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Modern military ground vehicles are no longer able to respond effec-

tively to the rapidly changing mission requirements of modern military con-

flicts. Military vehicle architectures, which utilize passive suspension compo-

nents and traditional drivetrain/steering systems, do not provide the opera-

tional flexibility to meet the demands of the operator.

Advances in intelligent actuation technology allow for the development

of a new vehicle architecture - the Intelligent Corner Vehicle (ICV). The ICV

utilizes intelligent actuator technology to actively control the four degrees of

freedom of each wheel of the vehicle - drive, camber, steering, and suspension.

The utilization of intelligent actuation requires the characterization of the

motions and behavior of the tire and the vehicle chassis in order to effectively

apply the tire to the road surface - the development of vehicle performance

criteria.

A brief review of the state of wheeled military systems is presented.

Many modern military vehicles were designed to improve protection at the
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expense of mobility - a process that has had negative effects on vehicle capa-

bility. An overview of the pneumatic tire used for wheeled vehicles is presented,

highlighting the nonlinearities of tire behavior. The complexity of tire force

generation drives the need for the application of intelligent actuation. Tradi-

tional actuation of wheel motion is presented along with a variety of current

efforts to apply intelligent actuation to individual degrees of freedom of the

tire. These efforts can be shown to improve vehicle performance, but intelli-

gent actuation must be applied to all aspects of tire motion, requiring the use

of the ICV architecture and the generation of performance criteria by which

the complex motion of the vehicle may be evaluated. The Robotics Research

Group has a history of developing and evaluating performance criteria for com-

plex dynamic systems. and review of performance criteria developed for serial

chain robotics is presented. These criteria address task independent actuator

motion in addition to actuator ranges and limits, and their application to the

ICV is discussed. A brief overview of several important concepts of classical

vehicle dynamics are presented. The application of criteria derived from these

concepts to the ICV architecture is discussed.

This report presents the complexities of tire behavior and vehicle mo-

tion, the need for alternative architectures (the ICV), and a variety of perfor-

mance criteria required to evaluate vehicle motion in real time. Criteria that

are presented are summarized along with their definition and physical mean-

ing. Future work for the development of the ICV involves the generation of a

vehicle model for evaluating the application and range values of the presented

vii



criteria.
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Chapter 1

Introduction

1.1 Background

1.1.1 Military Vehicles

Military vehicles are traditionally developed to address sets of opera-

tional requirements derived from the expectations of future conflict. A large

number of military vehicles currently, such as the High Mobility Multipur-

pose Wheeled Vehicle (HMMWV), M1 Abrams Tank, and the M2 Bradley

Fighting Vehicle, were developed during the Cold War era for conventional

vehicle roles (logistics/armor/mechanized infantry) with the expectation that

future conflicts would involve large scale warfare between established nations,

similar to what had been experienced in Vietnam, Korea, and World War II.

In effect, the process of generating requirements was an extrapolation of past

observations and experiences.

While the vehicles developed during the Cold War era were initially

successful after their deployment, as witnessed during U.S. operations dur-

ing the First Gulf War, the rise of large scale asymmetric warfare during the

conflicts in Iraq and Afghanistan during the 2000’s demonstrated that this

extrapolation process was no longer appropriate. The rapidly changing mis-

sion requirements and unknown threats indicated that conventional vehicle
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roles were no longer relevant and that improved ground vehicle capability was

needed. The rapid nature of the response of the U.S. military to this issue

resulted in the development of a new class of vehicle, the MRAP, based on

off-the-shelf military and commercial vehicle technology. The result was an

increase in levels of threat protection at the cost of severely reduced vehicle

performance and capability. Overall, this process ended with the stagnation

of the development of the technology base for military ground vehicles at a

considerable cost in time and resources.

1.1.2 Vehicle Architectures

Most ground vehicles utilize similar architectures - internal combustion

engines provide torque through transmissions and drive shafts directly con-

nected to the driven wheels. The remaining individual motions of each wheel -

camber, suspension, and steering, are controlled by passive elements (springs,

dampers, and linkages). As such, the selection of parameters for the passive

elements is a process of optimization that requires the designer or engineer to

establish a constrained design compromise based on the anticipated operating

conditions of the vehicle. If the operating conditions vary significantly, as is

the case with military vehicles, the compromises made in the design phase

often severely limit the ability of the vehicle to adequately respond to the

demands of the operator.
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1.2 Problem Overview

The ground vehicle is a tool for the operator that provides mobility

for the operator, other occupants, and a variety of cargo and chassis mounted

equipment. As such, the ideal ground vehicle is perfectly suited to the task

of rapidly responding to the commands of the operator. Rapidly responding

to the operator requires a vehicle platform with significant flexibility in design

and operation. Tesar, in [82], proposes the development of a vehicle platform

that utilizes intelligent actuation to optimally apply the vehicle running gear

to the road.

1.2.1 The Intelligent Actuator

The Robotics Research Group (RRG) has conducted research for many

years on geartrain and actuator design. The intelligent actuator concept uti-

lizes a variety of actuator sensors and embedded performance maps to pro-

vide the operator with real-time information and capability, but also with a

structured decision making process that allows the actuator to rapidly and

accurately respond to the operator’s demands. The intelligent actuator will

provide two key capabilities to ground vehicle platforms - standardization and

open architecture.

Standardization will allow for the development of minimum actuator

sets - a series of actuator designs intended to address all of the actuation

needs of a particular design space. The designer or engineer may select one

or more actuators from a given set and apply the actuator directly to the
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intended application. This process eliminates the need for one-off designs.

Open architecture will allow the direct involvement of any capable party

in the development and implementation of intelligent actuation. This will

reduce or eliminate legacy technology with proprietary components, allowing

for the rapid refreshment and improvement of not only actuator technology,

but the overarching control software.

1.2.2 The Intelligent Corner Vehicle

Applying intelligent actuators to each of the four possible degrees of

freedom of a wheel (resulting in an intelligent corner) maximizes the ability

of the wheel to apply the tire to the road surface (the ultimate goal of the

vehicle). The Intelligent Corner Vehicle (ICV) utilizes any number of paired

intelligent corners on a military vehicle chassis to create a fully open archi-

tecture in a highly responsive and dexterous vehicle system. The benefits of

open architecture and standardization provided by the intelligent actuators

results in a system that may be assembled on demand from minimum sets of

components and the resulting vehicle is suited to actively apply the tire to the

road surface as dictated by the operator.

However, any optimization process requires criteria by which any sys-

tem output (in this case) vehicle motion, may be evaluated. Sets of vehicle

performance criteria will allow the operator and vehicle control software to ap-

propriately judge the motion and force application of the intelligent actuators.
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1.3 Research Objectives

The goal of this research is to begin the process of developing perfor-

mance criteria framework for the ICV concept. The RRG has a history of de-

veloping and working with performance criteria in highly nonlinear systems, in

this case for serial chain robotic systems. This report evaluates the application

of previously developed criteria to ground vehicles and presents performance

criteria derived from an expanded view of classical vehicle dynamics.

1.4 Report Structure

1.4.1 Chapter 1: Introduction

This chapter provides an introduction to the work and describes the cur-

rent issues with modern military ground vehicle development. The Intelligent

Corner Vehicle concept is introduced, the benefits of the vehicle architecture

described, and the requirement for performance criteria presented.

1.4.2 Chapter 2: Background

This chapter briefly discusses the state of current military ground vehi-

cles as well as the current development process. The rapidly changing nature

of vehicle requirements and the trends in military vehicle capability are de-

scribed.
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1.4.3 Chapter 3: Tires

This chapter discusses the behavior of pneumatic tires. The concepts of

tire slip and force generation are detailed, and the problems with quantifying

tire behavior in combined loading conditions on various surfaces are presented.

The impact of tire nonlinearities on the ICV architecture are summarized.

1.4.4 Chapter 4: Vehicle Architectures

This chapter presents and discusses traditional vehicle architectures,

current trends in active wheel motion actuation, and various non-traditional

vehicle platforms. The ICV concept is presented in detail, the the subsequent

implications for increased vehicle capability are noted.

1.4.5 Chapter 5: Serial Chain Robotics Criteria as a Framework
for Vehicle Criteria Development

This chapter discusses the development of performance criteria for serial

chain robotic systems, and the applicability of these criteria to the ICV. The

most applicable sets of criteria, those describing actuator limits and chassis

energy distribution, are presented along with the meaning of each with respect

to the ICV concept which, as a vehicle assembled of N corners, forms a fully

parallel system.

6



1.4.6 Chapter 6: Concepts of Vehicle Dynamics as Applied to the
Intelligent Corner Vehicle Architecture

This chapter introduces several models and concepts commonly used in

the study of classical vehicle dynamics. The performance criteria that may be

derived from these models is presented, in addition to the meaning of each with

respect to the ICV concept. This transition to actuator drives/suspensions is

a major undertaking deserving a full attention of the needed science.

1.4.7 Chapter 7: Conclusion and Future Work

This chapter concludes the report by summarizing the development of

performance criteria for the ICV and by discussing the need for detailed models

of the planar motion of the ICV and for the ICV suspension. Validating

performance criteria will require simulating realistic vehicle behavior in an

effort to observe not only the values of the individual criteria through the

vehicle motion, but the relative changes in value among them, so that the

physical meaning of each criteria may be further refined in an effort to more

accurately characterize vehicle motion. All of this leads to increased safety,

efficiency, responsiveness, the reduction of single point failures, and improved

operator command due to real time visual criteria display and internal conflict

(in milli-sec.) resolution among the 4N degrees of freedom.

All of the key concepts from the literature, associated results, conclu-

sions, and recommendations of this report are enumerated and presented at

the end of this chapter. The list of 41 key literature concepts describe the de-
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velopment of modern military platforms, the complexities of the tire, state of

traditional wheel actuation, and detail the groundwork for understanding ve-

hicle dynamics and the application of performance criteria to complex systems.

The listing of 32 results indicate the ineffectiveness of military platforms, the

potential for performance map characterization of the tire, and the restrictive

nature of traditional wheel actuation. The list of 39 conclusions describe the

requirement of the ICV architecture to improve military vehicle platforms,

need for tire performance maps, and the effectiveness of criteria descriptions

of complex motion. Finally, the 19 recommendations for future work detail

the need for comprehensive modeling in an effort to evaluate the effectiveness

of the ICV architecture and presented criteria.
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Chapter 2

The Current State of the Battlefield Vehicle

2.1 Mobility as Requirement

Mobility is the cornerstone of any mechanized military organization.

Mobility is key in all areas of military operation (air, sea, land), however,

the focus of this chapter is on ground mobility and the subsequent impact on

ground troop capability. While a complete study of the historical importance

of military vehicle performance is, unfortunately, outside the scope of this doc-

ument, it is necessary to emphasize the importance of military ground vehicle

capability and the impact of vehicle requirements on technology development.

2.2 A Brief History of U.S. Military Ground Vehicles

The widespread use of mechanized ground vehicles began during the

First World War. Trucks began to replace pack animals as the main means of

materiel transport and the first tanks were developed as a means to support

infantry engaged in trench warfare [54]. Vehicle technology (both commer-

cial and military) developed rapidly in the early part of the 20th century and

by the Second World War, mechanized units were well integrated into mili-

tary doctrine and strategy [16]. The inclusion and utilization of mechanized
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units continued to increase during the Cold War period along a relatively lin-

ear development path: armored combat vehicles operated at the front lines,

soft-skinned (non-armored) tactical vehicles provided support and logistics ca-

pability. This methodology, however, is no longer appropriate for recent U.S.

military conflicts as a result of the new emphasis on expeditionary operations

which have no clear line of combat.

2.2.1 Cold War Vehicle Development

The analysis of modern day military ground vehicle requirements and

capabilities begins with the study of three vehicles developed during the post-

Vietnam, Cold War era arms race: the High Mobility Multi-Purpose Wheeled

Vehicle (HMMWV), M1 Abrams main battle tank, and the M2 Bradley Fight-

ing Vehicle.1 The HMMWV is shown in Figure 2.1, the M1 Abrams in Figure

2.2, and the M2 Bradley in Figure 2.3. It should be noted that the HMMWV

represents a family of vehicles utilizing a common core chassis and that the

vehicle in Figure 2.1 is one of the more common variants.

The development of these three vehicles was intended to provide up-

dated troop transport/logistics (HMMWV), maximum ground vehicle protec-

tion and firepower (M1), and mechanized infantry support (Bradley) capabil-

ity. These vehicles were developed to address the military doctrine and then

current tactics derived largely from analysis of large scale warfare between two

1The M1 and M2 vehicles are both tracked systems while the HMMWV is a wheeled
vehicle. While both tracks and wheels are utilized in military vehicle architectures, this
report will focus on wheeled vehicles.
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Figure 2.1: High Mobility Multi-Purpose Wheeled Vehicle (HMMWV) [32]

Figure 2.2: Abrams Tank (M1A1 Variant), Camp Fallujah, Iraq, 2007
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Figure 2.3: M2 Bradley Fighting Vehicle (M2A2 Variant), Forward Operating
Base MacKenzie, Iraq, 2004

developed, national combatants (e.g. the U.S.S.R and the U.S.) [46]. Under-

standing the development of these vehicles is critical for three reasons. The

first reason is that these vehicles provided the bulk of the U.S. offensive capa-

bility during the Gulf War and performed their intended roles effectively for

the duration of the conflict. The second reason is that these vehicles reprised

their roles as the bulk of the U.S. armored/mechanized vehicle forces during

the beginning of the Iraq War, during which the rise of asymmetric warfare

drastically changed the requirements for military vehicles.2 Finally, these vehi-

cles are still currently in use and therefore provide insight into the continually

changing nature of ground vehicle utilization and capability.

2Asymmetric warfare refers to conflicts where the belligerents involved may be of signif-
icantly disproportionate capability and the use of unconventional tactics is common.
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2.2.2 Ground Vehicles During the Gulf War

The Gulf War was the first significant, multinational conflict involving

large scale military operations since the revitalization of the U.S. military in

the post-Vietnam era and the development of integrated, full spectrum ca-

pability military doctrine [17]. However, drawing conclusions about ground

vehicle capability in this case is difficult due to the brief nature of the ground

campaign. Ground operations in Iraq lasted approximately 100 hours and were

preceded by an extensive, five week air strike campaign. The M1 Abrams, M2

Bradley, and HMMWV vehicles performed well [67]. However, their inter-

action with enemy forces was, broadly speaking, limited. The M1 and M2

vehicles, spearheading the coalition ground forces, proved to be vastly supe-

rior to Iraqi armored vehicles, allowing coalition troops to sustain rapid ground

troop movement, achieve objectives quickly, and avoid extended ground oper-

ations [11]. This conflict did, however, highlight two issues related to ground

vehicle performance.

The first issue was the problem of vehicle fuel consumption (fuel ef-

ficiency). The heavily armored, 70 ton Abrams tank utilizes a gas-turbine

engine as a main power plant instead of the more traditional diesel piston

engine. As a result, the M1 has excellent acceleration and maximum ground

speed characteristics but suffers from poor fuel efficiency. Each M1 consumed

five hundred gallons of fuel every eight to ten hours during the First Gulf War

ground campaign [11]. The extensive fuel consumption of U.S. ground forces

caused delays in the advancement of U.S. troops, but other fuel efficiency issues
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were not well documented due to the brevity of ground operations.

The second issue was the lack of sufficient high speed, off-road capability

among a variety of ground vehicles. Command and control (C2) vehicles, in

addition to logistics vehicles, had difficulty keeping pace with the M1 tank

during the rapid advancement of U.S. forces [66].3 Again, the short duration of

the ground conflict kept this performance disparity from significantly affecting

the conduct of U.S. operations.

2.3 The Iraq War and Subsequent Changes to Vehicle
Requirements

While large scale ground operations during the Iraq War in 2003 were

also brief, the subsequent occupation of Iraq resulted in a rapid shift in the

nature of the engagement. The rise of insurgency, asymmetric warfare, and the

involvement of non-state actors caused the Improvised Explosive Device (IED)

to become the predominant threat to ground vehicles and troops. This shift

resulted in the need for increased threat protection not only for the armored

vehicles (M1, M2) but for the soft-skinned HMMWV as well.

Improved HMMWV variants and armor kits were developed in an ef-

fort to provide additional protection against threats [85][58]. An image of a

HMMWV variant with upgraded armor is shown in Figure 2.4.

Other tactical wheeled vehicles, such as the Family of Medium Tactical

3Command and control vehicles, in this case, refer to the M88A1, M577, and M113.
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Figure 2.4: Up Armored HMMWV Variant, Afghanistan, 2007 [69]

Vehicles (FMTV), received similar upgrades during the conflict. The original,

soft-skinned vehicle, shown in Figure 2.5, was upgraded to allow the applica-

tion of additional armor panels. The upgraded base cargo FMTV vehicle is

shown in the unarmored state in Figure 2.6, and the armored state in Fig-

ure 2.7. These upgrades, while effective to some extent at mitigating IED

and small arms threats, had a very negative impact on vehicle mobility and

efficiency [47].

2.3.1 Development of the MRAP

Procurement of HMMWV armor kits and upgraded chassis variants

was a slow process and the resulting vehicles were not sufficiently effective at
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Figure 2.5: FMTV Light Vehicle, Unarmored [6]

mitigating IED threats [59]. In response, the Department of Defense (DoD)

sought to procure armored wheeled vehicles in an effort to protect units and

patrols. The resulting program was named Mine Resistant Ambush Protected

(MRAP) and vehicles were procured from contractors and deployed rapidly.

MRAP vehicles, utilizing V-shaped, armored plating and lifted chassis, proved

resilient to many IED threats [25]. However, the increased level of protection

resulted in several drawbacks. MRAP vehicles were slow, overly heavy for

the local road infrastructure, and fuel inefficient. One of the MRAP Variants,

manufactured by Force Protection, Inc., is shown in Figure 2.8.

The MRAP program was meant to be a rapid solution built as quickly

as possible, which limited the available technology to commercial off the shelf

(COTS) solutions. The rapid deployment of the MRAPs was largely a process
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Figure 2.6: FMTV Light Vehicle, A-Kit (Base Armor) Configuration [29]

of adapting existing commercial and military truck chassis to accommodate

heavily armored cabs and crew compartments, resulting in the continuation of

the same vehicle architectures present in military vehicle fleets. As a result,

the tech base for ground vehicles was not moved forward despite significant

financial investment by the DoD. While this rapid procurement did provide

troops with increased protection against various threats, the focus on imme-

diate technology had the effect of divesting the U.S. Department of Defense

(DoD) from the overall ground vehicle strategy and doctrine [3][4]. The success

of the MRAP program (where protection was the main concern) resulted in

continued use of MRAP vehicles during the conflicts in Iraq and Afghanistan.
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Figure 2.7: FMTV Light Vehicle, B-Kit (Appliqué Armor Panels Installed)
Configuration [29]

2.3.2 Extending the MRAP Architecture

Towards the end of the conflict in Iraq, the U.S. DoD requested pro-

posals (RFP) for a lighter variant of the MRAP capable of traversing the

mountainous terrain of Afghanistan [68]. The intent with this RFP was to

address one of the most significant weaknesses of the MRAP program, vehi-

cle mobility and performance. The resulting vehicle, the MRAP All Terrain

Vehicle (M-ATV), shown in Figure 2.9, was procured in 2010.

However, while the M-ATV platform addressed a few of the concerns of

the original MRAP program such as size and weight, the resulting architecture

did not represent a significant departure from previous MRAP designs. A

visual comparison between the HMMWV and M-ATV is shown in Figure 2.10.
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Figure 2.8: Cougar MRAP Variant

Figure 2.9: MRAP All Terrain Vehicle (M-ATV) [9]
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Figure 2.10: HMMWV, M-ATV Comparison [9]

The Army is currently working on the development of replacements for

the HMMWV and MRAP (including M-ATV) vehicles. The HMMWV no

longer addresses the needs and requirements of the military, and the MRAP

program represents a niche application and was not intended to be a sustained

program [3]. The intended replacements, the Joint Light Tactical Vehicle

(JLTV) and the Ground Combat Vehicle (GCV), are a long term development

effort to address the concerns of protection and performance for future ground

vehicles. The JLTV and GCV, however, are still in development and as such,

no significant conclusions may be drawn at this time.
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2.4 Future Combat Systems

In the early 2000’s, the Army began an initiative to completely modern-

ize the Army in an effort to increase mobility, modularity, and deployability of

Army units [30]. This initiative, Future Combat Systems (FCS), called for the

development of a family of manned ground vehicles and a group of unmanned

ground and aerial vehicles in conjunction with an overarching coordinating

network. The FCS program was begun largely in response to the deployment

difficulties faced by the Army in the Gulf War (1991) and the conflict in the

Balkans (1999). The focus of the FCS program was to improve Army capa-

bility at the brigade level, specifically the Brigade Combat Team (BCT), the

smallest unit intended for independent operation.

Future Combat Systems was ultimately unsuccessful for a variety of

reasons and the Army was left with few results and no procurable vehicles. In

2012, RAND Corporation, at the request of the Army, published a report on

the FCS program detailing the lessons learned from FCS and the subsequent

program cancellation [72]. The document, “Lessons from the Army’s Future

Combat Systems Program,” provides a history of the program and lists a series

of lessons learned from the FCS program.

According to the report, the FCS program was unsuccessful due to

shifting development schedules, incorporation of immature technologies, and

changing system requirements, all compounded by ambitious program goals.

While the conclusions and recommendations listed in the document cover a

range of topics, such as program management and contracts, several of the
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lessons learned are directly applicable to the development of future ground ve-

hicle technology. The most important concepts discussed in the document (as

they pertain to ground vehicle development) are that vehicles will no longer be

developed in isolation, utilizing immature technologies may negatively impact

the development schedule, and an optimized force or technology has strengths

and weaknesses. In effect, future vehicle systems must be developed and up-

dated with regards to total fleet capability, and programs should avoid signif-

icant reliance on unproven technology and concepts while maintaining aware-

ness of the resulting capabilities and capability gaps inherently created during

the development process. Although this is a valid conclusion, this approach

will stifle necessary development and give little guidance to research and de-

velopment programs in the Army, their supporting contractors, and academic

researchers.

2.5 Current Military Vehicle Requirements and Capa-
bilities

A separate RAND study, predating the FCS report by a year, responded

to a request from the U.S. Congress to assess ground vehicle development for

the Army [48]. This report, titled “The U.S. Combat and Tactical Wheeled Ve-

hicle Fleets,” focuses on the overall issue of Army vehicle requirements genera-

tion, development, and procurement in addition to problems with the current

vehicle fleet. This report makes several of observations and recommendations

across several areas of interest, such as requirements generation and acquisition
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policy. The comments (observations and recommendations) provide significant

insight in to the vehicle development and acquisition process, but this present

report, for the sake of conciseness, will restrict discussion to a few of the key

main points.

Overall, the RAND report emphasizes that predicting future ground ve-

hicle operating conditions is difficult, that current vehicle requirements reflect

a current understanding of the role of ground vehicles, and that the compro-

mise between vehicle power, protection and payload (the “iron triangle”) is

permanent. In addition, the report also notes the important trends of increas-

ing power generation requirements and integration of sensors and networking.

The design of any ground vehicle, military or otherwise, is an exer-

cise in balancing a variety of conflicting requirements. Previous generations

of military ground vehicles (e.g. M1, M2, and HMMWV development during

the Cold War) were developed for specific, traditional roles. As previously

discussed, traditional roles for ground vehicles are no longer appropriate and,

as the RAND report notes, the gap between tactical and combat vehicles

is shrinking rapidly. Operating conditions, mission roles, and requirements

may shift quickly in the future and the military vehicle fleet development and

acquisition processes will need to be able to rapidly adapt appropriately. Fu-

ture threats will remain unknown, and the success of future ground vehicle

programs will depend on the flexibility and adaptability of future vehicle plat-

forms. Until the adoption of open vehicle architectures, modular vehicle sys-

tems, and intelligent actuation so that the military may rapidly adapt to shifts
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in vehicle requirements, the “iron triangle” and continued focus on traditional

vehicle architectures will continue to hamper military vehicle development.

2.6 Future Vehicle Development

The current strategy of the Army for updating its ground vehicle fleet

is to continue development of the JLTV, GCV, and Armored Multi-Purpose

Vehicle (AMPV) while updating and maintaining the M1 Abrams and Stryker

platforms [5].4 As of January 23, 2014, the GCV Program is suspended [55].

Though the current strategy of the Army emphasizes the need for an

increasingly expeditionary force, none of the current vehicle development pro-

grams incorporate the required technology development to address this need.

The protection requirement for ground vehicles that arose during the Iraq War

has dominated subsequent requirements, and current platforms are unable to

respond to the Army’s need for fleet mobility. Developing the combat and

tactical ground vehicles of the future will require a significant effort to develop

new vehicle technology capable of providing rapid development and acquisition

while maintaining the ability to be updated (refreshed) in order to respond to

volatile operating conditions and requirements.

In the report Modernization of Open Architecture Battlefield Vehicles

[82], Tesar discusses a variety of topics pertinent to the development of the

next generation battlefield vehicles, the most important of which are standard-

4The AMPV is intended to replace the M113, a multipurpose, mechanized infantry ve-
hicle.
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ization, open architecture (as previously discussed), and intelligent actuation.

Standardization of vehicle components (including electronics and chas-

sis attachment) and the adoption of quick change interfaces will provide sig-

nificant flexibility to the vehicle operator in maintenance, repair, and refresh-

ment. Standardization will allow the development of minimum sets of vehicle

components providing a basis for any range of specified vehicle requirements.

This includes both actuators and electrical components. Each standard set

may then be tested and certified to a higher degree, improving performance,

reducing costs, and providing engineers and technicians with reliable, readily

obtained components.

Open architecture is critical for future vehicle development as it will

remove barriers for competition and technology development. A significant

degree of current vehicle technology is based on one-off, proprietary designs

developed by single contractors. One-off, closed architecture designs are time

intensive, expensive, and restrict future developments and improvements by

competitors. Reducing vehicle costs and improving vehicle performance re-

quires the reduction or removal of these barriers and design restrictions.

Intelligent actuation is the key to future vehicle development. As pre-

viously mentioned, most modern battlefield vehicles are one-off proprietary

designs that rely on well established, but ultimately ineffective, design con-

ventions and architectures that rely on passive technology (e.g. beam axles,

dampers, etc.). The application of intelligent actuation (actuators) to vehicle

design will not only allow for increased freedom in design choices (as will be
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discussed in Chapter 4), but will allow the vehicle and the operator to appro-

priately apply generated power to the road surface. Increasing this capability

of power application will provide the vehicle and the operator with the flexibil-

ity to optimize the behavior of the vehicle for the given mission requirements.

In other words, the operator will be able to specify maximum traction, effi-

ciency, etc., and the intelligent actuation capability will allow the vehicle to

be much more responsive.

Standardized intelligent actuation combined with open architecture will

allow military vehicle developers to rapidly assemble (on demand), a variety of

ground vehicles based on common components that are capable of responding

quickly to the demands of the operator for a wide range of operating conditions,

thereby maximizing vehicle mobility and capability. It should be noted that

the concepts of standardization, open architecture, and intelligent actuation

to apply to all articulated vehicle components, such as turrets and weapons

systems.

2.7 The Need for Performance Criteria

The application of intelligent actuation to ground vehicles will provide

a large number of system inputs and, as a result, will require a structured

decision making process. This process requires the characterization of vehi-

cle motion. Responding to the commands of the human operator or human

decision maker (HDM) requires the development of performance criteria by

which the operation of the vehicle may be evaluated. Performance criteria for
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ground vehicles, the subject of this report, illustrate the behavior of the vehi-

cle and may be combined into performance maps and, subsequently, decision

surfaces that may then be utilized by the vehicle operator to maximize vehicle

performance as desired.

2.8 Chapter Summary

This chapter discusses the development and current state of U.S. mili-

tary ground vehicles. Current vehicle platforms, many of which were developed

during the Cold War, were structured to address traditional battlefield roles

defined by past conflicts and the expectation of large scale, multi-national

conflicts in the future. The resulting platforms do not adequately address

the current, rapidly changing requirements for military ground vehicles in the

conflicts in Iraq and Afghanistan. Asymmetric warfare and the involvement of

non-state actors has resulted in the convergence of tactical and combat vehicle

roles and complicated the process of developing new vehicle fleets to address

changing requirements.

The few vehicle platforms that have been recently developed and fielded

to address current battlefield issues, such as the MRAP and M-ATV, sacri-

fice mobility and payload to maximize protection. The continuation of this

methodology and emphasis on rapid procurement has resulted in ineffective

ground vehicle fleets and a stagnation in ground vehicle development. Despite

significant financial investment, the technology base for tactical vehicles has

not moved forward as vehicle platforms continue to rely on legacy architec-
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tures.

Updating and improving the U.S. ground vehicle fleet requires the ap-

plication of intelligent actuator technology in order to both provide the vehicle

operator with sufficient choices to address the wide ranging mission goals of

current vehicles, and to allow for the rapid development, assembly, and main-

tenance of vehicle systems, ultimately yielding an intelligent, capable vehicle

platform that may be easily improved, refreshed, and updated. However, this

application of intelligent actuator technology will require the characterization

of vehicle motion - the development of vehicle performance criteria. These

criteria will form the foundation for the effective application of intelligent ac-

tuation.

The chapters of this report will address the following key points:

1. Tire behavior is highly complex and the effective application of the tire

to the road surface requires a complete characterization of tire force

generation in real time modeling descriptions.

2. Characterizing tire behavior requires the generation of tire performance

maps which must be embedded in the system for rapid access.

3. Current vehicle architectures and operating systems are not effective in

fully utilizing the capabilities of the tire.

4. Passive suspension/wheel actuation components are not responsive to

operator commands and are not able to address a spectrum of emerging
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vehicle performance requirements.

5. Effectively utilizing the tire and responding to human command requires

the use of intelligent actuation. It is suggested here that this involves,

in the general case, a 4 degree of freedom corner (drive wheel, active

suspension, steering, and camber).

6. Vehicle performance criteria are the foundation for the structured de-

cision making process required for effective vehicle operation (which

may involve hundreds of criteria, performance maps, and operational

envelopes as decision surfaces).

7. Responding to human command requires characterizing vehicle motion

and the generation of performance criteria which can be represented

as performance maps for rapid visualization and comprehension by the

operator.
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Chapter 3

An Introduction to the Tire

The tire is the most important component of a wheeled ground vehicle.

The tires support the vehicle, cushion the suspension and chassis from road

disturbances, and apply tractive forces to the road surface. In addition, tires

are significant source of driver feedback in vehicles with conventional architec-

tures. As a result, a discussion of basic tire dynamics is required before any

meaningful discussion about vehicle operation or dynamics may occur.

The focus of this chapter (and report in general) is on the behavior

of pneumatic tires. Tracks and tracked vehicles are not discussed due to the

restrictions on vehicle behavior imposed by tracked systems as well as the in-

creased prevalence of wheeled vehicles (as opposed to tracked) in expeditionary

military operations.

3.1 Tire Basics - On Road Behavior

The following section addresses tire behavior on conventionally pre-

pared, non-deformable surfaces (asphalt, concrete, etc.). This is the most

common operating scenario for passenger vehicles.
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3.1.1 A Brief Note on Tire Construction

Modern pneumatic tires are comprised of layers of cords (plies) encased

in a toroidally shaped, flexible rubber carcass that is filled with compressed

air. The cords are anchored around high strength steel wire (beads). The

beads provide a load path to the rim of the wheel.

Modern tires typically come in one of two varieties: the bias ply tire

and the radial ply tire. The main difference between the two is the orientation

of the cords (plies) in the carcass. Bias ply tires utilize alternating cord layers

oriented diagonally to the beads (on the bias). Radial ply tires utilize cord

layers that extend radially from bead to bead in conjunction with several

separate layers in the tread, called belts. The distinction is shown in Figure

3.1. Radial tires require additional layers in the tread region (belts) for stable

operation. While these descriptions are simplified representations, a basic

distinction is necessary because tire construction affects all aspects of tire

behavior, from cornering properties to ground pressure distribution [87].

3.1.2 Tire Forces - The Basics

Discussions of tire dynamics focus primarily on force generation in two

directions (lateral and longitudinal) and the effect of other tire properties and

behavior on these two forces. The lateral and longitudinal directions are em-

phasized because ground vehicle chassis motion is often assumed to be planar

(two dimensional) in the plane defined by the ground surface. This assumption

is not always appropriate as chassis roll, pitch, and heave greatly affect the
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Figure 3.1: Bias and Radial Tire Construction [33]. Originally provided by
Goodyear Tire & Rubber Co.

planar dynamics, but the planar restriction simplifies the initial discussion of

tire behavior and subsequent chassis dynamics. For the following discussion,

the standard Society of Automotive Engineers (SAE) tire axis definition will

be used (shown in Figure 3.2).

3.1.2.1 The Concept of Tire Slip

The tire carcass is compliant and experiences deformation when subject

to a load. As a result, the rolling motion of a loaded tire is not equivalent to

that of a free-rolling tire. The driven, or loaded, tire experiences an apparent

relative motion to the ground in comparison to the free rolling tire. This

relative motion generally occurs without gross sliding and is referred to as slip.

Slip in the longitudinal direction, appropriately referred to as longitudinal slip
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Figure 3.2: SAE Tire Axis Definition [87], originally reproduced from [2]

or slip ratio, i, is defined by SAE as [2]:

i = (
rω

V
− 1) ∗ 100% = (

re
r
− 1) ∗ 100% (3.1)

i - slip ratio

r - radius of free rolling tire

re - effective rolling radius of the tire

ω - wheel angular velocity

V - linear speed of the center of the tire

Alternatively, J.Y. Wong provides a slightly different definition of slip
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[87]:

i = (1− V

rω
) ∗ 100% = (1− re

r
) ∗ 100% (3.2)

The equations have the same component definitions, but represent slightly

different interpretations of slip. For example, if the tire wheel center velocity

is zero and the wheel is spinning, the tire is experiencing 100% slip by the

Wong definition and infinite slip by the SAE definition. While the definition

is arbitrary to an extent, a distinction is required as both definitions are used

in this chapter in reference to various figures and equations.

Slip in the lateral direction is defined in a different manner. A tire

experiencing a steering input or any lateral loading will tend to move along a

path that is not in the wheel plane (X-Z plane of the wheel). Relative motion

in the lateral direction is described using the angle between the path of motion

and the wheel plane and is referred to as the slip angle, α, as shown in 3.2.

As a result of the tire load/deformation relationship, tire forces are

described as functions of longitudinal slip, i and slip angle, α. The relation-

ship between lateral load and slip angle is similar (but not identical to) the

relationship between longitudinal force and longitudinal slip. In both cases,

however, the initial relationship for low slip values is observed to be linear.

Force generation in the linear region is primarily due to carcass stiffness - the

tire carcass is acting like an ideal spring. In this case, the tire tread in the

contact patch, the area of the tire carcass in contact with the road surface,

experiences no relative motion with respect to the road surface. However, as

the tire forces increase, the tire/force relationship transitions from linear to

34



nonlinear and sliding begins to occur in the contact patch. Sliding begins

with tread elements in the rear of the contact patch (the most heavily loaded

portion) and propagates forward as tire forces increase. Peak force generation

generally occurs when some portion, but not all, of the contact patch is sliding

[57]. If slip continues to increase, the lateral or longitudinal force begins to

decline until the contact patch is sliding completely and force generation is

a function of the sliding friction coefficient, µs. In this case the tire is expe-

riencing gross sliding and the result is an unstable operating condition. The

ability of the driver to maintain control of the vehicle is compromised in this

situation. The increasingly reduced capability of the tire to resist a driving

torque increases the rate at which the slip ratio or slip angle is growing. In

other words, unstable behavior is exhibited if the peak load capability of the

tire is exceeded. The transition zones and locations of peak force value are

functions of tire construction, inflation pressure, load, etc.

3.1.2.2 Longitudinal Force vs. Slip Ratio

The slip/force relationship is best understood graphically. A represen-

tative longitudinal force (Fxs)/slip relationship is shown in Figure 3.3.

Note: this figure utilizes the SAE definition of slip and the tire is ex-

periencing a driving torque. SAE defines the onset of tire spin (gross sliding)

as occurring at a positive slip value of 1. Regardless of the definition of slip

used, maximizing longitudinal tractive effort is an optimization problem that

requires maintaining some value of slip. As an example, modern passenger car
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Figure 3.3: Longitudinal Force vs. Slip Ratio [57]

tires achieve maximum tractive effort at slip values approximately between

15% and 20% [87]. Racing (high performance) tires achieve maximum longi-

tudinal tractive effort at much lower slip values because the tire carcass tends

to be more stiff, allowing the tire to build forces more rapidly.

The longitudinal force/slip relationship for a tire experiencing a braking

torque is shown in Figure 3.4.

This figure utilizes the SAE definition of slip. In the case of braking,

some authors utilize a modified definition of slip. Wong, for example, uses a

slightly altered definition of slip, or skid:

is = (
V

rω
− 1) ∗ 100% = (

r

re
− 1) ∗ 100% (3.3)

is - skid-slip
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Figure 3.4: Braking Force vs. Slip Ratio [57]

A locked wheel (sliding with no angular velocity) results in a Wong

slip value of 100% and a corresponding SAE slip value of -100%. Again, the

maximum effort under both conditions occurs at some value of slip where part

of the contact patch is sliding with respect to the ground.

The linear portion of the longitudinal force/slip ratio relationship may

be characterized as the slope of the force/slip line at the origin:

Fx = Ci ∗ i (3.4)

for a drive torque and

Fx = Cs ∗ is (3.5)

for a braking torque. In the expressions above, Ci and Cs represent the lon-

gitudinal stiffnesses of the tire for a braking and driving torque, respectively.
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The stiffnesses are defined as:

Ci =
∂Fx
∂i

∣∣∣∣
i=0

(3.6)

Cs =
∂Fx
∂is

∣∣∣∣
is=0

(3.7)

Fx - longitudinal force due to slip

i - slip ratio, driving torque

is - slip ratio, braking torque (skid-slip)

The longitudinal stiffness values are useful for understanding both tire

behavior at low slip angle values and the impact of tire parameters and operat-

ing conditions on tire force generation. The impact of various tire parameters

is often characterized by how the tire stiffness values are affected.

3.1.2.3 Lateral Force vs. Slip Angle

There exists a relationship between slip angle and cornering force (Fyα)

that is very similar to the relationship between longitudinal slip and tractive

effort. This is shown below in Figure 3.5.

Similarly to longitudinal force, lateral force initially increases with slip

angle linearly, enters a transition region, reaches a peak value, and then begins

to decline as slip angle continues to increase. Understanding this relationship is

critical for maximizing vehicle (tire) performance in cornering. The cornering

stiffness of the tire may be characterized in the same way as the longitudinal
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Figure 3.5: Lateral Force vs. Slip Angle [57]

stiffness:

Fyα = Cα ∗ α (3.8)

where Cα is:

Cα =
∂Fyα
∂α

∣∣∣∣
α=0

(3.9)

Fyα - lateral force due to slip angle

The above expressions are only valid for the linear range of behavior.
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3.1.2.4 Tire Load Sensitivity

The lateral force generation characteristics of a pneumatic tire are a

function of the normal load on the tire. However, this relationship is nonlinear.

As normal load increases, the lateral force (as a function of slip angle) increases

but at a diminishing rate [57] as shown in Figure 3.6. As a result the lateral

force coefficient, Fy/Fz, decreases as normal load increases.

Figure 3.6: Lateral Force Coefficient vs. Slip Angle [57]

This aspect of tire behavior affects the characteristics of vehicle motion

during transient motions. Weight transfer between two identical tires on an
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axle (as a result of a chassis acceleration) will result in a decrease in cornering

capability of the unloaded tire and an increase in capability of the loaded tire,

but the overall cornering ability of the axle is reduced. In other words, the

gain in cornering capability of the loaded tire is always less than the loss in

cornering capability of the unloaded tire due to the nonlinear relationship. As

a result, weight transfer is undesirable if maximum performance is required.

3.1.2.5 Tire Camber and the Effects on Lateral Force

The previous discussion of tire forces assumes that the plane of the

wheel (X-Z) is perpendicular to the road surface. However, this is not always

(if ever) the case. The inclination of the tire plane with respect to the ground

plane is the tire camber, γ, defined as positive when the tire is tilted away

from the vehicle chassis as shown in Figure 3.7. Generally speaking, a tilted,

free-rolling wheel exhibits a lateral motion component in the direction of the

angle of inclination. A rolling wheel that is constrained laterally develops a

lateral force component in response to the inclination. The contact patch,

curved for a static, loaded tire, is “forced” to straighten out as the tire rolls

due to the lateral motion constraints of the suspension. This force, referred to

as camber thrust, adds to the lateral force developed by a tire [87].

Some camber is desirable for several reasons. From a cornering per-

spective, camber in the direction of the turn increases the cornering capability

of the vehicle. However, the complete implications of camber in cornering sce-

narios would require a discussion of suspension kinematics. For the purposes
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Figure 3.7: Contact Patch Distortion Due to Camber [57]

of the discussion in this chapter, it is important to recognize that some cam-

ber is desirable but excessive camber has negative effects on tire performance.

Camber distorts the contact patch of the tire, resulting in potentially exces-

sive heat build-up due to the greater and increasingly non-uniform carcass

distortion [87]. Excessive heat generation reduces tire capability and lifespan.

The camber/camber thrust relationship is also nonlinear but the initial

change in thrust with respect to camber may be defined as:

Cγ =
∂Fyγ
∂γ

∣∣∣∣
γ=0

(3.10)

Cγ - camber stiffness of the tire

Fyγ - camber thrust
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Camber stiffness is typically significantly less than the cornering stiff-

ness under similar conditions [57]. Tire type, geometry, and operating condi-

tion affect camber stiffness to a great degree as shown in Figure 3.8.

Figure 3.8: Variation of Camber Thrust with Camber Angle and Normal Load
for a Car Tire [87], Originally From [65]

As camber force increases with camber angle, eventually the curve drops

off. This drop off may occur at a camber angle greater than 5◦ for wide,

passenger car tires (radial) while the camber force drop off may occur at angles

greater than 50◦ for motorcycle tires (bias-ply) [57].

In addition to adding to the lateral force capability of a tire, camber also

affects the load sensitivity of the tire. Increased camber causes the sensitivity

curves (lateral force vs. load) to “rotate”, affecting the peak performance

capabilities of the tire.
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3.1.3 Rolling Resistance

Rolling resistance is a moment, My, about the Y axis that opposes a

driving torque. Hysteresis losses, caused by the deflection of the tire tread,

are the primary cause of rolling resistance. Most losses are concentrated in

the belt/tread region [87].

Tire deflection and distortion result in an uneven distribution of pres-

sure in the contact patch. The center of pressure moves forward as a tire rolls

and a moment is produced that opposes forward motion. The resulting hori-

zontal force is the rolling resistance. The ratio of rolling resistance to normal

tire load is the coefficient of rolling resistance.

Rolling resistance is affected by tire construction as well as vehicle

operating conditions as shown in Figure 3.9.

Bias ply tires exhibit higher rolling resistance values due to the flex-

ing/rubbing of the diamond shaped rubber elements in between the cords.

Radial tires do not exhibit this same behavior and, as a result, dissipates as

little as 60% of the power dissipated by a bias ply tire under similar conditions

[87].

Rolling resistance values are sensitive to speed, inflation pressure, and

road surface as shown in Figure 3.10.

Higher speeds result in more deformation of the tire (rolling resistance

increases) and higher pressures result in less deformation (rolling resistance

decreases). Smooth, prepared surfaces result in smaller tire losses while rough,
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Figure 3.9: Variation of Rolling Resistance of Radial-Ply, Bias-Belted, Bias-
Ply Tires With Inflation Pressures and Load [87], Originally Reproduced from
[21]

deformable, or wet surfaces result in greater tire loses. All of these relationships

are nonlinear and difficult to quantify. Understanding rolling resistance is

critical for addressing vehicle losses and motion efficiencies.

3.1.4 Aligning Torque

The distribution of stresses in the tire contact patch is not uniform, and

as a result, the point of application for lateral force and the center of the con-

tact patch are not equivalent. This difference, referred to as pneumatic trail,

results in a moment about the steering axis, Mz. Generally, the application of

lateral force happens behind (aft) of the center of the contact patch and the

resulting moment resists steering effort, i.e., the result is a self-aligning torque

about the steering axis. Once again, this behavior is non-linear.
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Figure 3.10: Variation of the Coefficient of Rolling Resistance with Tire Infla-
tion Pressure on Various Surfaces [87], Originally Reproduced from [79]

Self aligning torque generally increases with slip angle, peaks, and then

declines in a manner similar to the lateral force/slip angle relationship. In

addition, self aligning torque increases with increasing driving wheel torque.

Generally speaking, self aligning torque is affected by any tire parameter or

operating condition that affects the size of the contact patch as alterations to

the shape of the contact patch affect the pneumatic trail (self aligning torque

moment arm).

At high slip angles and the transition out of the linear region of lateral
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force generation, self aligning torque decreases as sliding begins in the rear of

the contact patch. At lateral force breakaway (peak of the lateral force curve)

the self aligning torque reduces to zero or may even change sign, causing steer-

ing instability. This reduction in aligning torque provides a significant source

of feedback to the driver of a conventionally steered, performance ground ve-

hicle.

There exist other types of trail that result in self aligning torque.

Caster, or the inclination of the steering axis (positive if inclined rearward),

results in a point of intersection of the steering axis and the ground plane

that is forward of the center of the contact patch and tire force application, as

shown in Figure 3.11. The offset of the point of steering axis intersection and

the center of the contact patch is referred to as mechanical trail.

The total trail is then a summation of pneumatic and mechanical trail.

Though pneumatic trail typically dominates this summation, pneumatic and

mechanical trail are generally designed to be in a balance. Mechanical trail

provides a positive self aligning torque at peak cornering values, avoiding con-

ditions of steering instability.

3.1.5 Combined Operating Conditions

A tire rarely operates under a purely lateral or purely longitudinal force

condition. Tires almost always operate under conditions of combined loading,

complicating the issue of understanding and predicting tire performance. Mil-

liken and Milliken [57] present an analysis and discussion of a set of combined
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Figure 3.11: Mechanical and Pneumatic Trail [57]

loading data taken by H. Sakai [76]. The data utilize a definition of slip that

differs slightly from the Wong and SAE definitions. The Sakai definition for

slip in traction is:

st = [
V cosα

ΩRe

]− 1 (3.11)

And the equation for slip in braking is:

sb = 1− [
ΩRe

V cosα
] (3.12)

where Ω represents the angular velocity of the tire. Using this definition of

slip, Sakai presents several plots of combined loading conditions. Figure 3.12

is a plot of the effect of slip angle on traction/braking forces and slip ratio.

Figure 3.13 is a plot of the lateral force against the slip ratio and slip angle.
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Figure 3.12: Longitudinal Force vs. Slip Ratio and Slip Angle [57], Data
Originally from [76]
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Figure 3.13: Lateral Force vs. Slip Ratio and Slip Angle [57], Data Originally
from [76]

These plots show the complexities of tire performance under combined

operation (lateral and longitudinal slip). For example, the data shown in

Figure 3.12 indicate that peak braking forces occur at higher slip ratios as

slip angle is increased. In other words, increased steering angle requires a

corresponding increase in slip ratio in order to maximize traction. Figure

3.13, showing the lateral force/slip angle/slip ratio relationship, indicates that

the rate at which lateral force increases with slip angle decreases as slip ratio

increases. This relationship is more clearly indicated in the following figure, a

different plot of the same data shown in Figure 3.14.

The data indicate that cornering (lateral) stiffness decreases as slip ratio

increases. Similar to Figure 3.14, Figure 3.15 is a different representation of

Figure 3.12 and shows the impact of slip angle on braking capability more
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Figure 3.14: Effect of Slip Angle and Slip Ratio on Lateral Force [57], Data
Originally from [76]
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clearly.

Braking and tractive capabilities are negatively impacted by increasing

slip angle. The data from these plots can be combined to form a complete

graphical representation of the tire - the friction ellipse.

3.1.5.1 Friction Ellipse

The friction ellipse is a single representation of the lateral and longitu-

dinal force capabilities (limits) of the tire. Each friction ellipse is valid only for

a given set of operating conditions (tire pressure, normal load, surface type,

etc.). The friction ellipse is sensitive to all of the conditions and factors that

affect any aspect of tire force generation (speed, load, pressure, temperature,

etc.). An example, taken from Sakai data as discussed previously, is shown in

Figure 3.16.

The horizontal axis represents lateral force and the vertical axis repre-

sents longitudinal force. The performance of the tire for a given slip condition

(slip ratio and slip angle) may be read from the diagram. For this example,

point “A” on the diagram indicates that the vehicle is operating at a slip an-

gle of 4◦ and a slip ratio of −0.36 (Sakai slip convention), approximately. The

corresponding force values on the diagram indicate that this operating point

results in approximately 800 lb. of lateral (cornering) force and 500 lb. lateral

force in braking. In comparison, point “B” represents the maximum lateral

force capable for this operating condition - approximately 1100 lb. lateral force

with zero corresponding slip ratio (no longitudinal force generation). It should
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Figure 3.15: Effect of Slip Angle and Slip Ratio on Traction/Braking Force
[57], Data Originally from [76]
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Figure 3.16: Friction Circle Diagram [57], Data Originally from [76]
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be noted that the slip angle curves of Figure 3.16 curve back in at the top and

bottom of the diagram. This behavior indicates that the tire has exceeded the

longitudinal force generation capability.

They key point of the friction circle is that the maximum combined

loading condition of a pneumatic tire can be (roughly) approximated by a cir-

cle or ellipse. Utilizing the full traction potential of the tire requires operating

at a condition close to the edge of the diagram. For example, when consid-

ering a racecar driver approaching a corner, rather than maximize straight

line braking force approaching the corner, maximum lateral force through the

corner, and maximum longitudinal force exiting the corner, the driver should

make a gradual transitions from braking to cornering to longitudinal acceler-

ation, thereby operating on the edge of the traction circle and fully utilizing

the capabilities of the tires [77]. This behavior is illustrated in Figure 3.17.

The control inputs required of the driver can be read from the friction

ellipse for a given cornering operation [57]. However, the ellipse is a complex

plot and completely characterizing combined tire forces for all or most tire

operating conditions is a complex task because the specific curves of the ellipse

are dependent on tire pressure, normal load, speed, etc. Fully characterizing a

tire (or set of ellipses) requires recording tire data for a wide range of normal

loads, vehicle speeds, tire pressures, etc., which is a complex and expensive

task.
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Figure 3.17: The Traction Circle and the Tire Force Vector Around a Corner
[77]

3.2 Off-Road Characteristics of Tires: Terramechanics

Tire performance is heavily dependent on the type of terrain on which

the tire is operating. In the discussion of tire behavior in the previous section,

it was assumed that the terrain was smooth and non-deformable. Unprepared

terrain (deformable), however, does not behave the same way under certain

loading conditions as prepared terrain. As military vehicles are expected to

operate on both prepared (on-road) and unprepared (off-road) surfaces, an

understanding of off road tire mechanics is essential in order to construct a
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complete representation of ground vehicle operation.

3.2.1 The Influence of Soil Mechanics

The contact patch area and pressure distribution of a pneumatic tire

operating on deformable terrain vary with soil attributes (hard/soft, density,

cohesion, etc.). The size of the contact area and the corresponding pres-

sure distribution must be known in order to determine stress distributions in

the terrain. The performance of the vehicle may then be evaluated or pre-

dicted from the attributes of the contact patch, pressure distributions, and

soil parameters. Tire tread geometries further complicate the issues of ground

pressure and stress distributions. Off-road tires with significant tread protru-

sions (grousers) cause stress concentrations in the contact patch and result in

pressure distributions that vary significantly depending on the softness of the

terrain.

Soil dynamics are complex and soil types may differ significantly be-

tween geographic regions, or even within the same region. Weather may also

affect soil dynamics. As a result, developing widely applicable models for soil

behavior under loading from vehicle running gear is difficult. Several tech-

niques, however, have been developed for approximating stress distributions

in soil. For example, J.Y. Wong describes several techniques for modeling

terrain behavior: modeling the terrain as an elastic medium, modeling as a

plastic medium, critical state soil mechanics, finite element analysis, and dis-

crete element analysis [86]. Each process has limitations but does, for specific
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soil and operating conditions, provide insight into soil stress states and defor-

mation. While a thorough discussion of modeling methods is outside of the

scope of this report, it is important to recognize the complexities in assessing

the behavior of deformable terrain.

3.3 Implications for Vehicle Architectures

The overall impact of tire nonlinearities and the complexity of the

tire/surface interaction is that a modern ground vehicle utilizing passive vehi-

cle components represents a broad compromise between a variety of design and

performance goals. The passive nature of the vehicle components requires all

of the vehicle operating and performance characteristics to be decided during

the initial design process. For vehicles with a narrow range of expectations or

operating requirements, such as a commercial transport vehicle, meeting per-

formance requirements with passive system elements does not require a signif-

icant compromise in capability. Transport vehicles operate most often under

near steady-state conditions with minimal system disturbances and passive

system elements (drivetrain and suspension) are often sufficient for accept-

able system performance (unless the vehicle is operating in adverse weather

conditions). Designing passive system elements for a vehicle with a broad

range of requirements, such as a military ground vehicle, however, is a signif-

icant challenge. Military ground vehicles are often expected to operate both

on-road and off-road while maintaining an acceptable level of performance.

Designing passive suspension elements to apply tire forces on deformable and

58



non-deformable terrains often results in a system that fails to fully (or even

partially) exploit the tire/terrain behavior in either case. The result is a vehi-

cle that does not fully utilize the tire in any condition, a condition that may

not impact the performance of a commercial transport but might result in

serious liability for a military ground vehicle.

3.3.1 Tire Performance Maps

The application of intelligent actuation to ground vehicles as described

in Chapter 2 will allow the vehicle to fully exploit the capability of the tire

potential. In other words, intelligent actuation will allow the vehicle system

to maximize traction, minimize rolling resistance etc. for the desired oper-

ating condition as directed by the human operator, regardless of the level of

combined slip or force generation. However, fully utilizing the capability of

the pneumatic tire will require the complete characterization of the tire ca-

pability. This may be achieved through the development and utilization of

performance maps as described by Ashok and Tesar in [10]. In this work,

the authors present a method of combining a variety of performance maps to

create a visual decision surface that may be used to optimize a system for a

desired criterion or set of criteria. An example of this process may be seen

in Figure 3.18, which illustrates the combination of a variety of performance

maps of a switched reluctance motor to provide a decision surface that may

then be evaluated by the operator.

As a result of the highly nonlinear behavior of pneumatic tires as illus-
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Figure 3.18: Performance Map Combination for a Switched Reluctant Motor
[10]
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trated in Figures 3.9 and 3.10, the application of performance maps is neces-

sary for optimizing tire behavior. This must be done for both non-deformable

(on-road) and deformable (off-road) road surfaces. Performance maps are es-

pecially important for characterizing off-road behavior due to the difficulty in

quantifying the tire-surface interaction. Providing the optimal slip ratio and

slip angle characteristics to the vehicle operator, as will be discussed in Chapter

6, is a critical part of maximizing various criteria. Developing and implement-

ing performance maps for tire behavior will not only allow intelligent actuation

technology to apply the tire to the road surface at the performance limit, but

will also allow the vehicle system to provide the status and performance mar-

gins of the tire (depending on the road surface and loading condition) to the

vehicle operator in real time.

3.4 Chapter Summary

This chapter discusses the complexity of pneumatic tires and the need

for a complete characterization of tire behavior for a range of operating con-

ditions and road surfaces through the real-time use of embedded performance

maps. Table 3.1 presents the key findings, conclusions, and recommendations

of the chapter.
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Chapter 4

Vehicle Architectures, the Intelligent Corner

Vehicle Concept, and the Need for

Performance Criteria

4.1 The Modern Wheeled Vehicle

Most modern wheeled vehicles utilize a similar architecture - an internal

combustion (IC) engine coupled with a transmission drives some or all of the

wheels. Torque is distributed to each axle and wheel though differentials and

transfer cases. Each wheel has four degrees of freedom relative to the chassis -

three rotational (steering, camber, drive), and one translational (suspension).

Suspension and camber orientations are determined by the suspension linkage

and the motion of the linkage is controlled by springs and dampers. The

suspension springs support the vehicle and dampers create system stability

(return it to steady state). Drive and steering are controlled actively by the

human operator (driver). The operator provides the control inputs in the form

of steering angle and throttle/brake lever position, respectively.

4.1.1 Traditional Actuation of Individual Wheel Motions

The architectures of many military vehicles are similar to those of pas-

senger and commercial road vehicles. Many tactical wheeled vehicles (support,
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logistics, transportation) developed before the Iraq War were direct adapta-

tions of commercial vehicles. While direct adaptation is no longer appropriate

due to increased payload and protection requirements, the underlying vehi-

cle architectures are still similar. As such, a brief discussion of the typical

methods of actuation/control of the four degrees of freedom of the wheel is

necessary.

4.1.1.1 Steering

Modern steering systems are typically comprised of a linkage system

between the driver input (steering wheel) and the steered wheels of an axle.

The steering linkage transforms the rotational input of the steering wheel into

a linear translation of the steering link connected to the wheel. The link

attachment geometry in turn transforms the linear motion of the link into a

rotation of the tire about the steering axis. The linkage rotates the steered

tires about the z axis (SAE definition), changing the orientation of the tire

with respect to the heading of the vehicle and inducing the generation of slip

angles. Note: steering is considered separately from wheel toe angle, which

is a (small) static rotation of the wheel about the steering axis, measured at

zero steering angle (shown in Figure 4.1). A representative steering system is

presented in Figure 4.2.

The wheels of an axle do not remain parallel as they are steered. For

vehicles moving at low speeds and low tire slip angles, the inner wheel must

assume a greater angle than the outer wheel so that the instant centers of
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Figure 4.1: Vehicle Toe [77]

motion are equivalent. This steering geometry, Ackermann Steering, is shown

in Figure 4.3. This geometry reduces the overall (global) slip and wheel scrub

during cornering maneuvers. However, as speeds and lateral forces increase,

the influence of tire slip angles and load sensitivity becomes important and

standard Ackermann geometry no longer produces an optimal steering ar-

rangement. As previously discussed, the slip angle value that produces the

maximum lateral force increases as normal load increases, and as a result, the

outside tire (more heavily loaded due to weight transfer) requires more steering

angle than the inside tire [57]. This steering geometry (Reverse Ackermann) is

typically used on high performance racing vehicles. Passenger and commercial

vehicles, which frequently operate at low speeds in parking-lot type maneuvers

and don’t require maximized performance utilize typical Ackermann Steering
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Figure 4.2: Representative Steering Linkage, Modified From [70]

geometries. Overall, the optimal geometry of a steering linkage depends on

the expected speeds, loads, and operating conditions of the vehicle.

The steering input (wheel) is connected directly to the wheels and is

assisted by a power steering device in most modern vehicles. A representa-

tive power steering system is shown in Figure 4.4. The components of this

representative system are the 1) vane pump, 2) high-pressure line, 3) cooling

circuit, 4) return line, 5) steering gear, 6) steering valve, 7/8) pressure lines to

the cylinder, 9) steering column, and 10) steering wheel.

Power steering systems provide positive feedback to the steering input

in order to decrease the required steering input force [73]. Active steering

systems that regulate steering inputs in order to improve vehicle performance
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Figure 4.3: Ackermann Steering Geometry [57]

have been studied and implemented on passenger vehicles. In [49], Koehn and

Eckrich (BMW Group) present a steering system that utilizes a brushless DC

motor to augment the steering linkage gearing, allowing the system to alter

the steering input from the driver as shown in Figure 4.5.

The mechanism allows the control system to augment the steering angle

input from the driver, thereby providing a variable steering ratio. The system

provides a direct steering ratio (small actuator input) at low speeds but reduces

the steering ratio at higher speeds in an effort to improve stability and operator

control as shown in Figure 4.6. The most convenient steering wheel motions for

the operator occur at values less than ±60◦. Operating in this range allows the

operator to actively keep both hands continuously on the wheel (no shuffling)
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Figure 4.4: Representative Power Steering System [73]

Figure 4.5: Active Steering Mechanical Layout [49]
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and, as a result, maximizes the ability of the driver to control the vehicle. The

variable steering ratio allows the system to both interpret steering commands

in an effort to avoid excessive yaw rates and to provide an optimal steering

wheel input range to the operator.

Figure 4.6: Active Steering Ratio Variation [49]

Active steering systems have also been developed for multiple steering

axles [45]. In this work, the authors present front and rear steering mechanisms

that both utilize DC motors to alter the steering angle input in the front, and to

generate appropriate (smaller) steering angles in the rear. Active rear steering

may be either in phase (steering the same way) or our out of phase (steering

the opposite direction) with the front steering as shown in Figure 4.7.
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Figure 4.7: Steering Variations for Multiple Steered Axles [45]

The inclusion of the rear wheel steering input allows the control sys-

tem to address both yaw and lateral motion for a given steering input by the

operator. As with the BMW system discussed previously, the front steering

ratio and rear steering inputs are both dependent on vehicle speed. A visual

representation of the variation of the front steering ratio is shown in Figure

4.8. The gearing ratio varies from a moderate value at low vehicle speeds to

“quick” (high gearing ratio) at medium speeds to increase vehicle responsive-

ness and then to “slow” (low steering ratio) at high speeds to improve vehicle

stability. A high gearing ratio results in large changes in wheel angle for

small steering wheel inputs, and a low gearing ratio results in low wheel angle

changes for large steering wheel inputs. The variation of the desired steering
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gear ratio in Figure 4.8 indicates that a moderately high ratio is desirable for

low speed, parking lot type maneuvers, a high ratio is desirable for moderate

vehicle speeds so that the vehicle responds quickly to the operator (“nimble

feeling”), and a low gearing ratio is desirable for high vehicle speeds so that

large steering inputs will not result in large wheel motions which may result

in vehicle instability (“secure feeling”). Simulations of the resulting system

during a lane change maneuver show a reduction in required steering angle

input, yaw motion, and lateral acceleration.

Figure 4.8: Front Steering Gear Ratio [45]

Though these systems can be shown to improve vehicle stability and

handling, the traditional steering linkages are retained. As such, while these

active steering systems are able to interpret and augment the commands of the
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driver (thereby improving vehicle performance), coaxial, steered wheels are still

coupled by the linkage and may not be actuated independently. Independently

steered wheels are critical for any vehicle that is required to optimize tractive

performance while operating over a wide range of operating conditions.

4.1.1.2 Camber

For traditional architectures, camber is dictated by the kinematics of

the suspension and is not actuated actively. Some suspension types, such as

beam axles (Figure 4.20), result in static camber values while others, such as

four bar mechanisms (Figure 4.21), result in camber values that are a function

of suspension displacement. As mentioned previously, camber affects cornering

capability (lateral force generation) and as such, certain camber values are

desirable for certain operating conditions. Passive suspensions attempt to

optimize camber values though the suspension displacement, but this process is

hindered by a variety of design constraints. As an example, Cuttino, Shepherd,

and Sinha present a linkage in [24] that attempts to decouple camber and heave

while maintaining appropriate camber for cornering maneuvers. This linkage,

the Variable Camber System (VCS) is show in Figure 4.9. In this assembly,

the kingpin has three connecting links - one from the chassis (bottom control

arm) and two from the suspension linkage on the common “axle.” This linkage

is unique in that it provides a lateral and vertical input from the opposing

wheel.

The vertical input is provided through the roll bar (sway bar) - a chassis
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Figure 4.9: VCS Linkage Assembly [24]

mounted torsion bar that opposes asymmetric wheel motion. As one wheel

moves vertically, the roll bar applies a vertical force to the opposing wheel,

which is applied in this case to the upright via the bell crank. The lateral input

is from the parallel bar, which directly connects the rotations of the kingpins

on each side of the vehicle. These inputs are more clearly illustrated in Figure

4.10. A comparison of the kinematics of the VCS with a traditional double

wishbone suspension (four bar linkage) is shown in Figures 4.11 and 4.12.

The changes in tire camber due to chassis motion are reduced for the

VCS linkage. However, while the solution presented offers some improvement

over the kinematics of comparable suspension linkages, the presented linkage

is complex and may be difficult to implement.

Work has been done on active camber and toe systems with the goal of

improving the performance of a high performance sports car [75]. This system
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Figure 4.10: Sway Bar and Parallel Bar Inputs for the VCS Linkage [24]

is shown in Figure 4.13.

This system provides a camber variation of +2/−6◦ and a toe variation

of±2◦. A simulation of the implementation of this system shows improvements

in vehicle yaw response due to a sudden steering wheel input (step input).

However, the system referenced presents significant packaging challenges (due

to the limited available wheel-well area of the sports car chassis) and the

cost and complexity limit the application of this technology to less expensive

(passenger) vehicles. In addition, the range of motion of the proposed system,

while appropriate for relatively stiff, high-performance tires, is not suitable for

tires or suspension systems with significant range of motion (e.g. off road tires
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Figure 4.11: Double Wishbone Suspension Experiencing a) Vertical Chassis
Motion, b) Chassis Roll (Lateral Acceleration) [24]

that have much lower cornering stiffnesses and the relatively large suspension

deflections of military vehicles).

4.1.1.3 Drive

The drive input to each powered wheel is typically supplied by an IC

engine coupled with a transmission. The transmission provides gearing choices

that enable a set of input/output speed relationships in order to best match

the engine dynamics to the vehicle dynamics and operating condition. Figure

4.14 is a visual representation of how the inclusion of a transmission (gearing)

affects the ability of the IC engine to apply torque to the road surface.

However, these relationships represent (ideally) linear speed transfor-

mations and while there may be several selections, they do not individually

react to the commands of the operator. Torque provided by the engine and
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Figure 4.12: VCS Assembly Experiencing a) Vertical Chassis Motion, b) Chas-
sis Roll [24]

transmission is generally applied to drive wheels through some combination

of transfer cases and differentials. Transfer cases distribute torque to different

drive axles (interaxle distribution) and are utilized in vehicles with multiple

drive axles. Transfer cases typically distribute torque at some predetermined

percentage (front/rear), depending on the number of drive axles. 1 Differen-

tials regulate torque distribution laterally to symmetric wheel pairs (interwheel

distribution).

The use of differentials is intended to equalize the lateral torque dis-

tribution while allowing both wheels on one axle to turn at different rates

(as is required during a cornering maneuver), thereby avoiding a yaw moment

generated by unequal torque distribution. However, because the torque split

1The symmetric wheel pairs of ground vehicles are commonly referred to as “axles”
regardless of the type of suspension or drive used.
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Figure 4.13: Active Kinematics Suspension Assembly [75]

between differentially coupled wheels is equal, the total traction limit of the

axle is limited to the lower traction potential of the two wheels. An image

of the gearing that allows equal torque distribution (an open differential) is

shown in Figure 4.15.

There are several types of differential designs that attempt to impose

locking conditions (forcing wheel speeds to be equal) under certain conditions

in an effort to avoid loss of traction when a disparity in traction potential

occurs [63]. These differentials (limited slip or locking type) reduce penalties

from disparate traction conditions but a the torque distribution is no longer

equal and a yawing moment is generated. Limited slip differentials with active

locking capability have been developed in an effort to improve vehicle handling
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Figure 4.14: Traction Profile, Internal Combustion Engine Without Gearbox
(a), and With Gearbox (b) [63]
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Figure 4.15: Open Differential Gearing [31]

and performance, especially under conditions of non-uniform traction capabil-

ity [71]. Park, Dutkiewicz, and Cooper in [71] present an active differential

system, shown in Figure 4.16 capable of improving vehicle performance by

altering the ratio of torque transfer between driven wheels. The difference is

readily apparent for a maneuver involving aggressive throttle application and a

steering input (causing significant vehicle weight transfer) as shown in Figures

4.17, 4.18 and 4.19. Figure 4.17 shows a comparison between the difference in

left/right wheel speeds of the active differential and a passive differential on

a split µ surface. Figure 4.18 is an illustration of the longitudinal tire forces

of a vehicle with an open differential. In this case, the longitudinal forces

experienced by the left and right rear (driven) wheels are the same, but the

equal torque split results in wheel spin and reduced overall traction. Figure

4.19 shows the longitudinal forces for the active differential - the differential
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distributes more torque to the wheel with more traction, increasing the overall

vehicle tractive capability. While the application of active differentials may

provide some capability for active torque distribution to powered wheels, the

vehicle is still subject to the design restrictions of conventional vehicles (Sec-

tion 4.1.2) due to the retention of the traditional drivetrain elements.

Figure 4.16: Active Limited-Slip Differential, Dana Corporation [71]

This technology is heavier and (most likely) more expensive than tra-

ditional differentials. In addition, active differential technology provides the

greatest benefit when the vehicle is operating on inhomogeneous terrain that

presents a wide range of maximum tractive capability. Most vehicles (com-

muting passenger vehicles) do not operate on inhomogeneous terrains and do

not approach the tractive limits imposed by the road surface As such, most
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Figure 4.17: Wheel Speed Difference, Open vs. Active Differential [71]

vehicles do not benefit significantly from this type of technology. In contrast,

military vehicles frequently operate over a wide range of terrain types and may

benefit from active differential technology. However, as previously mentioned

in Chapter 2, many modern military ground vehicles utilize traditional, passive

drivetrain elements.

4.1.1.4 Suspension

Suspension systems isolate the chassis from road disturbances while

keeping the tire in contact with the road surface. Suspensions generally include

spring and damping elements in order to support the chassis, settle suspension

disturbances, and control roll, pitch, or bounce (heave) of the chassis. The
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Figure 4.18: Longitudinal Tire Forces, Open Differential [71]

kinematics of the suspension, which may differ between axles on the same

vehicle depending on the axle location and/or drivetrain (driven/un-driven),

have a significant effect on the behavior of the vehicle. A complete discussion

of the impact of suspension kinematics is outside the scope of this report,

but it is important to recognize that a large number of different types have

been developed and implemented. A few representative suspension types are

presented for reference.

Figure 4.20 depicts one of the oldest suspension/drivetrain layouts - a

beam axle located by leaf springs. This suspension type is still widely used

for trucks and commercial vehicles as the beam provides a robust load path

to the wheels, a critical consideration when heavy chassis loads are involved.
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Figure 4.19: Longitudinal Tire Forces, Active Differential [71]

Figure 4.21 shows a double wishbone suspension, used on passenger

cars and racing vehicles. The double wishbone design provides the ability

to select (by design) the camber of the wheel throughout the travel of the

suspension, which affects performance as the chassis undergoes roll, pitch, or

bounce. However, the kinematics must also take into account the driven/un-

driven nature of the wheel (driveshaft placement), the steering action, and

packaging restrictions. This layout is essentially a four bar mechanism where

the chassis provides the grounding link and the wishbones (commonly referred

to as links or A-arms) are the linkages connected to the grounding link. The

kingpin, or upright, is the fourth link in the system and provides the wheel

bearing/wheel hub attachment point. The four bar layout and attachments
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Figure 4.20: Representative Beam Axle and Leaf Spring Suspension[26]

Figure 4.21: Representative Double Wishbone Suspension [26]
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Figure 4.22: Four Bar Suspension Linkage, Racing Vehicle[77]

may be seen in Figure 4.22, which is a representation of a racing suspension.

A modern, “multi-link,” suspension is shown in Figure 4.23. Multi-link

suspensions are common on modern vehicles as they provide more flexibility in

the kinematics and linkage packaging than the four bar design. However, this

suspension type is still subject to the same design restrictions as the double

wishbone and the benefits of the design come at the cost of system complexity.

It is important to note a key difference between the double wishbone/multi-

link designs and the beam axle design - the wishbone/multi-link systems are

independent whereas the beam axle is not. In other words, the motion of one

wheel on a beam axle directly affects the motion of the other wheel, whereas

the motions of the wheels of an independent suspension type are (relatively)
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Figure 4.23: Representative Multi-Link Suspension[26]

isolated from one another. Isolating suspension movements provides perfor-

mance benefits as greater control may be exerted over the individual motions

of the wheels. It is also important to note that almost all suspensions, indepen-

dent or not, employ some variety of anti-roll bar, a torsion spring that provides

a force that opposes asymmetric suspension displacement. The addition of the

roll bar affects the behavior and performance of the vehicle as it increases the

weight transfer of the vehicle by providing a direct coupling between co-axial

wheels. As a result, roll bar effects must be taken into account when selecting

suspension geometries and parameters.

Suspension springs and dampers on modern vehicles are typically pas-

sive but the idea of active and semi-active suspension capability has been
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around for many years [13, 19]. Active suspension concepts propose replac-

ing the typical damping element with a force generation element that may

be controlled to optimize one or more performance indices. Semi-active sus-

pension concepts typically propose modifiable damping/spring elements that

allow for either continuous damping/spring rate adjustment or switching be-

tween operating modes. While proposed active and semi-active suspension

systems indicate the potential for significant increases in handling and ride

characteristics, most systems involve cost and mass increases as well as chal-

lenges in component packaging. Several auto manufacturers have developed

and implemented semi-active suspension systems, but implementation of these

systems is not widespread [1, 34, 56, 78]. References [1] and [78] are implemen-

tations of active roll control by BMW and Toyota, respectively, which provide

a variable roll resistance in order to reduce chassis roll during cornering ma-

neuvers. Reference [34] describes the development of a magneto-rheological

fluid damperby Audi that provides active variation of damping forces. Mer-

cedes has developed a fully active suspension, as described in [56], that utilizes

hydraulic servomechanisms in conjunction to traditional spring/damper sus-

pension elements. While the Mercedes system appears to provide substantial

ride benefits, widespread implementation is unlikely in the near term to due

to the substantial system weight and added cost. In addition, as all of these

systems are industry developed, obtaining detailed and meaningful data is

difficult.
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4.1.2 Design Restrictions Caused by Conventional Architectures

A mechanical connection between the transmission and drive wheels

imposes several restrictions on the design of suspension kinematics. Design-

ing a suspension linkage requires considering the placement and movement of

the drive shaft (torque delivery), wheel camber as a function of the suspen-

sion displacement, movement of the steering linkage (for steered wheels), and

placement of the linkage attachment points (packaging restrictions). These ele-

ments are often in conflict and, as a result, the design of suspension kinematics

generally represent a compromise between the desired system attributes.

The selection of parameters for passive suspension elements (springs

and dampers) also a process of compromise. The suspension parameters are

expected to provide adequate vehicle performance over a wide range of con-

ditions (speed, road type, terrain type, cargo mass, weight distribution, etc.)

while addressing other concerns such as passenger comfort.

The weight and payload requirements of certain types of vehicles often

results in the utilization of suspension components that may reduce cost or

vehicle complexity at the expense vehicle performance. For example, military

transport vehicles such as the FMTV cargo variants shown in Figures 2.6 and

2.7 utilize beam axle suspension types as a method of providing an inexpensive

but robust load path from the cargo area to the wheel/tire assembly. Beam

axle technology has several drawbacks such as static wheel camber, high CG

location, poor roll characteristics, and dependent wheel motions. As a result,

once this technology is selected, the designer/engineer is left with few options
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for improving vehicle performance.

4.2 Moving Away From Conventional Architectures

The previous discussion focuses on vehicles utilizing an IC (gasoline or

diesel fuel) engine as a prime mover but IC engines are not the only available

methods of torque generation. Alternatives include different engine types, such

as continuous combustion (gas turbine), external combustion (steam engine),

and electrical motors. Alternative prime mover concepts are certainly not a

novel concept, though improvements in certain technologies such as batter-

ies have recently made alternatives to traditional IC engine drivetrains more

attractive [64].

4.2.1 Electric Vehicles

There has been significant recent interest in utilizing electric motors

and electrical energy storage elements (among other energy generation/storage

types) as opposed to IC engines and hydrocarbon fuels. Many auto manufac-

turers, as well as start-up companies such as Tesla Motors, have developed or

are developing electric platforms in order to address the current issues with

hydrocarbon fueled vehicles [22]. Electric vehicles produce no emissions dur-

ing operation and the torque speed characteristics of electric motors offer some

advantages over IC engines [63].

Electric motors generate peak torque at low rotational speeds (albeit at

low efficiency) while IC engines produce little to no torque at low speeds. The
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torque output of an IC engine increases with speed (up to a certain point)

whereas the torque output of an electric motor decreases with speed. The

differences in torque/speed characteristics are shown in Figure 4.24. Hybrid

vehicles, those utilizing both types of prime movers, decouple the operation of

each prime mover (depending upon the configuration), thereby providing the

operator with choices for each operating regime. These choices provide the

ability to optimize the operation of each prime mover for vehicle efficiency,

torque output, etc. Hybrid vehicles are discussed in Section 4.2.2.

While electric vehicles offer improved low speed torque, energy conver-

sion efficiency, and reduced noise, electrical energy storage elements (batteries)

add significant weight. In addition, the range of comparatively priced/sized

electric vehicles is considerably less than that of vehicles using IC prime

movers.

It is important to note that the leading electric vehicle platforms (Tesla

Model S, Nissan Leaf, Chevrolet Spark EV) use only one electric motor in their

respective drivetrains [23, 60, 61]. The base platform of the Tesla Model S is

shown in Figure 4.25. It should be noted that the battery pack of the vehicle

is mounted low in the chassis, which reduces the CG of the vehicle (generally

desirable).

The use of one motor can be thought of as a one-to-one mapping of

the power generation functionality from one energy domain (mechanical) to

another (electrical) and as such, the traditional drive elements are retained

and the chassis and suspension experience many of the same restrictions as
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Figure 4.24: Characteristic Torque/Speed Curves for Electric Motors and In-
ternal Combustion Engines [63]
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Figure 4.25: Tesla Model S Base (One Drive Motor) [8]

conventional vehicles.

Some electric vehicles, such as the Rimac Concept One, manufactured

by Rimac Automobili, utilizes two electric drive motors [12] on the rear axle.

The powertrain of this vehicle is shown in Figure 4.26.

This layout has greater influence in vehicle yaw as the two motors (one

for each rear wheel) operate independently. This could be very helpful for

torque vectoring/yaw control (as discussed in Chapter 6). However, as this

vehicle is an industry effort and still in development, useful performance data

is not available.

Toyota has explored replacing IC engine drivetrain components with

in-wheel electric motors while retaining a traditional double wishbone suspen-

sion [62]. This layout allows the drivetrain to capitalize on the benefits of

94



Figure 4.26: Dual Motor Drivetrain, Rimac Concept One (Two Drive Motors)
[12]

electric prime movers while avoiding many of the design/performance issues

associated with driveshafts and differentials. The independently driven wheels

allow for torque vectoring and precise traction control (allowing each wheel

remain the in peak/slip force region independently). While test results indi-

cate improvements in vehicle performance, this architecture retains traditional

steering, camber, and suspension control elements.

4.2.2 Hybrid Vehicles

Hybrid vehicles architectures add energy storage and management ca-

pabilities to the vehicle powertrain. Hybrids utilize (typically electrical) energy

generation, storage, and utilization (drive) capabilities in addition to the ex-

isting powertrain layout [63]. These vehicles generally fall into one of two main
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categories - serial and parallel. The distinction is shown in Figure 4.27.

Figure 4.27: Comparison of Hybrid-Electric Drivetrain Layouts [28]

Parallel hybrids include the additional energy storage and utilization

elements while retaining the mechanical drivetrain. While the energy manage-

ment capabilities of the hybrid elements give the system additional control over

energy utilization, the restrictions on vehicle design imposed by the traditional

drive elements are still present.

Serial hybrids place the additional energy storage and utilization ele-

ments in between the IC engine and drive elements, thereby decoupling the

two. This decoupling provides more flexibility in power utilization (application

of torque). However, most serial hybrid vehicles only utilize a single output
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(motor) to provide torque to the drive wheels. As such, despite the decoupling

of the IC engine and driven wheels, the traditional drive shaft/differential el-

ements are generally included in the vehicle design and the associated design

restrictions are still present.

4.2.3 Rovers and Space Exploration

Rovers and vehicles associated with space exploration present another

deviation from standard vehicle architectures. Vehicles intended for operation

outside of an atmosphere must utilize a prime mover that does not require

some external fuel source (e.g. air for an IC engine) and as such, rovers typ-

ically utilize electric drivetrains. However, rovers differ from other electric

vehicles in the layout and articulation of the drivetrain due to payload weight

and packaging restrictions in addition to differences in operational require-

ments. Assessing rover architectures is important as these differences affect

rover performance and capability in unique ways.

4.2.3.1 NASA Exploration Rovers

There have been three successful, major rover expeditions to mars:

Mars Pathfinder, MER Spirit/Opportunity, and MSL Curiosity. The most

recent rover design, MSL Curiosity, was undertaken by NASA’s Jet Propulsion

Laboratory. All three of these rover types utilized a similar architecture - the

rover chassis (mission equipment) is suspended by a dual rocker-bogey system

in conjunction with in-wheel prime movers [35]. This suspension setup, seen
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in Figures 4.28 and 4.29, is beneficial in this case not only because of its low

mass and high dexterity (important factors in space travel), but because the

dual-bogey geometry provides a passive means to equalize the normal force of

the wheels of the suspension (keep all of the wheels in contact with the ground

surface).

Figure 4.28: MER Rocker-Bogie Assembly [53]

The main mobility concern of rover systems is operating in soft terrains

(regoliths) at low speeds [42]. The architecture of the MER systems (also used

on the MSL system) utilizes in wheel motors (all wheel propulsion) and rigid

wheels with grousers [52]. In wheel motors increase system dexterity and

reduce the complexity of the drivetrain. However, exploration rovers are not

designed to move at a high rate of speed, and, as a result, the rover architecture
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Figure 4.29: MER ’Spirit’, JPL Assembly Facility [53]

is often assumed to be quasistatic during operation (little to no inertial effects)

[42]. The exclusion of dynamics simplifies the operational requirements and

mobility expectations of rover systems.

4.2.3.2 NASA Manned Exploration Ground Vehicles

The Johnson Space Center branch of NASA is currently developing

manned mobile platforms for use during manned exploration missions [36].

This development is a response to the need for improved over-ground mo-

bility on the lunar surface during future manned missions. The proposed

vehicle, the Chariot, uses a combination active/passive suspension in addition

to all wheel full rotation steering (independent), and in-wheel drive motors
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on all six wheels. A model of the Chariot is shown in Figure 4.30. The

active/passive suspension is a combination of active and passive elements -

active elements control suspension ride height while the passive elements (tra-

ditional spring/damper) address road disturbances. An image of the Chariot

suspension is shown in Figure 4.31.

Figure 4.30: Chariot Concept [36]

This architecture gives the Chariot significant mobility - the steering al-

lows the chassis to rotate about any designated point and the active/independent

suspension allows the operator to lower the frame to the ground or to climb

obstacles. However, the drive elements, which provide two gearing options

(high/low), are intended for lunar operation. As such, the drive wheels are

capable of significant tractive effort but limit the maximum speed of the plat-
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Figure 4.31: Chariot Wheel Module with Suspension [36]

form to 15 mph [36]. An image of the Chariot prototype with a bulldozing

attachment is shown in Figure 4.32.

NASA, Johnson Space Center, is also developing an alternate version

of the manned Chariot system for potential use in other multi-mission envi-

ronments. This platform, the Space Exploration Vehicle (SEV) (Figure 4.33),

provides a pressurized cabin, docking hatch, and suitports for external activ-

ity.2 The reason for the cabin is to provide an open space living compartment,

provisions, and life support.

The SEV platform is an excellent example of a manned ground vehi-

cle system that avoids many of design restrictions of traditional architectures.

2Suitports refer to external cabin attachment points for space suit ingress/egress.
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Figure 4.32: Chariot Platform with Bulldozing Attachment (Grading Blade)

Figure 4.33: Space Exploration Vehicle (SEV) Prototype [7]
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While this system is intended to operate primarily in low-speed, off-road con-

ditions, the SEV promotes dexterity, flexibility, and mobility and the result is

a vehicle completely suited to respond to the commands of the operator.

4.3 Intelligent/Active Chassis Elements in Military Ve-
hicles

Military vehicles experience from the same design restrictions and mo-

bility issues as commercial and passenger vehicles. In addition, military vehi-

cles have operational requirements that often specify a wide range of terrain

types (both prepared and unprepared), unlike commercial or passenger vehi-

cles that operate mostly on one type of terrain for which the vehicle may be

optimized. The application of intelligent actuation to military vehicles is re-

quired in order to address the issues of mobility and multi-terrain capability

as vehicle costs and weights increases while operational requirements become

more complex.

4.3.1 Intelligence as a part of FCS

This concept of the application of machine intelligence and actuation to

military vehicles was one of the main concepts of the Future Combat Systems

initiative of the early 2000’s [43]. Part of the FCS program was to explore

the application of a variety of robotic technologies to ground systems in an

effort to create intelligent manned and unmanned systems. These technologies

include advanced perception for increasing autonomous mobility (terrain data,
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etc.), intelligent control architectures for increasing the autonomous capabil-

ities of ground vehicles (depending on the intent of the commander) as well

as providing tactical behavior capability (changes in vehicle behavior based

on terrain information, enemy/friendly ground force information), and struc-

tured human/machine interaction in order to provide soldiers with the ability

to manage multiple systems. However, few of these technologies reached ma-

turity with the failure of the FCS program.

4.3.2 Central Tire Inflation System

It is important to note one exception to the otherwise passive suspen-

sions of wheeled military vehicles - the Central Tire Inflation System (CTIS).

This system monitors tire pressures and gives the operator the ability to select

one of several pressure settings depending on the terrain type and conditions.

CTIS allows the operator to lower the tire pressure for operation over soft

(unprepared) terrain, for example, lowering the ground pressure of each wheel

in an effort to improve mobility [44]. Though simplistic, this ability indicates

a recognition by the military of the need for adaptable vehicle elements.

4.3.3 Semi-Active and Active Suspension on Military Vehicles

The mobility benefits of intelligent suspension systems have explored

by the U.S. Military for many years. In [39], Hoogterp, Saxon, and Schihl

describe the implementation of a semi-active, hydro-pneumatic strut on a 19

ton, tracked vehicle testbed. The goal of this work (published in 1993) was
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to demonstrate an improvement in testbed mobility through active damping

(changing the damping characteristics of the suspension as a function of ve-

hicle speed, etc.), with the end goal of increasing the cross-country mobility

of the M2 Bradley to that of the M1 Abrams. A simple, two dimensional

simulation was conducted, evaluating the pitch angle and pitch rate of the

vehicle hull for a variety of road surface roughness conditions. The simula-

tion demonstrated a moderate decrease in both pitch angle (19%) and rate

(20%). In [38], Hoogterp, Eiler, and Mackie briefly describe the development

of active suspension for commercial vehicles and the application this technol-

ogy to the HMMWV. This work, published in 1996 and conducted by U.S.

Army TARDEC (Tank Automotive Research, Development and Engineering

Center), focuses on the utilization of hydraulic actuators to control the heave,

pitch, and roll of the HMMWV chassis and discusses several controller types,

such as bang-bang, LQG based fuzzy logic, and sky-hook chassis control. The

authors indicate that simulations of these controllers have potential for in-

creased HMMWV mobility.

Active suspension systems have been implemented on both HMMWV

and FMTV vehicles.These systems focus primarily on vehicle ride rate in an

effort to reduce chassis motion (heave and roll) and to improve the comfort

of the occupants/driver. In, [18], the authors describe the implementation of

an active suspension actuator developed by The University of Texas Center

for Electromechanics (UT-CEM) on a HMMWV chassis. This system utilizes

a feedback linearization process to lower the variation of the chassis position
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for a given suspension input. A similar system is adapted for use on a Light

Medium Tactical Vehicle (a FMTV variant) in [37]. Again, this system only

addresses chassis displacement (chassis absorbed power) as a measure of ride

quality and chassis tilt as a measure of vehicle stability. While these systems

offer improvements in vehicle performance, this technology is not currently

implemented on production military vehicles.

4.3.4 Hybrid Military Platforms

Reducing the fuel consumption of military vehicles is a significant prior-

ity to the Army and considerable research has been done in evaluating hybrid

powertrains for military vehicles . In [50], Kramer and Parker (of RDECOM-

TARDEC and Michigan Technological University, respectively) describe a va-

riety of hybrid vehicle test platforms (serial and parallel) representing a range

of vehicle weight classes that have been developed by the military for assessing

hybrid powertrain performance.. For the platforms discussed, the HMMWV

represents the light vehicle category, the FMTV represents the medium cate-

gory, and the Heavy Mobility Expanded Tactical Truck (HEMMTT) represents

the heavy category. The authors comment that while significant improvements

in fuel economy can be demonstrated (especially for light vehicles), the unique

challenges of addressing the complex vehicle performance requirements (both

on and off road) complicates the issue of addressing hybrid capability. Many

military hybrid vehicle studies do not directly address the (ever increasing)

requirements for military ground vehicles, such as cooling and speed on grade
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requirements. Vehicles that can not meet requirements standards are not use-

ful to the military, regardless of improvements in fuel economy. Complicating

this issue is the slow nature of military vehicle development cycles and the

significant expected life cycles of military vehicle platforms. Alleviating this

issue will require the development of open architecture, rapidly refreshable

vehicle components in addition to intelligent running gear actuation that will

allow vehicles to effectively meet requirement standards.

4.4 The Intelligent Corner Vehicle Concept

Traditional vehicle architectures meet most of the requirements of the

majority of operators. These vehicles are intended to operate on prepared

surfaces, under controlled conditions, and at a fraction of the traction limits

of the tires. However, the design compromises present in these platforms hinder

the performance and capability of vehicles that are required to operate over a

wide variety of terrains, under uncertain operating conditions, and at or near

the traction limits of the tires. this is especially true for military vehicles.

Tesar proposes the development of a new vehicle architecture - the In-

telligent Corner Vehicle (ICV) [82]. This concept, shown in Figure 4.34, is

intended to provide a ground vehicle platform that provides sufficient opera-

tional flexibility to address the diverse set of mobility requirements of military

vehicles.

The core concept of the ICV is that of a series hybrid powertrain con-

nected to a series of fully actuated, intelligent corners. An IC engine (most
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Figure 4.34: Intelligent Corner Vehicle (ICV) Concept [82]

likely a light-duty diesel) coupled with a generator element provides electrical

energy that is stored and supplied on demand to wheel actuation elements.

Each wheel, or corner, is controlled in the four required degrees of freedom

(camber, steering, drive, and suspension) by intelligent, electromechanical ac-

tuators embedded with a variety of sensors and embedded computing elements.

This architecture allows for complete control of the orientation of every wheel

on the vehicle, allowing the system to completely address the requirements of

the operator - the human decision maker (HDM).

The ICV platform is intended to be a scalable platform built upon ei-

ther two, three, or four wheel pairs (four, six, or eight wheels). The actuators

from each series (camber, steering, drive, and suspension) are all drawn from
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minimum sets of standardized, highly certified actuators, allowing the vehicle

designers, technicians, and operators to rapidly draw from these sets to assem-

ble a vehicle suited to the current mission requirements. The representative

families of component sets are shown in Figure 4.35.

4.4.1 The Intelligent Corner

As previously mentioned, each wheel (corner) is treated as an individual

system and is completely actuated by intelligent actuators. The steering and

suspension actuators are mounted inboard, i.e. fixed to the chassis rather

than the wheel, as both require a grounding link. The camber and drive

actuators, however, are mounted on the kingpin or upright. This arrangement

of actuators provides significant flexibility in the design of the chassis and

suspension kinematics, which reduces the number of design restrictions. A

representative corner is shown in Figure 4.36.

4.4.2 The Intelligent Actuator

The key to the intelligent corner concept is the intelligent actuator. The

Robotics Research Group has done significant work in developing intelligent

actuation systems. Woodard and Tesar, in a UTexas RRG Report [89], present

a design process for the drive actuator for the ICV that may be scaled for a

family of vehicles. The drive actuator, the Multi-Speed Drive Wheel (MDW),

illustrated in Figure 4.37, utilizes two gearing choices for increased flexibility

of operation.
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Figure 4.35: Intelligent Corner Vehicle Component Sets [82]
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Figure 4.36: Intelligent Corner Vehicle Representative Corner [82]

Figure 4.37: Intelligent Corner Vehicle Multi-Speed Drive Wheel [82]
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The testing and certification process will produce the performance data

for each actuator, compiled into embedded performance maps. This process,

illustrated in Figure 4.38, will result in the complete characterization of each

actuator. In combination with a variety of embedded sensors, the performance

map data will maximize the capability of each actuator within the ICV system.

As the operating conditions change, the actuators will be able to fully address

the demands of the vehicle operator.

4.5 The Requirement of Performance Criteria

This process of responding to the continually changing commands of

the vehicle operator requires a complete characterization of the vehicle system

behavior, in addition to the characterization of the individual system actu-

ators. The intelligently actuated vehicle corners provide a large number of

system inputs, and the result is a force redundancy when considering planar

vehicle motion. This redundancy can be exploited in order to optimize vehicle

behavior.

The development of intelligent actuation systems and performance map

based decision making allows the implementation of a formal decision mak-

ing process that will allow the ICV to react in real-time to the needs of the

operator. The ICV will be able to address operator commands such as maxi-

mizing performance, minimizing vehicle noise, maximizing fuel economy, etc.

However, responding to these commands requires the development of vehicle

operational criteria - representations of vehicle behavior that will allow the de-
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Figure 4.38: Embedded Performance Maps for Intelligent Actuators [81]
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cision making process to fully exploit the intelligent actuators to respond to the

commands of the operator. The following chapters describe the development

of performance criteria for the Intelligent Corner Vehicle.

4.6 Chapter Summary

This chapter discusses modern vehicle architectures, efforts to develop

the impact of the application of intelligent actuation to ground vehicle drive-

train and suspension components,and the requirement of performance criteria

for effectively evaluating vehicle motion. Table 4.1 presents the key findings,

conclusions, and recommendations of the chapter.
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Chapter 5

Serial Chain Robotics Criteria as a Framework

for Vehicle Criteria Development

5.1 Influence of Previous Work

A variety of reports and papers have been published by the Robotics

Research Group on the topics of motion planning, serial chain kinematic redun-

dancies, and the need for performance criteria. A review of the development of

performance criteria for serial chain mechanisms is beneficial in understanding

the application of performance criteria to the Intelligent Corner Vehicle.

5.1.1 Serial Chain Kinematics

The use of performance criteria for evaluating the motion of complex

dynamic systems at the RRG began with the analysis of serial chain robotic

systems. A serial chain robotic system is comprised of a series of links con-

nected with either rotational (rotary) or translational (prismatic) joints. Fig-

ure 5.1 shows a six degree of freedom (DOF) industrial robotic arm manufac-

tured by Motoman. The individual rotary actuators are labeled R1 through

R6.

The tool at the end of the robotic arm, referred to as the end effector

(EEF), is generally a location of interest and motion planning for serial robotic
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Figure 5.1: Yaskawa Motoman 6 DOF Industrial Robot [74]
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systems typically involves defining a desired EEF motion or position. For

example, a serial chain robotic system used for package handling operations

may follow a specific series of EEF positions (point to point) whereas a system

used for welding or painting may be required to follow a precise trajectory as a

function of time. A standard industrial robot may have six degrees of freedom

as there are six parameters required to specify the location and orientation of

an end-effector in three-dimensional space. The process of determining inverse

kinematic expressions, or the individual joint angles and velocities required

for a desired EEF motion, for a six DOF arm is a mathematically complex

process that may yield several possible solutions. These solutions must then

be evaluated by the operator or controlling software. The inverse kinematic

problem is made significantly more complex if redundancy is present in the

serial chain mechanism. In this case, the number of system inputs exceeds the

number of system outputs and there may exist an infinite number of possible

solutions that must also be evaluated. An example of a redundant system is

a snake robot, shown in Figure 5.2. This robot utilizes a series of short links

and rotary actuators to create a highly dexterous system capable of snake-like

locomotion.

Assessing possible solutions to the inverse kinematics of serial chain

mechanisms is a problem of optimization and as such, various criteria are re-

quired in order to effectively evaluate the behavior of the mechanism. The

Robotics Research Group has systematically developed a large set of perfor-

mance criteria for serial chain robotic systems. Developing criteria with real
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Figure 5.2: Modular Snake Robot [51]

physical meaning is critical in order to provide the operator with an under-

standing of the motion and capabilities of the system. Cleary and Tesar [20]

described a variety of criteria in several categories (geometric, inertial, kinetic

energy distribution, system compliance) and indicated the importance of de-

veloping criteria that are task independent. The criteria described by Cleary

and Tesar are functions of the geometry, state, and physical parameters of

the serial chain mechanism rather than derived from the intended end-effector

behavior. Task independent criteria are a more versatile representation of sys-

tem behavior, applicable to any task or system objective. Task independent

criteria may also be derived from EEF trajectories. Knowledge of the higher

order properties of trajectory characteristics such as curvature and torsion may
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be exploited, for example, in order to generate desirable joint behavior for a

desired EEF motion [80].

Many of these criteria are derived from Kinematic Influence Coeffi-

cients. Kinematic Influence Coefficients, developed by Benedict and Tesar [14]

for planar mechanisms and later expanded to spatial mechanisms by Thomas

and Tesar [83], provide a general kinematic description of multi-degree of free-

dom, serial chain systems. The kinematics of a general, n degree of freedom

mechanism may be expressed as:

φ = φ(t) = {φ1(t), φ2(t), ..., φn(t)}T (5.1)

φ̇ = φ̇(t) = {φ̇1(t), φ̇2(t), ..., φ̇n(t)}T (5.2)

φ̈ = φ̈(t) = {φ̈1(t), φ̈2(t), ..., φ̈n(t)}T (5.3)

where φi refers to the angular position of joint i, φ̇i refers to the angular velocity

of joint i, and φ̈i refers to the angular acceleration of joint i. Note - prismatic

joints are represented with a translation parameter ri rather than a rotational

parameter, φ. However, this report restricts itself the use of rotational joints

for simplicity. If the EEF for a 6 DOF robot is measured in the traditional six

spatial degrees of freedom, the output may be expressed as:

u = {u1, u2, u3, u4, u5, u6}T = {x, y, z,Ψx,Ψy,Ψz}T (5.4)

where x,y, and z represent translations in a fixed (grounded) reference

frame, and Ψx, Ψy, Ψz represent rotations about the respective fixed axes. In
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general, the EEF outputs are expressed as functions of each joint position:

x = f(φ1, φ2, ..., φn)

y = f(φ1, φ2, ..., φn)

z = f(φ1, φ2, ..., φn)

Ψx = f(φ1, φ2, ..., φn)

Ψy = f(φ1, φ2, ..., φn)

Ψz = f(φ1, φ2, ..., φn)

(5.5)

The time derivative of the mechanism output, u, may then be expressed as:

u̇ =
du

dt
=
∂u

∂φ

dφ

dt
(5.6)

The matrix of partial derivatives of the system output with respect to

the joint positions is the set of first order influence coefficients, also referred

to as G functions:

u̇ =
∂u

∂φ

dφ

dt
= [Gu

φ]
dφ

dt
= [Gu

φ]φ̇ (5.7)

[Gu
φ] =


∂u1
∂φ
∂u2
∂φ
...

∂un
∂φ

 =


∂u1
∂φ1

∂u1
∂φ2

· · · ∂u1
∂φn

∂u2
∂φ1

∂u2
∂φ2

...
...

. . .
...

∂un
∂φ1

· · · · · · ∂un
∂φn

 (5.8)

If the system output is the set of spacial parameters of Equation (5.4), the

first order influence coefficient matrix is:

[Gu
φ] =


∂x
∂φ
∂y
∂φ
...

∂Ψz

∂φ

 =


∂x
∂φ1

∂x
∂φ2

· · · ∂x
∂φ6

∂y
∂φ1

∂y
∂φ2

...
...

. . .
...

∂Ψz

∂φ1
· · · · · · ∂Ψz

∂φ6

 (5.9)
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It is important to note the separation of joint (geometric) and time

derivatives - the first order influence coefficients are a function of joint position

only. Kinematic Influence Coefficients may be formulated around any point of

interest on the structure of the robot, but if they are utilized to relate the EEF

velocities to the joint velocities, the G matrix is referred to as the Jacobian of

the system.

Influence coefficients for EEF accelerations may be derived in a similar

manner. The coefficients represented by the second partial derivative of the

system output with respect to the joint positions may be grouped together in

the same manner as the first order coefficients:

ü =
d2u

dt2
=

d

dt
(
∂u

∂φ

dφ

dt
) (5.10)

ü = (
∂u

∂φ
)φ̈+ (

∂2u

∂φ2
)u̇2 (5.11)

ü = [Gu
φ]φ̈+ φ̇T [Hu

φφ]φ̇ (5.12)

The resulting Hessian matrix, H, relates the centripetal and Coriolis effects to

the accelerations of the system output.

Hooper and Tesar [40] developed a method by which the inverse kine-

matics of serial chain mechanisms could be determined through a direct search

method utilizing multiple performance criteria. In discussing the importance

of these criteria, Hooper presents a list of desirable criteria traits:

• Physically significant - must display mathematical or experimental im-

provement
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• Multiple physical meanings - this increases criteria effectiveness without

additional computational expense

• Varies over workspace - allows decision making

• Single valued - allows deterministic solutions

• Continuous - allows integral and differential calculations

• Computationally efficient - important for real-time evaluation

• Mathematically independent - avoids overlapping effects

• Bounded in magnitude - makes normalization possible

• Task independent - one formulation regardless of task being performed

It is important to keep these traits in mind during the discussion of the appli-

cation of various performance criteria to the Intelligent Corner Vehicle (ICV).

Hooper discusses the criteria groupings previously mentioned (geomet-

ric, inertial, kinetic energy, system compliance - proposed by Cleary and Tesar)

but, Tisius and Tesar [84] more recently suggested the following groupings as

a more task-based approach:

• Constraint-Based Criteria

– Joint Limit Avoidance

– Peak Torque Avoidance and EEF Payload Capacity
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– Velocity Limit Avoidance

– Acceleration Limit Avoidance

– Obstacle Avoidance

– Fault Tolerance

– Singularity Avoidance

• Non Constraint-Based Criteria

– Dexterity

– Transmissibility

– Efficiency

– Smoothness

– Stiffness

– Impact Force Reduction

– Conservative Motion

Recognizing the difference between constraint-based and non constraint-based

criteria is important in addressing ICV performance because, as it will be

discussed in the following section, constraint based criteria are more readily

applicable to the ICV architecture.

5.1.2 Criteria for Serial Chain Systems

The following is a description of a series of criteria, the physical mean-

ings of each, and their applicability to the Intelligent Corner Vehicle. The
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following discussion of criteria is focused on the corner actuators and a chassis

fixed reference frame is assumed.

5.1.2.1 Geometric Criteria

It is important to note the prevalence of the G and H matrices (influ-

ence coefficients) in performance criteria for serial manipulators, especially in

those related to geometry. As an example, it is desirable to be able to assess

the ability of a serial chain mechanism to transmit force or velocity to the

EEF. The Measure of Transmissibility criterion (MOT) is described as:

MOT =
√
det([Ge

φ][Ge
φ]T ) (5.13)

The MOT criterion provides an indication of the proximity of the mechanism

to a singularity. A singularity is a configuration of a serial chain mechanism in

which one of the degrees of freedom is mathematically unavailable. In this case,

the coefficients associated with a desired output direction approach or become

zero and the system looses the ability to influence the EEF in the specified

direction. Mathematically, a singularity occurs when the determinant of the

Jacobian of the system is zero. Because the Jacobian of the system relates

joint velocities to the EEF output velocities:

u̇ = [Ge
φ]φ̇ (5.14)

the inverse of the Jacobian may be utilized to determine joint velocities from

the EEF output velocities:

φ̇ = [Ge
φ]−1u̇ (5.15)
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The above formulation becomes invalid if taking the inverse of the Jacobian is

not possible (zero determinant).

Tisius [84] presents a graphical representation of the MOT criterion in

Figure 5.3 for a simplistic, 2R (two rotational joints) planar robot. This figure

Figure 5.3: Measure of Transmissibility, 2R Planar Mechanism [84]

shows the variation of the MOT criterion as the manipulator moves through

the workspace, varying from zero at the edge of the workspace (location C) to a
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manipulator dependent maximum (location B) and back to zero when the EEF

is near the base of the mechanism (location A). Locations A and C represent

a loss of the effectiveness of the inputs on the outputs for the 2R mechanism.

The orientations of the manipulator at the corresponding locations (A, B, C)

are shown in Figure 5.4.

Figure 5.4: MOT, 2R Orientations [84]

While both location A and location C indicate a low MOT value (near

zero), it should be noted that the input/output behavior of the mechanism is

not the same in both configurations. As shown in Figure 5.4, the mechanism

looses the ability to move the EEF in the x direction (along the axis aligned

with the first, longer link as indicated in the figure) in the A and C configu-

rations. However, at the inner edge of the workspace (A), large system inputs

(joint velocities) result in small velocities of the EFF whereas small inputs will

result in large EEF velocities if the system is in configuration C. It is impor-

tant to note that the MOT approaches zero when any degree of freedom is

ineffective as the criterion considers the entire Jacobian.

Criteria have been developed in order to assess the directional trans-

missibility of a serial chain mechanism. For example, Bevill and Tesar [15]
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present a directional velocity transmission criteria:

ηvx = {
M∑
i=1

[
1

σi
(u̇e)Thi]

2}−
1
2 (5.16)

M - number of degrees of freedom of the end effector

σi - the i-th singular value of the Jacobian

u̇e - desired end effector motion

hi - the i-th end effector space singular vector

In this case the velocity transmission criterion presented above is for a

desired motion in the x direction. Similar criteria have also been developed

for the evaluation of torque transmissibility [27]:

ητx = {
M∑
i=1

[σi(L
e)Thi]

2}−
1
2 (5.17)

where Le is the direction of the force at the end effector. Again, the above

criteria is associated with the x direction. Tisius presents an alternate formu-

lation of the Velocity/Power Transmissibility Criterion (VTR):

V TR = (u̇T ([Ge
φ][Ge

φ]T )−1u̇)
1
2 (5.18)

The u̇ term in the above formulation represents the unit velocity vector of the

EEF. A plot of the VTR criterion for the simple 2R mechanism previously dis-

cussed, and the corresponding manipulator orientations are shown in Figures

5.5 and 5.6, respectively.

The effects of this weighted Jacobian formulation of the mechanism

transmissibility are clearly shown in Figure 5.5. As the criterion approaches
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Figure 5.5: Velocity Transmissibility, 2R Planar Mechanism [84]

Figure 5.6: VTR, 2R Orientations [84]
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zero, the mechanism is well configured for transferring velocity to the EEF (lo-

cation D). The minimum values of VTR occur when the x direction of motion

is ineffective, indicated at locations A and C. It should be noted that as the

MOT criterion is dominated by the critical direction/joint as it approaches

zero, transmissibility information about other directions is not available. The

VTR criterion is a more accurate description of the capabilities of the manip-

ulator due to the directionality of the formulation.

5.1.2.2 The Application of Geometric Criteria to the ICV

These are a number of developed geometric criteria for serial chain

mechanisms and it is certainly possible to apply the concepts of geometrically

based performance criteria to the suspension kinematics of ground vehicles. In

the the case of the ICV, each corner represents a four (suspension, steering,

camber drive) DOF serial chain system where the tire contact patch is the

output and the reference is the undisturbed planar motion of the vehicle.

However, there are several issues in applying these criteria that should be

noted.

The first is that the development of a kinematic and dynamic suspen-

sion model is required in order to fully appreciate the application of geometric

criteria. For example, a model is required in order to understand (physically)

the implications of singularity avoidance or system dexterity in terms of spe-

cific camber, steering, or suspension linkage configurations. However, unlike

serial chain mechanisms, posing a generalized kinematic model of a suspension
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system is a complex process, one complicated even further by the prevalence

of non-independent suspension types in military vehicles (e.g. beam axle/leaf

spring suspensions).

The second issue is that ground vehicle suspension systems are not

nearly as dexterous as serial chain mechanisms. Though the actuators utilized

in the ICV architecture may individually have a significant range of motion,

the EEF in this case (the contact patch) does not experience significant trans-

lations or rotations when compared to the chassis reference frame. However,

the location of the individual wheel control actuators of the Intelligent Corner

will affect the variation of G and H matrices over the workspace (total range

of suspension movement), and the variation of criteria derived from influence

coefficients will vary depending upon the actuator configuration. As it is not

the goal of this report to specify a desired actuator placement (design), the

discussion of the application of previously studied serial manipulator criteria in

this report will focus mainly on geometric constraint based criteria and those

criteria associated with energy content.

5.1.2.3 Corner Actuator Range and Limit Criteria

Joint range criteria, though geometric, are not based on Kinematic

Influence Coefficients and are critical for any dexterous system utilizing intel-

ligent actuation. Though the angular position of each individual actuator is

not constrained (each is capable of continuous rotation), the kinematics of the

suspension and chassis geometry will impose actuator range limitations. The
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Joint Range Availability Criteria assesses the ratio of actuator position to a

pre-determined limit of each individual actuator. The range availability may

be expressed as a sum for the system actuators:

JRA =
1

n

n−1∑
i=1

(
|θi − θi,mid|
θi,max

)p (5.19)

or for a critical joint:

JRA = MAXn−1
i=1 (
|θi − θi,mid|
θi,max

)p (5.20)

The exponent, p, can be used to make the criteria more critical as it approaches

its operating limits. Using a higher exponent value will lower the sensitivity

of the criterion near the center of its operating range.

A JRA value of zero indicates that the actuators are all in the mid-

range of their travel. A value of one indicates that one of the actuators is

reaching the pre-determined position threshold. A JRA value greater than

one indicates that at least one of the actuators has exceeded the threshold.

There are a few issues of note when applying this criteria to the ICV.

The first is that this criteria should be applied to each individual corner of

the ICV, meaning that a vehicle with m corners, each utilizing n actuators

(generally n = 4) will have m different evaluations of this criteria as each

corner may be experiencing a unique position due to the terrain profile. It is

important to recognize that the JRA is not applicable to a multi-speed drive

wheel (MDW) as this actuator experiences continuous rotation. Therefore, the

JRA value of i for each corner will range from 1 to 3. The second issue is that
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the threshold for each individual actuator will likely be determined to be some

value less than the absolute physical limitation of the vehicle corner, and that

the range limitations may not be symmetric about the “mid-range” operating

point. For example, the joint range limit for the suspension actuator may be

specified such that the suspension JRA value is one when the wheel is within

a certain distance of the roof of the wheel well (frame or bodywork) when

the suspension is in bump, or the suspension is within a certain distance of

the maximum droop capability of the suspension link members, as determined

by the link lengths and attachment locations. In other words, the suspension

actuator may have different range limitations in bump and in droop, which

may not be captured in the JRA formulation above. The distinction between

bump and droop is shown in Figure 5.7. It should be noted that Figure 5.7

is not intended to be representative of the ICV architecture and the figure is

simply presented in order to differentiate suspension bump and droop.

Ground vehicles are typically designed with a specified “ride height” in

mind, which is defined as the suspension position (deflection) when the vehicle

is static and under no driving load. Because suspension bump and droop are

measured from ride height, this steady-state suspension position should be

considered to be the “mid-range” of the suspension movement. Because it is

desirable for a JRA to have a value of zero when the actuator is in the ideal,
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Figure 5.7: Suspension Bump and Droop

“mid-range” position, a new formulation of the JRA criteria is proposed:

JRAsp =

(
|θi − θi,mid|

max(sgn(α)|θB|, sgn(β)|θD|)

)p
α =

θi − θi,mid
θB − θD

β =
θi − θi,mid
θD − θB

(5.21)

The above formulation of the Joint Range Availability criterion will

have a value of zero if the suspension is at ride height and will approach a value

of one if the suspension nears either the bump or droop limits, regardless of

how the coordinate system is determined. In Equation (5.21), α and β change

sign when the reference ride height angle is crossed. When the suspension is

in bump, α is positive and β is negative. In droop, α is negative while β is
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positive. As a result, the max function will select the appropriate (positive)

joint range limitation for normalization, θB in bump and θD in droop. This

criteria may also be used to evaluate the actuator position of the other corner

actuators should their respective range limitations be asymmetrical.

Figure 5.8: Simple Steering and Suspension Angle JRA Evaluation

A simplistic plot of a JRA (MAX) evaluation is shown in Figure 5.8.

This plot shows the JRA value for two actuator inputs - steering and suspen-

sion. The ranges of both actuators vary from −50◦ to 50◦. The limit of the

steering actuator is ±45◦ and the midpoint is zero. The suspension bump limit
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is set to −30◦ and the droop limit to 45◦. The asymmetry of the graph is a

result of the asymmetrical evaluation of the suspension JRA formulation of

Equation (5.21). It should be noted that the plot shown is scaled (p = 2).

The velocities and accelerations of each actuator may be evaluated in

a manner similar to that of position. The Velocity Limit Avoidance (VLA)

criterion is defined as:

V LA = MAXn
i=1

(
|vi|
vi,max

)p
(5.22)

Again, each criteria will need to be evaluated for each corner. If the value of

the VLA criterion is zero, the corner is static (no actuator motion). If the

VLA value approaches one, at least one actuator is approaching the velocity

limit. A VLA value greater than one indicates that at least one actuator has

exceeded the limit. If the drive wheel is not included in the VLA formulation

for a corner of interest, a value of zero may indicate a steady state maneu-

ver, for example, highway driving at a constant speed, convoy operations, or

steady state cornering. If the drive wheel is included, the VLA value will only

approach zero when the vehicle is at rest. As such, it may be necessary to

formulate a separate VLA criterion for the drive actuator (formulated in an

identical manner) so that steady state maneuvers may be evaluated effectively.

The Acceleration Limit Avoidance (ALA) criterion is defined as:

ALA = MAXn
i=1

(
|αi|
αi,max

)p
(5.23)

If the ALA criterion has a value of zero, the actuators at the corner of interest

are operating at a constant velocity (no acceleration). If the ALA value ap-
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proaches one, than at least one actuator is approaching the acceleration limit.

An ALA value greater than one indicates that at least one actuator has ex-

ceeded the limit. It is important to note that unlike VLA, the ALA criterion

is not sensitive to the inclusion of the drive actuator. In addition, both the

proposed VLA and ALA criteria consider only the critical joint, rather than

taking an average as previously discussed with the JLA criterion.

Just as with position, the actuator limits for velocity and acceleration

are likely to be set at a value less than the mechanical limitations of each ac-

tuator. Unlike the case of position where limits are defined by the suspension

kinematics and chassis geometry, the mechanical limits of velocity and acceler-

ation are determined by the actuator design and dynamics. The set limits may

be chosen for a certain operational life cycle or for factor-of-safety concerns.

If the actuator limits are equivalent to the mechanical limitations, actuator

performance may saturate as the JRA, VLA, or ALA values approach a value

of one. In this case, system (corner) performance may be less than what is

desired by the operator. If the actuator limits are set below the mechanical

limits, a JRA, VLA, or ALA value greater than one indicates that an actuator

has exceeded the pre-determined limit but has not yet reached the mechani-

cal limitation of the device, thereby entering the actuator reserve as shown in

Figure 5.9.

Entering the actuator reserve may be appropriate for emergency ma-

neuvers (at the cost of actuator life span) or if no other option is available.
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Figure 5.9: Joint Level Constraints [84]

5.1.2.4 Actuator Torque Limit Criteria

Continuing with constraint based criteria, it is important to evaluate

the relationship of the torque output of the corner actuators to the torque

limits. The Torque Limit Avoidance criterion is defined as:

TLA = MAXn
i=1

(
|τi|
τi,max

)p
(5.24)

Similar to the previously defined constraint criteria, a TLA value of zero

indicates zero actuator torque output, while a value approaching one indicates

that at least one actuator is approaching the torque limit. A value greater

than one indicates that at least one actuator has exceeded the torque limit

and has entered the reserve. This is a critical criterion for a suspension.
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5.2 Vehicle Energy Content

Criteria have been developed for serial chain mechanisms that evaluate

the effects of an EEF movement on the system kinetic energy. For example,

the Effective Kinetic Energy (EKE) of a system may be expressed as [27]:

EKE =
1

2
u̇T [I∗uu]u̇ =

1

2
u̇T ([Ge

φ]−T [I∗φφ][Ge
φ]−1)u̇ (5.25)

[I∗uu] - transferred effective inertia matrix

[I∗φφ] - effective inertia matrix

u̇ - velocity vector of the EEF

A small value of this criterion indicates that a movement of the EEF in

the specified direction will result in a small change in system kinetic energy.

Large values indicate EEF movement will result in high gains in kinetic energy.

While this criterion is not immediately applicable to wheeled ground vehicles

due to the requirement of a model for the suspension kinematics, kinetic energy

and the distribution of kinetic energy (energy partition) of the vehicle chassis

(sprung vs. unsprung kinetic energy) are of great interest to the operator.

5.2.1 Kinetic Energy Content

Vehicle kinetic energy may be broken down into two subsets, planar

kinetic energy and non-planar kinetic energy. Planar kinetic energy addresses

the desired vehicle motion within a two dimensional plane defined by the road

surface - the longitudinal, lateral, and yaw (about the vertical axis) veloci-

ties. Non-planar kinetic energy (usually undesired) addresses vehicle motions
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outside of this plane - chassis heave/bounce, roll, and pitch. Criteria in the

planar category describe vehicle motion associated with the given motion plan

as determined by the operator. Criteria in the non-planar category describe

chassis motions associated with ground disturbances, aerodynamic effects, and

vehicle equipment motion/operation.

The kinetic energy values for a vehicle are the prime descriptors of the

changes in vehicle chassis motion due to inputs from the intelligent corner

actuators. Kinetic energy values are an indication of both steady state and

transient vehicle weight transfer from corner to corner (redistribution of normal

loads). Weight transfer can not be eliminated by active suspension actuators

but may be controlled to some extent. With a few special case exceptions,

any non-zero, out of plane kinetic energy value represents dynamic vehicle

weight transfer. As previously discussed, weight transfer generally indicates a

decrease in overall vehicle traction capability due to the non-linear relationship

between corner weight (vertical force on an individual tire) and maximum force

capability. As an initial evaluation of the kinetic energy vehicle operational

criteria, it is important to understand the physical meaning of zero, steady

state, and non-steady state values of each kinetic energy parameter. 1

Each of these energy expressions may be plotted in order to evaluate

the impact of design variables (chassis mass, etc.) and state variables (vehicle

yaw rates, etc.) in order to evaluate vehicle behavior. These performance

1The following discussion assumes a body-fixed reference frame as defined by SAE.
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maps, previously discussed for tires in Section 3.3.1, are an important tool for

the operator - performance maps may be used to generate decision surfaces

that may then be evaluated in an effort to determine desirable vehicle opera-

tion. Vehicle behavior is highly nonlinear, and performance maps in this case

allow these nonlinearities to be characterized and exploited to optimize vehicle

performance.

5.2.2 Planar Motion

Planar kinetic energy may be broken down into two components: linear

energy resulting from the lateral and longitudinal velocities and rotational

energy resulting from the yaw velocity.

KEpl = KEl +KEθ (5.26)

where:

KEl =
1

2
mv

√
V 2
x + V 2

y (5.27)

KEθ =
1

2
Iω2

zz (5.28)

Linear kinetic energy is a direct indicator of the linear velocity of the vehicle.

A KEl value of zero occurs when the CG of the vehicle body is stationary. It is

possible to have a zero KEl value while the vehicle is not at rest if the chassis is

experiencing a purely rotational motion about the CG, either in pitch, roll, or

yaw. The reference threshold value of KEl depends on the maximum allowable

vehicle speeds for the given terrain and operating conditions. Since the linear

kinetic energy of the vehicle is a function of both the longitudinal and lateral
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velocities, observing the relationship between the two may be of benefit to the

operator. The two component kinetic energies are defined:

KEl,x =
1

2
mvV

2
x (5.29)

KEl,y =
1

2
mvV

2
y (5.30)

Yaw kinetic energy, KEθ is an indication of the cornering (yaw) rate of

the vehicle. The independent operation and dexterity of the corner actuators

of the ICV will enable the operator to control the yaw center (instant center

of rotation) of the vehicle. This capability has the potential to affect the max-

imum yaw rate appropriate for the occupants and equipment/cargo. Altering

the location of the instant center of rotation of a vehicle, especially during

small radius turns, may lessen the amount of centripetal force experienced by

the vehicle occupants thereby increasing the maximum possible value of KEθ.

5.2.3 Non-planar Motion

Non-planar chassis motion describes the remaining three degrees of

freedom of the chassis: roll, pitch, and bounce.

5.2.3.1 Roll Kinetic Energy

Vehicle roll is a chassis rotation about the vehicle fore-aft (x, SAE

definition) axis.

KEr =
1

2
Iω2

xx (5.31)
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A zero value for KEr indicates zero roll motion. This may indicate that the

vehicle is in a steady state condition or it may indicate that the chassis is

experiencing linear motion only. Assuming a homogeneous, flat terrain, a

zero KEr value corresponding with a non-zero yaw (KEθ) or non-zero lateral

velocity (KEl,y) condition indicates steady state lateral weight transfer as a

result of the centripetal acceleration. A non-zero value of KEr indicates a

transient motion - the vehicle is experiencing a roll motion due to changes in

the lateral tire forces.

5.2.3.2 Pitch Kinetic Energy

Vehicle pitch is a chassis rotation about the vehicle lateral (y) axis.

KEp =
1

2
Iω2

yy (5.32)

Pitch kinetic energy is similar to roll kinetic energy. Pitch occurs during

transient and steady state longitudinal vehicle motion. A zero value of KEp

indicates zero pitch velocity, meaning the vehicle is either at rest or is undergo-

ing a steady state motion. Similar to roll kinetic energy, a zero value of KEp

coupled with a non-zero value of KEl, x indicates steady state longitudinal

weight transfer. A non-zero value of KEp indicates a transient motion - the

vehicle is experiencing a pitching motion due to changes in the longitudinal

tire forces.
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5.2.3.3 Bounce Kinetic Energy

Vehicle bounce/heave is a vertical chassis movement along the z axis.

KEb =
1

2
mvV

2
z (5.33)

A zero value of KEb indicates zero vertical motion of the chassis CG, either

due to a steady state maneuver or zero vehicle motion. Unless the vehicle is

only experiencing a change in vehicle ride height (as directed by the vehicle

operator), a roll or pitch maneuver due to a chassis acceleration will likely be

accompanied by a non-zero value of KEb.

5.2.4 Partial Energy Values

The following section describes the kinetic energy distribution of the

chassis motion and the subsequent implications for vehicle behavior. Note -

some of the following criteria will be undefined if the vehicle is at rest.

5.2.4.1 Partial Energy, System

The ratio of planar kinetic energy to the system kinetic energy is defined

as:

PVpl/s =
KEpl
KEs

(5.34)

A PVpl/s value of one indicates completely planar motion. It is important to

note that a value of one does not indicate a level chassis (orientation with

respect to a grounded reference frame) as kinetic energy only describes vehicle

velocities and does not provide information about chassis position/orientation.
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Maintaining a PVpl/s value of one is advantageous as it results in minimized

transitory states of the vehicle, indicating the rapid establishment of steady

state wheel loads. A PVpl/s value of zero indicates purely non-planar chassis

motion. This condition will occur only if the vehicle is experiencing a pure

bounce, roll, or pitch motion (as commanded by the operator) while the wheel

angular velocities are zero. If the vehicle is completely at rest, PVpl/s is unde-

fined.

The ratio of non-planar to planar kinetic energy is defined as:

PVnp/pl =
KEnp
KEpl

(5.35)

PVnp/pl is the ratio of non-planar kinetic energy to planar kinetic energy. Ide-

ally this value should be low (close to zero) as non-planar energy should be

minimized. A value of zero indicates steady state planar vehicle motion. This

ratio will be undefined if the vehicle is rolling, pitching, or experiencing bounce

while the wheels are static. This situation may occur if the operator is com-

manding a change in vehicle ride height while the wheels are at rest. This

maneuver may be the result of the operator positioning a piece of on-board

equipment such as a camera, sensor, or weapon system.

5.2.4.2 Partial Energy, Planar

The partial energy content of the longitudinal and lateral velocities are

defined as:

PVx/l =
KEl,x
KEl

(5.36)
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PVy/l =
KEl,y
KEl

(5.37)

Defining the components of the linear velocity give the operator the ability to

observe the individual linear velocity contributions to the total linear energy

content. This ability may be important in the application of vehicle equipment

that is directionally sensitive. An ICV with sufficient corner dexterity may be

able to move so that the partial energy content PVy/l achieves a value of one

and the KEθ is zero (pure lateral movement). For example, an operator of an

armored vehicle may be able to specify a motion path by observing the partial

energy content such that the vehicle always presents the front of the vehicle,

which is generally the most heavily armored, to an perceived threat.

Simplistic representations of lateral and longitudinal partial kinetic en-

ergies (with respect to linear kinetic energy) are show in Figures 5.10 and

5.11. The formulation of these partial energy values are simple enough that

representations may be generated without defining complex vehicle motions.

Each plot shows the value of the partial energy with respect to the total linear

energy as each velocity, lateral and longitudinal, is varied from zero to 10 m/s.

Presenting maps such as these provide the operator with the ability to visually

observe the current linear energy distribution.

The ratios of linear and yaw kinetic energy to planar energy are ex-

pressed as:

PVl/pl =
KEl
KEpl

(5.38)

PVθ/pl =
KEθ
KEpl

(5.39)
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Figure 5.10: Ratio of Longitudinal Kinetic Energy to Vehicle Linear Kinetic
Energy

Figure 5.11: Ratio of Lateral Kinetic Energy to Vehicle Linear Kinetic Energy
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These two values are an indication of the turning radius of the vehicle. A

PVθ/pl value of 1 (PVl/pl is 0) indicates a pure yaw about the vehicle CG (turn

diameter is the length of the vehicle) and a PVl/pl of 1 (PVθ/pl is zero) indicates

completely longitudinal motion. The optimal value of PVl/pl and PVθ/pl are

specific to the situation. The operator will determine the ideal (or intended)

turn radius depending on the vehicle planned motion path.

The ratios of pitch and roll energy to non-planar energy are:

PVp/np =
KEp
KEnp

(5.40)

PVr/np =
KEr
KEnp

(5.41)

The values of PVp/np and PVr/np are most significant when evaluated with

respect to one another. A combination of chassis pitch and roll occurs during

transient cornering maneuvers and is accompanied by lateral and longitudinal

load transfer. For example, a vehicle approaching a corner will generally ex-

perience a pitch motion as braking occurs, followed by a combined pitch and

roll motion as the vehicle enters the corner, and finally a combined reverse

pitch and roll motion as the vehicle accelerates longitudinally out of the cor-

ner. Diagonal load transfer during transient cornering maneuvers affects the

understeer coefficient (discussed in Chapter 6) of the vehicle and is largely

unavoidable. However, minimizing pitch and roll will improve the chassis re-

sponse of the vehicle.

The ratio of bounce kinetic energy to the non-planar kinetic energy is
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expressed as:

PVb/np =
KEb
KEnp

(5.42)

A PVb/np value of one indicates a change in the vehicle ride height without

associated pitch or roll movements. This may or may not occur while the

vehicle is in motion. A non-zero value of PVb/np is not an indicator of poor

vehicle performance; changing the vehicle ride height (corner heights) is often

necessary and may be required by the operator for vehicle visibility reasons.

The ratios of pitch energy and roll energy to the system energy are

expressed as:

PVp/s =
KEp
KEs

(5.43)

PVr/s =
KEr
KEs

(5.44)

A PVp/s or PVr/s value of one indicates a special case vehicle operating con-

dition - the vehicle is experiencing a pure roll or pure pitch movement. These

conditions may be specified by the operator if a particular vehicle body atti-

tude is required, for example, in aiming a piece of on board equipment.

The ratio of bounce to system energy is:

PVb/s =
KEb
KEs

(5.45)

The PVb/s value is another indication of a special case of vehicle motion. A

PVb/s value of one indicates a change in ride height while the vehicle is (other-

wise) not in motion. This situation may occur due to vehicle loading (adding

of cargo) or due to preparation for obstacle avoidance. If the value of PVb/s
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is less than one but greater than zero, the vehicle is experiencing a vertical

displacement of the chassis CG while the vehicle is in motion. Unless the

vehicle suspension actuators are capable of completely isolating the chassis

from road disturbances (100% active suspension), the chassis will experience

continual vertical displacements, most likely coupled with bounce and roll mo-

tions. The values of PVb/s and PVb/np may be used to assess the vehicle chassis

accelerations for which the operator may specify limits associated with driver

comfort.

5.3 Criteria Summary

Table 5.1 lists the various criteria described in this chapter, the defini-

tions (symbol and expression), and the associated physical meanings.
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5.4 Chapter Summary

This chapter reviews performance criteria developed by the Robotics

Research Group (RRG) for evaluating the motion of serial chain mechanisms,

their application to the Intelligent Corner Vehicle (ICV) concept, and the

subsequent physical meanings of each criteria. Each criteria presented, along

with the associated symbol, definition, and physical meaning, is listed in table

5.1. Table 5.2 presents the key findings, conclusions, and recommendations of

the chapter.
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Chapter 6

Concepts of Vehicle Dynamics as Applied to

the Intelligent Corner Vehicle Architecture

This chapter presents an overview of classic vehicle dynamics and the

associated concepts that are applicable to the ICV architecture. This chapter

begins with a discussion of the impact of tire behavior and the subsequent

implications for vehicle control.

6.1 Tire Criteria

Chapter 3 presented a brief overview of the behavior of pneumatic tires.

The following section discusses the performance criteria that may be derived

from tire behavior and the associated physical meanings of each.

6.1.1 Longitudinal and Lateral Force Generation

6.1.1.1 Peak Slip Values

As mentioned in Chapter 3, the generation of tire forces is a function of

lateral and longitudinal slip (slip ratio and slip angle). The peak tractive force,

laterally and longitudinally, occurs at some value of slip and this critical value

is a function of the tire properties and operating condition (e.g. normal force on

the tire, road surface condition, etc.). If the slip value required for maximum
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lateral or longitudinal force is known for a given set of operating conditions, the

behavior of the tire may be characterized by slip ratios. For longitudinal force

generation, the Normalized Slip Ratio Margin for each corner, n is defined as:

NSRMt =
in,peak − in
in,peak

NSRMb =
is,n,peak − is,n

is,n,peak

(6.1)

in,peak - slip ratio at which maximum longitudinal force is achieved, wheel n

is,n,peak - skid-slip ratio at which maximum braking force is achieved, wheel n

in - slip ratio, wheel n

is,n - skid-slip ratio, wheel n

There are two definitions for the NRSM criterion, one for tractive effort

(NSRMt), which is a function of the wheel slip ratio, i, and one for braking

effort (NSRMb), which is a function of the skid-slip, is. For the NSRM crite-

rion, a value of one indicates that the vehicle is generating zero longitudinal

force, the wheel slip is zero, and the thrust margin is 100% in traction or in

braking. The tire approaches peak traction capability as the value approaches

zero, and a value less than zero indicates that the tire has exceeded the peak

longitudinal force region of the slip/force curve and is operating below its peak

capability. It is also important to note that slip ratio values less than zero for

the NSRMt criterion result in unstable tire behavior as the frictional resistive

force decreases as wheel speed increases as seen in Figure 3.3 in Chapter 3.

As a result, slip percentage values must be monitored (closed loop) in order

to avoid unstable behavior.
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For lateral force generation, the Normalized Slip Angle Margin is de-

fined as:

NSAM(+) =
αn,peak,(+) − αn
αn,peak,(+)

NSAM(−) =
αn,peak,(−) − αn
αn,peak,(−)

(6.2)

where αn,peak,± is the slip angle at which maximum longitudinal or lateral force

is achieved, wheel n, for either positive (+) or negative (-) slip angle values,

and αi is the slip angle of wheel n. A distinction here is necessary between

positive and negative slip angle values because the lateral tractive capability

of a tire is asymmetrical. For example, positive or negative wheel camber will

cause slight differences in the ±y lateral force generation capability and as

such, the values of αn,peak will be slightly different. A value of NSAM of one

indicates that the tire is generating zero lateral force and 100% of the lateral

force margin is available. A value of zero for either criteria indicates that the

lateral performance of the tire is saturated and any further increase in α will

result in a negative criterion value and diminished tire performance.

Because the peak longitudinal and lateral forces are coupled (recall the

traction circle, Figure 3.16) and are functions of the tire normal load, the peak

i and α values will fluctuate as the slip conditions change and the corner loads

change during transient maneuvers. Values of αn,peak,±, in,peak, and is,n,peak

are specific to the road condition, tire load, tire type, slip state, etc. For

example, the slip ratio at which peak longitudinal force occurs will decrease as

the steering angle, and subsequently the slip angle (α), increases. Determining
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these peak valves and predicting force generation capability will depend on the

tire model utilized for predicting the performance of the ICV.

6.1.1.2 Peak Torque Values

It is possible to evaluate peak force generation as a function of tractive

effort (thrust) rather than as a function of slip. As previously discussed, for

any given terrain type there exists a peak thrust force that the tire/terrain will

tolerate. If the maximum possible tractive effort is represented as ft,i, then

the associated wheel torque is expressed as:

Ti,peak = re,n ∗ ft,n (6.3)

where re,n represents the effective radius of the wheel. For a given wheel

torque, Tn, the normalized wheel torque margin is then:

τn =
Tn,peak − Tn
Tn,peak

(6.4)

A value of one indicates no wheel torque. A value of zero indicates torque

saturation and a further increase in torque (negative τ value) will result in

decreased performance and an unstable tire loading condition, assuming a

forward tractive effort.

Similar to the peak slip ratio, the value of Ti,peak will fluctuate with the

road surface and operating condition of the tire. It should be noted that the

NSRM and τi criteria are not independent as the maximum possible thrust

is a function of wheel slip. Dependent criteria for slip and wheel torque are
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provided here in order to facilitate different control schemes that may attempt

to control either wheel speed or torque.

When evaluating wheel torque margins, the torque distribution must

also be taken into account. In the case of non-homogeneous terrain or non-

static operating conditions, the normalized torque margins may all be equal

despite a difference in wheel torques, but this may not be advantageous for

maximizing vehicle capability. For any given operating environment, it may

be possible to establish an average torque margin, τ̄ . The ratio of normalized

torque margin to the average may be then expressed:

τn,i =
τi
τ̄

(6.5)

A value of one indicates that the specific tire is operating at the desired av-

erage torque margin. The value of τ̄ , as chosen by the operator or control

software, will depend on the desired level of safety for the operating envi-

ronment. Maintaining a constant value of τn,i allows each wheel to respond

to wheel disturbances and changes in the terrain while retaining a specified

torque safety margin for executing sudden vehicle maneuvers.

6.1.2 Lateral/Longitudinal Force Ratio

Similar to side-slip as discussed in Chapter 5, the ratios of lateral and

longitudinal forces to the total force of a given tire are of interest to the

operator. The ratio of lateral tire force to total tire force generation (lateral
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and longitudinal) is expressed as:

LatFR =
Fy,n

Fy,n + Fx,n
(6.6)

The ratio of lateral tire force to total tire force is an indication of the cornering

condition of the tire. A value of zero indicates no lateral force generation, and

a value of one indicates purely lateral force generation. A value of one is

desirable for steady state cornering maneuvers, but, in practice, a value of

exactly one is highly unlikely due to tire resistances and may be an indication

that the wheel or vehicle is experiencing purely lateral sliding. Purely lateral

sliding is likely an indication of vehicle instability or a poorly configured wheel

and is undesirable.

The ratio of longitudinal force to total tire force generation is expressed

as:

LongFR =
Fx,n

Fy,n + Fx,n
(6.7)

Similar to the lateral force ratio, a value of one indicates purely longitudinal

force generation. This condition is desirable for straight-line vehicle motion

such as convoy maneuvers and emergency braking. Due to aerodynamic effects

and road irregularities, a value of one is highly unlikely. A value of zero

indicates a lack of longitudinal tire force generation. This may be an indication

of lateral sliding (undesirable) or the vehicle may be static.

It should be noted that the lateral and longitudinal tire force ratios are

independent of the chassis lateral and longitudinal kinetic energy ratios as, 1)

the independent steering of the intelligent corners allows the wheels to assume
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arbitrary steering angles with respect to one another, and 2) the independent

tires only generate forces when they are in contact with the ground. A tire

not in contact with the road surface will not generate force regardless of the

chassis motion.

6.1.3 Camber Force Generation

Similar to lateral and longitudinal force, camber force (or camber thrust)

peaks at a certain value of camber. Camber thrust adds or detracts from the

lateral tire force. As previously discussed, this angle may be small ( 5◦) for

radial ply tires and large ( 50◦) for bias ply tires. The nonlinear behavior of

tire camber is shown in Figure 3.8. Camber force is beneficial during corner-

ing maneuvers and optimizing camber force is critical if peak performance is

desired by the operator.

NCTM =
γn,peak − γn
γn,peak

(6.8)

The Normalized Camber Thrust Margin (NCTM) for the specified tire, n, is

interpreted the same way as NSRM and NSAM - a value of one indicates zero

camber thrust (usually corresponding to zero camber angle, depending on the

terrain), a value of zero indicates camber thrust saturation, and a value less

than zero indicates diminished camber performance. It is important to note

that values exceeding the maximum camber thrust angle result in potentially

detrimental heat build up in the corner (near the sidewall) of the tire. This

effect is most significant in radial ply tires, which feature a flatter tread design

as opposed to bias ply motorcycle tire which features a rounded tread pattern.
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In this scenario, the sidewall of the tire is experiencing significant deformation

as it enters and leaves the contact patch. As a result, heat generation (due to

hysteresis, etc.) increases which has detrimental effects on both the tractive

capabilities of the tire and the lifespan of the tire.

6.2 Predicting on road capability

The following section discusses the prediction of vehicle performance

on prepared, non-deformable terrains (on-road).

6.2.1 Acceleration Prediction

The longitudinal performance of an on road, four wheeled, traditional

vehicle may be predicted by the following model [87]:

m
d2x

d2t
=
W

g
a = Ff + Fr −Ra −Rrf −Rrr −Rd −Rg (6.9)

m - mass of the vehicle

W - vehicle weight

g - gravitational acceleration constant

Ff - thrust of vehicle front axle

Fr - thrust of vehicle rear axle

Ra - aerodynamic resistance

Rrf - rolling resistance of the front tire

Rrr - rolling resistance of the rear tire

Rd - drawbar load
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Rg - grade resistance

The above equation assumes the vehicle is symmetric. The forces described in

Equation 6.9 are shown in Figure 6.1.

Figure 6.1: Forces Acting on a Symmetrical, Two-Axle Vehicle [87]

If the front and rear thrust terms are combined, Equation 6.9 may be

rewritten as:

F = Ra +Rr +Rd +Rg +
aW

g
(6.10)

For any given value of thrust (front and rear), maximizing the vehicle

acceleration, aW
g

, requires minimizing the aerodynamic, rolling, drawbar, and

grade resistances. It is important to note that the maximum vehicle thrust is a

function of both the traction capabilities at each wheel (axle) and the torque

characteristics of the prime mover, in this case, the MDW. As previously
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discussed, the total traction capability of a vehicle is affected by dynamic

weight transfer resulting from chassis accelerations. The nonlinear relationship

of the normal force/peak normalized traction curve results in a net traction

loss when dynamic weight transfer occurs. As a result, the maximum possible

longitudinal thrust is a function of vehicle acceleration. The individual axle

loads may be determined by taking a summation of moments about points A

and B in Figure 6.1 [87]:

Wf =
Wl2 cos θs −Raha − haW

g
−Rdhd ∓Wh sin θs

L
(6.11)

Wr =
Wl1 cos θs +Raha + haW

g
+Rdhd ±Wh sin θs

L
(6.12)

l1 - distance from the center of gravity to the front axle

l2 - distance from the center of gravity to the rear axle

ha - height of the point of application of aerodynamic resistance

h - height of the center of gravity

hd - height of the drawbar hitch

L - vehicle wheelbase

θs - slope angle

The ± is determined by the uphill or downhill nature of the gradient.

The minus sign is used for an uphill gradient in Equation 6.11. If small angles

are assumed (cos (θs) ≈ 1) and the aerodynamic and drawbar resistances are

applied at the height of the center of gravity, Equations 6.11 and 6.12 may be

simplified and combined with Equation 6.10 to obtain:
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Wf =
l2
L
W − h

L
(F −Rr) (6.13)

Wr =
l1
L
W − h

L
(F −Rr) (6.14)

Note - the first term on the right hand side of the above equations rep-

resents the static axle load (no acceleration) and the second term represents

the dynamic weight transfer as a function of total thrust, F . Because the nor-

mal loads on the front and rear wheels (axles) are functions of the longitudinal

tire forces and related through the vehicle geometry, maximizing longitudinal

acceleration requires maximizing the NSRM criteria for each wheel. Any crite-

ria presented here in relation to maximizing longitudinal vehicle performance

will not be independent of the slip ratio criteria.

6.2.1.1 Rolling Resistance

As discussed in Chapter 3, the rolling resistance of a tire is a function

of tire construction, vehicle speed, inflation pressure, and the road surface.

Of the factors that determine the rolling resistance and coefficient of rolling

resistance, the vehicle and/or operator can not influence the tire type, road

condition, or (generally speaking) normal load, but may have control over the

inflation pressure of the tire. Increasing or decreasing the inflation pressure,

as seen in Figures (3.9), will affect the rolling resistance experienced by the

vehicle. Military vehicles utilize real-time control over tire pressures through

the use of CTIS as described in Chapter 4. However, adjusting the inflation
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pressure may have a negative impact on other aspects of vehicle performance,

such as cornering stiffness, etc.

6.2.1.2 Aerodynamic Effects

Aerodynamic resistance is generally expressed in the following way [87]:

Rd =
ρ

2
CDAfV

2
r (6.15)

ρ - mass density of air

CD - coefficient of aerodynamic resistance

Af - characteristic area of the vehicle

Vr - speed of the vehicle relative to the wind

Without presenting a complete analysis of road vehicle aerodynamics,

two items of note should be discussed. The first is that the aerodynamic resis-

tance of a vehicle is a function of the characteristic vehicle frontal area, Af , and

minimizing this area will decrease the aerodynamic resistance. Lowering the

vehicle ground clearance, which is the same as lowering the vehicle ride height,

will reduce the vehicle frontal area, thereby minimizing the aerodynamic re-

sistance. Lowering the aerodynamic resistance reduces the resistances acting

on the vehicle, thereby improving vehicle fuel efficiency as shown in Figure 6.2

(P - engine power, F - vehicle frontal area, W - vehicle weight).

In addition to reducing drag, lowering the vehicle ride height will reduce

the height of the application of aerodynamic resistive force, as represented by
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ha in Equations 6.11 and 6.12. A reduction in this moment arm will reduce

the contributions of the aerodynamic force to the longitudinal dynamic weight

transfer.

Figure 6.2: Effect of Reduction of Aerodynamic Resistance on Vehicle Fuel
Economy [41]

The ability of any vehicle to lower its ride height is a function of both the

irregularities and variations in the height of the road surface and restrictions of

the suspension kinematics. For example, the M1 Abrams tank has a standard

ground clearance of approximately 1.5 ft which may be reduced significantly

depending on the motion range of the suspension linkages, but vehicles such

as the FMTV fleet, which utilize beam axle type suspensions will benefit little

from a reduction in chassis height due to the interference of the beam axle

structures. However, it is possible that reducing the ride height of a military
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vehicle may make the vehicle chassis more vulnerable to IED threats.

The second item of note is that the coefficient of aerodynamic resistance

(in addition to the characteristic area) is a function of vehicle configuration for

those vehicles with movable on-board equipment. This includes vehicles with

articulated weapon systems such as turrets, as featured on the M1 Abrams

and M2 Bradley, as well as tactical vehicles with installed overhead gunner

kits, such as the HMMWV. As a result, there will be an ideal configuration

for each vehicle that will minimize the aerodynamic resistances. Because the

aerodynamic resistance is a function of the square of speed, minimizing CD

and Af may only be significant at highway speeds (convoy maneuvers, etc.).

The JRA criterion from Chapter 5 may be adapted for assessing the

configuration for minimizing aerodynamic resistance. If it is assumed that

every n articulated elements on the chassis have a position (translational or

rotational) for which the total aerodynamic drag is at a minimum, then the

following criterion, Articulated Equipment Drag, may be posed:

AED =
1

n

n∑
i=1

(|θi − θi,CD,min
|)p (6.16)

θi,CD,min
- Angle or orientation at which drag is minimized for the ith element

The angular value, θi, of the above criterion may represent either a

rotation or longitudinal displacement. The value of AED will range from zero,

indicating that all articulated elements are positioned in a way to minimize

drag, to a platform/equipment dependent maximum.
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6.2.2 Braking Performance

The total braking force of a vehicle may be expressed much the same

way as the total acceleration force [87]:

Fres = Fb + frW cos θs +Ra ±W sin θs +Rt (6.17)

where the terms are the same as Equation 6.9, Fb is the braking force, and Rt

is the transmission, or drivetrain, resistance. These forces are shown in Figure

6.3.

Figure 6.3: Braking Forces Acting on a Symmetrical, Two-Axle Vehicle [87]

Equation 6.17 assumes the drawbar load is zero and that the aerody-

namic resistance is applied at the height of the center of gravity. The positive

sign term for Wsin(θs) should be used when the vehicle is going uphill. Lon-

gitudinal weight transfer also occurs during braking, and the individual axle
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loads may be expressed as:

Wf =
1

L
[Wl2 + h(

W

g
a−Ra ±W sin θs)] (6.18)

Wr =
1

L
[Wl2 − h(

W

g
a−Ra ±W sin θs)] (6.19)

In this case, the negative sign term for W sin θs should be used when the

vehicle is traveling uphill. If the force equilibrium in the horizontal direction

is considered:

Fb + frW = Fbf + Fbr + FrW =
W

g
A−Ra ±W sin θs (6.20)

and substituted into Equations 6.18 and 6.19, the normal loads on the axles

may be expressed as:

Wf =
1

L
[Wl2 + h(Fb + frW )] (6.21)

Wr =
1

L
[Wl1 − h(Fb + frW )] (6.22)

For a given normal load on a tire, there exists a maximum braking force

that may be exerted by the tire before the onset of sliding. If the maximum

longitudinal force that may be generated is expressed as the product of a

coefficient of road adhesion and the normal force, the front and rear tire forces

may be expressed as:

Fbf,max = µWf =
µW [l2 + h(µ+ fr)]

L
(6.23)

Fbr,max = µWr =
µW [l1 − h(µ+ fr)]

L
(6.24)
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Wong [87] notes that the above equations indicate that total braking force is

maximized when the distribution of braking forces (between the front and rear

axles) is the same as the distribution of normal load:

Kbf

Kbr

=
Fbf,max
Fbr,max

=
l2 + h(µ+ fr)

l1 − h(µ+ fr)
(6.25)

where Kbf is the proportion of total braking force, front, and Kbr is the propor-

tion of total braking force, rear. It should be noted that this model assumes

identical tires operating on a homogeneous road surface.

If the braking force on either axle exceeds the traction capability of the

tire, gross sliding occurs (as discussed in Chapter 3) and the wheels effectively

“lock up”. If the distribution of braking force is not equal to the distribution

of normal load, either the front tires or rear tires will lock up first as the

total braking force increases. The behavior of the vehicle varies significantly

depending on which axle locks up first as braking force is applied. If gross

sliding is taking place in the contact patch of a tire, the ability of that tire to

resist lateral forces (as well as longitudinal) is severely diminished. In addition,

if the wheel is steered, directional control is lost. If the rear tires lock up first,

the resulting system is unstable [87]. Any lateral perturbation of the system

(wind, etc.) results in an inertial yawing moment is produced about the yaw

center of the front axle. The moment arm of the inertial force increases with

the yaw angle, increasing the yaw rate, until the vehicle has rotated 180◦ as

shown in Figure 6.4.

A loss of traction in the front wheels results in a loss of directional
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Figure 6.4: Loss of Directional Stability Due to Rear Tire Lock-Up [87]

control due to the inability of the steered wheels to effectively transmit lateral

forces to the road surface. However, the resulting vehicle system is stable. In

this case, the inertial yawing moment produced as the result of a perturbation

will generate is self correcting and will drive the vehicle back to a steady state,

straight line orientation [87].

If the only vehicle resistance considered is rolling resistance, Wong

presents two equations describing the rate of acceleration for which the front

and rear wheels will lock up:(
a

g

)
f

=
µl2/L+Kbffr
Kbf − µh/L

(6.26)

(
a

g

)
r

=
µl21/L+ (1−Kbf )fr

1−Kbf + µh/L
(6.27)

such that the front tires will lock up first if the associated front acceleration
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is less than that of the rear: (
a

g

)
f

<

(
a

g

)
r

(6.28)

and the rear tires will lock up first if the opposite is true:(
a

g

)
r

<

(
a

g

)
f

(6.29)

It is important to note that if the braking distribution is constant, optimal

braking (both front and rear tires lock at the same time) will only occur for a

specific value of µ. In other words, because equations (6.26) and (6.27) both

contain a specific µ term, a vehicle will only experience optimal braking on a

specific road surface for a specific braking force distribution. If the coefficient

of braking distribution is variable, the operator or control software may vary

the braking distribution in order to maintain optimal braking. Again, this

model assumes identical tires operating on a homogeneous terrain.

The braking behavior of a vehicle may also be characterized by the

braking efficiency, defined as:

ηb =
a/g

µ
(6.30)

The value of µ in this case is road surface specific. The important concept is

that the distribution of braking forces must be a function of the road surface

type and normal wheel loads in order to maximize braking performance and

avoid a condition of instability. Just as with tractive performance, optimizing

braking requires optimizing the NSRM values for the skid-slip condition.
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6.2.3 Vehicle Cornering Performance

The following section presents a basic evaluation of vehicle cornering

performance and one of the most important concepts in vehicle corning behav-

ior - vehicle understeer/oversteer. Understeer and oversteer are a measure of

the sensitivity of the steering of a vehicle with respect to forward velocity dur-

ing a steady state cornering scenario. In discussing the steady state cornering

behavior of a wheeled vehicle, Milliken and Milliken [57] present a simple, two

dimensional, bicycle model, shown in Figure 6.5.

Figure 6.5: Simple Bicycle Model [57]
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This model necessarily makes a series assumptions about the constrained

behavior of the vehicle. The first is that there is no lateral or longitudinal load

transfer. Each wheel of the bicycle model is intended to represent an axle (front

or rear) and the normal axle loads are equivalent to the static vehicle weight

distribution. All motion is planar, i.e., there are no rolling or pitching motions

of the chassis. The tires operate in the linear range, meaning the lateral force

generation of each tire may be represented as a linear function of tire slip

angle as discussed in Chapter 3. The velocity of the vehicle is constant and

aerodynamic effects are not included. The model does not take into account

suspension or chassis compliance effects. Small wheel and operating angles are

assumed.

6.2.3.1 Neutral Steer

Milliken and Millken use the bicycle model representation to evaluate

three different scenarios involving three different locations of the chassis CG

along the x (SAE) axis. In the first example, the CG is located in the middle

of the chassis, equidistant from both axles (a = b = l/2), as shown in Figure

6.6. The front and rear tire cornering stiffnesses, CF and CR, are equivalent.

Because the behavior of the vehicle in this scenario is steady state, the

chassis may be thought of as a beam in lateral force and moment equilibrium:

Force Equilibrium : CF = YF + YR = CFαF + CRαR (6.31)

Moment Equilibrium : CFαFa = CRαRb (6.32)
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Figure 6.6: Neutral Steer Bicycle Model [57]
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In this scenario, the slip angles of the front and rear tires are equivalent (αF =

αR) since CF = CR and a = b. As a result, the steer angle required to

negotiate the curve is not a function of vehicle speed - the steering angle is

entirely a function of the radius of curvature, which (due to the small angle

approximation) is equivalent to l/R as shown in Figure 6.7. This is referred

to as the “Ackermann” steering angle for the bicycle model.

Because the required steering angle is independent of vehicle speed, the

vehicle in this case is referred to as neutral steer (NS). More specifically, for a

neutral steer vehicle, the change in slip angle with respect to a change in lateral

acceleration (∆α/∆AY ) is equivalent for both the front and rear wheels:

∆αF
∆AY

=
∆αR
∆AY

(6.33)

A driver operating a vehicle along a constant radius turn may increase or

decrease the vehicle speed and maintain the radius of curvature of the turn

without altering the neutral steering angle.

6.2.3.2 Understeer

The second scenario considers the same vehicle with the CG located

closer to the front axle - at 1/3 the wheelbase (b = 2a) as shown in Figure 6.8.

From the force balance equations (the system is in steady state equilibrium),

the front wheel must provide 2/3 of the total cornering force and the rear 1/3

of the total cornering force. Because the cornering stiffnesses are identical, the

front tire must assume a slip angle that is twice that of the rear - αF/αR = 2.
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Figure 6.7: Ackermann Steering Angle, Bicycle Model [57]
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Figure 6.8: Understeer Bicycle Model [57]
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For the neutral steer vehicle the lateral force, WAY , is equivalent to 2Cα1

because the front and rear slip angles and cornering stiffnesses are identical.

In this case, α1 refers to the neutral steering angle (Ackermann). However, for

this configuration of the vehicle:

WAY = C(αF + αR) = C(2αR + αR) = 3CαR (6.34)

Because the lateral accelerations are the same between cases:

3CαR = 2Cα1 (6.35)

or:

αR =
2

3
α1 (6.36)

In addition:

WAY =
3

2
CαF = 2Cα1 (6.37)

or:

αF =
4

3
α1 (6.38)

In other words, the front and the rear tires must assume slip angles that are

4/3 and 2/3 of the neutral steer slip angle (α1) in order to maintain the same

lateral acceleration. For this simple bicycle model, steering angle relationship

is defined as:

δ = δAckermann + (−αF + αR) (6.39)

δ =
l

R
+ (−αF + αR) (6.40)
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It follows that for the forward CG configuration, the steering relationship is

(substituting Equation (6.38) into (6.39)):

δ =
l

R
+ (−2

3
α1) (6.41)

What this means is that for a given turning radius and lateral acceleration

(ay
g

), the CG forward vehicle must assume a larger steering input than the

neutral steer vehicle. If the CG forward vehicle were to assume the neutral

steer (Ackermann) steering angle, the turning radius of the vehicle would be

larger due to the smaller steering input. In this case, the chassis attempts

to “understeer” the neutral steer radius, and as such, the CG forward vehicle

behavior is referred to as understeer (US). The behavior of the understeer

vehicle is shown in Figure 6.9.

Because the steering angle required for the understeer vehicle is a func-

tion of the slip angle required for the neutral steer vehicle (Equation 6.41), the

rates of change of the front/rear slip angles with respect to the lateral accel-

eration of the vehicle are not identical. As the lateral acceleration of the NS

vehicle increases, the required steering angle increases (α1), and the steering

angle required of the US vehicle (for the same turning radius) increases. In

order to maintain a constant radius turn, the operator of a conventional vehi-

cle must increase steering angle as the forward velocity (lateral acceleration)

is increased - also shown in Figure 6.9.

A similar but opposite behavior is observed if the CG of the vehicle is

moved rearward as shown in Figure 6.10. In this case however, the rear tire
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Figure 6.9: Steering Angle and Front/Rear Slip Angle vs. Lateral Acceleration
(ay
g

), Understeer, Constant Radius [57]
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Figure 6.10: Oversteer Bicycle Model [57]
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must assume a greater slip angle than the front:

αF =
2

3
α1 (6.42)

αR =
4

3
α1 (6.43)

where α1 is the required steering angle for the neutral steer vehicle. For this

vehicle condition, maneuvering along a steady state radius turn requires less

steering angle than that of the neutral steer vehicle:

δ =
l

R
+ (−αF + αR) =

l

R
+

(
2

3

)
α1 (6.44)

Similar to the US case, for a given turning radius and lateral acceleration (ay
g

),

the rearward CG vehicle must assume a smaller steering input than the neutral

steer vehicle in order to satisfy the smaller required slip angle - Equation 6.42.

If the rearward CG vehicle were to assume the same steering input as the NS

vehicle, the resulting turning radius would decrease as a result of the larger

steering input. In this case, the chassis will attempt to “oversteer” the neutral

steer radius, and as such, the rearward CG vehicle behavior is referred to as

oversteer (OS). Again, because the required steering angle for the OS vehicle is

a function of the NS slip angle required for a give lateral acceleration (Equation

6.44), the steering input for an OS vehicle is a function of vehicle speed. As an

OS vehicle increases speed during a constant radius cornering maneuver, the

steering input (for a conventional vehicle) must decrease in order to maintain

the corner radius.

It is important to note that the understeer/oversteer behavior affects

vehicle performance under any lateral acceleration. For example, a vehicle
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operating on a banked road (lateral incline) experiences a lateral acceleration

as a result of the inclination. Assuming a steering angle of zero, the CG of a

neutrally steered vehicle will moved down the incline but the attitude of the

vehicle will remain constant as the front and rear tires build slip angle (and

therefore lateral force) at the same rate. Understeer and oversteer vehicles do

not exhibit the same motion - the disparity in the rate of generation of lateral

cornering force will result in a vehicle yaw motion (curvature of the vehicle

path), again, assuming zero steering angle. This behavior is shown in Figure

6.11.

Figure 6.11: Behavior of Neutral Steer (NS), Understeer (US), and Oversteer
(OS) Vehicles Experiencing a Lateral Force Input [57]

The US vehicle is dominated by the front slip angle, and as such, the

vehicle will turn down the slope. Conversely, the OS vehicle will turn up the

slope.

The following equations, presented by Wong in [87], pose the issue of

understeer slightly differently. Returning to the force balance of the vehicle

(Wf is the weight on the front tire, and Wr is the weight on the rear tire), if
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the lateral acceleration of the vehicle is expressed as V 2/R, the front and rear

tire forces may be expressed:

Fyf = Wf
V 2

gR
(6.45)

Fyr = Wr
V 2

gR
(6.46)

and the front and rear slip angles may be represented as (again, assuming

linear cornering stiffnesses):

αf =
Fyf
Cαf

=
Wf

Cαf

V 2

gR
(6.47)

αr =
Fyr
Cαr

=
Wr

Cαr

V 2

gR
(6.48)

Combining these equations with Equation (6.40) yields:

δf =
L

R
+

(
Wf

Cαr
− Wr

Cαr

)
V 2

gR

=
L

R
+Kus

V 2

gR

=
L

R
+Kus

ay
g

(6.49)

Where Kus represents the understeer coefficient. The value of Kus is an indica-

tion of the understeer/oversteer behavior of the vehicle. Positive values of Kus

indicate understeer behavior, and negative values indicate oversteer behavior,

illustrated in Figure 6.12.

As previously discussed, oversteer vehicles assume smaller steering an-

gles than the neutral steer for equal radius/lateral acceleration cornering. As

the operator of the vehicle increases the vehicle speed (lateral acceleration),
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Figure 6.12: Effect of Kus on Curvature Response [87]

the operator must reduce the steering angle in order to maintain a constant

radius. If the operator continues to increase the lateral acceleration, the re-

quired steering angle will eventually become zero. At this point the vehicle

becomes unstable and is subject to rapid yaw and a loss of control (spinning

out) [87]. The speed at which this occurs may be determined from Equation

(6.49) by setting the steering angle value to zero:

Vcrit =

√
gL

−Kus

(6.50)

The required steering angle as a function of vehicle speed for a representative

vehicle is shown in Figure 6.13.

As a result of the potential for yaw instability, oversteer can be unde-

sirable, depending on the extent of oversteer experienced [57]. Most passenger

vehicles exhibit some degree of understeer for this reason. In addition, slight
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Figure 6.13: Vehicle Yaw Behavior as a Function of Vehicle Speed for NS, OS,
and US Behavior [87]

understeer is beneficial as opposed to neutral steer as the understeer behavior

provides a degree of driver feedback (absent in the neutral steer case).

6.2.4 ICV Cornering Behavior

Due to its dexterity and independent wheel control, the ICV can not be

appropriately characterized by a simplified bicycle model. As such, it is diffi-

cult to pose a single, specific criterion based on a generalized vehicle geometry

to address this behavior. Until a detailed model of the ICV is established, it

will be sufficient to pose the following condition:

KICV =
dσICV
daycg

(6.51)

where σICV represents a generalize operator input for vehicle yaw, and aycg

represents the lateral acceleration of the vehicle CG. The independent wheel
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actuation of the ICV will allow the vehicle to adjust each slip angle individually

to meet the demands of the operator. This will allow the ICV to balance the

slip angles of the individual wheels to compensate for understeer or oversteer

influences on the cornering behavior of the vehicle. In addition, the individ-

ual MDW actuators will be able to alter the torque distribution between the

wheels, thereby affecting the yaw motion of the vehicle. This torque distri-

bution, commonly referred to as torque-vectoring, has been demonstrated on

passenger vehicles as a method of maintaining cornering stability [62].

An ideal value of this criterion will likely be a small, positive num-

ber, but the exact value will depend on the ability of the corner actuators

to maintain this condition in addition to the required driver feedback. The

control scheme or level of operator training may allow the vehicle to manage

the individual wheel slip angles so as to maintain a neutral steer vehicle.

6.3 Predicting Off-Road Capability

The off road performance of wheeled ground vehicles is difficult to quan-

tify due to the deformable nature of the terrain. The following section describes

the basic behavior of wheeled vehicles in deformable terrains.

6.3.1 Vehicle Cone Index

The study of the off-road vehicle performance of military vehicles began

in earnest during the Second World War. The Waterways and Experiments

Station (WES) branch of the U.S. Army was tasked with developing a basic
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method to establish “go/no go” capability for military vehicles [86]. The con-

cept was to operate groups of representative vehicles over various terrains in an

effort to establish relationships between soil type and vehicle capability. WES

developed an empirical method that uses vehicle total contact patch area in

conjunction with soil property measurements made with a cone penetrometer

to determine vehicle capability. A cone penetrometer is a device that used

to quantify soil resistance to deformation by measuring the force is required

to push the penetrometer into various soils. An empirical correlation is then

established between penetrometer data and vehicle capability.

This correlation utilizes the vehicle ground pressure (a function of es-

timated running gear contact area and weight) and a series of empirically

derived factors to determine a “mobility index” for the specified vehicle. The

mobility index is then utilized to calculate the “vehicle cone index (VCI),” an

indication of the required soil strength, as determined by the cone penetrom-

eter, for the vehicle to pass over the terrain in question a specified number

of times. The process of determining the VCI for a wheeled vehicle is shown

below [86]:

MI = (
CPF ∗WF

TF ∗GF
+ WLF− CF) ∗ EF ∗ TrF (6.52)

MI - Mobility Index

CPF - Contact Pressure Factor

WF - Weight Factor

TF - Tire Factor

GF - Grouser Factor
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WLF - Wheel Load Factor

EF - Engine Factor

TrF - Transmission Factor

Each factor is calculated from the vehicle attributes and a number of

empirically derived constants. For example, the “Contact Pressure Factor” is

calculated in the following way:

Contact Pressure Factor =
Gw

Tw ∗ Tr ∗ Nt
(6.53)

Gw - Gross weight of the vehcile, lbs.

Tw - Tire width (nominal), in.

Tr - Radius of tire, outside, in.

Nt - Number of tires

The Vehicle Cone Index (VCI) is then calculated from the Mobility

Index and additional empirically derived constants. The VCI is typically cal-

culated for one theoretical pass over a section of terrain or fifty passes (in the

case of a convoy, etc.) and represents the minimum soil strength in order for

the vehicle to operate over the specified terrain. For example, the VCI for a

powered (non-towed) vehicle for one pass over a specified terrain is defined as:

V CI1 = 11.48 + 0.2MI − 39.2

MI + 3.74
(6.54)

202



Military vehicle architectures (engine, transmission, drive shafts, beam

axles) haven’t changed significantly since this method was developed. As a

result, the VCI method, which is applicable to tracked vehicles as well, is still

used to evaluate basic off-road capability. Though VCI is not suitable for

extrapolation to new vehicle architectures as a result of the empirical nature

of the method, it is presented here in order to illustrate the complexity of

vehicle performance prediction over unprepared/deformable terrains.

6.3.2 Vehicle Performance Characteristics

For most off-road vehicles, the ability of the vehicle to apply a force

or drawbar load (pull) is of significant importance as it is an indication of

the ability of the vehicle to perform work. This is especially prevalent for

military engineering vehicles operating off-road. Physically, the drawbar may

be considered to be a solid coupling between a vehicle and towed load. The

drawbar pull force, Fd, is equivalent to the difference between the force applied

by the running gear (tractive effort F ) and the resistive forces:

Fd = F −
∑

R (6.55)

The losses considered include running gear losses such as tire hysteresis, losses

due to the tire/terrain interaction, and aerodynamic losses.

The ability of the vehicle to apply generated power to the drawbar (to

do work) can be expressed as the drawbar (or tractive) efficiency:

ηd =
Pd
P

=
FdV

P
=

(F − (
∑
R)Vt(1− i)
P

(6.56)
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Pd - drawbar power

P - prime mover power∑
R - sum of vehicle resistances

Vt - theoretical speed

i - slip

This equation represents the general case of a vehicle operating in de-

formable terrain. The individual wheel slip values are not considered. Ac-

cording to the drawbar efficiency expression, all of the tractive effort at the

contact patch is available to perform work only if all of the vehicle resistances,

including those of the powertrain/prime mover, are zero, the vehicle is experi-

encing a non-zero velocity, and the (overall) vehicle slip is zero. However, this

condition is unlikely and the influence of the vehicle losses and slip must be

considered.

The prime mover power may be expressed as a function of the drivetrain

(transmission) efficiency and power available at the driven wheel:

P =
FVt
ηt

(6.57)

P - delivered engine power

ηt - drivetrain efficiency

Combining the above equations yields:

ηd =
(F −

∑
R)

F
(1− i)ηt =

Fd
F

(1− i)ηt = ηmηsηt (6.58)

where ηm is the efficiency of motion, and ηs is the efficiency of slip. In this

case, the efficiency of motion, ηm, is equivalent to Fd/F and represents the
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losses associated with transforming the tractive effort (force at the wheels) to

the drawbar pull force. The efficiency of slip, ηs is (1 − i) and represents the

losses and reduction in vehicle speed associated with running gear slip. The

relationship between the drawbar force and the motion, slip, and drivetrain

efficiencies is shown in Figure 6.14.

Figure 6.14: Variation of Drawbar (Tractive) (ηd), Motion (ηm), Slip (ηs), and
Transmission (ηd) efficiencies with Drawbar Pull [87]

For vehicles with multiple drive axles, such as the ICV, it is important

to note the slip and slip efficiencies of all driven wheels. For example, in [88],

Wong proposes the following expression for the efficiency of slip for a four

wheel drive (two drive axle) vehicle:

ηs4 = 1− ifMfωf + irMrωr
Mfωf +Mrωr

= 1− ifVtfFf + irVtrFr
VtfFf + VtrFr

(6.59)

Mf/r - drive torque at the front/rear wheels

ωf/r - angular speed of front/rear wheels
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Table 6.1: Drawbar, Motion, Slip, and Transmission Efficiencies

Efficiency Symbol Meaning
Drawbar Efficiency ηd The drawbar (tractive) efficiency

represents the ability of the vehi-
cle to apply generated power to
the vehicle drawbar

Motion Efficiency ηm The motion efficiency represents
the losses associated with vehicle
resistances (rolling, terrain, aero-
dynamic, etc.)

Slip Efficiency ηs The slip efficiency represents the
reduction in vehicle speed/losses
associated with wheel slip

Transmission Efficiency ηt The transmission efficiency rep-
resents losses associated with the
vehicle drivetrain

Vtf/r - theoretical speed of the front/rear wheels (equal to ω ∗ wheel radius)

if/r - slip of front/rear wheels

This expression assumes a laterally symmetric vehicle in weight distribution

and wheel behavior operating on a homogeneous terrain type.

From the relationship between front and rear wheel translatory speeds:

Vtf (1− if ) = Vtr(1− ir) = V (6.60)

where V is the longitudinal speed of the vehicle, the following may be ex-

pressed:

Kv =
Vtf
Vtr

=
ωfrf
ωrrr

=
(1− ir)
(1− if )

(6.61)
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In this equation, Kv is the theoretical speed ratio and rf/r is the free rolling

radius of the front/rear tire.

The slip efficiency of a four-wheel-drive vehicle may then be expressed:

ηs4 = 1− [(1− ir)/(1− if )]ifVtrFf + irVtrFr

[(1− ir)/(1− if )]VtrFf + VtrFr
= 1− if (i− ir)− (if − ir)Kd

(i− ir)− (if − ir)Kd

(6.62)

where Kd is the coefficient of thrust distribution between the front and rear

axles. The coefficient of thrust distribution is equal to Fr/(Ff + Fr). The

above equation indicates that for any given operating condition, there exists

a distribution of thrust that will maximize the efficiency of slip. The partial

derivative of Equation 6.62 with respect to Kd is:

∂ηs4
∂Kd

=
(1− if )(1− ir)(if − ir)
[(1− ir)− (if − ir)Kd]2

(6.63)

This expression is only equal to zero when either the front or rear slip val-

ues are 100% (indicating no vehicle motion) or the front or rear slip values

are equivalent. The condition of equivalent front and rear wheel slip values

maximizes the vehicle slip efficiency in this case (four wheel drive). Wong also

states that by substituting the theoretical speed ratio for (1 − ir)/(1 − if ) in

Equation 6.62 and taking the partial derivative with respect to Kd and setting

the result to zero results in a similar conclusion - the theoretical speed ratio

must be equal to 1 in order to maximize slip efficiency.

While Equation 6.63 indicates that Kd does not affect the slip efficiency

when it is maximized, Kd does affect the tractive efficiency. The effects of

the thrust distribution on tractive efficiency depend on the type of torque
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coupling and the ratio of theoretical speeds (front to rear). However, the ICV

architecture does not utilize a mechanical torque coupling between any of the

drive wheels. In general, the torque distribution should be managed such that

the differences in theoretical speeds of the individual wheels does not result

in slip-skid braking (wheel drag). This distribution will be dependent on the

terrain type and operating conditions.

The motion efficiency for the ICV architecture may be expressed as:

ηm,ICV =
Fd∑n
i=1 Fi

(6.64)

where n is the number of vehicle corners and Fi is the tractive effort for wheel

i.

The drivetrain efficiency, taking into account the losses of electrical

power source, for the ICV may be expresses as:

ηt,ICV =

∑n
i=1 FiVt,i
P

(6.65)

In this case, P refers to the power dissipated or distributed from the electrical

energy storage element of the ICV. The slip efficiency of the ICV is:

ηs,ICV = 1−
∑n

i=1 iiMiωi∑n
i=1Miωi

(6.66)

And the tractive efficiency is then:

ηd,ICV =

∑n
i=1 FiVt,i(1− ii)∑n

i=1 Psup,MDW,iηMDW,i

(6.67)

While all of these efficiencies of the ICV should be maximized for ideal

off road operation, they are constantly in conflict (as shown in Figure 6.14).
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Maximizing the ability of the ICV to apply the running gear (wheels) to a

deformable terrain surface and to apply a drawbar force will require optimizing

the efficiencies for the operating conditions. The ideal values for each will likely

be a function of the vehicle state and terrain conditions, and as such, a model

of the ICV will be required in order to evaluate optimal efficiency values.

6.4 Criteria Summary

Table 6.2 lists the various criteria described in this chapter, the defini-

tions (symbol and expression), and the associated physical meanings.
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6.5 Chapter Summary

This chapter reviews performance criteria derived from classic vehicle

dynamics principles, their application to the Intelligent Corner Vehicle (ICV)

concept, and the subsequent physical meanings of each criteria. Each criteria

presented, along with the associated symbol, definition, and physical meaning,

is listed in table 6.2. Table 6.3 presents the key findings, conclusions, and

recommendations of the chapter.
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Chapter 7

Conclusion and Future Work

The following chapter provides a summary of the work previously pre-

sented, broken down by chapter. The first section discusses the important

concepts from the literature and lists the key references. The second section

discusses the results from discussing the key concepts and how they apply to

military vehicles and the Intelligent Corner Vehicle concepts. The third sec-

tion presents the conclusions drawn from the results, and the final section lists

issues for consideration in future work.

7.1 Key Concepts From the Literature

The following section lists and describes the key concepts from the

literature, presented by chapter.

7.1.1 Military Vehicles

Key references: [3, 47, 48, 67, 72]

1. Many current military vehicle platforms were structured to address the

traditional battlefield roles defined by past conflicts.

2. Military vehicles developed for these traditional roles performed well
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during large scale military operations, but were not effective in conflicts

involving asymmetric warfare and non-state actors.

3. The U.S. Military developed vehicle armor upgrades in an attempt to

meet rapidly changing protection requirements.

4. These upgrades significantly reduced vehicle. mobility, performance, and

capability.

5. MRAP vehicles were rapidly developed as a new platform (based on

traditional drive/suspension components) designed to directly address

threat requirements.

6. MRAP vehicles sacrificed mobility for protection and divested the U.S.

Department of Defense from their overall ground vehicle strategy and

doctrine.

7. The Army’s Future Combat Systems program, designed to completely

modernize military vehicle fleets, produced few results and no procurable

vehicles.

8. The Iron Triangle compromise (power, protection, payload) is perma-

nent.

9. The U.S. Military is currently developing new vehicle platforms (JLTV,

etc.).
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7.1.2 Tire Behavior

Key references: [10, 57, 87]

1. Tire force generation is characterized by slip ratio and slip angle and the

force/slip relationships are nonlinear.

2. The relationship between tire load and maximum possible lateral/longitudinal

force is also nonlinear.

3. Tire camber affects lateral force generation.

4. Tire construction affects tire force generation properties.

5. Combined loading affects both lateral and longitudinal force generation.

6. Combined loading conditions may be plotted on a traction circle.

7. The tire contact patch will vary with the properties of a deformable

terrain.

8. The behavior of any complex system may be characterized by perfor-

mance maps that may be combined into visual decision making surfaces.

7.1.3 Vehicle Architectures

Key references: [13, 18, 19, 26, 28, 36, 45, 52, 62, 63, 71, 75, 82]

1. Most modern steering systems are linkage systems.
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2. Active steering systems have been developed that provide variable steer-

ing ratios.

3. Wheel camber is traditionally determined by the suspension kinematics.

4. Active camber systems have been developed for high-performance vehi-

cles.

5. Most modern vehicles are powered by an internal combustion engine in

conjunction with a transmission and transfer cases/differentials.

6. Managed differential systems provide real-time influence over torque dis-

tribution to co-axial wheels.

7. Traditional vehicle suspensions utilize passive elements.

8. A variety of active suspension systems have been developed.

9. Several types of electric vehicle, an alternative to the traditional IC en-

gine architecture, are in development.

10. Several varieties of hybrid powertrain systems are in production on pas-

senger vehicles.

11. NASA unmanned rover systems utilize electrical, in-wheel drive motors

and non-traditional suspension types.

12. NASA manned rover prototypes have been developed that utilize active

suspension components in conjunction with in-wheel drive motors.
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13. The U.S. Military has developed active suspension prototypes for wheeled

vehicles.

14. The U.S. Military has also evaluated hybrid powertrain systems for a

range of ground vehicle weight classes.

15. An alternative vehicle architecture, the Intelligent Corner Vehicle (ICV),

has been proposed to take advantage of open architecture, modular,

intelligent actuator technology.

7.1.4 Serial Chain Robotics Criteria

Key references: [14, 20, 27, 40, 83, 84]

1. The Robotics Research Group (RRG) has developed a large number of

performance criteria for the evaluation of serial chain robotic systems.

2. Criteria may be constraint based or non-constraint based.

3. Many of these criteria are derived from Kinematic Influence Coefficients.

4. The inverse kinematics of serial chain mechanisms may be determined

through a direct search method utilizing multiple performance criteria.

7.1.5 Vehicle Dynamics

Key references: [57, 86, 87]

1. Wong [87] describes models for longitudinal acceleration and braking

that are functions of both tractive effort and vehicle resistances.
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2. From the longitudinal equations, Wong derives the axle loads as functions

of vehicle acceleration (weight transfer).

3. Wong presents he maximum possible braking force and subsequent dis-

tribution of braking effort.

4. Milliken and Milliken [57] describe a simple vehicle model (bicycle model)

that is then used to describe neutral steer, oversteer, and understeer

cornering behavior.

5. Wong [86] presents a series of vehicle efficiencies that characterize vehicle

tractive effort over deformable terrains.

7.2 Results

The following section lists the important results, presented by chapter.

7.2.1 Military Vehicles

1. Military vehicle platforms developed during the Cold War era were not

adequate for the mission requirements experienced during the conflicts

in Iraq and Afghanistan (Section 2.3).

2. Military vehicles in development (intended to replace current platforms)

have not yet been deployed (Section 2.6).
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7.2.2 Tire Behavior (Parametric Representation)

1. The nonlinear nature of tire force generation needs to be completely

characterized (Section 3.1.2.1).

2. The influences of normal load, tire camber, tire construction, and com-

bined loading on force/slip relationships also need to be characterized

(Sections 3.1.2.4, 3.1.2.5, 3.1.3).

3. The friction circle is a useful visual representation of the force generation

capabilities of the tire that relays real-physical meaning to the operator

(Section 3.1.5.1).

4. The force generation capability of the tire is affected by terrain type and

the effects should be characterized (Section 3.2.1).

5. Performance maps are able to provide a representation of the behavior

of a complex system to an operator in real-time (Section 3.3.1).

7.2.3 Vehicle Architectures

1. Variable steering ratios (as functions of speed) improve vehicle perfor-

mance but the systems retain traditional linkages (Section 4.1.1.1).

2. Active camber systems have shown improvements in vehicle performance

(Section 4.1.1.2).

3. Traditional IC engine/transmission systems only provide options to the

operator in the form of gear selection (Section 4.1.1.3).
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4. Managed differential systems improve vehicle performance but retain

traditional drivetrain elements (Section 4.1.1.3).

5. Passive suspension elements must be selected to address a wide range of

potential operating conditions - a compromise (Section 4.1.1.4).

6. Active suspension systems have shown improvements in vehicle perfor-

mance (Section 4.1.1.4).

7. Electric drivetrains provide some advantages over traditional drivetrains

(Section 4.2.1).

8. Hybrid vehicle architectures offer significant flexibility in drivetrain com-

ponent layout (Section 4.2.2).

9. The in-wheel motors of NASA rovers provide significant flexibility in

torque application (Section 4.2.3.1).

10. The drive/suspension components of the NASA Chariot provide signifi-

cant operational flexibility (Section 4.2.3.2).

11. U.S. Military active suspension systems have not been adopted by fielded

platforms (Section 4.3.3).

12. Hybrid systems developed by the military have also not been adopted

by fielded platforms (Section 4.3.4).
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13. The ICV concept is intended to provide maximum operational flexibility

to the operator in order to address the wide range of military vehicle

requirements (Section 4.4).

7.2.4 Serial Chain Robotics Criteria

1. Performance criteria developed by the RRG may be applied to the ICV

architecture (Section 5.1.2).

2. Constraint based criteria focus on physical limitations and safety while

non-constraint based criteria focus on quality of motion (Section 5.1.2).

3. Kinematic Influence Coefficients may be applied to models of vehicle

suspensions (Section 5.1.2.2).

4. Criteria based on Kinematic Influence Coefficients may not vary signifi-

cantly over the workspace of a suspension model (Section 5.1.2.2).

5. Criteria describing energy content and distribution are prime descriptors

of both steady state and transient motions (Section 5.2).

7.2.5 Vehicle Dynamics

1. The maximum lateral and longitudinal force capability of a tire are mea-

surable as slip ratios and will fluctuate (Section 6.1.1.1).

2. The subsequent torque limits and ratios will also fluctuate (Section

6.1.1.2).
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3. Vehicle resistances need to be minimized for maximum vehicle perfor-

mance (Section 6.2.1).

4. There exists an optimal braking force distribution that will maximize

braking capability, depending upon the terrain surface (Section 6.2.2).

5. The traditional representations of oversteer/understeer are not directly

applicable to the ICV due to the individual wheel actuation (Section

6.2.4).

6. Torque distribution between axles/wheels may be optimized for maxi-

mum tractive effort on deformable terrains (Section 6.3.2).

7. The vehicle efficiencies for deformable terrains are applicable to the ICV

architecture (Section 6.3.2).

7.3 Conclusions

The following section lists the conclusions drawn from the results/literature,

presented by chapter.

7.3.1 Military Vehicles

1. Expanding/updating existing military vehicles to meet modern, rapidly

changing battlefield requirements is not an adequate solution.

2. Updating and improving military ground vehicles will require the adop-

tion of open architectures and intelligent actuator technology.
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3. Conclusions may not be drawn about the performance of military vehicle

platforms in development due to the lack of data and results.

7.3.2 Tire Behavior

1. Characterizing tire behavior can be done through the generation of nu-

merous tire performance maps that may then be combined into visual

decision making surfaces.

2. Tire performance maps will need to address a range of camber values,

normal loads, combined loading conditions, and tire construction types.

3. A friction circle is dependent upon the tire properties and operating

condition and the represented values will vary during operation.

4. Military vehicles are regularly expected to operate over unprepared ter-

rains and the relevant tire behavior should be characterized with perfor-

mance maps.

5. The complexities of tire force generation make tire behavior an ideal

candidate for the application of performance maps and this method of

decision making.

7.3.3 Vehicle Architectures

1. The retention of traditional steering linkages does not allow wheel slip

angles to be independently optimized.
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2. The active camber systems described may not scale appropriately for

vehicles with large suspension movements and tires of significantly lower

stiffness values.

3. Actively controlled, independent steering and camber are required for

optimizing tire force generation.

4. The coupled nature of the power generation/utilization elements of tra-

ditional drivetrains limit the ability of the system to respond to the

commands of the operator.

5. Vehicles that retain traditional drivetrain elements are still subject to

the associated design restrictions.

6. Torque generation and torque utilization components must be decoupled

to provide maximum vehicle responsiveness.

7. Passive suspension elements do not respond effectively for vehicles with

a significant range of operating requirements (military vehicles).

8. The adoption of developed active suspension systems involves increases

in cost, vehicle mass, and presents significant component packing chal-

lenges.

9. Electrical energy storage elements increase vehicle weight and the typi-

cal single-motor designs result in the retention of traditional drivetrain

elements.
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10. Electric prime mover components should independently apply torque to

each wheel directly.

11. Typical hybrid systems retain traditional drivetrain elements and are

subject to the same design restrictions.

12. the ICV concept should utilize a series hybrid layout in conjunction with

independent in-wheel drive motors.

13. The rover architecture prioritizes low complexity/weight and may not

be scaled effectively.

14. The Chariot architecture is intended for low-speed, off-road operation

only.

15. The military has indicated a need for active chassis elements, but the

failure of the FCS program has hindered progress.

16. Vehicles must meet basic performance requirements in order to be useful

to the military, regardless of potential fuel economy improvements.

17. The core ICV concept, the Intelligent Corner, has the potential to pro-

vide significant capability and responsiveness to the operator.

18. The ICV architecture requires the utilization of performance criteria in

order to effectively assess vehicle motion.

230



7.3.4 Serial Chain Robotics Criteria

1. Motion criteria derived from Kinematic Influence Coefficients may be

used as a method of evaluation as well as a method of comparison of

various suspension types.

2. Constraint based criteria are more readily applicable to the ICV archi-

tecture.

3. Evaluating the application of criteria to suspension systems can not be

done with a generalized model.

4. The range of criteria variation over a suspension workspace may be used

to evaluate actuator mounting locations.

5. Range and limit criteria boundaries will be determined by chassis geom-

etry and should be evaluated for every corner independently.

6. Criteria limits (threshold values) are heavily dependent upon vehicle

type.

7.3.5 Vehicle Dynamics

1. Slip percentage ratios must be monitored and controlled real time in

order to prevent unstable operation.

2. Torque distribution must be taken into account when evaluating wheel

torque margins.
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3. The vehicle configuration that minimizes resistances will be specific to

each individual vehicle type/configuration.

4. Distribution of braking effort must take the terrain characteristics into

account in order to avoid instability/loss of traction.

5. The ICV architecture may be able to balance individual wheel slip values

in order to compensate for oversteer/understeer influences.

6. The ICV architecture may be able to manage distributed torque in order

to avoid slip-skid braking.

7. Optimizing vehicle performance on deformable terrain will require indi-

vidual motion efficiencies to be optimized.

7.4 Future Work

The following section presents concepts for further work, listed by chap-

ter.

7.4.1 Military Vehicles

1. The progress and capabilities of military vehicles in development should

continue to be observed.

7.4.2 Tire Behavior

1. Producing tire performance maps will require significant tire testing.
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2. Tire testing should cover an appropriate range of operating conditions

and construction types, and these ranges will need to be determined.

3. Capturing the effects of combined loading will require a detailed, stan-

dardized testing procedure for generating the necessary performance

maps.

7.4.3 Vehicle Architectures

1. Effectively assessing and comparing vehicle architectures requires a sig-

nificant modeling effort.

2. Full vehicle models are required for both traditional architectures as well

as the ICV.

3. This modeling effort will allow the benefits of the application of intelli-

gent actuation to each of the four degrees of freedom of each wheel to

be shown.

4. Developed models must be sufficiently complex in order to fully demon-

strate the benefits of the ICV architecture.

5. The continued assessment of the ICV architecture requires a continual

effort to develop and demonstrate performance criteria.

7.4.4 Serial Chain Robotics Criteria

1. A model library of both dependent and independent suspension types

should be generated in order to evaluate various motion criteria.
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2. The application of criteria to the ICV should begin with constraint based

criteria.

3. Variation of geometric criteria over a suspension workspace should be

the foundation for the design of actuator mounting locations and the

determination of actuator sizes/torque capability.

4. The relationships between the range/limit criteria values between ICV

corners should be evaluated with a full vehicle model.

5. The critical range values of various criteria will need to be evaluated with

vehicle models of varying type over a variety of operating conditions.

7.4.5 Vehicle Dynamics

1. Evaluating the ability of the ICV to optimize slip ratios (including slip-

skid) should be evaluated with a vehicle/terrain model.

2. The development of further criteria to evaluate torque distribution should

be done with a full vehicle model.

3. Any ideal configuration of a vehicle to minimize resistances should be

individually determined with a model.

4. Ideal values of the generalized understeer/oversteer criterion should be

determined through simulation.

5. Ideal values of vehicle efficiencies over deformable terrain should also be

determined through simulation.
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