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Seasonal influenza epidemics are a major public health concern, caus-

ing three to five million cases of severe illness and about 250,000 to 500,000

deaths worldwide. Given the unpredictability of these epidemics, hospitals

and health authorities are often left unprepared to handle the sudden surge

in demand. Hence early detection of disease activity is fundamental to reduce

the burden on the healthcare system, to provide the most effective care for

infected patients and to optimize the timing of control efforts. Early detection

requires reliable forecasting methods that make efficient use of surveillance

data. We developed a dynamic Bayesian estimator to predict weekly hospital-

izations due to influenza related illnesses in the state of Texas. The prediction

of peak hospitalizations using our model is accurate both in terms of number

of hospitalizations and the time at which the peak occurs. For 1-to 8 week

predictions, the predicted number of hospitalizations was within 8% of actual

value and the predicted time of occurence was within a week of actual peak.
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Chapter 1

Introduction

Seasonal Influenza causes severe illness and life threatening complica-

tions, especially in the high-risk group, which include children younger than

two years, adults 65 years or older, and people with comorbidities. Influenza

epidemics occur yearly during autumn and winter resulting in three to five mil-

lion cases of severe illness and about 250,000 to 500,000 deaths worldwide [12].

These epidemics can be unpredictable and severe and hence early de-

tection of disease activity is important in reducing the impact. Early detection

requires regular surveillance and most importantly reliable forecasting meth-

ods that make efficient use of the surveillance data. This helps hospitals and

other health care services anticipate and be well prepared.

In the literature, techniques from statistics, machine learning and nat-

ural language processing have been adapted to develop real-time tracking of

influenza like illness. A linear statistical model using log-odds to analyze large

numbers of Google search queries [6], optimal statistical interpolation [9], clas-

sical statistical methods such as regression [2], Bayesian models [17], particle

filtering [11], and state space tracking approach based on particle learning [4]

have been applied to real time learning and surveillance of infectious diseases.
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Techniques from machine learning and natural language processing have been

applied to mine and analyze data from online social networks such as facebook

and micro-blogging site twitter to do real-time surveillance of epidemics [1, 3].

In this paper, we use a Kalman filter [7, 8] for predicting weekly hos-

pitalizations due to influenza related illnesses in the state of Texas. The ad-

vantage of Kalman filtering, a dynamic Bayesian estimator, is that it not only

provides real-time prediction but it also has the ability to correct itself from

past mistakes leading to improved performance as the size of the training data

(hospitalization data) increases. But hospitalization data is not available every

week; there is a lag of six months to one year in the data availability. Hence,

we forecast weekly hospitalizations using correlated time series data, which

are available within a two-week lag.

The model, developed in this paper, predicts weekly hospitalizations

many weeks into the future. We present forecast results for both timing and

magnitude of the peak hospitalizations. To illustrate the power of the proposed

method, we note that it has an error less than 8% in terms of peak magnitude

and is within one week of peak occurrence when we forecast hospitalizations

eight weeks from the actual peak occurence. In addition, the model output

can be used for decision making in public health service delivery such as the

usage of limited resources like beds, ventilators, medicines in a hospital.
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Chapter 2

Hospitalizations predictors

We consider four time series that could be related to influenza related

hospitalizations and thus predict hospitalizations: Google flu trends, Influenza

like illnesses network (ILINet) surveillance data, humidity reports, and school

calendars. These data sources have been shown to be useful and efficient in

forecasting flu activities and hospitalizations in literature. Google flu trends,

a website that tracks the frequency of google search queries related to ILI,

has been shown to strongly correlate with ILINet data from the national level

down to the city level [6]. The transmission of influenza virus and seasonality

of influenza outbreaks are highly correlated with absolute humidity [19]. In ad-

dition, the transmission of influenza virus is influenced by the school calendars

because of the high proportion of contacts in the school environment.

2.1 Google Flu Trends Data

The relative frequency of certain web search queries is highly correlated

with ILINet data in the US [6]. Therefore we use Google Flu Trends as a

predictor in our algorithm to predict the influenza hospitalization for the state.

Data is downloaded from the Google flu trends site. Since these data are
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available either for major cities or states, we use the Google Flu trends data

for the state of Texas. This data is available within a one week lag, hence it

comes in very handy during real-time forecasts.

2.2 ILI Data

CDC reports and tracks several types of metrics related to flu activity

in the US, including hospitalizations, mortality and outpatient visits due to

influenza-like-illnesses (ILI) on a weekly basis. CDC guidelines defines ILI

as fever of 100 degrees F (or higher) and a cough and/or sore throat in the

absence of a known cause other than influenza. A network of 2,400 sites (health

departments, laboratories, vital statistics offices, health care providers, and

emergency departments) in over 122 cities and 50 states, in charge of sending

reports on flu activity to CDC is called the US outpatient Influenza-Like-

Illness Surveillance network (ILINet). In this study we use the ILINet weekly

reports for the state of Texas. This data is downloaded from the DSHS ILI

surveillance page website real-time.

2.3 School Data

Because the transmission of the influenza virus is highly correlated with

the school calendars, one of the predictor variables that we used in our fore-

casting model is the school calendar (i.e. the weekly number of days schools

are scheduled to be open). We used school calendars of the largest school

districts located in each health service regions (HSR) that are available online.
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For each of the HSRs we formed the time series for the school calendar predic-

tor, with the school calendars of aforementioned school districts that include

the years from 2004 to 2010. We calculated the percent of days in a week that

schools are open to convert our school data into weekly aggregated time series.

2.4 Humidity Data

Epidemiological studies show that the transmission of influenza virus

and seasonality of influenza outbreaks are strongly correlated with absolute

humidity [19]. Therefore we use the weekly humidity reports for related regions

as one of the factors that can be defined as a predictor of influenza in the

Kalman filter. The data that is used is obtained from the National Climatic

Data Center and was converted into weekly averages by taking the averages

of the reporting stations located in each health service regions. Then, relative

humidity is converted into absolute humidity (Kg Water / Kg Dry Air) using

known relationships between temperature and the total mass of water held in

the air at 100% saturation.
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Chapter 3

Mathematical Model

In this chapter we present the Kalman filter by motivating it as a

recursive (also known as online) version of the linear regression model [20].

The linear regression model is given by:

y = θ0 + θ1f1 + . . .+ θnfn + v

y = FΘ+ v (3.1)

Here the unknown but fixed variables are θ0, . . . , θn and the input variables1

are f1, . . . , fn. Assume we have m such observations, y1, . . . , ym.

The goal in linear regression is to estimate the variables (θ0, . . . , θn).

The most commonly used estimator for inference is the ordinary least squares.

The least squares method minimizes the sum of squared residuals leading to

an analytical expression for the estimated value of the unknown variable Θ:

Θ = (F TF )−1F Ty (3.2)

1Also called predictors in Machine Learning literature and referred to as covariates

or independent variables in Statistics literature. Conventionally, these are denoted as

x1, x2, · · · , xn. But we prefer our notation since the collection of these covariates is de-

noted as F .
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In terms of computation, the least squares method can be thought of

as a batch algorithm2. This is not very efficient when we get data in real time

which motivates the need for a recursive (online) algorithm.

3.1 State Space Model

To develop an online version of the linear regression model we need to

understand a State Space model, which we motivate as follows. Suppose we

receive the m+1 sample y(m+1) and the corresponding (m+1) input denoted

as F(m+1),., The linear regression model in Eq. (3.1) must take into account the

m+1 sample. Them+1 sample will cause changes to the values of the unknown

variables, Θ = (θ0, . . . , θn). Now we make a key and useful assumption, namely

the vector Θ of unknowns is random, not fixed. This subtle distinction puts us

immediately into a Bayesian framework. Assume then that Θ evolves linearly

and is also corrupted by a Gaussian noise. Denote this model for random Θ

by:

Θt = GΘt−1 + wt (3.3)

where the index t refers to time3 and the noise in the system is given by

wt ∼ N(0,Wt). The above equation is called the system equation.

The impact of a new estimate for Θ at time t+1 then leads to a change

2Batch algorithm needs all the data at once.
3In our discussion, t = m+ 1.
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in the linear regression equation in Eq. (3.1). The updated equation is:

yt = FΘt + vt (3.4)

The noise in the observation is given by vt ∼ N(0, Vt). The above equation is

called the observation equation. It is assumed that the system and observation

noises are independent. Eq. (3.3) and Eq. (3.4) together constitute the State

Space model.

3.2 Kalman Filter

Denoting P{.} to mean a probability model, the goal of Kalman Filter-

ing is to find P{Θt|y1, . . . , yt}. This is obtained using a Bayesian update [10]:

P{Θt|y1, . . . , yt} ∝ P{yt|Θt, y1, . . . , yt−1} × P{Θt|y1, . . . , yt−1} (3.5)

Let us discuss what happens at time t. At t− 1, the knowledge about

Θt−1 is given by:

(Θt−1|y1, . . . , yt−1) ∼ N(µt−1,Σt−1) (3.6)

Given we have complete knowledge of the system at t − 1, we look

forward to t in two steps:

1. prior to observing yt;

2. after observing yt.
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3.2.1 Prior to observing yt

Before observing yt, our best choice for Θt is given by the system equa-

tion Eq. (3.3), Θt = GΘt−1 +wt. Since Θt−1 is Gaussian and characterized by

Eq. (3.6), using the fact that a linear transformation of a Gaussian is Gaussian,

we get:

(Θt|y1, . . . , yt−1) ∼ N(Gµt−1, Rt) (3.7)

where Rt = GΣt−1G
T +Wt.

3.2.2 After observing yt

After observing yt, one gets the posterior distribution of Θt, which is

also Gaussian and is given by:

(Θt|y1, . . . , yt) ∼ N(µt,Σt) (3.8)

where

µt = Gµt−1 +RtF
T (V + FRtF

T )−1et (3.9)

Σt = Rt −RtF
T (V + FRtF

T )−1FRt (3.10)

and et = yt − FGΘt−1

Interpreting µt: If the variance of the error (V +FRtF
T ) is large, then

use the system’s prediction; else incorporate the error which is weighted by

the covariance of the error and the prediction given by RtF
T .
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Interpreting Σt: the variance decreases when we see a sample. This

agrees with intuition: as we take more samples, the variance in our estimation

should go down.

Note that once Θt is obtained, we can calculate yt using Eq. (3.4). For

example, to make a one step ahead prediction of yt combine Eq. (3.7) with

Eq. (3.4) to obtain the following predictive probability distribution for yt:

(Θt|y1, . . . , yt−1) ∼ N(Gµt−1, Rt)

yt ∼ N(FGµt−1, FRtF
T + V ) (3.11)
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Chapter 4

Implementation Details

In this chapter we provide the details of implementing the above model

to predict flu related hospitalizations. In our case, the target (yt) in Eq. (3.4)

is the number of hospitalizations. The input variables or predictors (F =

[f1, . . . fn]) are given by:

• Google flu trends

• ILINet (Influenza Like Illness Network data)

• Humidity

• School calendar

From the previous chapter, the aims of the analysis is to learn about the

coefficients (Θ) of the predictors, and to minimize the error in the predicted

number of hospitalizations at each time step.

We implemented the Kalman filter in R [16] using the dlm package [13,

14]. Some of the text preprocessing was done using python [15]. The details

of the R implementation is given next. The Kalman filter has the following

components:
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• Predictors The predictors discussed above (Google flu trends, ILINet,

Humidity and School calender) are implemented using dlmModReg(predictor).

• Seasonality The data are collected every week. We need predictors to

capture the seasonal component of the weekly nature of the data. This

is implemented using the function dlmModSeas(52).

• Trend Since there is no overall trend in growth we model this using a ran-

dom walk plus noise component. This is implemented using dlmModPoly(order

= 1).

To facilitate prediction, we lag the predictors by k weeks while we train

the filter. To illustrate this consider k = 4 weeks. This means, while training

the filter, we predict hospitalizations in a given week using the predictors k = 4

weeks back. More concretely, in the training phase the hospitalizations in week

11 is predicted using Google flu trends values in week 7. This means given this

week’s Google flu trends data we can predict hospitalizations k = 4 weeks from

now. We note that the prediction for k weeks ahead is done using Eq. (3.11),

which is run k times. Since we are predicting, we do not have access to the

actual hospitalization data and thus cannot do the correction step of Eq. (3.8).

4.1 Feature Selection

We have four predictors for our model namely: school, humidity,

ili, google. The correlation of various predictors with hospitalizations is

shown in Table 4.1.
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Table 4.1: Correlation matrix of various predictors with hospitalizations.
Note that of all predictors, google has the highest correlation 0.88 with
hospitalizations.

school humidity ili google hospitalizations

school 1.00 -0.35 0.35 0.32 0.21
humidity -0.35 1.00 -0.50 -0.44 -0.24
ili 0.35 -0.50 1.00 0.77 0.81
google 0.32 -0.44 0.77 1.00 0.88
hospitalizations 0.21 -0.24 0.81 0.88 1.00

The correlation between various predictors and hospitalizations is

shown graphically in Fig. 4.1. We can observe that only ili and google

correlate well with hospitalizations. Hence we can simplify by choosing

these two predictors without losing any accuracy.
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Figure 4.1: Scatterplot matrix of all the predictors and hospitalizations. We
illustrate reading this matrix through an example. The (5, 4) scatterplot has
google in the x-axis and hospitalizations in y-axis. Thus to read the x-axis
look vertically and look at the label in the diagonal. Similarly to lookup y-axis
scan horizontally. It is clear from the matrices that google and ili correlate
well with hospitalizations. One can observe that the predictors humidity
and school do not correlate well with hospitalizations.
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Chapter 5

Results

In this chapter, we discuss the performance of our model and compare

its performance to two other models namely: Method of Analogues and Ser-

fling. Method of Analogues is a non-parametric method forecasting method de-

veloped to predict weather, later adapted for epidemiological projections [21].

It was used to predict flu seasons across France over 10 years. Their results

were much more accurate than classical statistical methods such as autore-

gressive methods. Serfling regression is a parametric regression technique de-

veloped to model excess influenza mortality [18] and is widely used in the

literature as the baseline model [22].

We present multiple steps ahead forecasts of weekly hospitalizations in

addition to the timing of the peak and magnitude of the peak measures.

5.1 Model Performance

The model was fit to historical data from October 2005 to October

2007 and tested for its ability to forecast the state of Texas influenza-related

hospitalizations during the 2008-2009 influenza season. We made a series of

predictions starting at different time points during the epidemic (between 8
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and 1 week prior to peak hospitalizations). The estimate of the peak is offset

by one week for predictions earlier than one-week. This is due to the fact that

in the past (i.e. the training data) the peak week is usually the 6th week.

Since this is a dynamic model it also has the ability to correct itself from past

mistakes, through the system equation, leading to improved performance as

the size of the training data increases.

Fig. 5.1 shows the predictive power of the model as we approach the

peak in 4 time steps. The top left figure shows the 8-week ahead prediction,

where we see that the prediction of the peak is offset by a week and the peak

value is a little overshot. The next figure shows the 5-week ahead prediction

of the peak, where again the peak is offset by a week, but the predicted peak

value is very close to the actual value. The next horizon is 3 weeks ahead; here

again, the peak is offset by a week and the peak value has decreased from the

value in the earlier horizon. The last is the one week ahead prediction where

the model captures the peak correctly and the peak value is also close to the

actual value.

5.2 Comparison

We compare our results with the results obtained using Method of

Analogues and Serfling regression. We provide a brief overview of these two

methods before presenting the comparison.
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Figure 5.1: Prediction using Kalman Filter The actual hospitalizations values
are in red while the predictions using Kalman filter is in blue. The 95%
prediction interval for the Kalman filter prediction is shown by a grey bounding
box.
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5.2.1 Method of Analogues

Method of Analogues works by comparing historical data to current

incidence and projects an average value for the n nearest neighbors. Briefly,

influenza activity in week t is defined as a vector of influenza incidence from

week t−l through week t. We then compare all historical vectors of length l+1

and identify the n nearest neighbors using euclidean distance. A k week ahead

forecast is accomplished by averaging the kth week ahead from the selected

nearest neighbors.

5.2.2 Serfling Regression

Serfling regression fits a local regression term and a seasonal forcing

term through a wave function:

It = θ0 + θ1t+
∑

αi cos θ +
∑

βi sin θ (5.1)

where It is influenza incidence at time t and θ is a linear function of t.

Both the methods were implemented using the time series package in

R. We can see that the MOA model does reasonably well, however when we

compare it in terms of peak week and peak value estimation, the Kalman filter

model does better.

Table 5.1 gives the peak error due to Kalman filter, Method of Ana-

logues and Serfling Regression. The results are provided for the year 2008-2009.

Fig 5.2 shows the predictive power of the model graphically. The top

left plot in that figure shows 8-week ahead prediction, we see that magnitude
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Table 5.1: Comparison of the Kalman filter with Method of Analogues and
Serfling Regression. The results are provided for the year 2008-2009. The
column “Start of Forecast” has the number of weeks the method forecasts.
For example, consider the first row in the Kalman filter results: 8 denotes we
have started forecasting 8 weeks before the peak. Since the peak occurred at
week 7 of 2009, this means we started forecasting at week 52 of 2008. Note
that Kalman filter is the best among the all methods both in terms of peak
value predicted as well as time at which the peak is going to occur. Note that
the error for the predicted peak value is ≤ 8%; the week at which peak occurs
is off by at most 1 week in case of Kalman filter. Note that in case of Methods
of Analogues, in case of 8 week forecast even though the peak value is very
nearly correct the time at which the peak is predicted is off by 2 weeks.

Start of Forecast Peak Value Peak Week Peak Week Error % Peak Error
Observed 903 7 - -

Kalman filter

8 970.73 6 1 7.50
5 901.26 6 1 -0.19
3 863.25 6 1 -4.40
1 879.34 7 0 -2.62

Method of Analogues

8 905.17 5 2 0.24
5 735.04 4 3 -18.60
3 780.65 6 1 -13.55
1 924.36 8 -1 2.36

Serfling Regression

8 663.99 5 2 -26.47
5 660.53 5 2 -26.85
3 660.80 5 2 -26.82
1 662.16 5 2 -26.67
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of the peak is a little overshot while the time at which peak occurs is off by

a week. The top right panel shows the 5-week ahead prediction of the peak,

where the predicted peak value is very close to the actual value but the peak is

offset by a week. Bottom left and bottom right panels show the 3-week ahead

and 1-week ahead prediction of the peak. The estimate of the peak is offset

by one week for predictions earlier than one-week. This is due to the fact that

in the past (i.e. the training data) the peak week is usually the 6th week.

Serfling’s regression does not capture the dynamics of the system thus

resulting in large errors in predicting magnitude of the peak values. While

the Method of Analogues (MOA) does capture the dynamics it suffers from

large errors in predicting the time at which the peak occurs. For example,

consider the case of the 8-week forecast using the Method of Analogues. The

peak predicted value is 905 which is very close to the actual value of 903 but

the predicted peak is during week 5 which is 2 weeks off from the actual peak

which is week 7. Also MOA is not consistent in tracking the hospitalizations.

In the 8-week ahead prediction, MOA does track the hospitalizations but in

the case of 5-week ahead prediction (top right panel, green color)

Thus Kalman filter is the best among the methods both in terms of

predicting the magnitude as well as the time at which peak value is going to

occur. Note that the error for the predicted peak value is ≤ 8%; the week at

which the peak occurs is off by at most one week in case of the Kalman filter.

Next we evaluate the performance of our model for the 8-week ahead

forecast using mean absolute percentage error (MAPE) and root mean square
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Figure 5.2: Prediction using method of analogues (MOA) plotted in green.
and prediction using Serfling regression is plotted in purple. The actual hos-
pitalizations values are in red while the predictions using Kalman filter is in
blue. Note that three weeks before the peak hospitalization prediction (lower
left pane) MOA predicts the peak a week after it has occurred while Kalman
filter predicts a week before it occurs. Also the prediction using Serfling’s
method does not capture the dynamics of the system.
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error (RMSE). The results are tabulated in Table 5.2.

Table 5.2: Kalman filter error metrics. The hospitalization data is from year
2005, week 40 to end of year 2009. The results corresponding to 2007–2008
row are calculated as follows: The training data is from year 2005, week 40
till year 2007, week 51. The testing data for which the error metrics: RMSE,
MAPE are reported runs from year 2007, week 52 till year 2008, week 7. The
forecasts for 2007-2008 are not as good as those for 2008-2009 season, this
is simply due to the size of the training data. LooM denotes “leave one-out
method” and uses the entire training data from 2005, week 40 till end of 2009
but leaving an year (say 2006) out for training. This is repeated for years
2007, 2008, 2009 as training data and the results are averaged.

RMSE MAPE Peak Week Error
2007-2008 317.26 39.46 0
2008–2009 90.18 7.50 -1
LooM 155.50 15.65 0.25

We have hospitalization data starting from year 2005, week 40 to the

end of year 2009. The results corresponding to 2007–2008 row are calculated

as follows: The training data is from year 2005, week 40 till year 2007, week 51.

The testing data for which the error metrics RMSE and MAPE are reported

runs from year 2007, week 52 till year 2008, week 7. Overall the performance

is very encouraging. However, the forecasts for 2007-2008 are not as good as

those for the 2008-2009 season; this is simply due to the size of the training

data.
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5.3 Discussion

For strategic planning and stock piling in the health care industry,

we require reasonably accurate forecasts of hospitalizations which are ideally

one-month ahead. But the actual hospitalization data are not available every

week and it is usually available every six months or in some cases once every

year. Thus models such as Method of Analogues and Serfling Regression which

depend on past hospitalization data cannot provide accurate forecasts in real

time due to the lack of availablility of the recent hospitalization data. Our

model overcomes the lack of recent hospitalization data by using time series

such as Google Flu Trends, ILINet as predictors of hospitalizations. These

predictors correlate well with hospitalization data and are updated in real

time on the internet.
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Chapter 6

Conclusion

In conclusion, the proposed Kalman filter is the best among the meth-

ods compared in this work both in terms of peak hospitalization value predicted

as well as the time at which the peak hospitalization is going to occur. The

error for the predicted peak value is less than 8% for predictions from 1 to 8

weeks; the week at which peak occurs is off by at most 1 week. In comparison,

Method of Analogues suffers upto 19% peak error and can be off by upto 3

weeks; Serfling is even worse in terms of peak error by underestimating it by

26% and the timing can be off by 2 weeks.
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