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DEVELOPMENT OF A TWO-PHASE FLOW COUPLED  

CAPACITANCE RESISTANCE MODEL 

 

Fei Cao, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor: Larry W. Lake 

 

The Capacitance Resistance Model (CRM) is a reservoir model based on a data-

driven approach. It stems from the continuity equation and takes advantage of the usually 

abundant rate data to achieve a synergy of analytical model and data-driven approach. 

Minimal information (rates and bottom-hole pressure) is required to inexpensively 

characterize the reservoir. Important information, such as inter-well connectivity, 

reservoir compressibility effects, etc., can be easily and readily evaluated. The model also 

suggests optimal injection schemes in an effort to maximize ultimate oil recovery, and 

hence can assist real time reservoir analysis to make more informed management 

decisions.  

Nevertheless, an important limitation in the current CRM model is that it only 

treats the reservoir flow as single-phase flow, which does not favor capturing physics 

when the saturation change is large, such as for an immature water flood. To overcome 

this limitation, we develop a two-phase flow coupled CRM model that couples the 

pressure equation (fluid continuity equation) and the saturation equation (oil mass 

balance). Through this coupling, the model parameters such as the connectivity, the time 

constant, temporal oil saturation, etc., are estimated using nonlinear multivariate 

regression to history match historical production data. Incorporating the physics of two-
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phase displacement brings several advantages and benefits to the CRM model, such as 

the estimation of total mobility change, more accurate prediction of oil production, 

broader model application range, and better adaptability to complicated field scenarios. 

Also, the estimated saturation within the drainage volume of each producer can provide 

insights with respect to the field remaining oil saturation distribution.  

Synthetic field case studies are carried out to demonstrate the different capabilities 

of the coupled CRM model in homogeneous and heterogeneous reservoirs with different 

geological features. The physical meanings of model parameters are well explained and 

validated through case studies. The results validate the coupled CRM model and show 

improved accuracy in model parameters obtained through the history match. The 

prediction of oil production is also significantly improved compared to the current CRM 

model. A more reliable oil rate prediction enables further optimization to adjust injection 

strategies. The coupled CRM model has been shown to be fast and stable. Moreover, 

sensitivity analyses are conducted to study and understand the impact of the input 

information (e.g., relative permeability, viscosity) upon the output model parameters 

(e.g., connectivity, time constants). This analysis also proves that the model parameters 

from the two-phase coupled model can combine both reservoir compressibility and 

mobility effects. 
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CHAPTER 1: INTRODUCTION 

The economic success of oil/gas recovery from hydrocarbon reservoirs ultimately 

depends on the production rate; hence, the evaluation and prediction of the reservoir/well 

performance are critical. Continuously, reservoir engineers are engaged in the synthesis 

of different disciplines including geosciences, physics, chemistry, and mathematics, etc., 

to better understand and characterize the reservoir behavior. More and more sophisticated 

technologies and tools have been developed in relevant subjects, such as formation 

evaluation, reservoir modeling, reservoir simulation, and injection/production 

optimization and management. 

Nevertheless, even though being arduous and careful to characterize the reservoir, 

reservoir engineers, might still encounter that the consequent reservoir/well performance 

is not as expected. This is, in general, owing to various uncertainties with respect to the 

subsurface heterogeneity and an inability to fully characterize these uncertainties. As a 

result, it is a strategy to apply multiple technologies to achieve synergy, which motivates 

engineers/researchers to develop alternative reservoir evaluation/prediction methods. The 

capacitance resistance model (CRM), which will be extensively discussed and studied in 

this dissertation, is such a model, being able to efficiently provide accurate and 

meaningful evaluation and prediction to the reservoir/well performance.    

 

1.1 METHODS FOR RESERVOIR PERFORMANCE EVALUATION AND PREDICTION  

Before proceeding with the discussion regarding the CRM model, we first review 

the approaches that are widely used for reservoir performance evaluation and prediction 

(see Figure 1.1). In general, these methods can be categorized into several classes, such 

as reservoir simulation, analytical models, and empirical models, etc.  
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speeding up a simulation continue to develop; reservoir simulation is, in general, 

computationally expensive especially for large fields with hundreds of wells. 

Streamline simulation provides an alternative to the cell-based traditional 

reservoir simulations (Datta-Gupta and King, 2007). Streamlines are curves that are 

tangent to the velocity vectors of the flow. In streamline simulation, streamlines are 

obtained to be orthogonal to pressure contours, which are solved on an underlying grid 

that is similar to a traditional reservoir simulation. Fluid is transported along each 

streamline, which allows a one-dimensional solution along any streamlines, assuming no 

crossflow among them (Baker, 2001). Therefore, well response is simply the summation 

of a series of 1D flow simulations. The advantage of streamline simulation lies in its fast 

computational time as well as its representation of the instantaneous flow field, which can 

produce data such as drainage regions associated with producers and the flow rate 

allocations between injector/producer pairs. Nevertheless, one of the key limitations in 

streamline simulation is the assumption of incompressibility flow to ensure the 

independence between streamlines; hence it does not favor capturing physics that is 

transverse to the main direction of flow, such as gravity, diffusion, compressibility, and 

transverse-thermal effects (Thiele et al. 2010). 

 

1.1.2 Analytical Models 

Classic analytical models, such as the macroscopic material balance, have been 

used to obtain estimation and understanding of the reservoir performance. Macroscopic 

material balances are sometimes called tank models as they ignore pressure, temperature, 

and compositional gradients within the system and treat the system as a single 

homogenous unit (Lake, 1987).  
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Tank models have many applications including estimating the original oil and gas 

in place, estimating water influx, and diagnosing production mechanisms. They can be 

applied to a broad range of reservoir fluids from dry gases to heavy oils (Walsh and Lake, 

2003). Nevertheless, the results from macroscopic material balance might not satisfy the 

accuracy to the desired extent considering the simplifications made in such a complex 

reservoir system. Also, a tank model does not provide detailed description between wells, 

which further hinders its application especially in a multi-well system.  

 

1.1.3 Empirical Models 

Empirical models (including data-driven models) have been developed to achieve 

simple correlations through history matching to predict future well performance and 

determine the ultimate recoverable reserves. An example of traditional empirical methods 

is the production decline curve analysis (DCA), which is based on empirical observations 

of production rate decline but not on theoretical derivations. The commonly used 

trending equations in decline curve analysis are those proposed by Arps (1945).  

Besides the traditional empirical models, the data-driven models, which have 

extensive applications in economics and finance for data analysis, show great potential in 

optimization of reservoir/well performance (Solomatine et al., 2008; Mahdavi and 

Khademi, 2012). Data driven models, such as fuzzy logic, neutral network, genetic 

algorithm, etc., are generally used to analyze data series in a mathematical or stochastic 

manner. The goal is to find a few shape functions or sinusoidal functions or a small 

number of eigenvectors that resolve the spatial and temporal properties of the data with 

sufficient accuracy. Accordingly, the prediction of fluid/oil rate can be possibly achieved 

by the regression of the existing data.  
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In general, the advantage of empirical models lies in their simplicity and 

efficiency. Nevertheless, most empirical models rely exclusively on data information 

without consideration of reservoir physics. Therefore, they can be distracted by data noise 

and could not provide an explicit geological/physical meaning to the results.  

 

1.2 INTRODUCTION TO THE CRM MODEL 

Based on the discussions above, it is desirable to explore inexpensive approaches 

that combine data-driven models with reservoir physics to obtain a synergy of both 

empirical and analytical models. With this motivation, the capacitance resistance model 

(CRM), a data-driven model based on the continuity equation, was proposed. The CRM 

model is a comprehensive package that is capable of history matching production data, 

predicting fluid/oil rates, and optimizing injection schemes. It requires minimum 

reservoir information (rates and bottom hole pressure) and the model parameters obtained 

also provide insights to reservoir geological features.  

 

1.2.1 Fundamentals of the CRM Model 

The CRM model analogizes the oil reservoir to a resistor-capacitor (RC) electric 

network to characterize the injector-producer connection and response time (see Figure 

1.2). The production rate response is analogous to the voltage across a capacitor in an RC 

circuit where the battery potential is equivalent to the injection signal. 

A fluid continuity equation is established on a reservoir control volume to achieve 

the contributions from nearby injectors as well as the injector-producer signal response 

time (time constant) owing to the reservoir/fluids compressibility. The injector-producer 
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The General Algebraic Modeling System (GAMS), which is a high-level 

modeling system for mathematical programming and optimization, is the platform we use 

to construct the CRM model. It consists of a language compiler and stable integrated 

high-performance solvers. It is tailored for complex and large scale modeling 

applications. The solver for the CRM model is CONOPT, which is a non-linear 

programming (NLP) solver that is designed to find local optimum for large scale NLP 

problems.  

The computation cost of the CRM model proves to be inexpensive. Because of its 

efficiency, it is intended for seeking quick solutions to the field dynamics; hence it can 

assist real time reservoir management and optimization.  

From the perspective of reservoir management, there is some particularly useful 

information obtained from the CRM model.  

1) The CRM model generates a well connectivity map, illustrated in Figure 1.3. 

On this map, the lines indicate which well pairs are connected; whereas line 

colors imply different intensities of connections. With this information, we are 

able to gain better understanding of the flood pattern; and therefore manage the 

injection project effectively in real time. Moreover, the connectivity pattern 

can also provide insights into reservoir geological features. 

2) The injector connectivity can outline the injected water distribution in different 

directions (see Figure 1.4). Therefore, it is possible to assess the injection 

efficiency in each injector to adjust injection strategies readily. With the 

obtained model parameters (connectivity and time constant), we can further 

predict well performance and optimize injection schemes to maximize the oil 

production, which serves the ultimate goal of improving oil recovery. 
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1.2.2 Literature Review of the CRM Model 

The analogy of flow in an oil reservoir to electrical current flow was proposed by 

Bruce (1943). He constructed a number of electrical units to physically represent the grid 

blocks in the reservoir simulation. These electrical units were then wired together to 

model the reservoir behavior directly based on the similarity between current flow 

through conductive media and fluid flow through porous media. Later, Wiess et al. 

(1951) developed a high-speed electronic reservoir analyzer with improved accuracy for 

predicting the unsteady-state behavior of oil reservoirs. Wahl et al. (1962) applied the 

resistor-capacitor network (see Figure 1.5), which consisted of 2501 capacitors inter-

connected through 4900 resistors, to analyze four reservoirs in Saudi Arabia.  

 

 

Figure 1.5 View of the resistor-capacitor network (Wahl et al., 1962). 

While the early work focused on experimental apparatus design and study using 

the analogy, a mathematical model that borrows the same resistor-capacitor network 
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concept was proposed by Lake et al. (2002). Albertoni and Lake (2003) suggested 

quantifying the communications between wells in a reservoir using only production and 

injection data. Their research assumed that a production rate is a weighted linear 

combination of injection rates. Diffusivity filters were used to account for the time lag 

and attenuation of the changes between injector and producer pairs, especially for large 

distance and dissipation. However, this work might lead to negative weighting factors 

between well pairs, which is physically impossible.  

Gentil (2005) explored the physical meaning of the regression weights (or inter-

well connectivity) as functions of reservoir transmissibility. Based on his research, the 

weights are the ratios of inverse distance weighted average permeabilities of well pairs 

associated with each injector. He also incorporated bottom-hole pressure (BHP) 

fluctuation terms into the model. Furthermore, Gentil proposed an empirical oil fractional 

flow model to separate the oil production from the total production, which was tested in 

several numerically simulated fields and then applied to a water flood in Argentina.  

Yousef (2005) was the first to mathematically develop the CRM model using 

material balance. Not only did he propose the concept of connectivity and time constant 

in the CRM model, he also solved the CRM continuity equation numerically using 

discretization in time. He extended the CRM model to handle varying BHP’s, and 

successfully addressed the issue of nonphysical weights in the CRM model. He validated 

the CRM model in both synthetic and field cases, where he found good agreement 

between the CRM model parameters and the reservoir geological features (Yousef et al., 

2006).  

Sayarpour (2008) focused on finding a semi-analytical solution to the governing 

differential equation in the CRM model using super-position in time based on different 

reservoir control volumes, such as a single reservoir tank, a producer-based drainage 
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volume, and an injector-producer pair-based volume. These semi-analytical solutions 

allow rapid estimation of inter-well connectivity. He then combined the CRM model with 

an oil fractional flow model to match the oil production history, which enables the CRM 

model to be used for total and oil rate prediction, optimization and reservoir uncertainty 

quantification. He validated the CRM capabilities with numerical flow simulation and 

applied the CRM model in several field cases involving water/CO2 floods. 

Weber (2009) used a more powerful optimization software (GAMS) instead of the 

Microsoft Excel optimization program or the Matlab optimization module to solve for the 

CRM model parameters and came up with different techniques to clean production data 

and reduce model parameters, which greatly improved the capability of the CRM model 

to deal with real field large data sets (Weber et al., 2009).  

Wang (2011) developed a new surface subsidence model based on the CRM 

equations and rock mechanics to predict the average surface location and diagnose the 

reasons for the subsidence in parts of the Lost Hills oil field in California. She then 

concluded that high injection rates caused rock damage in the field.  

Nguyen (2012) extended the CRM model to primary recovery and water-CO2 

flood. She proposed the integrated CRM model for primary recovery and validated it on 

several synthetic cases and an Oman field. The application of the CRM model conducted 

on a west Texas field was also successful and the field was predicted to gain 5372 

additional barrels of oil production under the optimized injection strategy.  

Laochamroonvorapongse (2013) developed a CRM model considering producer-

producer interactions and observed better model parameter accuracy. 

Izgec (2009) used the CRM model for transient flow problems, which was 

validated by comparing to a streamline simulation. The results showed that the CRM 

model can produce similar inter-well connectivities as a streamline simulation. Also, 
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Izgec (2010) applied the CRM model with an analytic aquifer model to model differential 

aquifer influx into each well.  

Kaviani et al. (2012) proposed a segmented and compensated capacitance model 

(CM) to increase the CM tolerance to common field conditions. The segmented CM can 

be used when unknown BHPs change during the analysis interval. The compensated CM 

overcomes the requirement to rerun the model after adding a new producer or after 

shutting-in an existing producer. Kaviani and Jensen (2010) also developed a MPI model, 

which is similar to the CRM model and applied it to a heavy oil water flooded field.  

Salazar-Bustamante et al. (2012) combined the CRM model with decline-curve 

analysis and successfully predicted the well performance in a reservoir with gas injection. 

Other applications of the CRM model can be found in those such as Lee, et al., 2011, 

Parekh and Kabir, 2012, Can and Kabir, 2012, Soroush et al., 2013, Tafti, et al., 2013, 

with respect to water flooding, gas flooding, etc.  

 

1.2.3 Limitations of the Current CRM Model 

An important limitation in the current CRM model is that it neglects the water/oil 

saturation change and assumes a slightly compressible reservoir system. In other words, 

the current CRM model is a single-phase flow model in which it is dealing exclusively 

with the pressure equation. Theoretically, even though the single-phase based model is a 

good approximation for candidates such as the mature water flood, it does not favor 

capturing physics when the system has a strong saturation dependency such as for an 

immature water flood.  

In practice, the actual oil field is often complicated in the sense that both new 

drills and old wells are producing together. While the slightly compressible statement 
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might be valid for wells with large water cut, it is a poor assumption for those with low 

water cuts.  

Meanwhile, the time constant, a very important parameter for the CRM model, 

hasn’t been be fully studied and discussed in the previous studies. It is currently 

simplified as a constant with respect to time; whereas it should be a function of total 

mobility and hence varies with time.  

Furthermore, to calculate the oil production from the total production, the current 

CRM model uses an empirical fractional flow equation (Gentil, 2005), which is only 

valid at large water cut; whereas an accurate oil rate prediction over the entire range of 

water cut is essential when optimizing the field injection strategy.  

From the data-driven point of view, the single-phase CRM model only uses total 

production data in a history match to estimate model parameters. However, the abundant 

oil production data also contain rich information regarding the reservoir behavior, which 

should be fully used for such a data-driven model.  

 

1.3 INTRODUCTION TO THE COUPLED CRM MODEL 

This dissertation aims to upgrade the current CRM model by considering the 

impact of reservoir two-phase flow. Accordingly, we develop a two-phase coupled CRM 

model based on the features of immiscible two-phase flow. To realize the coupled CRM 

model, we construct material balances for both total fluid (both water and oil) and oil, 

respectively. The total fluid continuity equation is called the pressure equation, which 

refers to the reservoir compressibility effect. The compressibility effect describes the 

propagation of pressure wave in the reservoir and it, in a large part, determines the time 

lag between injection signal and production response. The oil mass balance equation is 
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called the saturation equation, which refers to the reservoir displacement effect. The 

displacement effect describes the saturation distribution and evolution in the reservoir, 

which influences the oil production rate directly and therefore, determines the flood 

efficiency. Unlike the current CRM model, which does not solve the saturation equation, 

the coupled CRM model solves the pressure and saturation equations simultaneously at 

each time step to account for changes in total mobility. We semi-analytically couple the 

pressure and saturation in a producer-based control volume and use constrained 

multivariate nonlinear regression to estimate model parameters. The new coupled model 

is able to not only quantify the inter-well connection but also describe the oil saturation 

within a producer’s drainage volume.  

The consideration of the two-phase model can bring benefits as the following: 

1) The accuracy of the CRM model should be enhanced by eliminating the 

assumption of single-phase flow and incorporating the physics of two-phase 

displacement. The improved accuracy in the consequent connectivity and 

time constants can lead to better history matches, and hence a better 

prediction of the total and oil rates. 

2) The coupled CRM model can be applied to the entire history of water and gas 

floods, not being limited to mature water floods (close to incompressible) 

cases as was the current CRM model, making it more applicable to 

complicated field scenarios (see Figure 1.6). 

3) The time constant in the coupled CRM model reflects the impact of both 

compressibility and fluid mobility, and hence evolves with the reservoir 

system dynamics instead of staying constant. 

4) The evolution of oil and water saturations within the drainage volume of each 

producer is well preserved according to the oil material balance, which can 
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In Chapter 3, we start with the derivation of the working equations used in the 

coupled CRM model for history matching. We discuss different options of coupling the 

pressure and saturation equations. Two kinds of model validation procedures, internal 

and external validations, are introduced to verify the results obtained from the coupled 

CRM model. The prediction of fluid rates using the coupled CRM model is more 

complicated than the current model as the saturation must be updated each time step. The 

algorithm behind the prediction capability will be discussed in detail. The fractional flow 

model can be obtained directly from the coupled CRM model and used for oil rate 

prediction, which is also elaborated in this chapter. Last but not least, we present the 

optimization ability using the coupled CRM model.  

In Chapter 4, we demonstrate different capabilities of the coupled CRM model in 

synthetic homogeneous and heterogeneous reservoirs with different geological features, 

which are created in a commercial simulator. In summary, we performed case studies in 

the following synthetic reservoirs: 

1. A homogenous reservoir with a single producer  

2. A heterogeneous reservoir with a single producer  

3. A five-spot homogeneous reservoir  

4. A sealed reservoir  

5. A large heterogeneous reservoir with 16 producers and 9 injectors 

Production and injection rate data from these synthetic fields are treated as field 

data to be applied in the coupled CRM model. The application of history match, 

validation, prediction, and optimization are all performed and discussed.  

Chapter 5 conducts sensitivity analysis to study and understand the relationship 

between the input information (e.g., viscosity, relative permeability, etc.) and the output 

model parameters such as connectivity and time constant, etc. This is done since we have 
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introduced new inputs in the coupled CRM model that are previously not required in the 

current CRM model. This study also proves that the coupled CRM model output 

parameters can reflect both reservoir compressibility and mobility effects. 

Chapter 6 summarizes the technical contributions made in this work. We arrived 

at several conclusions regarding the coupled CRM model. Future work is also 

recommended in this chapter. 
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CHAPTER 2: FRACTIONAL FLOW THEORY 

A fractional flow model is important for two-phase flow. Throughout a two-phase 

immiscible displacement, the water/oil saturation profiles evolve with time. Figure 2.1 

illustrates the saturation distribution in a linear system under different displacement 

stages. During primary recovery, the reservoir system produces mainly oil and the 

water/oil saturations stay relatively unchanged at the initial condition. After the water 

flood is initiated, the water/oil saturation profiles change drastically before and after 

water breakthrough. Typically, a saturation discontinuity (shock) exists and moves until it 

arrives at the outlet. After water breakthrough, the water/oil saturation profiles are 

continuous and asymptotically approach residual oil saturation.  

 

 

Figure 2.1 The saturation distribution in a homogeneous linear system under the various 
stages of an water/oil displacement (Willhite, 1986) 
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Fractional flow theories have been developed to describe the two-phase water and 

oil displacement in a reservoir; thus, they have been widely used to evaluate water flood 

performance and forecast oil production rate. They have also been applied in enhanced 

oil recovery process extensively, such as polymer flooding, alcohol flooding, miscible 

flooding, steam flooding, and various types of surfactant flooding (Pope, 1980).  

In general, there are two types of fractional flow models: analytical and empirical 

models. Analytical fractional flow models usually stem from Darcy’s law and material 

balance. They take reservoir physics (relative permeability, viscosity, etc.) into 

consideration and are often expressed as a function of water/oil saturations. For the 

purpose of reservoir performance estimation and prediction, the empirical fractional flow 

models are developed, which usually achieve correlations between oil cut and cumulative 

oil production (or other quantities).  

 

2.1 IMMISCIBLE FRACTIONAL FLOW MODELS 

Immiscible displacement occurs when there is no exchange of concentration 

between phases. The flow of oil and water is a typical example of immiscibility as the oil 

phase doesn’t change when contacted with the water phase (Lake, 1989). Immiscible 

flood can be described by both analytical and empirical models, which are reviewed in 

the following sections.  

 

2.1.1 Analytical Fractional Flow Models 

2.1.1.1 Buckley and Leverett Model 

Buckley and Leverett (1942) proposed the most well-known and classic fractional 

flow model in the petroleum industry, which characterizes the mechanics of oil being 
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displaced by an immiscible fluid. They used Darcy’s law and relative permeability 

concepts to describe fluid flow through porous media.  

For isothermal immiscible and incompressible flow of oil and water phases in a 

one dimensional porous medium, the water conservation equation is given as: 

0w w w

D w D

S f S

t S x

  
 

  
                                               2.1 

where Sw is the water saturation, tD is the dimensionless time, which is defined to be the 

cumulative water injection in pore volumes, and xD is the dimensionless distance, which 

is the distance normalized by the total length of the one dimensional porous medium, and 

fw is the water fractional flow, which has the form of (Leverret and Lewis, 1941): 
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2.2 where k is the absolute rock permeability, kro and krw are the oil and water relative 

permeabilities, o and w are the oil and water viscosities, q is the volumetric flow rate, 

A is the cross section area perpendicular to flow, Pcow is the capillary pressure,  is the 

density difference between water and oil phases, g is gravity constant and  is the 

formation dipping angle. 

To obtain a simple analytical solution to Eq. 2.1, Buckley and Leverett (1942) 

made a key simplification to drop the capillary pressure term Pcow in Eq. 2.2. The 

approximated water fractional flow in a horizontal porous medium is given as: 
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                                                     2.3  

Substituting Eq. 2.3 into Eq. 2.1 gives a first-order hyperbolic partial differential 

equation, which can be solved readily to give the following expression:  
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                                                    2.4 

Eq. 2.4 is the Buckley and Leverett solution that gives the specific velocity of a 

constant saturation to be equal to the derivative of the fractional flow curve at that 

saturation.  

Later, Welge (1952) proposed a tangent construction to correct the fractional flow 

curve fw at the front, where non-physical solution occurs, and to obtain the average water 

saturation at breakthrough. Figure 2.2 illustrates a typical fractional flow curve and the 

tangent construction.  

The Buckley-Leverett model combined with the Welge tangent construction has 

been widely used to evaluate water flood performance. It can be applied to describe the 

saturation profile at a certain dimensionless time, evaluate water cut change with time, 

and calculate oil recovery at any time during a water flood. Nevertheless, the Buckley 

and Leverett model have made many assumptions such as homogenous media, one 

dimensional flow, incompressible system, negligible gravity and capillarity, negligible 

dispersion, all of which should be carefully understood prior to application.  
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Figure 2.2 Schematic of a water (i=1) fractional flow curve and the tangent construction 
(Lake, 1989). 

 

2.1.1.2 Other Analytical Fractional Flow Models 

Besides the Buckley-Leverett model, several other methods have been proposed 

to consider the impact of vertical variations in permeability and the effect of gravity. 

Stiles (1949) developed one of the earliest methods, for which the water fractional flow is 

assumed to be proportional to the permeability-thickness (kh) and endpoint mobility ratio. 

Dykstra and Parsons (1950) proposed a more sophisticated empirical method to account 

for the initial fluid saturations, mobility ratios and fractional oil recoveries. Their method 
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simplified the reservoir into several linear layers and assumed no cross flow between 

layers. Craig (1993) made an effort to summarize and compare different water flood 

performance prediction models. He classified these models into different categories based 

on: reservoir heterogeneity, areal sweep effects, numerical methods, displacement 

mechanisms and empirical approaches.  

 

2.1.2 Empirical Fractional Flow Models 

Classic analytical models are loyal to reservoir physics. Nevertheless, they often 

require estimation of water saturation as a function of time, which is difficult to evaluate 

for multi-well systems. Therefore, many empirical fractional flow models were 

developed over the years for the purpose of reservoir performance evaluation and oil 

production prediction.  

 In general, there are two types of empirical models.  

1. Empirical models based on fractional flow theories in which saturation is 

preserved. An example is the Ershaghi and Omorigie (1978) model, which 

assumed that the oil recovery was controlled by a fractional flow curve based 

on a linear log (kro/krw) vs. Sw relationship. Other similar models were 

developed by Craft and Hawkins (1959), Lo et al. (1990), Sitorus et al. (2006), 

etc. 

2. Empirical models based on observed trends. For example, Arps (1945) 

suggested a correlation between natural logarithm of oil cut and oil production 

rate. Purvis (1985) suggested a linear relationship between (WOR+1) and 

cumulative oil production. Many other empirical models (Timmermann, 1971) 

exist. 
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Gentil Model 

The current CRM model is a single-phase model. To separate oil production from 

the total production, a fractional flow model proposed by Gentil (2005) is used. It is an 

empirical power law relationship between water oil ratio and the cumulative water 

injected. According to Gentil, the water cut of a given producer has the form of: 

    
1

1
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 
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                                                   2.5 

where Wi is the cumulative water injected from all injectors that are connected to a 

producer, a and b are regression parameters that are to be determined by history match.  

The advantage of this model is that the water cut is expressed explicitly using the 

cumulative water injection Wi, which can be controlled and optimized directly in the 

CRM model. If the water or oil cut is expressed in terms of cumulative oil production, 

like the empirical models mentioned above, the oil rate prediction/optimization cannot be 

achieved since the cumulative oil production itself is unknown. Nevertheless, the inherent 

assumption made in this model is a linear relationship between the natural logs of water 

oil ratio (WOR) and cumulative water injection, which is usually valid in mature water 

floods. For the same reason, the application of this fractional flow model is limited to the 

late time water flood, when well water cut is large.  

 

2.2 MISCIBLE FRACTIONAL FLOW MODELS 

Two components are mutually miscible if they mix in all proportions without an 

interface forming between them (Lake, 1989). In this section, we discuss isothermal 

miscible displacements using fractional flow theory and with one or more phases present.  
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Koval Model  

The Koval model (1963) was developed to address the issue of viscous figuring in 

a miscible displacement. Koval modified the viscosity ratio in the fractional flow 

equation (Leverett and Lewis, 1941) to account for the local heterogeneity and transverse 

mixing in the following way: 

   
1

11
1

s

s

val s

F
S

K S


 

  
 

                                                2.6 

and: 

   val KK H E                                                        2.7 

   

1/4

4(0.78 0.22 )o

s

E



 
   

 
                                            2.8   

where Fs is the solvent fractional flow, Ss is the solvent saturation, Kval represents the 

Koval factor, E is the effective viscosity ratio, HK is a measure of reservoir heterogeneity, 

and s  and o are the solvent and oil viscosities.  

This fractional flow expression (Eq. 2.6) can be applied to oil and solvent in a 

segregated flow. Eq. 2.6 is also the same as the water fractional flow in a water flood 

when the oil and water have a straight-line relative permeability. For such a case, the 

Buckley-Leverett equation may be integrated analytically to give the following 

expression (Lake, 1989): 
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one pore volume of water is injected, which indicates a piston-like uniform displacement. 

A large Koval factor usually implies a higher degree of reservoir heterogeneity, therefore 

lower displacement efficiency.  
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CHAPTER 3: THE TWO-PHASE FLOW COUPLED CRM MODEL 

In this chapter, we present, in detail, the algorithm of the coupled CRM model 

including constructing the working equations, performing history match using a 

multivariate regression, validating the model parameters, predicting future productions, 

and optimizing injection scheme. To better understand the procedure of the coupled CRM 

model, we give a brief introduction to the current CRM model because it not only 

establishes the basis, but also shares similar concepts and definitions with the coupled 

CRM model. We also demonstrate the capabilities and features of the coupled CRM 

model by considering two-phase flow effects.  

 

3.1 BASIC MATERIAL BALANCE EQUATIONS IN A PRODUCER-BASED DRAINAGE 

VOLUME 

For a water-oil displacement, the mass conservation equations for water and oil in 

a producer-based control volume are written as: 

 
   

ww

b w w w

d S
V i t q t

dt


                                        3.1 
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 
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V q t

dt


                                                          3.2 

where bV  is the bulk control around a producer, oS and wS  are the average oil and 

water saturations in bV , o and w are oil and water densities evaluated at the average 

pressure P within bV ,  is the average porosity within bV , and    , wi t q t and  oq t  

are water injection, water production, and oil production rates of the producer under 

reservoir condition.  
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Eqs. 3.1-3.2 are the weak forms of the material balance for two-phase immiscible 

flow of water and oil. To obtain the total fluid material balance, we expand Eqs. 3.1-3.2 

using the product rule to give:  
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where Vp is the pore (drainage) volume defined to be p bV V  , and fc , wc and oc are the 

pore, water, and oil compressibilities, which are defined as 
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Eqs. 3.3-3.4 are coupled by the average saturation. Because the summation of 

water and oil saturations equals 1, combining Eqs. 3.3 and 3.4 gives the total fluid 

continuity equation as the following:  

   p t t

d P
V c i t q t

dt
                                                             3.5 

where  tq t  is the total production rate of the producer under the reservoir condition, 

and tc  is the total compressibility, which is defined as: 

    w ot f w oc c S c S c                                                          3.6 

Eq. 3.5 is the total fluid continuity equation, which is superficially decoupled 

from saturation. We refer to it as the “pressure equation” in this dissertation since it 

describes the pressure propagation effects. The pressure equation implies that the 

reservoir system is capable of storing/releasing extra fluid because of the rock and fluid 

compressibilities. If the total compressibility is zero, the production rate would be equal 

to the injection rate instantaneously. At the other extreme, the time lag between the 
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injection signal and production response is infinitely large in the case of infinitely large 

compressibility. 

For a two-phase displacement, the material balance equation of either phase 

(water or oil phase) is a necessary complement to the total fluid continuity equation, Eq. 

3.5. Because of our particular interest in oil recovery, we use Eq. 3.4 and refer to it as the 

“saturation equation” in this dissertation.  

We can integrate Eq. 3.5 using a closure relationship between the total production 

rate and the average reservoir pressure, which is the definition of productivity index 

(Craft et al. 1959; Lake, 2006): 

   t t wfq t J P P                                                    3.7 

where tJ  is the total productivity index and wfP  is the producer’s bottom-hole pressure.  

A general form of tJ  (neglecting the skin) can be expressed by: 
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                                                 3.8 

where h is the thickness of the drainage volume, k  is the absolute permeability, A is the 

drainage area, rw  is the wellbore radius, CA is the Dietz shape factor,   is the Euler 

constant, rok  and rwk  are oil and water relative permeabilities, and o  and w are oil 

and water viscosities, respectively (Peaceman, 1983).  

In Eq. 3.8, the term ro rw

o w

k k

 
 

 
 

 is the total relative mobility. We denote it as tM

in this dissertation. 
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3.2 THE CURRENT CRM MODEL 

Before proceeding to the two-phase flow coupled CRM model, it is necessary to 

introduce the current CRM model briefly. We present the concepts, implementations, and 

features of the current CRM model in the following subsections.  

 

3.2.1 Working Equations 

Because the current CRM model assumes single-phase flow in the reservoir; only 

the pressure equation (Eq. 3.5) is considered while the saturation equation is neglected.  

Meanwhile, the productivity index for single-phase flow can be simplified as: 
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where tJ  is the productivity index for single-phase flow, and  is the fluid viscosity.  

In the above equation, the single-phase flow productivity index is a function of 

rock properties, fluid properties and well properties but not of pressure or time. 

Therefore, it is reasonable to treat the productivity index as a constant if there is no 

dramatic change in reservoir/well conditions for single-phase flow.   

Substituting Eq. 3.7 and Eq. 3.9 into Eq. 3.5, we are able to eliminate the average 

reservoir pressure, P to obtain: 
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In Eq. 3.10, the primary variable of the pressure equation changes from pressure 

to production rate,  tq t . This is done because the CRM model should eventually 

become an optimization problem in which the difference between the calculated and 

measured values is minimized to estimate model parameters. The average reservoir 

pressure data for each producer at each time step are often unavailable, which hinders the 
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possibility to evaluate the difference between the calculated and observed pressure; 

whereas, the production rate data are, on the contrary, available and abundant. The 

optimization problem can be formed readily if we choose to solve for the production rate 

in the pressure equation.  

Assuming constant bottom-hole pressure, the semi-analytical solution to Eq. 3.10 

can be obtained using super-position in time (Sayarpour, 2008). We write the final form 

of the solution as the following: 
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where k
tjq  is the total production of producer j  at time step k , k

iI  is the water injection 

rate of injector i  at time step k , in  is the total number of injectors, ijf  is the 

connectivity between the injector i and producer j, t  is the time length between the 

time steps 1k   and k , and j is the time constant for producer j. 

 

3.2.2 Model Parameters  

In Eq. 3.11, ijf  and j are model parameters that must be determined. The 

connectivity ijf  represents the fraction of water from injector i that contributes to the 

total production in producer j. The summation of connectivity over an injector is less than 

1 if injection loss exists and it is greater than 1 if other production support (aquifer, etc.) 

exists. It is assumed to be constant with respect to time.  

The time constant j  is another important model parameter and it is defined as: 
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By definition, it is a characteristic time for the pressure wave to travel from 

injectors to a producer. In Eq. 3.12, the time constant is not related to time, and therefore 

it is also a constant with respect to time.  

 

3.2.3 Nonlinear Multivariate Regression  

The connectivity and the time constant mentioned above are estimated using 

nonlinear multivariate regression. The required objective function is as the following:      
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where k obs
tjq  is the observed production rate data of producer j at time step k, k cal

tjq is the 

model-calculated total production rate of producer j at time step k, pn  is the total number 

of producers, and tn  is the total number of time steps.  

This objective function is constrained by:  

    , 0j ijf 
                                  

                                  3.14                   
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for any                                                              3.15 

Eq. 3.14 indicates that the connectivity and the time constant are constrained to be 

positive. Eq. 3.15 implies a material balance of the injected fluid. The estimation of 

model parameters by minimizing the objection function is essentially a history matching 

process.  

We mention that k obs
tjq  is usually the allocated production data from well test. 

There are scenarios when k obs
tjq  is not available and only random well test data are 

provided. In such a case, Appendix B demonstrates a field case study, where we applied 

the CRM model to estimate well connetivity using well test data.  
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the variation in total mobility and the existence of a displacement effect. In such a case, 

the prediction of oil production using the current CRM model may suffer, which 

motivates us to develop a two-phase flow coupled CRM model.  

 

3.3.1 Two-Phase Flow Equations 

To resolve the limitations caused by neglecting the saturation change in the CRM 

model, we propose to couple the saturation equation (Eq. 3.4) and the pressure equation 

(Eq. 3.5) together.  

According to Eqs. 3.4, 3.5, and 3.8, we rewrite the pressure and saturation 

equations in the following matrix form: 
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In Eq. 3.16, tJ  is the total fluid productivity index for two-phase flow, which is 

defined in Eq. 3.8. We can rewrite Eq. 3.8 as: 
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where tM is the total relative mobility and '
tJ  is defined as:  
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3.18 

In Eq. 3.18, '
tJ  is a combination of parameters that depend on reservoir and well 

properties, i.e., absolute permeability, reservoir thickness, and well drainage area. 
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Therefore, it can be treated as a constant with respect to time unless the reservoir or well 

condition changes dramatically, i.e. new perforations, etc.  

       In Eq. 3.17, the total relative mobility tM depends on saturation through water 

and oil relative permeabilities. Therefore, a relative permeability model is required to 

calculate the relative permeability of water and oil at a given saturation. Usually, the 

relative permeability data are obtained from laboratory experiments, and are fitted with 

analytical curves. Though no general theoretical expression exists for the relative 

permeability function, several empirical functions are available (Corey, 1954; Honarpour 

et al., 1982). We use the following empirical exponential expressions for water and oil 

relative permeabilities: 
1
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                                                      3.20 

where wrS  and orS  are irreducible water saturation and residual oil saturation, 0
rwk  is 

the endpoint water relative permeability evaluated at orS , 0
rok  is the endpoint oil relative 

permeability evaluated at wrS , and 1n and 2n are the exponents, which are usually 

determined by matching the experimental data.  

Since the relative permeability data are from core experiments, the fitted curves 

using Eqs. 3.19-3.20 represent the laboratory or small scale relative permeability models; 

whereas the coupled CRM model is a model of a large scale. Nevertheless, this disparity 

is not unique to the coupled CRM model as other models, such as the traditional reservoir 

simulations, also have similar scale disparities by using the laboratory scale relative 

permeability.  
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The pressure and saturation equations could not be solved independently and a 

coupling is required. Because the changes of variables with respect to pressure are 

normally small, we neglect the pressure dependency of variables in Table 3.1 in this 

dissertation. We only focus on the variables’ saturation dependencies. The coupling 

strategy is to first solve the pressure equation and then solve the saturation equation in a 

produced-based drainage volume (as illustrated in Figure 3.2) at each time step, during 

which saturation dependent variables in the pressure equation are updated with time. This 

procedure is elaborated in the following subsections.  

 

3.3.2.1 Solving the Pressure Equation 

In this subsection, we derive the semi-analytical solution to the pressure equation. 

Similar to the current CRM model, we substitute the definition of the productivity index 

(Eq. 3.7) into the pressure equation (Eq. 3.5) to obtain: 

     t
p t wf t

t

q td
V c P i t q t

dt J

 
   

 
                                              3.10 

Superficially, both CRM models arrived at the same equation Eq. 3.10. However, 

the main difference between the current and coupled CRM models lies in the productivity 

index used. The current model assumed a single-phase productivity index (Eq. 3.9); 

whereas the coupled model recovers the two-phase productivity index (Eq. 3.17), which 

is no longer a constant but varies with saturation and hence changes with time. 

Consequently, Eq. 3.10 changes from a first order linear ODE in the current CRM model 

to a first order nonlinear ODE in the coupled CRM model.  

Appendix C illustrates the derivation to obtain the semi-analytical solution to Eq. 

3.10. We write the final solution to the pressure equation in terms of production rate as 

the following:  
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where k
j  is the time constant at time step k for producer j, which is also defined as: 

k

p tk
j
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

 
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                                                                  3.22 

Since the productive index tJ  changes with saturation, the resulting time 

constant k
j  also becomes a function of saturation and hence changes with time. We 

write the full expression of the time constant and rearrange it as the following: 
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                                                       3.23 

where '
j  is defined as: 

'
'
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  
 

                                                                     3.24 

In Eq. 3.23, the time constant is grouped into two parts. '
j  is a constant with 

respect to time since '
tJ  is considered to be a constant (Eq. 3.18) as we have discussed 

previously. The total relative mobility k
jM  varies with saturation through relative 

permeabilities and hence changes with time. Therefore, one must update the time 

constant for each time step depending on the saturation change. 

We substitute Eq. 3.24 back to Eq.3.21 and give: 
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Eq. 3.25 is the working pressure equation used in the coupled CRM model. This 

equation is to be coupled with the saturation equation since k
tM  must be updated each 
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time step. There are two unknown parameters: '
j  and ijf , which are constants with 

respect to time and will be determined by the nonlinear regression. 

 

3.3.2.2 Solving the Saturation Equation 

We revisit the oil material balance equation (saturation equation), which is given 

as: 

      o
op f o o

d S d P
V S c c q t

dt dt

 
    

 
                                          3.4 

Eliminating the pressure time derivative in Eq. 3.4 leads to a new expression as 

the following: 

      
( )oo f o

p t o
t

S c cd S
V i t q t q t

dt c


                              3.26 

Eq. 3.26 implies that the average oil saturation oS  change in a producer-based 

drainage volume (see Figure 3.3) can be caused by either the reservoir compressibility or 

oil displacement. We can obtain the average oil saturation by solving this equation.  

Eq. 3.26 is a first-order nonlinear ordinary differential equation. We mention that 

the total compressibility ct is also a function of saturation. However, we use a constant 

value for ct considering that the change of ct with saturation is small. There is a semi-

analytical solution available, which is similar to Eq. 3.25. However, the semi-analytical 

solution is complicated as it is a non-linear expression with exponential terms. 

Considering that oS  usually decreases slowly and continuously with time, we propose 

to use numerical solutions to Eq.3.26.  

Numerically solving oS  at time step k can adopt either implicit or explicit 

solving. The implicit solving is to evaluate 
k
oS  using the saturation at the current time 

step k, while the explicit solving is to approximate 
k
oS  using the known saturation from 
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the last time step k-1. The implicit solution usually takes more computation time because 

of the numerical iterations. In this dissertation, we only discuss the explicit solution, 

which is simple and fast.  

Taking the connectivities between the injectors and producers into consideration, 

the explicit numerical solution to Eq. 3.26 can be given as below:   
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k
ojk k f o k k k
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           
                         3.27 

where 
k
ojS  is the average oil saturation within the drainage volume of producer j at time 

step k, 
k
ojq  is the oil production rate of producer j at time step k, and pjV  is the pore 

volume of producer j. We mention that 
1k

ojS


equals the average initial saturation of 

producer j, ijS , at time step k =1.  

There are two unknown parameters: ijS  and ijf  in Eq. 3.27. The initial 

saturation ijS  will be obtained by the nonlinear regression; whereas fij is determined by 

the pressure equation, Eq. 3.25. Therefore, it must be coupled with the pressure equation. 

The combination of Eq. 3.27 and Eq. 3.25 makes it a fully coupled CRM model.  

 

3.3.2.3 Solving the Saturation Equation in a Simplified Manner 

Solving the saturation equation fully as given by Eq. 3.27 is a rigorous way. 

Nevertheless, the major impact to oil saturation change is the oil production rather than 

the compressible effect (Lake, 1989). Therefore, we simplify the saturation equation by 

neglecting the compressibility contribution. As a result, the saturation equation becomes: 

 o

p o

d S
V q t

dt
                                                                  3.28 

The numerical solution to Eq.3.28 is given as: 
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where 
1k

ojS


equals to average initial saturation of producer j, ijS , at time step k =1.  

The only unknown parameter in Eq. 3.29 is the initial oil saturation ijS , which 

will be determined by regression. Unlike Eq. 3.27, which requires fij from the pressure 

equation, solving Eq. 3.29 makes a simplified-coupled CRM model since no feedback is 

needed from the pressure equation. 

In the context of this paper, we refer to the solving of saturation equation using 

Eq. 3.29 as the simplified-coupled CRM model. We will demonstrate that using the 

simplified-coupled CRM model leads to a slight difference from using the fully-coupled 

CRM model in Chapter 4. 

 

3.3.2.4 Updating the Saturation-Dependent Variables in the Pressure Equation  

As discussed, we can obtain the oil saturation through solving the saturation 

equation. Meanwhile, the total relative mobility k
tM  in the pressure equation can be 

updated using the oil saturation obtained.  

The total relative mobility k
tM relates to saturation through relative 

permeabilities, rwk  and rok , in the pressure equation. However, the relative 

permeability is a function of the outlet oil saturation, 2oS , around the producer, rather 

than the average oil saturation. Therefore, we must build a relationship between the outlet 

and the average oil saturations. We propose using the Welge (1952) equation, which has 

the form of (Lake, 1989):  

 2 11
D

oo i w xS S Q f                                                             3.30 
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where iQ  is the cumulative water injection in pore volumes since the initiation of the 

water injection, which is defined as: 

k
ij i

k i
i

p

f I
Q

V



 in a multiwall system, and 

1Dw xf   is the water cut at the outlet (producer), which can be readily evaluated from the 

production data, i.e., 1 o

t

q

q
 .  

To estimate Qi in Eq. 3.30, the pore volume, pV , must be known beforehand. 

There are two options to evaluate the pore volume. The first approach is to treat the pore 

volume as a model parameter, similar to the connectivity and the time constant whose 

values are determined by the nonlinear regression. Another method is to obtain the pore 

volume by explicitly inverting the Koval (1963) fractional flow equation to achieve a 

relationship between water cut and dimensionless time as shown in Eq. 3.31. 
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                           3.31 

where Dt is the dimensionless time, which is defined as D
p

Cumulative injection
t

V
 . 

The producer drainage volume pV  can be obtained through nonlinear regression. 

Therefore, using the Welge equation with the estimated producer drainage volume from 

the Koval approach, we can calculate the outlet oil saturation using the average oil 

saturation to evaluate the relative permeability.  
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3.3.2.5 History Match with Nonlinear Multivariate Regression 

The history match is essentially a nonlinear multivariate regression procedure to 

obtain the optimized model parameters by solving the pressure and saturation equations 

in the coupled CRM model. As discussed before, we have two options to couple the 

pressure and saturation equations:  

1. Fully-coupled option: couple the pressure equation Eq. 3.25 with the 

saturation equation Eq. 3.27. 

2. Simplified-coupled option: couple the pressure equation Eq. 3.25 with the 

simplified saturation equations Eq. 3.29. 

 

The Fully-Coupled Option 

For the fully-coupled option, we require information such as oil/water viscosities, 

oil/water/pore compressibilities, and oil/water relative permeability curves, besides 

production and injection data. We assume constant values for viscosity and 

compressibility with respect to pressure.  

Figure 3.3 illustrates the fully-coupled option. Initially, we make a guessed value 

of ijf , '
j  and ijS , which are used to evaluate the average oil saturation, oS . The 

average oil saturation is then transferred into the outlet oil saturation, 2oS , using the 

Welge equation accordingly. As a result, the time constants, j , can then be updated, 

which ensures the incorporation of the saturation change. Finally, we calculate the 

production rate using Eq. 3.25 with the updated time constants. The same procedure is 

repeated to advance to the next time step.  
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where k obs
tjq  is the observed total fluid production rate at time step k for producer j, and 

k cal
tjq  is the calculated total fluid production rate at time step k for producer j, tn and pn

are the total number of time steps and producers, respectively.  

This objective function is constrained by:  

1ij
j

f   for any i                                                         3.33 

and: 

1i jor wrS S S                                                                   3.34 

1o jor wrS S S                                                            3.35 

2 1or o j wrS S S                                                                  3.36 

and: 

'0 0ij jf and                                                     3.37 

Eq. 3.32 states that the objective is to minimize the squared differences between 

the calculated and the measured production rates. The constraint from Eq. 3.33 indicates 

a material balance of injected water, in which the summation of the injection contribution 

from a particular injector to different producers should be equal to the total injection from 

that injector. It also allows for lost injection since the sum can be less than 1. The 

connectivities in Eq. 3.33 are summed over the producer index j, which requires solving 

for the model parameters for all producers at the same time. The constraints in Eqs. 3.34-

3.36 restrict the range of the initial average, temporal average and outlet oil saturation to 

be between the residual oil saturation and the original oil saturation. The constraint from 

Eq. 3.37 is used to guarantee non-negative solutions to ijf  and '
j . 

Similar to the current CRM model, the CONOPT solver in GAMS is used to solve 

the regression problem described by Eqs. 3.32-3.37.  
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The Simplified-Coupled Option 

For the simplified-coupled option, we require less information than the fully-

coupled option since we neglect the reservoir and fluid compressibilities. Except for 

production and injection data, we need oil/water viscosities and oil/water relative 

permeabilities. We also consider viscosity to be constant with respect to pressure. 

Figure 3.4 illustrates the simplified-coupled option. In the simplified-coupled 

case, the average saturation of each time step can be calculated using the initial guess of 

initial saturation and the oil production data. As a result, the time constant can be updated 

with the saturation obtained and the guessed value of '
j . One can then calculate the total 

production rate using the updated time constant together with guessed value of 

connectivity.  

The same regression procedure (Eqs. 3.32-3.37) as the fully-coupled option then 

follows to decide if the guessed values should be updated to achieve the minimum 

difference between the calculated and the observed production rates. We observe that no 

feedback from the pressure equation is needed in the saturation equation, hence the name 

“simplified-coupled” option.  
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3.4 VALIDATION, PREDICTION AND OPTIMIZATION OF INJECTION SCHEME 

After history matching production data using the nonlinear regression, it is 

important to validate the model parameters obtained. If the parameter quality proves to be 

good, we can proceed to predict total/oil production rates and further perform 

optimization of injection scheme. 

 

3.4.1Validation 

In the coupled CRM model, we obtain three important parameters, i.e., the well 

connectivities, the time constants, and the water/oil saturations, within a chosen time 

horizon through history match. The quality of model parameters obtained lays the 

foundation for further applications such as prediction and optimization. Therefore, it is 

very important to develop validation procedures to evaluate whether the model 

parameters are reliable to the degree for the intended purpose or application. We propose 

two different types of validations in the coupled CRM model. They are internal and 

external validations. 

 

3.4.1.1 Internal Validation 

An internal validation is to verify the reliability of the coupled CRM model with 

itself. It is essentially a retro prediction process that is embedded within the coupled 

CRM model. Figure 3.5 shows the procedure of an internal validation. 

For an internal validation, the validation time window usually follows the history 

match time window immediately. We use the model parameters obtained from history 

match to predict the production rate under historical injection rates within the validation 

window. Comparisons are then carried out between the known historical production rates 
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3.4.1.2 External Validation 

Unlike an internal validation in which the CRM model itself is involved, an 

external validation uses a reliable independent procedure to provide the same (or similar) 

model parameters as those from the coupled CRM model (see Figure 3.6). By comparing 

the counterparts, we are able to validate the results from the coupled CRM model.  

In this dissertation, we use traditional reservoir simulation to perform the external 

validation for the coupled CRM model. However, reservoir simulation doesn’t generate 

the same parameters as the coupled CRM model readily. For example, there is no time 

constant concept in the traditional reservoir simulation. Also, there exists a difference in 

the modeling scale between the coupled CRM model and reservoir simulation. 

Specifically, the CRM model has a unique modeling scale that is equivalent to a 

producer-based drainage volume; whereas the reservoir simulation’s modeling scale 

depends on the grid block size, which is usually much smaller than a producer’s drainage 

volume. Because of these issues, we must not only come up with model parameters that 

are equivalent to those from the coupled CRM model, but also scale up them if necessary. 

Therefore, the external validation is a semi-quantitatively procedure that we expect the 

model parameters to be not exactly the same but very close since they are evaluated by 

different methods under different modeling scales. Figure 3.6 shows the procedure of an 

external validation.   
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Total production rate, 1k
tq  , to be predicted, is a function of total production rate, 

k
tq  from last time step k and the outlet oil saturation, 1

2
k
oS  , at current time step k+1. We 

estimate 1k
tq   using the explicit saturation 2

k
oS  considering that saturation usually 

changes slowly. After total production 1k
tq   is obtained, oil rate 1k

oq  can be evaluated 

explicitly using the water cut k
wf  for the same reason that the change of water cut is also 

slowly and continuously. Using the oil material balance equation, we can further update 

the average oil saturation 
1k

oS


, hence the average water saturation 
1k

wS


. As we have 

discussed that we have achieved a relationship between the average water saturation and 

water cut, a new water cut 1k
wf
  can be obtained accordingly by extrapolating this 

fractional flow curve. The last step is to update the outlet oil saturation 1
2

k
oS   using 

1k
wS


(or 
1k

oS


) and 1k
wf
 obtained. Up until now, all the quantities in time step k+1 are 

updated. The same procedure is repeated to advance to the next time step.  

There is also an implicit prediction algorithm that can be adopted in the coupled 

CRM model. It involves evaluating production rate at time step k+1 using other unknown 

variables evaluated at time k+1. Specifically, after we obtained all the quantities at time 

step k+1 following the procedures we described above, we recalculate 1k
tq   using the 

updated outlet saturation, 1
2

k
oS  . The oil rate 1k

oq   is also re-evaluated using the current 

water cut, 1k
wf
 . Consequently, new values of 

1k
oS


, 1k
wf
  and 1

2
k
oS   can be obtained 

sequentially. The iteration for time step k+1 will terminate when the saturation and water 

cut values converge. The same procedure is repeated to the next time step. As a result, it 

is more sophisticated as it requires iterations within each time step to solve for the 

saturation and water cut implicitly and hence more time-consuming. 

In this dissertation, we mainly use the first algorithm since we have found that the 

accuracy is good enough for the prediction purpose.  
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3.4.3 Optimization of Injection Scheme 

The capability of predicting well performance under a specific injection scheme 

enables us to optimize the future injection strategy in an effort to maximize the oil 

production. In other words, the optimization is essentially the process to find the injection 

scheme that gives the most oil production.  

There are several different optimization objective functions that can be adopted in 

the coupled CRM model. For example, we can maximize the net present value by 

considering the injection cost and oil price, or we can minimize the field total water 

production by maintaining the same total field injection, etc. In this dissertation, we 

discuss maximizing the field total oil production while retaining the same total field 

injection. 

The decision variables (the quantities to be optimized) in this problem are the 

injection rates of injectors, which should be constrained within a certain range 

considering the injection facility limitations. Moreover, there are also different injection 

optimization strategies to adopt. One can maintain constant injection rate in each injector 

over the future time horizon. This injection scheme is simple itself as an optimization 

problem since there are only a small number of parameters to be determined. And it is 

also easy to follow practically in the field. Another approach is to change the injection 

rates in each injector periodically. In this way, we might obtain more oil production by 

constantly stimulating the system. However, it would increase the complexity of the 

optimization problem. In this dissertation, we keep the injection rates constant 

considering that we only optimization for a short time in the case study.  

Following the discussions above, the optimization of injection scheme in the 

coupled CRM model again becomes a regression problem with an objective function as:  
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1 1

max

opt
pt

oj

n n
k

k j

z q
 

                                            3.38 

And this objective function subjects to:  

1 1

opt
t in n

k
i total

k i

I I
 

                                          3.39 

and: 

k
lower i upperI I I                                           3.40 

where 
k
ojq  is the oil production rate at a future time step k for producer j, opt

tn and pn  

are the total number of time steps for optimization and the total number of producers, 

respectively, and upperI and lowerI are the injection upper and lower limits, respectively .  

Eq. 3.38 is the objective function that aims to optimize the field total oil 

production over the optimization time window. Eq. 3.39 implies that the field total 

injection during the optimization time is fixed. Eq. 3.40 states the injection rate of each 

injector at each time step should be bounded between the injection upper and lower 

limits.  
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CHAPTER 4: SYNTHETIC RESERVOIR STUDIES 

The coupled CRM model has come up with new model parameters to describe 

two-phase flow, such as the time-varying time constants and the remaining oil saturation. 

It is important to systematically verify these parameters in an effort to test the validity of 

the coupled CRM model as a whole. In this chapter, we design synthetic case studies in a 

commercial reservoir simulator (CMG) to validate the coupled CRM model parameters 

and also demonstrate its capabilities, such as history match, prediction and optimization 

of injection scheme. 

We apply the coupled CRM model to five synthetic reservoirs. Each case study 

highlights different characteristics of the coupled model. We briefly summarize all the 

cases as follows: 

1). A homogeneous reservoir with a single producer 

We design this case to show the validity of the coupled CRM model in a 

homogenous reservoir. We first demonstrate the history match capability of the coupled 

CRM model and then validate the model parameters obtained by comparing them with 

reservoir simulation results. 

2). A heterogeneous reservoir with a single producer 

A real reservoir is often heterogeneous. Variability of rock and fluid properties is 

a reality that must be dealt with in any reservoir modeling. We perform a history match in 

this heterogeneous reservoir and validate the model parameters through reservoir 

simulation results. The impact of reservoir heterogeneity to the coupled CRM model is 

also studied and discussed.  
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3). A five-spot homogeneous reservoir 

We focus on the fractional flow models in this case. Three different fractional 

flow models including Gentil model, Koval model, and the coupled CRM model are 

discussed. We apply these models to different stages of a water flood (mature and 

immature water floods) to analyze their advantages and limitations.  

4). A sealed reservoir  

In this case, the reservoir is constructed with more geological features. We add an 

impermeable seal, which separates the reservoir into two compartments. We are 

interested in comparing results between the current and the coupled CRM models. 

Moreover, an optimization of injection scheme is also performed to maximize oil 

production using the coupled CRM model.  

5). A heterogeneous reservoir with 16 producers and 9 injectors 

The last case study features a heterogeneous reservoir with a fluvial channel 

deposition environment. Permeability varies spatially in the reservoir while the main 

directions of heterogeneity are along northwest and southeast. We apply the coupled 

CRM model to this field with 16 producers and 9 injectors. Both fully-coupled and 

simplified-coupled schemes are used and the results are then compared and discussed. 

 

4.1 VALIDATION USING RESERVOIR SIMULATION 

Synthetic reservoirs serve as ideal candidates for model validation since every 

aspect in the reservoir is known. We mentioned two types of validation procedures, 

internal and external validations, in Chapter 3. The internal validation relies on the CRM 

model itself for verification; whereas the external validation uses an independent 

procedure to validate model parameters.  
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The time constant obtained from the injection rate pulse test is similar to the CRM 

time constant. However, it is not the exact equivalence to the time constant in the CRM 

model. Therefore, the comparison of time constants is semi-quantitative; we expect the 

value of time constants from the two methods to be close but not exactly the same.  

 

4.1.2 Saturation 

As mentioned in Chapter 3, the average oil saturation within a producer-based 

drainage volume can be evaluated from the coupled CRM model. In the reservoir 

simulation, each grid block has an oil saturation value. Consequently, we must calculate 

the average oil saturation of grid blocks that represent a producer’s drainage volume in a 

reservoir simulation and compare it with the coupled CRM model. However, it is often 

difficult to identify the drainage volume controlled by a certain producer in a reservoir 

simulation with many producers. For this reason, we design cases with only one producer 

in the reservoir so that the entire reservoir represents the drainage volume. This way, we 

can compare saturation easily. As for the outlet oil saturation, which is the oil saturation 

measured at the well, it is the average oil saturation of the grid blocks where the producer 

is located.  

 

4.2 CASE 1: A HOMOGENEOUS RESERVOIR WITH A SINGLE PRODUCER 

The first case study is an illustration of the validity of the coupled CRM model in 

a homogeneous reservoir. We demonstrate the coupled CRM model history match 

capability first and then compare the obtained model parameters to those from a reservoir 

simulation to validate the coupled model externally. 
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4.2.1 General Reservoir Information  

The simulated reservoir is a two-dimensional homogeneous reservoir (see Figure 

4.5). A horizontal permeability of 200 md and a porosity of 0.2 are assigned to all grid 

blocks. Key reservoir and fluid parameters of this field are summarized in Table 4.1.  

 

Parameters Value 

Number of grid blocks 33×33×1 

Grid block sizes (ft) 80×80×65 

Porosity 0.2 

Horizontal permeability (md) 200 

Vertical permeability (md) 20 

Oil compressibility (psi-1) 3×10-5 

Water compressibility (psi-1) 1×10-6 

Rock compressibility (psi-1) 1×10-6 

Water relative permeability 

2

1
o w wr
rw

wr or

S S
k

S S

 
     

Oil relative permeability 

2
1

1
o w or
ro

wr or

S S
k

S S

  
     

Irreducible water saturation 0.3 

Residual oil saturation 0.4 

End-point water relative permeability 0.3 

End-point oil relative permeability 1 

Water viscosity (cp) 0.72 

Oil viscosity (cp) 3.25 

Initial reservoir pressure (psi) 1250 

Table 4.1 Key reservoir and fluid parameters of case 1. 
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Input Value 

Rate Injection/production data 

Reservoir/fluid 
properties 

w (cp) 0.72 

o (cp) 3.25 

rwk  

2

1
o w wr
rw

wr or

S S
k

S S

 
     

rok  

2
1

1
o w or
ro

wr or

S S
k

S S

  
     

Swr 0.3 

Sor 0.4 

0
rwk  0.3 

0
rok  1 

Table 4.2 The coupled CRM inputs in case 1. 

 

4.2.2.2 History Match 

The time window for history match is from the 100th to the 350th month (see 

Figure 4.8). This time window covers from small to large water cut regimes, which 

represents a complete water flood.  
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which are introduced at early and late times of water flood, respectively, to evaluate the 

time constant.  

Table 4.3 lists the general information of the three injection pulse tests. The first 

injection pulse is introduced at early time when the producer’s water cut is 0.56 and the 

total injection pulse is 15 months long at 4000 bbl/day (see Figure 4.13). In the second 

pulse test, we conduct the pulse test at smaller pulse intensity of 2000 bbl/day for 15 

months to see if the time constant is affected by the strength of the pulse. The third 

injection pulse, which is 4000 bbl/day and lasts for 10 months, is introduced at late time 

when the water cut is as large as 0.96 (see Figure 4.14).  

The production responses to the three injection pulse tests are shown in Figures 

4.13-4.15. 

 

 
Time 
introduced 

Producer water 
cut (when pulse 
is introduced) 

Pulse rate in 
each injector 
(bbl/day) 

Pulse duration in 
each injector 
(months) 

Pulse test 1 115th month 0.56 1000 15 

Pulse test 2 115th month 0.56 500 15 

Pulse test 3 336th month 0.96 1000 10 

Table 4.3 Injection pulse tests conducted in case 1. 
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As shown in Figure 4.11, we can obtain the coupled CRM model time constant at 

any given time. To compare with the simulation results, we take the value of time 

constant at the time when injection pulses are imposed, which is the 115th and the 336th 

month, respectively.  

Table 4.4 summarizes the time constants from the coupled CRM model and 

reservoir simulation. Both methods show the trend of time constants decreasing with 

time. In each water flood stage, they come up with consistent time constant results even 

though the time constant values are not exactly the same.  

 

 
The Coupled CRM Reservoir Simulation 

Time constant at early 
time (days) 

130 118 

Time constant at late 
time (days) 

84 79 

Table 4.4 Time constants from the coupled CRM and reservoir simulation in case 1. 

 

Saturation 

In a reservoir simulation, the saturation equation is solved on each grid block and 

consequently each cell has a saturation value. Figure 4.20 shows an oil saturation 

distribution after 20 years of water flooding from the reservoir simulation. In this case, 

the drainage volume of producer 1 is the whole reservoir. Thus, we take the average 

value of oil saturation in all grid blocks and use it to represent the average saturation 

within the drainage volume of the producer. The outlet saturation is the oil saturation of 

the grid block where the producer is located.  
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4.3 CASE 2: A HETEROGENEOUS RESERVOIR WITH A SINGLE PRODUCER 

A real reservoir is, in general, heterogeneous. This means that petrophysical 

properties, such as permeability, porosity and fluid saturation, will vary spatially. 

Variability of rock and fluid properties is a reality that must be dealt with in reservoir 

modeling and performance prediction. In this second case study, the impact of reservoir 

heterogeneity on the coupled CRM model is studied. Through the application of the 

coupled CRM model, its validity is further tested in the presence of reservoir 

heterogeneity.  

 

4.3.1 General Reservoir Information 

The data set we use to create the permeability field is the Stanford V dataset (Mao 

and Journel, 1999). It is a complete 3D dataset representing a clastic reservoir made up of 

meandering fluvial channels with crevasse splays and levies in a mud background. This 

dataset provides a quasi-exhaustive sampling of petrophysical properties over multiple 

layers. An open-source computer package (Stanford geostatistical modeling software or 

SGEMS) is used to perform sequential Gaussian simulation (Nowak and Verly, 2005) to 

generate different permeability realizations. In this case study, we only take a part of the 

permeability data (see Figure 4.22) and use them in the reservoir simulator to create a 

two-dimensional heterogeneous reservoir with varying depth (see Figure 4.23). Key 

reservoir and fluid parameters of this field are summarized in Table 4.5.  

The synthetic field has 4 injectors and 1 producer. The producer is vertically 

completed and is operating under a constant bottom-hole pressure constraint of 250 psi. 

Similar to the previous case study, there is no injection in the first 12 months. A 

secondary water injection then follows after a year of depletion and continues till the end 
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Parameters Value 

Number of grid blocks 49×49×1 

Grid sizes (ft) 40×40×50 

Porosity 0.2 

Oil compressibility (psi-1) 5×10-5 

Water compressibility (psi-1) 1×10-6 

Rock compressibility (psi-1) 1×10-6 

Water relative permeability 

2

1
o w wr
rw

wr or

S S
k

S S

 
     

Oil relative permeability 

2
1

1
o w or
ro

wr or

S S
k

S S

  
     

Irreducible water saturation 0.3 

Residual oil saturation 0.4 

End-point water  relative permeability 0.3 

End-point oil  relative permeability 1 

Water viscosity (cp) 0.72 

Oil viscosity (cp) 3.25 

Initial reservoir pressure (psi) 2000 

Table 4.5 Key reservoir and fluid parameters in case 2. 

 

4.3.2 Application of the Coupled CRM Model 

4.3.2.1 The Coupled CRM Inputs 

In case 2, we use the fully-coupled scheme in the coupled CRM model. Besides 

the production and injection data, other required inputs are summarized in Table 4.6.  
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Input Value 

Reservoir/fluid 
properties 

w (cp) 0.72 

o (cp) 3.25 

rwk  

2

1
o w wr
rw

wr or

S S
k

S S

 
     

rok  

2
1

1
o w or
ro

wr or

S S
k

S S

  
     

Swr 0.3 

Sor 0.4 
o
rwk 0.3 
o
rok 1 

fc (psi-1) 1×10-6 

wc (psi-1) 1×10-6 

oc (psi-1) 5×10-5 

tc (psi-1) 2.65×10-6 

Table 4.6 The coupled CRM model inputs in case 2. 

 

4.3.2.2 History Match 

The time window for the history match is from the 55th to the 250th month (see 

Figure 4.24), which starts immediately after water breakthrough and ends when the 

producer’s water cut reaches 0.95.  
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4.3.2.3 Validation  

Time Constant 

Table 4.7 summarizes the two injection pulse tests that are performed in the 

reservoir simulation. The first injection pulse is introduced when the water cut at the 

producer is 0.15. The production response is shown in Figure 4.29 and the time constant 

is 126 days when the production response reaches 63.2% of the full response. 

A second injection pulse is introduced when the water cut at the producer is 0.95. 

The production response is in Figure 4.30. It takes 81 days for the production to reach 

63.2% of the full response. Therefore the time constant is 81 days. 

 

 
Time 
introduced 

Producer water 
cut (when pulse 
is introduced) 

Pulse rate in 
each injector 
(bbl/day) 

Pulse duration in 
each injector 
(months) 

Pulse test 1 61th month 15% 1000 15 

Pulse test 2 217th month 95% 1000 15 

Table 4.7 Injection pulse tests conducted in case 2. 
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Table 4.8 summarizes the time constants from the coupled CRM model and the 

reservoir simulation. The CRM time constants are taken at the 61th and the 217th month, 

respectively, when injection pulse tests are carried out. Overall, the time constants agree 

very well with each other in both early and late time.  

There is no obvious impact to the time constant caused by reservoir heterogeneity 

in this case. This is because the effects of reservoir heterogeneity are contained in the 

production response, which is the input of the coupled CRM model. Since time constants 

are estimated by history matching the production rates, they should also contain the 

information of heterogeneity indirectly.  

 

 
The Coupled CRM Reservoir Simulation 

Time constant at early 
time (days) 

134 126 

Time constant at late time 
(days) 

90 81 

Table 4.8 Time constants from the coupled CRM and reservoir simulation in case 2. 

 

Saturation 

Figure 4.31 shows the average oil saturation from the coupled CRM model and 

reservoir simulation. One can observe a discrepancy between the two curves; whereas 

they should agree with each other as in case 1. We also observe that the two curves are 

almost parallel to each other. This difference is caused by the reservoir heterogeneity.  

Heterogeneity can lead to non-uniform fluid displacement front leaving behind 

area un-swept in a water-oil displacement. Figure 4.33 shows the evolution of the oil 

saturation distribution with time from the reservoir simulation. We observe that some 
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and immature water floods. Advantages and limitations of these fractional flow models 

are analyzed and discussed.  

 

4.4.1 General Reservoir Information 

This case is a five-layer homogeneous reservoir. Key reservoir and fluid 

parameters are summarized in Table 4.9. There are 5 injectors and 4 producers under a 

five-spot injection pattern (see Figure 4.34) in this field. All producers are vertically 

completed through all layers and are operating under a constant bottom-hole pressure 

constraint of 250 psi. Figures 4.35 and 4.36 show the injection rates and production 

responses, respectively. All producers behave similarly since the reservoir is 

homogeneous and the well pattern is symmetric. The numerical simulation extends to 283 

months, with one month for each time step.  

 

 

Figure 4.34 Well locations in case 3. 
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Parameters Value 

Number of grid blocks 33×33×5 

Grid block sizes (ft) 77.5×77.5×70 

Permeability (md) 200 

Porosity 0.2 

Oil compressibility (psi-1) 3×10-5 

Water compressibility (psi-1) 1×10-6 

Rock compressibility (psi-1) 1×10-6 

Water relative permeability 

2

1
o w wr
rw

wr or

S S
k

S S

 
     

Oil relative permeability 

2
1

1
o w or
ro

wr or

S S
k

S S

  
     

Irreducible water saturation 0.3 

Residual oil saturation 0.4 

End-point water relative permeability 0.3 

End-point oil relative permeability 1 

Water viscosity (cp) 0.72 

Oil viscosity (cp) 1.63 

Initial reservoir pressure (psi) 1250 

Table 4.9 Key reservoir and fluid parameters in case 3. 
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4.4.2 Application of the Fractional Flow Models 

We discuss the application of three fractional flow models including Gentil 

model, Koval model, and the coupled CRM model. Two time windows, which represent 

different stages of water flood, are selected for application since the flow characteristics 

are distinct under different displacement phases (see Figure 4.37).  

In the mature water flood, the reservoir system turns less compressible and the 

fluid flow can be approximated as single-phase flow. The water cut is usually large and 

approaching one asymptotically (see Figure 4.37). Most empirical fractional flow models 

are suitable in this mature water flood region. However, immature water flood usually 

implies a strong two-phase flow region, when the water/oil saturation change is 

significant. The oil production rate is usually large at this stage and most empirical 

fractional flow models suffer by not considering the saturation impact.   

For the purpose of comparison, we select the same time window to construct 

fractional flow models and further use them for prediction (see Table 4.10).  

 

 
Time window for constructing 
fractional flow model (month)

Prediction window 
(month) 

Mature water flood 75-115 116-125 

Immature water flood 150-250 251-275 

Table 4.10 Summary of time windows for fractional flow models in case 3. 
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4.4.2.2 Koval Model 

In Chapter 2, we have reviewed the Koval fractional flow theory, which is 

developed to address the issue of viscous figuring in a miscible displacement. We also 

mentioned that the Koval fractional flow expression is the same as the Buckley-Leverett 

water fractional flow expression in a water flood when the oil and water phases have 

straight-line relative permeabilities. For such a case, the Buckley-Leverett equation may 

be integrated analytically to give the following expression (Lake, 1989): 
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 where Dt is the dimensionless time, which is defined as: 
ij i

k i
D

p

f I
t

V



. 

In Eq. 4.3, the saturation term is eliminated and the Koval approach can be used 

for water cut history match during which two parameters, the Koval factor and the pore 

volume, are estimated. The Koval method can be a powerful predictive tool when 

combined with the CRM model as the CRM model can quantify the injection 

contribution ( ij if I ) to each producer at each time step.  

In the following section, we demonstrate using the Koval approach to history 

match water cut data and predict future oil production rate. Prior to the application, the 

current model CRM model is used first to achieve connectivities ( ijf ) between well pairs 

so that Dt in Eq. 4.3 can be estimated.  
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4.4.3 Summary 

In this case study, we have discussed three fractional flow models including: 

Gentil model, Koval model, and the coupled CRM fractional flow model. The first two 

fractional flow models follow a history match procedure during which model parameters 

are achieved, which are further used for oil rate prediction. For the coupled CRM model, 

the fractional flow curve is constructed directly using the average oil saturation and the 

historical water cut data. We fit the curve with a regression model and extrapolate it for 

prediction.  

Figures 4.56 and 4.57 summarize the oil rates prediction errors using these 

fractional flow models at different stages (mature and immature) of a water flood. In the 

mature water flood, the Koval model lost its prediction capability as the Koval-predicted 

water cut is 1; whereas the Gentil model works as good as the coupled CRM model. 

Nevertheless, the coupled CRM gives the best prediction quality among the three 

fractional flow models.  

In an immature water flood, the Gentil model generates large errors in oil rate 

prediction, which hinders its further application for injection optimization. While the 

Koval approach prediction is acceptable, the coupled CRM model gives excellent results. 

This case demonstrates that the coupled CRM fractional flow model works 

satisfactorily regardless of the displacement phases. 
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For the purpose of comparison, we use the same history match and validation time 

windows (see Table 4.11) to apply both CRM models. We also performed water injection 

scheme optimization using the coupled CRM model in the time window in Table 4.11. 

 

 
History match  

window (month)
Validation 

window (month)
Prediction 

window (month)

Mature water flood 60-260 261-280 281-292 

Immature water flood 55-95 96-105 106-117 

Table 4.11 Summary of time windows for coupled and current CRM models in case 4. 

The inputs for the current CRM model are the simulated injection and production 

rates. The input for the coupled CRM model can be found in Appendix D and we use a 

simplified-coupled scheme in this case.  

 

4.5.2.1 Mature Water Flood 

History Match 

We use the coefficient of determination (R2) to compare the total production 

history match quality in all producers (see Table 4.12). Both models give positive R2 

values that are greater than 0.95, indicating excellent fit qualities.   
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Validation 

Following the internal validation procedure that is discussed in Chapter 3, we 

validate both coupled and current CRM models in this section. Both total and oil 

production rates are predicted under the historical injection schemes in the validation 

time window (from the 261th to the 280th month).   

In Figure 4.64, both CRM models performed excellently in the prediction of total 

production rates. In general, the coupled CRM has smaller average relative errors; 

especially in producers 2 and 3 (see Figure 4.65).  

The average relative errors of oil rate prediction in each producer are in Figure 

4.66. The prediction qualities are about the same in producers 2 and 4 using both models; 

whereas the coupled CRM model is more accurate in producers 1 and 3 (see Figure 4.67). 

This case mimics a practical scenario that producers of different maturity are 

producing together. The current CRM is accurate for producers with large water cut, 

however it is less suitable for low water cut wells. By considering saturation change, the 

coupled CRM model is not limited by the maturity of producers and therefore is more 

applicable to complicated field cases.  
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Optimization of Injection Scheme 

In this section, we demonstrate the optimization capability of the coupled CRM 

model. The injection optimization time window is from the 281th to the 294th month. The 

field total injection stays the same as the historical total injection (see Table 4.14) during 

this time frame. The injection rate is bounded between 2200 bbl/day and 500 bbl/day, 

which are the largest and smallest historical injection rates, respectively.  

The optimization results suggest that the maximum oil production would occur if 

we increase the injection rates of injectors 1, 2 and 3 to 2200 bbl/day and reduce the 

injection rates of  injectors 4 and 5 to 600 bbl/day (see Figure 4.68). The historical 

injection scheme in Figure 4.68 is the average injection rates in each injector since the 

historical injection rates vary with time. With this optimized injection scheme, one can 

obtain an additional 3365.6 barrel of oil in one year, which is a 8% increase over the 

historical oil recovery (see Figure 4.69). 

 

 
Historical injection 

scheme 
Optimized injection 

scheme 

Field total injection (bbl) 3007575 3007575 

Field total oil production (bbl) 42334 45700 

Improved oil recovery 8% 

Table 4.14 Summary of water injection and oil recovery under historical and optimized 
injection schemes in the mature water flood in case 4. 
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4.6 CASE 5: A HETEROGENEOUS RESERVOIR WITH 16 PRODUCERS AND 9 INJECTORS 

In the last case study, we feature a highly heterogeneous reservoir in a fluvial 

channel deposition environment. Permeability varies spatially in the reservoir while the 

main directions of heterogeneity are along northwest and southeast directions. We test the 

coupled CRM model in this field with 16 producers and 9 injectors. An alternative way of 

connectivity presentation is demonstrated in this case. Both fully-coupled and simplified-

coupled schemes are applied and the results are then compared and discussed.  

 

4.6.1 General Reservoir Information 

The data set we use to create the permeability field is the Stanford V dataset, 

which is the same as case 2. The geostatistical modeling software SGEMS is applied to 

perform the sequential Gaussian simulation to generate permeability and reservoir depth 

realizations, which are then assigned in the reservoir simulation. This reservoir has totally 

5 layers. Each layer has a different permeability distribution (see Figure 4.79). The fluvial 

channels are along the northwest and southeast directions throughout all layers. The 

depth of each grid also varies (see Figure 4.80). Porosity is fixed at the value of 0.2. 

Other key reservoir and fluid parameters of this field are summarized in Table 4.18. 

There are 9 injectors and 16 producers in this synthetic field and wells locations are 

shown in Figure 4.81.  

Figure 4.82 is the simulated water cuts in all producers. It shows that producer 

water cuts behave differently owing to the reservoir heterogeneity. We observe most 

wells have water breakthrough time around the 20th month. The exceptions are producers 

11 and 13, whose water breakthrough time is much later at the 42th month and the 55th 

month, respectively.  
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Parameters Value 

Number of grid blocks 49×49×5 

Grid block sizes (ft) 40×40×40 

Porosity 0.2 

Oil compressibility (psi-1) 5×10-5 

Water compressibility (psi-1) 1×10-6 

Rock compressibility (psi-1) 1×10-6 

Water relative permeability 

2

1
o w wr
rw

wr or

S S
k

S S

 
     

Oil relative permeability 

2
1

1
o w or
ro

wr or

S S
k

S S

  
     

Irreducible water saturation 0.3 

Residual oil saturation 0.4 

End-point water relative permeability 0.3 

End-point oil relative permeability 1 

Water viscosity (cp) 0.5 

Oil viscosity (cp) 1.66 

Initial reservoir pressure (psi) 1250 

Table 4.18 Key reservoir and fluid parameters of case 5 
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Input Value 

Reservoir/fluid 
properties 

w (cp) 0.5 

o (cp) 1.66 

rwk  

2

1
o w wr
rw

wr or

S S
k

S S

 
     

rok  

2
1

1
o w or
ro

wr or

S S
k

S S

  
     

Swr 0.3 

Sor 0.4 
o
rwk 0.3 
o
rok 1 

fc (psi-1) 1×10-6 

wc (psi-1) 1×10-6 

oc (psi-1) 5×10-5 

tc (psi-1) 2.65×10-6 

Table 4.19 The coupled CRM inputs for fully-coupled scheme in case 5. 

 

4.6.2.2 The Total Production Fits 

To present the history match quality under the two different schemes, we 

summarize the coefficient of determination (R2) in all producers in Figure 4.83. Both 

schemes show positive and large R2 values, indicating excellent total production fits. 

Overall, the fully-coupled CRM model gives a slightly better history match quality than 

the simplified-coupled CRM model except for producers 4 and 11. We also observe that 

the producers 11 and 13 have poor fits regardless of the model schemes used.  
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To further study the heterogeneity in the reservoir, we present an alternative 

connectivity map, which treats the connectivities as vectors in Figure 4.84 and further 

decomposes them into components along and orthogonal to the channel direction. The 

resulting connectivity map is shown in Figure 4.85. According to this map, 71% of 

injected water of injector 3 contributes to the production along the channel direction; 

whereas the remainder 29% of water is directed in the orthogonal direction, which is less 

favorable for fluid flow owing to the low reservoir permeability. The sum of the two 

orthogonal connectivities in a particular injector is still 1 (if no injection loss) to ensure a 

material balance on the injected water. From this new map, one can observe that the 

injected water mainly follows the channel direction, which is in a good agreement with 

the field permeability distributions. We also notice some injectors (such as injectors 1, 6, 

and 9) mainly contribute orthogonally to the channel direction, which can be a result of 

subjection to the local heterogeneity. In this case, we found that the new connectivity 

map is more helpful to study the reservoir heterogeneity and provide insights about the 

geological features of the reservoir.   
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Northwest and 

southeast (channel)
Northeast and 

southwest 

INJ1 39% 61% 

INJ2 58% 42% 

INJ3 71% 29% 

INJ4 57% 43% 

INJ5 50% 50% 

INJ6 41% 59% 

INJ7 82% 18% 

INJ8 85% 15% 

INJ9 26% 74% 

Table 4.20 Injection distributions along and orthogonal to the channel direction obtained 
from the fully-coupled CRM model in case 5. 

 

 
Northwest and 

southeast (channel)
Northeast and 

southwest 

INJ1 40% 60% 

INJ2 59% 41% 

INJ3 58% 42% 

INJ4 62% 38% 

INJ5 62% 38% 

INJ6 40% 60% 

INJ7 66% 34% 

INJ8 48% 52% 

INJ9 25% 75% 

Table 4.21 Injection distributions along and orthogonal to the channel direction obtained 
from the simplified-coupled CRM model in case 5. 
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Well number 
Initial oil saturation at the 60th month 

Fully-coupled CRM Simplified-coupled CRM 

PROD1 0.4908 0.5070 

PROD2 0.4554 0.4537 

PROD3 0.4559 0.4873 

PROD4 0.4605 0.4586 

PROD5 0.4718 0.4662 

PROD6 0.5176 0.4982 

PROD7 0.4939 0.4704 

PROD8 0.5376 0.5367 

PROD9 0.5115 0.5105 

PROD10 0.5026 0.4907 

PROD11 0.5830 0.5404 

PROD12 0.4811 0.4762 

PROD13 0.5736 0.5676 

PROD14 0.4929 0.4733 

PROD15 0.4649 0.4649 

PROD16 0.5056 0.4786 

Table 4.22 The initial average oil saturation at the 60th month using the fully-coupled and 
simplified-coupled CRM model in case 5. 
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Well number 
Remaining oil saturation at the 250th month 

Fully-coupled CRM Simplified-coupled CRM 

PROD1 0.4001 0.4001 

PROD2 0.4016 0.4018 

PROD3 0.4400 0.4587 

PROD4 0.4201 0.4119 

PROD5 0.4271 0.4257 

PROD6 0.4314 0.4396 

PROD7 0.4163 0.4236 

PROD8 0.4000 0.4000 

PROD9 0.4323 0.4364 

PROD10 0.4602 0.4621 

PROD11 0.4849 0.4823 

PROD12 0.4050 0.4050 

PROD13 0.4027 0.4028 

PROD14 0.4135 0.4197 

PROD15 0.4001 0.4001 

PROD16 0.4200 0.4271 

Table 4.23 The remaining average oil saturation at the 250th month using the fully-
coupled and simplified-coupled CRM models in case 5. 

 

4.6.2.6 Computation Time 

Finally, the computation time of the simplified and fully coupled options is in 

Figure 4.90. Even though both cases take only minutes to run, the simplified-coupled 

case is about three times faster than the fully-coupled case. While it is true that the fully-

coupled model costs more time, this case doesn’t lead to a general conclusion that the 

fully-coupled case is three times slower than the simplified-coupled option. The 
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CHAPTER 5: SENSITIVITY STUDY 

As demonstrated in the previous chapters, the coupled CRM model can capture 

the two-phase flow effects. Extra reservoir/fluid information is required as inputs to 

accomplish this goal in the coupled CRM model, which includes oil/water viscosities, 

oil/water relative permeabilities, and pore/fluid compressibilities. To study and 

understand the relationship between these extra inputs and the CRM model outputs 

(model parameters such as the connectivity and the time constant, etc.), we perform 

sensitivity analysis in this chapter.  

There are numerous approaches (Saltelli et al., 2008) to performing a sensitivity 

analysis. In this chapter, we adopt the changing-one-factor-at-a-time (OFAT) method, 

which is the simplest and most common approach, to find out what impact a specific 

factor produces on outputs. The OFAT procedure is comprised of changing one input 

variable while keeping others at their baseline (nominal) values and then returning the 

variable to its nominal value to repeat for each of the other inputs in the same way. 

Sensitivity may then be measured by monitoring changes in the output. Changing one 

variable at a time increases the comparability of the results and minimizes the chances of 

computer program crashes, more likely when several input factors are changed 

simultaneously. Nevertheless, because OFAT does not take into account the simultaneous 

variation of input variables, it limits its capability to detect the presence of interactions 

between input variables.  

 

5.1 EFFECT OF MOBILITY AND COMPRESSIBILITY 

In this chapter, we explore the coupled CRM model sensitivity concerning two 

aspects: mobility and compressibility effects. The mobility effect can influence the 
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We introduce the commonly used empirical relative permeability exponential 

expressions (Corey, 1954):  
1

0

1

n

w wr
rw rw

wr or

S S
k k

S S

 
    

                                               5.2 

2

0 1

1

n

w or
ro ro

wr or

S S
k k

S S

  
    

                                               5.3 

where 
0
r wk  and 

0
rok  represent the water and oil relative permeability end-points, 

respectively, which is the relative permeability evaluated at the saturation when the other 

phase becomes immobile (see Figure 5.2), and n1 and n2 represent the water and oil 

relative permeability exponents, which are obtained by fitting the experimental data. The 

relative permeability exponents control how fast the relative permeability curves decline 

or increase with saturations in the model.  

 

 

Figure 5.2 Schematic of oil-water relative permeabilities (Lake, 1989). 
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Substituting Eqs. 5.2-5.3 into Eq. 5.1, we obtain: 

  2

1

1

1
1

w n

no

f
S

M S






                                                              5.4 

where 0M is the endpoint water-oil mobility ratio, which is defined as:  

    
0

0
0
rw o

ro w

k
M

k




                                                        5.5 

and S is the reduced water saturation given as: 

     
1

w wr

wr or

S S
S

S S




 
                                                  5.6  

Figure 5.3 illustrates how end-point water-oil mobility ratio 0M affects the shape 

of the fractional flow curves and the displacement efficiency. Large end-point mobility 

ratio can cause unstable flood front and viscous fingering during the displacement. 

Decreasing the end-point mobility ratio can increase vertical and areal sweep efficiency. 

In fact, most EOR processes rely, to some extent, on lowering the mobility ratio between 

the displacing and displaced fluids.  

We mention that changing oil-water viscosity ratio ( /o w  ) or water-oil relative 

permeability endpoint ratio ( 0 0/rw rok k ) can achieve the same purpose of changing the 

mobility ratio, while the corresponding mechanisms are completely different. 

As a whole, the fractional flow curve is uniquely determined as a function of 

saturation through the relative permeability relations and the oil-water viscosity ratio.  
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Figure 5.3 Schematic illustration of the effect of end-point mobility ratio on displacement 
efficiency (Lake, 1989). 

 

5.1.2 Effect of Compressibility Change 

Reservoir pore and fluid are compressible. In a one-dimensional flow, it is found 

that fluid compressibility can spread out the Buckley-Leverett shock front (Lake, 1989) 

However, the effect is not pronounced until the compressibility is significantly large (see 

Figure 5.4).  
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Figure 5.4 Water saturation profiles for one-dimensional water floods at a certain time 
under different oil compressibilities (adapted from Samizo, 1982). 

In general, compressibility determines the time lag between injection signal and 

production response. Large compressibility will cause a large time lag as the reservoir 

system is able to store/release more fluid for the same pressure change. Consequently, 

more time must be taken for the producer to respond to the injection signal. At the 

extreme case when the compressibility is zero, the production reacts to the injection 

signal instantaneously without a time lag as the reservoir system has no capability of 

storing/releasing any extra fluid. 

 

5.2 SENSITIVITY CASE STUDIES 

A homogenous synthetic reservoir (see Figure 5.5), which is the same as the five-

spot reservoir that we have mentioned in Chapter 4, is used for the following analysis and 

discussions. We use a synthetic reservoir because it enables us to change any 
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reservoir/fluid properties of interest and obtain a production response accordingly. 

Furthermore, the reservoir should be homogeneous to avoid any complication caused by 

reservoir heterogeneity, which ensures that the effects in the outputs are caused by the 

variable of interest unambiguously. Table 5.1 summarizes the reservoir/fluid properties 

that are most relevant to this sensitivity analysis. Other information in this field can be 

found in Table 4.9.  

  

Parameters Value 

oc  (psi-1) 3×10-5 

wc  (psi-1) 1×10-6 

fc  (psi-1) 1×10-6 

rwk  

1

1

n

o w wr
rw

wr or

S S
k

S S

 
   

rok  

2

1

1

n

o w or
ro

wr or

S S
k

S S

  
   

1n  2 

2n  2 

wrS  0.3 

orS  0.4 
o
r wk  0.3 
o
rok

 1 

w (cp) 0.72 

o  (cp) 1.63 

Table 5.1 Reservoir/fluid parameters. 
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Tables 5.4-5.5 present the relative connectivity change in case 2 and case 3 

compared to case 1. If one takes the average value of the relative change among all well 

pairs, case 2 gives a 4.07% average relative change while it is 6.73% in case 3. Both 

changes are small.  

 

PROD1 PROD2 PROD3 PROD4
Average change 

compared to base case 

INJ1 2.68% 3.43% 5.95% 6.51% 

4.07% 

INJ2 2.35% 7.98% 1.74% 0.49% 

INJ3 2.14% 4.00% 2.25% 3.88% 

INJ4 2.05% 0.21% 6.91% 2.04% 

INJ5 8.78% 8.61% 4.06% 5.28% 

Table 5.4 Relative connectivity change of case 2 ( / 22.6o w   ) compared to case 

1( / 2.3o w   ) 

 

PROD1 PROD2 PROD3 PROD4 
Average change 

compared to base case 

INJ1 5.16% 7.23% 13.07% 12.25% 

6.73% 

INJ2 4.32% 15.56% 4.12% 1.89% 

INJ3 2.66% 4.81% 2.67% 4.78% 

INJ4 6.65% 2.60% 2.82% 0.61% 

INJ5 13.46% 14.75% 6.76% 8.38% 

Table 5.5 Relative connectivity change of case 3 ( / 45.3o w   ) compared to case 

1( / 2.3o w   ) 
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Tables 5.7-5.8 present the relative change in connectivity compared to the above 

case when n=2. The average relative changes in the case of exponents equal to 1.5 and 3 

are 1.41% and 2.6%, respectively. Again, the connectivity only change slightly when we 

range the relative permeability exponents. 

 

PROD1 PROD2 PROD3 PROD4
Average change 

compared to base case

INJ1 0.80% 1.27% 2.33% 1.89% 

1.41% 

INJ2 2.22% 0.80% 0.17% 3.03% 

INJ3 1.30% 0.20% 1.08% 0.05% 

INJ4 3.30% 0.87% 1.54% 1.57% 

INJ5 0.74% 1.58% 1.06% 2.30% 

Table 5.7 Relative connectivity change of exponents n=1.5 compared to exponents n=2. 

 

PROD1 PROD2 PROD3 PROD4
Average change 

compared to base case

INJ1 2.96% 3.20% 4.00% 8.14% 

2.60% 

INJ2 0.10% 9.47% 3.39% 2.84% 

INJ3 1.62% 0.50% 0.18% 2.35% 

INJ4 0.70% 1.18% 0.74% 1.20% 

INJ5 4.93% 1.27% 0.44% 2.89% 

 Table 5.8 Relative connectivity change of exponents n=3 compared to exponents n=2. 
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PROD1 PROD2 PROD3 PROD4 

INJ1 0.33 0.34 0.16 0.17 

INJ2 0.32 0.16 0.34 0.18 

INJ3 0.25 0.25 0.25 0.25 

INJ4 0.17 0.34 0.16 0.33 

INJ5 0.18 0.17 0.33 0.32 

Table 5.9 Connectivity matrix for the case of 0 0/ 0.3rw rok k   using the coupled CRM 

model. 

 

PROD1 PROD2 PROD3 PROD4 
Average change 

compared to base case 

INJ1 7.23% 7.45% 12.25% 16.67% 

9.78% 

INJ2 8.13% 20.88% 13.40% 19.24% 

INJ3 0.03% 2.47% 2.20% 0.34% 

INJ4 17.61% 7.57% 19.48% 11.87% 

INJ5 10.75% 8.08% 1.87% 8.12% 

 Table 5.10 Relative connectivity change of water-oil endpoint ratio 0.1 compared to 
water-oil endpoint ratio 0.3. 
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PROD1 PROD2 PROD3 PROD4 
Average change 

compared to base case

INJ1 0.15% 1.61% 4.15% 0.66% 

1.58% 

INJ2 0.82% 2.54% 1.67% 2.12% 

INJ3 0.55% 2.56% 3.87% 0.60% 

INJ4 0.02% 0.17% 0.73% 0.54% 

INJ5 0.79% 4.02% 3.17% 0.87% 

Table 5.11 Relative connectivity change of water-oil endpoint ratio 0.6 compared to 
water-oil endpoint ratio 0.3. 

 

5.2.3.2 Time Constant 

In Figure 5.22, according to the coupled CRM model, time constants decrease 

with the increase of water-oil endpoint ratios. Also, it shows the difference in time 

constants among the three cases at late time (mature water flood) becomes slightly larger 

compared to those at early time (immature water flood). If we revisit the relative 

permeability curves in Figure 5.18, we observe that the difference in the relative 

permeability of water phase under different endpoints intensifies when saturation is close 

to the irreducible oil saturation. Consequently, the total fluid mobility among the three 

cases varies the most at late time and hence a larger difference in time constants is 

observed. 
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Figure 5.23 gives the average oil saturation change in producer 1. It shows the 

small water-oil endpoint ratio case has small remaining oil saturation. Large remaining 

oil saturation occurs when water-oil endpoint ratio is large. 

 

5.2.4 Changing the Compressibility 

In this last sensitivity study, we exam what effects compressibility can produce on 

the output parameters in the coupled CRM model. We performed three cases with 

different oil compressibilities (see Table 5.12). The water and pore compressibilities are 

fixed considering that they are usually very small. We range the value of oil 

compressibility from 1 10-5 psi-1 to 10 10-5 psi-1.  

 

 cw  (psi-1) cf  (psi-1) co (psi-1) 

Case 1 

1 10-6 1 10-6 

1 10-5 

Case 2 3 10-5 

Case 3 10 10-5 

Table 5.12 Compressibility data used in the sensitivity study. 

Figures 5.24-5.26 show the reservoir simulation results corresponding to the three 

different oil compressibility cases. We observe that in the primary recovery phase, the 

large oil compressibility case released the most total fluid as the total compressibility is 

also large (see Figure 5.24). The smaller the oil compressibility, the smaller the total 

production rates are.  

In the secondary recovery, the total production rates are close for all three cases. 

Nevertheless, different production time lags are observed in Figure 5.25. The production 
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Tables 5.14-5.15 summarize the relative change in connectivity in the other two 

cases with larger oil compressibilities. The average relative change in connectivity of 

case 2 ( 5 13 10oc psi   ) is 3.77%. Case 3 ( 5 110 10oc psi   ) gives a 8.42% average 

relative change in connectivity, which is slightly higher than case 2.  

 

PROD1 PROD2 PROD3 PROD4
Average change 

compared to base case

INJ1 2.27% 4.53% 8.11% 4.47% 

3.77% 

INJ2 0.50% 11.14% 6.88% 2.16% 

INJ3 0.44% 2.53% 3.60% 1.41% 

INJ4 4.13% 4.91% 10.24% 2.95% 

INJ5 1.22% 0.82% 1.35% 1.71% 

 Table 5.14 Relative connectivity change of case 2 ( 5 13 10oc psi   ) compared to case 

1( 5 11 10oc psi   ) 

 

PROD1 PROD2 PROD3 PROD4
Average change 

compared to base case 

INJ1 8.21% 10.22% 17.60% 16.46% 

8.42% 

INJ2 3.77% 20.79% 9.78% 3.55% 

INJ3 2.11% 0.58% 0.29% 3.00% 

INJ4 12.66% 8.19% 13.55% 6.14% 

INJ5 11.13% 9.36% 4.61% 6.49% 

 Table 5.15 Relative connectivity change of case 3 ( 5 110 10oc psi   ) compared to case 

1( 5 11 10oc psi   ) 
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5.3.2 Time Constant 

The time constant in the coupled CRM model is defined as the following: 

                                                   5.7 

The time constant is a measurement of reservoir system compressibility as well as 

total fluid mobility. Large time constants occur when a reservoir has large 

compressibility or small total fluid mobility.  

In the sensitivity case study, it shows that large time constants are obtained under 

the following scenarios:  

1): Large oil-water viscosity ratio; 

2): Large relative permeability exponents; 

3): Small water-oil relative permeability endpoint ratio; 

4): Large oil phase compressibility  

These results are consistent with the definition of the time constant in the coupled 

CRM model. Therefore, the sensitivity study proves that the time constant from the 

coupled CRM model is a comprehensive parameter that reflects both reservoir 

compressibility and mobility effects. However, the current CRM model could not achieve 

a variable time constant reflecting the changes of mobility with time. 

Nevertheless, though time constant implies information regarding total fluid 

mobility according to Eq. 5.7, it doesn’t suggest displacement efficiency, which is 

relevant to oil production. Specifically, while a small time constant implies a large total 

fluid mobility, it may be caused by the fast flowing of an unwanted fluid phase.  
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5.3.3 Saturation 

In the sensitivity studies using the coupled CRM model, we found that the 

following scenarios are favorable for oil being displaced by water (giving small 

remaining average oil saturations): 

1: Small oil-water viscosity ratio; 

2: Small relative permeability exponents; 

3: Small water-oil relative permeability endpoint ratio; 

These CRM results are consistent with the water-oil fractional flow theories that 

the remaining oil saturation is usually small when the displacement takes place in an 

efficient way. 

Meanwhile, we observe that the remaining oil saturation is almost unaffected by 

changing the reservoir compressibility, which is also consistent with the illustrations in 

Figure 5.4 given by Lake (1989). 

In summary, we conclude that the coupled CRM model output parameters follow 

reasonable change with respect to the change of inputs. They reflect both reservoir 

compressibility and mobility effects, whereas model parameters in the single-phase 

current CRM model can only imply compressibility effect.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

The CRM model is a simple and quick tool that only uses production and 

injection data to characterize well connectivity. The current CRM model is limited to 

mature water floods since saturation change is ignored in the model. However, there are 

circumstances when saturation change should not be neglected, such as in an immature 

water flood. This dissertation is dedicated to developing a coupled CRM model that 

couples the pressure and saturation equations together to account for the saturation 

impact. As a result, we can resolve the limitation in the current CRM model and broaden 

the application of the model. In this chapter, we summarize the technical contributions of 

this work, and make conclusions and recommendations. 

 

6.1 TECHNICAL CONTRIBUTIONS 

The working equations (the pressure and saturation equations) in the coupled 

CRM model were derived from the continuity equation and oil material balance on a 

producer-based drainage volume. Unlike the current CRM model where a constant 

single-phase productivity index is assumed, we recover the productivity index 

corresponding to the two-phase reservoir flow in our work. As a result, the time constant 

now depends on time and reflects the saturation impact. The time-varying time constant 

changes the ordinary differential pressure equations’ linearity from a linear ODE to a 

non-linear ODE. The saturation equation is also non-linear. We obtained a semi-

analytical solution for the pressure equation and a numerical solution for the saturation 

equation. The semi-analytical pressure solution is derived by performing discretization in 

time assuming that injection rate and time constant stay unchanged over each time step. 
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The explicit numerical saturation solution is achieved under the assumption that the 

saturation usually changes continuously and slowly.  

Two coupling options to solve the pressure and saturation equations 

simultaneously are proposed and designed. The fully-coupled option engages both the 

pressure and saturation equations at each time step. The simplified-coupled option solves 

the pressure and saturation equations together in a simplified manner by neglecting the 

compressibility contribution in the saturation equation. After the equation coupling, a 

multivariate non-linear regression problem is then solved to minimize the difference 

between the calculated and observed production rate, and therefore estimate model 

parameters (connectivity, time constant and initial saturation). The regression solver we 

choose is CONOPT in GAMS, which is a non-linear programming (NLP) solver that is 

designed to find local optimum for large scale NLP problems. 

Prediction capability has been designed in the coupled CRM model to evaluate 

well performance under future injection schemes. Prediction of total fluid rates in the 

coupled CRM is more complicated than the existing CRM model since saturation is 

involved. Two prediction algorithms, explicit and implicit algorithms, are introduced and 

discussed. We have implemented the explicit algorithm in the coupled CRM model since 

the accuracy is good to the desired degree. While prediction of total rates requires more 

efforts, the oil prediction is simple and straightforward. This is because the coupled CRM 

model is a two-phase flow model and we can readily obtain the oil saturation change with 

time. The fractional flow curve is constructed directly using the average oil saturation and 

the historical water cut data. Extrapolation of this fractional flow curve enables prediction 

of oil rates.  

We developed validation procedures to evaluate whether the model parameters 

are reliable. Two different kinds of validation are demonstrated and discussed. They are 
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internal and external validations. An internal validation verifies the reliability of the 

coupled CRM model by predicting part of the production history under historical 

injection rates using the model parameters obtained from history match. Through the 

comparisons between the known historical production rates and the predicted production 

rates, we are able to check if the model is correct. External validation uses a reliable 

independent procedure to obtain the same (or similar) model parameters as those from the 

coupled CRM model. By comparing the counterparts, we are able to validate the results 

from the CRM model.  

Once all model parameters are estimated and validated, the coupled CRM model 

described above is ready to find an optimal injection strategy to maximize the field’s total 

oil production over a future specified time horizon. There are several different 

optimization objectives and strategies. In this dissertation, we discussed the implement of 

an optimization procedure to maximize the field total oil production while retaining a 

constant injection rate in each injector. Each injector has a different injection rate.  

We test the coupled CRM model in synthetic homogeneous and heterogeneous 

reservoirs to illustrate the implemented capabilities (history match, prediction, validation 

and optimization), discuss model parameters (connectivity, time constant, and saturation) 

obtained, as well we validate these model parameters. We also compare the results of the 

coupled and the current CRM models to show the difference after taking saturation into 

account. We applied three fractional flow models to the same field case at two 

displacement stages (immature and mature water floods) to discuss their advantages and 

limitations. Meanwhile, we explore the coupled model sensitivity to fluid viscosity ratio, 

compressibility and oil-water relative permeability, respectively, in a synthetic 

homogeneous reservoir. These sensitivity studies help us to understand the relationship 

between the inputs and the outputs in the coupled CRM model. 
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6.2 CONCLUSIONS 

1. The coupled CRM model successfully incorporated the saturation impact. By solving 

the pressure and saturation equation simultaneously, the saturation change at each 

time step is now reflected in the model. Consequently, the coupled model and the 

model parameters obtained are more accurate than the existing CRM model by 

honoring the two-phase water oil displacement physics.  

2. Case studies have shown that the application of this two-phase model is not limited to 

mature water floods; it can be used in immature water floods with a significant 

improvement in the model parameter accuracy. Therefore, the coupled CRM model 

expands the application and adaptability of the existing CRM model.   

3. The model parameters obtained from the coupled CRM model are reasonable and 

correct. The connectivity between wells reflects the geological features (seals, 

channels, etc.) that have been set up in the simulation cases. The time constant 

corresponds reasonably with the numerical simulation results. Moreover, the coupled 

model estimated the saturation change within the producer’s drainage volume, which 

is also validated through reservoir simulation.  

4. The time constant in the CRM model should be a function of total compressibility and 

fluid mobility since it is a time-varying quantity that is determined by the two-phase 

flow dynamics. Both the coupled CRM model and synthetic case studies show large 

time constant at early time and small time constants at late time during a water flood 

displacement. While it is possible to assume unchanged value for time constant in 

mature water flood when the saturation variation is small, saturation change should 

not be neglected in the early stage of water flooding. Therefore, the coupled CRM is 

recommended for the application in the case of an immature water flood. 
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5. The coupled CRM can describe the saturation change within a producer’s drainage 

volume, which provides insight to the displacement efficiency. The sensitivity case 

studies have shown that small average oil saturation from the coupled CRM model 

often indicates an efficient displacement and vice versa. 

6. The sensitivity study proves that connectivity is weakly related to both reservoir 

mobility and compressibility effects and is, in large part, determined by the reservoir 

permeability distributions.  

7. Through sensitivity study, we conclude that the time constant from the coupled CRM 

model reflects both reservoir compressibility and mobility effects; whereas it can only 

imply compressibility effect in the single-phase CRM model.  

8. The fractional flow model obtained from the coupled CRM model is accurate to 

predict future oil production rate in both mature and immature water floods. Since the 

coupled CRM model is a two-phase flow model, saturation change can be evaluated 

readily. The fractional flow curve is constructed directly using the average oil 

saturation and the historical water cut data. 

9. The coupled CRM model is fast and only requires minimum information. Even 

though the algorithm and computation are more complicated than the current CRM 

model, the computation time doesn’t increase significantly. For synthetic reservoirs, 

we found the computation time is almost the same as the current CRM model.  

10. The internal and external validation procedures we proposed are effective to verify 

the coupled CRM model. The validation procedures provide confidence to further use 

the model parameters. Therefore, they are recommended as a standard practice in the 

coupled CRM model.  

11. The coupled CRM model can be used to improve oil recovery. An improved accurate 

oil rate prediction enables us to further optimize the injection rate using the coupled 
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CRM. In the case study we performed, the optimized injection scheme is able to give 

8% additional oil production in a synthetic mature water flood and 12% additional oil 

production in an immature water flood.  

 

6.3 FUTURE WORK 

1. Chapter 3 mentioned that laboratory scale relative permeability models are used in the 

coupled CRM model, which is a large scale model. As discussed, it is not a problem 

unique to the coupled CRM model; other models such as the traditional reservoir 

simulations also have similar scale issues by using the laboratory scale relative 

permeability. Nevertheless, upscaling relative permeability to the CRM scale using 

the production and injection data should be explored.  

2. This dissertation developed the coupled CRM model for a producer-based drainage 

volume. It will be desirable to develop the coupled CRM model based on a smaller 

drainage volume between a particular producer-injector pair. In this way, we might 

gain more information since it is a more detailed version of the coupled CRM model.  

3. In the prediction capability, we used the explicit algorithm. It also worth trying the 

implicit prediction approach, which may achieve a higher accuracy in the quality of 

oil rate prediction.  

4. We have applied the coupled CRM model to many synthetic reservoirs. It is highly 

recommended to further test the model on field cases. Since the field data are often 

noisy, we must improve the coupled CRM model’s capability to handle these actual 

production and injection data. Moreover, the application to the field cases provides 

ultimate validation of the coupled CRM, which is helpful to improve the model.  
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5. The coupled CRM model gives the average oil saturation within each producer’s 

drainage volume. Therefore, it might provide insights to identify areas with bypass oil 

since these areas are often associated with a large remaining oil saturation. 

6. The coupled CRM model has provided information such as connectivity, time 

constant and saturation. It is desirable if we could use this information to assist other 

reservoir evaluation/prediction methods. For example, if we can use the connectivity 

obtained to better understand the reservoir geology, it will be helpful to construct the 

geology model in reservoir simulation and reduce the geological uncertainty. Also, 

down-scaling the information from the CRM model and using it in the reservoir 

simulation are also interesting research directions.  

7. It is recommended to explore different injection strategies. In this dissertation, we 

adopt the one to maximize the field total oil production while retaining constant 

injection rates in each injector. However, it is worth trying other injection schemes 

using different objective functions and constraints in the optimization problem.  

8. We should develop better visualization tools for the coupled CRM model. Since the 

coupled CRM model can describe the average oil saturation, it will be helpful to 

visualize the oil saturation distribution in the field. Figure 6.1 illustrates such an oil 

saturation bubble map. This map shows the drainage volume of each producer and the 

average oil saturation within it.  
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APPENDICES 

APPENDIX A: DERIVATION OF KOVAL EQUATION SOLUTIONS 

The Koval fractional flow expression is the same as the Buckley-Leverett water 

fractional flow expression in a water flood when oil and water phases have straight-line 

relative permeabilities. In such a case, we write the fractional flow of water in the 

following form: 

  1
(1 )

1
( )
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val

f
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K S





                                                    A.1 

where valK  is the Koval factor, and S  is the reduced water saturation defined as:  
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We take the derivative of water cut with respect to saturation in Eq. A.1 to give: 
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                                           A.3 

According to Buckley and Leverette (1942), the specific velocity of a constant 

saturation is equal to the derivative of the fractional flow curve at that saturation. 

Therefore, we can arrive at the following expression: 

  D
w s

D

x
f v

t
                                                          A.4 

where sv  is the velocity of the displacement wave, Dx  and Dt  are the dimensionless 

distance and time, respectively.  

We will have a spreading wave if: 

  0 1| |w s w sf f                                                        A.5 

Using Eq. A.3, Eq. A.5 becomes: 
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K
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Eq. A.6 implies that the Koval factor should be greater than 1 in case of a 

spreading wave.  

To solve for the saturation profile, using Eqs. A.3-A.4 leads to: 
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Rearranging Eq. A.7, we have:  

     2 2 2
1 1 0D D D

val val val
D D D

x x x
K S K S K

t t t
                                 A.8 

Solving the equation above, we can obtain: 

  

1/2

1

1

D
val

D

val

x
K

t
S

K

 
 

 


                                                   A.9 

Because 0 1S  , we rewrite Eq. A.9 in the following form: 

 1/2

1
0

/ 1 1

1

1

D
val

val D D
D val

val val

D val

t
K

K x t
S t K

K K

t K

    

      
 


  

                         A.10 

Substituting Eq. A.10 into Eq. A.1, we obtain another expression in terms of 

water cut as follows: 

1

1
0

1

1

1

D

D
val

val
val

D
w D valx

val val

D val

t
K

K
K

t
f t K

K K

t K



 




  








                           A.11 
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APPENDIX B: APPLICATION OF THE CRM MODEL IN A HIGHLY HETEROGENEOUS CO2 

FLOODED FIELD WITH UNALLOCATED WELL TEST DATA 

The Cranfield field, which is part of the Mississippi salt basin, is located 

approximately 20 km east of city of Natchez in Adams and Franklin Counties, southwest 

Mississippi, USA (Figure B.1). The reservoir is located at 10,000 ft (3,000 m) depth and 

is a near circular anticline about 4 miles in diameter. A gas cap, an oil ring and a downdip 

water leg existed before development (Weaver and Anderson, 1966). A fault that is 

sealing, except in the north part of the field, divides the productive formation into two 

reservoirs (Figure B.2).  

The field was discovered in 1943 and produced oil and gas condensate until 1965 

(Weaver and Anderson, 1966). It was pressure depleted and wells plugged and 

abandoned in 1965. The reservoir has been under CO2-flooding for EOR since 2008 (Lu 

et al. 2013). 

 

 

Figure B.1 Location of Cranfield field site in southwest Mississippi (Meckel and 
Hovorka, 2009). 
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With a new objective function and additional constraints, we are able to use well 

test data directly in the CRM model to perform history match and estimate inter-well 

connectivities.  

 

B.2 The CRM Model Application 

The studied area of Cranfield is focused mainly on the north part of the field with 

injectors and producers in an irregular five-spot pattern. There are a total of 23 CO2 

injectors and 20 producers. CO2 is in supercritical state under the reservoir conditions. 

Daily CO2 injection rates in each injector are provided. The periodic unallocated well test 

data (oil/gas/water rates) are available in individual producers. Meanwhile the field total 

production of oil, gas and water are available on a daily basis.  

Through history match, the inter-well connectivity obtained is in Figure B.4. In 

this field, we explored different distance limits for application. The connections are 

different when distance limits change. Nevertheless, all results show active connections 

between wells across the fault in the north part of the field. Connectivities are parallel to 

the fault in the south part, which correspond reasonably with the knowledge of the field 

geology. We should work with the Cranfield reservoir engineers who are familiar with 

the field condition to decide which distance limit to use. Figure B.5 shows the total 

production history match results in some producers, which gives decent fitting quality.  
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APPENDIX C: DERIVATION OF THE PRESSURE EQUATION FOR THE COUPLED CRM 

MODEL 

The pressure equation for a producer-based drainage volume has the form: 

    
   ( )

( )t
p t wf t

t

q td
V c P i t q t

dt J t

 
    

 
                                     C.1

 

We assume the bottom-hole pressure is constant, and rearrange the equation: 

    
 

     
 

1t
t

dq t i t
q t

dt t t 
                                             C.2

 

As the time constant changes with time, the above equation is a first order non-

linear ordinary differential equation. The general solution to this ODE is: 

     

 

 
 

1 1

1 1

1dt dt
t t

t
dt

t

i t
q t C e e dt

t
e

 

 

 



  
     

                             C.3 

where C1 is the integration constant.
 

We denote: 

       
1

F t dt
t

                                                     C.4
 

And rewrite the solution to Eq. C.3 as: 

          
 

 
 1

1

o

t
F t F t

t F t
t

i t
q t C e e dt

te 
 


                                    C.5

 

 At the initial time when t=t0, Eq. C.5 becomes:  

        0

0 1
F t

tq t C e                                                  C.6
 

 We then solve for the integration constant C1 as: 

       0

1 0
F t

tC q t e                                                     C.7
 

Substituting Eq. C.7 into Eq. C.5 gives: 

             
 

 
 

0

0

1

o

t
F t F t F t

t t F t
t

i t
q t q t e e dt

te 
 


                               C.8

 

Note that: 
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     

   
1 1

F t F t

F t

de e dF t

dt
te 




                                               C.9

 

Thus, the last term in the solution Eq. C.8 becomes:  

     
 
     1

o o

t t
F t

F t
t t

i t
dt i t de

te 
                                           C.10

 

We integrate Eq. C.10 by parts to give: 

    

           

       

0

0

o o

o

t t
F t F t F tt

t

t t

t
F t F tt

t

t

i t de i t e e di t

di t
i t e e dt

dt

 

 

 


                              C.11

 

Substituting Eq. C.11 into solution Eq. C.8 leads to: 

                      
0

00

o

t
F t F t F t F t F tt

t t t

t

di t
q t q t e e i t e e dt

dt
 

 
   

  
                C.12 

Similarly, if we apply this to the previous time step t-1, we can obtain an 

expression as the following: 

                     1
1

1

1
t

F t F t F t F t F tt
t t t

t

di t
q t q t e e i t e e dt

dt
  




 
    

 
              C.13 

It is reasonable to assume that Jt is a constant from time t-1 to t if the time step is 

small (usually monthly). This is because the average saturation within the producer’s 

drainage volume usually changes slowly. Consequently, Jt changes slowly with time. 

Therefore, we can perform discretization in time, assuming that the injection rate and the 

time constant are constant over each time step. Then, we can reach a semi-analytical 

solution as: 

                 1 11 1F t F t F t F t
t tq t q t e i t e                                   C.14

 

According to Eq. C.4, we have: 
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         1

1
1

t

t

F t F t dt
t

                                              C.15 

Substituting Eq. C.15 into Eq. C.13 gives: 

             
1 1

1 1

1 1

t t

t t

dt dt
t t

t tq t q t e i t e
 

 

        
  

                             C.16
 

Since we have assumed constant τ for each time step k, we can obtain the solution 

as:  

    1 1
k k

t t
k k k
t tq q e e i 

 
  

    
 

 

                                         C.17 

Adding the connectivity to account for the injection loss, we arrive at the final 

pressure equation solution for a producer j at time step k as:
 

1 1
k k
j j

t t

k k k
tj tj ij i

i

q q e e f i
 
 


          


 

                                 C.18 
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APPENDIX D: INPUT PARAMETERS OF THE COUPLED CRM MODEL IN SYNTHETIC 

STUDY CASE 4 

 
 

Input Value 

Reservoir/fluid 
properties 

w (cp) 0.72 

o (cp) 1.63 

rwk  

2

1
o w wr
rw

wr or

S S
k

S S

 
     

rok  

2
1

1
o w or
ro

wr or

S S
k

S S

  
     

Swr 0.3 

Sor 0.4 

o
rwk  0.3 

o
rok  1 

Table D.1 Input parameters of the coupled CRM model in synthetic study case 4. 
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NOMENCLATURE 

A Drainage area (ft2) 

fc  Pore compressibility (psi-1) 

oc  Oil compressibility (psi-1) 

wc  Water compressibility (psi-1) 

tc  Total compressibility (psi-1) 

CA Shape factor 

E Effective viscosity ratio for Koval method 

sF  Solvent fractional flow 

of  Oil fractional flow 

wf  Water fractional flow 

ijf  The connectivity between injector i and producer j 

g  Gravity (ft day-2) 

KH  A measurement of heterogeneity for Koval method 

h  Thickness of the drainage volume 

i  Injection rate (bbl day-1) 

I  Injection rate (bbl day-1) 

tJ  Total productivity index (bbl day-1 psi-1) 

k  Absolute permeability (darcy) 

rok  Oil relative permeability 
0
rwk  Endpoint water relative permeability 
0
rok  Endpoint oil relative permeability 

rwk  Water relative permeability 

valK  Koval factor 



 212

tM  Total mobility ratio (cp-1) 
0
tM  Endpoint total mobility ratio (cp-1) 

in  Total injector number 

1n  Exponent of water relative permeability 

2n  Exponent of oil relative permeability 

P  Pressure (psi) 

P  Average pressure in a drainage pore volume (psi) 

cowP  Oil-water capillary pressure (psi) 

wfP  Well bottom hole pressure (psi) 

oq  Oil production rate (bbl day-1) 

wq  Water production rate (bbl day-1) 

tq  Total production rate (bbl day-1) 

wr  Well radius (ft) 

oS  Oil saturation 

wS  Water saturation 

orS  Residual oil saturation 

wrS  Irreducible water saturation 

sS  Solvent saturation 

oS  Average oil saturation in a drainage pore volume 

wS  Average water saturation in a drainage pore volume 

2oS  Oil saturation at the outlet of a producer 

t  Time (day) 

PV  Drainage volume (ft3) 

bV  Bulk control volume of a producer (ft3) 

sv  Velocity of the displacement wave (ft day-1) 
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z Objective function 

Greek Symbols  

w  Water viscosity (cp) 

o  Oil viscosity (cp) 

  Euler constant 

  Time constant (day) 

  Porosity 

Superscripts 

k Time step index 

obs Observed value 

cal Calculated value 

Subscripts  

i Injector index 

j Producer index 

o Oil 

w Water 

s Solvent 

t Total 
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