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A new barometric technique measuring stored stress in quartz inclusions via laser 

Raman microspectrometry was employed in an attempt to elucidate the extent of high-

pressure (HP) metamorphism in the Llano Uplift of central Texas. Rare lithologies within 

the Llano Uplift contain mineralogical evidence of HP metamorphism (pressures from 1.4 to 

2.4 GPa at temperatures from 650 to 775°C), but much of the uplift is composed of felsic 

gneisses lacking any HP signature; these felsic gneisses may never have transformed to HP 

assemblages, or they may have been thoroughly overprinted by later low-pressure events. 

Barometry via laser Raman microspectrometry computes entrapment pressure for a quartz 

inclusion in garnet from measurement of the displacements of its Raman peak positions 

from those of a quartz standard at atmospheric pressure. Quartz inclusions in garnets that 

grew in felsic gneisses under HP conditions should retain HP signatures, despite later 

overprinting. Application of the Raman microspectrometry technique should therefore allow 

barometry of previously uncharacterizable rocks.  
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For two localities in the Llano Uplift, entrapment pressures from Raman barometry 

(0.6-0.7 GPa and 0.2-0.3 GPa) were substantially lower than pressures expected based on 

conventional barometers (1.4 GPa and 1.6-2.4 GPa).  This absence of any HP signatures in 

the Llano rocks contrasts with more successful applications of the Raman technique by 

previous workers in high P/T blueschist-facies rocks. A key difference in the Llano rocks is 

that they reached peak temperatures at which intracrystalline diffusion in garnet, driven by 

compositional gradients produced during growth, had noticeable effects: complete 

homogenization of growth zoning had occurred in the locality that produced the greatest 

discrepancies between Raman and conventional pressures, and modest relaxation of zoning 

occurred in the locality with the smaller discrepancies.  The failure of the Raman technique 

to recover pressures consistent with conventional barometry in the Llano Uplift is therefore 

attributed to relaxation of stress on the quartz inclusions as the result of intracrystalline 

diffusion within the garnet.  This conclusion suggests that use of the Raman barometric 

technique must be restricted to rocks whose time-temperature histories produce only very 

limited intracrystalline diffusion in garnet, typically those rocks whose peak metamorphic 

temperatures fall at or below upper amphibolite-facies conditions. 
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INTRODUCTION 

An active pursuit within the metamorphic and tectonic research communities is the 

search for evidence of continental-margin subduction to great depths, in the form of 

orogens recording high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic 

conditions (HP = 1.0-2.5 GPa; UHP >2.5 GPa; Ernst and Liou, 2008). Most recognized 

UHP terranes are thin slabs of intensely deformed crust in which mineral assemblages that 

can be unambiguously recognized as forming at UHP conditions are rare, or are largely 

restricted to particular lithologies, such as mafic boudins within quartzofeldspathic gneisses 

(Ernst, 2001). The rarity of (U)HP assemblages is commonly attributed either to subsequent 

overprinting by lower-pressure assemblages (Ernst, 2001), or to failure of some lithologies to 

transform to (U)HP assemblages during subduction (Peterman et al., 2009). The first 

alternative implies that most or all of the crust underwent densification (conversion to high-

pressure assemblages) during subduction; the second alternative implies that much of the 

crust did not convert to higher-density assemblages.  Because crustal densification greatly 

reduces the buoyancy forces available to drive gravitational uplift of subducted continental 

materials, differentiating between these alternatives is vital to understanding the processes 

responsible for return of (U)HP terranes to the surface in the course of subduction-to-

collision orogenesis. 

The scarcity of mineralogic evidence for or against substantial densification of 

subducted crust has led to the development of unconventional techniques to determine 

pressure conditions during subduction and exhumation. This study seeks to address the 

densification question via a new barometric technique whose results may elucidate pressure 

conditions during garnet growth. 
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Crustal Densification 

A traditional model for continental collision at subduction zones presumes that low-

density materials making up the continental margin and attached to a downgoing high-

density oceanic slab are recrystallized during subduction to assemblages of denser minerals. 

Then, during exhumation, the bulk of the continental material retrogresses back to lower-

pressure, lower-density mineral assemblages (Ernst, 2001). This model is based on the fact 

that most recognized UHP terranes are composed primarily of quartzofeldspathic gneisses 

(Ernst, 2001). Evidence for (U)HP metamorphic conditions within the gneisses is usually 

restricted to either: (1) a limited volume percent of high-density rock types that bear 

mineralogical evidence of having formed at great pressures, such as mafic eclogites or garnet 

peridotites; or (2) mineral inclusions in garnet or zircon that are known to be stable only at 

UHP conditions, such as coesite or diamond. Ernst (2001) suggests that in most lithologies, 

the assemblages stable at UHP conditions back-reacted during exhumation. 

Recent research into the densification process has led to a different scenario, in 

which only portions of the subducted crust are actually transformed to higher-density 

assemblages. Peterman et al. (2009) investigated the P-T history of assemblage 

transformations during a subduction event that formed the Western Gneiss Region of 

Norway. The study linked Sm-Nd geochronology that dated garnet growth in 

quartzofeldspathic gneisses to models of compositional zoning patterns that constrained the 

P-T history during garnet growth.  They found that the majority of the Western Gneiss 

Region quartzofeldspathic gneiss was subducted and exhumed without ever transforming 

into higher-density eclogite-facies minerals. 
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A Test Case: Applying a New Barometric Technique in the Llano Uplift 

 The Llano Uplift of central Texas is an excellent candidate for exploring the issue of 

densification. During Grenville-aged orogenesis, the region experienced subduction followed 

by continent-continent collision. Resulting metamorphism can be broken down into three 

main phases (Carlson et al., 2007). P-T conditions during the earliest phase, a high-pressure 

event, have been estimated from mineral assemblages in mafic eclogites; across the various 

eclogite bodies in the uplift, peak conditions range from ~1.4 GPa at ~650 °C to ~2.4 GPa 

at ~775 °C. Two later phases of metamorphism produced ubiquitous overprinting by 

Barrovian assemblages at ~0.7 GPa and ~700 °C, and largely static recrystallization at ~0.3 

GPa and ~575 °C. 

Eclogite bodies are found as partially retrogressed boudins encased by felsic gneisses.  

Much of the omphacitic pyroxene in the eclogite assemblage has retrogressed to symplectites 

of sodian augite + oligoclase, or in more advanced stages, to amphibole and plagioclase 

(Carlson et al., 2007). Because the felsic gneisses lack any HP minerals, possibly due to the 

intense overprint that also affected eclogites, conventional barometric methods cannot be 

used to estimate pressure conditions during metamorphism. Carlson and Schwarze (1997) 

suggest that the similarity of garnet zoning profiles in both felsic gneisses and eclogites from 

the western part of the uplift indicate that felsic gneisses did transform, but that all of them 

retrogressed. A barometric technique that does not rely on mineral assemblages is therefore 

required to further elucidate the pressure history of the quartzofeldspathic gneisses.  

A new method developed by Enami et al. (2007) uses laser Raman 

microspectrometry to measure pressures retained in quartz inclusions within garnet. An 

elastic model relates the measured quartz-inclusion pressure to the pressure at the depth at 
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which the quartz inclusion was trapped. The usefulness of the Raman method is that it 

allows pressure estimates to be made for rocks lacking HP assemblages but containing 

garnets with quartz inclusions. 

The initial goal for this study was to test the accuracy of the Raman barometric 

technique by comparing pressure values for eclogitic garnets obtained from conventional 

thermobarometry on mineral assemblages to those obtained from Raman inclusion 

barometry. After verification of the technique, the next intended goal was to use the method 

on other, non-eclogitic garnetiferous rocks, to determine the geographic extent in the uplift 

of rocks containing garnet that grew under HP conditions. This in turn would indicate the 

proportion of crustal materials in the Llano Uplift that underwent densification during 

subduction. 

This study did not accomplish the above goals, because it encountered previously 

unrecognized shortcomings of Raman barometry that make the technique unsuitable for 

analysis of inclusions in garnets whose growth culminated at high temperatures. Enami et al. 

(2007) studied low-temperature rocks (470-570 °C, 470-635 °C and 660-710 °C), whereas 

those from the Llano Uplift experienced much higher metamorphic temperatures (650-

775°C). In this study, it was found that garnets that have undergone high-temperature 

diffusional homogenization no longer record geologically reasonable pressures.  This 

limitation restricts the applicability of Raman barometry to rocks in which only limited 

intracrystalline diffusion has taken place in garnet. 
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GEOLOGY OF THE LLANO UPLIFT 

A complete tectonic history for the Llano Uplift appears in Mosher (1998) and 

Mosher et al. (2008).  Carlson et al. (2007) provides a review of the relevant metamorphic 

history. Included below is a brief overview of the Precambrian evolution of the Llano Uplift, 

focusing on relevant information for this locality as a test case for quartz-inclusion 

barometry. 

The Llano Uplift is a ~9000 km2 complex of metamorphosed igneous and 

sedimentary rocks intruded by granite plutons. Evidence from the orogenic belt suggests that 

the entire region experienced a polymetamorphic history due to Mesoproterozoic 

subduction of the southern margin of Laurentia beneath an unknown continent (Carlson et 

al., 2007; Mosher et al., 2008). The overall timing of the continent-continent collision 

coincides with other Grenville-aged orogenic events in the eastern United States. The 

southwestern portions of the uplift were subducted more deeply than the northeastern 

portions, so rock types and P-T conditions vary across the uplift. 

Polyphase Metamorphism 

Metamorphism in the Llano Uplift has been grouped into three main phases: an 

early, high-pressure phase; an intermediate, moderate-pressure phase; and a late, low-

pressure phase.  

Direct evidence for the initial high-pressure metamorphism is limited to boudinaged 

eclogite bodies surrounded by quartzofeldspathic gneisses. Several eclogite pods crop out 

across the uplift (Fig. 1), though the bodies are generally restricted to a few meters or tens of 

meters in size (Anderson, 2001). Thermobarometry for these eclogite bodies yields estimates  
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Figure 1: Geologic map of  the Llano uplift, modified from Mosher (1998), after Barnes 
(1981). Eclogite localities are indicated by a star and labeled by name.
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for pressures and temperatures within Ernst and Liou’s (2008) field of ―HP metamorphism,‖ 

ranging from 1.4 to 2.4 GPa and from 650 to 775 °C (Carlson et al., 2007).  Felsic gneisses 

encasing eclogite pods do not have remnants of HP mineral assemblages.  However, 

eclogitic and gneissic garnets from the western part of the uplift have similar, diffusionally 

homogenized zoning profiles, suggesting that these garnets experienced similar metamorphic 

histories (Carlson and Schwarze, 1997).  Figure 2 shows the garnet zoning profiles from 

several garnets across the entire uplift. 

The intermediate metamorphism was a Barrovian-type retrogression event, at mid- 

to upper-amphibolite facies, in conjunction with intense deformation. Eclogites must have 

been present as discrete layers before the widespread deformation that accompanied the 

second phase of metamorphism, because boudins have foliated, amphibolitized margins and 

in some cases contain an internal foliation at an angle to the external foliation. Assemblages 

suitable for thermobarometry of this second metamorphic phase are scarce, due to intense 

overprinting by the final event. P-T conditions of ~700 °C and ~0.7 GPa are constrained by 

phase equilibria in pelites and in a strongly foliated ultramafic body, and by recrystallization 

mechanisms of quartz and feldspar in the felsic gneisses (Carlson et al., 2007).  

The final metamorphism was a low-pressure, largely static event. At 525-625 °C and 

0.3 GPa, this event occurred simultaneously with granitic plutonism (Bebout and Carlson, 

1986).  Buchan-series mineral assemblages are found to overgrow all earlier foliations, and 

static textures such as reaction coronas are present around garnets in the eclogite bodies. 

Additionally, secondary amphibole + plagioclase assemblages overprint the primary eclogite 

assemblage of garnet, sodic clinopyroxene, low-Al orthopyroxene, pargasitic amphibole and 

rutile (Carlson et al., 2007).  



Figure 2: Garnet zoning profiles by locality, showing MnO wt % from EPMA traverses. 
Figure from Carlson et al. (2007), after data published by Carlson and Schwarze (1997).

8
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The complex metamorphic history presents an obvious problem: little mineralogical 

evidence remains to establish the geographic extent of HP conditions. In the expectation 

that Raman barometry might reveal HP histories in overprinted rocks, this new technique 

was first applied to localities in the Llano Uplift for which conventional thermobarometry 

yielded unambiguous evidence of HP conditions during garnet growth, so that pressures 

from Raman barometry could be compared to results of conventional barometry. 

Localities for This Study 

Two localities were chosen for this study, with the intent for expansion to other 

localities once the method was verified: if the new barometer retrieved pressures in 

agreement with conventional pressures, the method could be applied to all garnetiferous 

rocks throughout the Llano Uplift. The first locality, Whitt Ranch, is in the northern part of 

the eastern half of the uplift. Only eclogites were analyzed from this locality. The second 

locality, Purdy Hill, is in the western half of the uplift.  Purdy Hill exposures include both 

eclogites and garnetiferous felsic gneisses. 

Whitt Ranch Eclogites 

The Whitt Ranch locality is the largest exposure of retrogressed eclogite in the Llano 

Uplift; it is a mafic body approximately 0.5 km in diameter, with an elliptical shape elongate 

in the direction of the local foliation. The outer portions of the eclogite body, up to thirty 

meters in thickness but typically thinner, are extensively retrogressed to a biotite amphibolite 

with a strong foliation parallel to the edges of the eclogite body. The interior features local 

compositional layering, and less retrogression. This body has been the focus of several 

previous studies (Carlson and Johnson, 1991; Carlson and Schwarze, 1997; Carlson et al., 
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2007), including one that found inclusions of omphacitic pyroxene within garnet rims. The 

matrix of omphacitic clinopyroxene has been replaced by a vermicular intergrowth of sodian 

augite and oligoclase (Fig. 3), in which regions of optical continuity reveal a coarser-grained 

protolith, if the vermicular intergrowth has not already been replaced by coarse amphibole.  

Crawford (2004) demonstrated that garnet crystallization began under amphibolite-facies 

conditions and ended under eclogite-facies conditions, based on a transition in the garnet 

inclusion suite.  In their interiors, garnets feature inclusions of quartz, andesine, 

epidote/clinozoisite, tschermakitic amphibole, and ilmenite, whereas garnet rims feature 

inclusions of rutile and occasionally omphacite, lack ilmenite and plagioclase, and rarely 

contain epidote and amphibole.  Significant amounts of garnet resorption have occurred in 

most rocks, which erased much of the evidence at garnet edges of growth at higher-pressure 

conditions.  Resorbed Whitt Ranch garnets have coronas of symplectitic hornblende, 

orthopyroxene and plagioclase, edged by magnetite (Carlson and Johnson, 1991).  

Additionally, garnets from Whitt Ranch retain steep zoning profiles, indicating that peak 

temperatures were not high enough or of sufficiently long duration to produce 

homogenization by intracrystalline diffusion (Carlson and Schwarze, 1997).  Representative 

core compositions are Alm52Grs26Sps10Pyp8And4, and rim compositions are 

Alm57Grs29Pyp13Sps1 (Carlson et al., 2007). 

Conventional thermobarometry for Whitt Ranch eclogites estimates primary-stage 

metamorphic P-T conditions at ~1.4 GPa and ~650 °C (Carlson et al., 2007).  Barometry 

was based on the garnet-rutile-ilmenite-plagioclase-quartz (GRIPS) equilibrium, and used 

inclusions at the transition between assemblages, so metamorphic pressures during rim  

  



Figure 3: Photomicrograph of  Whitt Ranch thin section WRMG 60. Light colored minerals 
are garnet (Grt) and quartz (Qtz). Coronas around garnet are hornblende, magnetite (Mag), 
and a symplectite zone of  hornblende (Hbl) + oligoclase (Pl). Outside of  garnet rim, retro-
gression of  primary omphacite produced the fine grained symplectite of  oligoclase (Pl) + 
sodian augite (Aug), which is often replaced by coarse amphibole (Hbl). Scale bar represents 
2.0 mm. Abbreviations after Kretz (1983). 

11
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growth were likely higher but cannot be quantified. Temperature estimates from Fe-Mg 

exchange are 611 ± 24 °C for garnet-clinopyroxene and 693 ± 25 °C for garnet-amphibole.  

For elastic-model calculations that will be explained below, a median temperature of 650 °C 

was used for Whitt Ranch. 

Purdy Hill Eclogites 

The Purdy Hill eclogite exposure crops out as multiple lenses of tens-of-meter-long 

bodies that are elongate in the direction of the surrounding foliation. Many of these bodies 

are associated with quartz masses that discontinuously line the margins of the eclogite 

occurrences and occupy spaces between them. Mapping by Anderson (2001) indicates that 

these mafic bodies crop out in patterns that trace structural trends evident in the 

surrounding quartzofeldspathic gneiss. The Purdy Hill eclogites are generally the better 

preserved of the two eclogites studied: they are less retrogressed, so original textures and 

mineralogy are more easily identified.  Primary minerals present in Purdy Hill eclogites are 

garnet, sodian augite, low-Al enstatite, pargasite, and rutile (Fig. 4).  The typical inclusion 

suite matches the mineralogy of the matrix phases, plus quartz, but with little orthopyroxene; 

these inclusions indicate that garnet growth occurred under eclogite-facies conditions. 

Garnet zoning profiles in these garnets are relatively flat, indicating homogenization by 

intracrystalline diffusion at peak temperature (Carlson and Schwarze, 1997). Compositions of 

garnets in the Purdy Hill eclogites are near Alm59Pyp19Grs14Sps4And4 (Anderson, 2001, 

Appendix B-1). Amphibolite-facies retrogression produced overprint textures similar to 

those at Whitt Ranch. 

Extensive thermobarometry has been undertaken to accurately assess the 

equilibration conditions for the Purdy Hill eclogites (Carlson et al., 2007). Pressures were  
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Figure 4: Photomicrograph of  Purdy Hill eclogite thin section PH 97-63b. Pinkish mineral is 
garnet (Grt). Coronas around garnet are a symplectite zone of  pargasite (Prg) + oligoclase 
(Pl). Within Purdy Hill eclogites, magnetite (Mag) and some primary clinopyroxene are found 
outside of  garnet reaction rims. Retrogression of  omphacite produced the fine grained sym-
plectite of  oligoclase (Pl) + sodian augite (Aug), which is often replaced by coarse amphibole 
(Hbl). Scale bar represents 2.0 mm. Abbreviations after Kretz (1983). 
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obtained from aluminum-in-orthopyroxene barometry. Cores were estimated to have grown 

at 2.2 GPa, whereas rims grew at 1.6 GPa; continuous Al zoning between these limits 

implies a continuous decrease in pressure during garnet growth.  Temperatures obtained 

from Fe-Mg exchange thermometry between garnet and clinopyroxene, garnet and 

orthopyroxene, and garnet and amphibole range from 738 to 867 °C.  The accepted P-T 

conditions for the Purdy Hill eclogites are 2.2 to 1.6 GPa and 775°C. 

Purdy Hill Felsic Gneisses  

Field relations at Purdy Hill show that eclogite boudins are elongated and partially 

foliated in the same orientation as the overall foliation within the surrounding gneisses, 

indicating that the boudins were discrete layers within the gneiss prior to the deformation. 

This physical relationship suggests the gneisses and eclogites share a common history. 

Garnets from both rocks also share flat zoning profiles (Carlson and Schwarze, 1997), 

meaning that both sets of garnets reached peak temperatures sufficient to drive diffusional 

homogenization. Garnet compositions in the gneisses (E. Lane, unpublished data) are close 

to Alm79Pyp13Grs4Sps4. Other minerals present are quartz + plagioclase + biotite ± 

sillimanite + tourmaline (Fig. 5). The presence of sillimanite rather than kyanite indicates 

equilibration at lower pressures than those attained by the included eclogite pods. Sillimanite 

was apparent in the matrix of three of the four samples from this area that were used in this 

study, and was found as rod-like inclusions in the rims of some garnets.  Garnet cores were 

free of sillimanite inclusions. Inclusions were typically quartz, although some opaque 

minerals were also present as inclusions. Thermobarometry for the quartzofeldspathic 

gneisses at Purdy Hill cannot be done via conventional methods, for lack of appropriate 

assemblages.       
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Figure 5: Photomicrograph of  Purdy Hill felsic gneiss thin section LU 02-9. Pinkish mineral 
is garnet (Grt). Other minerals include quartz (Qtz), biotite (Bt), and sillimanite (Sil). Scale bar 
represents 2.0 mm. Abbreviations after Kretz (1983). 

Qtz
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Geological evidence to constrain the metamorphic history for Llano’s 

quartzofeldspathic gneisses is sparse, and is split between two competing theories. On one 

hand, garnet zoning and field relationships suggest a shared HP history with the eclogites, 

but original mineral assemblages may have been heavily overprinted by later events.  On the 

other hand, the presence of sillimanite and the lack of HP mineral assemblages in the 

gneisses suggest that the gneisses might not have experienced the HP metamorphism at all.  

If any of the garnet in these gneisses preserves a HP signature in the form of high residual 

pressures on included quartz crystals, this question can be resolved.  Thus the new 

barometric method of Raman microspectrometry of quartz inclusions in garnet provides a 

promising opportunity to determine the pressures at which garnet grew, despite any 

overprinting that has occurred. 
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BACKGROUND 

Theory from Previous Work  

The quartz-inclusion barometer was first applied by Enami et al. (2007) to investigate 

the areal extent of rocks experiencing high-P/T conditions in the Sanbagawa metamorphic 

belt of Japan.  This belt features eclogite-facies rocks typical of any high-P/T metamorphic 

belt, but as in the Llano region, the occurrence of HP assemblages is sparse.  Enami et al. 

(2007) hypothesized that during exhumation, many of the HP assemblages had been 

recrystallized to amphibolite-facies or lower-grade mineral assemblages.  In order to see 

through this overprint, they devised a method for determining the entrapment pressure of a 

quartz inclusion in garnet.  

The basic concept behind this new barometer is that quartz crystals included within 

garnet retain, after exposure at the surface, a measurable pressure (the residual pressure) that 

can be related to the pressure at which the inclusion was surrounded during garnet growth 

(the entrapment pressure).  The residual pressure preserved in the quartz crystal after 

exhumation and cooling can be determined using a laser Raman microspectrometer together 

with a set of experimental calibrations of displacement of Raman peaks.  The residual 

pressure can then be related quantitatively to the entrapment pressure through a calculation 

based on an elastic-strain model of the changes that occur during exhumation and cooling.  

These changes are illustrated in Figure 6. 

Enami et al. (2007) reported several significant findings: (1) completely surrounded 

quartz inclusions in garnet had systematically different Raman shifts when garnets from 

eclogite and epidote-amphibolite host rocks were compared; (2) residual pressures    
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Figure 6: Schematic depiction of  the exhumation and cooling process and its effects on a 
quartz inclusion in garnet, based on sphere-in-hole model of  Van der Molen (1981). Although 
decompression and cooling occur simultaneously in nature, their effects are shown separately 
here to illustrate the approach taken by Van der Molen to calculate residual pressure.
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back-calculated from conventional thermobarometry were consistent with Raman-measured 

residual pressures to within ± ~0.2 GPa; and (3) the areal extent of HP metamorphism 

based on Raman data was considerably larger than the region in which petrologic evidence 

of HP metamorphism was preserved.  The Raman-measured residual pressure results were 

split into two populations of data: one set representing inclusions in rocks that reached 

eclogite-facies conditions before being overprinted; the other representing inclusions in 

epidote-amphibolite rocks lacking an earlier HP history.  A wide spread existed between the 

two populations, greater than the spread due to the value cited for accuracy of the method. 

In a second paper, Mouri and Enami (2008) proposed that this method had the potential for 

detecting high-pressure garnet growth in extensively retrogressed rocks.  This innovative 

study held much promise for other polyphase metamorphic terranes in which HP 

assemblages are rare or absent due to overprinting by lower pressure assemblages. 

Quartz Inclusion Barometry via Laser Raman Microspectrometry 

Raman microspectrometry measures the scattering of monochromatic light upon 

interaction with a sample.   When a sample is excited by photons from a light source with a 

specific frequency, most light is absorbed and reemitted at the same frequency. This is elastic 

Rayleigh scattering.  However, a few of the photons (e.g. 1 in 105) are absorbed by the 

sample, interact with the molecules, and are reemitted at a frequency different from that of 

the incident photons. This inelastic scattering is the Raman effect; it produces a shift up or 

down in wavenumber from the original monochromatic frequency. The Raman effect is very 

weak, but it allows characterization of a material’s molecular modes, including the vibrational 

and rotational modes. 
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A laser Raman microspectrometer has four crucial components: an excitation source 

(a laser); a sample illumination system and light collection optics (a specialized microscope); 

a wavelength selector to differentiate the elastically and inelastically scattered photons (a 

filter); and a detector to record the intensity and wavenumber of inelastically-scattered 

photons (typically a charge-coupled device, or CCD).  The microspectrometer produces a 

spectrum from data collected by the detector showing the frequencies at which the weak 

inelastic scattering occurs. Intense scatter at a specific frequency produces a peak, and each 

mineral produces a pattern of peaks with different frequency shifts, which depend upon its 

unique bond energies.  

Figure 7 shows the Raman spectra produced by garnet and by the common inclusion 

minerals feldspar and quartz. The spectrum of α-quartz has peaks near the Raman 

wavenumbers (νi) 464 cm−1, 205 cm−1 and 128 cm−1 (Fig. 8). The 464 cm−1 peak is dominated 

by bending of the O-Si-O bond; the 205 cm−1 peak is likewise dominated by the O-Si-O 

bending vibrations, but is also affected by stretching and twisting of the Si-O bond; and the 

128 cm−1 peak is primarily dominated by the Si-O-Si bond stretching, but also affected by 

the same bending as the other two bonds, and twisting of the Si-O bond (Etchepare et al., 

1974). Pressure applied to a quartz crystal causes a movement of Raman peaks to 

wavenumbers higher than 464 cm−1, 205 cm−1 and 128 cm−1, as a result of increases in the 

vibrational frequencies of the O-Si-O bonds in quartz (Dean et al., 1982; Liu and Mernagh, 

1992; Schmidt and Ziemann, 2000).  These changes in peak position as a function of 

pressure have been calibrated in diamond-anvil-cell experiments (Liu and Mernagh, 1992; 
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Figure 7: Raman spectra for garnet, plagioclase and quartz. These spectra were obtained 

using a lower-quality "notch" filter, preventing data collection below ~160 cm−1. All data 

used for calculations was collected after the higher-quality "edge" filter was installed. The 

―edge‖ filter allows data collection between ~80 and 160 cm−1.  
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Figure 8: The ω1 and ω2 relationships are indicated on this unfitted spectrum indicating 

relative quartz standard peak locations. 
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Schmidt and Ziemann, 2000).  With an appropriate laser, the microspectrometry is non-

destructive, and the Raman spectrum of a quartz inclusion is easily measured. 

By measuring changes in the Raman spectrum of a natural α-quartz inclusion relative 

to the spectrum of an α-quartz standard at atmospheric pressure, the residual pressure on 

the inclusion can be determined.  To compare the standard to the sample, Enami et al. 

(2007) measured the difference between the positions of the 464 cm−1 peak and the 205 cm−1 

peak, and also the difference between the 205 cm−1 peak and the 128 cm−1 peak.  The relative 

wavenumber differences are defined by the following parameters:               and 

              (Fig. 8).  The calculated ω values for the α-quartz standard and the 

sample can then be compared to determine the total wavenumber difference:     

  
           

       and       
         

        .  Enami et al. (2007) used these 

relative measures to correct for any fluctuations in the locations of quartz peaks due to 

changes in measurement conditions, such as instrument calibration or room temperature.  

They correlated the Raman shift to pressure on the inclusion using the experimental results 

of Liu and Mernagh (1992) and Schmidt and Ziemann (2000); Figure 9 illustrates these 

correlations as determined by Schmidt and Ziemann (2000). 

To relate the residual pressure to the entrapment pressure, Enami et al. (2007) used 

the spherical-inclusion model of Van der Molen (1981) to approximate the normal stresses, 

or residual pressures, within and surrounding a spherical inclusion.  This model assumes that 

an inclusion is completely surrounded by a confining medium to an infinite distance around 

the inclusion.  The model accounts for changes in pressure and temperature during 

exhumation and cooling, but holds the elastic parameters of the minerals constant.  Van der  
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Figure 9: Calibration relating ω1 and ω2 to residual pressure (MPa), after data published by 

Schmidt and Ziemann (2000). 
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Molen’s ―sphere-in-hole‖ equation produces a value of pressure at the time of entrapment 

from the residual pressure value derived via Raman microspectrometry.  The equation 

describes the residual pressure      on a spherical inclusion in an isotropic matrix that was 

included at an entrapment pressure       and has experienced a change in temperature, 

               (in Kelvin): 

     
    

                 
{                 -              } Eqn. 1 

The variables are the thermal expansion coefficients and the bulk and shear moduli, or 

elasticity parameters, for each mineral: the bulk modulus is symbolized by   with units of 

GPa, and the shear modulus is symbolized by  , also with units of GPa.  The factor for the 

difference in the thermal expansivity parameters    has units of K-1 and is defined as 

             .  Values for these parameters come from data (Table 1) that was 

compiled by Enami et al. (2007) from primary sources (Bass, 1995; Fei, 1995; Wang and Ji, 

2001).  The effects of variations in garnet composition are very small (Carlson et al., 2009); 

however, all calculations in this study used elastic parameters linearly interpolated among 

endmembers based on the average compositions.  
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Table 1: Bulk (κ) and shear (μ) moduli and thermal expansion parameters (A) at standard 

conditions (10−4 GPa and 298 K), after Enami et al. (2007). 

Mineral κ (GPa) μ (GPa) A (K 1) 

Quartz 37.8*  2.38E 05‡ 

Almandine 175.1† 92.1† 1.57E 05‡ 

Pyrope 170.1† 90.2† 1.98E 05‡ 

Grossular 166.3† 98.1† 1.63E 05‡ 

Spessartine 171.8† 93.3† 1.71E 05‡ 

* Bass (1995). 
† Wang and Ji (2001). 
‡ Fei (1995). 
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METHODS FOR THIS STUDY 

Laser Raman microspectrometry is straightforward but the complexity of natural 

rock samples requires careful development of analytical methods.  Methods for this study 

were based on those developed by Enami et al. (2007) and are detailed below.  In addition, 

protocols for depth profiling were added to help account for potential sources of error.  

The instrument used for this study is housed in the University of Texas at Austin 

Center for Electrochemistry.  Raman spectra produced by a 514-nm Ar laser at 50 mW were 

acquired using a Renishaw inVia RM 2000 Raman spectrometer.  To focus on the sample, 

the spectrometer was coupled to a Leica INM200 optical microscope, using a Leica 100X 

objective.  The entire instrument was interfaced with a computer-controlled XYZ-stage 

(Prior Scientific).  The Raman spectrometer was equipped with a thermoelectrically cooled 

charge-coupled detector (CCD) camera (Wright Instruments, Ltd.) for spectral acquisition, 

while the optical microscope was fitted with a Sony DXC-970MD color CCD camera for 

general sample viewing.  The microspectrometer’s confocal setup allowed spectral 

acquisition at selected depths within the thin section.  The confocal mode of the instrument 

essentially focuses the laser beam on a specific level in the thin section and permits only light 

scattered from that level to reach the CCD.  Use of the confocal mode is required for several 

reasons: (1) it permits measuring spectra for a quartz inclusion below the surface of the thin 

section; (2) it permits evaluation of whether a quartz grain is completely enclosed by garnet; 

and (3) it permits spectra to be gathered that originate from scatter entirely within quartz.  

Horizontal spatial resolution was ~1 µm; vertical spatial resolution from the confocal setup 

was ~2 μm.  The high spatial resolution means that spectra can be collected from small 
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inclusions; however, better results come from either larger inclusions or longer measurement 

times. 

Prior to Raman microspectrometry, individual inclusions were carefully examined on 

the petrographic microscope to evaluate their suitability.  Standard-thickness (30 µm), 

polished, uncovered thin sections were used for most samples.  Two thin sections of Purdy 

Hill gneiss (LU 02-6, LU 02-9) were thicker than normal (~65 µm).  Due to the small size of 

the inclusions, careful petrography was required to select inclusions that were of quartz 

rather than another phase, such as plagioclase.  Discrimination of quartz was based on its 

colorless appearance, near-spherical habit, and extremely low birefringence (lower than 

typical standard quartz in thin section).  The identity of all inclusions was verified via Raman 

microspectrometry.  Suitable inclusions must be completely surrounded by garnet, must be 

as equant as possible to accord with the assumptions in the elastic model, and must not be 

located along a grain boundary or crack within the garnet. 

During Raman measurements, several steps were taken to maximize precision and 

accuracy.  First, the instrument was calibrated by the lab manager using a silicon wafer with a 

strong peak at 520 cm−1.  Second, an α-quartz standard was measured for 180 seconds over a 

range between 100 and 600 cm−1.  The standard was an (0001) section of a euhedral α-quartz 

crystal from a Brazilian pegmatite.  Spectra were measured at ~6 μm below the surface of 

the standard to generate intensities similar to those for completely surrounded inclusions 

below the surface.  The analysis time was chosen as the shortest interval needed to produce a 

clean, low-noise spectrum.  Third, depth profiles were made to locate the vertical center of 

each inclusion.  Each depth profile was set up as an automated process in which the 

instrument acquired spectra at 2 μm intervals into the thin section (Fig. 10).  Scan modes for  
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Figure 10: Raman spectra are collected in confocal mode at closely spaced depths (~2 μm in-
tervals) within the thin section. The vertical center of  the inclusion is identified by spectra with 
low or zero intensity garnet peaks and  high intensity quartz peaks. Data collected by Casey 
Corbin (Corbin, 2010).
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the depth profiles encompassed ~500 cm 1 on each side of 520 cm−1, and this mode was the 

fastest way to verify the inclusion was surrounded by garnet.  Measurement times during 

depth profiles were often as short as 60 seconds but could be as long as 600 seconds if 

spectra were noisy.  After the depth profile was completed, a depth inside the thin section at 

the approximate center of the inclusion was chosen to ensure that peak positions would not 

be compromised by edge effects generated near the boundary between garnet and quartz.  

Edge effects are buildups in stress at the interface between garnet and quartz crystals.  

Enami et al. (2007) showed that regions of an inclusion within ~2-4 μm of the grain 

boundary were commonly subject to edge effects.  Thus, the centers of large inclusions (e.g., 

12 μm in diameter) are more likely to be unaffected than smaller inclusions (e.g., 5 μm in 

diameter).  A final measurement, longer in time than those made during the depth profile, 

was made at the inclusion center to decrease background noise relative to peak intensities.  

Typical measurements were between 300 and 1200 seconds. 

Once this final measurement was made, the raw data were exported into PeakFit 

v4.06 to determine peak centers.  Linear fits to background were subtracted from all spectra.  

Outliers such as single ―spike‖ data points clearly from cosmic rays, or data points near or 

below the edge filter at ~80 cm−1 were also eliminated.  The three main quartz peaks were 

manually fitted using a combination of Gaussian and Lorentzian curves to account for each 

peak’s unique shape. 

Enami et al. (2007) determined residual pressures from both Δω1 and Δω2 (cf. Fig. 9).  

When all three peaks are present at high intensity, they can be fit without large errors and in 

these cases Δω1 and Δω2 should produce identical values for residual and entrapment 

pressures.  For this study, because the goal was calculation of an entrapment pressure, the 
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Δω1 values were used because the 464 cm−1 and 205 cm−1 peaks were more intense and easier 

to fit reliably than the lower-intensity 128 cm−1 peak.  In addition to being low in intensity in 

some spectra, the 128 cm−1 peak was also occasionally masked by strong epoxy fluorescence 

at ~105 cm−1.  At times, the 205 cm−1 peak was broad and could not be fit reliably, so an idea 

in this study was to create a ―Δω3‖ calibration curve based on the relationship between the 

464 and 128 cm−1 peaks.  However, this curve is subject to relatively poor precision (small 

differences in ―Δω3‖ lead to large differences in inferred residual pressure), so it was not used 

beyond an initial investigation. 

Error Prevention 

Because this is an untested method, additional precautions were taken to prevent 

errors that may affect the data quality, and to assess uncertainties in the measurements.  

Prior to acquiring data for a particular inclusion, the following criteria were checked. 

Inclusions were as near-spherical as possible, to ensure that they could be modeled 

accurately.  Inclusions along cracks or near garnet edges were not used, nor were inclusions 

that were possibly exposed to the top or bottom of the thin section, as release of stress is 

possible in these circumstances.  Finally, the depth profiles were added to the method to 

ensure that the inclusion was completely surrounded, and to find the centers of inclusions. 

The edge effects noted by Enami et al. (2007) could cause an increase in calculated 

residual pressure, so the final spectra were taken as near to the inclusion center as possible.  

Spectral acquisitions were as long as reasonably possible, to obtain measurements with low 

background noise relative to the signal intensity.  At times during measurements longer than 

about 20 minutes or during long depth profiles, the mechanical stage would freeze or move 
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slightly, moving the inclusion out of focus.  In these situations the sample would have to be 

re-measured because the data were unreliable.  Peakfitting is another potential source of 

error, insofar as ambiguity about the position of a peak affects the Δω1 calculations, which 

consequently affects the estimates of residual and entrapment pressure.  Spectra with low 

background noise were preferable because the peaks were easier to fit reliably. 

One other step added to the methods in this study was to evaluate the reproducibility 

of the laser Raman microspectrometric technique.  This was done by repeatedly measuring 

the Raman spectrum of a specific quartz inclusion, once during each session over a several-

month period.  The inclusion was measured at the same depth and for the same amount of 

time during each session.  This test will define the reproducibility of measurements from the 

University of Texas at Austin laser Raman microspectrometer. 
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RESULTS 

The results from the quartz standard and the reproducibility test will be presented 

first, to evaluate the precision of the technique.  Results for the residual pressure and 

entrapment pressure from each of the three rock types will then be presented, and an 

example thin section and data specific to each thin section will be included.  For both the 

reproducibility test and the locality results, all values for residual and entrapment pressure 

will be derived from the Δω1 calculation.  A list of all samples used in this study is included at 

the beginning of the Appendix, followed by detailed sample descriptions and calculation 

results for each of them.  The full results for each inclusion are accompanied by thin section 

photomicrographs and plots of spectra from the quartz standard and the inclusion. 

Quartz Standard 

The quartz standard was measured 53 times, usually for 180 seconds.  Figure 11 is a 

plot of the 464 cm−1 and 205 cm−1 peaks for quartz over the ~15 month period of this study.  

Table 2 lists the locations of the three major peaks for each measurement session.  The most 

significant result from the repeated quartz-standard measurements is the presence of two 

discontinuities in peak position for the 464 cm−1 and 205 cm−1 peaks.  Despite these abrupt 

changes, the ω1 calculation is relatively consistent over the course of the study (Fig. 12), with 

an average value of 258.3 ± 0.4 cm−1.  Enami et al. (2007) report a standard deviation for ω1 

of ± 0.3 cm−1 for their measurements on a quartz standard. 

Reproducibility Results 

The sample chosen for reproducibility studies was from the Whitt Ranch locality, 

sample WRMG SR-3 (Fig. 13).  Over about three months, the inclusion was measured 16  
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Figure 11: Measured Raman peak locations from the quartz standard after peak fitting. 

 

 
 

Figure 12: Calculated ω1 for the quartz standard. 
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Table 2: Data from all quartz standard measurements. 

Date of 
Measurement 

ν128 
(std) 

ν205 
(std) 

ν464 
(std) 

ω1 ω2 

11/20/2008 129.83 209.35 466.41 257.06 79.52 

2/6/2009 128.92 206.87 465.58 258.71 77.95 

2/17/2009 125.3 203.88 462.27 258.39 78.58 

2/20/2009 124.52 203.89 461.43 257.54 79.37 

2/26/2009 125.15 203.87 461.95 258.08 78.72 

3/4/2009 125.19 204.06 462.31 258.25 78.87 

3/10/2009 125.32 204.14 462.08 257.94 78.82 

3/11/2009 125.56 203.85 462.27 258.42 78.29 

3/31/2009 124.92 204.04 462.10 258.06 79.12 

4/2/2009 125.29 203.97 462.53 258.56 78.68 

4/9/2009 125.38 203.77 462.28 258.51 78.39 

4/13/2009 125.41 203.79 462.51 258.72 78.38 

4/15/2009 126.02 204.23 462.81 258.58 78.21 

4/21/2009 125.36 203.88 462.5 258.62 78.52 

4/30/2009 125.52 203.55 462.22 258.67 78.03 

5/6/2009 125.1 203.91 462.26 258.35 78.81 

5/7/2009 124.96 202.96 461.46 258.5 78 

5/14/2009 124.8 203.2 461.5 258.3 78.4 

5/28/2009 128.86 207.55 465.19 257.64 78.69 

6/3/2009 128.47 207.4 465.1 257.7 78.93 

6/9/2009 128.01 206.41 464.63 258.22 78.4 

6/17/2009 127.85 206.63 464.56 257.93 78.78 

6/22/2009 128.19 206.91 465 258.09 78.72 

6/24/2009 128.59 207.11 465.2 258.09 78.52 

6/26/2009 128.49 206.77 465.31 258.54 78.28 

7/9/2009 128.36 207.33 464.9 257.57 78.97 

7/13/2009 127.56 205.37 464.59 259.22 77.81 

7/15/2009 127.55 205.12 464.56 259.44 77.57 

7/20/2009 127.33 206.21 464.44 258.23 78.88 

7/22/2009 127.35 205.51 464.2 258.69 78.16 

7/24/2009 127.65 205.47 464.48 259.01 77.82 

7/28/2009 128.2 206.55 464.9 258.35 78.35 

8/4/2009 127.99 206.34 464.59 258.25 78.35 

8/12/2009 128.23 206.59 464.78 258.19 78.36 

8/13/2009 127.76 206.09 464.63 258.54 78.33 

8/18/2009 128.21 206.77 464.9 258.13 78.56 

8/19/2009 128.39 206.77 464.97 258.2 78.38 
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8/24/2009 128.79 206.37 465.19 258.82 77.58 

8/26/2009 128.75 206.92 465.37 258.45 78.17 

9/1/2009 128.43 206.83 465.2 258.37 78.4 

9/8/2009 128.38 206.9 464.9 258 78.52 

9/10/2009 128.32 206.91 464.97 258.06 78.59 

9/15/2009 127.99 206.55 464.72 258.17 78.56 

9/17/2009 127.62 206.43 464.37 257.94 78.81 

9/25/2009 127.95 206.2 464.69 258.49 78.25 

9/30/2009 127.76 206.5 464.29 257.79 78.74 

10/2/2009 128.25 206.72 464.96 258.24 78.47 

10/14/2009 129.46 207.75 465.82 258.07 78.29 

10/16/2009 129.22 207.65 465.9 258.25 78.43 

10/28/2009 129.26 207.26 465.62 258.36 78 

11/4/2009 128.23 206.42 465.32 258.9 78.19 

2/1/2010 127.23 206.26 464.24 257.98 79.03 

2/2/2010 126.94 205.84 463.78 257.94 78.9 

Average: 127.32 205.80 464.09 258.29 78.48 

Std. Dev.: 1.49 1.48 1.37 0.42 0.40 
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Figure 13: Inclusion from WRMG SR-3. Scale bar is approximately 50 μm. 
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times, generally for a time period of 300 seconds.  In six instances this measurement time 

was increased due to background noise.  Table 3 lists the positions of the three main peaks 

from those measurements, along with the value of Δω1 and the calculated entrapment 

pressure for each of the measurements.  A histogram of the Δω1 values for the WRMG SR-3 

inclusion reveals that the results vary over a range of ~6 cm−1 (Fig. 14).  The average for Δω1 

is 3.7 ± 1.8 cm−1.  The standard deviation is more than four times larger than the level of 

reproducibility for ω1 on the quartz standard reported above.  The average residual pressure 

is 0.22 ± 0.11 GPa, and the average entrapment pressure is 0.86 ± 0.26 GPa.  These levels of 

reproducibility cannot be referenced to any results from Enami et al. (2007), as they did not 

publish evidence that they performed comparable tests. 

Each of the individual measurements of ∆ω1, residual pressure, and entrapment 

pressure reported below is assigned uncertainties equal to the values obtained from this 

evaluation of reproducibility. 

Localities 

Whitt Ranch Eclogites 

Twenty-six inclusions from seven Whitt Ranch thin sections were suitable for Raman 

spectral acquisition (Table 4).  A representative inclusion for the Whitt Ranch is from thin 

section 61, garnet 1 (Fig. 15).  The inclusion measured approximately 15.9 μm by 9.5 μm, 

with a vertical thickness of about 18 μm (Fig. 16). Measurements for this inclusion were 

made on April 15, 2009.  Figure 17 shows the spectrum from the quartz standard on that day 

plotted at the top, and the spectrum from the inclusion plotted at the bottom.  The inclusion 

was measured for 180 seconds at 6 μm below the surface. The Δω1 value for this inclusion  
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Table 3: Data from repeated Raman microspectrometry measurements of WRMG SR-3. 

Date of 
Measurement 

Measurement Time (s) Δω1 Pentrap [∆ω1] (GPa) 

6/9/2009 300 2.69 0.71 

6/17/2009 1200 4.03 0.90 

6/22/2009 600 2.23 0.64 

6/24/2009 600 3.36 0.80 

6/26/2009 300 4.39 0.95 

7/13/2009 600 5.87 1.16 

7/15/2009 300 3.28 0.79 

7/20/2009 300 5.81 1.16 

7/22/2009 600 5.76 1.15 

7/24/2009 300 5.82 1.16 

8/4/2009 300 1.28 0.50 

8/13/2009 300 5.25 1.07 

8/24/2009 300 3.32 0.80 

8/26/2009 300 2.58 0.69 

9/8/2009 300 4.54 0.97 

9/10/2009 300 -0.29 0.26 

 Average: 3.75 0.86 

 Standard Deviation: 1.79 0.26 
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Figure 14: Histogram of Δω1 values for WRMG SR-3 reproducibility tests. Average Δω1 is 
3.75 cm−1.  
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Figure 15: Whitt Ranch eclogite thin section WRMG 61, garnet 1. Scale bar is approximately 
2.0 mm.  
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Table 4: Results from Raman microspectrometry measurements for Whitt Ranch eclogites. 

 
Thin Section Garnet 

Date of 
Measurement 

Measurement 
Time (s) 

Δω1 
Presid [Δω1] 

(MPa) 
Pentrap [Δω1] 

(GPa) 

1 WRMG 2 2 4/13/2009 300 4.38 258 0.95 

2 WRMG 2 3 8/19/2009 300 6.04 354 1.19 

3 WRMG 2 4 8/19/2009 300 3.10 184 0.77 

4 WRMG 2 5 8/19/2009 600 2.14 128 0.63 

5 WRMG 2 6 8/24/2009 300 5.54 325 1.12 

6 WRMG 2 7 8/24/2009 300 7.40 436 1.39 

7 WRMG 2 9 8/24/2009 300 9.05 541 1.65 

8 WRMG 56 1 4/21/2009 300 -0.96 -61 0.16 

9 WRMG 56 2 7/13/2009 180 6.28 369 1.22 

10 WRMG 56 3 7/15/2009 300 2.82 168 0.73 

11 WRMG 56 4 7/15/2009 300 4.33 255 0.94 

12 WRMG 56 6 7/15/2009 300 2.69 160 0.71 

13 WRMG 56 7 7/15/2009 300 1.78 107 0.57 

14 WRMG 60 1 6/3/2009 1200 -0.14 -9 0.29 

15 WRMG 60 4 7/20/2009 300 0.13 8 0.33 

16 WRMG 60 5 7/20/2009 300 5.00 294 1.04 

17 WRMG 60 7 7/20/2009 300 0.83 51 0.43 

18 WRMG 60 9 7/22/2009 600 9.67 582 1.76 

19 WRMG 61 1 4/15/2009 180 2.27 136 0.65 

20 WRMG 61 4 7/24/2009 300 2.26 135 0.64 

21 WRMG 61 5 7/28/2009 300 1.26 77 0.50 

22 WRMG 61 6 7/28/2009 300 -0.33 -21 0.26 

23 WRMG 61 7 7/28/2009 300 -0.95 -60 0.16 

24 WRMG 90 1 5/14/2009 300 -1.43 -92 0.08 

25 WRMG 1036 2 4/2/2009 720 -2.49 -164 -0.10 

26 WRMG SR-3 1 6/9/2009 300 2.69 160 0.71 
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Figure 16: Quartz inclusion from WRMG 61, garnet 1 is circled.  It measures 14.2 μm by 7.9 

μm. Scale bar is approximately 50 μm. 
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Figure 17: Measurements from April 15, 2009 of  WRMG 61 garnet 1 and quartz standard.
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was 2.3 ± 1.8 cm−1.  Using the calibration of Schmidt and Ziemann (2000), the residual 

pressure retained in the inclusion is 0.14 ± 0.11 GPa.  From Van der Molen’s (1981) elastic 

model, the entrapment pressure for the inclusion is 0.65 ± 0.26 GPa.  

The entrapment pressure for this inclusion lies at the center of a histogram of all 

Whitt Ranch entrapment pressures (Fig. 18).  The histogram shows that entrapment 

pressures for Whitt Ranch range between -0.1 GPa and 1.8 GPa, but cluster near 0.6-0.7 

GPa.  The expected entrapment pressure for Whitt Ranch is a minimum of 1.4 ± 0.1 GPa, 

based on GRIPS barometry.  Only one Whitt Ranch inclusion had an entrapment pressure 

of 1.4 GPa, and 3 of the 26 inclusions were above 1.4 GPa.  The majority of Whitt Ranch 

quartz inclusions are in a range of entrapment pressures that could be considered 

geologically reasonable, though grossly inconsistent with conventional barometry.  However, 

7 of 26 inclusions plot at or below 0.3 GPa, which is approximately the lowest pressure at 

which garnet should be stable in rocks of this bulk composition. 

Purdy Hill Eclogites 

A total of 18 suitable inclusions was found in four thin sections from the 

retrogressed Purdy Hill eclogite (Table 5).  A representative sample is from thin section PH 

97-29, garnet 1 (Fig. 19).  This inclusion is 22.1 μm by 12.6 μm, and approximately 14 μm 

thick (Fig. 20).  Measurements for this inclusion were made on August 26, 2009 for 300 

seconds at 2 μm below the surface.  Figure 21 includes the spectra for both the quartz 

standard and the inclusion.  The Δω1 value for this inclusion is -2.26 ± 1.8 cm−1.  The 

calculated residual pressure is -0.15 ± 0.11 GPa, and the calculated entrapment pressure is 

0.01 ± 0.26 GPa. 
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Figure 18: Histogram of entrapment pressures for all Whitt Ranch eclogites.  Expected 

entrapment pressure based on GRIPS barometry is indicated by the arrow at 1.4 GPa. 
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Table 5: Results from Raman microspectrometry measurements for Purdy Hill eclogites. 

 
Thin 

Section 
Garnet 

Date of 
Measurement 

Measurement 
Time (s) 

Δω1 
Presid [Δω1] 

(MPa) 
Pentrap [Δω1] 

(GPa) 

1 PH 97-29 1 8/26/2009 300 -2.28 -149 0.01 

2 PH 97-29 2 9/1/2009 300 -2.26 -148 0.01 

3 PH 97-29 3 9/1/2009 300 0.29 18 0.42 

4 PH 97-29 4 9/1/2009 300 1.12 68 0.55 

5 PH 97-29 5 9/8/2009 300 -1.17 -74 0.19 

6 PH 97-33 1 9/10/2009 300 1.06 65 0.54 

7 PH 97-33 2 9/15/2009 300 1.32 80 0.58 

8 PH 97-33 3 9/15/2009 300 -0.92 -58 0.23 

9 PH 97-33 4 9/15/2009 300 -1.78 -115 0.09 

10 PH 97-33 5 9/17/2009 300 -1.71 -110 0.10 

11 PH 97-62 2 9/17/2009 300 -5.77 -418 -0.64 

12 PH 97-62 3 9/25/2009 300 -8.87 -716 -1.39 

13 PH 97-62 4 9/30/2009 300 -2.08 -135 0.06 

14 PH 97-62 5 10/2/2009 300 -6.74 -504 -0.86 

15 PH 97-62 6 10/2/2009 300 -3.70 -251 -0.23 

16 PH 97-62 7 10/2/2009 300 -6.91 -520 -0.90 

17 PH 97-63b 1 9/17/2009 300 0.42 26 0.46 

18 PH 97-63b 2 9/17/2009 300 -3.59 -243 -0.21 
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Figure 19: Garnet in Purdy Hill thin section 29, garnet 1.  Scale bar represents approximately 

2 mm. 
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Figure 20: Quartz inclusion from PH 97-29, garnet 1 (circled).  It measures 22.1 μm by 12.6 

μm.  Scale bar represents approximately 50 μm. 
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Figure 21: Measurements from August 26, 2009 of  PH 97-29 garnet 1 and quartz standard.
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This representative inclusion falls within a wide range of entrapment pressures for 

Purdy Hill eclogite garnets, from -1.4 GPa to 0.6 GPa (Fig. 22).  The entrapment pressures 

are concentrated between 0.1 and 0.6 GPa without a clearly defined cluster of commonly 

encountered values.  Expected entrapment pressures for Purdy Hill eclogitic garnets are 

between 1.6 and 2.4 GPa.  No inclusion is calculated to have been trapped at pressures 

greater than 0.6 GPa.  Of the 18 inclusions, 13 have entrapment pressures below the 

approximate minimum for garnet stability (~0.3 GPa). 

Purdy Hill Felsic Gneisses 

Four thin sections from the Purdy Hill felsic gneisses yielded 19 inclusions suitable 

for laser Raman microspectrometry (Table 6).  A representative inclusion for the 

quartzofeldspathic gneisses is LU02-6, garnet K (Fig. 23).  This sample is from a ―thick‖ 

section and the inclusion is 28.4 by 23.7 μm, with a vertical thickness of 25 μm (Fig. 24).  

The inclusion was measured on June 24, 2009 for 300 seconds at 8 μm below the surface. 

Figure 25 is a plot of the spectra from both the quartz standard and inclusion.  The Δω1 

value for this inclusion is -3.6 ± 1.8 cm−1.  The calculated residual pressure is 0.00 ± 0.11 

GPa, and the entrapment pressure is 0.40 ± 0.26 GPa.  

The histogram of entrapment pressures for Purdy Hill felsic gneisses is shown in 

Figure 26 and has a range from -1.2 to 0.9 GPa.  Two groups are present, one centered near 

−0.2 GPa and one centered near 0.5-0.6 GPa.  Only two of the inclusions do not have 

entrapment pressures within these groups. 
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Figure 22: Entrapment pressure (GPa) histogram from Purdy Hill eclogites.  Expected 

pressures should be between 1.6 and 2.4 GPa. 
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Table 6: Results from Raman microspectrometry measurements for Purdy Hill felsic 

gneisses. 

 
Thin 

Section 
Garnet 

Date of 
Measurement 

Measurement 
Time (s) 

Δω1 
Presid [Δω1] 

(MPa) 
Pentrap [∆ω1] 

(GPa) 

1 LU 02-6 E 11/4/2009 300 -2.72 -180 -0.04 

2 LU 02-6 G 11/4/2009 300 1.52 92 0.63 

3 LU 02-6 J 11/4/2009 600 -3.42 -230 -0.17 

4 LU 02-6 K 6/24/2009 300 -0.01 -1 0.40 

5 LU 02-6 X 10/28/2009 300 -3.02 -201 -0.10 

6 LU 02-8 G 10/28/2009 300 -8.30 -656 -1.23 

7 LU 02-8 H 8/4/2009 300 -4.75 -333 -0.42 

8 LU 02-8 I 10/16/2009 300 1.01 62 0.56 

9 LU 02-8 K 10/28/2009 300 0.18 11 0.43 

10 LU 02-8 L 8/4/2009 300 -3.31 -222 -0.15 

11 LU 02-9 D 6/22/2009 600 -3.56 -241 -0.19 

12 LU 02-9 F 2/2/2010 360 1.74 105 0.67 

13 LU 02-9 G 2/2/2010 300 1.45 88 0.62 

14 LU 02-9 H 2/2/2010 300 -0.92 -58 0.26 

15 LU 02-9 I 2/2/2010 300 3.20 190 0.88 

16 LU 02-10 B 2/1/2010 300 2.23 134 0.74 

17 LU 02-10 D 2/2/2010 1200 -4.22 -291 -0.32 

18 LU 02-10 E 2/2/2010 300 -0.58 -36 0.32 

19 LU 02-10 G 2/1/2010 300 -4.85 -341 -0.44 
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Figure 23: Photomicrograph of Purdy Hill felsic gneiss sample LU 02-6, garnet K. Scale bar 
represents approximately 2.0 mm. 
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Figure 24: Photomicrograph of quartz inclusion from LU 02-6 garnet K (circled), 28.4 μm 

by 23.7 μm. This is a thicker-than-normal thin section, and scale bar represents 

approximately 50 μm.   
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Figure 25: Measurements from June 24, 2009 of  LU 02-6 garnet K and quartz standard.
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Figure 26: Histogram of entrapment pressures (GPa) for Purdy Hill gneisses. Expected 

pressures should range between 1.6 and 2.4 GPa, based on conventional barometry from 

Purdy Hill eclogites. 
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DISCUSSION 

The results from the quartz standard, the reproducibility test, and from each locality 

will be discussed individually, followed by a comparison of the locality results and the 

implications for future work. Finally, the potential effects on residual or entrapment pressure 

from the elastic model or errors during measurement will be discussed. 

Quartz Standard 

Positions of peaks for the quartz standard varied significantly over the 15-month 

course of this study: the standard deviation of peak positions was 1.3-1.4 cm−1. However, all 

peaks are offset by the same amount.  The usefulness of the ω1 calculation is made clear here 

because the standard deviation of the ω1 value over the same 15 months is ± 0.4 cm−1.  The 

cause of the offset of the three quartz peak positions from one month to the next, although 

unknown, is relatively inconsequential because the equivalent offsets for the 464 cm−1 and 

205 cm−1 peaks cancel in the ω1 calculation.  This small uncertainty in the ω1 value is similar 

to that observed by Enami et al. (2007), who report a standard deviation of ± 0.3 cm−1, 

implying that measurements from this study should be comparable in quality to those from 

the previous study. 

Causes for the variation of peak positions for the quartz standard are unknown, but 

one potential cause is variability in air temperature due to heating or cooling throughout the 

year.  The microspectrometry lab has a high-quality independent thermostat regulated to a 

specific temperature, so this should not be the reason for the change in peak location.  

Another cause could be instrumental.  The method at the microspectrometry lab was 

carefully developed to prevent instrument errors; however, the instrument was part of a 
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multi-user facility so alignment could potentially change over time.  Alignment issues are 

regarded as the most likely cause of the variations in peak positions over time. 

Reproducibility Test 

No reproducibility test was reported by Enami et al., so the present results are the 

only evaluation of the precision of the technique.  The Δω1 values measured in the 

reproducibility test are spread over a wider range than those for the quartz standard, with a 

standard deviation of 1.8 cm−1.  Notably, the disparity of Δω1 values cannot be linked to 

variations over time (Fig. 27).  The precision of the technique is restricted to an uncertainty 

of ± 1.8 cm−1, which corresponds to an uncertainty of ± 0.26 GPa for entrapment pressure. 

Localities 

Whitt Ranch Eclogites 

The three major quartz peaks from all Whitt Ranch inclusions were all displaced to 

higher wavenumbers relative to the quartz standard, with the exception of one inclusion.  A 

positive displacement is expected for inclusions under compression, whereas inclusions 

under tension have negative displacements.  The implication is that there is a real residual 

pressure retained within the quartz inclusions from the Whitt Ranch locality.  

However, results from the Whitt Ranch eclogites suggest the method, in this 

application, is not as reliable as the results of Enami et al. (2007) would indicate.  The 

entrapment pressures measured via Raman microspectrometry do not come close to 

approximating pressures estimated by conventional barometry.  The main cluster of 

entrapment pressures at 0.6 GPa is lower than the expected entrapment pressure of 1.4 GPa 

by an amount much greater than the 0.26 GPa uncertainty identified in the reproducibility  
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Figure 27: Plot of WRMG SR-3 Δω1 values by date, showing that no correlation exists 

between date of measurement and Δω1 value. 
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approximating pressures estimated by conventional barometry.  The main cluster of 

entrapment pressures at 0.6 GPa is lower than the expected entrapment pressure of 1.4 GPa 

by an amount much greater than the 0.26 GPa uncertainty identified in the reproducibility 

test. In fact, only 5 of the 26 measured inclusions fall within ± 0.26 GPa of the expected 

entrapment pressure  

An attempt was made to disregard "poor quality" data to see if this improved the 

distribution of entrapment pressures. Data quality was ranked qualitatively by examining 

signal-to-noise ratios in each inclusion’s spectrum; inclusions with a high ratio were easy to 

fit and were given a rank of 5; inclusions with a low ratio were difficult to fit because the 

signal barely stood out from the noise, so these were given a rank of 1.  Whitt Ranch 

entrapment pressures were replotted by rank (Fig. 28). There was no correlation between 

entrapment pressures and quality ranking: a good quality spectrum was just as likely to 

produce a low entrapment pressure as a poor quality spectrum. 

Another source of erroneous entrapment-pressure data could be Raman 

measurements made on non-spherical inclusions.  Internal stresses within these types of 

inclusions are not modeled accurately by Van der Molen’s (1981) spherical-inclusion model.  

Though most natural quartz crystals are not spherical, it is possible that extremely oblong or 

ellipsoid inclusions would preserve consistently different pressures.  This hypothesis was 

tested via a calculation of each inclusion’s aspect ratio, comparing the maximum dimension 

to the minimum dimension, and plotting this ratio relative to the inclusion’s entrapment 

pressure (Fig. 29). However, this figure clearly shows that no correlation exists between an 

inclusion’s sphericity and its entrapment pressure. 
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Figure 28: Histogram of ranked entrapment pressures for the Whitt Ranch eclogites. Low 

quality data are ranked (1) and high quality data are ranked (5). 
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Figure 29: Comparison of aspect ratios with entrapment pressures for all Whitt Ranch 

eclogite inclusions, showing that no correlation exists between an inclusion's sphericity and 

its calculated entrapment pressure. 
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Purdy Hill Eclogites 

The Δω1 values for the Purdy Hill eclogites are predominately negative (cf. Table 5), 

suggesting the garnet-quartz relationship is tensional rather than compressional.  The 

maximum pressure in the histogram is only 0.6 ± 0.26 GPa, well below the expected 

pressure range of 1.6 to 2.4 GPa from conventional barometry.  The range of entrapment 

pressures measured from Purdy Hill eclogite inclusions  is substantially wider than ±0.26 

GPa, indicating the pressure spread is due to more than just instrumental imprecision.  Only 

10 of the 18 inclusions have entrapment pressures that fall above the rough minimum of 

garnet stability at 0.3 GPa, or within 0.26 GPa below that limit.  Ranking the entrapment 

pressures by quality does not lead to any correlation between entrapment pressure and 

quality ranking (Fig. 30).  Plotting the sphericity of each inclusion versus its entrapment 

pressure also yields no correlation (Fig. 31). 

Purdy Hill Felsic Gneisses 

Results from the Purdy Hill felsic gneisses are similar to the unreasonably low 

entrapment pressures from the Purdy Hill eclogites.  No result suggests that these inclusions 

were entrapped at the expected 1.6 to 2.4 GPa pressures predicted by conventional 

barometry.  The maximum entrapment pressure measured at this locality is 0.9 ± 0.26 GPa, 

which is still ~0.5 GPa lower than expected.  Clearly, the range of entrapment pressures 

measured from the Purdy Hill felsic gneisses cannot be exclusively explained by instrumental 

imprecision.  Only 10 of the 19 inclusions yield entrapment pressures above the garnet 

stability minimum at ~0.3 GPa, and 9 of the 19 yield negative entrapment pressures.  One 

potential explanation for low entrapment pressures in the felsic gneisses could be linked   
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Figure 30: Histogram of ranked entrapment pressures for the Purdy Hill eclogites. Low 

quality data are ranked (1) and high quality data are ranked (5). 
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Figure 31: Comparison of aspect ratios with entrapment pressures for all Purdy Hill eclogites 

inclusions, showing that no correlation exists between an inclusion’s sphericity and its 

calculated entrapment pressure. 
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to the occurrence of sillimanite in both garnet rims and the matrix in three of four thin 

sections.  This mineral might suggest that the gneisses never reached HP conditions, at 

which sillimanite is unstable.  Such a scenario that might explain the 10 inclusions that 

produce geologically reasonable but lower-than-expected entrapment pressures, but it cannot 

account for the 9 inclusions that produce negative entrapment pressures.  Low pressures 

during garnet growth as suggested by sillimanite cannot account for tension rather than 

compression while quartz crystals were being trapped by garnet.  As has been seen for the 

other localities, a plot of the ranked entrapment pressures for the felsic gneisses shows no 

correlation between entrapment pressure and quality ranking (Fig. 32).  Likewise, a plot of 

sphericity versus entrapment pressure also shows no correlation (Fig. 33). 

Comparison of Locality Results 

 The key observation from all three localities is that entrapment pressures are 

unreasonably low.  In seeking an explanation for these low calculated entrapment pressures, 

it is helpful to take note of the differences between the Purdy Hill localities on one hand and 

the Whitt Ranch occurrence on the other. Figure 34 compares the Δω1 values for each of the 

three sample sets; examination of values for Δω1 has the advantage of allowing comparison 

of the fundamental measurements, unperturbed by later calculations.  Plotting together the 

data from all three localities shows a clear disparity in Δω1 values.  Despite having similar 

assemblages, eclogites from both Whitt Ranch and Purdy Hill have radically different Δω1 

trends.  Fifteen Whitt Ranch eclogites inclusions are characterized by Δω1 values greater than 

2 cm 1.  The other 11 inclusions values fall below 2 cm 1, but with the exception of 6 

inclusions, Whitt Ranch values can be described as positive. In comparison, all of the Purdy  
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Figure 32: Plot of ranked entrapment pressures for Purdy Hill felsic gneisses. Low quality 

data are ranked (1) and high quality data are ranked (5). 
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Figure 33: Comparison of aspect ratios with entrapment pressures for all Purdy Hill felsic 

gneiss inclusions, showing that no correlation exists between an inclusion’s sphericity and its 

calculated entrapment pressure. 
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Figure 34: Comparison of Δω1 values from quartz inclusions from all three localities shows 

the disparity between the Whitt Ranch and Purdy Hill eclogites and the similarity between 

the Purdy Hill eclogites and gneisses. 
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Hill eclogites range from low to negative Δω1 values (~2 cm 1 and below).  Like the Purdy 

Hill eclogites, almost all Purdy Hill gneisses also have low or negative Δω1 values, indicating 

that in both lithologies quartz inclusions at Purdy Hill apparently preserved lower residual 

pressures than at Whitt Ranch. For all three sets of inclusions, approximately half of the Δω1 

values are distributed between 2 and 2 cm 1, but outside of this zone the trend of Whitt 

Ranch is clearly positive, whereas the trend at Purdy Hill is clearly negative. 

The fact that the ranges of calculated entrapment pressures for both rock types at 

Purdy Hill are so similar to each other yet distinctly different from the range of values at 

Whitt Ranch strongly suggests that the entrapment pressures retrieved by the Raman 

technique are controlled by geologic factors that differ between the two localities.  The most 

conspicuous difference between the localities is seen in Figure 2, which illustrates that 

growth zoning profiles have been completely homogenized by intracrystalline diffusion in 

the Purdy Hill garnets, whereas the Whitt Ranch garnets retain steeper gradients in 

composition.  Homogenization of growth zoning requires significant redistribution of 

material at length scales of hundreds of microns or more.  An overall reduction in stored 

strain energy should occur if material is moved away from regions of higher stress to regions 

of lower stress (or equivalently, if vacancies diffuse into regions of higher stress); this would 

have the effect of reducing normal stresses on quartz inclusions in garnets that are subjected 

to appreciable intracrystalline diffusion while under compressive stress.   

Normal clockwise P-T paths require that peak temperatures — at which most 

intracrystalline diffusion will occur — should be reached at pressures lower than the 

maximum pressure achieved along the prograde path that produces garnet growth.  Under 

these conditions, inclusions trapped at or near peak pressures would be under compressive 
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stress when diffusion occurs at or near peak temperatures.  In addition, heating to peak 

temperatures after entrapment will produce a modest further increase in stress on the 

inclusion, because the thermal expansion coefficient for quartz is larger than that for garnet.  

Therefore, partial or even complete relaxation of stress differences between garnet and 

quartz inclusions should occur if peak temperatures reach ~650-700 °C or higher, and 

persist for millions of years, because appreciable intracrystalline diffusion in garnet should 

then take place (Carlson and Schwarze, 1997).  As shown in the illustration of Van der 

Molen’s elastic model (cf. Fig. 6), the quartz contracts more than garnet, so subsequent 

cooling during exhumation will produce further reductions in normal stresses on inclusions, 

and may even lead to tensional stresses on them.  Such a mechanism would explain the very 

low and even negative entrapment pressures calculated for rocks from the Purdy Hill 

locality. 

Reheating of both localities, during either the medium-pressure Barrovian event or 

subsequent low-pressure overprinting or both, produced modest intracrystalline diffusion; 

the latter was effective over distances of roughly 100 µm, as evidenced by the stranded 

diffusion profiles produced by resorption at the rims of garnets (shaded regions in Figure 2).  

These later diffusion events should also have reduced stresses on inclusions, but these 

effects are likely to have been much less pronounced than those occurring at peak 

temperature in the HP event, as the amounts of diffusion are considerably smaller. 

Implications 

The most significant difference between this study and that of Enami et al. (2007) is 

the disparity in peak temperatures experienced by rocks in each of the localities.  The 
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successful results in Enami et al. (2007) came from lower-temperature rocks that did not 

undergo diffusional homogenization; in fact, garnets described by Mouri and Enami (2008) 

had complex zoning that preserved two separate growth stages.  In contrast, the Llano rocks 

experienced higher peak temperatures during metamorphism, and were thus subject to 

substantial intracrystalline diffusion.  The implication is that use of the Raman quartz 

inclusion barometer must be restricted to rocks in which garnets have not been partially or 

wholly homogenized during or after growth. 

Although diffusional effects are interpreted to be the dominant source of inaccuracy 

in the present results, this study also helps to identify other possible sources of error, 

because it quantifies the internal reproducibility of repeated measurements on an individual 

inclusion.  Repeated measurements on the quartz standard were nearly as precise as those of 

Enami et al. (2007), indicating that the wide spreads in entrapment pressures arise from 

sources other than internal precision of the spectrometer itself or its operational protocols 

and environment. 

As discussed above, the reproducibility of measurements on a natural quartz 

inclusion is poorer by a factor of four or more than the reproducibility of measurements on 

the quartz standard.  This increase is attributed to sampling different states of stress within 

the inclusion; the stress will vary spatially due to edge effects and shape effects.  However, 

this effect translates to uncertainties in entrapment pressures of ± 0.26 GPa, which is still 

substantially smaller than the range of variation seen in measured entrapment pressures from 

a single locality. 

A likely source of further error is departures of reality from the idealized spherical 

inclusion model of Van der Molen (1981), which relies upon several simplifying 
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assumptions.  One main assumption is that the inclusion is perfectly spherical.  A non-

spherical inclusion will have a heterogeneous stress profile, because angular portions of the 

inclusion cause a wedging effect resulting in stress concentrations.  Although near-spherical 

inclusions were chosen in this study, even ellipsoidal inclusions can still have concentrated 

regions of higher residual stress.  This effect could explain the occasional occurrence of 

inclusions with measured entrapment pressures higher than expected from conventional 

barometry, despite the fact that inclusion aspect ratio — an oversimplified measure of non-

sphericity — does not correlate with calculated entrapment pressures. 

Another assumption in the elastic model is that the quartz inclusion is surrounded by 

a medium of infinite extent. Van der Molen (1981) suggests that only negligible differences 

exist between an infinite medium and one with a thickness that is a minimum of 5 times the 

radius r of the inclusion.  However, a real section commonly has a thickness of garnet 

around quartz that is much less than the requisite 5r in the vertical dimension.  Thus, cutting 

the thin section could result in elastic relaxation of the garnet around a quartz inclusion.  

This stress release would explain entrapment pressures lower than expected from 

conventional barometry.  

The non-sphericity of quartz inclusions and relaxation of stress due to reduction in 

garnet thickness during thin section preparation — compounded, perhaps, by variability in 

the amount and effect of stress relaxation due to intracrystalline diffusion in garnet — are 

regarded as the most reasonable explanations for the wide spread of entrapment pressures 

measured in this study. 
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CONCLUSION 

This study determined the level of internal precision of the Raman barometric 

method, and identified a key, but previously unrecognized, limitation on the applicability of 

the technique, namely its restriction to rocks in which garnet has not been subjected to 

appreciable intracrystalline diffusion.  Because of this restriction, the attempt to identify HP 

signatures in the overprinted rocks of the Llano Uplift was unsuccessful. 

The first major finding of this study is quantification of the internal precision of this 

technique by the reproducibility tests.  Reproducibility on the quartz standard yielded an 

uncertainty for ω1 of ±0.4 cm–1, a value only slightly in excess of the value of ±0.3 cm–1 

reported by Enami et al. (2007).  Repeated measurements on a single inclusion yielded 

uncertainties of ± 1.8 cm−1 (Δω1) = ± 0.11 GPa (Presid) = ± 0.26 GPa (Pentrap), which defines 

for the first time the level of reproducibility to be expected from the technique in 

applications to natural samples.  The significantly larger uncertainty for the inclusion 

compared to the standard is likely related to spatial variations of stress within the inclusion 

(edge effects, non-sphericity) that were sampled to varying degrees in different 

measurements, due to small differences in the horizontal position of the laser beam and/or 

the sampling depth as determined by the confocal mode of the instrument. 

The second major finding from this study is a correlation between low or negative 

Δω1 values and localities with greater intracrystalline diffusion.  From this correlation, it is 

reasonable to conclude that relaxation due to intracrystalline diffusion in garnet can partially 

or completely relieve the compressive stress around a quartz inclusion.  Both the eclogites 

and the felsic gneisses at the Purdy Hill locality, which were subjected to near-complete post-

growth diffusional homogenization, yielded very low estimates of entrapment pressures, 
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values that cannot have geological significance.  The eclogites at Whitt Ranch, which were 

subjected to substantially less diffusional homogenization, were affected enough to yield 

entrapment pressures mostly lower than what would have been expected from conventional 

barometry.  The implication is that application of the Raman quartz-inclusion barometer 

must be restricted to garnets in which post-entrapment diffusion is negligible.   
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APPENDIX 

Part of each inclusion’s description includes X-Y coordinates, which were 

determined using a Leitz mechanical microscope stage. The conventional method to 

properly orient the thin section is to insert the short, labeled side of a thin section into the 

right-angle holder on the stage. X coordinates are distinguished by values greater than 100, 

and Y coordinates are distinguished by values less than 100.  When areas of the sample are 

blocked by limited stage movement, the thin section is reversed, so that the labeled edge of 

the thin section is away from the mounted holder. To indicate reversed thin sections, a 

negative sign is placed in front of the coordinate pair. 
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List of Thin Sections: 

Samples from the Whitt Ranch locality: 

Whitt Ranch Eclogite 

Thin Section Garnet 

WRMG 2 2 

 3 

 4 

 5 

 6 

 7 

 9 

WRMG 56 1 

 2 

 3 

 4 

 6 

 7 

WRMG 60 1 

 4 

 5 

 7 

 9 

WRMG 61 1 

 4 

 5 

 6 

 7 

WRMG 90 1 

WRMG 1036 2 

WRMG SR-3 1 
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Samples from the Purdy Hill locality: 

Purdy Hill Eclogite Purdy Hill Gneiss 

Thin Section Garnet Thin Section Garnet 

PH 97-29 1 LU 02-6 E 

 2  G 

 3  J 

 4  K 

 5  X 

PH 97-33 1 LU 02-8 G 

 2  H 

 3  I 

 4  K 

 5  L 

PH 97-62 2 LU 02-9 D 

 3  F 

 4  G 

 5  H 

 6  I 

 7 LU 02-10 B 

PH 97-63b 1  D 

 2  E 

   G 
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 22.1 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 19.0 Δω1 (cm-1) 4.38

Inclusion thickness (Z) (μm) 21 Δω2 (cm-1) 5.26

Location (X-Y coordinates) -(103.8,8.2) Presid [Δω1] (GPa) 0.258

Description of shape Teardrop Presid [Δω2] (GPa) 0.267

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.95

Pentrap [Δω2] (GPa) 0.97

WRMG 2

Garnet 2

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 2 - Garnet 2
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 19.0 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 7.9 Δω1 (cm-1) 6.04

Inclusion thickness (Z) (μm) 15 Δω2 (cm-1) 7.21

Location (X-Y coordinates) -(105.2,15.7) Presid [Δω1] (GPa) 0.354

Description of shape Elongate Presid [Δω2] (GPa) 0.372

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 1.19

Pentrap [Δω2] (GPa) 1.23

WRMG 2

Garnet 3

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 2 - Garnet 3

129.61
215.2

467.36
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 23.7 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 14.2 Δω1 (cm-1) 3.10

Inclusion thickness (Z) (μm) 16 Δω2 (cm-1) 3.68

Location (X-Y coordinates) -(104.4, 8.5) Presid [Δω1] (GPa) 0.184

Description of shape Triangular Presid [Δω2] (GPa) 0.185

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.77

Pentrap [Δω2] (GPa) 0.77

WRMG 2

Garnet 4

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 2 - Garnet 4
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 21.3 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 2.14

Inclusion thickness (Z) (μm) 21 Δω2 (cm-1) 4.24

Location (X-Y coordinates) -(103.3, 11.0) Presid [Δω1] (GPa) 0.128

Description of shape Elongate Presid [Δω2] (GPa) 0.213

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.63

Pentrap [Δω2] (GPa) 0.84

WRMG 2

Garnet 5

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 2 -Garnet 5
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 27.7 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 5.54

Inclusion thickness (Z) (μm) 11 Δω2 (cm-1) 7.21

Location (X-Y coordinates) -(107.2, 16.3) Presid [Δω1] (GPa) 0.325

Description of shape Elongate Presid [Δω2] (GPa) 0.372

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 1.12

Pentrap [Δω2] (GPa) 1.23

WRMG 2

Garnet 6

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 2 - Garnet 6

128.45

213.24

466.52

100 200 300 400 500 600
Wavenumber (cm-1)

-50

0

50

100

In
te
ns
ity

-50

0

50

100

In
te
ns
ity

0

50

100

150

In
te
ns
ity

0

50

100

150
In
te
ns
ity

Quartz Standard

128.79
206.37

465.19

100 200 300 400 500 600
Wavenumber (cm-1)

-500

0

500

1000

1500

In
te
ns
ity

-500

0

500

1000

1500

In
te
ns
ity

0

500

1000

1500

2000

In
te
ns
ity

0

500

1000

1500

2000

In
te
ns
ity



90

0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 23.7 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 22.1 Δω1 (cm-1) 7.40

Inclusion thickness (Z) (μm) 13 Δω2 (cm-1) 9.70

Location (X-Y coordinates) (106.5, 9.7) Presid [Δω1] (GPa) 0.436

Description of shape Triangular Presid [Δω2] (GPa) 0.513

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 1.39

Pentrap [Δω2] (GPa) 1.58

WRMG 2

Garnet 7

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 2 - Garnet 7
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 14.2 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 9.05

Inclusion thickness (Z) (μm) 17 Δω2 (cm-1) 7.96

Location (X-Y coordinates) -(100.9, 4.6) Presid [Δω1] (GPa) 0.541

Description of shape Elongate Presid [Δω2] (GPa) 0.414

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 1.65

Pentrap [Δω2] (GPa) 1.34

WRMG 2

Garnet 9

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 2 - Garnet 9
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 12.6 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 6.32 Δω1 (cm-1) -0.96

Inclusion thickness (Z) (μm) 11 Δω2 (cm-1) -0.45

Location (X-Y coordinates) -(101.3, 5.9) Presid [Δω1] (GPa) -0.061

Description of shape Elongate Presid [Δω2] (GPa) -0.022

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.16

Pentrap [Δω2] (GPa) 0.25

WRMG 56

Garnet 1

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 56 - Garnet 1
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 18.9 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 12.6 Δω1 (cm-1) 6.28

Inclusion thickness (Z) (μm) 10 Δω2 (cm-1) 7.83

Location (X-Y coordinates) (130.5, 18.0) Presid [Δω1] (GPa) 0.369

Description of shape Ovoid Presid [Δω2] (GPa) 0.406

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 1.22

Pentrap [Δω2] (GPa) 1.31

WRMG 56

Garnet 2

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 56 - Garnet 2
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 25.3 Depth of spectrum (μm) -10

Minimum length (X-Y) (μm) 15.8 Δω1 (cm-1) 2.82

Inclusion thickness (Z) (μm) 19 Δω2 (cm-1) 3.60

Location (X-Y coordinates) (130.5, 15.5) Presid [Δω1] (GPa) 0.168

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.180

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.73

Pentrap [Δω2] (GPa) 0.76

WRMG 56

Garnet 3

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 56 - Garnet 3
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 22.1 Depth of spectrum (μm) -10

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 4.33

Inclusion thickness (Z) (μm) 14 Δω2 (cm-1) 5.64

Location (X-Y coordinates) (130.3, 12.2) Presid [Δω1] (GPa) 0.255

Description of shape Elongate Presid [Δω2] (GPa) 0.287

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.94

Pentrap [Δω2] (GPa) 1.02

WRMG 56

Garnet 4

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 56 -Garnet 4

128.01
211.22

466.33

100 200 300 400 500 600
Wavenumber (cm-1)

-100

0

100

200

300

400

500

In
te
ns
ity

-100

0

100

200

300

400

500

In
te
ns
ity

0

100

200

300

400

500

600

In
te
ns
ity

0

100

200

300

400

500

600
In
te
ns
ity

Quartz Standard

127.55 205.12

464.56

100 200 300 400 500 600
Wavenumber (cm-1)

-500

0

500

1000

1500

In
te
ns
ity

-500

0

500

1000

1500

In
te
ns
ity

0

500

1000

1500

2000

In
te
ns
ity

0

500

1000

1500

2000

In
te
ns
ity



102

0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 15.0 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 7.1 Δω1 (cm-1) 2.69

Inclusion thickness (Z) (μm) 10 Δω2 (cm-1) 1.47

Location (X-Y coordinates) (111.0, 12.2) Presid [Δω1] (GPa) 0.160

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.073

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.71

Pentrap [Δω2] (GPa) 0.49

WRMG 56

Garnet 6

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 56 - Garnet 6
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 19.8 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 10.3 Δω1 (cm-1) 1.78

Inclusion thickness (Z) (μm) 16 Δω2 (cm-1) 1.75

Location (X-Y coordinates) (112.7, 4.2) Presid [Δω1] (GPa) 0.107

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.087

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.57

Pentrap [Δω2] (GPa) 0.52

WRMG 56

Garnet 7

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 56 - Garnet 7

127.65 206.94

464.6
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 15.8 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 9.5 Δω1 (cm-1) -0.14

Inclusion thickness (Z) (μm) 18 Δω2 (cm-1) -0.06

Location (X-Y coordinates) (125.7, 14.4) Presid [Δω1] (GPa) -0.009

Description of shape Teardrop Presid [Δω2] (GPa) -0.003

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.29

Pentrap [Δω2] (GPa) 0.30

WRMG 60

Garnet 1

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 60 - Garnet 1

127.3 206.17

464.01
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 14.2 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 0.13

Inclusion thickness (Z) (μm) 12 Δω2 (cm-1) 0.26

Location (X-Y coordinates) (125.4, 5.1) Presid [Δω1] (GPa) 0.008

Description of shape Teardrop Presid [Δω2] (GPa) 0.013

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.33

Pentrap [Δω2] (GPa) 0.34

WRMG 60

Garnet 4

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 60 - Garnet 4

127.58 206.72

464.82
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 15.0 Depth of spectrum (μm) -5

Minimum length (X-Y) (μm) 12.6 Δω1 (cm-1) 5.00

Inclusion thickness (Z) (μm) 15 Δω2 (cm-1) 4.27

Location (X-Y coordinates) (120.5, 0.8) Presid [Δω1] (GPa) 0.294

Description of shape Subspherical Presid [Δω2] (GPa) 0.215

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 1.04

Pentrap [Δω2] (GPa) 0.84

WRMG 60

Garnet 5

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 60 -Garnet 5

127.9
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464.28
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 20.5 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 11.9 Δω1 (cm-1) 0.83

Inclusion thickness (Z) (μm) 15 Δω2 (cm-1) -1.14

Location (X-Y coordinates) (105.5, 0.6) Presid [Δω1] (GPa) 0.051

Description of shape Tabular Presid [Δω2] (GPa) -0.056

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.43

Pentrap [Δω2] (GPa) 0.17

WRMG 60

Garnet 7

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 60 - Garnet 7
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 23.7 Depth of spectrum (μm) -7

Minimum length (X-Y) (μm) 13.4 Δω1 (cm-1) 9.67

Inclusion thickness (Z) (μm) 11 Δω2 (cm-1) 10.02

Location (X-Y coordinates) (109.3, 10.1) Presid [Δω1] (GPa) 0.582

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.531

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 1.76

Pentrap [Δω2] (GPa) 1.63

WRMG 60

Garnet 9

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 60 - Garnet 9
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 14.2 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 7.9 Δω1 (cm-1) 2.27

Inclusion thickness (Z) (μm) 11 Δω2 (cm-1) -3.10

Location (X-Y coordinates) -(105.6, 13.5) Presid [Δω1] (GPa) 0.136

Description of shape Spherical Presid [Δω2] (GPa) 0.142

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.65

Pentrap [Δω2] (GPa) 0.66

WRMG 61

Garnet 1

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 61 - Garnet 1

127.1 208.15

464.46
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 14.2 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 10.3 Δω1 (cm-1) 2.26

Inclusion thickness (Z) (μm) 10 Δω2 (cm-1) 1.88

Location (X-Y coordinates) (124.3, 2.2) Presid [Δω1] (GPa) 0.135

Description of shape Spherical Presid [Δω2] (GPa) 0.093

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.64

Pentrap [Δω2] (GPa) 0.54

WRMG 61

Garnet 4

Locality: Whitt Ranch
Collected by Susan Harris
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WRMG 61 - Garnet 4
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 20.5 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 9.5 Δω1 (cm-1) 1.26

Inclusion thickness (Z) (μm) 15 Δω2 (cm-1) 1.80

Location (X-Y coordinates) (120.2, 6.3) Presid [Δω1] (GPa) 0.077

Description of shape Elongate Presid [Δω2] (GPa) 0.089

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.50

Pentrap [Δω2] (GPa) 0.53

WRMG 61

Garnet 5

Locality: Whitt Ranch
Collected by Susan Harris

0.5 mm

200 μm

2.0 mm

50 μm
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WRMG 61 - Garnet 5
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 27.7 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 19.0 Δω1 (cm-1) -0.33

Inclusion thickness (Z) (μm) 22 Δω2 (cm-1) -0.31

Location (X-Y coordinates) (120.1, 15.1) Presid [Δω1] (GPa) -0.021

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.031

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.26

Pentrap [Δω2] (GPa) 0.27

WRMG 61

Garnet 6

Locality: Whitt Ranch
Collected by Susan Harris

0.5 mm

200 μm

2.0 mm

50 μm
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WRMG 61 - Garnet 6
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464.77
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 7.9 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 7.9 Δω1 (cm-1) -0.95

Inclusion thickness (Z) (μm) 10 Δω2 (cm-1) -0.63

Location (X-Y coordinates) (113.4, 14.1) Presid [Δω1] (GPa) -0.060

Description of shape Spherical Presid [Δω2] (GPa) -0.031

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.16

Pentrap [Δω2] (GPa) 0.23

WRMG 61

Garnet 7

Locality: Whitt Ranch
Collected by Susan Harris

0.5 mm

200 μm

2.0 mm

50 μm
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WRMG 61 - Garnet 7

126.24 203.96

463.26

100 200 300 400 500 600
Wavenumber (cm-1)

-100

0

100

200

300

400

500

In
te
ns
ity

-100

0

100

200

300

400

500

In
te
ns
ity

0

100

200

300

400

500

600

In
te
ns
ity

0

100

200

300

400

500

600
In
te
ns
ity

Quartz Standard

128.3 206.55

464.88

100 200 300 400 500 600
Wavenumber (cm-1)

-500

0

500

1000

1500

In
te
ns
ity

-500

0

500

1000

1500

In
te
ns
ity

0

500

1000

1500

2000

In
te
ns
ity

0

500

1000

1500

2000

In
te
ns
ity



126

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 22.9 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 20.5 Δω1 (cm-1) -1.43

Inclusion thickness (Z) (μm) 18 Δω2 (cm-1) -0.46

Location (X-Y coordinates) (128.4, 10.9) Presid [Δω1] (GPa) -0.092

Description of shape Hexagonal Presid [Δω2] (GPa) -0.023

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.08

Pentrap [Δω2] (GPa) 0.25

WRMG 90

Garnet 1

Locality: Whitt Ranch
Collected by Susan Harris

0.5 mm

200 μm

2.0 mm

50 μm
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WRMG 90 - Garnet 1
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 14.2 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 13.4 Δω1 (cm-1) -2.49

Inclusion thickness (Z) (μm) 16 Δω2 (cm-1) -3.10

Location (X-Y coordinates) -(100.6, 8.1) Presid [Δω1] (GPa) -0.164

Description of shape Spherical Presid [Δω2] (GPa) -0.150

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) -0.10

Pentrap [Δω2] (GPa) -0.06

WRMG 1036

Garnet 2

Locality: Whitt Ranch
Collected by Michael Jordan
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WRMG 1036
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0.5 mm

200 μm

2.0 mm

50 μm

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 13.4 Depth of spectrum (μm) -1

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 2.69

Inclusion thickness (Z) (μm) 16 Δω2 (cm-1) 4.05

Location (X-Y coordinates) -(120.5, 9.5) Presid [Δω1] (GPa) 0.160

Description of shape Teardrop Presid [Δω2] (GPa) 0.204

Garnet composition Alm54.0, Prp27.6, 
Grs18.1, Sps0.3

Pentrap [Δω1] (GPa) 0.71

Pentrap [Δω2] (GPa) 0.81

WRMG SR-3

Garnet 1

Locality: Whitt Ranch
Collected by Stephen Robertson
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WRMG SR-3
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 22.1 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 12.6 Δω1 (cm-1) -2.28

Inclusion thickness (Z) (μm) 14 Δω2 (cm-1) -1.65

Location (X-Y coordinates) (122.7, 8.6) Presid [Δω1] (GPa) -0.149

Description of shape Teardrop Presid [Δω2] (GPa) -0.080

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.01

Pentrap [Δω2] (GPa) 0.18

PH 97-29 

Garnet 1

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-29 - Garnet 1
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 12.6 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 9.5 Δω1 (cm-1) -2.26

Inclusion thickness (Z) (μm) 11 Δω2 (cm-1) -1.85

Location (X-Y coordinates) (122.7, 8.6) Presid [Δω1] (GPa) -0.148

Description of shape Teardrop Presid [Δω2] (GPa) -0.090

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.01

Pentrap [Δω2] (GPa) 0.16

PH 97-29 

Garnet 2

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-29 - Garnet 2
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 26.9 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 22.1 Δω1 (cm-1) 0.29

Inclusion thickness (Z) (μm) 10 Δω2 (cm-1) 1.72

Location (X-Y coordinates) (103.5, 9.1) Presid [Δω1] (GPa) 0.018

Description of shape Hexagonal Presid [Δω2] (GPa) 0.085

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.42

Pentrap [Δω2] (GPa) 0.59

PH 97-29 

Garnet 3

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-29 -Garnet 3
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 18.9 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 1.12

Inclusion thickness (Z) (μm) 9 Δω2 (cm-1) 2.00

Location (X-Y coordinates) (111.5, 0.8) Presid [Δω1] (GPa) 0.068

Description of shape Triangular Presid [Δω2] (GPa) 0.099

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.55

Pentrap [Δω2] (GPa) 0.63

PH 97-29 

Garnet 4

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-29 - Garnet 4
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 12.6 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) -1.17

Inclusion thickness (Z) (μm) 10 Δω2 (cm-1) -0.26

Location (X-Y coordinates) (115.2, 13.2) Presid [Δω1] (GPa) -0.074

Description of shape Spherical Presid [Δω2] (GPa) -0.013

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.19

Pentrap [Δω2] (GPa) 0.35

PH 97-29 

Garnet 5

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-29 -Garnet 5
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 12.6 Depth of spectrum (μm) 0

Minimum length (X-Y) (μm) 9.5 Δω1 (cm-1) 1.06

Inclusion thickness (Z) (μm) 20 Δω2 (cm-1) 1.13

Location (X-Y coordinates) (117.4, 2.6) Presid [Δω1] (GPa) 0.065

Description of shape Heart Presid [Δω2] (GPa) 0.056

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.54

Pentrap [Δω2] (GPa) 1.03

PH 97-33 

Garnet 1

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-33 - Garnet 1
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 20.5 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 14.2 Δω1 (cm-1) 1.32

Inclusion thickness (Z) (μm) 18 Δω2 (cm-1) 0.12

Location (X-Y coordinates) (107.3, 10.1) Presid [Δω1] (GPa) 0.080

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.006

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.58

Pentrap [Δω2] (GPa) 0.91

PH 97-33 

Garnet 2

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-33 - Garnet 2
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 18.9 Depth of spectrum (μm) -2

Minimum length (X-Y) (μm) 15.8 Δω1 (cm-1) -0.92

Inclusion thickness (Z) (μm) 12 Δω2 (cm-1) 0.02

Location (X-Y coordinates) -(120.7, 6.9) Presid [Δω1] (GPa) -0.058

Description of shape Spherical Presid [Δω2] (GPa) 0.001

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.23

Pentrap [Δω2] (GPa) 0.38

PH 97-33 

Garnet 3

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-33 - Garnet 3
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 25.3 Depth of spectrum (μm) -10

Minimum length (X-Y) (μm) 15.8 Δω1 (cm-1) -1.78

Inclusion thickness (Z) (μm) 18 Δω2 (cm-1) 2.15

Location (X-Y coordinates) (109.1, 5.7) Presid [Δω1] (GPa) -0.115

Description of shape Angular Presid [Δω2] (GPa) 0.107

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.09

Pentrap [Δω2] (GPa) 0.64

PH 97-33 

Garnet 4

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-33 -Garnet 4
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 12.6 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 12.6 Δω1 (cm-1) -1.71

Inclusion thickness (Z) (μm) 12 Δω2 (cm-1) -1.37

Location (X-Y coordinates) (105.2, 21.1) Presid [Δω1] (GPa) -0.110

Description of shape Spherical Presid [Δω2] (GPa) -0.067

Garnet composition Alm54.9, Prp22.8, 
Grs20.2, Sps2.1

Pentrap [Δω1] (GPa) 0.10

Pentrap [Δω2] (GPa) 0.21

PH 97-33 

Garnet 5

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-33 - Garnet 5
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 9.5 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 7.9 Δω1 (cm-1) -5.77

Inclusion thickness (Z) (μm) 16 Δω2 (cm-1) -7.91

Location (X-Y coordinates) (100.5, 8.4) Presid [Δω1] (GPa) -0.418

Description of shape Spherical Presid [Δω2] (GPa) -0.380

Garnet composition Alm62.3, Prp15.8, 
Grs21.2, Sps0.6

Pentrap [Δω1] (GPa) -0.64

Pentrap [Δω2] (GPa) -0.55

PH 97-62 

Garnet 2

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-62 -Garnet 2
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 17.4 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 12.6 Δω1 (cm-1) -8.87

Inclusion thickness (Z) (μm) 13 Δω2 (cm-1) -8.87

Location (X-Y coordinates) -(117.2, 18.1) Presid [Δω1] (GPa) -0.716

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.427

Garnet composition Alm62.3, Prp15.8, 
Grs21.2, Sps0.6

Pentrap [Δω1] (GPa) -1.39

Pentrap [Δω2] (GPa) -0.67

PH 97-62 

Garnet 3

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-62 -Garnet 3
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 17.4 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 12.6 Δω1 (cm-1) -2.08

Inclusion thickness (Z) (μm) 13 Δω2 (cm-1) -1.79

Location (X-Y coordinates) (119.3, 2.5) Presid [Δω1] (GPa) -0.135

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.087

Garnet composition Alm62.3, Prp15.8, 
Grs21.2, Sps0.6

Pentrap [Δω1] (GPa) 0.06

Pentrap [Δω2] (GPa) 0.18

PH 97-62 

Garnet 4

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-62 - Garnet 4
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 20.5 Depth of spectrum (μm) -5

Minimum length (X-Y) (μm) 17.4 Δω1 (cm-1) -6.74

Inclusion thickness (Z) (μm) 12 Δω2 (cm-1) -6.52

Location (X-Y coordinates) (117.0, 5.0) Presid [Δω1] (GPa) -0.504

Description of shape Rounded Presid [Δω2] (GPa) -0.314

Garnet composition Alm62.3, Prp15.8, 
Grs21.2, Sps0.6

Pentrap [Δω1] (GPa) -0.86

Pentrap [Δω2] (GPa) 0.39

PH 97-62 

Garnet 5

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-62 - Garnet 5
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 11.1 Depth of spectrum (μm) -4

Minimum length (X-Y) (μm) 9.5 Δω1 (cm-1) -3.70

Inclusion thickness (Z) (μm) 12 Δω2 (cm-1) -4.15

Location (X-Y coordinates) (114.4, 8.3) Presid [Δω1] (GPa) -0.251

Description of shape Spherical Presid [Δω2] (GPa) -0.200

Garnet composition Alm62.3, Prp15.8, 
Grs21.2, Sps0.6

Pentrap [Δω1] (GPa) -0.23

Pentrap [Δω2] (GPa) -0.10

PH 97-62 

Garnet 6

Locality: Purdy Hill
Collected by Susan Anderson
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PH 97-62 - Garnet 6

125.73 200.05

461.99

100 200 300 400 500 600
Wavenumber (cm-1)

-100

0

100

200

300

400

In
te
ns
ity

-100

0

100

200

300

400

In
te
ns
ity

0

100

200

300

400

500

In
te
ns
ity

0

100

200

300

400

500
In
te
ns
ity

128.25
206.72

464.96

100 200 300 400 500 600
Wavenumber (cm-1)

-500

0

500

1000

1500

In
te
ns
ity

-500

0

500

1000

1500

In
te
ns
ity

0

500

1000

1500

2000

In
te
ns
ity

0

500

1000

1500

2000

In
te
ns
ity

Quartz Standard



162

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 15.8 Depth of spectrum (μm) -10

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) -6.91

Inclusion thickness (Z) (μm) 12 Δω2 (cm-1) -7.40

Location (X-Y coordinates) (104.6, 5.8) Presid [Δω1] (GPa) -0.520

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.356

Garnet composition Alm62.3, Prp15.8, 
Grs21.2, Sps0.6

Pentrap [Δω1] (GPa) -0.90

Pentrap [Δω2] (GPa) -0.49

PH 97-62 

Garnet 7

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-62 - Garnet 7
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 20.5 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 12.6 Δω1 (cm-1) 0.42

Inclusion thickness (Z) (μm) 11 Δω2 (cm-1) 1.39

Location (X-Y coordinates) (101.0, 1.0) Presid [Δω1] (GPa) 0.026

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.069

Garnet composition Alm62.3, Prp15.8, 
Grs21.2, Sps0.6

Pentrap [Δω1] (GPa) 0.46

Pentrap [Δω2] (GPa) 0.57

PH 97-63b 

Garnet 1

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-63b -Garnet 1
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 23.7 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 14.2 Δω1 (cm-1) -3.59

Inclusion thickness (Z) (μm) 13 Δω2 (cm-1) -3.04

Location (X-Y coordinates) (106.5, 8.8) Presid [Δω1] (GPa) -0.243

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.147

Garnet composition Alm62.3, Prp15.8, 
Grs21.2, Sps0.6

Pentrap [Δω1] (GPa) -0.21

Pentrap [Δω2] (GPa) 0.03

PH 97-63b 

Garnet 2

Locality: Purdy Hill
Collected by Susan Anderson

0.5 mm

200 μm

2.0 mm

50 μm
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PH 97-63b - Garnet 2
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 56.9 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 30.0 Δω1 (cm-1) -2.72

Inclusion thickness (Z) (μm) 33 Δω2 (cm-1) -2.86

Location (X-Y coordinates) -(121.6, 13.2) Presid [Δω1] (GPa) -0.180

Description of shape Bent, elongate Presid [Δω2] (GPa) -0.139

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) -0.04

Pentrap [Δω2] (GPa) 0.06

LU 02-6

Garnet E

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-6 - Garnet E
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 53.72 Depth of spectrum (μm) -10

Minimum length (X-Y) (μm) 25.3 Δω1 (cm-1) 1.52

Inclusion thickness (Z) (μm) 22 Δω2 (cm-1) 0.99

Location (X-Y coordinates) -(119.6, 3.9) Presid [Δω1] (GPa) 0.092

Description of shape Elongate Presid [Δω2] (GPa) 0.049

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) 0.63

Pentrap [Δω2] (GPa) 0.53

LU 02-6

Garnet G

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-6 - Garnet G
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 41.1 Depth of spectrum (μm) -22

Minimum length (X-Y) (μm) 36.3 Δω1 (cm-1) -3.42

Inclusion thickness (Z) (μm) 29 Δω2 (cm-1) -6.54

Location (X-Y coordinates) (108.7, 17.1) Presid [Δω1] (GPa) -0.230

Description of shape Rounded Presid [Δω2] (GPa) -0.315

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) -0.17

Pentrap [Δω2] (GPa) -0.38

LU 02-6

Garnet J

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-6 - Garnet
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 28.4 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 23.7 Δω1 (cm-1) -0.01

Inclusion thickness (Z) (μm) 25 Δω2 (cm-1) 0.08

Location (X-Y coordinates) (117.1, 16.3) Presid [Δω1] (GPa) -0.001

Description of shape Spherical Presid [Δω2] (GPa) 0.004

Garnet composition Alm79.6, Prp12.9, 
Grs3.9, Sps3.5

Pentrap [Δω1] (GPa) 0.40

Pentrap [Δω2] (GPa) 0.41

LU 02-6

Garnet K

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-6 - Garnet K
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 71.1 Depth of spectrum (μm) -15

Minimum length (X-Y) (μm) 39.5 Δω1 (cm-1) -3.02

Inclusion thickness (Z) (μm) 39 Δω2 (cm-1) -2.43

Location (X-Y coordinates) (112.4, 14.2) Presid [Δω1] (GPa) -0.201

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.118

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) -0.10

Pentrap [Δω2] (GPa) 0.11

LU 02-6

Garnet X

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-6 - Garnet X
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 20.5 Depth of spectrum (μm) -12

Minimum length (X-Y) (μm) 15.8 Δω1 (cm-1) -8.30

Inclusion thickness (Z) (μm) 13 Δω2 (cm-1) -8.49

Location (X-Y coordinates) (113.3, 9.1) Presid [Δω1] (GPa) -0.656

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.408

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) -1.23

Pentrap [Δω2] (GPa) -0.61

LU 02-8

Garnet G

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-8 - Garnet G
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 17.4 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 12.6 Δω1 (cm-1) -4.75

Inclusion thickness (Z) (μm) 10 Δω2 (cm-1) -3.14

Location (X-Y coordinates) (112.5, 15.1) Presid [Δω1] (GPa) -0.333

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.152

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) -0.42

Pentrap [Δω2] (GPa) 0.03

LU 02-8

Garnet H

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-8 - Garnet H
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 22.1 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 14.2 Δω1 (cm-1) 1.01

Inclusion thickness (Z) (μm) 12 Δω2 (cm-1) 1.05

Location (X-Y coordinates) (113.5, 12.7) Presid [Δω1] (GPa) 0.062

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.052

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) 0.56

Pentrap [Δω2] (GPa) 0.53

LU 02-8

Garnet I

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-8 - Garnet I
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 17.4 Depth of spectrum (μm) -10

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 0.18

Inclusion thickness (Z) (μm) 10 Δω2 (cm-1) 0.84

Location (X-Y coordinates) (121.9, 1.9) Presid [Δω1] (GPa) 0.011

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.041

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) 0.43

Pentrap [Δω2] (GPa) 0.51

LU 02-8

Garnet K

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-8 - Garnet K
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 22.1 Depth of spectrum (μm) -8

Minimum length (X-Y) (μm) 17.4 Δω1 (cm-1) -3.31

Inclusion thickness (Z) (μm) 11 Δω2 (cm-1) -3.78

Location (X-Y coordinates) -(119.1, 12.6) Presid [Δω1] (GPa) -0.222

Description of shape Subspherical Presid [Δω2] (GPa) -0.183

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) -0.15

Pentrap [Δω2] (GPa) -0.05

LU 02-8

Garnet L

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-8 - Garnet L
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 15.8 Depth of spectrum (μm) -10

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) -3.56

Inclusion thickness (Z) (μm) 14 Δω2 (cm-1) -3.83

Location (X-Y coordinates) (104.6, 5.8) Presid [Δω1] (GPa) -0.241

Description of shape Ellipsoid Presid [Δω2] (GPa) -0.185

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) -0.19

Pentrap [Δω2] (GPa) -0.06

LU 02-9

Garnet D

Locality: Purdy Hill
Collected by William Carlson

0.5 mm

200 μm

2.0 mm

50 μm
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LU 02-9 - Garnet D
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 25.3 Depth of spectrum (μm) -15

Minimum length (X-Y) (μm) 18.9 Δω1 (cm-1) 1.74

Inclusion thickness (Z) (μm) 15 Δω2 (cm-1) 1.15

Location (X-Y coordinates) (112.7, 18.7) Presid [Δω1] (GPa) 0.105

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.057

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) 0.67

Pentrap [Δω2] (GPa) 0.55

LU 02-9

Garnet F

Locality: Purdy Hill
Collected by William Carlson

0.25 mm

100 μm

1.0 mm

25 μm
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LU 02-9 - Garnet F
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 15.8 Depth of spectrum (μm) -21

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) 1.45

Inclusion thickness (Z) (μm) 24 Δω2 (cm-1) 1.41

Location (X-Y coordinates) (124.9, 7.6) Presid [Δω1] (GPa) 0.088

Description of shape Spherical Presid [Δω2] (GPa) 0.070

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) 0.62

Pentrap [Δω2] (GPa) 0.58

LU 02-9

Garnet G

Locality: Purdy Hill
Collected by William Carlson

0.25 mm

100 μm

1.0 mm

25 μm
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 47.4 Depth of spectrum (μm) -30

Minimum length (X-Y) (μm) 31.6 Δω1 (cm-1) -0.92

Inclusion thickness (Z) (μm) 23 Δω2 (cm-1) -0.51

Location (X-Y coordinates) -(120.3, 9.3) Presid [Δω1] (GPa) -0.058

Description of shape Spherical Presid [Δω2] (GPa) -0.025

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) 0.26

Pentrap [Δω2] (GPa) 0.34

LU 02-9

Garnet H

Locality: Purdy Hill
Collected by William Carlson

0.25 mm

100 μm

1.0 mm

25 μm
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LU 02-9 -Garnet H
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 25.3 Depth of spectrum (μm) -18

Minimum length (X-Y) (μm) 19.0 Δω1 (cm-1) 3.20

Inclusion thickness (Z) (μm) 20 Δω2 (cm-1) 5.07

Location (X-Y coordinates) -(123.4, 4.9) Presid [Δω1] (GPa) 0.190

Description of shape Ellipsoid Presid [Δω2] (GPa) 0.257

Garnet composition Alm79.6, Prp12.8, 
Grs4.0, Sps3.6

Pentrap [Δω1] (GPa) 0.88

Pentrap [Δω2] (GPa) 1.04

LU 02-9

Garnet I

Locality: Purdy Hill
Collected by William Carlson

0.25 mm

100 μm

1.0 mm

25 μm
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LU 02-9 -Garnet I
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 23.7 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 22.1 Δω1 (cm-1) 2.23

Inclusion thickness (Z) (μm) 9 Δω2 (cm-1) 2.12

Location (X-Y coordinates) -(123.5, 5.0) Presid [Δω1] (GPa) 0.134

Description of shape Elongate Presid [Δω2] (GPa) 0.105

Garnet composition Alm81.5, Prp13.9, 
Grs2.8, Sps1.8

Pentrap [Δω1] (GPa) 0.74

Pentrap [Δω2] (GPa) 0.67

LU 02-10

Garnet B

Locality: Purdy Hill
Collected by William Carlson

0.25 mm

100 μm

1.0 mm

25 μm
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LU 02-10 - Garnet B
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 22.1 Depth of spectrum (μm) -5

Minimum length (X-Y) (μm) 11.1 Δω1 (cm-1) -4.22

Inclusion thickness (Z) (μm) 15 Δω2 (cm-1) -4.50

Location (X-Y coordinates) --(106.5, 10.6) Presid [Δω1] (GPa) -0.291

Description of shape Elongate Presid [Δω2] (GPa) -0.217

Garnet composition Alm82.2, Prp12.7, 
Grs3.5, Sps1.6

Pentrap [Δω1] (GPa) -0.32

Pentrap [Δω2] (GPa) -0.13

LU 02-10

Garnet D

Locality: Purdy Hill
Collected by William Carlson

0.25 mm

100 μm

1.0 mm

25 μm
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LU 02-10 - Garnet D
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Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 23.7 Depth of spectrum (μm) -6

Minimum length (X-Y) (μm) 22.1 Δω1 (cm-1) -0.58

Inclusion thickness (Z) (μm) 9 Δω2 (cm-1) -0.17

Location (X-Y coordinates) -(123.5, 5.0) Presid [Δω1] (GPa) -0.036

Description of shape Hexagonal Presid [Δω2] (GPa) -0.008

Garnet composition Alm85.0, Prp11.5, 
Grs2.0, Sps1.5

Pentrap [Δω1] (GPa) 0.32

Pentrap [Δω2] (GPa) 0.39

LU 02-10

Garnet E

Locality: Purdy Hill
Collected by William Carlson

0.25 mm

100 μm

1.0 mm

25 μm
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LU 02-10 - Garnet E

126.17 205.03

463.59

100 200 300 400 500 600
Wavenumber (cm-1)

-100
0

100

200

300

400

500

600

In
te
ns
ity

-100
0

100

200

300

400

500

600

In
te
ns
ity

0

100

200

300

400

500

600
700

In
te
ns
ity

0

100

200

300

400

500

600
700

In
te
ns
ity

Quartz Standard

127.23
206.26

464.24

100 200 300 400 500 600
Wavenumber (cm-1)

-1000

0

1000

2000

3000

4000

In
te
ns
ity

-1000

0

1000

2000

3000

4000

In
te
ns
ity

0

1000

2000

3000

4000

5000

In
te
ns
ity

0

1000

2000

3000

4000

5000

In
te
ns
ity



204

Inclusion Information Data and Pressure Calculation Results
Maximum length (X-Y) (μm) 25.3 Depth of spectrum (μm) -7

Minimum length (X-Y) (μm) 15.8 Δω1 (cm-1) -4.85

Inclusion thickness (Z) (μm) 17 Δω2 (cm-1) -5.61

Location (X-Y coordinates) (122.5, 10.1) Presid [Δω1] (GPa) -0.341

Description of shape Elongate Presid [Δω2] (GPa) -0.270

Garnet composition Alm83.4, Prp12.3, 
Grs2.5, Sps1.8

Pentrap [Δω1] (GPa) -0.44

Pentrap [Δω2] (GPa) -0.27

LU 02-10

Garnet G

Locality: Purdy Hill
Collected by William Carlson

0.25 mm

100 μm

1.0 mm

25 μm
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LU 02-10 - Garnet G
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