are not a significant

source of bias in the dispersion estimate.

We combine the spectra from individual fibers using a biweight estima-

tor. Different sets of fibers for each frame are combined in order to test for

consistency in our results. First, we combine every fiber on the frame, then

we exclude the 25%, 50% and 75% brightest fibers. We measure the velocity

dispersion for these four spectra for each frame. The measured velocity for the

central frame is always higher than the one for the frame 14′′away for every

equivalent pair of combined spectra. We measure velocity dispersions from

21.8 to 25.2 km s−1 for the central field, and 18.2 to 19.1 km s−1 for the field

14′′ away. We adopt 23.0 ± 2.0 km s−1 for the central field and 18.6 ± 1.6

km s−1 for the other. The latter measurement coincides with the central ve-

locity dispersion value measured for ω Centauri by various authors. Van den
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Ven et al. (2006) measure a line of sight velocity dispersion profile by combin-

ing various datasets (Suntzeff & Kraft, 1996; Mayor et al., 1997; Reijns et al.,

2006; Xie et al., 2006). They use 2163 individual radial velocity measurements

divided into polar apertures to obtain the final velocity dispersion profile. We

use dispersion estimates as presented in their table 4. The average radius for

the spectra that contribute to the central values is 2′′.5 and 14′′ for the second.

Figure 4.4 presents the velocity dispersion data.

4.4 Models

As discussed in Section 4.2, the central shape of the surface brightness

profile of ω Centauri resembles that found by Baumgardt et al. (2005) in star

clusters harboring black holes. The presence of an IMBH at the center of

this cluster is one of the possibilities for explaining the observed rise in ve-

locity dispersion. In order to explore the effect of a central black hole inside

ω Centauri, we create a series of isotropic models using the non-parametric

method described in Gebhardt & Fischer (1995). As a first step we apply a

reddening correction to the observed surface brightness profile. Harris (1996)

reports EB−V = 0.1 for this cluster. Applying an exctinction correction is

important for the proper M/L determination of the models. The exctinction

correction will only affect the M/L value of the models, but not the shape of

the profiles. We deproject the surface brightness profile using Abel integrals

assuming spheroidal symmetry. The integral involves a derivative of the pro-

file, therefore, any amount of noise present is amplified. We apply a spline

smoother to the surface brightness profile before deprojecting and thus obtain

a luminosity density profile as discussed in Gebhardt et al. (1996); Noyola &

Gebhardt (2006). By assuming a mass luminosity ratio, we calculate a mass
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density profile, from which the potential and the velocity dispersion can be

derived. We repeat the calculation adding a variety of central point masses

ranging from 0 to 7.5×104M⊙ while keeping the global M/L value fixed. Van

de Ven et al (2006) measure a fairly constant stellar M/L profile for ω Cen of

2.5±0.1 in the V −band. We find a constant mass luminosity ratio of 2.7, since

this provides the best match to the observed velocity dispersion profile outside

the core. The small discrepancy between the M/L values can be explained by

the use of isotropic models versus anisotropic ones.

Figure 4.4 shows the comparison between the different models and the

measured dispersion profile. The most relevant part of the comparison is the

rise inside the core radius, in particular the rise between the two innermost

measurements. As it can be seen, an isotropic model with no black hole present

predicts a slight decline in velocity dispersion toward the center, instead we

observe a clear rise. The predicted central velocity for the no black hole model

is 14.6 km s−1 which is well below any line of sight velocity dispersion measured

inside 1′. The calculated χ2 values for each model are plotted in Figure 4.5, as

well as a line showing a ∆χ2 = 1. The χ2 curve implies a best-fit black hole

mass of 4+0.75
−1 × 104M⊙. Even the original velocity dispersion profile without

our two innermost measurement already points to an intriguing discrepancy,

but the central measurements confirm an important rise in M/L from the core

radius to the center of this cluster. The central M/L value is 6.7, which is a

considerable rise from the value of 2.5 around the core. Our best fit model

implies a central density of 5.6×107M⊙/pc3 the largest measured in a globular

cluster.
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Figure 4.4 Velocity dispersion profile for ω Cen with various central black hole
models. Filled squares are the dispersions and uncertainties from the GMOS-
IFU and open circles are from individual radial velocity measurements. A
set of isotropic spherical models of varying black hole masses is shown for
comparison. The thick line is the no black hole model and the thin lines
represent models with black holes as labeled
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Figure 4.5 χ2 vs. black hole mass. The minimum is found for a black hole
mass of 4.0×104M⊙, with 68% confidence limit at 3 and 4.75×104M⊙ marked
by the dashed line. For our model assumptions, the no black hole model is
excluded at greater than the 99% confidence.
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4.5 Discussion

We measure the surface brightness profile for the globular cluster ω

Centauri (NGC 5139) from an ACS image in the central 40′′. The profile shows

a continuous rise toward the center with a logarithmic slope of −0.08 ± 0.03,

in contrast with previous measurements which found a flat core. The shape of

the profile is similar to that obtained from numerical models of star clusters

containing black holes in their centers. We measure a line of sight velocity

dispersion for two 5x5′′ regions, one at the center of the cluster and the other

14′′ away. We detect a rise in velocity dispersion from 18.6 km s−1 for the outer

field to 23 km s−1 for the central one. We combine these two measurements

with previously measured velocity dispersion at larger radii. When comparing

the complete profile with a series of isotropic models we conclude that a black

hole of 4.0+0.75
−1.0 × 104M⊙ is necessary to match the observations.

ω Cen has a weak cusp in the central luminosity density profile, imply-

ing that the gravitational potential is very shallow inside the core and therefore

mass segregation cannot be an important effect. Ferraro et al. (2006) confirm

the lack of segregation by measuring the radial distribution of blue straggler

stars, which are heavy stars and should sink to the center of the cluster if there

is mass segregation. They find a flat radial distribution of blue stragglers with

respect to lighter stellar populations. With this evidence in hand, there is no

reason to expect a large variation of M/L inside the core due to stellar content,

so a detected rise in M/L is likely to come from the presence of a concentrated

massive object.

The central density as measured from the 23 km s−1 dispersion estimate

at 1.8′′, using the dynamical distance of 4.8 kpc, is 5.6 × 107M⊙/pc3. This

is the largest measured for a globular cluster and it would be difficult to
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maintain using stellar remnants. Obviously, if the density is due to solar

mass remnants, over 104 remnants would be required inside of 0.05 parsecs.

Using the arguments of Maoz (1998) and Miller (2006), this mass and density

makes ω Cen one of the better examples where stellar remnants can be ruled

out due to evaporation. Maoz estimates that for these numbers, any cluster

of remnants will have evaporated within 1010 years.

Figure 4.6 shows the known M•−σv relation for black holes in elliptical

galaxies and bulges. The galaxies used to determine the relation (Tremaine

et al., 2002) are plotted along with objects containing smaller black holes in

low luminosity quasars (Barth et al., 2005), two nearby low luminosity AGN

(NGC 4395 and Pox 52), and three globular clusters (G1, M15 and ω Cen).

The black hole in ω Cen lies above the relation, but it is consistent with the

scatter observed a larger masses. The measured black hole mass is 1.6% of the

total mass of the cluster, which is more than an order of magnitude larger than

the canonical value of 0.1% for larger spheroids. If ω Cen is indeed the nucleus

of an accreted galaxy it is expected that it’s original mass was considerably

larger than what we measure now. Bekki & Freeman (2003) reproduce the

current mass and orbital characteristics of ω Cen with a model of an accreted

107M⊙ dwarf galaxy. A mass of 4×107M⊙ for the original spheroid would put

the black hole right on the 0.1% value.

The two pieces of observational evidence that ω Cen has a central black

hole come from the photometry and the kinematics. From the HST image of

ω Cen, we measure a central logarithmic surface brightness slope of −0.08 ±

0.03. This value is very similar to that claimed by the N-body simulations

of Baumgardt et al. (2005) that are most likely explained by a central black

hole. Standard core-collapse does not lead to such a large core with a shallow
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Figure 4.6 M• − σvel relation for elliptical galaxies and bulges. The solid
line is the relation in Tremaine et al. (2002). ω Cen lies on the low mass
extrapolation and suggests a similarity between it and the galaxies. Different
types of systems such as star clusters and low luminosity AGN appear to
populate the low mass end of the diagram.
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central slope. Clusters with central slopes much steeper than this are thought

to be undergoing core-collapse. The black hole tends to prevent core collapse

while leaving an imprint of a shallow cusp. It will be important to run models

tailored to ω Cen to see if one can cause and maintain a shallow cusp without

invoking a central black hole. However, the main observational evidence for

the central mass comes from the increase in the central velocity dispersion,

where we detect a rise from 18.6 to 23 km s−1 from radii of 14 to 2.5′′. In

fact, even excluding the Gemini data presented here, the previous ground-

based data suggest a central mass concentration as well. The core of ω Cen is

around 155 ′′ (about 2.5 ′), so the dispersion rise is seen well within the core.

4.6 Summary

We measure the surface brightness profile for the globular cluster ω

Centauri (NGC 5139) from an ACS image in the central 40′′. The profile shows

a continuous rise toward the center with a logarithmic slope of −0.08 ± 0.03,

in contrast with previous measurements which found a flat core. The shape of

the profile is similar to that obtained from numerical models of star clusters

containing black holes in their centers. We measure a line of sight velocity

dispersion for two 5x5′′ regions, one at the center of the cluster and the other

14′′ away. We detect a rise in velocity dispersion from 18.6 km s−1 for the outer

field to 23 km s−1 for the central one. We combine these two measurements

with previously measured velocity dispersion at larger radii. When comparing

the complete profile with a series of isotropic models we conclude that a black

hole of 4.0+0.75
−1.0 × 104M⊙ is necessary to match the observations.
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Chapter 5

Discussion and Conclusions

With the goal of properly discussing the results presented in this dis-

sertation, we summarize results for theoretical models and observations in

order to make comparisons with analysis by other authors. At this point,

both N-body and Monte Carlo simulations are starting to include a realistic

number of particles when simulating star clusters, but the N-body models are

still unable to include large numbers of binary systems, which are known to

have important effects on the dynamical evolution of a cluster. Fokker-Planck

(FP) simulations are still the main source for comparison with observations,

particularly when dealing with core collapse. A few globular clusters have

been studied using orbit-based Schwarzschild analysis, we discuss these cases

as well. Since core-collapse and the presence of a central black hole are the

two mechanisms that can dramatically alter the surface brightness profile and

kinematics of a cluster, we discuss them in detail below.

5.1 Core-collapse

In the past, globular clusters for which the central surface brightness

profile departs from a King profile have been classified as being in a post-core-

collapse state. Since close to 50% of the objects studied here show central

SB profiles that depart from King profiles, it is very important to analyze

in detail all the available information about core-collapse in order to make a
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meaningful comparison. Fokker-Planck analysis can include a large number of

stars as well as anisotropy by utilizing a statistical treatment. Issues like the

inclusion of binaries or global rotation have proved to have an impact on the

modeled evolution during and after core-collapse. For his reason, most of the

theoretical knowledge that we have about core-collapse comes from Fokker-

Planck analysis.

The first tool for comparison are the central logarithmic slopes of the

measured luminosity density profiles. As mentioned in section 1.2 the observed

surface brightness slope depends on the mass of the observed stars and on the

mass of the heaviest stellar group that dominates the core. Previous studies

have compared the observed surface brightness profile to detailed models in this

context. In particular, detailed Fokker-Planck models have been constructed

for m15 (Dull et al., 1997), NGC 6397 (Drukier, 1995), and M71 (Drukier

et al., 1992). The first two cases are clusters considered to be in a post-core-

collapse state because they show steep cusps in the central profiles. For both

cases, it is concluded that the individual mass of the heavy dark stellar rem-

nants in the core has to be around 1.3M⊙ due to the central slope observed for

the visible stars. For M71, a cluster showing a flat core with rc = 38′′, mass

segregation measurements are compared with models. Measurements indicate

a high degree of mass segregation and a very short relaxation time for this

cluster, which suggests that it should have undergone core-collapse. The flat

central slope can be consistent with the cluster undergoing gravothermal os-

cillations only if very heavy stellar remnants dominate the core. The analysis

concludes that models with a large number of heavy remnants in the core are

inconsistent with the observed degree of mass segregation and they predict an

unacceptably high value for the central velocity dispersion. Although this de-
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tailed models have only been carried out for a few clusters, it is worth pointing

out that, for all of them, it has been ruled out that stars more massive than

∼ 1.4 M⊙ dominate the core mass. In order to reproduce the shallow slopes

observed in our sample by invoking a post-core-collapse state, the necessary

mass of the dominant heavy stars is around 12 M⊙. This would require a top

heavy initial mass function, a high retention factor of exploding stars, and it

would also require a good explanation as to why other clusters would be so

different from the three cases mentioned above.

The most detailed modeling of core collapse for an individual object has

been carried out for the globular cluster M15. Dull et al. (1997) create FP mod-

els that they fit to the observed surface brightness, velocity dispersion profiles,

and millisecond pulsar accelerations. They indicate that the observed popula-

tion of blue stragglers appears to be too small for a cluster that just underwent

core collapse. By comparing the observed surface brightness profile with vari-

ous models, they conclude that M15 must be on a post-collapse bounce state

intermediate between deep core-collapse and complete re-expansion of the core.

Since M15 has one of the steepest profiles in our observed sample, it appears

that even invoking this intermediate phase, it is unlikely to reproduce the full

range of slopes that we observe.

The next tool for comparison is the observed ratio of the core radius

to half-light radius. It has been known for some time that, as discussed in

1.2, core-collapse evolution will inevitably lead to gravothermal oscillations

for clusters with more than 8000 member stars (Murphy & Cohn, 1988; Gao

et al., 1991). This is due to binary heating in the core of the cluster and occurs

both in the case when binaries are primordial or when they form by three body

encounters during core collapse, although the timescales for core-collapse will
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be very different for each case. The occurrence of the first core-collapse is

delayed if primordial binaries are present in the cluster. All these studies find

that, after the first collapse and during the successive bounces, the core only

spends a small amount of time in a highly collapsed state. Most of the time

the core is in an expanded post-collapse state. The average core radius during

the oscillations is 0.01− 0.02rh (Breeden et al., 1994). Makino (1996) perform

N-body calculations with a maximum of 32,000 particles and compare with

results obtained by FP models. They confirm that gravothermal oscillations

do take place in clusters without primordial binaries, but they measure smaller

core sizes during post-collapse bounce and notice that the core size is smaller

for a larger number of stars in the simulation.

5.2 Black Holes

As discussed in section 1.3, the presence of an intermediate mass black

hole at the center of a star cluster makes the density profile of a cluster depart

from a flat core and develop a cusp. We observe central cusps with various

slopes for an important fraction of the profiles in our samples. We need to

explore the nature of these cusps in detail, both for surface brightness and

luminosity density.

Every analytical study or simulation placing a black hole in the middle

of a star cluster finds that a power-law density distribution is formed around

the black hole (Bahcall & Wolf, 1977; Shapiro, 1977; Lin & Tremaine, 1980;

Yuan & Zhong, 1990). The exponent of the power-law is always around −1.7

for analytical calculations. Baumgardt et al. (2005) perform detailed numeri-

cal simulations of King-type clusters with a sizable initial core containing an

intermediate-mass black hole in their center. Their results show that the three-
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dimensional cusp has a power-law slope of −1.55, but the surface brightness

profiles show shallow cusps with slopes around −0.25, clearly distinguishable

from zero. There are a number of clusters in our samples whose central slopes

are close to that value. Baumgardt et al. (2005) calculate which objects in

our Galactic sample are compatible with their simulations. They base their

comparison on the central slopes, relaxation times, concentration, and core ra-

dius to half light radius ratio. They find five clusters (NGC 5286, NGC 5694,

M80, M62, and NGC 6388) that are compatible with their simulations, and

therefore are possible hosts of an intermediate mass black holes.

There are evidences from X-ray observations for the existence of inter-

mediate mass black holes inside star clusters. Ultra luminous X-ray sources

(ULX) have been suggested to be produced from gas accretion by and IMBH.

In particular, the X-1 source in the starburst galaxy M82 is considered to be

the best candidate to host an IMBH due to its X-ray luminosity (Matsumoto &

Tsuru, 1999; Matsumoto et al., 2001) and the high frequency radio variability

(Strohmayer & Mushotzky, 2003). The position of the X-ray source has been

shown to coincide with a young dense stellar cluster known as MGG-11 (Mc-

Crady et al., 2003). Portegies Zwart et al. (2004) perform N-body simulations

which show possible formation scenarios for an intermediate mass black hole

in MGG-11. They stress that the density distribution of the cluster is a crucial

ingredient to achieve runaway formation of a black hole. If the cluster is not

concentrated enough early in its evolution, it will not reach core-collapse fast

enough and a black hole will not form. As expected, they report that the pres-

ence of primordial binaries and initial mass segregation have an impact on the

estimated timescales. It is interesting that the youngest object in our Satellite

sample, R136, is the one that shows the steepest central profile, with a central
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luminosity density slope of −2.11. We find a trend for the satellite sample in

which the youngest objects have the highest central surface brightness values

(i.e. central density). Our observations seem to support the possibility that

star clusters are born very concentrated and evolve toward less concentrated

profiles.

Evidences for the presence of black holes in star clusters can also come

from radio observations. Maccarone et al. (2005) estimate the intensity of

radio and X-ray emission from an intermediate mass black hole embedded in

the low gas density environment of a globular cluster. They argue that it

is more likely to detect radio emission than X-ray emission for this low gas

density regime. The best candidates for a radio detection are rich, nearby

clusters. They warn that there are considerable uncertainties regarding the

level of emission from these intermediate mass black holes, but the detection

of radio emission at the center of a star cluster (as long as a pulsar can be

ruled out as the source) would be very strong evidence for an intermediate

mass black hole. These result stresses the importance of finding dynamical

evidences for the presence of IMBHs in as many clusters as possible, since this

would help to find the best possible targets for extended radio observations.

5.3 Stability

Just like we did with ω Centauri, kinematical measurements can be

used to constrain the enclosed mass of galactic nuclei and of star clusters in

small spatial scales, but the question always remains if the mass concentration

is compact, in the form of a black hole, or if it is spread as a cluster of dark

remnants product of mass segregation. Maoz (1998) explores the stability of

a cluster of heavy non-luminous remnants like those expected to form at the
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center of deep potential wells with high density of stars. The type of objects

expected to be in such a cluster are stellar-mass black holes, neutron stars,

faint white dwarfs, and brown dwarfs. The evaporation time is calculated for

a cluster of dark remnants expected to form in a variety of galactic nuclei. The

calculated times are clearly shorter than the age of the observed object for a

couple of cases. In these cases a cluster of dark remnants would evaporate

before core collapse can occur at the center of the galactic nucleus, therefore

ruling out the possibility of the central concentration being a cluster of dark

remnants. In the case of star clusters, the timescale to reach core collapse

can be extended by the presence of primordial binaries, so the same phe-

nomenon could occur. Miller (2006) adds an extra ingredient to the argument

by estimating the merging time of a cluster of dark remnants in cases where

core-collapse is not halted by binary heating. He finds that these timescales

can be even shorter than the evaporation timescales of Maoz (1998). In sum-

mary, a cluster of dark remnants is likely to be short lived either because it

evaporates quickly or because it collapses into itself forming a massive black

hole. This calculations are likely out to be very useful when trying to explore

the nature of central concentrations in star clusters, just in the way we have

done in this work with ω Centauri.

5.4 Rotation

The central region of globular clusters is not expected to show rota-

tion because that is the location in which the relaxation processes act on the

shortest timescales. Any amount of rotation is expected to be quickly erased

due to relaxation. For this reason, it is very important to review the cases for

which rotation has been measured in globular clusters, in order to estimate
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how dominant relaxation processes are. Global rotation has been measured

for a few globular clusters. In particular 47 Tuc and ω Centauri have been

subject to many detailed studies (Meylan & Mayor, 1986; Anderson & King,

2003). Xie et al. (2006) use an imaging Fabry-Perot instrument to measure

line of sight velocities for individual stars in various globular clusters. They

detect a rise on v/σ inside ∼ 0.1 Rh for 8 clusters in their sample. M15 and

G1 are the two globular clusters with the most detailed central kinematical

observations to date. As explained in detail on the sections below (5.5.1 and

5.5.2), they appear to rotate in the central regions. These results are hinting

to the fact that relaxation might not be the dominant process for the central

dynamics of some globular clusters. If relaxation is not the dominant pro-

cess, then something else has to be able to imprint and maintain the observed

rotation in such objects.

5.5 Individual objects

In order to better discuss the relevance of our results for ω Centauri,

below we summarize important results by other authors on kinematic mea-

surements for some specific globular clusters.

5.5.1 G1

G1 is a very massive cluster in the halo the Andromeda galaxy. It

is suspect of being the stripped core of an accreted galaxy. Gebhardt et al.

(2002) produce a set of axisymmetric orbit-based models from observed surface

brightness and velocity profiles. They find evidence for the existence of a

2 × 104M⊙ black hole at the center of the globular cluster G1. This claim is

contested by Baumgardt et al. (2003c) who match the observed profiles with
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two different N-body models. The first model is of a single cluster evolved

from a King model that reproduces only marginally well the observed velocity

dispersion. The second model comes from merging two star clusters and this

is the one that is able to reproduce the observed rotation and dispersion rise in

the velocity profiles. It is worth pointing out the difficulty of forming a regular

relaxed star cluster like G1 from the merger of two star clusters on a galactic

halo with a velocity dispersion of the order of 200 km s−1. The probability of

two star clusters having a relative velocity low enough to allow them to merge is

extremely small. Further modeling with improved photometric and kinematic

measurements is consistent with a black hole mass of 1.7× 104M⊙ (Gebhardt

et al., 2005) and is no longer consistent with the model by Baumgardt et al.

(2003c). For this latest measurements, the velocity profile for this cluster

shows a clear central rotation with a projected amplitude of about 12 km s−1

with a central measured velocity dispersion is 30 km s−1. The importance

of the comparison with this cluster comes from the fact that G1 is an M31

analogue of ω Centauri in the sense that both clusters are suspect stripped

galactic nuclei and show global flattening due to rotation.

5.5.2 M15

M15 has long been considered to be the prototypical post core-collapse

globular cluster due to the steep central cusp observed in its surface bright-

ness profile (Sosin & King, 1997; Guhathakurta et al., 1996). However, in the

last few years, there have been suggestions of it harboring a central black hole

(van der Marel et al., 2002; Gerssen et al., 2002). There has been a contro-

versial argument since then inspiring different authors to propose alternative

models that do not require a black hole (Baumgardt et al., 2003b; McNamara
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et al., 2003). The most recent detailed dynamical analysis is done by van den

Bosch et al. (2006), who construct orbit-based models using large kinemati-

cal datasets for both line of sight radial velocities and proper motions. They

measure a mass of 3400 M⊙ inside a radius of 0.05 pc, whose nature could be

a cluster of compact objects, a central black hole, or a combination of both.

The formal best fit value for the black hole is 1 ± 1 × 103. When analyzing a

smooth version of a WPFPC2 image, they observe a degree of ellipticity in the

two dimensional light distribution for the central ∼4′′ (∼0.2 pc). The velocity

distribution for individual stars in that region, both in proper motion and line

of sight velocity shows an apparent rotation of 10 km s−1. The position angle

of the rotating component coincides with that of the flattened isophotes and

not with the one of global rotation observed at large radius. This apparent

‘decoupled core’ is hard to explain in a post core-collapse scenario where the

evolution is dominated by relaxation processes.

5.5.3 NGC 6752

NGC 6752 is a Galactic globular cluster which shows peculiar indica-

tions for the existence of one or two central black holes. The millisecond pulsar

(MSP) population for this cluster is very unusual compared with that of other

globular clusters (D’Amico et al., 2002). Three MSPs are found in the core

of the cluster, of which two show very high negative spin derivatives. The

measured accelerations imply a large central M/L value of 6-7, very high for

a globular cluster (Ferraro et al., 2003). This M/L value in turn implies the

presence of 1000−2000 M⊙ of under-luminous matter within the central 0.08

pc. Furthermore, there are two MSPs found in the halo of the cluster, which is

an unusual location. Colpi et al. (2003) explore the effect of a single or binary
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mass concentration at the center propelling one of the MSPs to the halo of

the cluster on a close gravitational interaction. They conclude that a single

or a binary black hole with (combined) mass of 200− 500 M⊙ could place the

observed MSP where it is detected today and would also be consistent with

the acceleration of the MSPs in the core.

5.6 Discussion and Summary

In chapter 2, we measure surface brightness profiles for a sample of

38 Galactic globular clusters from WFPC2 images in various filters. The

profiles are obtained by measuring integrated light using the bi-weight, a robust

statistical estimator. Our results show that 50% of the objects in our sample

are not consistent with King profiles. These clusters show central profiles

that depart from flat cores with central logarithmic slopes from −0.1 to −0.8.

We numerically deproject the profiles by utilizing a non-parametric smoothing

procedure. The central logarithmic slopes for the luminosity density profiles

show a similar distribution, with 50% of the objects having values between

−0.5 and −1.75.

In chapter 3, we perform the same type of measurements for a sample of

30 globular clusters orbiting the Large Magellanic cloud, the Small Magellanic

cloud, and the Fornax dwarf galaxy. We find that ∼ 45% of the surface bright-

ness profiles are inconsistent with having a central flat core, showing central

logarithmic slopes from −0.1 to −1.2. We find indications that younger clus-

ters have brighter central surface brightness and smaller break radius, which

seems to indicate that clusters are more concentrated when they are formed.

In view of these results, the comparison of our observed slope distributions

with theoretical models for globular clusters yields puzzling conclusions.
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When compared with previous ground based measurements, our profiles

show different shapes for the inner regions. Most central surface brightness

values change from previously reported ones with values up to two magnitudes

brighter. The main reason for this difference is the increased spatial resolution

of HST , but also because we use a non-parametric estimate as opposed to the

traditional King model fits. For some of the observed profiles the departures

from a flat core model are small, but significant. When this profiles are de-

projected, the differences become more clear. This stresses the importance

of using adequate models to fit surface brightness profiles, since the effects of

small deviations in surface brightness are amplified for deprojected profiles.

As discussed in chapter 1, there have been two mechanisms explored for

producing cusps in star clusters: core-collapse and the presence of an interme-

diate mass black hole in the center of the cluster. The range of 3-dimensional

density slopes is wider for core-collapse than for black hole models, but they

both center around the same value, ∼ −1.65. However, only the four clusters

with the steepest profiles in both our samples fall in this range. In the case of

core-collapse, the slope depends on the mass of the stars used to measure the

profile and of those that dominate the mass of the core, so this could extend

the range toward shallower slopes. Another factor of uncertainty is the time

dependence of the core-collapse model when the core goes through gravother-

mal oscillations. According to Fokker-Planck simulations, a star cluster will

spend a considerable amount of time in between successive collapses, where

the light profile resembles a King model with a flat core. Unfortunately, these

models do not give enough details about the slope of the density profile during

intermediate stages of post-collapse bounce, or about the time spent on inter-

mediate stages, so it is difficult to say if the slopes of our weak cusp clusters
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are consistent with this picture or if we need to invoke a new mechanism to

explain this shallower but non-zero slopes. As mentioned before, Dull et al.

(1997) model M15 as an intermediate stage of core-collapse, while this is one

of the clusters with the steepest slopes in our sample.

It is worth noting that we carefully explored the possibility of the cores

not being resolved due to lack of spatial resolution. We tried to fit core models

to every cluster and we only found a good fit for two cases (NGC 6397 and

NGC 6652). A number of the objects with non-zero central slopes have a clear

turnover radius with constant slopes inside of that. These type of profile is very

hard to reproduce with post core collapse models. The result from numerical

modeling for clusters containing black holes (Baumgardt et al., 2005) might be

able to explain some of the intermediate slope cases as discussed in section 5.2.

We find it challenging to explain these slope distributions when we compare

our results to existing dynamical models for globular clusters. Core-collapse

models can accommodate the cases of intermediate slopes if we catch the

clusters at the appropriate time, and it seems unlikely to find them in the

high fraction that we measure. Only kinematic observations can confirm the

different hypotheses.

The observed correlations with age observed for the younger objects in

the Satellite sample (chapter 3) point out to the possibility of clusters having

very concentrated profiles during early stages of their evolution. In particular

the break radius-age relation observed here and by many authors tells us that

the size of cores depends on the dynamical evolution of clusters. The input

density profiles for various dynamical simulations have almost always been

characterized by King or Plummer models. This could be biased toward large

flat cores, when more concentrated profiles could be more appropriated. This
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is true for core-collapse models, as well as models containing a central black

hole.

In chapter 4 we measure the central surface brightness profile for ω

Centauri from an ACS image. The central profile shows a shallow cusp with

central logarithmic slope of −0.08. We also measure a line of sight velocity

dispersion for a 5′′×5′′ containing the center of the cluster, as well as for a

field of the same size 14′′ away from the center. We detect a rise in velocity

dispersion toward the center between these two pointings from 18.6 km s−1 to

23.0 km s−1. We combine these two measurements with a velocity dispersion

profile obtained from individual radial velocities. From the deprojection of

the surface brightness profile, we construct spherical models containing central

black holes of various masses and compare them with the observed velocity

dispersion profile. We calculate χ2 values for each models, and the χ2 analysis

yields a central black hole with mass 4.0+0.75
−1.0 × 104M⊙.

The star cluster ω Centauri has a weak cusp in the central luminosity

density profile, implying that the gravitational potential is very shallow in-

side the core and therefore, mass segregation cannot be an important effect.

Ferraro et al. (2006) confirm the lack of segregation by measuring the radial

distribution of blue straggler stars, which are heavy stars and should sink to

the center of the cluster if there is mass segregation. They find a flat radial

distribution of blue stragglers with respect to lighter stellar populations. Also,

the detailed orbit-based model by van de Ven et al. (2006) yields a very flat

M/L profile for this cluster. With this evidence in hand, there is no reason

to expect a large variation of M/L inside the core due to stellar content, so

a detected rise in M/L is likely to come from the presence of a concentrated

massive object.
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The central density as measured from the 23 km s−1 dispersion estimate

at 1.8′′ is 5.6× 107M⊙/pc3. This is the largest measured for a globular cluster

and it would be difficult to maintain using stellar remnants. Obviously, if the

density is due to solar mass remnants, over 104 remnants would be required

inside of 0.05 parsecs. Using the arguments of Maoz (1998) and Miller (2006),

this mass and density makes ω Centauri one of the better examples where

stellar remnants can be ruled out due to evaporation. Maoz estimates that

for these numbers, any cluster of remnants will have evaporated within 1010

years.

These results put together with the observed rotation at the center of

some clusters and the unusual MSP population for NGC 6752 leads to the idea

that relaxation is not the only process taking place at the center of globular

clusters. Other effects must be taking place there, and only systematic detailed

measurements of a large number of clusters will be able to unveil the dominant

processes. Black holes could be responsible for some of the observations, but

if they turn out not to be detected in many clusters, detailed dynamical mod-

els and observations are necessary to unveil the underlying causes. If black

holes do happen to be present at the center of many clusters, and not only in

the suspect stripped galaxy cores, it is crucial to investigate the demograph-

ics of the population. On one hand they could be important ingredients for

the formation of supermassive black holes at the center of galaxies. On the

other hand, they could turn out to be numerous sources for gravitational wave

detectors.
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