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Polymers used in enhanced oil recovery (EOR) help to control the mobility ratio between oil 

and aqueous phases and as a result, polymer flooding improves sweep efficiency in reservoirs. 

However, the conventional wisdom is that polymer flooding does not have considerable effect on 

pore-level displacement because pressure forces would not be enough to overcome trapping 

caused by capillary forces. Recently, both coreflood experiments and field data suggest that 

injecting viscoelastic polymers, such as hydrolyzed polyacrylamide (HPAM), can result in lower 

residual oil saturation. The hypothesis is that the polymer elasticity provides several pore-level 

mechanisms for oil mobilization that are generally not significant for purely-viscous fluids. Both 

experiments and modeling need to be performed to investigate the effect of polymer elasticity on 

residual oil saturation. Pore-scale modeling and micro-fluidic experiments can be used to 

investigate pore-level physics, and then used to upscale to the macro-scale. The objective of this 

work is to understand the effect of polymer elasticity on apparent viscosity and residual oil 

saturation in porous media.   

 Single- and multi-phase pore-level computational fluid dynamics (CFD) modeling for 

viscoelastic polymer flow is performed to investigate the dominant mechanisms at the pore level 

to mobilize trapped oil. Several interesting results are found from the CFD results. First, the 

elasticity of the polymer results in an increase in normal stress at the pore-level; therefore, the 



vii 
 

normal stresses exerted on a static oil droplet are significant and   not negligible as for a purely-

viscous fluid. The CFD results show that viscoelastic fluid exerts additional forces on the oil-

phase which may help mobilize trapped oil out of the porous medium. Second, due to the 

elasticity of polymer, the viscoelastic polymer has some level of pulling effect; while  passing 

above a dead-end pore  it can pull out the trapped oil phase and then mobilize it. However, both 

CFD modeling and micro-fluidic experiments show the pulling-effect is not likely the main 

mechanism to reduce oil saturation at pore-level. Third, dynamic CFD simulations show less 

deformation of the oil phase while viscoelastic polymer is displacing fluid compared to purely 

viscous fluid. It may justify the hypothesis that polymer elasticity resists against snap-off 

mechanism. As a result, when viscoelastic polymer displaces the oil ganglia, , the oil phase does 

not snap off, and the oil phase remains connected, and therefore easier to move in porous media 

compared to disconnected oil. For single phase flow, a closed-form flow equation has been 

developed based on CFD modeling in converging/diverging ducts representative of pore throats.   

The pore-level equations were substituted into a pore-network model and validated against 

experimental data. Good agreement is observed.  

This study reveals important findings about the effect of polymer elasticity to reduce the 

residual oil saturation; however, more experiments and simulations are recommended to fully-

understand the mobilization mechanisms and take advantage of them to optimize the polymer-

flooding process in the field.   
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Chapter 1: Introduction 

The flow of viscoelastic fluids in porous media is important in many applications 

including composite manufacturing in fibrous materials (Skartis et al., 1992; Preziosi et al., 

1996), filtration of polymer solutions (Koziki and Kuang, 1994), removal of liquid pollutants in 

soils (Londergan et al., 2001; Sochi, 2009), blood flow in capillaries (Thurston, 1974; Canic et 

al., 2006; Rojas, 2007), and enhanced oil recovery (EOR). Polymers are used in enhanced oil 

recovery (EOR) to control the mobility ratio between displaced fluids (oil) and displacing fluids 

(water or brine).  

Oil recovery from a hydrocarbon-producing reservoir includes up to three phases: 

primary, secondary, and tertiary recovery (enhanced oil recovery (EOR)).  In primary recovery, 

the driving force to extract hydrocarbon comes from the natural reservoir energy,  reservoir 

natural pressure and reservoir fluid gravity, through these natural forces hydrocarbons are drawn 

toward the production well and  artificial lift techniques (such as pumps) are used to bring the oil 

to the surface. Depending on the reservoir type and driving force in reservoir, about 10 percent of 

a reservoir's original oil in place (OOIP) is produced during primary recovery. After the reservoir 

is depleted with reservoir natural forces, the next phase is secondary recovery which extends the 

productive life of the reservoir by injecting water or gas to displace oil. Generally, secondary 

recovery results in an additional 20 to 40 percent of the original oil in place. The final phase is 

tertiary or enhanced oil recovery (EOR), techniques that offer prospects for ultimately producing 

30 to 60 percent, or more, of the reservoir's original oil in place. EOR can be categorized in three 

main groups: thermal, gas and chemical injections. Thermal recovery is used to introduce heat 

into reservoir and fluids less viscous which can flow easier into production wells including steam 

injection. In gas injection processes, different gases are injected into the reservoir to maintain the 
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reservoir pressure and push the fluids towards the producing well. Some gases are miscible with 

crude oil, such as CO2, which sweep the reservoir even more. Chemical methods include the 

injection of chemicals into the reservoir (such as polymer and surfactant) to control the 

displacing fluid mobility and lower the interfacial tension between phases, respectively.  

The high, shear-dependent viscosity of polymers offer several benefits in chemical EOR 

including high sweep efficiency and reduced pressure drop near wells, making injection easier. 

Some polymers used, such as hydrolyzed polyacrylamide (HPAM), exhibit strong elastic effects. 

Viscoelasticity adds some additional challenges to EOR (Seright et al., 2008). For many years, 

improving sweep efficiency was considered the only significant mechanism to increase the oil 

recovery using polymer.  Recently, however, experimental studies (Wreath, 1989; Lu, 1994; 

Wang et al., 2001; Huh and Pope, 2008) and field data (Putz et al, 1988; Wang et al., 2001; 

Huifen et al., 2004) suggest that viscoelastic polymers such as hydrolyzed polyacrylamide 

(HPAM) improve displacement efficiency as well and reduce the residual oil saturation. 

The objective of this work is to model and understand single-phase and multiphase 

viscoelastic fluid flow in porous media. Flow of viscoelastic polymers has been studied 

experimentally and numerically in the literature in a succession of contraction-expansion ducts. 

Strong increase in apparent viscosity, i.e., a thickening behavior has been observed beyond a 

critical flow rate which is not observed for viscoelastic fluids measured with a laboratory 

rheometer. The onset and magnitude of this thickening behavior has been shown to be dependent 

on geometry and fluid properties (Gupta and Sridhar, 1985). The results are interpreted as an 

increase in extensional viscosity associated with a stretching of the deformable macromolecules 

(Marshall and Metzner, 1967; Magueur et al., 1985; Wreath, 1989). Extensional flow is a class of 

flow having the velocity gradient parallel to the flow direction.  
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Recent experimental works and field data show that in multiphase systems of oil and 

water-based polymer, the residual oil saturation is often surprisingly low after viscoelastic 

polymer displacement (Putz et al., 1988; Wreath, 1989; Wang et al., 2001). This contradicts 

decades of belief that polymer improves the sweep efficiency as a result of mobility reduction 

mechanism, but does not have any effect on residual oil saturation (Lake, 1988; Sorbie, 1991; 

Willhite and Green, 1998).  

At the pore-scale, capillary forces prevent the non-wetting phase from flowing, cause 

snap off, and the unconnected oil phase is difficult to mobilize. If the pressure gradient were 

sufficiently high, the oil droplet would stretch out toward the adjacent pore, squeeze through the 

constriction, and then flow to the next pore, but it is generally believed the pressure force across 

the oil droplet in water or polymer flooding is not high enough to overcome the capillary 

pressure forces (Peters, 2012).  Consider a typical water-wet reservoir (contact angle, θ = 0°), 

relative permeability (kw) of 100 mD, and a 1 cp viscosity (μ) fluid flowing at a Darcy velocity 

(vw) of 1 ft/day and calculated the applied pressure gradient would be less than 0.1 psi/ft. For a 

typical pore geometry as shown in figure 1.1 with length 50 µm, throat radius of 10 µm, pore 

body radius of 50 µm, and surface tension (σ) of 30 dynes/ cm, the required pressure gradient to 

mobilize the residual oil is approximately 4000 psi/ft; about 4-5 orders of magnitude higher than 

the applied pressure gradient. Using a more viscous fluid (EOR polymers are usually 10-100 cp) 

would provide additional pressure gradient, but it would still be at least two orders of magnitude 

less than required to reduce residual oil saturation (Stegemeier, 1974). Figure 1.2 shows a 

schematic capillary desaturation curve for porous media. The x-axis depicts capillary number 

which is a dimensionless number defined as the ratio of viscous to capillary forces.  In flow 

through the porous medium, to reduce the residual saturation on non-wetting phase, the capillary 
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number must be increased to a value greater than the non-wetting critical capillary number (~10
-

5
). However, a typical water/polymer-flooding range the capillary number is much less than 10

-6
, 

nowhere near the critical value. 

Despite these fundamental calculations for viscous flow, some experimental and field 

observations show viscoelastic polymer flooding in EOR can reduce the residual oil saturation, 

improving the recovery by an additional 20% (Putz et al., 1988; Wreath, 1989; Wang et al., 

2001). A theoretical study is needed to explain these observations and to determine under what 

(if any conditions) polymer elasticity can help mobilize trapped oil. 

In this study, computational fluid dynamics (CFD) modeling of single-phase viscoelastic 

fluid flow has been performed, and pore-network simulators for single-phase viscoelastic flow 

have been developed and validated with experiments. CFD modeling for multi-phase viscoelastic 

and purely-viscous fluids has been performed to either prove or disprove several hypotheses for 

residual oil saturation (Sor) reduction during polymer flooding. The hypothesis of the additional 

force due the polymer elasticity, and also the polymer pulling effect in dead-end pores has been 

tested through modeling. In addition, since in experiments, the additional recovery due to 

polymer elasticity has been observed in secondary flooding rather than tertiary; the hypothesis 

that viscoelasticity  prevents snap off of oil ganglia has been tested using modeling in a single 

pore and the  results are discussed.  

In chapter 2 of the dissertation, a background and literature review on viscoelastic fluid 

flow in porous media and its effect on residual oil saturation are discussed from both an 

experimental and simulation perspective. Chapter 3 discusses the development of a single-phase 

pore-network model and compares the network modeling simulation results to experiments. 

Chapter 4 explains static (steady-state) CFD modeling viscoelastic flow around an oil droplet 
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and investigates the elasticity of fluid on the stationary oil droplet. Chapter 5 focuses on the 

pulling-effect mechanism both numerically and experimentally and discusses the CFD 

simulation of multiphase flow at which both aqueous phase and oleic phase are modeled.  

Finally, chapter 6 summarizes the findings and conclusions; and recommends the future work for 

this topic. 

 

 

Figure 1.1 Trapped oil blob (Peters, 2012) 

 

Figure 1.2 Schematic capillary desaturation curve (Lake, 1988) 
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Chapter 2: Background and Literature Review 

Viscoelastic fluids have been studied numerically and experimentally in many 

applications including those for the oil and gas industry. One of viscoelastic fluid applications in 

oil and gas industry is for enhanced oil recovery (EOR). In chemical enhanced oil recovery, 

polymer flooding is a method applied to improve the sweep efficiency in oil reservoirs.  

2.1 Non-Newtonian Flow 

2.1.1 Rheology and Rheological Models  

The proper selection of a fluid rheological model is one of the most important aspects in 

the simulation of flow of non-Newtonian fluids. One needs to always consider both the fluid and 

the flow; a particular constitutive equation is valid for a given fluid in a given type of flow. 

2.1.1.1 Fluid Rheological Properties 

 The rheology of a material describes its deformation and affects its flow behavior. Non-

Newtonian fluids exhibit shear-dependent viscosity. Several constitutive equations have been 

proposed to describe the relationship between shear stress (or viscosity) and shear rate for purely 

viscous fluids such as the power-law (Ostwald, 1925), Carreau (Carreau et al., 1979), and Ellis 

(Bird et al., 1987) models. As is well known, the range of validity of the Newtonian constitutive 

equation is limited to low-molecular weight, homogeneous liquids. The flow phenomena 

observed with polymers, for example, cannot be predicted by the classical Navier-Stokes 

equations. Non-Newtonian behavior has many rheological complexities such as the shear-rate 

dependence of the shear viscosity, the presence of normal stresses in viscometric flows, high 

resistance to elongational deformation, and memory effects associated with the elasticity of the 

fluid. Non-Newtonian inelastic flows exhibit a shear-rate dependence of the shear viscosity, but 

other phenomena are characteristics of viscoelastic flows (Bird, 1987; Barnes, 1989). 
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The momentum equations, the mass conservation (continuity) equation, and (for non-

isothermal flows) the energy equation describe the system for both elastic and inelastic fluids. 

The form of the momentum equations is 

−∇𝑝 + ∇ ∙ 𝑻 + 𝒇 = 𝜌𝒈     (2.1) 

where p is pressure, T is extra-stress tensor, f is external force vector acting on fluid, ρ is density, 

and g is gravity vector. The incompressible continuity equation is   

∇ ∙ 𝒗 = 0         (2.2) 

where v is velocity vector. In this study all simulations are for isothermal flows, so the energy 

equation is not necessary (Bird, R., Stewart, W., Lightfoot, E., 2006).  

For an inelastic, non-Newtonian fluid, the constitutive equation has the form, 

𝑻 = 2𝜂𝑫      (2.3) 

where D is the rate-of-deformation tensor and η is the viscosity which can be function of local 

shear rate (𝛾̇). The local shear rate is defined as  

𝛾̇ = √2𝑡𝑟(𝑫2)     (2.4) 

In a simple shear flow, 𝛾̇ reduces to the velocity gradient. 

Several constitutive equations are available for inelastic non-Newtonian fluids. First, 

Newtonian fluids have a constant viscosity (𝜂0) referred to as the Newtonian or zero-shear rate 

viscosity, and viscosity is not a function of shear rate as shown in figure 2.1(a).  

𝜂 = 𝜂0       (2.5) 
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For power-law fluids, viscosity is 

𝜂 = 𝐾(𝛾̇)𝑛−1      (2.6) 

where K is the consistency factor, and n is the power-law index, which  are properties of a given 

material, the schematic rheological behavior of power-law fluids is shown in figure 2.1(b). 

The power law model is commonly used to describe the rheological characteristics of 

polymers. However, it is not a good model for the entire range of shear rates and it fails at low 

shear rates. If the behavior at low shear rates is in the range of interest as well, the Bird-Carreau 

model will capture the plateau zone of the viscosity curve for low shear rates better than the 

power law. 

In the Bird-Carreau model, viscosity is defined as 

𝜂 = 𝜂∞ + (𝜂0 − 𝜂∞)(1 + (𝜆𝛾̇)2)
𝑛−1

2     (2.7) 

where 𝜂∞ is infinite-shear rate viscosity, 𝜂0 is zero-shear-rate viscosity, λ is natural time (i.e., 

inverse of the shear rate at which the fluid changes from Newtonian to power-law behavior), and 

n is power-law index, the rheology of Bird-Carreau is shown in figure 2.1(c).  

2.1.1.2 Flow Rheological Properties 

Depending on the kinematics of the system, several types of flow exist: steady simple 

shear flow, steady extensional flow, oscillatory shear flow, transient shear flow, and transient 

extensional flow. The first three are discussed here. 

Steady Simple Shear Flow 

Steady simple shear flow is characterized by a horizontal velocity field, illustrated in 

Figure 2.2 and defined as follows: 
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𝑣𝑥 = 𝛾̇𝑦      (2.8) 

𝑣𝑦 = 0       (2.9) 

𝑣𝑧 = 0       (2.10) 

where 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 are velocity component in the x, y, and z direction, respectively, and 𝛾̇ is the 

constant shear rate which equals 𝑈 ℎ⁄  as shown in figure 2.6. To study different flow rheological 

properties, the following fundamental flow properties need to be defined: steady shear stress 

(𝜎𝑥𝑦(𝛾̇)), steady shear viscosity (η), first normal-stress difference (N1), second normal-stress 

difference (N2),first normal-stress coefficient (ψ1), second normal-stress coefficient (ψ2), 

recoverable stress (Sr), estimated relaxation time (λest). 

𝜂(𝛾̇) =
𝜎𝑥𝑦(𝛾̇)

𝛾̇
       (2.11) 

𝑁1(𝛾̇) = 𝜎𝑥𝑥(𝛾̇) − 𝜎𝑦𝑦(𝛾̇)     (2.12) 

𝑁2(𝛾̇) = 𝜎𝑦𝑦(𝛾̇) − 𝜎𝑧𝑧(𝛾̇)     (2.13) 

𝜓1(𝛾̇) =
𝑁1(𝛾̇)

𝛾̇2        (2.14) 

𝜓2(𝛾̇) =
𝑁2(𝛾̇)

𝛾̇2        (2.15) 

𝑆𝑟(𝛾̇) =
𝑁1(𝛾̇)

2𝜎𝑥𝑦(𝛾̇)
      (2.16) 

𝜆𝑒𝑠𝑡(𝛾̇) =
𝑆𝑟(𝛾̇)

𝛾̇
      (2.17) 

Steady Extensional Flow 

Steady extensional flow can be uniaxial, biaxial, or planar. For example, uniaxial 

extensional flow is illustrated in Figure 2.3 and defined as follows: 

𝑣𝑥 = 𝜀̇𝑥      (2.18) 

𝑣𝑦 =
−𝜀̇𝑦

2
      (2.19) 
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𝑣𝑧 =
−𝜀̇𝑧

2
      (2.20) 

where 𝜀̇ is a constant elongational strain rate. The corresponding stress distribution can be 

written as   

𝜎𝑥𝑥(𝜀̇) − 𝜎𝑦𝑦(𝜖̇) = 𝜎𝑥𝑥(𝜀̇) − 𝜎𝑧𝑧(𝜖̇) = 𝜖̇𝜂𝐸(𝜖̇)   (2.21) 

𝜎𝑥𝑦(𝜖̇) = 𝜎𝑥𝑧(𝜖̇) = 𝜎𝑦𝑧(𝜖̇) = 0    (2.21) 

where 𝜂𝐸  is the uniaxial extensional viscosity. 

Oscillatory shear flow 

It is often needed to examine the response of a viscoelastic material to a small-amplitude 

oscillatory shear rate. This flow allows one to investigate the linear viscoelastic behavior of the 

material, and yields the storage and loss moduli, G
/
 and G

//
. In a viscoelastic fluid, the storage 

module (G
/
) represents the elastic behavior of the fluid by amount of energy stored in the 

material, and the loss module (G
//
) represents the viscous behavior of the fluid by amount of 

energy which is dissipated as heat. The storage and loss moduli, G
/
 and G

//
, are obtained from a 

dynamic frequency test. The dynamic frequency test is a technique used to study the fluid 

behavior, specifically viscoelastic polymer. In this method, stress applies on the fluid and then 

the strain in the fluid will be measured; the results interpret the elastic behavior of the fluid.   

2.1.1.3 Viscoelastic Models 

For viscoelastic fluids the total stress tensor consists of T1 (elastic component) and T2 

(purely viscous component). T1 is different for various viscoelastic models depending on which 

physics are added to the model.  

     𝑻 = 𝑻𝟏 + 𝑻𝟐      (2.22) 
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Each viscoelastic model defines T1 differently. T2 is computed from equation 2.23 and 

for some viscoelastic models is an optional component since it is negligible compared with the 

T1 component for viscoelastic fluid when the elastic effect is significant.  

     𝑻𝟐 = 2𝜂2𝑫      (2.23) 

where D is the rate-of-deformation tensor and 𝜂2 is the viscosity factor for the Newtonian 

(i.e., purely viscous) component of the total stress tensor. The viscoelastic models are 

categorized in three different classes (Roylance, 2001). 

First, the Upper-Convected Maxwell (UCM) and Oldroyd-B models are the simplest 

viscoelastic constitutive equations; they incorporate a constant viscosity and are usually used 

when little information exists about the rheology or only qualitative analysis is needed. The 

Oldroyd-B model is a good option for high extensional viscosity and includes purely-viscous 

stress component, however in the UCM model, the purely-viscous stress component is neglected. 

In fact, the UCM is the Oldroyd-B model without purely-viscous component of stress.  Eqn. 2.24 

is the Upper-Convected Maxwell model used in this study given by, 

 𝑻 + 𝜆 (
𝜕

𝜕𝑡
𝑻 + 𝒗 ∙ ∇𝑻 − ((∇𝒗)𝑇 ∙ 𝑻 + 𝑻 ∙ (∇𝒗))) = 2𝜂𝑫 (2.24)  

where v is fluid velocity. The purely viscous component of the total tensor (T2) is zero for the 

UCM model (i.e., T=T1 and T2=0); however it computed for Oldroyd-B model from equation 

2.23. The constitutive equation assumes linear elasticity. Although most real fluids are non-

linear, the model is widely used to gain physical insight to viscoelastic behavior because of its 

relative simplicity. 

Second, the White-Metzner, Phan-Thien-Tanner (PTT), Johnson-Segalman, and Giesekus 

models are more complex; they include a shear-thinning viscosity in the viscous component of 
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the model. By conducting shear viscosity experiments, these models would be able to model the 

shear-thinning behavior of polymers and can be used when shear-degradation is modeled. With 

the White-Metzner model, it is possible to reproduce shear-thinning features. When experimental 

data are available for the shear viscosity and the first normal-stress difference, the material 

parameters for the White-Metzner model can be obtained easily by curve fitting. Although it is 

interesting to capture shear-thinning behavior, the White-Metzner model may encounter some 

difficulty in its numerical behavior at high shear rates (Bird et al., 1987). In the White-Metzner 

model, the relaxation time (λ) and the viscosity (η) can be constant or represented by the power 

law or the Bird-Carreau law for shear-rate dependence. The Phan-Thien-Tanner (PTT), Johnson-

Segalman, and Giesekus models are the most realistic viscoelastic models. In particular, they 

exhibit shear thinning and a non-quadratic first normal-stress difference at high shear rates 

(Guenette, 1995). 

Third, the FENE-P, POM-POM and Leonov models are based on molecular theories and 

are good models for dilute solutions. The POM-POM model was specifically proposed for 

branched polymers. More complex viscoelastic models can capture more complexities (Inkson et 

al., 1999; Clemeur et al., 2003). FENE-P (Finitely Extensible Non-Linear Elastic Dumbbells – 

Peterlin) model is derived from molecular theories and is based on the assumption that the 

material behaves as a series of dumbbells connected by springs. The FENE-P model requires 

only four parameters. It predicts a realistic shear thinning of the fluid and a first normal-stress 

difference that is quadratic for low shear rates. It has been observed in practice that viscometric 

properties of several fluids can often be accurately modeled. The FENE-P model is appropriate 

for simulating the rheological behavior of dilute solutions (Chambers, 1992). POM-POM model 

was introduced by McLeish and Larson (1998). The concept of the pom-pom structural 
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molecules makes the model suitable for describing the behavior of branched polymers. From the 

point of view of morphology, Leonov model is a good choice for macromolecules which are rest 

and trapped by particles of carbon black, via electrostatic van der Waals forces (Leonov, 1992; 

Simhambhatla, 1994 and 1995).  Leonov model is capable of modeling trapped and free 

molecules.  

2.1.2 Viscoelasticity  

Viscoelastic fluids have a memory and partially return to their initial state after 

deformation. To determine an appropriate model for a problem, one needs to first collect as 

much data as possible about the fluid properties. Typical information includes (1) steady 

viscometric properties (shear viscosity η and first normal-stress difference N1). These data 

characterize the fluid in the presence of large deformations, (2) oscillatory viscometric properties 

(storage and loss moduli G
/
 and G

//
) they correspond to small deformations, and (3) elongational 

viscosity. In addition to the characteristic time of fluid which is important to study a fluid 

dynamics problem, studying the characteristics of the flow is required as well. In many 

situations, the flow can be characterized by a critical shear rate (𝛾̇𝑤) at which elasticity of 

viscoelastic fluid becomes significant and shear-thickening behavior observed. For example, in a 

planar flow shown in figure 2.4, the critical shear rate (𝛾̇𝑤) defined as  

𝛾̇𝑤 =
3𝑄

𝐿2
      (2.25) 

where Q is flow rate and L is a characteristic length.  

In addition to flow behavior and geometry, quantification of the fluid elasticity is 

necessary. This can be investigated by evaluation of the fluid’s characteristic relaxation time. 

When the oscillatory functions storage and loss moduli (G
/
 and G

//
, respectively) are available, 
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their intersection (𝛾̇𝑖 =
1

𝜆𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
 as shown in figure 2.5) is a reasonable choice for selecting a 

relaxation time.  For shear rates below 𝛾̇𝑖, flow is dominated by viscous forces; however 

viscoelastic effects play an important role in shear rate region higher than 𝛾̇𝑖. Importantly, due to 

the technological limitations of some rheometers, it is not always possible to obtain viscoelastic 

data in the range of shear rates where the fluids flow. In this case, the only option is to 

extrapolate experimental data for higher shear. The selection of a particular model for such a 

case will be more qualitative due to lack of rheometer data. 

Relaxation time is a fluid property that controls the fluid elastic behavior; it is the time 

fluid relieves stress under constant strain. The reason the polymer elasticity is obtained in porous 

media is due to small transit time of polymer solution compared with relaxation time (Sorbie, 

1990). To quantify the elasticity of the fluid, a dimensionless group called Deborah number is 

defined (Metzner et al., 1966) 

   𝐷𝑒 =
𝑓𝑙𝑢𝑖𝑑 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑓𝑙𝑜𝑤 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑟𝑖𝑠𝑡𝑖𝑐 𝑡𝑖𝑚𝑒
=

𝜆

𝑡𝑓𝑙𝑜𝑤
        (2.26)  

 As De number increases, the flow becomes more elastic, meaning the solid-like behavior 

is more dominant than viscous fluid behavior. De number is defined as the ratio of elastic forces 

to viscous forces. Several definitions have been proposed for Deborah number (Metzner et al. 

1966; Jones et al. 1987; Choi 1991; Choi & Kim 1992; Rubinstein and Colby 2003). At large De, 

first normal stress differences play an important role in flow behavior. Extensional viscosity 

dominates over shear viscosity (Macosko, 1994). This increased (extensional) viscosity is often 

attributed as the cause of the apparent shear thickening behavior observed in 

converging/diverging geometries, such as porous media. Measurement of extensional viscosity is 
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historically difficult (Makosko, 1994) but advanced rheometers (Solomon and Muller, 1996; 

Sridhar et al., 1991) have been developed to estimate extensional effects.   

Another typical dimensionless number (related to Deborah number) used in the literature 

to estimate the viscoelastic character of a flow is the Weissenberg number (We). Deborah and 

Weissenberg numbers are not different conceptually; different authors name either of those for 

the product of relaxation time by typical shear rate.  “We” is the product of the relaxation time 

(λ) and a typical shear rate 𝛾̇. 

𝑊𝑒 = 𝜆𝛾̇      (2.27) 

 When We is low, inelastic non-Newtonian models are sufficient to describe the flow; only 

at higher values of We are viscoelastic models required to characterize memory effects. A high 

value of We means that a problem is difficult to solve numerically, because of the nonlinear 

nature of the system. 

 Several researchers use the longest relaxation time (𝜆∗) for λ. However, the longest 

relaxation time (𝜆∗) can be used to represent non-Newtonian behavior; the relaxation time is 

changeable with shear rate in a porous medium. Using the longest relaxation time can 

overestimate Deborah number at given shear rate. Normal stress difference is the evidence of 

viscoelastic behavior for polymer solution. The relaxation time can be estimated from normal 

stress difference (Rubinstein & Colby 2003; Choi 1991; Choi & Kim 1992). 

     𝜆 ≅
𝑁1

2𝛾̇𝜏
=

𝑁1

2𝜂𝛾̇2
     (2.28) 

 Therefore for different for geometry models, De number defined as below. First, for a 

capillary bundle model 

    𝐷𝑒 =
𝑁1

2𝜂𝛾̇2 𝛾̇𝑒𝑓𝑓 =
𝑁1

2𝜂𝛾̇𝑒𝑓𝑓
=

𝑁1

2𝜏
    (2.29) 
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where τ is shear stress. Second, for a single pore throat 

     𝑡𝑓𝑙𝑜𝑤 =
𝜀

𝜀̇
      (2.30) 

where 𝜀 is strain and 𝜀̇ is strain rate, therefore Deborah number defined as  

     𝐷𝑒 =
𝑁1𝜀̇ 

2𝜂𝛾̇2𝜀
      (2.31) 

And Jones (1987) proposed  

     𝛾̇ = 𝐶1𝜀̇      (2.32) 

Therefore, 

     𝐷𝑒 =
𝑁1 

2𝐶1𝜂𝛾̇𝜀
=

𝑁1 

2𝐶1𝜀τ
     (2.33)  

The solid-like elasticity exhibited in tortuous porous media at which fluid experiences 

compression and expansion while travelling through converging/diverging pore structure. As a 

result, fluid undergoes normal stress (stretches stress) in addition to shear stress. The thickening 

behavior depends on both shearing and stretching mechanism. The proportionality between 

extensional and shear viscosity is defined as Trouton number. 

𝑇𝑟 =
𝜂𝐸

𝜂
      (2.34) 

Where ηE is extensional viscosity and η is shear viscosity. Extensional (or elongational) 

viscosity is a viscosity when applied stress is normal stress. In opposite shear viscosity is a 

viscosity coefficient when applied stress is shear stress. For a Newtonian fluid which the 

viscosity is not shear dependent, the Trouton number is 3. Since the extensional viscosity 

depends on strain rate (𝜀̇) and shear viscosity on shear rate (𝛾̇) for non-Newtonian fluids. In 

general terms, the Trouton number is defined as  

𝑇𝑟 =
𝜂𝐸(𝜀̇)

𝜂(𝛾̇)
      (2.35) 
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Jones et al. (1987) advocated using of equation 2.5 for Trouton number, since a value of 

3 was obtained for all inelastic fluids and any departure from the value 3 corresponding to 

viscoelasticity.   

𝑇𝑟 =
𝜂𝐸(𝜀̇)

𝜂(√3𝜀̇)
      (2.36) 

Note that the Deborah number (or equivalently Weissenberg number) is probably not the 

best indicator for viscoelastic models with several relaxation times or if there is shear thinning in 

the flow. In such cases, a useful dimensionless number is the recoverable shear Sr defined as the 

ratio of the first normal-stress difference N1to twice the steady shear stress σxy. 

𝑆𝑟 =
𝑁1(𝛾̇)

2𝜎𝑥𝑦(𝛾̇)
      (2.37) 

2.2 Single Phase Flow in Porous Media 

2.2.1 Experimental Observations  

Some polymers, such as hydrolyzed polyacrylamide (HPAM), exhibit elastic effects 

which lead to shear-thickening behavior at high shear rates. Magueur et al. (1985) studied the 

flow of dilute viscoelastic polymer solutions in successive contractions and expansions (as 

shown in figure 2.6) and evaluated the effect of converging/diverging geometry on polymer 

rheology. They experimentally demonstrated shear-thickening behavior for a number of tests and 

were able to correlate it with several geometric properties. They reported an abrupt increase in 

apparent viscosity beyond a critical flow rate. They observed the geometry (e.g.; number of 

contraction-expansions, ratio of length to radius of constricted geometry) and polymer properties 

have an effect on the onset of shear-thickening behavior. They observed for the geometry in 

figure 2.6 that the shear-thickening behavior is more pronounced as the ratio between length and 
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radius of the capillary decreases (figure 2.7). They suggested that shear thickening was due to 

end effects. They analyzed the reason to increase elongational viscosity of polymer solution is 

governed by stretching of the deformable macromolecules.   

Later Chauveteau and Moan (1981) and Chauveteau (1986) extended the work of Maguer 

et al. (1985) to investigate the relationship between macromolecular properties and flow 

behavior of high molecular weight, water-soluble polymer solution through porous media. For 

high deformation rate flow, thickening behavior was interpreted at a molecular level and shown 

to depend on stretched molecule to pore size ratio. Figure 2.8 compares the apparent viscosity as 

a function of shear rate for various contraction-expansion configurations; they observed as the 

ratio of maximum radius to minimum radius increases, or more successive converging-diverging 

sections added to the geometry, the fluid shows more shear-thickening behavior. Figure 2.9 

shows the effect of polymer concentration on thickening behavior. They show as the polymer 

concentration increases the shear-thickening behavior is larger. In addition, the effect of salinity 

on thickening properties has been studied. As shown in figure 2.10, as the salinity increases the 

critical shear rate at which the thickening begins are delayed. However there is a thickening 

region which is believed to be originating from the dominance of extensional flow over shear 

flow at high rate of strain. This behavior is observed in tortuous porous media and the geometry 

of converging-diverging shape shown in figure 2.11.  

During core flood experiments, the pressure calculated across the core and apparent 

viscosity is calculated with Darcy’s equation. For low shear rate (and therefore low flow rates ) 

Newtonian behavior is observed followed by shear-thinning response, and at high enough flow 

rate eventually the pressure build-up and shear-thickening behavior exhibited is as shown in 
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figure 2.11. This behavior results from the stretch-relaxation transition of the polymer molecules 

as they flow through the converging-diverging pore structures in tortuous porous media. 

Dauben et al. (1967) investigated the elastic properties of polymers experimentally. They 

showed the secondary normal stress difference is much smaller than primary normal stress 

difference. They reported that viscoelastic polymers show shear-thinning behavior in a 

laboratory rheometer, but in the core-flood experiments, at high flow rate, the flow resistance is 

higher due to the interaction of polymer molecule and the walls and fluid elasticity in porous 

media. Several other authors observed the same behavior (Sadowski, 1963; Park, 1972; Yuan, 

1981; Vogel and Pusch, 1981; Balhoff and Thompson, 2004; Huifen et al., 2004). 

2.2.2 Modeling and Theoretical Considerations  

A threshold value of Deborah number exists beyond which viscoelasticity effect plays an 

important role and below which the flow is mainly viscous. However, Heemskerk and Rosmalen 

(1984) indicated that the threshold Deborah number can only be used to give a first estimate of 

the onset of shear thickening behavior because of the difficulty in evaluating the stretch rates that 

exists in a porous medium. Gupta and Shidhar (1985) also concluded that viscoelastic behavior 

cannot be predicted by De alone but also by the ratio of maximum and minimum diameters of 

pore structure. They showed the pore geometry is important in examining viscoelastic behavior 

of fluid flow. 

Heemskerk and Rosmalen (1984) showed that the steep increase in pressure beyond a 

specific flow rate is a direct consequence of viscoelasticity with respect to the unsteadiness of the 

flow field in a porous medium. They concluded that the onset of shear thickening in terms of 

critical flow rate shifts towards higher values with increasing permeability, temperature and 
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salinity and with decreasing molecular weight and polymer concentration at which polymer has 

less elastic behavior.   

Many constitutive equations have been proposed for viscoelastic fluids that exhibit strong 

extensional flow effects to relate shear stress and rate, such as the Maxwell, Phan-Thien-Tanner, 

Giesekus, and Oldroyd-B models as discussed in detail previously in this chapter. The 

differences between various viscoelastic models are how they modeled the behavior of purely-

viscous fluid and solid-like phenomena.   

Figure 2.11 illustrates the rheology of a viscoelastic fluid in a porous medium. At low 

apparent shear rates, the fluid exhibits a Newtonian plateau followed by the shear-thinning 

region, and at high shear rate shear-thickening is observed (Magbagbeola, 2008).  

Several authors have studied viscoelastic fluids experimentally and numerically. Marshall 

and Metzner (1967) presented a model for viscoelastic flow. The drag coefficient-Reynolds 

number relationships for purely viscous laminar flow is  

𝑓 ∙ 𝑅𝑒 = 1.0      (2.38) 

where f is the drag coefficient, and Re is the Reynolds number and they are defined for packed 

beds and purely viscous non-Newtonian as below (Bird, Stewart, and Lightfoot, 1960): 

 

𝑓 =
∆𝑃𝐷𝑝𝜀3𝜌

𝐿𝐺2(1−𝜀)
      (2.39) 

𝑅𝑒 =
𝐷𝑝𝐺2−𝑛𝜌𝑛−1

150𝐻(1−𝜀)
     (2.40) 

where H corresponding for a viscosity level parameter and defines as: 

𝐻 =
𝐾

12
(9 +

3

𝑛
)

𝑛
(150 𝑘𝜀)

(1−𝑛)
2⁄
    (2.41) 
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where K is usual consistency index, n is power index for power-law fluids, Dp is particle 

diameter and ɛ is fraction of void volume. They observed the deviation from the drag coefficient-

Reynolds number relationships for a purely viscous fluid at the critical value of De which 

depends on different variables such as homogeneity. They used the De number definition for 

packed beds of spheres as follows: 

𝐷𝑒 =
𝜆𝑣

𝐷𝑝
      (2.42) 

Where λ is relaxation time, v is interstitial velocity, and Dp is particle diameter. They 

performed experimental tests in packed beds of spheres and supported the analysis. Wissler 

(1971) showed using a perturbation analysis that the purely viscous force acting on a converging-

diverging section must be multiplied by a factor to account for viscoelastic effects 

𝑓 ∙ 𝑅𝑒 = [1 + 𝐴(𝐷𝑒)2]    (2.43) 

where A is a constant which seems to be of order 10. The proposed correction factor 

agrees well with experimental data reported by Marshall and Metzner (1967) as shown in figure 

2. 12. They predicted shear-thickening behavior in porous media. However, their model was only 

valid for low De and simple geometries. Also, the value of “A” was dependent on the geometry 

and could not be determined a priori. 

Deiber and Schowalter (1981) used the method of geometric iteration to solve the 

momentum equations along with Maxwell constitutive model for the fluid rheology in sinusoidal 

ducts. They observed a higher flow resistance than expected from purely viscous fluids at high 

flow rate, and this effect is attributed to the fluid elasticity. However, at high enough flow rates 

secondary flow affects appear. They showed the flow depends on media geometry characteristics 

defined as aspect ratio (ratio of maximum and minimum radius of the pore throat). Also, they 

validated their numerical results with experimental work for the same geometry. Later, Gupta 
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and Sridhar (1985) analytically evaluated the stresses of polymer solutions through a tube having 

a periodically varying diameter. They found that if the deformation rate is assumed constant, the 

stress depends not only upon the Deborah number, but also on the aspect ratio.  

Khuzhayorov et al. (2000) used a homogenization technique, i.e. upscaling the 

heterogeneity scale description. They took advantage of following model (equation 2.44) to 

derive a general filtration law describing the flow of a linear viscoelastic fluid in porous media. 

However, the model is only valid under low Reynolds and Deborah number. 

𝑣⃗ = −
𝑘

𝜇
(1 + 𝜆

𝜕

𝜕𝑡
) ∇𝑝⃗⃗⃗⃗⃗⃗          (2.44) 

Other authors have studied extensional effects of viscoelastic fluids with numerical 

methods in planar and axi-symmetric contraction/expansions (Rajagopalan, 1990; Fan, 1999; 

Alves, 2003; Binding et al., 2006; Aguayo, 2010) and reported shear-thickening behavior. In 

addition, several attempts have been done to overcome convergence issues for this highly 

nonlinear problem to reach a higher De number. For instance, Huang et al. (1995) used Polyflow 

software to simulate the viscoelastic fluid flow around the sphere placed in cylindrical tube. 

They used an EVSS (elastic-viscous stress split) as discussed in chapter 4 formulation for stress 

and unstructured triangle meshing to reach De ~ 2.5.  

For simplicity, the Upper-Convected Maxwell (UCM) model has been used to describe 

the rheological properties of polymer solutions. However, this model considers only viscosity 

and elasticity of a fluid without including the non-Newtonian shear-thinning behavior. Yin et al. 

(2006) presented a modified Upper-Convected Maxwell (MUCM) model to take into account 

this property.  
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Binding et al. (2006) studied the Olydroyd-B model for 4:1 contraction, and 4:1:4 cases 

and the pressure drop is calculated using Polyflow software for both planar and axisymmetric 

cases. They used the EVSS formulation for stress calculation. They observed that the pressure 

drop initially reduces as the elasticity increases. Then as De number is further increased, it 

eventually rises significantly above the Newtonian value. However before Binding, several 

authors reported the same trend. Webster (2004) conducted the simulations for Olydroyd-B and 

PTT model and shows linear declining with increasing De. Szabo (1997) studied Olydroyd-B 

and FENE model and observed the similar result. Cartalos and Piau (1992) study investigated the 

viscoelastic behavior experimentally and their outcome was in agreement with Binding’s work.  

Delshad et al. (2008) presented the unified apparent viscosity model that can be used for 

the entire range of apparent shear rate includes Newtonian, pseudo-plastic or shear-thinning and 

dilatant or shear-thickening regimes. In this model, the apparent viscosity of the polymer is a 

summation of the shear dominating viscosity and the elongational-dominating viscosity. The 

Carreau model applied for the shear-dominating viscosity and an empirical model was used to 

describe the shear-thickening viscosity.  
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   (2.45) 

where 𝜂∞, 𝜂0,λ, n and α are empirical constants that will be obtained from the Carreau model 

fit to the polymer’s bulk viscosity data. The semi-empirical model shows good agreement with 

several sets of core-flood data as shown in figure 2.13. However, it is not derived from 

fundamental physics. The model coefficients can be obtained from fitting to experimental data 

for a specific polymer and porous medium.  
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2.3 Multiphase Flow in Porous media 

2.3.1 Experimental Observations  

Viscoelasticity and extensional viscosity are typically presumed to be responsible for 

polymer solution behavior in porous media (Sorbie, 1990). Conventional wisdom on the effect 

polymer viscoelasticity was not recognized as important in terms of microscopic sweep 

efficiency, but recent researches on polymer viscoelasticity show evidence that residual oil can 

be changed with the injection of polymer (Wreath 1989; Wang 2000; Wu 2007; Huh and Pope 

2008). Kamaraj et al. (2011) describes the effect that residual oil saturation reduction in viscous 

oils could have on potential recovery of heavy oils. Wu (2007) reports that polymer 

viscoelasticity can influence oil recovery, including the mobilization of residual oil. Huh and 

Pope (2008) show that the viscoelasticity of polymer can reduce residual oil saturation in 

secondary polymer floods, but not in a tertiary mode. 

 Wreath (1989) conducted core-flood experiments in Berea and Antolini sandstone, and 

measured the rheological properties of each polymer used in the experiment. Xanthan and 

HPAM were used in his experiments with different concentrations and salinity in order to 

investigate a wide range of polymer viscosity and elasticity.  Xanthan is a biopolymer produced 

by the micro-organism Xanthomonas Compestris (Sorbie, 1991). Xanthan was chosen by Wreath 

(1989) in his study because of its low relative elasticity compared with HPAM. In contrast, 

partially hydrolyzed polyacrylamide (HPAM) is a synthetic chain of acrylamide monomers 

which partially have been hydrolyzed. HPAM has a complex behavior and shows different 

rheological behavior at different range of shear rate (Magbagbeola, 2008). HPAM has been used 

by Wreath (1989) because of its high elastic characteristic in this experimental condition. Wreath 

(1989) did not observe oil recovery increment in tertiary polymer flooding, however for some 



25 
 

cases, he reported around 6 percentage Sor reductions in secondary HPAM flooding in Antolini 

sandstone.  

Wang M. (1995) extended Wreath’s (1989) work and conducted more core-floods for 

light and heavy oil. He reported the Sor reduction of around 3% for secondary Xanthan flood 

compared with about 8% Sor reduction for HPAM. For example, in the experiment AN-1 in 

Antolini sandstone, he reported about 20% reduction in average oil saturation in the cores shown 

in figure 14. Wang M. (1995) investigates the effect of various parameters in residual oil 

saturation. He reported the higher the permeability, the more reduction in Sor by polymer-

flooding, within the experimental range investigated. A polymer slug size of one pore volume is 

nearly enough to reduce Sor to that of a continuous polymerflood. Several other researcher 

performed experimental results and observe Sor reduction during HPAM secondary flooding, but 

not in tertiary (Urbissinova, Trivedi, & Kuru, 2010). 

Several other papers published on laboratory and field studies have reported Sor reduction 

(Wang et al., 2000 and 2001). Wang et al. (2000, 2001) provides many glycerin and HPAM 

polymer results in a wide range of viscosity and elasticity by making polymer solution with 

different polymer concentration and salinity percentage. They reported about 5-8% increment for 

the glycerin tertiary after waterflood followed by additional 6% increase for HPAM flooding. 

They performed tertiary polymer flooding with non-elastic glycerin polymer, to reduce the core 

oil saturation to residual oil saturation and swept the bypassed area. Afterward, they injected 

viscoelastic HPAM, and observe about 6% more recovery. They claim the additional 6% 

recovery is due to elasticity of polymer. 

 They also conducted micro-fluidic experiments and visualized experiments to investigate 

the effect of viscoelastic polymer in residual oil saturation in pore-scale (Wang et al., 2010). The 
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main observations from visualized core data are discussed here. First, they categorized the 

residual oil saturation in three main groups: “Film” type (figure 15 and 16), “Column” type 

(figure 17), and “Droplet” type (figure 18), and show no matter which type of residual oil 

saturation is, the additional micro-forces due to polymer elasticity first pushes on the interface 

between phases and protruding portions of the residual oil blobs. Some of the oil from the 

interface will move to the protruding portion making the protruding portion bigger (the direction 

and magnitude of the change in velocity of the driving fluid will also become larger) and with a 

larger radius (smaller capillary force), the larger pushing force deforms the protruding portion 

more, and as shown in figures 15-18, after deforming, gets larger and larger until the protruding 

part detaches from the oil blob and form a new oil droplet that can be driven forward. This 

process continuous until the oil blob divided into many small movable oil droplets or until oil 

blob gets too small which forces acting on its protruding portion cannot gather enough oil from 

behind it to form a shape with enough radius (and small capillary retention force) to form another 

individual droplet, then the macro and micro driving forces reach an equilibrium with the 

capillary retention forces, a new smaller oil blob is formed which not movable. The cumulative 

effect of the above phenomena is to have lower residual oil saturation. Second, it shows that 

polymer solution pulls out the oil which is trapped in dead-end geometry as shown in figure 2.19. 

They show interesting results which are very convincing regarding the effect of polymer 

elasticity on Sor reduction, however the details of study are not reported and therefore the 

experiments are not repeatable.  

Wang et al. (2010) performed experiments in weak oil-wet artificial homogenous cores. 

They showed that only the first normal force differential and its corresponding Weisenberg 

number (or equivalently Deborah number) affect the shape of the flow lines. Other elastic 
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properties such as second normal force difference and the viscosity of the driving fluid do not 

affect flow lines; therefore they do not affect the ED either. Wang et al. (2010) predicted the 

capillary number and viscoelasticity both influence the displacement efficiency and residual oil 

saturation. 

Recently, Ehrenfried (2013) conducted a series of core-flood experiments in several 

different sandstones using displacing fluid with wide range of fluid elasticity from none to those 

with extremely high relaxation times. He used three different sandstone cores for the core-flood 

experiments: moderate permeability Berea outcrop rock, Boise sandstone cores with a high 

degree of heterogeneity, and the homogenous Bentheimer sandstone which has a high 

permeability.  Different types of polymer solution were used in his study including: (1) Glycerin 

which is a small molecular substance that also exhibits a Newtonian response to shear rate, (2) 

HPAM polymer solution which is  a synthetic chain of acrylamide monomers, some portion of 

which have been hydrolyzed; HPAM with fairly complex rheology, and (3) Xanthan gum with 

low elasticity. The results were inconclusive with some experiments showing additional oil 

recovery which may be due to elastic mechanisms. Most experiments showed no significant 

difference between elastic and non-elastic floods when experimental parameters were controlled 

within narrow limits.  

 Ehrenfried (2013) concludes from his core-flood experiments that viscoelastic polymers 

may reduce residual oil saturation in water-wet sandstones, but found the results to be difficult to 

reproduce. Some experimental evidence shows support for an elastic effect. Other evidence 

either contradicts the premise or showed little difference between elastic and non-elastic 

displacement fluids. In most cases where results could suggest elastic effects as the cause, 

alternative explanations for the additional oil recovery are possible. The big challenge is keeping 
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other parameters constant (except polymer elasticity) to be able to make a conclusion on the 

effect of the polymer elasticity on residual oil saturation. Variations in fluid rheology, core 

heterogeneity, initial oil saturation, relative permeability, in-situ viscosity, and in-situ elasticity 

all change from experiment to experiment. This makes their individual contributions to recovery 

difficult to isolate.  

2.3.2 Modeling Approaches  

At the pore-scale, capillary forces play an important role and can prevent the non-wetting 

phase from flowing. Capillary force by a snap-off mechanism makes the oil phase unconnected 

and difficult to mobilize. It is believed trapped oil is restricted from being drawn out of the tight 

pores because the pressure force across the oil droplet in water or polymer flooding is not high 

enough to overcome the capillary pressure forces. If the pressure gradient were sufficiently high, 

the oil droplet would stretch out toward the adjacent pore, squeeze through the constriction, and 

then flow to the next pore. However, it is believed that the additional viscosity of polymers 

would not provide nearly enough pressure-drop to overcome capillary forces and mobilize a 

significant amount of residual oil. This is true for a purely viscous Newtonian fluid and can be 

demonstrated using simple calculations as shown in the introduction (Chapter 1).  

Normally, when analyzing driving forces to determine the displacement efficiency (ED) 

during flooding, only viscous forces, which are proportional to the macro pressure gradient 

(dp/dl), are considered, and micro forces in pores are neglected because micro forces are 

negligible compared to macro forces for the fluids without elastic characteristics. There are two 

important micro forces: first, the normal force caused by the change in shape of the flow lines in 

pores; second, the kinetic force caused by the change in momentum, which is due to the change 

in flow lines in pores too. Both of these two micro forces are caused by the change in flow lines, 
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the larger the change in flow lines, the larger the two micro forces. Analysis, calculations and 

experiments show that the flow lines in pores are different between viscoelastic and Newtonian 

fluids. Flow lines in pores of viscoelastic fluids, compared to Newtonian fluids, look more like 

and “expanding” and “contracting” piston flow. For viscoelastic fluids, micro forces in pores are 

much larger than that for Newtonian fluids and must be considered when analyzing the 

displacement efficiency (Wang et al., 2007).  

There are a few hypotheses (Wang et al., 2001; Huh and Pope, 2008)  to justify the 

residual oil reduction by viscoelastic polymer flooding such as accelerated drainage of oil films 

on rock surfaces, scoured oil in dead-end pores, and trapped oil pulled out in stable oil threads as 

shown in figures 2.15 to 2.19.  The fundamental physics of viscoelastic flow at the pore-scale is 

still not well understood. However, several hypotheses for improved oil recovery are proposed 

by several authors (Wang et al., 2001; Huh and Pope, 2008). Wang et al. (2000) showed higher 

molecular weight, and higher concentrations result in higher elasticity. They hypothesized that 

higher molecular weight causes a reduction in peak velocity, so velocity gradient at the wall 

increases which results in stripping off oil from the wall. In addition, at the dead-end pore, the 

elasticity of polymer causes to drag oil from dead-end pores and reduces the residual oil 

saturation as shown in figures 2.20 and 2.21 (Wang et al., 2010). 

Lu (1994) performed history match simulations on the core flood experiments done by 

Wang M. (1995) in order to understand the primary reasons for the observed increase in oil 

recovery. He reported a history match in good agreement with the experiments when the Sor 

reduction was applied in the simulations; this implies that the viscoelastic polymer did in fact 

reduce residual oil saturation. Zhang et al. (2010) developed a viscoelastic model for flow 
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through porous media and concluded that polymers can increase both the macroscopic and the 

microscopic sweep efficiencies.  

2.3.2.1 Mobilization of Residual Oil Phase 

Oil phase will be trapped when the pressure gradient required to mobilize oil phase is not 

high enough. For a simple geometry shown in figure 1.1, the local pressure gradient required to 

mobilize the oil blob is given by (Peters, 2012) 

𝑃𝐴−𝑃𝐵

𝐿
≥

2𝜎 cos 𝜃

𝐿
(

1

𝑟1
−

1

𝑟2
)     (2.46) 

Where PA is the pressure at point A, PB is the pressure at point B, σ is interfacial tension, L is the 

blob length, r1 and r2 is the pores radius. As seen in equation 2.46, as the interfacial tension 

between two phases becomes higher, more pressure gradient is needed to overcome the entry 

capillary force and mobilize the oil droplet.  

Osher and Sethain (1988) developed level-set method for front propagation with 

curvature dependent speed. Level set methods are numerical techniques to compute the position 

of propagating interfaces. They rely on an initial value partial differential equation for a 

propagating level set function. Level set method has been originated for tracking interface by 

Prodanovic and Bryant (2006) which can handle complicated geometry. 

Using the level set method for basic navigation of interface in 2-D works as described 

below. First, a level set function is defined Φ(x, y, t) which is a contour of given value of Φ, for 

instance Φ = 0. It means a set of points such that Φ = 0 for all times. In such a simple case, we 

assume the interface moves normal to itself at speed F. the speed function is defined such that it 

accounts for capillary pressure (Pc) and interfacial tension (σ). 

𝐹 = 𝑃𝑐 − 𝜎𝜅(𝑥, 𝑦, 𝑡)         (2.47) 
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where κ is interface curvature changing with time. The governing partial differential equation 

(PDE) to control the level set function is as follows: 

𝜙𝑡 + 𝐹|∇∅| = 0       (2.48) 

The level set function asymptotically approaches steady-state corresponding to mechanical 

equilibrium. Steady-state physically means the capillary pressure balances with interfacial 

tension.    

𝐹 = 0 →  𝑃𝑐 = 𝜎𝜅 ; 𝑌𝑜𝑢𝑛𝑔 − 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛     (2.49) 

2.3.2.2 Free Surface and Free Boundary Tracking 

In transient flows of two phases, the movement of an interface occurs. Accurately 

capturing the interface and tracking the movement and deformation of the free interface is a 

challenge in all numerical Finite-Element Methods (FEM). In general there are two methods to 

capture the free surface: Eulerian and Lagrangian methods. We briefly introduce them here. 

In Eulerian flow fields and mesh techniques, meshes are stationary and fixed. The mesh 

nodes are fixed and material flows through the mesh. Eulerian coordinates of nodes are fixed and 

coincide with spatial points, and spatial coordinate of material points vary with time as shown in 

figure 2.22.  

The material point at a given quadrature point changes with time which makes it difficult 

to deal with history-dependent materials. Boundary nodes and material boundaries may not 

coincide. Therefore, boundary conditions and interface conditions are difficult to apply. There is 

no mesh distortion because the mesh is fixed in space. However, the domain that needs to be 

modeled is larger compared with Lagrangian approach because the body cannot leave the 
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domain. In contrast, in Lagrangian flow fields and mesh technique, the mesh is moving and 

attached to the material as shown in figure 2.23. 

Lagrangian coordinate of nodes moves with the material and the material coordinate of 

material points are time invariant. No material passes through the elements. Element quadrature 

points remain coincident with material points. More importantly, boundary nodes remain on the 

boundary in order to keep track of interface more precisely. Therefore, boundary conditions and 

interface conditions are easily applied. The disadvantage of this method is that severe mesh 

distortions can occur because the mesh deforms with the material. To overcome the mesh 

distortion, a re-meshing technique can be applied. The purpose of a re-meshing technique is to 

relocate internal nodes according to the displacement of boundary nodes. Re-meshing techniques 

control mesh deformation in order to avoid unacceptable element shapes. There are different re-

meshing methods according to the physics of the problem. Elastic re-meshing methods has been 

selected for this study. The Arbitrary Lagrangian-Eulerian (ALE) method takes advantage of 

both Lagrangian and Eulerian approaches. The mesh movement is arbitrary to have an optimum 

shape of element to track the boundaries and interfaces precisely. It can model the wettability; 

however, it cannot simulate capillary pressure like when a droplet is immersed in another liquid. 

The limitation of this method is that it is not good for abrupt topology changes and when a single 

interface divided into multi interfaces. All dynamic (transient) simulations in this study used 

ALE method (Ansys Polyflow User’s Guide, 2012). 

2.4 Pore-Network Modeling 

2.4.1 Single Phase Flow  

To model flow through porous media, CFD (computational fluid dynamics) can be used 

to solve first-principle equations (e.g.  Momentum equations and Continuity equation), and can 
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give accurate results.  Performing CFD modeling for an entire porous medium is computationally 

expensive and with current computational facilities is not possible especially for viscoelastic 

flow which is highly non-linear case. An alternative method to study pore-level flow in pores and 

throats and upscale macroscopic parameters, is pore-network modeling.  

 Network modeling is a technique to approximate a porous medium as an interconnected 

network of pores and pore throats. Hence, computational simulation of the network is required to 

understand the flow behavior of these systems. Network models have been used to study 

important behavior regarding flow and transport, but were limited to qualitative studies using 

simple 2-D or 3-D lattices. More recently, Bryant et al., 1993 developed quantitative techniques 

to model behavior in porous media for single-phase Newtonian flow and Baake and Oren, 1997 

developed the multiphase pore-network model. Afterward, Lopez et al., 2003; Balhoff and 

Thompson, 2004 developed pore-network model for non-Newtonian flows. Physically-

representative network models are mapped directly from a rigorous description of some original 

well-described porous medium (Bryant et al., 2003), and consequently they retain important 

morphological and spatial correlations necessary for obtaining quantitative and predictive results.   

 The first step in characterizing the pore structure is to obtain an accurate numerical 

description of the porous medium. X-ray computed micro-tomography (XMT) (Liang et al., 

2000; Lindquist et al., 2000; Al-Raoush et al., 2003) is used to extract the 3-D pore structure of 

real, naturally occurring media. The high-resolution images obtained through XMT are digitally 

represented as voxels which (in a binary image) define the pore and grain space. In addition, 

computer-generated methods offer an alternative to high resolution imaging of porous media as 

used in this study; however, all of the methodology used for computer-generated pore-network 

can be applied to image-based networks as well. These methods include stochastic approaches 
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(Liang et al., 2000; Lindquist et al., 2000; Al-Raoush et al., 2003; Adler et al., 2002)  in which 

the porous medium is reconstructed using statistical properties, and process-based approaches 

that attempt to simulate the geological process by which the medium was formed. Regardless of 

the method used to digitally represent the medium, the second step is conversion to a network 

model of pores and throats. Grain-based methods are usually tied to approaches that represent 

grain positions in porous media. For example, a Delaunay tessellation (Bryant at al., 1993; Al 

Raoush et al., 2003) can be used to generate pores and interconnected throats, creating a 

physically-representative network model.  Figure 2.24 illustrates the creation of a physically-

representative model from a sphere packing. For voxel data obtained from imaging, the medial-

axis (Adler et al., 1992; Lindquist et al., 1996) can be used to thin the void space, from which 

one can map out the pores and throats in the network.  

 The generated network model is a digitalized version of the porous media including pores 

and throats which can be used to simulate many transport problems by requiring mass 

conservation at every pore and solving fundamental equations of momentum and mass in the 

connecting throats. Early network modeling done by Bryant et al., 1993; Lopez et al., 2003 

assumed pore throats as a simple capillary tubes or transformed the throats into equivalent 

capillaries. Advancements continue to be made to account for the actual irregular geometry of 

these throats. Balhoff and Thompson (2004, 2005) uncovered closed-form flow equations for 

non-Newtonian fluids in converging/diverging ducts (which are more representative of the true 

throat geometry) by solving the momentum equations numerically. The advancements resulted in 

up to a 20% change in predicted properties. The goal of predictive network modeling is to 

upscale macroscopic properties (such as apparent viscosity) that can be obtained without tedious 

and time consuming experimental tests. 
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The main approach for pore-network modeling in porous media is to solve the mass 

conservation equation for each pore and the momentum equation for each throat simultaneously. 

For a simple case of incompressible and Newtonian fluid, the Hagen-Poiseuille equation has 

been used as a transport equation for throats. 

     𝑞𝑖𝑗 =
𝑔𝑖𝑗

𝜇
∆𝑃      (2.50)  

where g is hydraulic conductivity and for capillary tube defined as 

𝑔
𝑖𝑗

=
𝜋𝑟4

8𝐿
      (2.51) 

and the mass conservation for each pore needs to be satisfied. 

     ∑ 𝑞𝑖𝑗 = 0       (2.52) 

where, qi,j is volumetric flow rate comes to pore i , from neighbor pore j. 

The system of equations is linear for incompressible Newtonian fluids; however, it is 

highly nonlinear for non-Newtonian fluids, specifically for viscoelastic fluids because the 

volumetric flow rate equation versus pressure drop for pore throats is not linear. The pressure at 

each pore will be calculated by solving this system of equations; afterward, the flux at each 

throat can be evaluated. 

Most of the network modeling studies of non-Newtonian flow deals with shear-thinning 

fluids that exhibit no elastic effects. Sorbie and Clifford (1989) modeled the flow of a Carreau 

fluid using 2-D networks; Shah and Yortsos (1995) extended their work to 3-D networks to 

model the flow of power-law fluids. They presented qualitative results for the steady flow, which 

show that flow patterns are more sensitive to the throat-size distribution than for the case of 

Newtonian fluids. Physically representative networks has been used to model shear-thinning 
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fluids in porous media, and showed good agreement with existing experimental data (Lopez et 

al., 2003).  

The flow of yield-stress fluids has also been investigated. Sahimi (1993) modeled general 

nonlinear behavior in square (2-D) and cubic (3-D) networks, which included modeling 

piecewise linear transport within a network that contained thresholds for bond conductivities. 

The flow of a Bingham fluid in 2-D pore-networks has been studied by Shah et al. (1995). 

Balhoff and Thompson (2004) modeled the flow of Bingham fluids in physically-representative 

networks. They reported the importance of correct pore-throat flow equations which can be 

capture from FEM modeling. Sochi and Blunt (2008) developed the model for Herschel-Buckley 

fluid by extending Balhoff and Thompson (2004) work. 

Few attempts have been performed using pore-network models for viscoelastic flow in 

porous media. Recently, Sochi (2009) did model a Bautista-Manero fluid using a network model 

and qualitatively predicted shear-thickening behavior. They modified the Tardy algorithm 

(Tardy, 2005) for effect of converging/diverging geometry on the steady state viscoelastic flow. 

Sochi (2009) used the modified Bautista-Manero model which successfully describes elasticity, 

thixotropic time dependency and shear-thinning for modeling the flow of viscoelastic materials 

which also show thixotropic attributes. This is a relatively simple model that combines the 

Oldroyd-B constitutive equation for viscoelasticity and the Fredrickson’s kinetic equation for 

flow-induced structural changes usually associated with thixotropy. Sochi’s work was a 

qualitative study of viscoelastic flow, they used averaging and simplifications which make it less 

accurate than solving the equations thoroughly using FEM, which would capture complex 

physics occurs in viscoelastic flow. Moreover, they did not compare their results to experimental 

data or extend their work to multiphase flow. The CFD modeling that has been done in this study 
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leads to capture complex viscoelastic behavior without simplifying the conservation equations, 

and the obtained universal flow equation for viscoelastic flow leads to reduce the computational 

cost in pore-network simulations rather than discretizing each pore throat in the pore network 

model.   

2.4.2 Multiphase Network model  

Pore-network models for multi-phase flow are categorized into quasi-static and dynamic 

models. Quasi-static models are mostly used when the capillary effects dominate, and are 

computationally less expensive than dynamic models. In quasi-steady models, the simulation for 

a given time is a steady-state problem for an imposed capillary pressure, and  time-dependency is 

not taken into account (Flemming, 1983; Wilkinson and Willemesen, 1983; Heiba, 1984). 

Through computational advancements, dynamic multi-phase pore-network models have been 

developed which are more predictive and include more details about the physics of flow. Both 

viscous and capillary effects are included in this model (Dias and Payatakes, 1986; Al-Gharbi 

and Blunt, 2005; Joekar-Niasar et al., 2010). In dynamic models, the phase conductivity for each 

throat is assigned, and the pressure and flow rate is evaluated by solving the system of equations. 

In addition, development of pore-network models for viscoelastic multi-phase flow is needed to 

understand the reason for the apparent observed residual oil saturation reduction in polymer 

flooding.  
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(a)                                     (b)                                            (c) 

Figure 2.1 (a) Newtonian fluid rheology curve, constant (not shear rate dependent) viscosity; (b) Power-law fluid 

rheology curve; (c) Bird-Carreau fluid rheology curve (Ansys Polyflow User’s Guide, 2012) 

 

 

 

Figure 2.2 Steady simple shear flow 
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Figure 2.3 Uniaxial extensional flows (Ansys Polyflow User’s Guide, 2012) 

 

 

 

 

 

 

Figure 2.4 Contraction flow 
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Figure 2.5 Storage and loss moduli curves (Ansys Polyflow User’s Guide, 2012) 

 

 

 

 

 

Figure 2.6 Schematic successive contraction-expansion geometry to analyze shear-thickening behavior of 

viscoelastic polymer (Magueur et al.,1985)  
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Figure 2.7 Apparent viscosity as a function of shear rate for various length-to-radius of capillary (Magueur et al., 

1985)  

 

 

Figure 2.8 Relative viscosities as a function of shear rate for various geometry configurations (Chauveteau, 1986) 
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Figure 2.9 Relative viscosities as a function of shear rate for different polymer concentration (Chauveteau, 1986) 

 

Figure 2.10 Relative viscosities as a function of shear rate for different salinity level (Chauveteau, 1986) 
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Figure 2.11 Schematic of shear rate dependence of polymer (HPAM) apparent viscosity (Magbagbeola, 2008) 

 

Figure 2.12 Dependence of viscoelastic effect (f.Re > 1.0) on the Deborah number, Note: θf and λ are relaxation 

time, only from different references (Wissler, 1971) 
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Figure 2.13 Viscoelastic model fit to 1000 ppm Pusher 700in 1% NaCl (Delshad, 2008) 

 

 

 
Figure 2.14 Comparison of waterflood and polymerflood, average oil saturation in core as a function of pore 

volumes of water/polymer injected (Wang M., 1995)  
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Figure 2.15 Mobilization of film-type residual oil (Wang et al., 2010) 

 

 

 

 

 

 

 

 
 

Figure 2.16 Polymer fluid displacing oil-film type residual oil (Wang et al., 2010) 
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Figure 2.17 Mobilization of column-type residual oil in oil-wet pores (Wang et al., 2010). The flow direction for 

each snapshots is from botton to top. The sequentioal of snapshotps starts from top row from left to righ, followed 

by bottom row from left to right. 

 

 

 

 

 

 

 

 

 
Figure 2.18 Mobilization of oil droplet in water-wet pores (Wang et al., 2010). The flow direction for each 

snapshots is from botton to top. The sequentioal of snapshotps starts from top row from left to righ, followed by 

bottom row from left to right. 
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Figure 2.19 Residual oil after continuous flooding by water and HPAM polymer by different concentrations 

(Wang et al., 2010) 

 

 

 

 

 

 

 

 

 
Figure 2.20 Velocity profile of different fluids in micro tube (Wang et al., 2010) 
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Figure 2.21 The velocity contours of viscoelastic fluid in pores with dead end (Wang et al., 2010) 
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Figure 2.22 Eulerian flow fields and mesh techniques (Ansys Polyflow User’s Guide, 2012) 

 

 

 

 

 

Figure 2.23 Lagrangian flow fields and mesh techniques (Ansys Polyflow User’s Guide, 2012) 
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Figure 2.24 Transformation of a random packing into a physically representative network. (a) 1,000-sphere 

periodic random packing; (b) 3-D periodic Delaunay tessellation; (c) 3-D periodic network generated using the 

tetrahedron-merging algorithm (Balhoff and Thomson, 2004) 

 

 



51 
 

Chapter 3: Single-Phase Pore-Scale Network Modeling of 

Viscoelastic Flow through Porous Media 

Quantitative and predictive behavior of viscoelastic flow in porous media is studied using 

a pore-scale network model in this chapter. Computational fluid dynamics (CFD) modeling is 

first performed for an Upper-Convected Maxwell (UCM) model with a shear-thinning 

component in converging/diverging geometries representative of pore throats. These simulations 

are used to develop closed-form expressions for pressure drop as a function of fluid rheology and 

throat geometry. The equations are used as inputs to pore-network models physically-

representative of real porous media and network simulations are used to obtain macroscopic 

results of apparent viscosity versus apparent shear rate. Comparison between these results to 

experimental data of partially hydrolyzed polyacrylamide (HPAM) polymer in bead packs show 

good agreement. 

3.1 Model Development 

3.1.1 Modeling of Viscoelastic Flow in Converging/Diverging Ducts 

It is often desired to have closed-form expressions for flow rate as a function of pressure 

drop of in capillary tubes, converging/diverging ducts, or complex porous media. For creeping, 

Newtonian flow the relationship is linear,  

 
eff

g
q P


   (3.1) 

where g is the hydraulic conductivity of the duct. For straight capillary tubes, the conductivity is 

simply R
4
/8L and equation 3.1 is the well-known Hagen-Poiseulle equation. For non-

Newtonian fluids, analytical relationships are only available for simple models and geometries. 

An alternative for more complex geometries is to develop semi-empirical relationships by 
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numerically solving the momentum equations coupled with a constitutive rheological model and 

the continuity equation. An closed-form model can then be fit to the numerical results as was 

done by Lopez et al. (2003) and Balhoff and Thompson (2004; 2006). 

Here, the goal is to study geometries representative of pore throats and since the variation 

of the aspect ratio in a constriction pore can affect the shear-thickening behavior of viscoelastic 

fluids, we study converging/diverging, sinusoidal channels. A schematic of a typical geometry is 

depicted in Figure 3.1, where the wall of the channel is a sinusoidal function.  These geometries 

maintain numerical simplicity (2D axisymmetric) while preserving the important characteristics 

of a pore throat relevant to viscoelastic flow (converging/diverging). For consistency to other 

authors who studied similar geometries (Deiber and Schowalter, 1981, Balhoff and Wheeler, 

2009), the sinusoidal wall function is given by  

𝑟 = ℎ − 𝜀 cos (
2𝜋𝑧

𝑙
)         (3.2) 

Two dimensionless quantities are used to describe the aspect ratio of the geometry are 

defined as  

𝛼 = 𝜀 ℎ⁄ = (𝑟max − 𝑟min) (𝑟max + 𝑟min)⁄         (3.3) 

and  

Λ = 2𝜋ℎ 𝑙⁄ =
𝜋(𝑟min+𝑟max)

2𝑙
          (3.4) 

 

The definitions of the parameters in equations 3.2 through 3.4 are also shown in figure 3.1.  

Mathematically we solve the momentum equations (2.1) coupled with continuity 

equation (2.2) to obtain a steady-state velocity field in the geometry described above. 
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Equation 2.1 requires an input for the constitutive rheological model for stress tensor, . Many 

constitutive equations have been proposed for viscoelastic fluids that exhibit strong extensional 

flow effects to relate shear stress and rate, such as the Maxwell, Phan-Thien-Tanner, Giesekus, 

and Oldroyd-B models. The Upper-Convected Maxwell (UCM) model is chosen as the 

viscoelastic model in this work due to its relative simplicity.   

              The constitutive equation assumes linear elasticity. Although most real fluids are non-

linear, the model is widely-used to gain physical insight to viscoelastic behavior because of its 

relative simplicity. Yin et al. (2006) proposed common viscoelastic fluids such as HPAM could 

be described by equation 2.24, if a shear-thinning model is employed for the viscosity term, . 

The boundary conditions are described as no slip at the wall (equation 3.5) and axial 

symmetry (equation 3.6) along with constant pressure drop across the entire channel. The 

periodic boundary condition has been used for inlet and outlet. The periodic boundary condition 

been used since the objective of this study is to simulate the viscoelastic flow through porous 

media which is consecution of pore throats.  

𝑟 = ℎ − 𝜀 cos (
2𝜋𝑧

𝑙
),  𝒖 = 0           (3.5) 

𝑟 = 0,   𝒖 = 0           (3.6) 

The geometry has two extended part on both inlet and outlet (1000 μm length for each 

side) to let the viscoelastic fluid have time to have a full-developed profile at inlet and outlet. To 

calculate pressure drop for converging-diverging section, the total pressure drop from inlet to 

outlet calculated from CFD simulation, then the pressure drop for extended parts (capillary tube) 

subtracted from the total pressure drop, in this way the pressure drop for converging-diverging 

part calculated. 
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All CFD modeling was performed using Polyflow, a finite element package of ANSYS.  

The approximate minimum fill (AMF) direct solver was used due to its robustness compared to 

some other solvers such as multi-grid iterative solver.  The DEVSS SU (discrete elastic-viscous 

split stress streamline-upwind) interpolation technique for stresses was chosen to improve 

convergence (Guenette and Fortin, 1995).  A schematic of the mesh is shown in figure 3.2.  

Sensitivity analysis has been performed to determine mesh refinement such that further 

refinement does not affect the solution. The number of elements and mesh configurations are 

different for different geometries.  

The problem is numerically difficult to solve in terms of stability and convergence 

(Huang et al. (1995); Hulsen et al. (2005)).  The reason is that current mathematical formulations 

of viscoelastic flow lead to a highly non-linear problem and in most practical cases exhibits 

strong singularities, especially when the fluid exhibits high elasticity, i.e., at large  or large 

shear rate.  To overcome stability and convergence difficulty of viscoelastic fluid flow an 

evolution technique is used here. The solution in a previous step (smaller ) is used as a first 

guess for the next calculation (higher ).  When the elastic effects are more pronounced and 𝜆 is 

too high, the problem becomes extremely difficult to converge and the simulation is abandoned. 

3.1.2 Network Modeling 

 Network modeling is an efficient way to investigate flow in porous media at the 

microscopic level. Network models have been shown to be quantitative and predictive in certain 

instances (Bryant et al., 1993; Baake and Oren, 1997, Blunt, 2001; Lopez et al., 2003; Balhoff 

and Thompson, 2004, 2006), but in order to so the models must (1) be physically-representative 

of the morphology of the porous medium from which it is mapped and (2) first-principle flow 

equations that correctly describe the physics in each pore throat must be utilized as inputs. 
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 Here, the porous media studied are packed beds of granular media. Computer generated 

media are formed using a collective rearrangement algorithm as described by Balhoff and 

Thompson (2004; 2006). The porosity and grain size can be defined a priori. Boundaries can be 

periodic or fixed, and here the boundaries are periodic to minimize edge effects. The porous 

medium is mapped to a network model via a Delaunay tessellation algorithm as described by Al-

Raoush et al. (2003). The resulting network model is made up of pores connected by throats. The 

connectivity in the network varies and the volume of each pore and throat conductivity, g, is 

unique and dependent on the pore/throat geometry. The conductivities are computed as defined 

by Al-Raoush et al. (2003). Information about the pore and throat radii, aspect ratio, etc. are also 

extracted which allows for calculation of geometric parameters described in equations 3.2-3.4 for 

a sinusoidal-varying duct. Capturing the converging-diverging nature that occurs in porous 

media is essential for proper modeling of complex fluid flow; in particular, for viscoelastic 

fluids, the contraction/expansion channel give rise to extension in the direction of the flow and 

brings out fluid elasticity that is responsible for the viscosity thickening behavior.  The porous 

media studied in this work were computer-generated random sphere packs.   

The general approach to pore-network modeling is to impose mass conservation on the N 

pores and obtain pore pressures by solving the resultant system of N×N equations subject to 

specified boundary conditions (here a constant pressure drop is applied in one direction and 

periodic boundary conditions are imposed in the other two). For an incompressible fluid, mass 

conservation on pore i must be satisfied.  For a simple case of Newtonian fluid, equation 3.1 

applies and we get  

∑ 𝑞𝑖𝑗𝑗 = ∑
𝑔𝑖𝑗

𝜇
(𝑃𝑖 − 𝑃𝑗)𝑗 = 0       (3.7) 
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for each pore.  qij in equation 3.7 is the volumetric rate of flow from an adjacent pore j into pore i 

through their interconnected throat, Pi is the pressure in pore i, and gij is the hydraulic 

conductivity for the pore throat that connects pore i and j.  Equation 3.7 states that the net 

accumulation of fluid in pore i is zero.  

For non-Newtonian fluids, a nonlinear system of equations must be solved and the 

appropriate flow equation in each pore is required (analogous to equation 3.1). For viscoelastic 

fluids in particular, the converging/diverging throat geometry affects flow.   

3.2 Results and Discussion 

3.2.1 CFD Modeling 

CFD simulations were conducted of UCM fluids in sinusoidal ducts in more than fifteen 

different geometries by varying the dimensionless aspect ratios,  and Λ. The dimensions of 

these geometries are summarized in Appendix A. All simulations were performed at constant 

pressure drop across the ducts.  To investigate the effect of fluid elasticity (varying De), steady-

state solutions were obtained for a range of relaxation times  from zero to 0.05 s.  Streamline 

pressure and velocity fields are summarized in Appendix B (figures B1-B5) for selected cases. 

Figure 3.3 plots the results from all simulations as dimensionless pressure drop versus 

De.  Dimensionless pressure is defined as the ratio of the measured pressure drop for the 

viscoelastic simulation to the value obtained for a Newtonian fluid with the same viscosity. The 

Deborah number here is defined as  

𝐷𝑒 =
𝑄𝜆

𝜋𝑟min
3          (3.8) 

De is obtained a posteriori by calculating the flow rate Q from the results of CFD 

simulation. All simulations show the dimensionless pressure drop approaches unity at low De 
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(no elastic effects), an initial decrease in the dimensionless pressure drop with De, followed by 

the expected shear-thickening regime. The reduction in observed resistance (at moderate De) was 

surprising to the authors initially, since the viscous part of the UCM is constant-shear viscosity 

(i.e. the viscosity-thinning region cannot be explained due to the increase in shear rate of the 

fluid).  However, this phenomena has been observed by many other authors   (Aboubacar et al., 

2002; Alves et al., 2003; Binding et al., 2006; Aguayo et al., 2010), although few explanations 

are provided in the literature.   

3.2.1.1 Effect of Geometry 

The results in figure 3.3 are largely controlled by the aspect ratio, , of the channel 

geometry. As shown in figure 3.1, this dimensionless quantity is related to the ratio of the 

minimum and maximum radius. A value of  = 0 corresponds to a straight channel that does not 

converge/diverge. In this case, the dimensionless pressure is 1.0 at all De because no 

stretching/relaxation occur in a straight tube. 

For a constant , we observe greater deviation from unity with increasing particularly 

at low De. The “shear-thinning” regime is more pronounced and the shear-thickening is delayed 

to larger De. This thickening scales with De approximately the same for all  Close inspection 

of the flow streamlines at  particular De for different geometries with fixed  shows the 

occurrence of more vortex with the increase of , indicating higher flow elasticity (e.g. figure 

B4). 

For constant , the dimensionless pressure drop increase with increasing .  In addition, 

the onset of viscosity thickening shifts towards lower De.  Since  is the ratio of average radius 

to pore length (equation 3.4), larger means shorter relative residence time in the channel and 

elastic effects are pronounced. 
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3.2.1.2 Development of the Pore Flow Equation 

Using the CFD simulations in 15 geometries, we developed a new, semi-empirical model 

for viscoelastic flow in converging/diverging ducts by fitting an equation to the simulation data 

shown in figure 3.3.  The new equation is given by equation 3.9. Appendix C describes the 

fitting process shows fits for the models to the numerical simulations.   

The results of the CFD models described in equations 3.8 are used to develop semi-

empirical equations and then input to the network model.  The closed-form viscoelastic flow 

equation for converging-diverging duct is given by 

 1 ln 1A

DP BDe C De            (3.9) 

In equation 3.9, the exponent A = 3 was found suitable in all simulations. The coefficients 

B and C are geometry-dependent and given by 

 0.42C       (3.10) 

 2.38 0.6550.000178B     (3.11) 

The multidimensional Newton-Raphson method is then used to solve the system of 

nonlinear equations. 

A few important notes should be made about equations 3.8-3.10. First, in the limit that 

De approaches zero, the fluid becomes inelastic and equation reduced to PD = 1, as expected. 

Also, the equation reduces to unity in the limit that  or  approach zero, where the 

converging/diverging geometry is simply a capillary tube. In a straight tube, no stretching or 

relaxation of the fluid occurs and no elastic effects are observed.  Second, the first two terms of 

equation 3.9 is identical to the theoretical equation 2.43, proposed by Wissler (1971) and others. 

Here, we find the exponent, A, is 3. Wissler (1971) derived a value of 2, but experimental data 

(Calk and Machac, 1995; Tiu et. al., 1997; Bendova, 2009) has suggested values ranging from 1-
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5. The third term in equation 3.9 accounts for the apparent reduction in pressure drop at moderate 

De, before thickening occurs (figure 3.3). At larger De, the equation is dominated by the second 

term and shear-thickening is observed. The equation suggests that the dimensionless pressure 

drop increases monotonically as De approaches infinity. In practice, as the De increases, the 

shear rate increases and shear degradation of the polymer would eoccur. The polymer molecules 

would break and the viscosity and elasticity would decrease, thus resulting in a decrease (or 

plateau) of the dimensionless pressure drop. This behavior is not accounted for in the CFD 

simulations or model equations (3.8-3.10). 

3.2.1.3 Incorporation of a Shear-Thinning Model 

Equations 3.8-3.10 are dimensionless and were developed by using a shear-independent 

viscosity (Newtonian) in the viscous portion of the Maxwell model (equation 2.24). In order to 

make the equation dimensional, the pressure drop is given as the dimensionless pressure drop, 

PD times the pressure drop for the equivalent inelastic fluid. For Newtonian flow, pressure drop 

is linear with flow rate, and we get: 

 DP q P
g

 
   

 
 (3.12) 

For non-Newtonian, shear thinning fluids, the relationship between pressure drop and 

flow rate is nonlinear. If an analytical equation is amenable, e.g. power-law or Ellis fluids 

(Carreau et al., 1979), it can be substituted directly in to equation 3.12. More generally, a shear-

dependent (or flow rate dependent) effective viscosity (eff) replaces the Newtonian viscosity. 

For example, the Carreau model is popular because it accounts for Newtonian plateaus at low 

and high shear rates as well as the shear-thinning regimes. In equation 3.13, 𝛾̇ is the shear rate, K 

is the flow consistency index, n is the power index, 0 and ∞  are the viscosities at infinitely 

high shear and zero shear, respectively.   
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 (3.13) 

The effective viscosity is therefore a function of effective shear rate, which cannot be 

directly calculated for a non-Newtonian fluid in a tube. However, Lopez et al. (2004) suggested 

that the effective shear rate could be approximated as: 

eff

c

Q

KQ
                 (3.14) 

Where, 

𝑄c =
𝜋𝛾c𝑅eff

3

3
        (3.15) 

𝛾c = (
𝜇0

𝐾
)

1

𝑛−1
         (3.16) 

Lopez et al. (2004) further suggested that the effective radius, Reff, could be back-

computed using the Hagen-Poisseulle equation. 

𝑅eff = (
8𝐿𝑔

𝜋
)

0.25
       (3.17) 

Balhoff and Thompson (2006) performed numerical simulations of shear-thinning fluids 

in converging/diverging geometries and developed more complicated relationships for the 

effective radius. Their equations are implemented in here.  

Equations 3.12-3.17 can then be combined to obtain a closed-form equation for a 

viscoelastic (Maxwell) fluid with a shear rate-dependent viscosity. Good agreement was obtained 

for the dimensionless pressure drop versus De against numerical simulations when the Carreau 

model was included with Maxwell equation. A more useful equation, at least for network 

modeling purposes, relates flow rate to pressure drop as shown in equation 3.18. 

 
3

eff 1 ln(1 )

g P
Q

BDe C De




    

    (3.18) 
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The expression is nonlinear and transcendental since both eff and De are flow rate (Q) 

dependent. For a given pressure drop, the flow rate can be computed using Newton’s method. 

3.2.2 Pore Network Modeling 

Pore-network modeling simulations were conducted and the results were compared 

against experiments by Yuan, which included Pusher, a viscoelastic HPAM solution in bead 

packs. The grain sizes (100 m and 250 m in diameter) and porosities of the Yuan’s 

experiments are summarized in Table 3.1. They were used to develop physically-representative 

network models as outlined in the Model Development section.  

Table 3.1 also summarizes the fluid and rheological parameters found by Yuan (1981). 

He fit steady shear data of viscosity versus shear rate to a Carreau shear-thinning model to obtain 

viscous rheological parameters. The relaxation time was found from the G’, G” cross over point 

on an oscillatory shear test. Rheological parameters were substituted into equations 3.13-3.18 

which were then substituted into the mass balance equations (equation 3.7) for the appropriate 

network model. A multidimensional Newton-Raphson algorithm was used to solve the nonlinear 

system of equations. 

Figures 3.4 and 3.5 show the comparison between the network model and Yuan’s 

experimental data. All are presented as app versus 𝛾̇app, where app and 𝛾̇app are apparent 

viscosity and apparent rate in porous media, respectively, defined as follows:   

 app
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  (3.19) 
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Where the constant, C’, is dependent on the medium by taken to be 6.0 here (Cannela, 1988).   

Figure 3.4 shows three data sets (a, b, and c) of HPAM Pusher polymer solution in packed beds 

of 100 m beads. Figure 3.5 depicts three additional data sets (d, e, and f) in packed beds of 250 

m beads. Additional details about the fluids and porous medium properties are given in Table 

3.1. 

Figure 3.4 shows the histogram of aspect ratio for case d which has a grain size of 250 

micron. As it shows the value of aspect ratio for this case is between 0.02 and o.54 which is in 

range of aspect ratio analyzed in single-phase CFD simulation. In figure 3.5 the histogram of the 

dimensionless length group (Λ) had been shown for case d which roughly in the range of 1 to 10. 

However, since the range of Λ is beyond the Λ-value analyzed in CFD simulation, the good 

agreement between pore-network results and experiments in figure 3.9 shows the closed-form 

equation (equation 3.9) still is valid for higher Λ-value. Figure 3.6 shows the histogram of pore-

level Deborah number for macroscopic Deborah number of 10 for case 10. As it shows in figure 

3.6 the pore-level De is in low range of pore-scale Deborah number compared to the figure 3.7 

which the histogram of the pore-level De number for case d at the macroscopic De of 100. 

Figures 3.6 and 3.7 show as the macroscopic De number increase, there are more pore throat in 

pore-network simulation with high pore-level De, and more pore-throat will be in shear-

thickening regime. 

Figures 3.8 and 3.9 show good agreement between experimental measurements and 

predictions from the network model. No ad hoc adjustments were made to the model.  The 

network model follows the trend of the data, which includes a Newtonian plateau at low shear 

rates (<10 1/s), shear-thinning behavior at intermediate shear rates (10-100+ 1/s) and extensional 

shear thickening at high shear rates (>1000 1/s). It should be noted that the pore-level equations 
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were developed using CFD simulations for De <12, but many pores in the model exceed this 

limit and we assume the equations are valid at all De. The network model seems to be sufficient 

even at high shear rates (and therefore, De).   

There are some discrepancies between the network model and data. For example, in data 

sets c (figure 3.8), and d and e (figure 3.9), the network model under predicts the apparent 

viscosity, especially at the low shear rate region.  This could be attributed to adsorption of 

polymers on the wall and plugging; Hirasaki and Pope (1974) showed that polymer adsorption 

can reduce the channel size and henceforth the permeability of the porous media, resulting in a 

higher flow resistance.  However, since the difference between predictive apparent viscosity and 

that from Yuan’s measurement is relatively small, adsorption or other permeability reduction 

effects may not be significant for these bead packs. 

In data sets b (figure 3.8) and d (figure 3.9), the predictive curves overestimate the 

apparent viscosity at high apparent shear rate (above 10
3
 s

-1
).  The pore-level equations (3.18) 

suggest that the flow resistance (or apparent relative viscosity) would tend to infinity with the 

flow rate (or apparent shear rate).  However, some experiments showed that the apparent 

viscosity reached a plateau at high shear rates; this behavior that shear-thickening viscosity 

caused by elastic effect does not increase without bound (Kullcke and Haas, 1984).  One 

plausible explanation for the plateau is that the polymer degrades at these high shear rates, thus 

reducing its viscosity and elasticity.  Cases b and d correspond to Pusher solutions and it was 

reported by Yuan (1981) that the onset of shear rate for Pusher-700 degradation is at about 10000 

sec
-1

. For polymers that have slight shear degradation, such as Water Cut 110 (e) and Water Cut 

160 (f), the prediction from modeling agrees much better against experiments at high shear rates. 
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3.2.3 Numerical Accuracy of DEVSS-SU 

CFD simulation for viscoelastic problems at which the fluid elasticity is significant is 

challenging because in addition to velocity and pressure variables, the numerical methods are 

required to handle another variable called extra-stress tensor. The extra-stress tensor includes 

elastic and purely-viscous components. The combination all these variables make CFD 

simulation for viscoelastic flow highly non-linear. This combination of variables is called mixed-

mixed elements, since continuity equation is the constraint for velocity, and velocity is the 

constraint for extra-stress tensor. 

To solve this mixed-mixed element problems, several interpolation techniques have been 

proposed, which are usually geared to certain viscoelastic models and geometries. Several 

techniques tend to disappear from use in the literature because they are not stable, accurate, 

and/or robust for the selected problem. There is not one method which is valid and definitely 

robust for all cases. However, the selection of different methods depends on the type of flow at 

the investigated conditions. The parameters which are important to select the methods include 

geometry, boundary conditions, viscoelastic model, even matter at which Deborah number the 

methods is used. EVSS and DEVSS interpolation techniques are a robust technique which is 

widely used. In EVSS and DEVSS interpolation techniques, the extra-stress tensor is split into 

two parts: purely viscous and elastic components. The split form is replaced into the constitutive 

equation and will be solved. Then combing both elastic and purely-viscous component recovers 

the solution for total extra-stress tensor (Van Schaftingen and Crochet, 1984; Marchal and 

Crochet, 1987; Rajagopalan, 1990; Crochet, Delvaux, and Marchal, 1990; Crochet and Legat, 

1992).  

In the DEVSS method, the purely-viscous term is in terms of velocity unknowns rather 

than rate-of-deformation unknowns in momentum equation. This replacement does not change 
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the constitutive equation for viscoelastic problem, but reduces the level of non-linearity of the 

problem. The DEVSS method used bi-linear interpolation for rate-of-deformation and stress 

which make this method one of cheapest in terms of computational cost (Guenette and Fortin, 

1995). In addition to the interpolation technique, depends on the problem different finite element 

discretization techniques can be selected for momentum equation, continuity equation and 

viscoelastic constitutive equations to make the numerical method more robust. These 

discretization methods include Galerkin, Streamline Up-winding (SU), Streamline Up-winding 

Petrov-Galerkin (SUPG), Discontinuous Galerkin methods among many others (Brooks, 1982; 

Marchal and Crochet, 1987; Luo, 1989; Rajagopalan, 1990, Kumar, 2014). For selected problem 

in this study at which elasticity plays an important role, and in presence of flow singularity, the 

SU method is found to be more robust due to the nature of SU method (Kumar, 2014). Notably, 

Discontinuous Galerkin may be more stable; however it requires additional variables at the 

interface between elements or some tricky algorithm for solving the discontinuity (Kumar, 

2014).  

In this study, a DEVSS-SU interpolation scheme has been used. In correspondence with 

the developer of FEM software package employed in this work (Ansys Polyflow), DEVSS-SU is 

a good choice for selected problems in this study, because of good balance between 

computational cost and accuracy. That is the reason it was originally implemented into Polyflow. 

DEVSS/SU has been largely used for 2D and 3D flows, on fixed domains as well as on moving 

geometries (Guenette and Fortin, 1995). There are other methods which may be better for a 

specific class of flows, but for which we do not know whether they will be as robust for other 

cases.  There are also techniques which involve too many constraints, and which are thus 

impractical (Guenette and Fortin, 1995; Keuning, 2001; Kumar, 2014). Despite the discussion in 
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this section about the accuracy and robustness of DEVSS/SU for this problem, there is some 

evidence to the contrary, and the investigation on this problem is an area of future work of this 

study.  

3.3 Conclusions 

A predictive pore network model of single-phase viscoelastic flow was developed and 

compared to experimental data of polymer solutions in bead packs. The pore-level flow 

equations input to the model were found by fitting curves to CFD simulations of viscoelastic 

flow in converging/diverging, sinusoidal geometries. A few of the key conclusions of this work 

are as follows: 

 CFD simulations of a viscoelastic upper-convected Maxwell (UCM) model showed an 

initial decrease in dimensional pressure drop with De, followed by a sharp increase that 

appears unbounded. The strong nonlinearities of the problem prevented simulations for 

De>12. The CFD simulations agreed qualitatively with simulations by other authors 

 The geometry of the throat affected the relationship between pressure drop and flow rate 

in the CFD simulations. For larger dimensionless parameters ( and ) the geometry 

deviated more from a capillary tube and as a result the flow deviated more from linearity 

(Hagen-Poisseule flow). 

 A new closed-form expression for dimensionless pressure drop versus De for viscoelastic 

flow in converging/diverging ducts was developed and matched well to CFD simulations 

in several geometries. 

 1 ln 1A

DP BDe C De           (3.8) 
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In the equation, B and C are dependent on the duct geometry ( and ) and A = 3. The 

first two terms agree with the theoretical derivation of Wissler (1971), although he found 

A = 2. The last term accounts for the decrease in resistance at moderate De observed here 

and by many other authors. 

 Network model simulations mostly agreed well with experimental data of HPAM 

solutions in bead packs. No ad hoc adjustments were made. Some discrepancies between 

the model and experiments were noted which could be attributed to any number of factors 

including polymer adsorption and polymer degradation. 
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Table 3.1 Porous medium and fluid parameters (Yuan ,1981) 

 a b c d e f 

Grain size (m) 100 100 100 250 250 250 

Porosity (%) 39 39 39 39 39 39 

Permeability (D) 4.5 4.5 4.5 37.2 37.2 37.2 

       

Polymer 
Pusher-

700 

Pusher-

700 
Pusher-700 Pusher-700 W.C. 110 W.C. 160 

concentration(ppm) 1000 500 1000 1000 500 500 

Molecular Weight 

(g/mol) 
5e6 N/A 5e6 5e6 N/A N/A 

% NaCl 1 1 0.1 1 0.02 0.02 

%NaHCO3 N/A N/A N/A N/A 0.005 0.005 

       

𝜇∞(cp): 1 1 1 1 1 1 

𝜇𝑜(cp): 8 3 36 8.4 7.5 1.14 

n: 0.75 0.77 0.591 0.73 0.63 0.057 

K: 0.057 0.057 0.158 0.057 0.038 0.001 

relaxation time (s) 0.035 0.031 0.066 0.035 0.002 0.0014 

 

 

 

 

 

Figure 3.1 Schematic shape of sinusoidal duct used in CFD modeling 
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Figure 3.2 A schematic of the mesh applied to a converging/diverging sinusoidal channel 

 

 

 

 

 

 

Figure 3.3 Apparent relative viscosity versus Deborah number for 15 sinusoidal channels investigated in this 

work 
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Figure 3.4 The histogram of geometry parameter (α) for grain size of 250 micron (case d) 

 

 

 

Figure 3.5 The histogram of geometry parameter (Λ) for grain size of 250 micron (case d) 
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Figure 3.6 The histogram of pore-level Deborah number for macroscopic Debrah number of 10 (case d) 

 

 

 

Figure 3.7 The histogram of pore-level Deborah number for macroscopic Debrah number of 100 (case d) 

 



72 
 

 

Figure 3.8 Apparent viscosity versus apparent shear rate for pore-network simulation (solid lines) and Yuan’s 

(1981) experiments (bullets) of 100 mm bead-pack porous media.  The three data sets correspond to polymer 

solutions of (a, star)1000 ppm Pusher-700 in 1% NaCl brine; (b, square) 500 ppm Pusher-700 polymer in 1% 

NaCl brine and (c, circle) 1000 ppm Pusher-700 polymer in 0.1% NaCl brine 

 

Figure 3.9 Apparent viscosity versus apparent shear rate for pore-network simulation (solid lines) and Yuan’s 

(1981) experiments (bullets) of 100 mm bead-pack porous media.  The three data sets correspond to polymer 

solutions of (d) 1000 ppm Pusher-700 polymer in 1% NaCl brine, (e) 500 ppm, Water Cut 110 in brine composed 

of 0.02% NaCl, 0.005% NaHCO3 and 0.005% CaCl2 , and (f) 500 ppm, Water Cut 160 in brine composed of 

0.02% NaCl, 0.005% NaHCO3 and 0.005% CaCl2 
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Chapter 4: Static CFD Modeling of Viscoelastic Fluid 

around an Oil Droplet
1
 

The possible reasons to reduce the residual oil saturation during injection of viscoelastic 

polymer are discussed in Chapter 2; background and literature review. One of the hypotheses is 

that the forces acting on oil phase from displacing fluid is more significant for viscoelastic fluid 

compared to purely-viscous fluid.  

In this chapter, CFD modeling is performed for fluid around a static (stationary) oil 

droplet. The oil droplet is stationary and it does not move and/or deform during the simulation 

and CFD simulations are performed for a fluid around the droplet. The forces acting on the oil 

droplet are evaluated for Newtonian fluid and viscoelastic fluid at different Deborah number. 

The results show that the forces calculated due normal stresses are significant for viscoelastic 

fluid compared to Newtonian, and then the total forces eventually may overcome the capillary 

pressure and displace the oil phase and pass it through the pore throat. In addition as the oil 

phase is positioned closer to the constriction part of geometry the magnitude of the force are 

even higher.    

4.1 Mathematical and Numerical Approach 

In order to better understand the observed decrease in residual oil in experiments and 

field data, CFD modeling is performed here for viscoelastic flow around stationary oil droplets. 

The hypothesis of this work is that large normal forces in viscoelastic fluid flow leads to 

formation of stable oil threads which draw the trapped oil out of the tight pore structure. Extra 

                                                           
1
 This chapter is published at the Journal of Petroleum Science and Engineering, Vol. 94-94, pp. 79-88, September 

2012, Afsharpoor, A., Balhoff, M.T., Bonnecaze, R., Huh, C., "CFD Modeling of the Effect of Polymer Elasticity on 

Residual Oil Saturation at the Pore-Scale”. Balhoff, M.T., Bonnecaze, R., Huh, C. have contributions on the main 

idea and the geometry has been studied.   
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normal forces due to normal stress may become significant for viscoelastic flow and push the 

trapped oil droplet. Only increasing the viscosity by adding polymer is insufficient to mobilize 

the trapped oil; therefore, other phenomena at the pore level must contribute to the observed 

mobilization of the oil.  In porous media, the wetting phase (e.g., polymer-containing water) 

flows along the walls and non-wetting phase (e.g., oil phase) flows at the center of the pore. CFD 

modeling is used here to simulate two-phase flow in geometries approximating pore throats 

(sinusoidal ducts) to understand the fundamental physics of viscoelastic fluid dynamics at the 

pore level. This geometry keeps the model simple, but provides the required characteristics of a 

pore throat to investigate viscoelastic flow. In order to observe elastic effects, geometry with 

varying cross-section, perpendicular to the flow direction, is needed.   

We define De here for converging/diverging ducts as follows: 

𝐷𝑒 =
𝑄𝜆

𝜋𝑅𝑡
3   ,     (4.1) 

where Q is volumetric flow rate, λ is the polymer molecule’s relaxation time, and Rt is the 

narrowest radius of the pore throat. Elastic effects are negligible for De << 1; at large De, first 

normal stress differences play an important role, which leads to extensional viscosity effects that 

dominate over shear viscosity (Macosko, 1994). Extensional flows are those that occur as a result 

of normal stresses as opposed to shear stresses (which result in shear flows). The extensional 

viscosity is defined as the first normal stress difference divided by the rate of strain. The ratio 

(Trouton) of extensional viscosity to shear viscosity is 3 for simple fluids but can be much higher 

for fluids exhibiting nonlinear viscoelasticity. In this study the upper convected Maxwell (UCM) 

model (equation 2.24) is used to as the constitutive equation for the viscoelastic fluid. 

It has been suggested that an UCM reasonably describes the rheology of HPAM. The 

goal of this work is not necessarily predictive in nature, but rather to obtain a fundamental 



75 
 

understanding of the micro forces on an oil droplet. This could be accomplished with any 

viscoelastic fluid; the UCM is chosen because of its relative simplicity.  

The UCM rheological model (2.24) can be directly substituted into the momentum 

equations (2.1) and coupled with the continuity equation 2.2. With the exception of very 

simplified geometries and low De, these equations cannot be solved analytically. For more 

complex geometries (such as the sinusoidal pore throat used here), numerical methods such as 

the finite element method (FEM) must be implemented. 

Figure 4.1 shows schematic figures of throat geometries used in this work. The geometry 

is 2D axisymmetric and the problems solved were steady state with both fixed inlet/outlet flow 

rates (both fixed pressure and flow rate boundary conditions have been tested). The fluid flows 

from top to bottom in figure 4.1 and different forces acting on the stationary oil droplet are 

evaluated in the results section.  The geometry is sinusoidal, but with the in-flow and out-flow 

zone lengths extended to ensure fully-developed flow. Since the geometry is axisymmetric, only 

half of the domain is modeled and a symmetry boundary condition is employed at r = 0. 

Solution of the momentum equations for viscoelastic flow is difficult because it is a 

highly nonlinear problem; in most practical cases (De > 1; converging/diverging geometry) the 

problem exhibits strong singularities. Therefore the problem is numerically difficult to solve in 

terms of both stability and convergence (Huang et al. (1995), Hulsen et al. (2005)). In this work, 

ANSYS Polyflow software has been used to solve this complicated numerical problem, DEVSS-

SU interpolation technique has been used to overcome this difficulty. 

Sensitivity analysis has been performed to determine mesh refinement such that further 

refinement does not affect the solution. The number of elements and mesh configurations are 

different for different cases as discussed in the results and discussion section. Among various 
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boundary conditions, fixed pressure and fixed volumetric flow rate have been tested for inlet and 

outlet. No-slip conditions for the pore wall and stationary oil droplet are applied.  

4.2 Results and Discussion 

Numerical simulations were performed with the geometries shown in figure 4.1. The 

fluid was described by the Upper-Convected Maxwell model (UCM) with rheological properties, 

λ = 0 to 0.25 s and μ = 40 cp (0.04 Pa-s). The De number can be controlled by either changing 

the relaxation time (done here) or inlet/outlet boundary condition values (pressure drop or flow 

rate) across the throat. Two locations of the oil droplet are studied: (1) in the center of a pore and 

(2) upstream of a constriction. The first geometry (depicted in figure 4.1a) is referred to as “pore-

centered geometry” and is interesting because of the symmetry in the z- and r- directions. The 

second geometry (depicted in figure 4.1b) is referred to as “constriction geometry” and may be 

more realistic as it represents a droplet that requires force to be squeezed through a constriction.  

In all simulations the oil droplet was stationary and of fixed size. This idealized case 

might correspond to a situation where capillary forces are so strong that the forces acting on the 

droplet (pressure or normal stress) are not significant and therefore are unable to mobilize the 

droplet or change the shape (even for the viscoelastic fluid). The geometry is hypothetical, but 

nonetheless provides the insight needed to understand the fundamental physics driving reduced 

residual oil saturation in the presence of fluids that are elastic.  

4.2.1 Pore-Centered geometry 

Figure 4.1(a) depicts the dimensions of the pore geometry. The first set of simulations 

involved fixed flow rate boundary conditions of Q = 1×10
-14

 m
3
/s (approximate Darcy velocity 

of 1 ft/day). The mesh arrangement has 1798 nodes and 1647 elements for the simulations of this 
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geometry with a fixed flow rate boundary condition. The mesh configuration is shown in figure 

4.1(a).  

Figure 4.2 shows the pressure fields for both a Newtonian fluid (De = 0) and viscoelastic 

fluids (De = 0.4, 0.7, and 1.4 respectively). The results show that the pressure field for 

viscoelastic fluids is non-symmetric. This asymmetry increases with De and is due the elastic 

behavior of the fluid. Unlike a Newtonian fluid which instantaneously relaxes when a stress is 

imposed, viscoelastic fluids have memory; they require time to return their original shape. Past 

the droplet, a distorted pressure field for high De occurs. Further downstream, the pressure field 

is more symmetric because the fluid has sufficient residence time to relax.   

For similar reasons, a low-pressure pocket exists ahead of oil droplet which results in the 

local pressure gradient across the oil droplet to be more than the average pressure gradient in the 

pore body along the symmetrical axis. The pocket ahead of oil droplet is due to secondary flow 

/eddies formed under elastic conditions. The fluid is unable to instantaneously relax as it passes 

the oil droplet. The flow streamlines are therefore more tangential to the pressure gradient and 

the lack of flow ahead of the droplet results in a low pressure. We note that the low-pressure 

pocket does not necessarily imply that the pressure force is higher for viscoelastic flow than 

Newtonian flow because the pressure force is the line integral of pressure over droplet surface. 

For this particular geometry and boundary condition, the pressure force is higher for higher De 

(Table 4.1), but in subsequent simulations the opposite behavior is observed.  

Figures 4.3 and 4.4 show the velocity field and normal stress field, respectively, for the 

same De numbers as depicted in figure 4.2. The velocity field for viscoelastic fluids is non-

symmetric and the velocity is higher near the center. The velocity field is distorted downstream 

of the oil droplet at higher De; this asymmetry is expected behavior and is a direct result of the 
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normal forces The normal stress is negligible for the Newtonian fluid compared to viscoelastic 

fluid, especially around the oil droplet; this effect is more pronounced as the De number 

increases. Normal stress forces for Newtonian fluids are typically neglected when determining 

local forces and equilibrium conditions on a droplet (Lake, 1989). However, for the viscoelastic 

fluid, normal forces are significant even at the relatively low De studied here. These normal 

forces are likely much more significant at the higher De observed in EOR processes. 

Unfortunately, the strong nonlinearities of the problem prevent modeling at De larger than 

performed here. Attempts to model viscoelastic fluids at higher De (or Weisenberg number) 

continues to be a challenge in all disciplines,  and development of numerical algorithms to solve 

this nonlinear problem continue to be developed (Hulsen et al., 2004). 

Table 4.1 compares the forces due to pressure and normal stress for the Newtonian and 

viscoelastic fluids. The table shows that both pressure and normal stresses increase with De for 

this geometry and therefore the total force imposed on the droplet increases with De. At the 

relatively low De investigated here (De <1.5), normal stress forces are still an order-of-

magnitude smaller than pressure forces. However, the normal forces are increasing at a much 

faster rate than pressure forces. In the applications of EOR, a common range of shear rates (1-10 

1/s) in pore throat and range of relaxation times (0.01-15 s) for polymers used in the field, the De 

number can be significant for a typical pore throat size of 1 µm (Heemskerk et al., 1984; 

Cannella et al., 1988; Masuda et al., 1992; Garrocuh and Gharbi, 2006; Delshad et al., 2008; Kim 

et al., 2009; Lee et al., 2010). It is likely that at this higher De, normal forces would dominate 

over pressure forces and could result in mobilization of residual oil. In the extreme case of near–

wellbore flow, De = O(100) may be observed due to the very high velocities. Although the near-
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wellbore region represents only a small portion of recoverable oil, extremely high De is 

observed.  

4.2.2 Constriction Geometry 

Simulation geometry is employed in which the oil droplet is bigger than the pore throat 

(figure 4.1b). Simulations in this geometry are numerically more challenging than the former 

(pore-centered geometry) because the fluid contraction at the narrowest radius representing the 

pore throat leads to high elasticity in that region and makes it numerically difficult to solve. The 

required mesh is extremely fine. Quadrilateral element shapes with 1960 nodes and 1790 

elements was found to be an efficient mesh arrangement for this specific geometry.  

Figure 4.5 shows the pressure field for a Newtonian fluid and viscoelastic fluids at 

different De numbers for a fixed flow rate boundary condition (Q = 1×10
-15

 m
3
/s). As the De 

number increases, the overall pressure drop across the entire pore increases, and a low-pressure 

pocket starts to form in front of the oil droplet. Unlike the pore-centered geometry, the low-

pressure pocket does not lead to more pressure force across the droplet for viscoelastic fluids at 

higher De. The summary of force balances are tabulated in Table 4.2.  

It should be noted that the viscosity is the same (40 cp) for all simulations, regardless of 

whether the fluid is Newtonian or viscoelastic in order to isolate the effects of normal forces on 

the oil droplet. In practice, viscoelastic polymers are also much more viscous (by 1-2 orders of 

magnitude). Mobilization of oil by viscoelastic polymers may be a result of a combination 

effects, including additional pressure drop due to an increase in viscosity as well as normal 

forces that are not significant for purely viscous fluids. 

Figure 4.6 shows the normal stress field (Trr) for the same De utilized in figure 4.5. As 

expected the normal stresses are more pronounced as the De number increases; accordingly, the 
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normal forces are increasing as summarized in Table 4.2. Figure 4.7 compares the velocity 

profile for Newtonian and viscoelastic flow at different De; it shows that as the fluid becomes 

more elastic the velocities in the pore throat will be smallest at the center. Fundamentally, due to 

no-slip boundary condition, for Newtonian fluids, the velocity is higher at the center rather than 

near the wall; toward the center the velocity increases for Newtonian fluid. The no-slip condition 

is still imposed at the wall for viscoelastic flow, but the velocity is increasing near the throat 

center, further demonstrating the non-symmetric behavior of viscoelastic fluids.   

The final simulations were conducted in the constriction geometry for a fixed pressure 

boundary condition (instead of fixed flow rate). Polymer injection can occur at constant rate or 

constant pressure conditions. At the pore-level the appropriate boundary conditions may be 

better represented by a constant rate or constant pressure gradient (regardless of the well 

constraint). Therefore, for completeness we also investigate constant pressure gradient across 

pore throats. The pressure drop across the throat utilized here is 10 Pa (corresponds to ~ 8 psi/ft) 

in all constant pressure simulations. Increasing the elasticity of the fluid (by increasing the 

relaxation time) results in an increase in resistance to flow. The mesh arrangement and numerical 

strategies are the same as the constant-flow simulations in figures 4.5-4.7. Figure 8 shows the 

pressure fields, which appear similar for all De across the geometry, but the pressures across the 

oil-droplet are different as listed in Table 4.3. 

Figure 4.9 shows the normal stress (τrr) for the different De numbers, and as expected the 

higher the De number, the higher the normal stress, even though the flow rate is lower for higher 

De number case. Figure 4.10 compares the velocity profile for Newtonian and viscoelastic flow 

at different De number, which shows as the elasticity increases, the velocity profile at pore throat 

will be less at the center.  
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Figure 4.11 compares the pressure force and normal stress force as De increases for fixed 

flow rate boundary condition and constriction geometry. As De increases, the normal stress force 

increases, but the pressure force at De = ~3 starts to decline. However, the total force (which is 

the summation of pressure force and normal stress force) increases with De. The normal stresses 

increase by a factor of more than 200 and the total normal force increases by a factor of more 

than 20 between De = 0 and De = 5.0. Although it cannot be determined definitively, it is very 

possible that normal forces continue to increase at high De, dominate over pressure forces, and 

the total force continues to increase. These larger normal (and therefore total) forces may be 

enough to overcome capillary forces and mobilize residual oil in porous media. More likely, it is 

one of many synergistic factors mobilizing residual oil. For example, the additional viscosity of 

the polymer would add additional pressure drop and the asymmetry of the flow lines could lead 

to ganglion pulled off of the droplet. 

Figure 4.12 shows the pressure force and normal stress force for the fixed pressure 

boundary condition in the constriction geometry. As shown, the normal stress force increases 

monotonically as De increases, but the pressure forces decrease. In figure 4.12 the total normal 

force is declining in the range of De studied, but if the normal force were to increase 

monotonically, it would eventually dominate the over pressure force, and total force would also 

increase. It should also be noted that as the droplet approaches the constriction it would in reality 

deform. The asymmetric forces on the deformable droplet may be large enough to pull the front 

end of the droplet into the constriction or tear off ganglion from the droplet. More advanced 

modeling would be required to study flow around a deformable droplet and test these hypothesis. 
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It should also be noted that the constant pressure boundary condition is less realistic than the 

constant rate boundary condition, since polymers are typically injected into wells at constant 

rates.   

4.2.3 Oil Droplet Close to the Constriction 

 To analyze how various forces changes as the oil droplet moving toward the constriction, 

a new geometry has been evaluated which is similar to the constriction geometry except the 

stationary oil droplet is now closer to the constriction (figure 4.1 (c)). CFD modeling has been 

performed for the oil droplet close to the constriction geometry and the results are discussed 

below. 

 Figure 4.13 shows the normal stresses around an oil droplet (as a function of . Two 

geometries are depicted in figure 4.14; one has the droplet relatively far from the constriction and 

the other has a droplet much closer. In both cases, normal stress forces are larger for the 

viscoelastic fluid than for the Newtonian counterpart (figures 4.13 and 4.14). This is the same 

conclusion that normal forces on the droplet are significant when the invading fluid is elastic but 

insignificant for inelastic fluids.  It is also shown here in figures 4.13 and 4.14 the stresses are 

orders-of-magnitude larger near for the droplet near the constriction. These stresses are 

especially large near  = 180°, which might suggest that the elastic nature of the polymer can 

mobilize the droplet by pulling the non-wetting fluid into the constriction.  

4.2.4 Mixed-Wet Medium 

 All previous static simulations were performed for water-met media; to analyze the 

viscoelastic behavior for mixed-wet wettability, a new geometry is  used as shown in figure 4.1 

(d).  CFD modeling been done for the mixed-wet geometry and the results are discussed below. 
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 Figures 4.15 and 4.16 depict idealized sinusoidal geometries in mixed-wet systems (oil 

droplets are attached to the pore walls). Similar observations can be made here as for the water-

wet media. In figure 4.15, the normal stresses are much more significant for the viscoelastic fluid 

(De = 1.5) compared to the Newtonian injecting fluid. The effect on the flow field is further 

evidenced in figure 4.16, which shows the pressure field in the two simulations. 

4.3 Conclusions  

Pressure gradient alone is not sufficient to overcome capillary forces and mobilize residual 

oil in reservoirs, even with the increased viscosity of polymers. The recent experimental and 

field observations that show reduced residual oil in the presence of polymers such as HPAM 

must be due to other factors, or more likely, combination of forces acting on the oil droplet.  

CFD simulations of viscoelastic flow around static oil droplets in pore throats show that normal 

stress forces are insignificant for Newtonian fluids, but increase dramatically with De. In some 

cases the total forces imposed on the oil droplet is much larger as a result of these normal forces, 

even at the moderate De studied here. It is possible that at higher De, normal forces dominate 

and the effective force is much larger than a Newtonian fluid with the same viscosity and flow 

rate. It is concluded that the observed reduced residual oil is a result of a combination of factors 

including pressure drop from the high polymer viscosity, normal stress forces in the viscoelastic 

fluid, and perhaps ganglion pulled off of the droplet due to asymmetry in the flow lines. Future 

work should focus on modeling these effects in geometries that allow for shape evolution of the 

droplet as well as complimentary experiments in microfluidics tubes representative of pore 

throats. 

 Additionally, CFD simulations were performed in geometries intended to represent 

mixed-wet medium. The additional forces present for an elastic fluid which could mobilize 
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trapped oil in mixed-wet medium which is consistent with water-wet medium. Moreover, as the 

droplet approaches the constriction, the normal forces on the droplet increase further.  
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Figure 4.1 Schematic of simulation geometries and mesh arrangements for (a) pore-centered geometry, (b) 

constriction geometry, (c) oil droplet closer to the constriction compared with (b) with same geometry, (d) mixed-

wet medium 

 

 

 

 

 

 

Figure 4.2 Pressure field in the pore throat for (a) Newtonian fluid (De = 0), (b) Viscoelastic fluid (De = 0.4), (c) 

Viscoelastic fluid (De = 0.7) (b) Viscoelastic fluid (De =1.4) 
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Figure 4.3 Velocity field in the pore throat for (a) Newtonian fluid (De = 0), (b) Viscoelastic fluid (De = 0.4), (c) 

Viscoelastic fluid (De = 0.7) (b) Viscoelastic fluid (De =1.4) 

 

 

 

 

 

Figure 4.4 Normal stress field in the pore throat for (a) Newtonian fluid (De = 0), (b) Viscoelastic fluid (De = 

0.4), (c) Viscoelastic fluid (De = 0.7) (b) Viscoelastic fluid (De =1.4) 
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Table 4.1 Summary of micro-forces presented on an oil droplet in the presence of Newtonian and viscoelastic 

fluids for the pore-centered geometry and fixed flow rate boundary condition 

 

 

 

 

 

 

 

 
Figure 4.5 Pressure field in the pore throat for a (a) Newtonian fluid, (b) Viscoelastic fluid (De = 0.5), (c) 

Viscoelastic fluid (De = 1.0), and (d) Viscoelastic fluid (De =5.0) 
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Table 4.2 Summary of micro-forces presented on an oil droplet in the presence of Newtonian and viscoelastic 

fluids for the constricted geometry and constant flow rate boundary conditions 

 
 

 

 

 

 
Figure 4.6 Normal stresses in the pore throat for a (a) Newtonian fluid, (b) Viscoelastic fluid, (De =0.5) (c) 

Viscoelastic fluid (De =1.0) and (d) Viscoelastic fluid (De =5.0). The uni is Pa. 
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Figure 4.7 Velocity field in the pore throat for a (a) Newtonian fluid, (b) Viscoelastic fluid (De = 0.5), (c) 

Viscoelastic fluid (De = 1.0) and (d) Viscoelastic fluid (De = 5.0) 

 

 

 
Figure 4.8 Pressure field in the pore throat for a constant pressure boundary condition in the constriction 

geometry for a (a) Newtonian fluid, (b) Viscoelastic fluid, De = 0.27, (c) Viscoelastic fluid, De = 0.54, and (d) 

Viscoelastic fluid, De = 2.68 
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Table 4.3 Summary of micro-forces presented on an oil droplet in the presence of Newtonian and viscoelastic 

fluids for a constant pressure boundary condition in the constriction geometry 

 
 

 

 

 

 
Figure4.9 Normal stresses in the pore throat for a constant pressure boundary condition in the constriction 

geometry for a (a) Newtonian fluid, (b) Viscoelastic fluid (De = 0.27) (c) Viscoelastic fluid (De = 0.54) and (d) 

Viscoelastic fluid (De = 2.68) 
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Figure 4.10 Velocity field in the pore throat for a constant pressure boundary condition in the constriction 

geometry for a (a) Newtonian fluid, (b) Viscoelastic fluid (De = 0.27) (c) Viscoelastic fluid (De = 0.54) and (d) 

Viscoelastic fluid (De =2.68) 

 

 
Figure 4.11 pressure force, normal stress force and total normal force vs. De number for constriction geometry 

and fixed flow rate inlet/outlet boundary condition 
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Figure 4.12 pressure force, normal stress force and total normal force vs. De number for constriction geometry 

and fixed pressure inlet/outlet boundary condition 

 

 

 

Figure 4.13 Normal stresses around droplet (function of θ). Stresses are much higher for viscoelastic especially 

for the droplet close to the throat 
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Figure 4.14 Normal stress field around droplet for (a) Newtonian, far from throat, (b) VE, far from throat, (c) 

Newtonian close to throat, and (d) VE close to throat 

 

 

 

 

(a)                 (b)  

 

Figure 4.15 Normal stress field around droplet for (a) Newtonian and (b) viscoelastic fluids (De = 1.5)  
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               (a)                      (b)  

Figure 4.16 Pressure field around droplet for (a) Newtonian and (b) viscoelastic fluids (De = 1.5)  

 

 

 



95 
 

Chapter 5: Dynamic CFD Modeling of Viscoelastic Flow and 

Validation against Micro-Scale Experiments in Dead-End 

Pores
1
 

In this study, existing micro-scale experiments were used to validate models and prove or 

disprove the hypothesis of a viscoelasticity pulling-effect to remove residual oil saturation.  

Steady-state (static) CFD modeling was performed in the dead ends of a channel to analyze the 

flow characteristics of viscoelastic polymer. The streamlines, velocity contours, and normal 

stress contours are discussed here. Both, experimental and steady-state simulation results show 

that the oil can be barely mobilized in normal reservoir conditions mimicked by the micro-scale 

experiments. 

Additionally, transient (dynamic) CFD modeling was performed to gain a better 

understanding of oil droplet movement and deformation in a dead-end geometry. The Arbitrary 

Lagrangian-Eulerian (ALE) finite-element formulation is used to keep track of the interface 

between oil and the displacing fluid. The dynamic simulation results are in agreement with static 

simulations and experimental results.  

This study shows that with typical properties of viscoelastic polymers, the pulling-effect 

is not a primary mechanism for reducing residual oil saturation. However, methods for 

increasing of the Deborah number through potential means, such as using polymer with higher 

relaxation time, may result in a more significant pulling effect and thereby recover residual oil. It 

is shown using dynamic simulations that the amount of deformation of the oil droplet is greatly 

                                                           
1
 This chapter is published in two papers as listed below: (1) Afsharpoor, A., Balhoff, M.T., “Static and Dynamic CFD 

Modeling of Viscoelastic Polymer; Trapped Oil Displacement and Deformation at the Pore-Level,” Annual Technical 
and Conference Exhibition, SPE 166114-MS, New Orleans, Louisiana, October 2013. Balhoff, M.T. has contributions 

on the main idea and the geometry has been studied. (2) Afsharpoor, A., Ma, K., Mateen, K.,  Duboin, A., Jouenne, 

A., Cordelier, P., “Micro-Scale Experiment and CFD Modeling of Viscoelastic Polymer; Trapped Oil Displacement 

and Deformation at the Dead-End, ” 19th SPE IOR Symposium Polymer session, SPE 169036-MS, Tulsa, 

Oklahoma, April 2014. The experimental work has been done by Jouenne. Ma, Mateen, and Cordelier have 

contributions on the main idea and the geometry has been studied.  
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affected by the elasticity of the displacing fluid. These results are promising and provide a 

theoretical foundation for the laboratory and field observations of reduced residual oil. 

5.1 Methodology 

5.1.1 Governing Equations 

Polymers have elastic properties to varying degrees. A viscoelastic fluid has intrinsic 

rheological properties which make it behave as a viscous liquid as well as an elastic solid. The 

most commonly used polymer in chemical EOR/IOR projects, Partially Hydrolyzed 

Polyacrylamide (HPAM), is a straight-chained polymer of acrylamide monomers, some of which 

have been hydrolyzed which has an elastic characteristics (Sorbie, 1991). To measure the effect 

of polymer elasticity, a dimensionless group called Deborah number (De) is used as discussed 

before. In this study the Upper-Convected Maxwell equation (equation 2.24) is used to model 

strong extensional flow effect to relate the shear stress with the shear rate.  

5.1.2 Steady-State (Static) Simulations 

In this study two approaches were employed to understand the polymer elasticity effect at 

the pore-level. The first approach was steady-state simulations. Steady-state simulations 

performed in this study presumed a stationary oil droplet (e.g., a solid obstacle with rigid 

surface). In figure 5.1 the dead-end geometry is shown as one type of residual oil distribution 

(Wang, 2000).         

The hypothesis to reduce Sor during the injection of viscoelastic polymer due to the 

pulling effect at a dead-end pore is investigated here. In this chapter, experimental studies were 

done by colleagues at Total and simultaneously the modeling performed (Afsharpoor et al., 

2014), and interesting observations are reported. Steady-state simulations were done for the 

dead-end geometry in a 2D-planar scheme and the mesh configurations are shown in figure 5.2. 
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In most cases an unstructured mesh was developed to obtain better accuracy for the part where 

the more complicated physics occurred. The fluid flowed from left to right in figure 5.2 (a) and 

(b) and no-slip boundary conditions were employed for the walls. In figure 5.2(a) the triangular 

dead-end geometry has 200 μm in width and 270 μm in depth, and the flowing channel is 200 

μm in width. In figure 5.2(b) the square dead-end geometry has 200 by 200 μm, and the flowing 

channel is 200 μm in width. The oil droplet inside the dead-end geometry was assumed to be 

stationary, so it did not move or deform. To perform the sensitivity analysis other geometries 

were investigated as discussed in the results and discussion section. Polymer properties from the 

experiments were chosen as a base case and other parameters were studied to have a better 

understanding on key parameters and the condition that we are able to observe the trapped oil 

being mobilized. The problem was solved using the finite element method (FEM) with DEVSS-

SU formulation. In this study, Ansys Polyflow software was used to solve this complicated 

numerical problem. Sensitivity analysis is necessary to determine the best mesh network. The 

fluid elasticity was modeled by the upper-convected Maxwell model (UCM) with rheological 

properties of λ = 0 to 0.25 s and μ = 40 cp (0.04 Pa‧s). The De number can be controlled by 

changing either the relaxation time (done here) or the inlet/outlet flow rate across the throat. 

5.1.3 Transient (Dynamic) Simulations 

The second approach was to perform transient simulations in which the oil droplet could 

be mobilized and the interface between oil and aqueous phases could be deformed due to the 

forces acting on it. The static modeling method is a steady state simulation to evaluate the 

behavior of viscoelastic fluid passing around the oil droplet; the oil droplet is stationary and the 

oil/displacing fluid interface does not deform. However, the dynamic modeling performed here is 

transient which keeps track of oil droplet movement and deformation.  
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5.1.3.1 Straight Capillary Tube 

The geometry is again 2D axisymmetric for the two phase system. Conservation 

equations (continuity and momentum) have been solved for both the oil phase as well as for 

displacing fluid phase (water or water-based fluid). The oil droplet is a Newtonian fluid as is 

water, but an Oldroyd-B model is employed when the displacing fluid is viscoelastic. No slip 

boundary conditions for all wall boundaries and fixed inlet/outlet flow rate has been chosen. The 

geometry is shown in figure 5.2(d) and is a simple capillary tube. Although this geometry is 

extremely simple, and does not depict a throat constriction, it does provide insight into the 

deformation of a droplet when inelastic and elastic fluids flow past it. 

A moving interface boundary condition is used for the interface between oil droplet and 

displacing fluid to be able to capture the interface deformation and movement. Due to the droplet 

movement and the interface deformation, mesh configuration plays an important role. Thus, a re-

meshing technique is used for the moving interface. The purpose of re-meshing is to relocate 

internal mesh nodes according to the displacement of boundary nodes. Re-meshing techniques 

control mesh deformation in order to avoid unacceptable element shape. There are different re-

meshing methods, in order to satisfy the re-meshing requirements for a variety of flow problems 

such as method of spines, Euclidean method, Thompson transformation, elastic method, and so 

on (Ansys Polyflow User’s Guide, 2012). Re-meshing rules that are topologically general (i.e. 

Thompson transformation and elastic method) will require more CPU time and memory than 

those that apply only to specific topologies, because they involve the wider coupling between the 

position variables and the other solution fields. Each re-meshing techniques is designed to work 

well for a certain class of problem. Different re-meshing methods have been tested; finally 

elastic re-meshing is chosen to be the best for this problem. Generally, elastic method is 
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recommended for cases where the inherent topological complexity makes it difficult or even 

impossible to apply topologically-regular methods.  

In a transient simulation, the mesh elements will be deformed and stretched such that 

they require re-meshing through the process. Therefore, a mesh at the start of the simulation is no 

longer adequate later on the simulation. The adaptive meshing technique has been applied to 

address this issue. When adaptive meshing is used, the quality of the mesh is evaluated at regular 

intervals during the transient simulation. For each element, if the current quality is below a 

specified threshold, then the element is selected for refinement and displacement.        

5.1.3.2 Converging-Diverging geometry  

The boundary condition was similar to that in steady-state simulations except for a new 

boundary condition on the interface between the oil droplet and the displacing fluid. The pore 

geometry was a converging-diverging tube. A moving interface on the interface between oil and 

polymer fluids was used rather than a fixed interface. For a moving interface, a kinematic 

condition was added to the system of equations in order to solve for the position of the interface. 

The geometries and finite element meshes for simulations of converging-diverging geometry are 

shown in figure 5.2(c). In figure 5.2(c) the tube has 40 μm in radius, however because the 

scheme is axi-symmetric along the center of tube, only half of the geometry is shown, and the 

radius at the constriction is 30.5 μm. The mesh around the moving oil droplet is much finer to be 

able to capture the interface precisely. The converging-diverging geometry was selected to 

investigate how the droplet was deformed and passed through the constriction, and whether snap-

off would occur in different fluid properties by specifically comparing viscoelastic fluids with 

Newtonian fluids.               
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5.1.4 Free Surface and Free Boundary Tracking 

In transient flows the movement of an interface occurs. Accurately capturing the interface 

and keeping tracking the movement and deformation of the free interface is a challenge in FEM. 

In general there are two methods to capture the free surface: Eulerian and Lagrangian methods. 

We briefly introduce them here. 

In Eulerian flow fields and mesh techniques, meshes are stationary and fixed. The mesh 

nodes are fixed and material flows through the mesh. Eulerian coordinates of nodes are fixed and 

coincide with spatial points, and spatial coordinate of material points vary with time as shown in 

figure 5.3.  

The material point at a given quadrature point changes with time, which makes it difficult 

to deal with history-dependent materials. Boundary nodes and material boundaries may not 

coincide. Therefore, boundary conditions and interface conditions are difficult to apply. There is 

no mesh distortion because the mesh is fixed in space. However, the domain that needs to be 

modeled is larger compared with Lagrangian approach because we do not want the body to leave 

the domain. In contrast, in Lagrangian flow fields and mesh technique, the mesh is moving and 

attached to the material as shown in figure 5.4. 

Lagrangian coordinate of nodes moves with the material and the material coordinate of 

material points are time invariant. No material passes through the elements. Element quadrature 

points remain coincident with material points. More importantly, boundary nodes remain on the 

boundary in order to keep track of the interface more precisely. Therefore, boundary conditions 

and interface conditions are easily applied. The disadvantage of this method is that severe mesh 

distortions can occur because the mesh deforms with the material. To overcome the mesh 

distortion, a re-meshing technique can be applied. The purpose of a re-meshing technique is to 

relocate internal nodes according to the displacement of boundary nodes. Re-meshing techniques 
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control mesh deformation in order to avoid unacceptable element shapes. There are different re-

meshing methods according to the physics of the problem. Elastic re-meshing methods has been 

selected for this study (Ansys Polyflow User’s Guide, 2012). The Arbitrary Lagrangian-Eulerian 

(ALE) method takes advantage of both Lagrangian and Eulerian approaches. The mesh 

movement is arbitrary to have an optimum shape of element to track the boundaries and 

interfaces precisely. It can model the wettability; however, it cannot simulate capillary pressure 

like when a droplet is immersed in another liquid. The limitation of this method is that it is not 

good for abrupt topology changes and splitted interfaces. All dynamic (transient) simulations in 

this study used ALE method. 

5.1.5 Dead-End Microfluidic Experiments 

5.1.5.1 Micro-fabrication 

All experiments were performed in microfluidic systems to model the dead-end geometry 

(Afsharpoor et al., 2014) and performed by colleagues. The microsystem is composed of a main 

channel (width, w = 200 µm) and a dead-end pore connected to the main channel through one 

side only. By varying both the angle α and the length LP of the pore, we obtained 4 different 

shapes: square, deep rectangle, short triangle, deep triangle (see figure 5.5). The whole system 

height is h = 60 µm. 

The microsystems are made by conventional PDMS replica molding of a 

photolithographied SU-8 mold (SU-8 2100, Microchem) (Duffy et al., 1998). Briefly, PDMS 

was poured on the mold and submitted to thermal curing for two hours in an oven at 70 °C. Then 

the replica is removed from the mold, drilled and treated with oxygen-plasma before sealing by a 

glass coverslip. To get a water-wet condition the system is used immediately after sealing, 

whereas for an oil-wet condition, the systems is placed in the oven at 70 °C for at least 24 hours 

before use. 
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5.1.5.2 Experimental Sequence 

The system is connected through small tubing (Tube PEEK 1548, Idex Health and 

Science) to a syringe pump (Pump 11 Elite, Harvard Apparatus) in order to inject the fluids at a 

constant flow rate, typically between 0.2 and 100 µL/min. A 2-entry-valve (V-100 L valve, Idex 

Health and Science) placed between the syringe pump and the system allows to perform 

sequential flooding and to avoid air bubble troubles. The system is placed on an illumination 

lamp and observed from above through an optical length connected to a color camera 

(PixeLINK) allowing image sequence acquisition. 

In order to investigate oil recovery processes in dead-end geometries, each experiment 

requires three steps as shown in figure 5.6. First of all, the investigators performed oil flooding to 

fill out the geometry. Then, we inject an aqueous solution to trap oil in the pore (oil trapping 

assays). Finally, a complex fluid solution is injected to investigate the trapped oil recovery from 

the dead-end geometry (oil detrapping assays). 

5.1.5.3 Fluid Properties 

The aqueous solutions used in the trapping assays are deionized water (DW) and a 1% 

v/w sodium dodecyl sulfate aqueous solution (SDS) (L6026, Sigma Aldrich). The complex fluid 

solution is a 4,000 ppm or 8,000 ppm polyethylene oxide solutions (PEO) (Mw = 5 MDa, 

189472, Sigma-Aldrich). To prepare the PEO solution, the polymer powder is homogeneously 

dispersed during a few seconds in a vortex of 200 mL of water created by magnetic stirring. The 

solution is then gently agitated on a moving table during  overnight to achieve dispersion of the 

polymer without breaking the molecules. The solution is finally homogenized by magnetic 

stirring during two hours at 100 rpm. The oil phase is commercial fluorinated oil (FC-40 

Fluorinert, 3M) that does not swell the PDMS. So as to ease visualization, aqueous solution is 
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colored with water-soluble dyes: fluorescein (yellow) (46955, Sigma Aldrich) or methylene blue 

(blue) (M9140, Sigma Aldrich).  

5.1.5.4 Characteristic Number of the Flows 

In order to compare all the different experimental conditions, the flow is characterized by 

three dimensionless numbers. The capillary number Ca is describe by equation 5.1, where µ is 

the zero-shear-rate viscosity of the injected fluid, U is the mean velocity of the flow, and γ the 

interfacial tension between the two fluids. Ca expresses the balance between the capillary forces 

that are responsible for the trapping phenomena of oil in the reservoirs and the viscous forces 

which account for the dragging effect of oil by the injected fluid. In our experimental condition, 

we are able to approach a range of capillary numbers close to the typical one encountered in oil 

reservoir. 

    

U Q
Ca

wh

 

 
 

                                                                     (5.1) 

The Deborah number (or Weissenberg Number (Wi), equivalently) is described by 

equation 5.2 as introduced previously. The reciprocal of tr  is expressed here as U/L in equation 

5.2 as an estimation of the shear rate applied to the polymer chain in the flow. L is the 

characteristic length of the elongation represented by the width of the main channel here.  

  𝐷𝑒 = 𝑊𝑖 = 𝜆
𝑈

𝐿
= 𝜆

𝑈

𝑤
= 𝜆

𝑄

𝑤2ℎ
                                                (5.2) 

While De << 1 the characteristic time of the elongation is larger than the characteristic 

time of the polymer chain: the chain fully relaxes the strain and no elastic effect is observed. 

When De > 1, the polymer chain is stretched and the elastic effect should be observed. In 

addition, the Reynolds number (Re) is defined as the ratio of inertia forces to viscous forces as 

shown below: 

𝑅𝑒 =
2𝜌𝑄

𝜇(𝑤+ℎ)
                                                                   (5.3) 
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where ρ is fluid density, Q is volumetric flow rate, and μ is fluid viscosity. 

5.2 Results and Discussion 

5.2.1 Steady-State (Static) Simulations 

Figure 5.7 shows the velocity streamlines for three different cases. In all cases the 

displacing fluid (generally, polymer) displaces the trapped oil droplet as shown in black color. 

Case (a) is the Newtonian base case with a flow rate of 100 μL/min, a Reynolds number of 0.53, 

a Newtonian displacing phase (relaxation time (λ) equals zero) viscosity of 23 mPa.s, and a 

displaced phase viscosity of 24 mPa.s. Case (b) is the viscoelastic base case in which the fluid 

properties are the same as the Newtonian base case, but the displacing fluid relaxation time is 

0.35 sec. Case (c) is the viscoelastic case with 48 times higher flow rate than the viscoelastic 

base case (case (b)).  

Table 5.1 summarizes the fluid properties and experimental parameters. Note that Ca is 

not calculated because single-phase flow is investigated here and the oil droplet is treated as a 

stationary obstacle. As shown in figure 5.7, the velocity streamlines in case (a) and (b) are very 

similar to each other and they do not go through the dead-end part and barely touch the trapped 

oil droplet. 

Figure 5.8 shows the velocity contours for the same three cases as those in figure 5.7. As 

it shows the velocity contours for case (a) and (b) are similar. By comparing the results for case 

(a) and (b) we can conclude that the experiment condition corresponding to case b with 

viscoelastic behavior is very similar to case a with Newtonian behavior, so lack of enough 

pulling effect to extract oil from the dead-end section is expected. The pulling forces is 

calculated and for case (a) the total pulling force is 1.321E-10 N, and for case (b) is 1.315E-10 



105 
 

N. As expected the total pulling forces for both case (a) and (b) are very close and for both cases 

(a) and (b) the pulling force due to normal stress itself is negligible (4.75E-14 N).  

However, by increasing the flow rate we observe a more pronounced pulling effect as 

shown in case c of figure 5.8, where the velocity contours invade toward the oil droplet. This 

increase in the flow rate results in an increase in De; alternatively, one can also increase De by 

increasing the elastic property of polymer through an increase in the relaxation time. 

Figure 5.9 shows the normal stress contours for the Newtonian base case by comparing 

the tension and compression components of normal stresses. As it shows, tension and 

compression components are almost similar and are very close to zero based on the given scale 

bar; therefore, the pulling effect does not occur for the Newtonian case. 

However, the normal stress components are different for case c as shown in figure 5.10. 

As figure 5.10 shows the tension component is much higher than the compression component, 

causing net tension forces and the pulling effect observed for this case.  

Figure 5.11 shows the normal stress contours for case (b). As it shows it is consistent 

with our previous observation that the pulling effect is negligible in case (b) because the tension 

and compression components of normal stress cancel each other.  

Figure 5.12 shows the difference in all three cases and how the tension is dominant for 

case (c), which explains why in experiments the pulling effect is not observed for case (b). In 

general the driving fluid used for the viscoelastic base case is the polymer with a high relaxation 

time (PEO 4000 ppm, relaxation time = 0.35 s). Another dead-end geometry investigated in this 

study is the shallow square. The reason to model this geometry is that it may have a sudden 

change in flow path which leads to a higher elasticity, and if so how significant the effect would 

be. Thus this level of elasticity may possibly be able to extract the trapped oil in the dead-end 
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part. Figure 5.13 shows the normal stress contours for the Newtonian base case to compare the 

tension and compression components of normal stresses. As it shows, tension and compression 

components are almost similar; therefore, the pulling effect does not occur for the Newtonian 

case with a square dead-end geometry either.  

Figure 5.14 shows the normal stress contours for case (b). As it shows it is consistent 

with our previous observation of the negligible pulling effect in case (b) because the tension and 

compression components of normal stress cancel each other in the square geometry as well. 

Therefore, not being able to extract the trapped oil from this geometry in lab condition is 

reasonable.  

Figure 5.15 shows the tension component is much higher than the compression 

component, resulting in a net tension effect and the pulling effect observed for this case.  

Figure 5.16 shows the difference in all three cases and how the tension is dominant for case 

(c). As a result, in experiments the pulling effect is not observed for case (b).  

However, comparing the normal forces acting on an oil droplet in the square geometry is 

more effective compared with the triangular geometry. The CFD modeling has been done for 

deep triangular and rectangular dead-end geometries and the results are consistent with shallow 

geometries; however, it is obviously more difficult for the viscoelastic polymer to reach the 

bottom of dead-end section compared with shallow geometries.  

 

5.2.2 Experimental Results 

5.2.2.1 Oil Trapping Assays 

Our aim was to study the recovery process on residual oil in dead-ends. Thus, the first 

thing was to trap oil in a reproducible manner. We observe three main types of results during oil 

trapping assays: no trapping, partial trapping, full trapping (results are gathered in Table 5.2). It 
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turns out that our ability to trap oil depends on the wetting properties of the system and the shape 

of the pore (see figure 5.17). The wetting property of the system is quantified by the contact 

angle θ measured at the triple contact point between the water/oil meniscus and the wall of the 

system. Moreover, the behavior of this meniscus near the pore depends on the angle α (see figure 

5.17(g) and 5.22(h)). 

In fully water-wet systems, that is when we use SDS as the aqueous solution and θ = 0 

degree, a wetting film of SDS appears on the walls of the system. If this film propagates quicker 

than the meniscus in the system, oil is completely drained out from the pore. That explains why 

oil is completely de-trapped in short triangle or square pores (figure 5.17(a) and 5.17(b)) whereas 

it is trapped in deep triangle or deep rectangle (figure 5.17(e) and 5.17(f)). 

When there is no surfactant in the aqueous solution, θ takes a finite value between 0 and 

180°: we speak of partial wetting and we distinguish hydrophilic partial wetting (0 < θ < 90°) 

from hydrophobic partial wetting (90 < θ < 180°). In both hydrophilic and hydrophobic partial 

wetting, when the meniscus reaches the pore, it encounters an abrupt slope change. Furthermore, 

the contact angle on the wall of the main channel must be equal to the one on the wall of the 

pore. To satisfy this condition at the anchoring point at the entry of the pore (point A on figure 

5.17(g)), the apparent angle θAPP takes all values between θ and θmax (θmax = θ + π - α) before the 

triple contact line enters the pore. It is trapped at the point A and its penetration in the pore 

depends on the angles θ and α, and also on the time spent by the meniscus to reach the exit point 

of the pore (point B on figure 5.17(g)). 

In partially water-wet systems (partial hydrophilic wetting) (figure 5.17(c)), the triple 

contact line can penetrate in the pore before the meniscus reaches the exit point of the core, 

leading to a partial trapping of oil in the pore. The amount of oil trapped in the pore depends only 
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on the angle α and the flow rate of the water solution: the smaller α, the more oil is trapped; the 

higher Q, the more oil is trapped. Thus the amount of oil trapped is greater in square pores than 

in short triangle pores. 

In partially oil-wet systems (partial hydrophobic wetting) (figure 5.17(d)), the meniscus 

advances in the main channel in a piston-like manner and reaches the exit point of the pore 

before the trapped triple line could enter it, resulting in oil trapping in the pore. 

5.2.2.2 Oil Detrapping Assays with Tertiary Polymer Flooding 

We study the effect of polymer flooding on oil recovery of oil trapped in dead-ends, in 

fully water-wet and partially oil-wet systems, using respectively deep pore geometries and short 

pore geometries. As the presence of the pore induces an expansion-contraction in the section of 

the channel where the polymer solution flows, we expect streamline modifications on the sides 

of the pore due to elastic effects (Evans and Walters, 1986; Boger, 1987; Rodd et al., 2005; Rodd 

et al., 2007). Hence the polymer solution should develop normal forces near the pore and enter 

deeply in the pore which helps to drag out oil from the pore (Yin et al., 2006). However, despite 

varying the injection flow rates and the concentrations of the polymer solution, we never observe 

positive recovery effects of polymer solution (see figure 5.18). In our lab conditions, the amount 

of oil trapped in the pore is not affected by a tertiary polymer flooding. 

The Weisenberg number calculated from our flow conditions are summarized in Table 

5.3. Despite the fact Wi is greater than 1, we observe no effect of polymer on oil recovery in 

dead-end geometries. In all those experimental configurations, the capillary numbers are very 

low, due to low flow rates and the low scales involved by microfluidics. Thereby, the capillary 

forces, that are responsible for the oil trapping, dominate over the elastic forces that could have 

risen due to the non-linear behavior of the polymer solutions. 
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5.2.3 Transient (Dynamic) Numerical Simulations 

5.2.3.1 Straight Capillary Tube 

Although the static results are interesting and further support the hypotheses that 

elasticity provides additional forces that can mobilize residual oil (Chapter 4), the simulations 

were conducted in over-simplified geometries. Moreover, they involve steady flow around a 

static, snapped-off oil droplet. Many experimental data sets suggest that reduction in residual oil 

occurs in secondary and not tertiary floods (i.e. it is only effective before oil has snapped off). In 

this work, we have conducted preliminary dynamic simulations to study the effect of elasticity 

on the movement of an oil droplet. 

The geometry used here is a cylindrical tube and is mathematically modeled in 2D axial 

symmetry. An oil droplet is placed at the center of the tube and the wetting fluid (water or oil) is 

injected from top to bottom. Figure 5.19 shows the normal stresses for (a) water and (b) 

viscoelastic fluid. The inelastic water deforms the oil droplet, while the elastic polymer adds 

some stability and the droplet remains virtually in its initial spherical shape. Note that the 

viscosity of both the polymer and water are the same. 

The chosen geometry is kept simple, largely because of the strong nonlinearities of the 

problem, but work is recommended to model flow in geometries more representative of real 

pores throats (converging/diverging and non-axisymmetric 3D). In addition to the qualitative 

observations presented here, a goal is for future investigators to use the CFD simulations to 

develop up-scaled equations that can be later substituted into a pore-scale network model. The 

network model would then be used to model multiphase flow and then be validated against 

experimental data in core flood experiments that have shown reduced residual oil in the presence 

of viscoelastic polymer. Network models approximate a porous medium as an interconnected 

network of pores and pore throats. Much of the critical physics of multiphase flow in porous 
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media is due to the interaction among the pore throats and bodies of the network, which cannot 

usually be solved analytically.  Hence, computational simulation of the network is required to 

understand the flow behavior of these systems. Quantitative techniques have been developed to 

model behavior in porous media ranging from single-phase Newtonian flow (Bryant et al., 1993) 

to multiphase (Baake and Oren, 1997) and non-Newtonian (Lopez et al., 2003; Balhoff and 

Thompson, 2004, 2006; Sochi, 2009) flows. 

5.2.3.2 Converging-Diverging Tube and Dead-End Pores 

The results show the deformed oil droplet, placed at the center of the constriction, in 

order to analyze how the ALE method can handle this problem numerically. The results shown 

here are only for demonstration of the ALE method and its numerical difficulty for the 

application of simulation of snap-off. When using the ALE method for interface tracking, some 

numerical and mesh problems are encountered. As discussed in the methodology section, the 

mesh in the ALE method can be distorted (figure 5.20) and it is fine until the distortion level 

reaches to a threshold value beyond which the simulation no longer continues. The threshold 

value for the mesh element can be chosen based on different applications. The criteria for bad 

element mesh conditions at which the simulation stops in the transient simulation in this study 

include interior angle, aspect ratio, bend, and skew of mesh element. The value of each 

parameter can be selected based on the physics of the problem. The interior angle is between 5 to 

170 degrees, the aspect ratio is below 1.0, the maximum bend is 0.8, and the maximum skew is 

10. The simulation will not continue until all of these criteria are met. In other words, the bad 

mesh elements are too bended, too stretched, and non-convex. Note that the more stringent the 

criteria, the more iteration are required. In some cases, a solution that respects a particular 

criterion may not even be found (Braes, 2000; Cruchaga, 2006; Ansys Polyflow User’s Guide, 
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2012). The mesh needs to be recovered first before the simulation in the next time step can be 

carried on.  

Figure 5.20 shows that the mesh around the interface between the oil droplet (blue mesh 

lines) and the displacing fluid (black mesh lines) is in good condition initially (t = 0 s). Then as 

the oil phase travels and the interface deforms the mesh network needs to be adjusted to capture 

the precise boundary between two phases by re-shaping the mesh element shape. This process is 

known as re-meshing as introduced previously. In some ideal cases, re-meshing will continue till 

the end of the simulation. However, due to the complex geometry in this example the re-meshing 

of mesh elements cannot continue at some point as shown in figure 5.20(b) because the meshes 

around the interface become too stretched, and the criteria for continuing re-meshing are not met 

anymore. As a result the simulation is crashed due to bad mesh elements. In addition, Figure 5.20 

(b) and (c) compares the droplet deformation for viscoelastic and Newtonian fluids at t = 0.041 s; 

as expected much less deformation occurs in the viscoelastic case (figure 5.20 (c)). From these 

results, there are two hypotheses for which more investigation is recommended. First, if initially 

there is an oil ganglion in multi-pore media, the viscoelastic fluid prevents oil from being 

snapped off. Second, if there is an already snapped-off oil droplet the Newtonian surrounding 

fluid can squeeze it more to push it through the constriction.  

Figure 5.21 shows the mesh before and after the meshing treatment for t = 0.041 s. The 

simulation crashes (figure 5.21a) because the cells are too stretched. When a bad mesh element is 

formed, the re-meshing technique cannot continue. Under the condition in figure 5.21(a) the 

simulation crashes because the criteria to continue re-meshing cannot be met. Therefore, we need 

to generate an entirely new mesh network for the whole existing geometry. This mesh treatment 

in figure 5.21 is different from the re-meshing technique. To conduct the mesh treatment, the 
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simulation result at t = 0.041 s is imported into a new simulation setup with a re-generated mesh 

and a simulation restart is carried out from 0.041 s. And again the re-meshing continues till one 

of the criteria for bad mesh elements are met, and then a new mesh network is generated for 

another simulation restart. Figure 5.21b shows the mesh after re-generation and now the mesh is 

in good condition to continue the simulation. This process needs to be repeated if the simulation 

crashes again at a later time. The geometry in figures 5.20 and 5.21 are the same as figure 5.2(c) 

and the fluid properties are the same as case (a) in Table 5.1. 

In addition, to understand in which condition the oil droplet begins to be mobilized in 

dead-end pores, steady-state CFD modeling was performed for viscoelastic flow in a dead-end 

pore structure. The steady-state simulation is a preliminary step for dynamic (transient) modeling 

at that dead-end geometry. The dynamic simulation was done on the triangular dead-end 

geometry with wider dead-end section to make it easier to mobilize the oil droplet. Figure 5.22 

shows the oil droplet before and after deformation and that the simulation stops at the point 

which needs more mesh refinement. The fluid is Newtonian for this case and fluid properties are 

the same as case (a) in Table 5.1. The geometry of the triangular section in figure 5.22 is 105 μm 

in depth and 300 μm in width, and the flowing channel has a radius of 50 μm. In the future, 

sensitivity analysis is recommended in order to understand under which conditions the oil droplet 

will be mobilized.  

5.3 Conclusions 

Dynamic simulations show strikingly different behavior between elastic and inelastic 

fluids; oil droplets are deformed over time when an inelastic fluid is injected but the droplet does 

not deform in the presence of elastic fluids. This work provides a preliminary numerical and 

theoretical explanation for the observed laboratory and field studies. It also suggests that 
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additional oil could potentially be recovered using viscoelastic polymers in secondary or tertiary 

recovery methods. Recommended future work should focus on additional dynamic modeling in 

more complex geometries for the purpose of upscaling flow equations for viscoelastic flow that 

could be then substituted into a pore-network model and validated against experimental data in 

cores. 

In this study, CFD simulations were performed in geometries aiming at representing pore 

structure and geometry at which the residual oil can be trapped. CFD modeling was performed 

on both triangular and rectangular dead-end geometries. It shows that the viscoelastic effect is 

not significant under the condition chosen for our micro-scale experimental study, and that it 

needs to be modified to increase the elasticity of polymer either by using other polymers with a 

higher relaxation time or increasing the flow rate. Tensional force increase when increasing the 

elasticity of polymer; then pulling effect will occur to mobilize the trapped oil droplet in the 

dead-end part.  

The microfluidic experiments were conducted in various geometries. This work provides 

a numerical and theoretical explanation for the acquired laboratory data.  Results also suggest 

that, provided the relaxation time of the polymer could be sufficiently increased to make the 

pulling-effect significantly high, additional oil could potentially be recovered using viscoelastic 

polymers in secondary or tertiary recovery methods. Pre-emption of deformation and eventual 

snapping of the oil droplet with viscoelastic polymers could also help recover some of the 

residual oil reduction reported in the literature. The simulation results in the dead-end geometry 

indicate that the pulling effect is not likely mechanism acting at the pore-level to reduce residual 

oil saturation, at least with current polymer properties at actual reservoir conditions. 
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Figure 5.1 Types of residual oil distribution; oil droplet, oil film, dead end, cluster-type, and column-type (Wang, 

2000) 

 

 

 

 

 

 

 

 

      (a)  (b)               (c)               (d)   

Figure 5.2 Mesh configurations for shallow dead-end geometry (a) triangular, (b) square, (c) converging-

diverging geometry, and (d) dynamic simulation in a capillary tube 
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Figure 5.3 Eulerian flow fields and mesh techniques 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 Lagrangian flow fields and mesh techniques 
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Figure 5.5 Sketches of the experimental microsystems (a) A main channel is laterally connected to a dead end of 

pore; varying the length LP of the pore and the angle α, we get different shapes: (b) square, (c) short triangle, (d) 

deep rectangle, (e) deep triangle (Duboin, A., 2013) 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Description of the experimental sequence (here for a partially water wet system). The system is 

connected through tubing to a syringe pump allowing injecting the fluids at a constant flow rate (a) we first fill 

the system with oil, (b) then, a secondary water flood is used to trap oil in the pore, (c) and finally a tertiary flood 

of polymer is performed to study oil recovery (Duboin, A., 2013) 

 

 

 

 

 

 



117 
 

 

 

 

 

Figure 5.7 Velocity streamlines for (a) Newtonian base case, (b) viscoelastic base case, and (c) viscoelastic with 

48 time higher flow rate than viscoelastic base case 

 

 

 

 

 

 

 

 

 

Table 5.1 Summary of fluid properties 

 
μdisplacing 

(mPa.s) 

μdisplaced 

(mPa.s) 

λ 

(sec) 

Flow rate 

(μL/min) 
Re Wi 

Case (a) 23 24 0 100 0.53 0 

Case (b) 23 24 0.35 100 0.53 486 

Case (c) 23 24 0.35 4800 25.44 23328 
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Figure 5.8 Velocity contours for (a) Newtonian base case, (b) viscoelastic base case, and (c) viscoelastic with 48 

time higher flow rate than viscoelastic base case 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9Normal stress contours for Newtonian base case (case a) (a) positive normal stress (tension), and (b) 

negative normal stress (compression) 
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 Figure 5.10 Normal stress contours for viscoelastic with 48 time flow rate compared with base case (case c) (a) 

positive normal stress (tension), and (b) negative normal stress (compression) 

 

 

 

 

 

 

 

 

 

Figure 5.11 Normal stress contours for viscoelastic base case (case b) (a) positive normal stress (tension), and (b) 

negative normal stress (compression) 
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Figure 5.12 Tension component of normal stress contours for (a) case a, (b) case b, and (c) case c 

 

 

 

 

 

 

Figure 5.13 Normal stress contours for Newtonian base case (case a) (a) positive normal stress (tension), and (b) 

negative normal stress (compression) 

 

(a) (b) 
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Figure 5.14 Normal stress contours for viscoelastic with 48 time flow rate compared with base case (case b) (a) 

positive normal stress (tension), and (b) negative normal stress (compression) 

 

 

 

 

 

Figure 5.15 Normal stress contours for viscoelastic with 48 time flow rate compared with base case (case c) (a) 

positive normal stress (tension), and (b) negative normal stress (compression) 
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Figure 5.16 Tension component of normal stress contours for (a) case a, (b) case b, and (c) case c 

 

 

 

 

 

Figure 5.17 Experimental results of trapping assays. Depending on the wetting conditions and the shape of the 

pore, we observe three kinds of trapping results. In full water-wet systems there is no trapping in short geometries 

(a-b) and trapping in deep ones (e-f). In partially water-wet systems we get partial trapping (c), whereas in 

partially oil-wet systems we obtain trapping (d). The way the water/oil/PDMS contact line enters in the pore 

depends on the wetting contact angle θ, the angle α and the injection flow rate Q. (Duboin, A., 2013) 
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Table 5.2 Summary of oil trapping assays (Experiment) (Duboin, A., 2013) 

Injection solution Wetting property Pore shape Trapping result 

DW + SDS fully water-wet square no trapping 

DW + SDS fully water-wet short triangle no trapping 

DW + SDS fully water-wet deep triangle trapping 

DW + SDS fully water-wet deep rectangle trapping 

DW partially water-wet square partial trapping 

DW partially water-wet short triangle partial trapping 

DW partially oil-wet square trapping 

DW partially oil-wet short triangle trapping 
 

 

 

 

Figure 5.18 Experimental results of detrapping assays with  a tertiary flood of 4, 000 ppm PEO aqueous solution  

injected at a constant flow rate Q = 100 µL.min
-1

. We observe oil detrapping neither in partially oil-wet pore (a-c) 

nor in fully water-wet deep pore (d-f). (Duboin, A., 2013) 
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Table 5.3 Characterization of oil detrapping assays. (Duboin, A., 2013) 

Tertiary 

flood 

Wetting 

property 
Pore shape 

Cm 

(ppm) 

Q 

(µL/min) 

h 

(µm) 
Ca We 

De-trapping 

result 

PEO 
partially oil-

wet 

short 

triangle 
4, 000 0.2 60 10

-4
 0.5 no detrapping 

PEO 
partially oil-

wet 

short 

triangle 
8, 000 0.2 60 2.10

-3
 1.4 no detrapping 

PEO 
fully water-

wet 
deep triangle 4, 000 100 60 8.10

-2
 243 no detrapping 

PEO 
fully water-

wet 

deep 

rectangle 
4, 000 100 60 8.10

-2
 243 no detrapping 

PEO 
fully water-

wet 

deep 

rectangle 
8, 000 10 60 10

-1
 70 no detrapping 

 

 

 

 

 

 

 

 

  

(a)                                                         (b) 

Figure 5.19 Dynamic simulations of wetting fluid flowing around a spherical oil droplet at various snapshots in 

time. The simulations are for an injecting fluid of (a) inelastic water and (b) elastic polymer 
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Figure 5.20 The mesh configuration for (a) initial time for both Newtonian and viscoelastic (t = 0), (b) Newtonian 

at t = 0.041 s, and (b) viscoelastic at t = 0.041 s 

 

 

 

                                                      
Figure 5.21 The mesh configuration for t = 0.041 (a) before mesh treatment, and (b) after mesh treatment 

 

(a) (b) 
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Figure 5.22 The mesh configuration for dead-end geometry at (a) initial time (t = 0), (b) t = 0.09 s 

(a) (b) 
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions 

This study investigates the effect of polymer elasticity in reduction of the residual oil 

recovery and pore-network simulation of single-phase viscoelastic fluid flow through porous 

media has been developed. Several conclusions of this work are listed below. 

1. CFD modeling has been performed for much converging-diverging geometry of various 

dimensions and a closed-form equation for viscoelastic fluid through these ducts has been 

developed. The fitted closed-form equation (3.9) from CFD simulation is similar to Wissler’s 

(1971) equation which he solved analytically using some simplifications and assumptions. 

The new equation shows shear thickening behavior which has been observed experimentally 

by many authors. It also includes terms for shear-thinning behavior at low De.   

2. The Upper-Convected Maxwell model was used to describe the fluid rheology for simplicity. 

The CFD simulation results showed shear-thinning behavior at moderate shear rate, 

consistent with other numerical studies in the literature. This shear-thinning behavior (in the 

absence of a shear-thinning rheological model) is not fully-understood, but may be due to 

entrance pressure effects which are not fully developed in the converging-diverging 

geometry. 

3.  A single phase pore-network model was developed for viscoelastic flow. The closed-form 

equation obtained from CFD simulation has been implemented into the pore-network model.  

The developed pore network simulations capture many viscoelastic effects observed in core-

flood experiments such as a shear-thickening regime at high apparent shear rate.  

4. The developed pore-network modeling for single-phase viscoelastic polymer has been 

validated against some experimental results. The computer-generated sphere packing pore-
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network has been compare with bead-pack cores and they are largely in good agreement. 

However for some experiments, the model does not match the data at high apparent shear 

rates, which could be due to shear-degradation at these high shear rates.   

5. CFD modeling has been performed in multiphase systems in such a way that the oil-phase is 

stationary and not deforming or moving (referred to herein as static simulations). The oil 

droplet behaves as a solid object and fluids (water or viscoelastic) flow around the droplet.  

Fluid dynamics are investigated in the geometry and more specifically the forces acting on 

the oil droplet. Simulations show that as the fluid becomes more and more elastic the fluid 

dynamics properties become more asymmetric. The CFD simulations show this asymmetric 

behavior leads to form additional forces due to normal stress on the objects which is 

negligible for Newtonian fluid. As the relaxation time (and therefore De) increase, the fluid 

elasticity increases and the calculated forces due to normal stress are larger. However 

because of numerical difficulty, a higher Deborah number could not be obtained, but the 

trend shows the normal stress force increases monotonically and could be large enough at 

high De to eventually push the trapped oil droplet out of the constriction in a pore structure.   

6. For Newtonian flow around the oil droplet, the pressure profile is symmetric and no eddies 

are observed in front or behind the oil droplet. However, for viscoelastic flow, and 

specifically for higher Deborah numbers, as the fluid becomes more elastic the pressure 

profile becomes more asymmetric and eddies form ahead of the oil droplet. As a result of the 

eddy, a low pressure pocket forms in front of the oil droplet which leads to higher local 

pressure gradient to mobilize the oil droplet. Finally, by adding viscoelastic polymer into 

aqueous phase, the viscosity increases, the additional force due to normal stress, and higher 
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local pressure gradient due to low-pressure packet in front of the oil phase may help to 

mobilize the trapped oil phase and reduce the residual oil saturation in polymer flooding. 

7. Since many reservoir rocks are mixed-wet and oil-wet, CFD modeling for mixed-wet media 

has been conducted to analyze the viscoelastic fluid behavior. The geometry utilized for 

static simulations was half of a sphere (oil droplet) adhered to the wall, and the CFD 

simulation results were compared with Newtonian results. It showed as the fluid becomes 

more elastic, the normal stresses became more pronounced, similar to the observed behavior 

for water-wet media. 

8. CFD simulations were performed for cases in which oil droplet distance from the constriction 

is closer and then compared the results with Newtonian fluid. The same behavior has been 

observed which the normal stress increases as the fluid becomes more elastic by increasing 

the Deborah number. It shows as the oil droplet pushes toward the throat constriction due to 

the more converging-diverging geometry formed around the oil droplet, the viscoelastic fluid 

experiences more elasticity which leads to higher normal stresses. Then eventually the forces 

can overcome the entry capillary pressure and the oil droplet will be squeezed and pass 

through the constriction.  

9. In transient CFD simulations, an oil phase along with an aqueous phase moved and the 

interface between phases deformed. Simulations were performed for an oil droplet moving at 

the center of capillary tube as a preliminary simulation results and the simulations for 

Newtonian and viscoelastic fluid were interesting. The dynamic results in straight capillary 

results show the viscoelastic fluid deforms the oil droplet less compared to a Newtonian 

displacing fluid.  These models might explain the experimental observations that suggest 

viscoelastic polymer increases the resistance for oil phase to snap-off. The experiments show 
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more residual oil saturation reduction in secondary polymer flooding compared to tertiary 

polymer flooding. The hypothesis is that during secondary polymer flooding, the elasticity of 

polymer prevents snap-off from occurring so the oil-phase remains connected which is easier 

to recovery rather than snapped-off and disconnected oil phase in tertiary polymer flooding. 

This preliminary results needs to be extended to more complicated geometry like converging-

diverging geometry and investigate if the viscoelastic fluid can or cannot prevent snap-off in 

actual core-flood experiments.  

10. CFD modeling was performed for geometries that included trapped oil in dead-end pores and 

compared to existing experimental data in microfluidic channels. The modeling results were 

consistent with the experiments, in that no pulling effect was observed. However, 

hypothetically, if the polymer has around 1-2 order of magnitude higher relaxation time 

compare to the typical relaxation time (0.35 s), a pulling effect is observed. The conclusion is 

that the pulling effect is not the dominant mechanism to recover the trapped oil phase and 

reduce the residual oil saturation. 

11. Viscoelastic polymer has several effects which could help to reduce residual oil saturation 

and increase the recovery as discussed above. However the combination of those effects 

could help to reduce the residual oil saturation and more analysis needs to be performing to 

analyze the importance of each effect as descried more in recommendation section.  

6.2 Recommendations for Future Work 

1. The single-phase pore-network model developed in this study was validated against old 

existing experimental data in bead packs using polymers no longer implemented in the field. 

For future work, new core flood experiments should be performed for various types of new 

polymer solutions (such as HPAM). A full rheological study on the fluids should be 



131 
 

performed and fit to VE rheological models.  Additionally, experiments in other cores, such 

as Berea or Boise sandstones, are recommended to validate the single-phase pore-network 

model and use for field predictions. This will help determine whether the pore-scale 

equations implemented are applicable for imaged-based network model obtained  from X-ray 

Microtomography (XMT) of actual cores and not the computer-generated sphere-packed 

pore-network. Several other complexities in actual core such as different pore-throat shape 

can be analyzed and check if the developed pore-network model can get a good-agreement 

with experimental results.  

2. The pore-network used in this study was from computer sphere packing which approximates 

a beadpack in terms of pore structure. However for more heterogeneous cores which has 

more complicated pore structure such as Bentheimer, Berea, and Boise sandstone, the 

visualization of pore structures need to be performed. Before conducting the coreflood 

experiments, the core needs to be imaged to capture the pore structure for the core. After 

making the digitalized core, the pore-network simulations can be performed and then 

compared the results with polymer flood experiments. 

3. The pore-network model should be extended to include multiphase flow. Although network 

models exist for Newtonian, multiphase flow, this problem is more challenging since the 

interaction between phases are unknown are for viscoelastic fluids. Therefore, first additional 

two-phase dynamic CFD simulations need to be performed and used to obtain local capillary 

pressure and relative permeability curves for viscoelastic phase as a displacing fluid. 

4. The closed-form equation for viscoelastic flow was developed for a single converging-

diverging duct and periodic fixed pressure boundary condition. In future work, CFD results 

for fixed flow rate boundary condition should be done to verify the CFD simulation results 
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and obtain a more universal equation since for various applications; different boundary 

condition will be required. Performing CFD modeling for consecutive converging-diverging 

ducts will allow for verification of   the periodic boundary condition for both pressure and 

flow rate boundary conditions.  

5. CFD simulations should be conducted in more complex geometries; for example, a series of 

constricting throats in a row or a pore connected to several throats because it can investigate 

the memory-effect of viscoelastic polymer. They can be used to improve the closed-form 

equation for flow in a throat. 

6. The strong nonlinearities in the viscoelastic problems prevent modeling at large De. Here, a 

UCM model and a DEVSS SU numerical method were primarily used in Polyflow. It is 

recommended to investigate other rheological models outside the Oldroyd- B family such as 

PTT model.  The PTT model is one of the most realistic viscoelastic models which can 

model the shear-thinning behavior of polymer. For PTT model the total stress tensor is 

calculated from equation 2.22 at which T2 component is calculated by equation 2.23 like 

Oldroyd-B model, but T1 is calculated from equation 6.1. 

𝑒𝑥𝑝 (
𝜀𝜆

𝜂
𝒕𝒓(𝑻𝟏)) 𝑻𝟏 + 𝜆 [(1 −

𝜉

2
) 𝑻𝟏

𝑢𝑝𝑝𝑒𝑟 +
𝜉

2
𝑻𝟏

𝑙𝑜𝑤𝑒𝑟] = 2𝜂𝑫    (6.1) 

Where 𝑇1
𝑢𝑝𝑝𝑟

 and 𝑇1
𝑙𝑜𝑤𝑒𝑟 is upper-convected time derivative and lower-convected time 

derivative, ε is a material parameter which controls the elongational behavior, ξ is another 

material parameter which controls shear viscosity behavior. Using PTT model has been 

recommended for more realistic polymer behavior. The rheological measurement can be 

conducted for viscoelastic polymer at different concentrations. Afterwards, the curve-fitting 

can be performed on the experimental data and model parameter for PTT model (e.g., ε, and 

ξ for equation 6.1) can be calculated using Ansys Polymat software. 
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7. More investigation into the applicability of DEVSS SU is recommended. The results 

presented using this numerical approach is consistent with our fundamental understanding of 

viscoelastic flow and with experimental observations. The method has been used by other 

authors (Guenette and Fortin, 1995). However, other comparable methods such as Streamline 

Up-winding Petrov-Galerkin (SUPG), Discontinuous Galerkin methods give very different 

results and some authors question the applicability of DEVSS SU (Brooks, 1982; Marchal 

and Crochet, 1987; Luo, 1989; Rajagopalan, 1990, Kumar, 2014). 

8. Dynamic simulation for multi-phase flow needs to be performed to better understand pore-

level behavior. These results need to be up-scaled for input to a network model. Polyflow 

Ansys finite element software was used in this study but is better geared to single-phase 

flow; it has limited multi-phase applications. Polyflow does not include surface 

tension/capillary pressure and also encounters problems with mesh configuration; it was not 

able to simulate snap-off at the constriction. Ansys Polyflow software can be used to solve 

the momentum equations; however it does not have the extra equation for the interface 

(which is defined in a source term). This term is more active and is come to the point at the 

vicinity of the interface.  Other multi-phase software such as Ansys Fluent and GOMA has 

this ability.  In this work, a  method was not found to account for the dispersion term either 

using Polyflow; instead the momentum equation itself was solved, and then velocity, stress, 

and forces due to viscous and inertia forces were solved. Other finite element software 

packages, such as GOMA developed by Sandia National Lab, should be used to conduct 

more dynamic simulations and observe the effect of polymer elasticity on snap-off 

mechanism.  
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9. The micro-fluidic experiments conducted by Total in dead-end pores were good evidence of 

how important the pulling-effect is on reducing the residual oil recovery; however it is 

recommended to conduct more experiments for different polymers such as HPAM because 

the PEO polymer used is very sensitive to shear-degradation. One possible explanation the 

pulling-effect was not observed, is that the polymer degraded, decreasing the  elasticity of 

polymer. Similar microfluidic experiment need to be performed for other hypotheses for Sor 

reduction, including additional force due to polymer elasticity to mobilize disconnected oil 

droplet and effect of polymer elasticity on snap-off mechanism. For instance, to analyze the 

additional force due to polymer elasticity, the single pore-throat can be made for a 

microfluidic system and test when the viscoelastic polymer injected whether it can overcome 

the capillary pressure and mobilize oil droplet through the constriction.  

10. It is recommended to conduct more core-flood experiments to better understand the effect of 

polymer elasticity on Sor. Polymer core floods for purely viscous and also viscoelastic 

polymer with similar viscosity should be performed and then analyzed to determine whether 

the capillary desaturation curve is different. Furthermore it is recommended to conduct CT-

scans on core-floods to isolate macroscopic effects such as heterogeneity. This helps to better 

understanding how the polymer elasticity helps to either improve sweep efficiency and pore-

scale displacement.    
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Appendices 

Appendix A: Geometry Parameters for the Sinusoidal Functions 

Geometry parameters for the sinusoidal functions (Λ and 𝛼 and dimensionless quantities. All 

other parameters are in SI unit) 

Table A1 Geometry parameters for Λ = 0.79 

Λ = 2𝜋ℎ 𝑙⁄  Case 𝛼 = 𝜀 ℎ⁄  𝑟max 𝑟min 𝜖 h l L
* 

 

 

0.79 

1 0.1 5.5E-05 4.5E-05 5E-06 5E-05 4.0E-04 2.0E-03 

2 0.3 6.5E-05 3.5E-05 1.5E-05 5E-05 4.0E-04 2.0E-03 

3 0.5 7.5E-05 2.5E-05 2.5E-05 5E-05 4.0E-04 2.0E-03 

4 0.7 8.5E-05 1.5E-05 3.5E-05 5E-05 4.0E-04 2.0E-03 

 

Table A2 Geometry parameters for Λ = 1.57 

Λ = 2𝜋ℎ 𝑙⁄  Case 𝛼 = 𝜀 ℎ⁄  𝑟max 𝑟min 𝜖 h l L
*
 

 

 

1.57 

5 0.1 5.5E-05 4.5E-05 5E-06 5E-05 2.0E-04 2.0E-03 

6 0.3 6.5E-05 3.5E-05 1.5E-05 5E-05 2.0E-04 2.0E-03 

7 0.5 7.5E-05 2.5E-05 2.5E-05 5E-05 2.00-04 2.0E-03 

8 0.7 8.5E-05 1.5E-05 3.5E-05 5E-05 2.0E-04 2.0E-03 

9 0.9 9.5E-05 5.5E-05 3.5E-05 5E-05 2.0E-04 2.0E-03 

 

Table A3 Geometry parameters for Λ = 3.14 

Λ = 2𝜋ℎ 𝑙⁄  Case 𝛼 = 𝜀 ℎ⁄  𝑟max 𝑟min 𝜖 h l L
*
 

 

 

3.14 

10 0.1 5.5E-05 4.5E-05 5E-06 5E-05 1.00E-04 2.00E-03 

11 0.3 6.5E-05 3.5E-05 1.5E-05 5E-05 1.00E-04 2.00E-03 

12 0.7 8.5E-05 1.5E-05 3.5E-05 5E-05 1.00E-04 2.00E-03 

13 0.9 9.5E-05 5.5E-05 3.5E-05 5E-05 1.00E-04 2.00E-03 

 

*  
The duct was extended to make sure that the flow is fully developed.  L is the entire length of the duct 

subtracted by l. 
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Appendix B: Pressure, Velocity Field and Streamline for Selected 

CFD Simulations  

 

Figure B1 Streamline of flow through sinusoidal channel from CFD simulation at selected Deborah number 

De=0.0, 3.2, 7.2, and 13.8.  The dimensionless parameters for the channel is α=0.5 and Λ=1.57.  Only the middle 

portion of the channel is shown 

 

 

Figure B2 Pressure distribution of flow through sinusoidal channel from CFD simulation at selected Deborah 

number De=0.0, 3.2, 7.2, and 13.8.  The dimensionless parameters for the channel is α=0.5 and Λ=1.57.  Only the 

middle portion of the channel is shown 
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Figure B3 Velocity field of flow through sinusoidal channel from CFD simulation at selected Deborah numbers 

De=0.0, 3.2, 7.2, and 13.8.  The dimensionless parameters for the channel is α=0.5 and Λ=1.57. Only the middle 

portion of the channel is shown 

 

 

Figure B4 Streamline of flow through sinusoidal channel from CFD simulation at De=10 with dimensionless 

parameters Λ=1.57 and a = 0.1, 0.5, 0.7, and 0.9.  Only the middle portion of the channel is shown 
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Figure B5 Streamline of flow through sinusoidal channel from CFD simulation at De=10 with dimensionless 

parameters a = 0.5 and Λ=0.79, 1.57, and 3.14.  Only the middle portion of the channel is shown 
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Appendix C: Derivation of the Fitted Flow Resistance Equation 

from CFD Modeling 

To obtain equation 3.9, we fitted the app/shear vs. De data for the channels and find a and b for 

each geometry aspect ratio.  The next step is to correlate a and b with the geometry parameters 𝛼 

and Λ.  It turns out that a only depends on , while b depends on both  and .  Figure C1(a) 

gives plots of a vs.  and figure C1(b) shows b vs.  and .  The correlation for a= a () and 

b=b(, ) were found as  

𝑎 = 𝑎(𝛼 ) = 0.42𝛼      (C.1) 

𝑏 = 𝑏(𝛼, Λ) = 𝑏1Λ𝑏2α𝑏3    (C.2) 

where 𝑏1 = 1.78 × 10−4, 𝑏2 = 2.384 and 𝑏3 = −0.655. Figure C2 shows a plot of equation 3.9 

against CFD simulation for channel geometry of  =0.5 and  =1.57.  The good agreement 

indicates that equation 3.9 is valid. 
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     (a) 

 

 

 

     (b) 

Figure C1 Curve-fitting for a and b model parameters for the flow resistance expression equation 3.9.  (a) a 

versus α, (b) b versus α and Λ  
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Figure C2 The fitted flow resistant expression equation 3.9 against CFD solutions for channel geometry with 

aspect ratio of α=0.5 and Λ=1.57
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