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Abstract
Background: Many protein sequences are still poorly annotated. Functional characterization of a
protein is often improved by the identification of its interaction partners. Here, we aim to predict
protein-protein interactions (PPI) and protein-ligand interactions (PLI) on sequence level using 3D
information. To this end, we use machine learning to compile sequential segments that constitute
structural features of an interaction site into one profile Hidden Markov Model descriptor. The
resulting collection of descriptors can be used to screen sequence databases in order to predict
functional sites.

Results: We generate descriptors for 740 classified types of protein-protein binding sites and for
more than 3,000 protein-ligand binding sites. Cross validation reveals that two thirds of the PPI
descriptors are sufficiently conserved and significant enough to be used for binding site recognition.
We further validate 230 PPIs that were extracted from the literature, where we additionally
identify the interface residues. Finally we test ligand-binding descriptors for the case of ATP. From
sequences with Swiss-Prot annotation "ATP-binding", we achieve a recall of 25% with a precision
of 89%, whereas Prosite's P-loop motif recognizes an equal amount of hits at the expense of a much
higher number of false positives (precision: 57%). Our method yields 771 hits with a precision of
96% that were not previously picked up by any Prosite-pattern.

Conclusion: The automatically generated descriptors are a useful complement to known Prosite/
InterPro motifs. They serve to predict protein-protein as well as protein-ligand interactions along
with their binding site residues for proteins where merely sequence information is available.
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Background
Exhaustive knowledge about protein interactions is a pre-
requisite to understanding the molecular machinery of
the cell. While comprehensive protein sequence databases
are available, the number of known PPIs is still small. In
addition, experimentally proven PPIs often do not reveal
the binding sites involved. The implications of the discov-
ery of binding sites are manifold: the discovery of patterns
in amino acid arrangements is of general importance in
the study of protein-protein interactions. Furthermore,
docking algorithms benefit greatly from the correct pre-
diction of binding sites. Finally, interaction prediction is
the key to mapping global interaction networks and sig-
nalling pathways, and may help elucidate the functions of
individual proteins. Complementary to experimental
techniques are computational approaches that analyze
and predict protein-protein interactions. Sequence-based
methods include gene context conservation [1], synthetic
lethality [2], phylogenetic profiling [3,4] or co-evolution
of gene expression [5]. Various databases of binding sites
and interfaces between proteins and their domains exist
[6-8]. An extensive list of prediction methods can be
found in [9].

Functional characterization of novel genes and their pro-
teins remains an important and challenging task. It often
is improved by the identification of novel interaction part-
ners. It has been observed that structural and functional
features of proteins like catalytic sites are often well con-
served [10]. In contrast, the rest of the surface is often
more variable (see Figure 1A), which impedes sequence
similarity searches for functionally equivalent or similar
proteins. Descriptors previously used for conserved
domains and interface motifs include regular expressions,
weight matrices, and profile Hidden Markov Models
(HMMs). These descriptors involve either sequentially
consecutive stretches [11-13] or full length domains [14].
In particular, HMMs were successfully employed in many
sequence similarity search tools [14-16].

As pointed out by Bailey and Gribskov [17], the signal-to-
noise ratio in homology searches can be improved by
using sets of motifs that characterize a family. In this
study, we aim to create descriptors for all relevant
sequence parts of structurally known protein-protein and
protein-ligand binding sites. These binding sites are often
well-conserved [18], but their segmented nature on
sequence level has to be taken into account for sequence
similarity searches (Figure 1B). In accordance with previ-
ous work [19,20], we define an interface between two pro-
teins to consist of two faces. Similar faces can be clustered
geometrically into face types, and similar interfaces can be
clustered into interface types [20].

Many approaches for interaction prediction and function
annotation require structural knowledge about the pro-
tein of interest [21-23]. By waiving this requirement,
interaction prediction is applicable to a much wider range
of sequences but becomes a substantially harder problem.
It has been addressed previously (see e.g. [24,25]). Most
notably, Li and Li [13] discover stable and significant
interface motifs and represent them with regular expres-
sions, while Espadaler et al. [12] prove the usefulness of
HMMs for this endeavor. Both approaches use single
structural templates as seeds for generalization with fur-
ther sequences, coming from either similarity search or
random generation. However, several structures for a par-
ticular kind of domain-domain interaction are available,
each providing new insights into the sequential variability
of the actual interacting residues. Novel to our method is
the incorporation of as many structures as possible for
each binding site descriptor. The benefits are intriguing as
protein-protein interactions from complex structures are
considered to be the most reliable source of interaction
data.

Face descriptors
We compiled a library that comprises profile HMM
descriptors for 740 protein-protein and 3000 protein-lig-
and binding sites in the Protein Data Bank PDB [26]. Each
descriptor describes one face. These descriptors, totalling
more than 3,740, characterize an interaction/ligand bind-
ing site on sequence level. Hence, given a query sequence
of interest, it is possible to compare it to each interface
descriptor, thus identifying binding sites to possible inter-
action partners including ligands. Gene Ontology (GO)
[27] annotations are linked to each descriptor from the
original PDB entries that were used for its construction.
The complete list of profile HMM descriptors is directly
usable with the HMMer package [28] and is freely availa-
ble for academics upon request.

PPI descriptor construction
Based on the family level of the Structural Classification of
Proteins, SCOP [29], we can extract and classify all
domain-domain interactions found in the PDB. This clas-
sification is available in the SCOPPI database [30]. As
pointed out by Kim et al., even homologous domain pairs
can associate in geometrically different ways by employ-
ing different sets of residues to form interfaces [19,20].
Consequently, the corresponding interface profiles would
differ substantially and combining the information about
interacting residues to a profile would be meaningless.
However, often a number of domain-domain interactions
expose striking similarities and it is desirable to collect all
instances of one interface type for the calculation of the
respective interface profile. We therefore compose
descriptors for all interface types in SCOPPI by combining
all instances of that interface type. When data for interface
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types is sparse, we utilize sequence data provided by HSSP
[31]. Often several sequentially remote segments contrib-
ute to a binding site. To accommodate for this phenome-
non, we adopt the multiple-motif approach from PRINTS
[32], MAST [17] and Meta-Meme [33] to represent bind-
ing sites as a collection of small HMMs for one local bind-
ing motif. Thus we describe only the important sequence
parts that form a structural feature. To represent the full
sequence space of a whole family with a weight matrix or
a profile-HMM, a large number of sequences is required,
in particular for families of strong sequence variability.
However, considerably fewer sequences are needed for
short, conserved motifs.

PLI descriptor construction
As large protein complexes are often difficult to crystallize,
knowledge about protein-protein interactions can be
drawn from the more abundant protein-peptide interac-
tions. The descriptor construction method can be
extended to these cases in particular and to PLI in general.
We construct HMM profiles for faces that bind to small
molecules and peptides. To this end we scanned PDB for
most frequently occuring co-crystallized ligands. We iden-
tify the residues surrounding the ligand incl. possible
cofactors. A profile is solely built from one structural tem-
plate and aligned sequences utilizing HSSP [31].

Evaluation
In order to assess the significance of HMM scores, a
number of comparisons to shuffled databases were con-
ducted. Figure 2B demonstrates the expressive power of
low E-values achieved with interface type HMMs against
Swiss-Prot vs. shuffled Swiss-Prot. Random hits generally

only occur with E-values above 1, while hits in Swiss-Prot
below 1 can be considered significant.

Assessing the performance of PLI descriptors
Benchmarking HMMer E-values
Expectation values provided by the HMMer software are a
means for assessing the significance of HMM hits. As dem-
onstrated by Li et al. [13], the statistical evaluation to ran-
domness can be used to establish a Z-score to distinguish
significant from random hits. Here, we use comparisons
to shuffled databases to gain further information about
the significance: by calculating the ratio of best E-values of
hits from shuffled and not shuffled sequence databases.
For database shuffling, we generated a random permuta-
tion for every single sequence in the database. In the
sequel, we demonstrate the use of shuffled databases for
one particular ligand – adenosine triphosphate (ATP).

Case study: ATP-binding sites
We evaluate ligand-binding descriptors for the case of
ATP. The descriptors for ADP-binding and ATP-binding
were run against 205,000 Swiss-Prot-annotated sequences
and could extract 10,349 hits whereof 9,255 were true
positives and 1,094 false positives. Given that 36,774
sequences were annotated as ATP-binding, this amounts
to 25.2% recall and a precision of 89.4%. Prosite's P-loop
motif recognizes 24.87% but in contrast produces 6792
false positives (precision: 57.4%). Figure 4 shows an over-
view of these numbers.

The precision-recall curve (Figure 2A) for our descriptors
was generated from true/false positive rates at different E-
value thresholds (Table 1). Scores for regular expressions

Constructing a set of sequence profiles to represent a conserved structural featureFigure 1
Constructing a set of sequence profiles to represent a conserved structural feature. Caspase's active site is highly 
conserved (1ICE, conservation levels are calculated using the von-Neumann entropy and displayed in a color gradient from 
blue (variable) to red (conserved)). Conserved residues in close vicinity of the tetrapeptide inhibitor largely define the catalytic 
site environment. Caspase residues within 5 Å of the inhibitor are underlined. Segments are patched and those with low con-
servation are discarded to avoid insignificant hits. We add the amino acid distribution from HSSP data for each site of the 
remaining segments. It is thus possible to construct HMMs and visualize the profiles as sequence logos [40].

...RRTGaevditgmleafahrpehktsdstflvfMSHGIregicgkk
hseqvpdilqlnaifnmlntkncpslkdkpkviiiQACRGdspgvvwf
kdaikkahiekdfiafcsstpdnvSWRhptmGSVFIgrl
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Assessing accuracy and significance of ATP-binding descriptorsFigure 2
Assessing accuracy and significance of ATP-binding descriptors. A. Precision-recall curve for ATP-binding descriptors 
derived from protein structures with bound ATP or ADP tested against Swiss-Prot, shown as curve with red circles. Each cir-
cled point corresponds to a different E-value cutoff. The Prosite patterns for "ATP-binding" and "ADP-binding" are included as 
well (green crosses). Overall, Prosite achieves a recall of 31% with a precision of 62% (blue cross). For all E-values, our method 
performs better than Prosite. B. Distribution of E-values for the ATP-binding descriptors. To assess the significance of hits, the 
descriptors were tested both against Swiss-Prot (black line) and a shuffled Swiss-Prot version (red line). The cumulative 
number of hits below a certain E-value threshold is shown. The inlet shows a magnification of the lower right corner. Below an 
E-value of 1 (dotted vertical line), ~53,000 hits are found in Swiss-Prot whereas only ~1,200 hits are found in the shuffled 
Swiss-Prot.
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from Prosite are generally below this curve. Prosite
improves on this by adding highly specific full length
sequence profiles with high precision but very low recall.

Some descriptors exhibited great similarity to the P-loop
motif, e.g. the descriptor derived from PDB entry 2BEK, a
chromosome partitioning ATPase (Figure 5): the central

Correlation of length and quality of HMM descriptorsFigure 3
Correlation of length and quality of HMM descriptors. ATP-binding descriptors as well as face type descriptors for pro-
tein-protein interactions were run against original and shuffled versions of Swiss-Prot and uncharacterized NCBI sequences. 
We define the length of a profile Hidden Markov Model descriptor as its number of states. Quality is measured as difference 
between log E-values of best hit against original sequences and shuffled sequences. For Swiss-Prot, longer descriptors have bet-
ter quality and therefore produce more significant hits. For uncharacterized sequences, this does not hold. One explanation 
could be that these sequences are depleted of significant matches by similarity searches.
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binding motif conserves Glycine and Lysine that build
hydrogen bonds to ATP's phosphate tail. The Prosite pat-
tern only disagrees on its first position (requires Alanine
or Glycine, mostly Glutamine found) and does not give
any specification to the following four residues. These
however, are found to be well conserved in a wide variety
of ATP-binding homologs. We thus have automatically
developed a variation of the P-loop motif which is more
precise for a range of orthologous chromosome partition-
ing ATPases that are picked by HSSP in other species.

Figures 3A–D illustrate the use of E-value ratios of unshuf-
fled vs shuffled sequence databases. In case of the ATP-
binding descriptors searched against Swiss-Prot, the com-
parison of the two E-value distributions (shuffled/not
shuffled) allows the identification of a significance thresh-
old (Figure 2B).

Note that small motifs like e.g. the poly-proline (PxxP)
motif occur frequently in sequence where only 5% are
functional. Nevertheless, hits of small motifs are helpful
to identify candidate sets that should undergo manual
postprocessing.

Assessing the performance of PPI descriptors
Cross validation with structure data sets
The initial data set comprised 740 interface descriptors of
protein-protein interactions, each having at least three
non-redundant instances (not more than 98% sequence
identity). In order to check the ability of face descriptors
to recognize faces from structures in the PDB, we per-
formed 2-, 4- and 8-fold cross validations on interface
types with at least 8 non-redundant instances. This yields
a set of 45 interface types, i.e. 90 face types. This set was
run against domains from PDB that are classified by
SCOP. For 61 face types (67%), a reasonable recall of
70%–100% was achieved (additional file 1). Face types
with low recall often have small interfaces with short, dis-
persed segments producing insignificant hits or have low
face conservation. Another source of errors is misalign-
ments of sequences of an interface type. In five cases, the
recall could be improved by adding homologous
sequences from HSSP [31]. The recall for interaction pre-
diction by requiring both face types to be present is upper
bound by the minimal recall of both faces. Hence, the
average recall for interface detection dropped to 39%. This
problem is most eminent for predicting interactions of
promiscuous faces. Using the Structural Classification of
Protein-Protein Interactions (SCOPPI [33]), it is then still
possible to provide candidate interaction partners. In par-
ticular, for dedicated faces, i.e. those with just one oppo-
site binding face, recognition of one face type suffices.

Literature protein-protein interaction benchmark
To investigate how well our method is suited to detect
protein-protein interactions, we benchmark it against a set
of high quality literature-curated interactions. To this end,
we use a subset of NetPro, an expert curated and anno-
tated database containing ~15,000 protein-protein inter-
actions [34]. These were extracted from PubMed abstracts
by a semi-automated method and then cross-checked by
human experts.

Using 740 multiple motif descriptor pairs, we search the
NetPro benchmark set for matches where a descriptor pair
matches two interacting proteins. If we maximally relax
our E-value cutoff criterion, we are able to predict ~80%
of the literature interactions. At a stricter E-value of 0.001
we still validate 230 interactions (See details in Table 2).

Using the descriptors to annotate uncharacterized 
sequences
We obtained a corpus of 32,000 uncharacterized proteins
from the NCBI's non-redundant protein sequence data-
base. Face descriptors were run against these sequences
and a shuffled version. The result is shown in Figure 3D.
A number of hits can be identified in the upper left part
that have significant difference between log E-values of
best hit against original sequences and against best hit of

Validation of PLI-descriptorsFigure 4
Validation of PLI-descriptors. Prediction of sequences 
annotated with the Swiss-Prot keyword „ATP-binding“ (or 
ATP/ADP as part of the catalytic activity) using Prosite pat-
terns and multiple motif descriptors with hits below E-value 
1: while both methods detect ~9.000 of all proteins anno-
tated with this term by Swiss-Prot, Prosite provides almost 
sevenfold more false positives.

Prosite’s P-loop  

Multiple motif 
descriptors  

Swiss-Prot Benchmark  
36,774 true ATP-binding 
sequences

9,144 TPP-loop

9,255 TPdescriptors

6792 FPP-loop

1,094 FPdescriptors
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shuffled sequences. One example is the uncharacterized
Fe-S protein from Yersinia bercovieri (NCBI
ZP_00820831).

The face descriptor constructed from E. coli Complex II
2Fe-2S ferredoxin domain (which binds to the N-terminal
domain of succinate dehydrogenase/fumarate reductase
flavoprotein) matches this protein with an E-value of
4.4e-7. In contrast, the same descriptor achieves only
0.057 as best E-value when run against the shuffled ver-
sion of the uncharacterized sequence database.

gi|77956751|ref|ZP_00820831.1|: score 14.5, E = 4.4e-07

ferredoxin_binding_site *->yRrSCReavCGSdviR.vD<-*

SCR ++CGS+ i vD

ZP_00820831 --YSCRAGICGSCRITlVD

This suggests that uncharacterized Fe-S protein could be
part of the Complex II of Yersinia bercovieri interacting
with succinate dehydrogenase flavoprotein subunit. The
latter was found to be present in the available Yersinia
pestis genome via sequence similarity search.

In order to estimate the quality of descriptors, E-value
ratios for all descriptors in shuffled and original databases
were analyzed in dependence of descriptor length (Figure
3). Not surprisingly, most descriptors perform well
against SwissProt, in particular long descriptors. Signifi-
cant hits are rarer in uncharacterized sequences, which
had less or no influence in the generation of descriptors
(Figure 3C,D). Interestingly, the best results were achieved
by short and medium size descriptors. This suggests that
long descriptors are less likely to discover binding behav-
iour in unknown sequences.

Applications
The match of a descriptor pair allows identification of the
putative residues responsible for the interaction. This
information can be used to guide site-directed mutagene-
sis experiments that aim at disrupting the interaction.

The proposed method for binding site prediction can be
applied by itself or in combination with other methods. A
common technique for protein interaction prediction is
by identifying interacting homologues. This concept of so-
called interologues was first noted by Walhout et al. [35]

Table 1: Matches for ATP- and ADP-binding descriptors with various E-value thresholds.

Hits Precision Recall Threshold TP FP New

2873 96.59 7.55 1.00E-10 2775 98 771
3113 96.5 8.17 1.00E-09 3004 109 814
3459 96.18 9.05 1.00E-08 3327 132 854
3943 96.25 10.32 1.00E-07 3795 148 899
4488 95.9 11.7 1.00E-06 4304 184 929
5114 93.86 13.05 1.00E-05 4800 314 955
5773 92.74 14.56 0.0001 5354 419 982
6477 91.71 16.15 0.001 5940 537 1012
7477 91.53 18.61 0.01 6844 633 1053
8749 91.45 21.76 0.1 8001 748 1115

10349 89.43 25.17 1 9255 1094 1249
14165 78.86 30.38 10 11171 2994 1499
27926 53.67 40.76 100 14988 12938 2440
93261 25.85 65.56 1000 24109 69152 6397

A benchmark set containing 205.000 known ATP-binding or not ATP-binding SwissProt entries was used to measure the precision and recall of 306 
ADP/ATP binding descriptors. Hits were counted at various E-value cutoffs. Number of True Positives (TP), False Positives (FP) and number of 
those True Positives not found automatically by any Prosite-pattern (New) were determined.

ATP binding motifsFigure 5
ATP binding motifs. The ATP-binding descriptor derived 
from PDB entry 2BEK and HSSP is compared to the the P-
loop pattern (below). A single conflict occurs in the first 
position, and more specific detail is given about the second 
to the fifth residue. The descriptor therefore correctly 
detects other chromosome partitioning ATPases.

[AG]-x(4)-GK-[ST]
Page 7 of 12
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 4):S5 http://www.biomedcentral.com/1471-2105/8/S4/S5
and was applied in PPI prediction in e.g. [36,37]. The
usage of descriptors can serve here as a refinement: the
assumption that the residues responsible for the interac-
tion are present can be easily confirmed by descriptor
matches of the according families. Since a match provides
residue correspondences to the original structures used to
create the descriptor, the match alignment serves as an ini-
tial setup for homology modeling of the interface region.

Limitations
For some interface types only few or no structures are
available. This implies that protein-protein interaction
descriptors are inaccurately or not at all represented by the
descriptor library. On the other side, a pair of homolo-
gous sequences from HSSP does not necessarily preserve
the interaction of the structural template and thus does
not belong to a certain interface type. These sequences
"contaminate" the alignments of interface descriptors. It is
therefore essential to assure that recruited sequence pairs
not only maintain an interaction but also agree in inter-
face type, i.e. have similar sets of interface residues.

A related problem is that of interaction specificity. An
interface descriptor with N and M hits for each face,
respectively, induces N × M candidate interaction pairs.
Aytuna et al. [38] argue analogously for structural face
descriptor pairs and Deane et al. [37] verify interactions
between pairs of yeast proteins by known paralogous
interactions. Although the latter report only 1% false pos-
itives, results should be – as with any computational
method – ideally supported by further evidence from
experimental results.

Our technique to construct interface descriptors is inade-
quate for short, strongly dispersed or highly variable inter-
faces (e.g. loops in immunoglobulins). However, it is
possible to create a descriptor with our method that spans
over the surrounding secondary structures, which are
often well conserved.

Conclusion
We provide a library of Hidden Markov Model based
descriptors that capture important structural features such
as protein interfaces, ligand binding sites and active sites
of enzymes. The implications for predicting binding sites
and binding partners of proteins are many-fold. It pro-
vides insights into the biological processes the matched
protein might be involved in. Furthermore the method
can pinpoint interacting residues. It thus bears the poten-
tial for functional annotation and for assisting in discov-
ering new drug targets.

Cross validation with the available structural data for a
number of interface types reveals that two thirds of the
face descriptors have a recall between 70% and 100%.
Interaction prediction by recognizing both faces is intrin-
sically harder than just one-sided binding site detection.
The cross validation results reflect this fact, as the recall for
predicted interactions drops to 39%.

To demonstrate the biological significance of our descrip-
tors, we compare the descriptors to NetPro, a PPI database
with literature evidence. This way we could validate the
predicted interactions and moreover provide insights
about the critical interacting residues.

We created a benchmark for ATP-binding site detection.
From a database of Swiss-Prot annotated sequences, our
descriptors successfully recognized 30% while producing
much less false positives than Prosite's regular expression
for the P-loop motif.

Finally, an example for a significant hit for a binding site
in an uncharacterized protein from Yersinia bercovieri is
presented, which suggests a possible function as Complex
II (succinate dehydrogenase) subunit for this protein.

Methods
The workflow of our method is illustrated in Figure 6. The
method uses protein structural data that describes a bind-

Table 2: Literature evidence.

Number of interactions found Percentage E-value cutoff

230 1.6 0.001
266 1.9 0.01
304 2.1 0.1
348 2.5 1
2.226 15.7 10
11.157 78.8 100

Using 740 face descriptor pairs, a benchmark set of 14,150 high-confidence literature-curated interactions was searched. With a relaxed E-value 
cutoff we are able to match 78.8% of the literature interactions, thus pinpointing probable interface residues.
Page 8 of 12
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ing site to generate Hidden Markov Models. These are
then used to search Swiss-Prot and uncharacterized
sequences.

Protein-protein interaction (PPI) descriptors
For PPI descriptors, data is taken from the SCOPPI data-
base [30]. SCOPPI is a collection of domain interactions
and their interfaces of proteins in the Protein Data Bank
(PDB). An interface in SCOPPI consists of two faces. Sim-
ilar faces are clustered into face types, and similar inter-
faces are clustered into interface types [20]. For this study,
we use a non-redundant set of domain sequences for every
interface type at 98% sequence identity. SCOPPI provides
a multiple sequence alignment (MSA) constructed with
MUSCLE [39] for domains of the same SCOP [29] family.
Figure 7 shows such an alignment for one face type. Inter-
acting residues are depicted in uppercase. Columns of the
MSA are marked as interface columns if 50% of the
sequences contain an interacting residue at that position.
Interface columns are extended by first adding adjacent
columns (flanking) and then filling gaps of length 1 (pad-
ding). The results are segments of continuous interface
columns. For every segment, a Hidden Markov Model
(HMM) is generated with the HMMer software [28]. Seg-
ment HMMs are merged into one HMM by linking them
with insert states. The resulting HMM serves as face type
descriptor for a PPI. The linking of HMMs is adopted from
Meta-Meme [32], with the difference that insert and delete
states remain unchanged in our approach. The probability
for a self loop in the segment linking insert states is set to
l/(l+1), where l is the average length of the linker region
between two interacting segments. Finally, the merged
HMMs are calibrated using HMMer's calibration with
5000 random sequences. The resulting HMMs are directly
usable with the HMMer package [28] which provides
sound E-value calculation without assuming segment
scores to occur independently.

Despite the fact that homodimers account for a large set of
interface types, we omit them because it is often unclear
whether a homodimer interface is genuine or an artifact
from crystallization.

Protein-ligand interaction (PLI) descriptors
Due to the current lack of a comprehensive classification
for geometrical associations of protein-ligand interac-
tions, we generate PLI descriptors from single structural
templates:

0. For each structure in the PDB containing a protein and
a ligand:

1. Select a ligand

Work flowFigure 6
Work flow. a) All instances for interactions between family 
A and family B with identical geometric interface classification 
are retrieved from SCOPPI. Interface residues are indicated 
in the accompanying multiple sequence alignments. b) Inter-
face columns are defined by columns with more than 50% 
interface residues. Interface segments are defined by includ-
ing interface flanking columns. c) HMMs are constructed for 
each interface segment using HMMer's hmmbuild. d) HMMs 
are merged by insert states with high self-loop probabilities 
as to model the non-interacting linker region e) The collec-
tion of all merged HMMs constitutes the descriptor library. f) 
Sequence searches against Swiss-Prot and uncharacterized 
sequences with all descriptors were done using HMMer's 
hmmsearch

>

>

>
>

>

>

>
>

>?

a) Structural interface type from SCOPPI 

b) MSA for interface type instances   

c) HMMs for interface segments 

d) Merged HMMs  Descriptors 

e) Descriptor Database 

f) Sequence Database 

A B
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2. Iteratively expand the selection to include surrounding
cofactors

3. Identify the residues surrounding the ligand selection
within 4.5 Angstrom

4. If this yields at least three well conserved residues:

5. Include direct well conserved sequence neighbours

6. Include residues that are between selected sequence
neighbors

7. Add sequences identified as structural homologous by
HSSP

8. Generate HMMs for each segment

9. Combine HMMs into one descriptor connected by
inserting states that reflect the linker regions between seg-
ments

10. Add descriptors (one for each ligand) to library

11. The library can now be used to predict ligand binding
sites.

Conservation of residues is calculated by using the von-
Neumann-Entropy in combination with the substitution
matrix BLOSUM62 (details are given in [18]).

We evaluate the descriptors' accuracy in terms of standard
precision and recall, where precision is defined as TP/
(TP+FP) and recall is defined as TP/(TP+FN). TP, FP, and
FN denote the numbers of true positives, false positives
and false negatives, respectively.

List of abbreviations
ATP – Adenosine triphosphate, PLI – Protein-Ligand
Interaction, PPI – Protein-Protein Interaction, HMM –
Hidden Markov Model, SCOP – Structural Classification
Of Proteins, SCOPPI – Structural Classification Of Pro-
tein-Protein Interactions, PDB – Protein Databank, HSSP
– Homology-derived secondary structure of proteins, MSA
– Multiple Sequence Alignment, TP/FP/TN/FN – True/
False Positives/Negatives, resp.
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A sample alignment for RuBisCo N-terminal domainFigure 7
A sample alignment for RuBisCo N-terminal domain. Interacting segments are highlighted in corresponding colors in 
the alignment as well as in the structure. Interface segment definition is illustrated by the three lines below the alignment. 
Finally, the 10 fold von Neumann entropy is printed.

- 1 - 

c.1.14.1 - d.58.9.1 (9, 1), right face
3615       ----------qssryvnlalkEedlI-aggehvLCAyImkpkagygyvataahfaaesstgt------------gvd---alvYevd-----eaReLtKiaypvalfdrNitDgKAmIasFLtltMgnnQgmgdvEYAKMHDFYVpeayRalFD
48808      ------------sryvnlalkEedlI-aggehvLCAyImkpkagygyvataahfaaesstgtnvevcttddftrgvd---alvYevd-----eareLtKIaypvalfdrNitDgKamIasFLtltMgnnQgmgdvEYAKMHDFYVPeayRAlFD
62901      -----------------ltyytpeyq-tkdtdiLAAfRvTpqpgvppeeagaavaaesst-----v--wtdgltsldrykgrcYRiErvvgekdQyIaYvaypldlfE------EGSVTnMFtsiVgnvFgfkalRALRLEDLRIPPaYVKT--
17324      -----gagfkagvkdyrltyytpdyv-vrdtdiLAAfRmTpqpgvppeecgaavaaesstgtwttv--wtdgltsldrykgrcYdiEpVPgEdnQyIaYvay-idlfe------eGsVTnMFtsiVgnvFgfkalRALRLEDLRIPPaYVktFV
12992      ----asvgfkagvkdykltyytpeye-tldtdiLAAfRvSpqpgvppeeagaavaaesstgtwttv--wtdgltnldrykgrcYhiEpvagEenQyIcYvaypldlfe------eGSVTnMFtsiVgnvFgfkalRALRLEDLRIpVaYVKT--
18567      -------------------yvdkgyepskKrdiIaVfRvTpaegytieqaagavaaesstgtwttlypwyeqerwad-lsakaYdfHdM--gDgSwIvRiaypfhafe------eAnLPglLasiAgniFgmkrvKGLRLEDLYFpEklIREF-
40775      -----------------ltyytpeyq-tkdtdiLAAfRvTpqpgvppeeagaavaaesst-----v--wtdgltsldrykgrcYriErvvgekdQyIaYvaypldlfe------eGSVTnMFtsiVgnvFgfkalRALRLEDLRIPPaYVKT--
52679      ----asvgfkagvkeykltyytpeyq-tkdtdiLAAfRvtpqpgvppeeagaavaaesstgtwttv--wtdgltsldrykgrcYriErVvgEkdQyIaYvaypldlfe------EGSVTnMFtsiVgnvFgfkalRALRLEDLRIPPaYVKT--
3599       ----------qssryvnlalkEedlI-aggehvLCAyImkpkagygyvataahfaaesstgt----------trgvd---alvYevd-----eaReLtKiaypvalfdrNitDgKamIasFLtltMgnnQgmgdVEYAKMHDFYVpeayRalFD
49042      ----asvgfkagvkdykltyytpeye-tldtdiLAAfRvSpqpgvppeeagaavaaesstgtwttv--wtdgltnldrykgrcYhiEpvageenQyIcYvaypldlfe------eGSVTnMFtsiVgnvFgfkalRALRLEDLRIpVaYVKT--
70510      ----saagykagvkdykltyytpdyt-pkdtdlLAAfRfspqpgvpadeagaaiaaesstgtwttv--wtdlltdmdrykgkcYhiEpVqgEensyFaFiaypldlfe------eGSVTnILtsiVgnvFgfkaiRSLRLEDIRFPVaLVKT--
69974      -------------kdykltyytpeyq-tkdtdiLAAfRvTpqpgvppeeagaavaaesstgtwttv--wtdgltsldrykgrcYriErvvgekdQyIaYvaypldlfe------eGSVTnMFtsiVgnvFgfkalRALRLEDLRIPPaYVKT--
63891      -----------------ltyytpeyq-tkdtdiLAAfRvTpqpgvppeeagaavaaesst-----v--wtdgltsldrykgrcYriErvvgekdQyIaYvaypldlfe------eGSVTnMFtsiVgnvFgfkalrALRLEDLRIpPaYVKT--
29342      triknsryesgvipyakmgywnpdyq-vkdtdvLALfRvTpqpgvdpieaaaavagesstatwtvv--wtdlltaadlyrakaYkvdqVPnnpeQyFaYiayeldlfe------eGSIAnLTasiIgnvFgfkavkALRLEDMRLpLaYLKtFQ
59704      ---------dqssryvnlalkEedlI-aggehvLCAyImkpkagygyvataahfaaesstgt-----------rgvd---alvYevd-----eareLtKiaypvalfdrNitDgKamIasFLtltMgnnQgmgdvEYAKMHDFYVpeayRalFD
48883      ----saagykagvkdykltyytpdyt-pkdtdlLAAfRfspqpgvpadeagaaiaaesstgtwttv--wtdlltdmdrykgkcYhiEpvagEensyFaFiaypldlfe------eGSVTnILtsiVgnvFgfkaiRSLRLEDIRFpVaLVKT--
54975      ---------------ykltyytpeye-tldtdiLAAfRvSpqpgvppeeagaavaaesstgtwttv--wtdgltnldrykgrcYhiEpVagEenQyIcYvaypldlfe------eGSVTnMFtsiVgnvFgfkalrALRLEDLRIpVaYVKT--
69866      ----asvefkagvkdykltyytpeye-tldtdiLAAfRvSpqpgvppeeagaavaaesstgtwttv--wtdgltnldrykgrcYhiEpvagEenQyIcYvaypldlfe------eGSVTnMFtsiVgnvFgfkalRALRLEDLRIpVaYVKT--
59731      ---------dqssryvnlalkEedlI-aggehvLCAyImkpkagygyvataahfaaesstgt-----------rgvd---alvYevd-----eaReLtKiaypvalfdrNitDgKamIasFLtltMgnnQgmgdveYAKMHDFYVpeayRalFD
Interface: _________________________________***_*_*___________________________________________*__*_______*_*_*________________****_**___*___*_____**********_*_****__
Flanked:   ________________________________*********_________________________________________******_____*******______________*********_***_***___*******************_
Padded:    ________________________________#########_________________________________________######_____#######______________#################___###################_
vNE:       -------------2222021221214-43211201211220110122322112101000000---0--110111330-02122042220--23431232100021002------20122232011200110212213111202130301221--
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Individual recall results per face descriptor. Cross validation results for 
each interface type.
Click here for file
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