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Slit valves play an important role in semiconductor manufacturing in-

dustry. They enable creation of a vacuum environment required for wafer

processing. Due to the high volume of production in the modern semiconduc-

tor industry, slit valves experience severe degradation over their useful lifetime.

If maintenance is not applied in due time, degraded valves may lead to de-

fects in end products because of pressure loss and particle generation. In this

thesis, we proposed methods for signal processing and feature extraction for

analysis of slit valve vibration signatures. These methods would be used to

demonstrate the ability of reliably, accurately and efficiently distinguish be-

tween each individual valve via a multi-class classification procedure. Such

ability is a clear illustration of the feasibility of vibration based monitoring of

the slit valve conditions.
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Chapter 1

Introduction

Slit valves play an important role in semiconductor manufacturing in-

dustry. A slit valve is a gate that separates the process chamber and the

transfer chamber of a semiconductor manufacturing tool, enabling creation of

a vacuum environment required for wafer processing. Due to the high volume

of production in the modern semiconductor industry, slit valves experience

severe degradation over their useful lifetime. Once the valve is degraded, the

vacuum condition inside the process chamber cannot be maintained, resulting

in wafer defects. In addition, degraded slit valves may also lead to particle

generation from degraded valve seals and guide ways, causing contamination

in both the chamber and end products. Considering the very small margin

of error in today’s microelectronic manufacturing, there is an urgent need for

establishing a monitoring and maintenance plan to set early alarms about

degraded slit valves and prevent potential product flaws.

In majority of today’s semiconductor fabrication plants (fabs), preven-

tive maintenance of equipment is conducted following the reliability based

maintenance (RBM) paradigm, i.e. based on the elapsed calendar time or us-

age and the statistical properties of the useful life distribution of the relevant
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population of machines [1, 2]. Differences between individual machines in a

population based on which RBM policies are postulated cause RBM to incur

losses due to unnecessary maintenance of equipment that does not really need

to be maintained, or due to unexpected failures of machines whose scheduled

maintenance does not occur soon enough.

An alternative paradigm to address this drawback is the condition based

maintenance (CBM), in which one builds and uses a connection between the

condition of the individual pieces of equipment and sensor reading emitted by

that machine. With such information, maintenance operations can be per-

formed according to the actual working condition of the equipment, exactly

when needed and exactly where needed.

In the past few years, CBM has drawn increasing attention in the

semiconductor manufacturing industry. Advanced diagnostics and prognos-

tics methods have been employed for various equipment and processes, such as

etching equipment, chemical vapor deposition, chemical mechanical planariza-

tion and so on (more information will be covered in literature review chap-

ter). Unfortunately, no CBM technology has ever been applied to slit valves.

Therefore this study aims to explore the feasibility and aptness of application

of CBM diagram on this important element in semiconductor manufacturing.

In the research presented in this thesis, we sensorized with accelerom-

eters over 50 slit valves in a major domestic semiconductor fab and proposed

methods for signal processing and feature extraction for analysis of their vi-

bration signatures. These methods will be used to demonstrate the ability of
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reliably, accurately and efficiently distinguish between each individual valve

via a multi-class classification procedure. Such ability is a clear illustration

of the feasibility of vibration based monitoring of the slit valve conditions,

though such a study is outside of the scope of this thesis.

The remainder of this thesis is organized in the following manner. A

literature review of CBM research and application in semiconductor manufac-

turing industry is given in Chapter 2. In Chapter 3, methods for processing

of slit valve vibration signals and multi-segment classification of valves based

on their signatures are described in detail. Chapter 4 gives an overview of

the slit valve system operating in the major semiconductor fab as well as the

data acquisition system, and shows the results of applying these methods to

identification of 50 individual slit valves. Finally, conclusions and potential

future work are presented in Chapter 5.
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Chapter 2

Literature Review

In the past few years, condition based maintenance has drawn increas-

ing attention in the semiconductor manufacturing industry. This chapter at-

tempts to provide a brief review of the research and practices of CBM employed

for various equipment and processes in semiconductor fabrication facilities.

(1) Etching : Shadmehr et al. [3] reported a technique combining prin-

cipal component analysis (PCA) and neural network models to characterize

the effect of process parameters on the optical emission and mass spectra of

CHF3/O2 plasma. This technique was sensitive to changes in chamber con-

tamination levels and proven to be a promising tool for real-time monitoring

and control of reactive ion etching process. Kim et al. [4] built a neural time

series model for reactive ion etching (RIE). The difference between predicted

value of feed-forward neural network model and actual measured RIE response

was an indication of potential equipment faults. He also employed Dempster-

Shafer evidential reasoning and an inverse neural network model to infer the

causes of faults and generate evidential belief. In [5], Hong et al. suggested

use of modular neural networks as a new methodology for malfunction prog-

nosis in reactive ion etching utilizing in-situ metrology data. He tested with
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three types of malfunction scenarios for the RF power system and obtained

satisfying results for predicting performance one run ahead. Spanos et al. [6]

collected 5 real-time signals (position of the RF tune vane, position of the RF

load coil, etc.) from a plasma-etch tool and fed them into individual time-

series filters that produce multiple, cross-correlated identically, independently,

normally distributed (IIND) residuals. These residuals were later combined by

Hotelling’s T 2 equations into a single real-time alarm signal that could be used

in a statistical process control chart. Baek et al. [7] reported discovery of the

correlation between the electron collision rate of plasma and chamber condi-

tions after wet cleaning by using self-excited electron resonance spectroscopy

in a dynamic random access memory gate etch process. This electron collision

rate was able to identify small changes in chamber condition that could not

be detected under conventional monitoring methods, suggesting a potent tool

for chamber condition based maintenance and process control.

(2) Chemical Vapor Deposition (CVD): In [8], a radio frequency (RF)

impedance probe was integrated on a plasma-enhanced chemical vapor deposi-

tion chamber to explore the sensitivity of the reactor electrical characteristics

on the events of input parameter variation. Such sensitivity information could

be incorporated to chamber condition monitoring. Hopfe et al. [9] demon-

strated a chemically sensitive CVD process control concept using non-invasive

optical sensors based on diode laser spectroscopy in the near infra red range.

This technology manifested its robustness and ability of enhancing CVD pro-

cess performance predictability. Wu et al. [10] investigated the approach for
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simultaneous fault detection and classification by using the principal compo-

nent analysis method to detect designed faults of gas flow and RF parameters

and classify the faults in PCA vector space on a plasma CVD tool. Yang

[11] proposed to apply Bayesian Belief Network to investigate the relationship

among process variables and wafer quality. The simulation on a CVD tool

verified the feasibility of employing such network to perform wafer quality

prognosis .

(3) Chemical Mechanical Planarization (CMP): Tang et al. [12] con-

ducted an experiment to investigate the correlation between the microscratches

and the signal characteristics of acoustic emission (AE) generated during chem-

ical mechanical planarization. The high sensitivity of AE signals to the CMP

process state change indicated that this AE sensing technology may be used as

a tool for in-situ microscratch detection and process monitoring in CMP. Lee

[13] also introduced acoustic emission sensor to perform endpoint detection

to insure desired polishing thickness of material during chemical mechanical

planarization process. Chan et al. [14] presented the performance of a laser

interferometry based In-situ Rate Monitor (ISRM) system on process control

and monitoring in CMP . This non-contact, optical system relied on the ability

to correlate the laser optical signal to the change of thickness of the polished

film layer on wafers. It detected the endpoint and stopped the polishing pro-

cess when the required amount of a polished film is removed. Wang et al.

[15] studied timing correlation of multiple functional process variables (FPVs)

such as coefficient of friction and polishing pad temperature for CMP process
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condition monitoring and diagnosis. A nonlinear dynamics model was estab-

lished to show the main and interaction effects among multiple FPVs through

a design of experiment procedure. The extracted interaction patterns were

proven helpful for detecting abnormal condition in CMP experiments with

slurry contamination.

(4) Lithography : Facco et al. [16] demonstrated an image analysis

based monitoring system for wafer quality evaluation after lithography. The

semiconductor surface image was analyzed in different levels of resolutions via

wavelet decompositions to extract commonly inaccessible features. Addition-

ally, a two level nested PCA model was used for surface roughness monitoring,

while a new strategy based on ”spatial moving window” PCA was also pro-

posed to analyze the shape of the patterned surface. Shen et al. [17] introduced

fuzzy set theory to the analytic hierarchy process for the fault evaluations of

lithography process. The new fuzzy analytic hierarchy process helped deci-

sion makers handle the fuzziness and ambiguity in real world environments

and eased the process of root cause finding, hence improvement plan could

be prioritized accordingly to allocate limited resources efficiently. Bao et al.

[18] employed scatterometry to monitor the stepper focus and expose dose

drift during lithography process. The measured spectrum from scatterometry

was used to extract the current profile information which would be fed into

a control parameter extractor to compute optimized control parameter val-

ues. Pampuri et al. [19] introduced a joint method of survival models theory

with l1 penalization techniques to predict the remaining lifetime of an equip-
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ment with several meaningful process variables. This proposed methodology

was validated with a set of observations of lithography steppers in the fabs,

yielding promising preliminary results.

(5) Handling and Cluster Tools : In [20], the status of robot arm of

cluster tools were captured by a CCD camera and processed by the image

recognition technology. Then a series of arm location data was saved into a

SPC chart and maintenance engineers were informed once the arm location

violates the established limit lines. Guan et al. [21] proposed to use a new

data driven CBM (DD-CBM) framework for test handlers in a domestic high-

volume integrated circuit manufacturing environment. The DD-CBM incorpo-

rated condition monitoring variables into a control chart to estimate machine

health and dynamically updated the control limit based on the equipment’s

operation conditions. Costuros [22] reported use of wavelet transform on motor

torque signals sampled from a blade in transfer chamber. The wavelet trans-

form coefficients were applied to construct the channel capacity of the signal

(concept borrowed from Shannon’s information theory) for fault diagnostics.

Though a number of breakthroughs about applications of CBM in the

semiconductor industry are reported in literature, unfortunately no CBM tech-

nology has ever been applied to slit valves, in spite of their great importance

in wafer processing. Some reasons explaining this may be lack of appropriate

way in sensing vibrations from slit valves on typical tools, as well as complexity

and non-stationarity of slit valve vibrations.

This thesis focuses on the vibration signatures during slit valve travels

8



(both opening and closing) and attempts to extract descriptive features that

are able to characterize individual slit valves through a novel signal processing

and feature extraction procedure. A multi-class study will be performed to

narrow the feature set down to several most discriminative ones and these

features will be regarded as candidates for condition monitoring of slit valves

during semiconductor manufacturing.
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Chapter 3

Background on Mathematical Methods

Due to the non-linearity and complexity of valve motions, the vibra-

tion signals emitted by slit valves are highly non-stationary. This means that

frequency contents of those signals vary significantly over time [23], which in-

vokes the need for non-stationary signal analysis tools, such as Cohen’s class of

time-frequency transform method [24]. Cohen’s general class of time-frequency

distribution (TFD) for the signal x(t) can be described as

Cx(t, ω) =
1

4π2

∫ ∫ ∫
ϕ(θ, τ)x(u+

τ

2
)x∗(u− τ

2
)e−j(θt+τω−θu)dθdτdu (3.1)

where x(t) and x∗(t) denote the relevant signal and its complex conjugate re-

spectively, while ϕ(θ, τ) is the so-called kernel function of the TFD. The kernel

determines mathematical properties of the resulting TFD, such as realness of

the resulting distribution Cx(t, ω), time and frequency support properties, up-

holding of the time and frequency marginals, cross term suppression, as well as

group delay and instantaneous frequency properties [25]1. Fulfillment of these

properties enables interpretation of the function Cx(t, ω) defined by Transfor-

mation (3.1) as a joint 2-dimensional distribution of signal energy in time and

1Definitions of those properties as well as mathematical constraints on the kernels which
are necessary to achieve them are summarized in [26].
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frequency domains. In this study, we opted to use the binomial kernel, which

can be considered to be the most advanced signal-independent reduced inter-

ference distribution (RID) kernel [27]. Its expression in the ambiguity domain

is:

ϕ(θ, τ) = cos|τ |(θ) (3.2)

The RID character of the binomial kernel and its consequent ability to suppress

cross terms, which are inherently present in TFDs, are highly desirable, since

it is well documented that cross terms can hamper signal interpretation and

classification based on TFDs riddled with cross terms [24]. On the other hand,

signal independent nature of the binomial kernel is also important because of

the sheer volume of data considered in this study. Namely, signal dependent

kernels, such as those in [28, 29], would be computationally infeasible in the

realm of multiple vibration readings from a large number of valves collected at

sampling rates in the kHz ranges, which is what we dealt with in this research.

After signal processing stage, numerous features were extracted from

the resulting vibration TFDs and later used as inputs for the multi-class clas-

sifier built to recognize individual valves based on their vibration signatures.

These features can be partitioned into three categories: timing based features,

time domain based features and time-frequency distribution based features.

Timing based features consist of times required to complete various

portions of the valve movement. In this thesis, we just recorded time intervals

between valve travel start and end signals though a much more elaborate

set of timing features describing the valve motion in finer detail could be
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pursued, if adequate discrete control signals are available to reliably delineate

these portions of the valve motions. Such timing based features are a good

indication of machine working condition since the time required to accomplish

various portions of the designated motion for a machine with moving parts

will usually vary as the condition of that machine drifts.

Time-domain based features are calculated from the time domain wave-

forms of the signals and include signal entropy, mean signal energy, median

energy of the signal, variance, skewness and kurtosis of the signal energy. All

time-domain based features used in this study and the formulae according to

which they are calculated are listed in Table 3.1. These time-domain based

features are intuitive and extensively used as vibration based measurements

of the working condition in many previous machine monitoring works [30, 31].

Feature Formula

Signal energy SumE =
tn∑

t=t1

x(t)2

Signal entropy H =
tn∑

t=t1

− x(t)2

SumE
log x(t)2

SumE

Entropy of signal energy HE =
tn∑

t=t1

− x(t)4

tn∑
t=t1

x(t)4
log x(t)4

tn∑
t=t1

x(t)4

Maximal energy maxx(t)2

Time of maximal energy argmaxt x(t)
2

Minimal energy min x(t)2

Table 3.1 – Continued on next page
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Feature Formula

Time of minimal energy argmint x(t)
2

Maximal amplitude maxx(t)

Time of maximal amplitude argmaxt x(t)

Minimal amplitude minx(t)

Time of minimal amplitude argmint x(t)

Median energy middle value of x(t)2

Mean energy E[x2] = 1
n

tn∑
t=t1

x(t)2

Variance of energy V ar[x2] = 1
n

tn∑
t=t1

(x(t)2 − E[x2])2

Skewness of energy Skewness =

1
n

tn∑
t=t1

(x(t)2−E[x2])3

(V ar[x2])
3
2

Kurtosis of energy Kurtosis =

1
n

tn∑
t=t1

(x(t)2−E[x2])4

(V ar[x2])2

Table 3.1: Time-Domain Features

Time-frequency distribution based features used in this study consist of

the so-called time-frequency distribution moments, entropy and several signal

energy related features calculated from the binomial distributions of the slit
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valve vibrations. Following [24], the moment terms E[tpωq] can be calculated

from

E[tpωq] =
tn∑

t=t1

ωm∑
ω=ω1

tpωqCx(t, ω) (3.3)

where Cx(t, ω) is the time-frequency distribution of the signal x(t). According

to [32] and [33], moments of low orders can be used to approximate the gen-

eral characteristics of TFDs and successfully accomplish clarification based on

those TFDs. Moments up to 3 were used in this study to describe the time-

frequency patterns observed in the slit valve vibrations. Signal entropy based

on its binomial TFD Cx(t, ω) can be calculated as

H =
tn∑

t=t1

ωm∑
ω=ω1

−Cx(t, ω)

SumE
log

Cx(t, ω)

SumE
(3.4)

In addition, various signal energy related features can also be extracted from

their binomial TFDs, including maximal energy, as well as the time instance

and frequency at which that maximal energy appeared in the TFD. A complete

list of time-frequency domain features used in this study is summarized in

Table 3.2.

Feature Formula

TFD moments of order up to 3 E[tpωq] with p+ q ≤ 3

Entropy H =
tn∑

t=t1

ωm∑
ω=ω1

−Cx(t,ω)
SumE

logCx(t,ω)
SumE

Maximal energy maxCx(t, ω)

Table 3.2 – Continued on next page
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Feature Formula

Time of maximal energy argmaxt Cx(t, ω)

Frequency of maximal energy argmaxω Cx(t, ω)

Minimal energy minCx(t, ω)

Time of minimal energy argmintCx(t, ω)

Frequency of minimal energy argminω Cx(t, ω)

Median energy middle value of Cx(t, ω)

Mean energy E[Cx(t, ω)] =
1

nm

tn∑
t=t1

ωm∑
ω=ω1

Cx(t, ω)

Variance of energy V ar[Cx(t, ω)] =
1

nm

tn∑
t=t1

ωm∑
ω=ω1

(Cx(t, ω)− E[Cx(t, ω)])
2

Skewness of energy Skewness =

1
nm

tn∑
t=t1

ωm∑
ω=ω1

(Cx(t,ω)−E[Cx(t,ω)])3

(V ar[Cx(t,ω)])
3
2

Kurtosis of energy Kurtosis =

1
nm

tn∑
t=t1

ωm∑
ω=ω1

(Cx(t,ω)−E[Cx(t,ω)])4

(V ar[Cx(t,ω)])2

Table 3.2: Time-Frequency Domain Features

Within this plethora of signal features, not all will provide useful infor-

mation for valve recognition. To the contrary, the so-called curse of dimension-

ality plagues the performance of classifiers based on such highly dimensional
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feature space and a feature reduction process is needed to improve the classi-

fication process by removing the redundant and irrelevant features [34]. The

feature reduction procedure employed in this study is closely associated with

the classification strategy, and therefore a brief description of the classification

framework will be presented first.

Individual valve differentiation is a multi-class classification problem.

One straightforward method dealing with this type of problems is to train a

universal multi-class classifier that could take care of all of the classes simulta-

neously. In the recent literature, we see such approaches in [35, 36]. However,

this strategy requires that the information needed to separate classes 1 and 2

also be suitable differentiating classes 2 and 3 and all other possible class-pairs.

Unfortunately, this assumption turns out to be overly constraining, especially

when the number of classes involved becomes very large, as it is in the case

considered in this study (we are dealing with dozens of valves and hence must

realize a multi-class classification problem involving dozens of classes).

In this study we adopted a classification approach introduced in [37] and

[38], which is based on repeated pairwise classifications that successively distin-

guishes between all possible class-pairs in a multi-class classification problem.

This method increases classification accuracy by enabling pairwise distinction

between any given pair of classes, using a feature set specifically selected to

optimize that particular classification problem. Thus, this approach uses a

divide and conquer paradigm and a variable feature set for the multi-class

classification problem, rather than utilizing one universal feature set to tackle
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the entire multi-class classification.

More specifically, this approach decomposes an n-class problem into
(
n
2

)
one-against-one pairwise classification subproblems, with a specific classifier

being trained for each one of those subproblems using the most discerning

features for that subproblem. When a query signal is to be classified, it is

passed through all the pairwise classifiers, each providing a vote for one of the

two classes involved. Eventually, all the outputs of these
(
n
2

)
subclassifiers are

aggregated and the query signal is assigned to the class receiving the most

votes. Figure 3.1 better illustrates the complete process.

Figure 3.1: Pairwise Classification Process

For each of the pairwise classification problems, the features relevant
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for that problem were selected from the exhaustive feature set described earlier

in this chapter, using an inter/intra class distance ratio in the feature space

(similar with the Dunn Index [39]). Namely, given an n-class problem and

an exhaustive feature set consisting of m features, the selection process is

conducted as follows:

• For each possible pair of classes (ωi,ωj), i ∈ {1, 2, ...n}, j ∈ {1, 2, ..., n},

i ̸= j, and each feature l, l ∈ {1, 2, ...m}, calculate the maximum intra-

class distance d(ωi, ωj, l) between all points in class ωi and the minimum

interclass distance D(ωi, ωj, l) between points in class ωi and class ωj.

Then, the inter/intra class distance ratio is obtained as

r(ωi, ωj, l) =
D(ωi, ωj, l)

d(ωi, ωj, l)
(3.5)

• For a specific pair of classes (ωi,ωj), i ∈ {1, 2, ...n}, j ∈ {1, 2, ..., n},

i ̸= j, features with distance ratios greater than 1 are labeled, and

among them, the one having the greatest number of distance ratios above

1 for all other subproblems is selected as the feature for this class-pair

(ωi,ωj). In this way, the accuracy of each classifier is maintained and

the number of features is effectively cut down by the choice of features

that can be considered as generally versatile (applicable to other pairwise

classification subproblems).

Another key point in a classification problem is the selection of the

classification algorithm. In this study, the k-Nearest Neighbor (kNN) classifier
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is chosen to discriminate between different valves. kNN is a non-parametric

classification algorithm that determines the class memberships of an unknown

testing point according to the k closest training points in the feature space [40].

Because of its simplicity, kNN is a highly suitable classification algorithm for

a classification strategy based on numerous pairwise classification problems,

such as the one encountered here.
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Chapter 4

Results of Signal Processing and Identification

of Slit Valves

In this chapter, the signal processing, feature extraction, feature se-

lection and classification methods described in the previous chapter will be

applied to accomplish recognition of individual slit valves in a major domes-

tic semiconductor manufacturing facility. Before that, an overview of the slit

valve and data acquisition system will be provided first.

4.1 Overview of Slit Valve and Data Acquisition System

All valves considered in this study were pneumatic valves of identical

design, produced by the same manufacturer (i.e. nominally, they are supposed

to be identical). When the valve closes, a pneumatic cylinder drives the valve

plate down guide rails. Near the bottom of the valve travel, the valve head

encounters a cam, which directs the valve head motion from downward to

forward. At the end of the valve motion, the valve head makes contact with

a base plate to create the seal. The motion is reversed when the valve opens

and is schematically illustrated in Fig 4.1.
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Figure 4.1: Illustration of Valve Operation and Motion During Opening
(dashed line) and Closing (solid line)2

The data acquisition system was based on the sbRIO-9636 embedded

control and acquisition device from National Instruments [41]. The valve vi-

brations were captured using 3-dimensional (3D) accelerometers ADXL327 [42]

mounted on the valve housing and their readings were sampled at 5 kHz. The

results in this thesis are based on the Root Mean Square (RMS) of the 3D vi-

bration signals provided by this sensor, as well as the original 3D signals, since

specific vibration directions can be used to characterize and monitor specific

portions of the valve motion (descent down/ascent up the rail, camming, valve

2Due to the proprietary nature of the valve design, its detailed blueprint and character-
istics could not be shown here.
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closing/opening).

In addition, since control signals from the valve were not available, the

timing information about valve motion was obtained using 2 photo-resistors

placed over status lights on the valve housing. One of those lights indicated

valve body passing by a fixed point near the top of the guide rail, while the

other indicated the valve body passing a fixed point near the end of the valve

movement, when the valve seal makes contact with the chamber wall. Signals

from the photoresistors were used as automatic markers for valve motions and

for normalization of the valve travel time, which reduced variability of valve

signatures caused by variation in the valve travel times. Normalization was

accomplished as follows. During valve closing motion, turning on of the light

near the top of valve motion denoted normalized time 0, while turning off

of the light near the bottom of the valve motion signified normalized time 1.

Conversely, during the valve opening motion, normalized time 0 occurred when

status light near the bottom of the valve motion turned on, while normalized

time 1 occurred when the status light at the top of the valve motion path

turned off. One should note that valve movement pre and post these light

indicators were also collected, resulting in valve vibrations for normalized times

-0.2 to 1.2. Each vibration signal was correspondingly divided into 3 stages

in the following manner. During valve closing, the three segments were valve

motion before the valve up signal (normalized time -0.2 to 0), valve motion

between the valve up and valve down signals (normalized time 0 to 1) and valve

motion after the valve down signal (normalized time 1 to 1.2). Conversely,
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during valve opening, we observed valve motion before the valve down signal

turned on (normalized time -0.2 to 0), valve motion between the valve down

and valve up signals (normalized time 0 to 1) and valve motion after the

valve up signal turned off (normalized time 1 to 1.2). Accordingly, features

described in previous chapter were extracted using data points from these 3

stages separately or from the whole period (normalized times -0.2 to 1.2),

yielding a feature library consisting of 1122 features3.

From each of the 50 valves, vibration signals corresponding to 10 open-

ings and 10 closings were collected, yielding the total of 1000 signals. From

each of those signals, timing based, time domain and time-frequency domain

characteristics described in chapter 3 were extracted, based on which this 50-

class classification study was conducted 4. The training set was constructed

by randomly picking half of the recordings from each valve, while the remain-

ing half was used for testing. Such selection of training and testing sets was

repeated for 100 times to objectively evaluate the performance of the proposed

classification method, independently of the choice of the training set.

3From each of the 4 segments, we got 16 time-domain based features and 19 time-
frequency domain based features, for each of the 3 directions of vibrations, as well as the
vibration RMS. Plus the movement time of both closing and opening motions, this yielded
1122 features.

4One should note that our classification method transformed this 50-class classification
into 1225 pairwise classification problems, which were solved using the kNN classification
algorithm.
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4.2 Results of Slit Valve Identification

Classification accuracies based on different feature categories and move-

ment directions of the valves are listed in Table 4.1. It is obvious that the

use of time-domain features and time-frequency domain features greatly out-

performed the accuracy of classification based on the timing features alone

(performance of the timing based features is actually quite poor). In addition,

it is visible that the elaborate feature extraction and classification methods

introduced in this thesis enabled improved classification results via fusion of

features from various domains and valve motion stages, yielding the best per-

formance when features from all domains and all motion stages are included.

In this case, perfect results were obtained in 7 out of 100 tests and an accu-

racy average of 98.74% was maintained. Furthermore, the consistency of this

method in differentiating individual slit valves was evident in the low variance

(7.58 ∗ 10−5%) of accuracies during the 100 repetitions corresponding to dif-

ferent trainings. From these results, one can conclude that vibration patterns

of slit valves are so distinctive that they identify individual valves, similarly

how human’s speech can be used to identify an individual. Advanced time-

frequency analysis and sophisticated feature extraction methods introduced in

this study were able to expose those discerning vibration patterns and enable

almost perfect valve identification.
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Timing Features Time Domain Features TFD Features Fusion of Timing,
Time Domain, TFD
Features

Opening 22.88% 96.88% 96.99% 98.18%
Closing 27.54% 96.64% 96.35% 97.93%

Opening & Closing 60.58% 97.15% 98.73% 98.74%

Table 4.1: Pairwise Classification Results
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Delving deeper into how this remarkable performance was achieved, we

can notice that many of the 1024 features generated from feature extraction

stage were never selected or were only rarely selected for pairwise classification

subproblems, while a few others, on the other hand, happened to be selected

and used more frequently. For the case of jointly using opening & closing

valve motions, and features from all domains (highest classification accuracy,

as per in Table 4.1), top 10 most frequently used features are identified in

the pareto chart shown in Fig 4.2, and are further explained in Table 4.2.

Note that in the column describing portions of the signal in Table 4.2, ”Pre”

denotes portion of the signals from normalized times -0.2 to 0, ”Between”

denotes portion of the vibration signals between normalized times 0 to 1,

”Post” denotes portion of the vibration signals from normalized times 1 to

1.2) and ”Entire Signal” denotes the entire vibration signal obtained during a

given valve motion (normalized times -0.2 to 1.2).

As can be seen in Fig 4.2, median energy in the time-frequency domain

of the RMS of the entire vibration signal is the feature used most commonly.

It was used in 800 out of 1225, or more than 68% of the pairwise classification

subproblems. Mean energy in the time-frequency domain calculated for the

RMS of the vibration signals during normalized times 0 to 1 ranks second in

the chart and covers 100 out of 1225 pairwise subproblems, which is about

8.16% of subproblems. Besides these 2 features, none of the remaining ones

was used in more than 3.1% classification subproblem, which implies that the

aforementioned 2 features can be considered to be the most discerning features
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in differentiating the valves from each other. Consequently, these features can

be used as the top candidates for the use in the long-term valve degradation

monitoring of slit valves in order to enable their condition based maintenance.

Figure 4.2: Pareto Chart of Most Commonly Used Features in the classification
scheme that led to 98.74% accuracy (highest accuracy achieved in this study)
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Feature Name
Detail

Usage
Feature Direction of

valve motion
Channel of the
vibration signal

Portion of the
signal

median[|sig(t, f)|2]-
closing-rms-whole

Median energy in
the time-frequency
domain

Closing RMS Entire Signal 68.65%

E[|sig(t, f)|2]-closing-
rms-during

Mean energy in
the time-frequency
domain

Closing RMS Between 8.16%

movementT ime-
closing

Movement time Closing 3.02%

median[|sig(t, f)|2]-
closing-rms-post

Median energy in
the time-frequency
domain

Closing RMS Post 2.12%

argmax − t[|sig(t)|2]-
opening-x-pre

Position of maximum
energy in the time do-
main

Opening X-direction Pre 2.04%

E[|sig(t)|2]-closing-y-
during

Mean energy in the
time domain

Closing Y-direction Between 1.80%

E[|sig(t)|2]-closing-
rms-during

Mean energy in the
time domain

Closing RMS Between 1.71 %

median[|sig(t, f)|2]-
closing-x-whole

Median energy in
the time-frequency
domain

Closing X-direction Entire Signal 1.63 %

sum[|sig(t)|2]-
opening-rms-post

Total energy in the
time domain

Opening RMS Post 0.90 %

E[(|sig(t)|2 −
E[|sig(t)|2])2]-closing-
x-during

Variance of energy in
the time domain

Closing X-direction Between 0.82 %

Table 4.2: Most Commonly Used Features in the classification scheme that led to 98.74% accuracy
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In addition, the 10 most commonly utilized features listed in Fig 4.2

and Table 4.2 happened to be selected for use in around 90% of all the pair-

wise classification subproblems, with 51 features covering all 1225 subproblem

pairs. It’s an indication that valve identification information could be stored in

51 or even fewer metrics instead of the whole vibration signature from 3 chan-

nels, suggesting that efficient valve monitoring could be accomplished without

excessive data storage requirements.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we conducted a classification study in which numerous

slit valves used in a major semiconductor manufacturing fab were individu-

ally recognized using their vibration signatures. By applying an advanced

time-frequency signal processing and feature extraction method, the slit valve

vibration signals were transformed into a set of descriptive metrics that were

used for characterization of each individual valve’s vibration patterns. A kNN

based multi-class classification approach was used to recognize the source of the

unclassified vibration signals, leading to almost perfect recognition of 50 indi-

vidual valves in the fab. The few misclassification occurred within the ”quiet”

valves, whose motion did not awaken a lot noticeable vibrations, and thus the

valves ended up being confusing. Moreover, several features were found to

be efficient in discriminating great majority of valves and these features are

regarded as promising parameters for monitoring of the working condition and

health degradation of slit valves considered in this manuscript. Such monitor-

ing study is outside the scope of this thesis and will be considered in future

publications.
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5.2 Future Work

More efforts will be taken to acquire working condition information of

slit valves in fabrication facilities based on their vibration signatures. Potential

future work can further focus on the following three aspects:

(1) Long-term Degradation Analysis : Based on the results so far, several

features are picked up to be efficient in showing difference between slit valves.

These features can be further tested whether they are also able to be used for

monitoring of the working condition and health degradation of slit valves in

long-term cycles. The experiment can be conducted by intentionally changing

the operation conditions of slit valves and determining if the variation trends

of these features reflect the varying working status as well as how sensitive

they are with those changes.

(2) Fault Localization and Characterization: As mentioned in previous

chapter, valve motion initiation and ending were detected using 2 photoresis-

tors in this study. If the valve motion control signals are available or more

markers are utilized, the analysis procedures described in this study can be

applied to different portions of the valve motion individually and help localize

the fault occurrence precisely. At the same time, corresponding direction of

accelerometer signals can be used for a specific portion of the valve motion to

ensure more accurate results, since characterization information may be lost

or blurred during the fusion of 3 direction signals or investigation of the whole

traveling period.
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(3) Establishment of Condition Monitoring Frame: Once the long-term

analysis is finished, a set of features is determined as slit valve health index

and can be fed into the SPC based condition monitoring framework. Feature

values extracted from the earliest a few number of tests (e.g., first 20 cycles)

can be used to establish the center line and control limits of the SPC charts. If

the current input falls outside of the valid range, alarm is triggered to indicate

working condition change of the slit valve under examination. Besides SPC

charts, artificial intelligence techniques such as neural network can be employed

to determine current working condition or even predict potential future failure

and remaining useful lifetime based on the current feature values and usage

history.
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