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This thesis addresses the multi-body assembly (MBA) problem in the con-

text of protein assemblies. MBA can be formally defined as a geometric optimiza-

tion problem as follows- given a set of objects M = {M1, . . . ,Mn} whose con-

figurational space is defined as TM, and a scoring function F∗M(T) : TM 7→ R,

computationally predict the configuration T ∈ TM which maximizes F∗M.

A solution to MBA requires design and calibration of F∗M such that for any

M, the maximum of F∗M corresponds to the true solution; efficient algorithms for

evaluation of F∗M(T) for any given configuration T; and, an efficient and accu-

rate sampling and search scheme for exploring TM and finding the maximum of

F∗M. Note that problems of the same flavor appear in image stitching, 2D-to-3D re-

construction, global registration, jigsaw puzzle solving etc., and the solution for the

above three issues depend on the context. In this thesis, we chose the protein assem-

bly domain because accurate and reliable computational modeling, simulation and

prediction of such assemblies would clearly accelerate discoveries in understanding
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of the complexities of metabolic pathways, identifying the molecular basis for nor-

mal health and diseases, and in the designing of new drugs and other therapautics.

It is well known that even a simple 2D jigsaw puzzle has a combinatorial

space ofO(n!) and is NP-hard. The multi-body assembly of proteins is even harder.

First, while checking the feasibility of a particular assembly is trivial for the puzzle

pieces, it is extremely difficult to design a function which can robustly discriminate

between feasible and infeasible protein assemblies, because of the diversity of pro-

teins and the highly complex physico-chemical interactions that stabilizes protein

assemblies. Second, while there are only a constant number of ways to assemble

two puzzle pieces, parameterization of the configurational space of two proteins

requires 6 continuous degrees of freedom (or more if flexibility of the proteins are

taken into account).

We address the first challenge by developing F 2Dock (Fast Fourier Dock-

ing) which includes a multi-term function which includes both a statistical thermo-

dynamic approximation of molecular free energy as well as several of knowledge-

based terms. Parameters of the scoring model were learned based on a large set of

positive/negative examples, and when tested on 176 protein complexes of various

types, showed excellent accuracy in ranking correct configurations higher (F 2Dock

ranks the correct solution as the top ranked one in 22/176 cases, which is better than

other unsupervised prediction software on the same benchmark).

Most of the protein-protein interaction scoring terms can be expressed as

integrals over the occupied volume, boundary, or a set of discrete points (atom lo-

cations), of distance dependent decaying kernels. We developed a dynamic adaptive
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grid (DAG) data structure which computes smooth surface and volumetric represen-

tations of a protein complex in O(m logm) time, where m is the number of atoms

assuming that the smallest feature size h is θ(rmax) where rmax is the radius of the

largest atom; updates in O(logm) time; and uses O(m) memory. We also devel-

oped the dynamic packing grids (DPG) data structure which supports quasi-constant

time updates (O(logw)) and spherical neighborhood queries (O(log logw)), where

w is the word-size in the RAM. DPG and DAG together results inO(k) time approx-

imation of scoring terms where k << m is the size of the contact region between

proteins.

On searching the configurational space TM, we show that to provide theoret-

ical guarantee that at least one sample configuration T falls within a given distance

threshold (δ) from the true solution T∗, one must bound the dispersion of the sam-

ples in a space isomorphic to R6(n−1), where n is the number of proteins. However,

depending on n and δ, such sampling may become impractical, in which case fur-

ther information like symmetry or prior knowledge about binding partners is needed

to make the problem more tractable. We consider two such cases in this thesis.

First we consider the symmetric spherical shell assembly case, where mul-

tiple copies of identical proteins tile the surface of a sphere. Though this is a re-

stricted subclass of MBA, it is an important one since it would accelerate develope-

ment of drugs and antibodies to prevent viruses from forming capsids, which have

such spherical symmetry in nature. We proved that it is possible to characterize

the space of possible symmetric spherical layouts using a small number of repre-

sentative local arrangements (called tiles), and their global configurations (tiling).
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We further show that the tilings, and the mapping of proteins to tilings on arbitrary

sized shells is parameterized by 3 discrete parameters and 6 continuous degrees of

freedom; and the 3 discrete DOF can be restricted to a constant number of cases if

the size of the shell is known (in terms of the number of protein n).

We also consider the case where a coarse model of the whole complex of

proteins are available. We show that even when such coarse models do not show

atomic positions, they can be sufficient to identify a general location for each pro-

tein and its neighbors, and thereby restricts the configurational space. We devel-

oped an iterative refinement search protocol that leverages such multi-resolution

structural data to predict accurate high resolution model of protein complexes, and

successfully applied the protocol to model gp120, a protein on the spike of HIV and

currently the most feasible target for anti-HIV drug design.
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Chapter 1

Introduction

We consider the multibody assembly problem. The problem, in simple

terms, is to computationally predict the structure of the complex formed by a set

of components whose individual structural models are known. Figure 1.1 provides

examples where respectively 7 and 60 components must be put together with the

aim of predicting their true assembled complexes.

Figure 1.1: (a) We are given multiple disjoint objects which are components of a
complex or assembly. The challenge is to search the space of possible arrangments
and find the optimal. Typically, for objects in 3D, the problem can be mapped
to a geometric search over SE(3)n, where n is the number of components and
SE(3) is the group of rigid body motions, to find the optimum of a scoring function.
Typically, SE(3) is represented using 6 continuous degrees of freedom. (b) In this
thesis we show that for special cases like the symmetric assembly shown in the
figure, the total number of degrees of freedom is typically fewer than n, and the
space of possible motions is also not the entire product space SE(3)n, but rather a
symmtric subgroup of it.

This problem appears in many areas of computational geometry, image pro-

1



cessing, and computational biology. For example, reconstruction of a 3D scene

from 2D images, image stitching, reconstruction of broken pieces of an ancient

vase or a dinosaur bone, etc. All of these problems can be reduced to a geometric

optimization problem as discussed below.

1.1 Problems

Problem 1: Multibody Assembly

Given a set of objects M = {M1, . . . ,Mn} whose configurational space is

defined as TM, and a scoring function F∗M(T) : TM 7→ R, report-

argmaxT∈TMF∗M(T)

We detail the notations and definitions used in the problem statement in

Section 2.1.

A solution to the problem must address, in the least, the following three

issues. First, one needs to design and calibrate a scoring function whose maxi-

mization actually leads to the true arrangment or configuration of any set of given

objects. Second, the space of configurations need to be characterized and then

algorithms to search/sample it need to be developed. Third, data structures and al-

gorithms for efficient representation and maintenance of the object models, and fast

computation of the scoring function must be developed.

Sub problem 1: Scoring Function Design

Designing a scoring function FM(T) such that, for any set of objects M, we

2



have argmaxT∈TMF∗M(T) = T∗, where T∗ is the true configuratiom of the

complex.

Sub problem 2: Configurational Space Characterization and Search

Mathematically characterize and parameterize the space of possible config-

uration TM. Develop search algorithms which provides guaranteed conver-

gence in the following sense-

∃T∈TD
(dist(T,T∗) ≤ δ),

where TD is a discrete subset of TM explored by the search algorithm, T∗

is the true configuration, dist is a distance metric and δ is a user defined

threshold.

Sub problem 3: Model Representation and Efficient Evaluation of Score

Design computationally efficient representations of the objects, develop data

structures for maintenance and rapid update of the models, and algorithms

that leverage the data structures to evaluate F for a given configuration.

Note that, though the multibody assembly problem and subproblems are

formulated in a generic fashion, actual realizations or solutions of the problems

must be tailored depending on the application domain. In this thesis, we primarily

focus on molecular, specifically protein, assemblies.

Proteins are the fundamental functional units of biological systems. From

structural functions like forming shells, membranes, muscle fibers etc, to metabolic

3



functions, cellular and neuronal signaling, and defense against invaders, are all car-

ried out by proteins interacting with other proteins, RNAs or other molecules. Pro-

teins interact by binding with each other and forming complexes. An atomic reso-

lution understanding of such interactions is necessary for designing target-specific

therapautics, new drug-delivery mechanisms, identifying the molecular level ba-

sis/cause metabolic or neural disorders, and many more applications, and is the

central topic in the area of structural molecular biophysics. Computational model-

ing, simulations and predictions that we develop in this thesis promise to be power-

ful assistive tools to wet lab experiments in gaining a molecular level understanding

of the structural, thermodynamic and kinematic properties of such complexes and

interactions.

Specific versions of the subproblems in the context of protein assembly is

described in Chapter 2.2 and Section 1 provides a brief overview of protein struc-

ture, their interactions and complexes. In the next section, we summarize our main

contibutions and provide forward references to the chapters where further detail are

provided.

1.2 Contributions

The main contributions of this dissertation are listed below-
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1.2.1 Dynamic Packing Grid Data Structure for Efficient Maintenance of
Point Collections and Neighborhood Queries

We developed the “Dynamic Packing Grid" (DPG), a neighborhood data

structure with applications in maintaining and manipulating flexible molecules and

assemblies, efficient computation of binding affinities in drug design or in molecu-

lar dynamics calculations. DPG can efficiently maintain sets of points in 3D using

only linear space and supports quasi-constant time insertion, deletion and move-

ment (i.e., updates) of weighted points or groups of points. DPG also supports

constant time neighborhood queries from arbitrary points. Applications of DPG in

maintenance of molecular surface and polarization energy computations using ex-

hibit marked improvement in time and space requirements over other spatial data

structures. Finally, DPG was implemented as a modular library which can be eas-

ily applied to speed up neighborhood dependent integration in any problem domain.

Details of DPG is presented in Chapter 3.

Publications

• C. Bajaj, R. A. Chowdhury, and M. Rasheed. A dynamic data structure for

flexible molecular maintenance and informatics. In Proceedings of the ACM

Symposium on Solid and Physical Modeling, pages 259–270, 2009.

• C. Bajaj, R. A. Chowdhury, and M. Rasheed. A dynamic data structure for

flexible molecular maintenance and informatics. Bioinformatics, 27(1):55–62,

2011.
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Software DPG can be downloaded for free under an academic use license from

http://www.cs.utexas.edu/~bajaj/cvc/software/DPG.shtml.

1.2.2 Dynamic Adaptive Grid Data Structure for Computing Volumetric and
Smooth Surface Representation of Molecules

We report the Dynamic Adaptive Grid data structure [207] which adaptively

subdivides space to provide higher resolution sampling near the boundary (surface)

of a molecule with n atoms in O(n log n) time. It can support any surface approxi-

mation as long as it is expressed as a level set of a volumetric function. Our imple-

mentation includes the van der Waals surface, the solvent accessible surface (SAS),

and the solvent excluded surface (SES) all of which requires the evaluation of an

anlytical signed distance function at each gridpoint, and a faster Gaussian integra-

tion based surface approximation. This grid-based approach prodives simultaneous

maintenance of molecules in atomic, smooth surface and volumetric representa-

tions, making it applicable for a wide range of applications. Finally, when an atom

is moved (added or removed), the surface can be dynamically and locally updated

by our algorithm in O(log n) time and hence for many applications like docking

and structure refinement, where only a fraction of the atoms need to be updated

frequently, the dynamic algorithm is beneficial. Details of Dynamic Adaptive Grid

is presented in Chapter 4.

Publications

• M. Rasheed, A. Rand, and C. Bajaj. Maintaining flexible molecular sur-
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faces using augmented dynamic octrees. Technical Report 14-23, Institute of

Computational Engineering and Sciences, The University of Texas at Austin,

Austin, TX, USA 78712., 2014.

Software Dynamic Adaptive Grid is implemented as a library of the MolSurf

software package, and is available freely for academic users at http://www.

cs.utexas.edu/~bajaj/cvc/software/molsurf.shtml.

1.2.3 Design and Calibration of Scoring Functions for Predicting of Protein-
Protein Assemblies

We augmented the F2Dock protocol [26] for predicting 2-body assembly of

proteins, with new knowledge-based scoring terms, and a solvation energy (GBSA)

based reranking. The new protocol dubbed F2Dock 2.0 + GB-rerank [65], was

trained [208] using large sets of protein-protein interaction decoys of different classes.

The improved scoring functions showed superior performance compared to their

traditional counterparts in finding correct docking poses at higher ranks. We found

that the new filters and the GBSA based reranking individually and in combination

significantly improve the accuracy of docking predictions with only minor increase

in computation time. We compared F2Dock 2.0 with ZDock 3.0.2 [179] and found

improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0

[129], F2Dock 2.0 finds a near-native solution as the top prediction for 22 com-

plexes; where ZDock 3.0.2 does so for 13 complexes. Details of F2Dock is pre-

sented in Chapter 5.
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Publications

• M. Rasheed, Q. Yuan, and C. Bajaj. Learning optimized scoring models for

protein-protein docking. Technical Report 14-25, Institute of Computational

Engineering and Sciences, The University of Texas at Austin, Austin, TX,

USA 78712., 2012.

• R. A. Chowdhury, M. Rasheed, D. Keidel, M. Moussalem, A. Olson, M.

Sanner, and C. Bajaj. Protein-protein docking with f2dock 2.0 and gb-rerank.

PLoS ONE, 8(3):e51307, 2013.

Software F2Dock was implemented as a command line tool which can be used

standalone or as a server, with a graphical user interface (TexMol [15]) acting as

the client/frontend. A web-based client will be also be released in August 2014.

Both the client and server for F2Dock are available from the following http:

//www.cs.utexas.edu/~bajaj/cvc/software/f2dock.shtml.

1.2.4 Characterization, Enumeration and Construction of Almost-regular Poly-
hedra

We have characterized a new family of polyhedra [204] with regular faces

such that it is isotoxal, isohedral, and have exactly 2 types of vertices; as well as a

dual family which is isogonal, isotoxal and have exactly 2 types of regular faces.

We have shown that both of polyhedrons of these families generated by unfolding a

regular polyhedron onto a lattice in a compatible way, thereby allowing the lattice

vertices, edges and faces to etch out a tiling on the unfolded polyhedron, and finally
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folding it back again. Further, the compatible ways are specified using only a cou-

ple of integer parameters. We also provided a deterministic and efficient algorithm

for generating such polyhedra of any size (determined by the two parameters). We

have proved that our construction covers all possible polyhedron which satisfies the

stated properties. Our theoretical groundwork would greatly support computational

techniques for exploring and automatically predicting possible nano-structures that

can be formed symmetrically by one type of building block. Details of this contri-

bution is presented in Chapter 6.

Publications

• M. Rasheed and C. Bajaj. Characterization, enumeration and construction

of almost-regular polyhedra. Technical Report 14-23, Institute of Computa-

tional Engineering and Sciences, The University of Texas at Austin, Austin,

TX, USA 78712., 2014.

Software The algorithm for generating symmetric tilings is available as library

called TilingGen and also as part of TexMol. http://www.cs.utexas.edu/

~bajaj/cvc/software/texmol.shtml.

1.2.5 Predicting Symmetric Spherical Assemblies Templated on Extended
Families of Regular Polyhedra

We use the characterizion of tiled, symmetric shell structures, and address

the computational problem of predicting their assembly from primitive 3D building
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blocks. We developed an efficient polynomial time, shell assembly approximation

solution (based on a combinatorial and motion-space search, and complementarity

scoring) to an otherwise NP-hard geometric optimization problem. Our 3D shell

assembly prediction, first uses a small set of tiles to generate either periodic or

aperiodic surface tilings, parameterized by a small set of inter-tile matching rules.

Then to form a 3D shell, we decorate each tile using appropriate number of copies

of the given 3D blocks such that symmetry constraints are met and inter-tile inter-

faces are favorable. We have successfully applied this procedure to the prediction

of spherical protein shells of biological viruses of different sizes, all of which ex-

hibit icosahedral symmetry [205]. Our symmetry characterization also provides a

natural hierarchical representation of the mechanical degrees of freedom available

for a complete viral capsid, and enables automated normal mode analysis under

sticks-and-springs model. Simulations of the vibrationals modes derived from this

automated model matched independent simulations and experiments [27]. Details

of these contributions are presented in Chapter 7.

Publications

• M. Rasheed and C. Bajaj. Predicting symmetric spherical shell assemblies.

Technical Report 14-24, Institute of Computational Engineering and Sci-

ences, The University of Texas at Austin, Austin, TX, USA 78712., 2014.

• C. Bajaj, A. Favata, A. Micheletti, P. Podio-Guidugli, and M. Rasheed. A

multiscale comparative analysis of viral capsids’ normal modes. Manuscript,

2014
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Software The algorithm viral capsid assembly has been implemented in a client/server

settings similar to F2Dockand is available through TexMol http://www.cs.

utexas.edu/~bajaj/cvc/software/texmol.shtml.

1.2.6 Multi-resolution and Data-driven Modeling and Validation of Molecu-
lar Assemblies

We developed and validated a search and scoring protocol which, using

available EM map, partial atomic structures and information about binding inter-

faces, produce a refined and complete high resolution model of a protein complex.

The protocol uses a combination of pairwise docking and flexible fitting [41] to

optimize a scoring term that not only accounts for protein-protein interaction po-

tentials, but also the quality of fit with the EM map. We found that the method

was extremely successful in predicting near-native configurations for a large set of

protein-protein complexes involving the HIV spike protein gp120 and various anti-

bodies. In 18 out of 32 cases, our method picked the lowest RMSD solution as the

top solution. Further, gp120 have several variable regions which are known to play

an important role in binding to CD4 and then CCR5 which acts as a precursor to

infection. But the precise structure and configuration of these variable regions’ in-

teraction with CD4 and CCR5 have not been resolved yet by x-ray crystallography.

We showed that our validated scoring model can be combined with off-the-shelf

threading and energy minimization algorithms to produce reliable models of the

variable regions [206]. Details of these contributions are presented in Chapter 8.

Publications
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• M. Rasheed, R. Bettadapura, and C. Bajaj. Structure of HIV spike protein

gp120 including all variable loops in complex with CD4 and 17b through

computational modeling, fitting and validation. Submitted, 2014

• R. Bettadapura, M. Rasheed, A. Volrath, and C. Bajaj. PF2Fit: Polar fast

fourier alignment of atomistic structures with 3D electron microscopy. Sub-

mitted, 2014

Software Our flexible fitting and docking software are available at http://

www.cs.utexas.edu/~bajaj/cvcwp/?page_id=2366 and http://www.

cs.utexas.edu/~bajaj/cvc/software/f2dock.shtml, and an auto-

mated script to integrate different stages of the protocol is under construction.

1.3 Organization of the Dissertion

Chapter 2 first provides an overview of the notations used in the problem

statements, and in the rest of the dissertation. Then it provides a brief introduction to

the assembly problem specifically for the case of molecular assemblies to highlight

the unique challenges in this domain, and wraps up with a discussion on prior work

in generic and symmetric multi-body assembly. This chapter may be skipped by

reader familiar with the molecular domain and prior work.

Chapters 3 to 8 discuss the main contributions of this thesis in the same

order they are listed in the previous section.

Chapter 3 details the Dynamic Packing Grids (DPG) data structure and de-
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scribes how it can be used to efficiently compute properties and functions defined

over sets of points (or atoms). Then Chapter 4 presents a dynamic octree data struc-

ture augmented with DPG to support efficient and simultaneous dynamic mainte-

nance of level set surfaces, collection of points, and volumetric functions defined

over the set of points.

Chapters 5 and 8 focus on the scoring part of the problem. In Chapter 5, we

introduce several physically-based and knowledge-based scoring terms for evaluat-

ing protein-protein interfaces, train a combination of the terms to effectively predict

correct interfaces. In Chapter 8, additional scoring terms to measure the internal

structure of the components, as well as to measure the correlation of a predicted

assembly to a coarse-resolution template are introduced. These new terms in par-

ticular can use data from various modalities to effectively refine structural models

involving multiple components.

Chapters 6 and 7 deal with characterizing the restricted configuration (search)

space for symmetric assemblies and then apply it to predict structures of virus cap-

sids. Chapter 6 in particular provides a characterization, and necessary and suffi-

cient conditions of generating a class of highly symmetric polyhedra which can be

tiled using a single type of building block. This construction is used to generate

families of layouts on which proteins are placed to produce thick shell structures

(viral capsids) in Chapter 7.

Finally, in Chapter 9, we summarize our contributions and then discuss a

few interesting and important problems which are still open, and discuss some pos-

sible solutions.
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All the chapters are pretty self contained, and include description of re-

lated prior work, any new notations that is used in the chapter, as well as relevant

experimental results. Also when results from a different chapter are used, they are

accompanied with a brief review and a pointer to the corresponding chapter. Hence,

the chapters can technically be read in any order, however we believe it would be

best if the reader followed the order in which the chapters are organized.
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Chapter 2

Background and Prior Work

2.1 Notations and Definitions

We introduce some key notations and definitions here which will be used

throughout the dissertation.

2.1.1 Object

Anything that occupies volume in 2D or 3D space is considered an object in

the context of this dissertation. For example, an object can be a molecule, a jigsaw

puzzle piece, or a broken piece of furniture. The object must have a structural

model, and can have additionally have functional and kinematic models associated

to it.

Definition 2.1.1 (Structural Model). We define a structure model as a geometric

description of a physical object as a set of points, a scalar-valued function in 3D, a

surface or volumetric mesh, or any other format. Note that each of these represen-

tations can be mapped to each other and hence, without loss of generality, we shall

assume that the structure model is simply a set of points M : {a1, . . . , an} and the

corresponding boundary and occupancy are expressed as SM(x) : R3 7→ [0, 1] and

V M(x) : R3 7→ R respectively. Surface and Volume meshes are simply discretized
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evaluations of SM and V M .

Even though, M is strictly speaking only the structural description of an

object, we shall often use M to denote the object itself.

Definition 2.1.2 (Functional Model). The functional model of an object are at-

tributes of the object. We shall denote each attribute as functions which may be

used as part of mathematical expressions. For example, ifM is the structural model

of a puzzle piece, ColorM(x) specifies the color assigned to each point x. Also, if

it is clear from the context (or explained in the related text), then we would also use

shorthands like cx instead of ColorM(x).

Definition 2.1.3 (Kinematic Model). In case an object is flexible, a kinematic model

describes how different parts of an object move with respect to each other. We shall

assume that the kinematic model is expressed as a motion graph GM(V,E), where

the nodes v ∈ V correspond to disjoint subsets, called subdomains, Mi ⊆M of the

object, and each edge (u, v) ∈ E indicates that the movement of the subdomains

are constrained by each other. Each edge is annotated with a parameterization of

the type and range of motions allowed for the two subdomains with respect to each

other.

2.1.2 Transformation, Configuration and Complex

Definition 2.1.4 (Rigid Body Transformation). We define a transformation as an

isometry, or a map A : R3 7→ R3 in Euclidean space which preserves distances
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between any pair of points it is applied to. Such transformations for the Euclidean

space includes combinations of translation, rotations and reflections, but not scaling

or shear. We shall assume that T is expressed as a matrix of the form-

(
R t
0 1

)
where R is an orthogonal 3 × 3 matrix representing a rotation around an arbitrary

axis through the origin in 3D, and t is a 1× 3 column vector representing a transla-

tion.

Definition 2.1.5 (Flexible Transformation). We define a flexible transformation T

applied to an object modelM with k subdomains (according to a specific kinematic

model of the object), as a set of k rigid body transformations {A1, . . . , Ak}, such

that each transformation Ai is to be applied to each point aj in subdomainMi ∈M .

If all the individual Ai are the same, then the object undergoes a rigid body motion.

Note that functional models of the object may be changed by such transfor-

mations and need to be re-evaluated.

Definition 2.1.6 (Configurational Space of an Object). The configurational space

TM of an object M with k subdomains, is a subset of SE(3)k, where SE(3) is

the Euclidean group. Depending on the kinematic model of the object, this product

space may have different structure. For example, for flexible molecules with torsion

angle degrees of freedom (see Section 1.1 for details), the space is (S1)k where S1

is the 1D rotation group. Note that for rigid body objects, k = 1.
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Definition 2.1.7 (Complex or Arrangment). A complex C =< M,T > is an object

formed by compositions of a set of objects M = {M1, . . . ,Mn} such that the

configuration of each component is Ti(Mi). The model for C is hence defined as

MC = ∪iTi(Mi).

Definition 2.1.8 (Configurational Space of a Set of Objects). The configurational

space TM of a set of n objects {M1, . . . ,Mn}, is a subset of product space
∏

TMi .

If all objects are rigid body, then the space is SE(3)n.

2.1.3 Scoring Functions and Quality of a Complex

Definition 2.1.9 (Scoring function). A scoring function is defined as FM(T) : T 7→

(R), where T is the space of possible transformations for the set of components M.

We shall also use F(C) to represent the same function.

Now, let us assume that the true configuration C∗ for a complex of the n

objects M = {M1, . . . ,Mn}, is given to us by some oracle. Now, we would like to

compare it with some other configuration C generated or predicted by an algorithm.

For example, we want to verify that the jigsaw puzzle put together by someone is

actually the desired/correct arrangement of the pieces. This concept is formalized

below-

Definition 2.1.10 (Correctness of a Complex). Given a predicted complex C(M,T),

and a ground truth arrangment C∗(M,T∗) produced by an oracle, we define the er-

ror in the predicted arrangment as the distance dist(C,C∗). We say that C is correct

if dist(C,C∗) is less than some threshold ε.
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Since, both C and C∗ are defined over the same set of componenets M, let

us assume that for each point ai in predicted arrangment, the corresponding true

position is a∗i . Then a simple distance norm can be defined as follows-

dist(C,C∗) = minT∈SE(3)

∑
ai∈M δ(T (ai), a

∗
i )

where δ(T (ai), a
∗
i ) is a metric, usually Euclidean distance. Popular variations in-

clude RMSD and Hausdorff distance.

Note that, we shall use distM(T,T∗) and dist(C,C∗) interchangeably.

Now we define the scoring function, which tries to measure the quality of a

complex, without access to the oracle.

Definition 2.1.11 (Scoring oracle). A scoring oracle F∗M(T) : T 7→ (R) is a scoring

function which behaves like the oracle such that F∗M(T) is negatively correlated

with dist(T,T∗).

Now, we are ready to formally define the assembly problem.

2.1.4 Problem Statement

We had previously expressed The multibody assembly problem in simple

terms, as computationally predicting the structure of the complex formed by a set

of objects whose individual models are known. Below, we formalize it.

Definition 2.1.12 (Multibody Assembly). Given a set of objects M = {M1, . . . ,Mn}

whose configurational space is defined as TM, and a scoring oracle F∗M(T) : TM 7→

R, report-
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argmaxT∈TMF∗M(T) (2.1.1)

This leads us directly to three separate subproblems-

1. Efficient computational representation of object models M = {M1, . . . ,Mn}.

Introduced in Section 2.2.3 and detailed in Chapter 3.

2. Designing a scoring function FM(T) which behaves like an oracle, even with-

out access to the true solution. Introduced in Section 2.2.2 and detailed in

Chapter 5.

3. Characterizing TM and developing sampling and search techniques to find

the best configuration. Introduced in Section 2.2.1 and detailed in Chapters 7

and 8.

2.2 A More Detailed Look into the Subproblems
2.2.1 Configurational Space Characterization and Search

In this section we shall first characterize the configurational space for the

most general setting, discuss some simplifications which still does not make the

problem tractable. Then, we present two special cases, where the configurational

space can be bounded.

The search space for the Multibody Assembly problem is SO(3)N where N

is the number of rigid subdomains among all the set the n proteins M1, . . . ,Mn that

need to be assembled. This is an extremely high dimensional optimization problem
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where the scoring function is multimodal. We shall show in Chapter 9 that in prin-

ciple it is possible to produce low discrepancy point samples in this product space

which would guarantee that at least one sample would be within a user-defined

distance threshold ε from the true configuration [186]. However, the guarantee de-

pends on the local variability of the scoring function and the number of samples

required to provide practical values of ε are infeasible. A popular alternative is to

use Markov Chain Monte Carlo sampling [80, 117, 247, 265] which has usually has

better convergence in practice, but no theoretical guarantees. A relaxation of a sim-

ilar multi-registration problem into a semidefinite program was recently proposed

in [57].

Now, if we assume that simultaneous assembly is highly unlikely and pro-

teins assemble into pairs first, and then gradually larger assemblies, then we can use

a distributed assembly approach (similar to solving a jigsaw puzzle).

2.2.1.1 Multi-body Assembly as a Combinatorial Optimization Problem

We first solve the 2-body assembly problem defined as follow-

Definition 2.2.1 (2-body Assembly). argmaxT∈TMF∗M(T) where M = {M1,M2}

In practice, due to uncertainties/error introduced by sampling and primar-

ily due to the scoring function not being an oracle, we predict a series of k com-

plexes ordered by their scores and expect the optimal solution to be ranked between

[1, ..., k]. If we further assume that the proteins are rigid, then the configuration can

be expressed as transformation applied to M2, while keeping M1 fixed. We shall
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refer to this as a relative transformation. The outcome of the 2-body assembly is

hence a list of k predicted relative transformations.

Definition 2.2.2 (Assembly graph). Define a multi-graph G(V,E) such that each

node v ∈ V correspond to an object in M and each edge (u, v, i) ∈ E correspond

the i-th relative transformation T i between the objects u and v as predicted by the

2-body assembly solution where 1 ≤ i ≤ k.

It is easy to see that the assembly graph has the following properties-

• It is a complete graph.

• A simple edge between a pair of nodes correspond to a relative pose between

them.

• A simple subtree of m nodes is sufficeint to specify the relative poses among

all mC2 pairs of nodes on the tree.

• A simple spanning tree is sufficient to specify a complex.

Definition 2.2.3 (Graph Multi-body Assembly). The multi-body assembly problem

reduces to finding a simple spanning tree S ofG such that FG(S) = FM(T) is max-

imized. Note that T can be defined based on the relative transformations without

any ambiguity or conflicts if S is a spanning tree.

There are O(nn−2 ∗ Kn−1) possible simple spanning trees of V . And this

problem was shown to be NP-hard [130]. We provide a sketch of the hardness proof

below.
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Graph Multi-body Assembly is NP-hard Monkey puzzle is a known NP-hard

problem. The problem is to find the solution to a rectangular puzzle (the solution

makes a rectangle of known dimensions) with square pieces with straight line edges

such that each piece has the picture of half a monkey (either head or tail) on each

of its edge. The pieces must be matched such that along any interface, a complete

monkey is formed (by a head and a tail of same colors coming together). This

problem can easily be reduced to the assembly problem where each puzzle piece

represent a node and there are at most 16 possible edges between each pair. Now

if we define the scoring function such that it adds 1 for each whole monkey and

subtracts 1 for each mismatch, then the solution to the assembly graph problem is

exactly the solution to the monkey puzzle problem.

So, even this simplified problem is NP-hard. There are several algorithms

which models the problem in this fashion and then provide greedy or heuristics-

based algorithms. For example, Papaioannou et al. [191, 192] provide a simulated

annealing algorithm for assembling fractered geometric objects, Huang et al. [127]

developed avariant of forward serach algorithm for the same application. Both

of them perform well mainly because the scoring function for purely geometric

objects are much more reliable than those for proteins. Inbar et al. [130] applied

a greedy Prim’s minimum spanning tree algorithm and was quite successful for

protein complexes with upto 7 proteins. However, their experiment was a redocking

experiment, where the proteins are in their correct shape and rigid body motion

alone is sufficient to produce perfect solutions. Finally, Esquivel-Rodriguez, Yang

and Kihara developed a genetic algorithm to explore the space of spanning trees
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[90].

2.2.1.2 Symmetric Assembly

Many macromolecular assemblies are symmetric (see the discussion in Sec-

tion 1.3 for example symmetric macromolecules).

Figure 2.1: (a) A jigsaw puzzle covering the surface of a sphere. (b) Symmetries
of this puzzle can be represented as the symmetry of the icosahedron whose faces
are subdivided symmetrically into smaller triangles. (c) Decorating each of those
faces using proteins arranged in cyclic symmetry produces a symmetric shell assem-
bly. The figure shows the assembly predicted by our algorithm for the Nudaurelia
Carpensis Virus.

The most common are the cyclic and dihedral symmetries, and there are

multiple prior work [7, 35, 36, 69, 88, 139, 198, 226] where such assemblies have

been characterized and computationally predicted. In most cases, the algorithms

do not leverage the symmetry to bound the search space, but rather only use it as

apost-processing step. On the other hand, a few like the approach of Pierce, Tong

and Weng [198], provide a characterization of the the space of cyclic symmetric

configurations and shows that the DOFs are less than a 2-body problem. However,

such characterizations for other symmetric spaces are not known in the context of

assembly prediction yet.
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In this thesis, we specifically focus on the symmetric spherical shells (see

Figure 2.1) as such shells are the predominant structure for virus capsids, and an

understanding of such capsids and their assembly would help in designing drugs

to stop the formation/dissolution of the capsids, or to produce atomic resolution

models of capsids for which only the sequence or a coarse model is available, or to

design novel protein cages to act as targeted drug delivery packages.

Sub problem 1: Characterize the space of symmetric spherical shell topolo-

gies. Find the minimal set of parameters, or degrees of freedom that need to

be sampled to explore the space.

Sub problem 2: Develop efficient algorithms that can predict 3D shells by ar-

ranging multiple copies of an object symemtrically based on the symmetric

shell topology.

2.2.1.3 Assembly Guided by Coarse Constraints

Combinatorial complexity of the general multi-body assembly problem can

be subverted if prior knowledge regarding the complex is available. For example,

wet lab experiments like spectroscopy or Isothermal Titration Calorimetry (ITC)

[200] can be used to identify protein stoichiometry data, i.e. the likelihood of a pair

of proteins forming a complex, or binding to each other. If this data is available,

then the assembly graph can be pruned. Also, for many of the macromolecular as-

semblies, coarse resolution structural information of the entire complex is available
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in the form of cryo Electron Microscopy images [97]. EM captures the electron

scattered by a specimen as a 2D image. In single particle EM, thousands of copies

of the same molecule is imaged at the same time and with the assumption that the

image captures a 2D projection of multiple randomly oriented molecules, a com-

plete 3D volumetric representation can be reconstructed, and be used as a template

of guide for searching the configurational space (cf. Figure 2.2).

Figure 2.2: (a) Solving a jigsaw puzzle is easier when we are given hints about the
complete picture. (b) Coarse resolution volumetric model (3DEM map) of the HIV
spike protein gp120 in complex with proteins CD4 and 17b can be used to guide
the search for generating a atomic model of the same complex (c).

Recently a series of papers [5, 155, 218, 227, 253, 267] have been published

where 3DEM maps were segmented and then individual proteins were fit into dif-

ferent segments, and finally small local motions between neighboring proteins were

used to predict the atomic resolution structure of the complex. However, success

of such methods relies heavily on the quality of the 3DEM map and the segmenta-

tion tool. In this thesis, instead of decoupling the search into segmentation, fitting

(optimizing configurations of the proteins with respect to the EM) and docking (op-

timizing configurations of the proteins with respect to each other), we use the entire
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EM map to define a coarse boundary for the sampling, and develop a modified

scoring function whose optimization leads to both good fitting and docking.

Sub problem 3: Characterize the restricted space of configurations for a set

of proteins, when a coarse 3DEM map is available. And develop coupled

scoring and search algorithm that optimizes the configuration of the proteins

with respect to each other and the EM map simultaneously.

2.2.2 Scoring Function Design

We would like to define a scoring function which would be negatively corre-

lated with dist(T,T∗). However, it is quite improbable since dist(C,C∗) itself is

not always monotomincally related to changes in T, so instead of requiring that the

scoring function mimics the oracle over the entire configurational space, we simply

require it to be able to identify the optimum.

Definition 2.2.4 (Accuracy of a Scoring Function). A scoring function F is accurate

for a set M if,

distM(Tm,T∗) ≤ ε

where, T∗ is the true arrangment, and,

Tm = argmaxT∈TFM(T)

Secondly, due to discrete sampling and the presence of multiple local max-

ima, sometimes the highest scoring sample may not be close to the true maxima.

So in this discrete setting, we use a weaker definition of accuracy.
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Definition 2.2.5 (Weaker Accuracy of a Scoring Function). A scoring function F

is accurate for a set M if,

∃1≤i≤kdistM(Ti,T∗) ≤ ε

where, T∗ is the true arrangment, and,

T1, . . . ,Tk are the k highest scoring samples in a discrete sampling of T.

Finally, we formally define the problem of scoring function design.

Definition 2.2.6 (Scoring function design). Design a function F such that for any

set M, F is accurate according Definition 2.2.5.

Sub problem 4: Design a function F such that for any set M of proteins, F is

accurate according Definition 2.2.5.

We have found that scoring functions which combine multiple affinity terms

defined based on different biophysical and statistical potentials has a better proba-

bility of being successful over diverse set of protein-protein interactions. Chapter

5 details the new scoring terms we developed, a few terms that we have improved,

a machine learning model to calibrate the parameters of the function, and detailed

analysis of the accuracy of the scoring function (with different k) on a benchmark

[129].

2.2.3 Model Representation and Efficient Evaluation of Score

The most common representation for molecules is as a collection of atoms

represented as hard spheres, with radii equal to their van der Waals radii [47]. Such
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a representation along with partial charges assigned to each atom based on a statis-

tical thermodynamics [183, 260, 268] or quantaum mechanical force field [81] can

be sufficient for the computation of many scoring functions including the van der

Waals energy under the Lennard-Jones model, electrostatics (Coulombic) energy,

statistical terms like residue-residue contact potentials etc. (please see details of

these terms in Chapter 5).

Figure 2.3: (a) An union of balls model. Each atom in the figure is colored by
its atom type, and the radii are equal to their van der Waals radii. Note that the
spacing between the gridlines are 5 angstroms. (b) A volumetric model of the same
molecule. Here a function f(x) is defined over the Euclidean space as the electron
density in the neighborhood of x. The function is visualized by setting up a color
mapping for the function values. (c) A boundary representation of the molecule.
The boundary was computed as a level set of a signed distance function, and repre-
sented as a triangulated mesh.

Some scoring functions, for solvation energy computed under the GBSA

model [245] requires integration over the boundary of the molecule. The boundary

of the union of the hard spheres is known as the van der Waals (vdW) surface.

Another model, introduced by Lee and Richards [157], called the solvent accessible

surface (SAS) is defined as the boundary of the union of hard spheres with their radii

extended by rs, the radius of solvent (water) molecules. This surface represents

the locus of the center of a ball of radius rs on the vdW surface. However, both
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Probe sphere
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VDW Volume

SAS Volume

Renentrant patch
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Overlappingregions of
SES and VDW Surfaces

Figure 2.4: The different molecular surfaces and regions are shown for a 3 atom
model in 2D. The SAS surface is the locus of the center of the rolling probe sphere.
The VDW surface is the exposed union of spheres representing atoms with their
van der Waals radii and contains the VDW volume. The lower side of the rolling
probe defines the smooth SES which contains parts of the VDW surface and reen-
trant patches. We also define the SAS volume as the region between the SAS and
SES. The region between the SAS and VDW volumes is later refered to as the SES
volume.

the vdW and SAS surfaces are not C1 continuous and unsuitable for integration.

Richards then gave a more commonly used definition for molecular surface [213] as

the footprint of a probe solvent sphere, rolling over the atoms of a protein defines a

region in which none of its points pass through. This surface is composed of convex

patches where the probe touches the atom surfaces, concave spherical patches when

the probe touches more than 2 atoms simultaneously and toroidal patches when the

probe rolls between two atoms. Connolly called this as an alternative definition

of the SAS surface in [71], but is now commonly known as the Solvent Contact

Surface (SCS), or Solvent Excluded Surface (SES) or simply the Molecular Surface.

These surfaces, for a 3 atom example is shown as a 2D cross section in figure 2.4.
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Finally, volumetric representations of the surface as functions defined over

the Euclidean space, but having non-trivial values only within or near the region

occupied by the molecule is also useful, not only as an intermediate step towars

computing the boundary or surface, but also for defining scoring functions. For

example, alginment of two proteins can be defined as the convolution of their vol-

umeteric representations.

Hence, it essential to develope data structures and algorithms to generate

and maintain all three types of representations, based on a union of ball input. Fur-

ther, to account for the flexibility of proteins the algorithms must be able to perform

dynamic and local updates efficiently. Efficiency is very important here since these

algorithms will be at the innermost loop of any assembly search protocol and be

invoked the maximum number of times.

Sub problem 5: Design efficient spatial data structures for maintaining mixed

representations of molecules. Develop algorithms for efficient computa-

tion and dynamic update of volumetric and surface representations from the

union of balls representations.

2.3 Prior Work
2.3.1 General Multi-body Assembly

Prior work has addressed this problem from the perspective of reconstruct-

ing or reassembling historic 3D artifacts or statues from fractured 3D pieces recov-

ered by archaeologists. For example, [127] and [191] both assume that the neigh-
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boring fractured pieces have good shape complementarity and use shape descriptor

based matching to find possible interfaces between each pair of components. The

remaining challenge is then to select a subset of those interfaces which are consis-

tent, and optimize a global assembly. The approach is equivalent to computing the

best simple spanning tree from a multi-graph where each graph node represent a p-

tile, and k edges between two nodes represent k possible interface configurations.

The number of simple spanning trees is exponential in the number of components,

i.e. O(nn−2kn−1). Furthermore, its quite easy to reduce the known NP-hard 2D

Monkey Puzzle problem to the more difficult 3D assembly problem. One can show

that a polynomial time approximation scheme (PTAS) can be designed if the num-

ber of parallel edges between each pair of nodes is at most 2. However, for all

practical cases, PTASs do not exist. The paper [127] proposed a greedy forward

search algorithm and [191] used genetic programming to solve this combinatorial

problem. A simpler greedy algorithm was used by [130] for predicting the assembly

of multiple proteins. The 2D counterpart is a well-studied problem, for both texture

or image driven matching [62, 219] as well as based purely on the shape [107].

Though the combinatorics of these multi-piece matching approaches is es-

sentially similar to the multi-protein docking problem, but the nature of the inter-

face and rules of interaction are vastly different. The most obvious difference is that

the affinity between two fractured pieces depend only on their shapes, with only a

non-penetration constraint. There is no attractive-repulsive forces and/or different

factors counterbalancing each other. So, the challenge in designing a good scoring

function is often restricted to finding an efficient one. The search space can also
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be reduced by factors such edge the presence of sharp edges which provide good

starting positions as well as a mode of verification for matching, and of course there

are no flexibility in the pieces.

2.3.2 Multi-Protein Assembly

Almost half of the complexes in the protein data bank are complexes in-

volving more that two proteins. However, due to the combinatorial complexity of

docking multiple proteins, most researchers tried to solve the problem of pairwise

docking first. After the pairwise docking problem matured a little, and more im-

portantly after the CAPRI challenge featured complexes with cyclic symmetries,

the interest in multi-protein docking increased, specially for complexes with cyclic

and dihedral symmetries. Most of the existing techniques are only applicable to

these two classes of multi-protein complexes. A few techniques can also dock sev-

eral proteins with no symmetry. However, they either depend on the availability of

prior knowledge about the relative positions of the proteins and only optimizes the

positions (registration), or makes unrealistic assumptions to reduce the combinato-

rial complexity. Among the existing multiprotein docking research, we identify the

following as most relevant.

• mMolFit by Eisenstein et al. [35, 36, 88]. Based on MolFit [37, 122, 141].

• mZDock by Pierce, Tong and Weng [198]. Based on ZDock [59, 61, 179].

• mClusPro by Comeau and Camacho [69]. Based on DOT [170] and ClusPro

[70].
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• mRosetta by Andre et al. [7]. Based on ROSETTA [73].

• mHaddock by Karaca et al. [139]. Based on HADDOCK [80].

• MultiFit by Lasker, Dali, Wolfson [154, 155, 249, 253].

• CombDock by Inbar et al. [130]. Based on PatchDock [84].

• SymmDock by Schneidman-Duhovny et al. [226]. Based on PatchDock [84].

In this section, we briefly present and compare these techniques in terms of

their search space, search technique and scoring function in Table 2.1 (continued to

Table 2.2). Then we identify the open issues and indicate how we address those.

2.3.2.1 Limitations

First of all, the search space of most of the techniques is restricted to only

cyclic and dihedral symmetries. Only CombDock can dock heterogeneous proteins

into a nonsymmetric assembly without any prior knowledge about the structure of

the complex (like MultiFit) or user-defined interfaces between the proteins (like

mHaddock). However, the algorithm in CombDock assumes that the sum of the

weights on the edges of the spanning tree is the score of the complex. Formally,

given a multigraph G(V,E) with n nodes and k edges between each pair of nodes;

the weight of a spanning tree T is defined as wT =
∑

e∈T we. This idea is fala-

cious even in the simplest cases. For example, consider the case of a trimer of a

virus (each protein looks like a trapezoid), and let the score is based on shape com-

plementarity. Let us assume that the pairwise docking reported only two principal
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METHOD SEARCH SPACE SEARCH TECHNIQUE SCORING TERMS

Berchanski et al.
(MolFit)

• Rigid Body.
• Cn or Dn .
• Single type of pro-

tein.
• Search Space: R6

• Sample 3D rotational space. 3D FFT for each
rotation to score each translation.

• Select transformations which result in sym-
metry.

• Shape complementarity and
electrostatics

Weng et al. (M-
ZDock)

• Rigid Body.
• Cn or Dn .
• Single type of pro-

tein.
• Search Space: R4

• Due to symmetry, sampling 2D rotational
space is sufficient.

• 2D FFT for each rotation to score each trans-
lation.

• Select transformations which result in sym-
metry.

• Shape complementarity,
electrostatics and desolva-
tion energy

Comeau and
Camacho
(DOT+ClusPro)

• Rigid Body.
• Mixed Cn , Dn .
• Single type of pro-

tein.
• Search Space: R6

• Sample 3D rotational space and use 3D FFT
to score each translation.

• Cluster similar poses
• Select transformations which result in sym-

metry.

• Only shape complementarity
is used in the FFT

• Electrostatics, solvation en-
ergy and entropy for rerank-
ing

Andre et al.
(ROSETTA)

• Flexible backbone
and side chain.

• Cn , Dn , helical
and icosahedral.

• Single type of pro-
tein.

• Search Space: R6

for each rigid part

• Set up the proteins in symmetric positions
• Apply symmetric steps in Monte Carlo mini-

mization

• Molecular mechanical en-
ergy, solvation energy, hy-
drogen bonds and statistical
interface propensity

Schneidman-
Duhovny et al.
(SymmDock)

• Flexible back-
bone with domain
decomposition.

• Cn symmetry.
• Single type of pro-

tein.
• Search Space: R6

• The protein is decomposed into a few do-
mains. domain movements are defined.

• Each domain docked with itself. Docking is
done by matching surface patches. Only sym-
metries transformations are used.

• The results of the symmetric docking of each
domain is combined such that the difference
of the transformations are within the amount
of movement allowed at the inter-domain in-
terface.

• Scoring is based on curvature
based shape complementar-
ity.

Table 2.1: Comparison of the search space, sampling and search methods and scor-
ing terms of current multi-protein docking algorithms

modes of binding- one where the long edge of the trapezoid attaches with dihedral

symmetry and has a weight of 10 and another where the non-parallel edges meet

with a weight of 8 (see Figure 2.5). Clearly, the best configuration is the trimer

where 3 pairwise interfaces exist for a total score of 24. However, there are only 4

35



METHOD SEARCH SPACE SEARCH TECHNIQUE SCORING TERMS

Karaca et
al. (HAD-
DOCK)

• Rigid body and
local flexibility
near binding
interface.

• Cn, Dn, and
asymmetric.

• Different
proteins.

• Search Space:
mR6, for m
proteins.

• User specified restraints to set up
initial pose. Symmetry is also
used to set up restraints.

• Monte Carlo minimization is done
in 3 stages. First stage is rigid
body search. Stages 2 and 3 con-
siders the interface residues to be
flexible.

• Stage 1,2: shape com-
plementarity, molecu-
lar mechanical energy
and approximate sol-
vation energy.

• Stage 3: shape com-
plementarity, molecu-
lar mechanical energy
and explicit solvation
energy.

Lasker et al.
(MultiFit)

• Rigid body.
• Asymmetric.
• Different

proteins.
• Search Space:
m2R6, for m
proteins.

• EM density of the complex is seg-
mented. Each protein is fit to a
segment.

• Pairs of proteins are docked to im-
prove the binding interface.

• Scoring term for fit-
ting is based on inclu-
sion/exclusion.

• Scoring for docking is
based on shape com-
plementarity.

Inbar et
al. (Comb-
Dock)

• Rigid body.
• Asymmetric.
• Different

proteins.
• Search Space:
m2R6 +
mm−2

• Each pair is docked using feature
correspondence based alignment.

• A graph is built with edges for
each interface between a pair of
proteins. Multi-protein complex
is found by finding spanning trees
of the graph using a greedy algo-
rithm.

• Scoring for docking is
based on shape com-
plementarity.

Table 2.2: Comparison of the search space, sampling and search methods and scor-
ing terms of current multi-protein docking algorithms (Continued)

possible spanning trees and if CombDock’s principle is applied, then the correct one

gets the lowest score. Similar scenarios are even more probable in non-symmetric

assemblies.

mRosetta can dock viral capsid proteins if they follow Caspar-Klug theory

of quasi-equivalence. But there are many icosahedral viruses whose structure does
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Figure 2.5: A simple example where greedy algorithms fail. We assume that the
correct configuration of the three proteins is a trimer (left). Each protein looks like
a trapezoid. Pairwise docking suggests two modes of binding. Either along the long
edge (center), or one of the non-parallel edges (right).

not conform to the Caspar-Klug model (see Section 1.4 for details). The viral tiling

theory (VTT) offers a more comprehensive set of rules to enumerate all possible

ways or decorating an icosahedral shell. In this thesis, we define our search space

and strategy based on the VTT. Also, mRosetta is mainly designed as a secondary

stage docking method produce optimal solutions at the cost of slower speed. Our

multi-protein docking is based on faster search based on FFT.

2.3.3 Viral Capsid Assembly

Researcher have long been trying to understand the structure and life-cycle

of viruses in an attempt to design anti-viral drugs. The first unifying and generic

model was proposed in 1962 by Caspar and Klug who theorized that most spherical

viral capsids have quasi-equivalent icosahedral symmetry and developed a simple

mathematical formalism to predict a series of viral capsid structures [55] (see Sec-

tion 1.4 for details). This formulation succeeded in explaining the structures of

most of the known capsids. Based on similar ideas Berger et al. [38, 39] proposed

the local rules model. In local rules model, it is recognized that the proteins on a
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capsid can be grouped into a few classes such that the members in each class have

the same protein-protein interfaces. These rules are inferred by analyzing the struc-

ture of a given capsid and hence lacks predictive capacity. However, the model is

quite suitable to drive simple molecular dynamics simulations where the proteins

are allowed to move in solvent, and whenever two proteins come into contact such

that the interface matches the local rules, then the proteins are considered to bind

[229]. This process is continued until the whole capsid is formed. Such molec-

ular dynamics simulations aim to understand the stages of the assembly from an

energetic and statistical perspective. Various researchers including Rappaport et al.

[203], Schwartz et al. [229], Hagan and Chandler [118] have used molecular dy-

namics. Schwartz’s model is based on the local rule theory and the dynamics is

driven using Brownian motions and spring like bonds between the proteins. Instead

of proteins, Rappaport’s model uses a coarser model with large triangles or the pen-

tamers as building blocks with Brownian motions and binding is predicted by shape

complementarity only. Hagan uses a a scoring term like the Lennard Jones’ Poten-

tial (atomic attraction-repulsion) and uses Newtonian motion based on derivatives

of the potential to move the proteins. Using Monte Carlo simulations, Zandi et

al. [282] showed that icosahedral shapes are indeed energetically most favorable.

Zlotnick [290–292] applied statistical thermodynamics based equation on the equi-

librium concentration and binding affinity to analyze the rate of assembly. However,

it is assumed that the shape of the capsomers as well as the final capsid are known

and intermediate states are formed by adding one more capsomer at each step. Re-

cently Sitharam et al. proposed a geometric constraint based model to predict the
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assembly stages [240]. However, this model does not take physico-chemical prop-

erties of the proteins into consideration. Finally, Twarock et al. [143, 193, 256–258]

proposed the viral tiling theory and applied it to explain the structure on some cap-

sids which cannot be explained using the Caspar-Klug theory. They also apply the

theorem to perform equilibrium analysis based on assembly of tiles [89, 144]. Keef

et al. extended the tiling theory to explain the 3D structure of the virus at different

radial levels [145].

2.3.3.1 Limitations

From the above discussion, it is clear that the methods which try to analyze

the assembly pathway require that the structure of the capsid and the local inter-

action pattern among the proteins are known. On the other hand, the Caspar-Klug

theory and viral tiling theory has the power to predict an infinite series of possi-

ble capsids, but cannot predict whether a given protein can form a specific capsid.

Hence, using all the current methods, we still cannot predict whether a given protein

can form a capsid, or how many different types of capsids it can form, or what kind

of local interactions the protein supports, and whether a drug attached to the same

protein can prevent such interactions and capsid formation. We provide a multi-

protein docking algorithm tailored to detect local interactions based on icosahedral

symmetry and use these interaction patterns to predict the possible tilings of the

capsid. As a by product we predict the intermediate states as well as compute their

binding affinity and perform equilibrium analysis.
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Chapter 3

Dynamic Data Structure for Maintaining Collection
of Weighted Points with Applications in Molecular

Assembly Scoring

In this chapter, we present the “Dynamic Packing Grid" (DPG), a neigh-

borhood data structure with applications in maintaining and manipulating flexible

molecules and assemblies, efficient computation of binding affinities in drug design

or in molecular dynamics calculations. DPG can efficiently maintain sets of points

in 3D using only linear space and supports quasi-constant time insertion, deletion

and movement (i.e., updates) of weighted points or groups of points. DPG also

supports constant time neighborhood queries from arbitrary points. Applications of

DPG in maintenance of molecular surface and polarization energy computations us-

ing exhibit marked improvement in time and space requirements over other spatial

data structures.1

1The contents of this chapter appeared in the article-
C. Bajaj, R. A. Chowdhury, and M. Rasheed. A dynamic data structure for flexible molecular
maintenance and informatics. Bioinformatics, 27(1):55–62, 2011.
MR, RAC and CB developed the algorithms, MR and RAC implemented the code, MR performed
the experiments and collected data, MR, RAC, and CB wrote the paper.
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3.1 Introduction

Consider the case when we have a set M of n weighted points (or balls)

such that each ball B is represented as (c, r) with center c and radius r. Such a set

can represent a set of particles in a colloid, planets and stars in the galaxy, points on

a mesh, atoms of a molecule etc. Now, let us assume we want to compute functions

that depend on the location and weight of the points. Consider in particular the two

functions we mention below-

Integral with Decaying Kernel

FvdW =
∑
p∈M1

∑
q∈M2

(
ap,q

dist(p, q)12
− bp,q
dist(p, q)6

)
(3.1.1)

where ap,q and bp,q are constants that depend on the nature of points p and q, and

dist(p, q) is the Euclidean distance between the points. FvdW is a well known func-

tion that models the long range attraction and short range repulsion of atoms. Sim-

ilar functions are also used in collision detection in computer graphics and simula-

tions.

Functions with Distance Cutoffs

FRC =
∑
p∈M1

∑
q∈M2

wp,qν(p, q) (3.1.2)
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where wp,q is a constant that depend on the nature of points p and q, and ν(p, q) = 1

is 1 if dist(p, q) ≤ δ, otherwise ν(p, q) = 0. Such functions appear when we are

interested in measuring properties of the overlap region or contact region of two

sets of points (atom-atom contacts between molecules, regions of two meshes that

come close to each other etc.). See Figure 3.1(b) for an example.

Clearly, a naive approach would require O(n2) time to compute both of the

integrals mentioned above. However, in many cases, the number of pairs of points

for which ν(p, q) = 1 is going to be much smaller than n2. In such cases, we would

like to evaluate the functions much faster. It can be achived if we already knew

which pairs are close to each other, or given a single point p ∈ M1, identify its

neighbors in M2 faster than O(n).

It is not hard to see that if all the points are stored in a uniform grid-like data

structure, then given any point p, and a distance cutoff δ, one can quickly identify

the grid-cells which are within δ from the point p and then focus only on the points

inside those grid-cells (cf. Figure 3.1(c)). Though it leads to efficient neighborhood

searches, and can support updates (add/remove points) in constant time [92, 93],

such a data structure may require O(n3) space in the worst case.

Here, we present the Dynamic Packing Grid (DPG) – a space and time

efficient neighborhood data structure that maintains a collection of balls (atoms) in

3-space allowing a range of spherical range queries and updates for rapid scoring

of flexible protein-protein interactions.

The efficiency of the data structure results from the assumption that the cen-
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Figure 3.1: Neighborhood search in 2D. In (a), we show a collection of points
representing the centers of some atoms part of two separate molecules (in 2D), and
another set of points that represent the boundary of the molecules. The bound-
ary points which are close to the boundary of the other, are colored differently. A
function like FRC only depend on these points. In (b), we illustrate a typical neigh-
borhood search where we want to find all points within a δ distance from p. Finally,
in (c), a grid-based construction is shown where the shaded grid-cells ar the ones
that are within δ distance from p, and only points within those need to be checked
rigorously.

ters of two different balls in the collection cannot come arbitrarily close to each

other, which is a natural property of molecules. A consequence of this assump-

tion is that any ball in the collection can intersect at most a constant number of

other balls. On a RAM with w-bit words, our (DPG) data structure can report

all balls intersecting a given ball or within O (rmax) distance from a given point

in O (log logw) time with high probability (w.h.p.), where rmax is the radius of the

largest ball in the collection. It can also answer whether a given ball is exposed (i.e.,

lies on the union boundary) or buried within the same time bound. At any time the

entire union boundary can be extracted from the data structure in O (m) time in the

worst-case, where m is the number of atoms on the boundary. Updates (i.e., inser-
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tion/deletion/movement of a ball) are supported in O (logw) time (w.h.p.). The data

structure uses linear space.

We also report how DPG can be used to maintain different surface repre-

sentations of a molecule within the performance bounds mentioned above. An aug-

mented hierarchical version of (DPG) is also reported which fast approximations

of functions involving decaying kernels (as opposed to strict distance cutoffs), and

show that an application in molecular energetics calculation achieves significant

speedup compared to naive implementation, without small approximation error.

The rest of the chapter is organized as follows. We describe and analyze

the packing grid data structure in Section 3.2. We give some preliminaries in Sec-

tion 3.2.1, describe the layout of the data structure in Section 3.2.2, and describe

and analyze the supported queries and updates in Section 3.2.3. In Section 3.3.1,

we describe how DPG supports efficient maintenance of molecular surfaces and

in Section 3.3.3 we describe applications of hierarchical packing grids for solva-

tion energy computations. Some experimental results evaluating the performare of

the queries and updates are presented in Section 3.4.2, comparative performance

analysis for molecular surface maintenance are included in Section 3.4.3 and per-

formance in solvation energy calculations are presented in Section 3.4.4.

3.2 The Dynamic Packing Grid Data Structure

We describe the packing grid data structure for maintaining a setM of balls

in 3-space efficiently under the following set of queries and updates. By B = (c, r)

we denote a ball withcenter c and radius r.
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Queries.

1. INTERSECT( c, r ): Return all balls in M that intersect the given ball B =

(c, r). The given ball may or may not belong to the set M .

2. RANGE( p, δ ): Return all balls in M with centers within distance δ of point

p. We assume that δ is at most a constant multiple of the radius of the largest

ball in M .

3. EXPOSED( c, r ): Returns true if the ball B = (c, r) contributes to the outer

boundary of the union of the balls in M . The given ball must belong to M .

4. SURFACE( ): Returns the outer boundary of the union of the balls in M . If

there are multiple disjoint outer boundary surfaces defined by M , the routine

returns any one of them.

Updates.

1. ADD( c, r ): Add a new ball B = (c, r) to the set M .

2. REMOVE( c, r ): Remove the ball B = (c, r) from M .

3. MOVE( c1, c2, r ): Move the ball with center c1 and radius r to a new center

c2.

We assume that at all times during the lifetime of the data structure the following

holds.
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TIME COMPLEXITY

OPERATIONS
ASSUMING

tq = O (log logw),
tu = O (logw)

ASSUMING
tq = O (log log n),
tu = O

(
log n

log log n

)
RANGE( p, δ ) | INTERSECT( c, r ) |

EXPOSED( c, r )
(δ = O (rmax))

O (log logw) (w.h.p.) O (log log n) (w.h.p.)

SURFACE( ) O (#balls on surface) (worst-case)

ADD( c, r ) | REMOVE( c, r ) |

MOVE( c1, c2, r )
O (logw) (w.h.p.) O

(
log n

log log n

)
(w.h.p.)

ASSUMPTIONS: (i) RAM with w-bit Words, (ii) Collection of n Balls,
and (iii) rmax = O (minimum distance between two balls)

Table 3.1: Time complexities of the operations supported by the packing grid data
structure.

Assumption 3.2.1. If rmax is the radius of the largest ball in M , and dmin is

the minimum Euclidean distance between the centers of any two balls in M , then

rmax = O (dmin).

In general, a ball in a collection of n balls in 3-space can intersect Θ (n) other

balls in the worst case, and it has been shown in [67] that the boundary defined

by the union of these balls has a worst-case combinatorial complexity of Θ (n2).

However, if M is a “union of balls” representation of the atoms in a molecule,

then assumption 3.2.1 holds naturally [119, 261], and as proved in [119], in that

case, both complexities improve by a factor of n. The following theorem states the

consequences of the assumption.

Theorem 3.2.1. (Theorem 2.1 in [119], slightly modified) Let M = {B1, . . . , Bn}

be a collection of n balls in 3-space with radii r1, . . . , rn and centers at c1, . . . , cn.
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Let rmax = maxi {ri} and let dmin = mini,j {d(ci, cj)}, where d(ci, cj) is the Eu-

clidean distance between ci and cj . Also let δM = {δB1, . . . , δBn} be the collec-

tion of spheres such that δBi is the boundary surface of Bi. If rmax = O (dmin)

(i.e., Assumption 3.2.1 holds), then:

(i) Each Bi ∈ M intersects at most 216 · (rmax/dmin)3 = O (1) other balls in

M .

(ii) The maximum combinatorial complexity of the boundary of the union of the

balls in M is O
(
(rmax/dmin)3 · n

)
= O (n).

Proof. Similar to the proof of Theorem 2.1 in [119]. �

Therefore, as Theorem 3.2.1 suggests, for intersection queries and boundary con-

struction, one should be able to handleM more efficiently if assumption 3.2.1 holds.

The efficiency of our data structure, too, partly depends on this assumption.

3.2.1 Preliminaries

Before we describe our data structure we present several definitions in order to

simplify the exposition.

Definition 3.2.1 (r-grid and grid-cell). An r-grid is an axis-parallel infinite grid

structure in 3-space consisting of cells of size r × r × r (r ∈ R) with the root (i.e.,

the corner with the smallest x, y, z coordinates) of one of the cells coinciding with
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origin of the (Cartesian) coordinate axes. The grid cell that has its root at Cartesian

coordinates (ar, br, cr) (where a, b, c ∈ Z) is referred to as the (a, b, c, r)-cell or

simply as the (a, b, c)-cell when r is clear from the context.

Figure 3.2: The grid data structure and its parameters. In (a), we show an
uniform grid whose cells, lines and planes are indexed by integer coordinates. Note
that DPG does not maintain the entire grid, but only the non-empty components
(see text and Figure 3.3 for details). In (b), we provide and example 2D grid with
points in it, to demonstrate the intuitive meanings of dmin, rmax and the cell width
h (for instance, in Lemma 3.2.1, h = 2rmax.

Definition 3.2.2 (grid-line). The (b, c, r)-line (where

b, c ∈ Z) in an r-grid consists of all (x, y, z, r)-cells with y and z fixed to b and c,

respectively. When r is clear from the context the (b, c, r)-line will simply be called

the (b, c)-line.

Observe that each cell on the (b, c, r)-line can be identified with a unique integer,

e.g., the cell at index a ∈ Z on the given line corresponds to the (a, b, c, r)-cell in

the r-grid. See Figure 3.2(a).
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Definition 3.2.3 (grid-plane). The (c, r)-plane (where c ∈ Z) in an r-grid consists

of all (x, y, z, r)-cells with z fixed to c. The (c, r)-plane will be referred to as the

c-plane when r is clear from the context.

The (c, r)-plane can be decomposed into an infinite number of lines each identi-

fiable with a unique integer. For example, index b ∈ Z uniquely identifies the

(b, c, r)-line on the given plane. Also each grid-plane in the r-grid can be identi-

fied with a unique integer, e.g., the (c, r)-plane is identified by c. The proof of the

following lemma is straight-forward.

Lemma 3.2.1. Let M = {B1, . . . , Bn} be a collection of n balls in 3-space with

radii r1, . . . , rn and centers at c1, . . . , cn. Let rmax = maxi {ri} and let dmin =

mini,j {d(ci, cj)}, where d(ci, cj) is the Euclidean distance between ci and cj . Sup-

pose M is stored in the 2rmax-grid G (cf. Figure 3.2(b)). Then

(i) If rmax = O (dmin) (i.e., Assumption 3.2.1 holds) then each grid-cell in G

contains the centers of at most 64 · (rmax/dmin)3 = O (1) balls in M .

(ii) Each ball in M intersects at most 8 grid-cells in G.

(iii) For a given ball B ∈ M with center in grid-cell C, the center of each ball

intersecting B lies either in C or in one of the 26 grid-cells adjacent to C.

(iv) The number of non-empty (i.e., containing the center of at least one ball in

M ) grid-cells in G is at most n, and the same bound holds for grid-lines and

grid-planes.
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At the heart of our data structure is a fully dynamic one dimensional integer range

reporting data structure for word RAM described in [184]. The data structure in

[184] maintains a set S of integers under updates (i.e., insertions and deletions),

and answers queries of the form: report any or all points in S in a given interval.

The following theorem summarizes the performance bounds of the data structure

which are of interest to us.

Theorem 3.2.2. (proved in [184]) On a RAM with w-bit words the fully dynamic

one dimensional integer range reporting problem can be solved in linear space, and

w.h.p. bounds of O (tu) and O (tq + k) on update time and query time, respectively,

where k is the number of items reported, and

(i) tu = O (logw) and tq = O (log logw) using the data structure in [184]; and

(ii) tu = O (log n/log log n) and tq = O (log log n) using the data structure in

[184] for small w and a fusion tree [98] for large w.

The data structure can be augmented to store satellite information of size O (1) with

each integer without degrading its asymptotic performance bounds. Therefore, it

supports the following three functions:

1. INSERT( i, s ): Insert an integer i with satellite information s.

2. DELETE( i ): Delete integer i from the data structure.

3. QUERY( l, h ): Return the set of all 〈 i, s 〉 tuples with i ∈ [l, h] stored in the

data structure.
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3.2.2 Description (Layout) of the Packing Grid Data Structure

We are now in a position to present our data structure. Let DPG be the data struc-

ture. We represent the entire 3-space as a 2rmax-grid (see Definition 3.2.1), and

maintain the non-empty grid-planes (see Definition 3.2.3), grid-lines (see Defini-

tion 3.2.2) and grid-cells (see Definition 3.2.1) in DPG. A grid component (i.e.,

cell, line or plane) is non-empty if it contains the center of at least one ball in M .

The data structure can be described hierarchically. It has a tree structure with 5

levels: 4 internal levels (levels 3, 2, 1 and 0) and an external level of leaves (see

Figure 3.3). The description of each level follows.

The Leaf Level “Ball” Data Structure (DPG−1). The data structure stores the

center c = (cx, cy, cz) and the radius r of the given ball B. It also includes a

Boolean flag exposed which is set to true if B contributes to the outer boundary

of the union of the balls in M , and false otherwise. If another ball B′ intersects

B, it does so on a circle which divides the boundary δB of B into two parts: one

part is buried inside B′ and hence cannot contribute to the union boundary, and

the other part is exposed w.r.t. B′ and hence might appear on the union boundary.

The circular intersections of all balls intersecting B define a 2D arrangement A on

δB which according to Theorem 3.2.1 has O (1) combinatorial complexity. A face

of A is exposed, i.e., contributes to the union boundary, provided it is not buried

inside any other ball. Observe that if at least one other ball intersects B, and A has

an exposed face f , then each edge of f separates f from another exposed face f ′

which belongs to the arrangement A′ of a ball intersecting B. We store all exposed

faces (if any) of A in a set F of size O (1), and with each face f we store pointers to
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the data structures of O (1) other balls that share edges with f and also the identifier

of the corresponding face on each ball. Observe that if B does not intersect any

other balls then F will contain only a single face and no pointers to any other balls.

Figure 3.3: Hierarchical structure of DPG.

The Level 0 “Grid-Cell” Data Structure (DPG0). The “grid-cell” data structure

stores the root (see Definition 3.2.1) (a, b, c) of the grid-cell it corresponds to. A

grid-cell can contain the centers of at most O (1) balls in M (see Lemma 3.2.1).

Pointers to data structures of all such balls are stored in a set S of size O (1). Since

we create “grid-cell” data structures only for non-empty grid-cells, there will be at

most n (and possibly� n) such data structures, where n is the current number of

balls in M .

The Level 1 “Grid-Line” Data Structure (DPG1). We create a “grid-line” data
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structure for a (b, c)-line provided it contains at least one non-empty grid-cell. The

data structure stores the values of b and c. Each (a, b, c)-cell lying on this line is

identified with the unique integer a, and the identifier of each such non-empty grid-

cell is stored in an integer range search data structure RR as described in Section

3.2.1 (see Theorem 3.2.2). We augment RR to store the pointer to the correspond-

ing “grid-cell” data structure with each identifier it stores. The total number of

“grid-line” data structure created is upper bounded by n and possibly much less

than n.

The Level 2 “Grid-Plane” Data Structure (DPG2). A “grid-plane” data structure

is created for a c-plane provided it contains at least one non-empty grid-line. Similar

to the “grid-line” data structure it identifies each non-empty (b, c)-line lying on the

c-plane with the unique integer b, and stores the identifiers in a range reporting data

structure RR described in Section 3.2.1. A pointer to the corresponding “grid-line”

data structure is also stored with each identifier. The data structure also stores c.

The total number of “grid-plane” data structures created cannot exceed n, and will

possibly be much less than n.

The Level 3 “Grid” Data Structure (DPG3). This data structure maintains the

non-empty grid-planes of the 2rmax-grid in an integer range reporting data struc-

ture RR (see Section 3.2.1). Each c-plane is identified by the unique integer c, and

each such integer stored in RR is also accompanied by a pointer to the correspond-

ing “grid-plane” data structure. The “grid” data structure also stores a surface-root

pointer which points to the “Ball” data structure of an arbitrary exposed ball in M .
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We have the following lemma on the space usage of the data structure.

Lemma 3.2.2. Let M be a collection of n balls as defined in Theorem 3.2.1, and let

Assumption 3.2.1 holds. Then the packing grid data structure storing M uses O (n)

space.

Proof. The space usage of the data structure is dominated by the space used by the

range reporting data structures, the grid-cells and the “ball” data structures. Since

the range reporting data structures use linear space (see Theorem 3.2.2) and total

number of non-empty grid components (i.e., planes, lines and cells) is O (n) (see

Lemma 3.2.1), total space used by all such data structures is O (n). The grid cells

contain pointers to “ball” data structures, and since no two grid-cells point to the

same “ball” data structure, total space used by all grid-cells is also O (n). Each

“ball” data structure contains the arrangement A and the face decomposition F of

the exposed (if any) faces of the ball. The total space needed to store all such ar-

rangements and decompositions is O
(
(rmax/dmin)3 · n

)
(see Theorem 3.2.1) which

reduces to O (n) under Assumption 3.2.1. Thus the total space used by the data

structure is O (n). �

3.2.3 Queries and Updates

The queries and updates supported by the data structure are implemented as follows.
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3.2.3.1 Queries.

(1) RANGE( p, δ ): Let p = (px, py, pz). We perform the following steps.

i. Level 3 Range Query: We invoke the function

QUERY( l, h ) of the range reporting data structure RR under DPG3 (i.e.,

the level 3 “grid” data structure) with l = b(pz − δ)/(2rmax)c and h =

b(pz + δ)/(2rmax)c. This query returns a set S2 of tuples, where each tu-

ple 〈 c, Pc 〉 ∈ S2 refers to a non-empty c-plane with a pointer Pc to its level

2 “grid-plane” data structure.

ii. Level 2 Range Query: For each 〈 c, Pc 〉 ∈ S2, we call the range query func-

tion under the corresponding level 2 data structure with l = b(py − δ′)/(2rmax)c

and h = b(py + δ′)/(2rmax)c, where (δ′)2 = δ2 − (c− pz)2 if c − pz < δ,

and δ′ = rmax otherwise. This query returns a set S1,c of triples, where each

triple 〈 b, c, Pb,c 〉 ∈ S1,c refers to a non-empty ( b, c )-line with a pointer

Pb,c to its level 1 “grid-line” data structure. We obtain the set S1 by merging

all S1,c sets.

iii. Level 1 Range Query: For each 〈 b, c, Pb,c 〉 ∈ S1, we call the integer

range query function under the corresponding level 1 “grid-line” data struc-

ture with l = b(px − δ′′)/(2rmax)c and h = b(px + δ′′)/(2rmax)c, where

(δ′′)2 = δ2 − (b− py)2 − (c− pz)2 if δ2 > (b− py)2 + (c− pz)2, and

δ′′ = rmax otherwise. This query returns a set S0,b,c of quadruples, where
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each quadruples 〈 a, b, c, Pa,b,c 〉 ∈ S0,b,c refers to a non-empty ( a, b, c )-

cell with a pointer Pa,b,c to its level 0 “grid-cell” data structure. We obtain the

set S0 by merging all S0,b,c sets.

iv. Ball Collection: For each 〈 a, b, c, Pa,b,c 〉 ∈ S0, we collect from the level 0

data structure of the corresponding ( a, b, c )-cell each ball whose center lies

within distance δ from p. We collect the pointer to the leaf level “ball” data

structure of each such ball in a set S, and return this set.

The correctness of the function follows trivially since it queries a region in 3-space

which includes the region covered by a ball of radius δ centered at p. It is straight-

forward to see that the function makes at most O
(
π · (dδ/rmaxe+ 1)2) calls to a

range reporting data structure, and collects balls from at most O
(

4
3
π · (dδ/rmaxe+ 1)3)

grid-cells. Using Lemma 3.2.1 and Theorem 3.2.2, we conclude that w.h.p. the

function terminates in O
(
(δ/rmax)

2 · tq + ((δ + rmax)/dmin)3) time. Assuming

rmax = O (dmin) (i.e., Assumption 3.2.1) and δ = O (rmax), the complexity re-

duces to O (tq) (w.h.p.).

(2) INTERSECT( c, r ): LetB = (c, r) be the given ball. We perform the following

two steps.

i. Ball Collection: We call RANGE( c, r+rmax ) and collect the output in set S

which contains pointers to the data structure of each ball in M with its center

within distance r + rmax from c.
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(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 3.4: Top row: Level 3 Range Query. (a) Query region defined by the sphere
of radius δ at point p inside the level 3 grid, (b) The level 3 grid as a collection of
level 2 grid-planes, (c) and (d) Range reporting query returns the set of non-empty
grid-planes within the query region. Middle row: Level 2 Range Query. (a) On
each grid-plane, query region is defined by a circular slice of the sphere of radius
δ at point p, (b), (c) and (d) Range reporting query on such a grid-plane returns the
set of non-empty grid-lines within the query region. Bottom row: Level 1 Range
Query. (a) and (b) Query region in each grid-line is defined as an interval, (c) and
(d) For each grid-line, range reporting query returns the set of non-empty grid-cells

ii. Identifying Intersecting Balls: From S we remove the data structure of each

ball that does not intersect B, and return the resulting (possibly reduced) set.

We know from elementary geometry that two balls of radii r1 and r2 cannot

intersect unless their centers lie within distance r1 + r2 of each other. Therefore,
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step (i) correctly identifies all balls that can possibly intersectB, and step (ii) com-

pletes the identification. Step (i) takes

O
(
tq + (rmax/dmin)3) time w.h.p., and step (ii) terminates in O

(
(rmax/dmin)3)

time in the worst case. Therefore, under Assumption 3.2.1 w.h.p. this function runs

in O (tq) time.

(3) EXPOSED( c, r ): LetB = (c, r) be the given ball. We locateB’s data structure

by calling RANGE( c, 0 ), and return the value stored in its exposed field. Clearly,

the function takes O
(
tq + (rmax/dmin)3) time (w.h.p.) which reduces to O (tq)

(w.h.p.) under Assumption 3.2.1.

(4) SURFACE( ): The surface-root pointer under the level 3 “grid” data structure

points to the “ball” data structure of a ball B on the union boundary of M . We

scan the set F of exposed faces of B, and using the pointers to other exposed balls

stored in F we perform a depth-first traversal of all exposed balls in M and return

the exposed faces on each such ball. Let m be the number of balls contributing to

the union boundary of M . Then according to Theorem 3.2.1 the depth-first search

takes O
(
(rmax/dmin)3 ·m

)
time in the worst case which reduces to O (m) under

Assumption 3.2.1.

3.2.3.2 Updates.

(1) ADD( c, r ): Let c = (cx, cy, cz) and let c′u =
⌊

cu
2rmax

⌋
, where u ∈ {x, y, z}. We

perform the following steps.
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i. If M 6= ∅, let G be the grid data structure, otherwise create and initialize G.

Add input ball to M .

ii. Query the range reporting data structure G.RR to locate the data structure

P for the c′z-plane. If P does not exist create and initialize P , and insert c′z

along with a pointer to P into G.RR.

iii. Query P.RR and locate the data structure L for the (c′y, c
′
z)-line. If L does

not exist then create and initialize L, and insert c′y along with a pointer to L

into P.RR.

iv. Locate the data structure C for the (c′x, c
′
y, c
′
z)-cell by querying L.RR. Create

and initialize C if it does not already exist, and insert c′x and a pointer to C

into L.RR.

v. Create and initialize a data structure B for the input ball and add it to the set

C.S.

vi. Call INTERSECT( c, r ) and find the set I of the “ball” data structures of all

balls that intersect the input ball. Create the arrangement B.A using the balls

in I . The new ball may partly or fully bury some of the balls it intersects,

and hence we need to update the arrangement B′.A, the set B′.F and the

flag B′.exposed of each B′ ∈ I . The set B.F is created and B.exposed is

initialized using the information in the updated data structures in I . If the

surface-root pointer was pointing to a ball in I that got completely buried by

the new ball, we update it to point to B instead.
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Observe that the introduction of a new ball may affect the surface exposure of only

the balls it intersects (i.e., bury some/all of them partly or completely), and no other

balls. Hence, the updates performed in step (vi) (in addition to those in earlier

steps) are sufficient to maintain the correctness of the entire data structure. Steps

(i) and (v) take O (1) time in the worst case, and w.h.p. each of steps (ii), (iii) and

(iv) takes O (tq + tu) time. Finding the intersecting balls in step (vi) takes

O
(
tq + (rmax/dmin)3) time w.h.p., according to Theorem 3.2.1 creating and

updating the arrangements and faces will take O
(
(rmax/dmin)3 × (rmax/dmin)3) =

O
(
(rmax/dmin)6) time (w.h.p.). Thus the ADD function terminates in

O
(
tq + tu + (rmax/dmin)6) time w.h.p., which reduces to O (tu) (w.h.p.)

assuming rmax = O (dmin) (i.e., Assumption 3.2.1).

(2) REMOVE( c, r ): This function is symmetric to the ADD function, and has

exactly the same asymptotic time complexity. Hence, we do not describe it here.

(3) MOVE( c1, c2, r ): This function is implemented in the obvious way by calling

REMOVE( c1, r ) followed by ADD( c2, r ). It has the same asymptotic complexity

as the two functions above.

Therefore, we have the following theorem.
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Theorem 3.2.3. Let M be a collection of n balls in 3-space as defined in Theorem

3.2.1, and let Assumption 3.2.1 holds. Let tq and tu be as defined in Theorem 3.2.2.

Then the packing grid data structure storing M on a word RAM:

(i) uses O (n) space;

(ii) supports updates (i.e., insertion/deletion/movement of a ball) in O (tu) time

w.h.p.;

(iii) reports all balls intersecting a given ball or within O (rmax) distance from a

given point in O (tq) time w.h.p., where rmax is the radius of the largest ball

in M ; and

(iv) reports whether a given ball is exposed or buried in O (tq) time w.h.p., and

returns the entire outer union boundary ofM in O (m) worst-case time, where

m is the number of balls on the boundary.

In Table 3.1 we list the time complexities of the operations supported by our data

structure.

3.3 Applications of DPG in Molecular Modeling
3.3.1 Molecular Surface Maintenace Using DPG

In this section, we briefly describe applications of the packing grid data

structure for efficient maintenance of molecular surfaces.
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3.3.1.1 Maintaining van der Waals Surface of Molecules

For dynamic maintenance of the van der Waals surface of a molecule we

can use the packing grid data structure directly. Each atom is treated as a ball with

a radius equal to the van der Waals radius of the atom (see [30] for a list of van der

Waals radius of different atoms).

3.3.1.2 Maintaining Lee-Richards (SCS/SES) Surface

We can use the packing grid data structure for the efficient maintenance

of the Lee-Richards surface of a molecule under insertion/deletion/movement of

atoms. The performance bounds given in Table 3.1 remain unchanged. We maintain

two packing grid data structures: DPG and DPG’. The DPG data structure keeps

track of the patches on the Lee-Richards surface, and DPG’ is used for detecting

intersections among concave patches.

Before adding an atom to DPG, we increase its radius rs, where rs is the

radius of the rolling solvent atom. The DPG data structure keeps track of all solvent

exposed atoms, i.e., all atoms that contribute to the outer boundary of the union of

these enlarged atoms. Theorem 3.2.1 implies that each atom in DPG contributes

O (1) patches to the Lee-Richards surface, and the insertion/deletion/movement of

an atom results in local changes of only O (1) patches. We can modify DPG to

always keep track of where two or three of the solvent exposed atoms intersect, and

once we know the atoms contributing to a patch we can easily compute the patch in

O (1) time [16].

The Lee-Richards surface can self-intersect in two ways: (i) a toroidal patch
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can intersect itself, and (ii) two different concave patches may intersect [16]. The

self-intersections of toroidal patches can be easily detected from DPG. In order

to detect the intersections among concave patches, we maintain the centers of all

current concave patches in DPG’, and use the INTERSECT query to find the concave

patch (if any) that intersects a given concave patch.

3.3.2 Hierarchical Packing Grids for Mixed Resolution Surfaces

We construct a k-level hierarchical packing grid data structure HPG(k) as

follows. For i ∈ [0, k − 1], level i contains a packing grid data structure DPG(i)

with parameters 〈r(i)
max, d

(i)
min〉 for which Assumption 3.2.1 holds. We also assume

that for i ∈ [0, k − 2], r(i+1)
max = Θ

(
r

(i)
max

)
and d(i+1)

min = Θ
(
d

(i)
min

)
. The level 0

data structure DPG(0) contains the atomic level union of balls representation of the

given molecule M . For i ∈ [1, k − 1], DPG(i) contains a coarser representation of

the molecule represented in DPG(i−1). Each ball in DPG(i) represents a grouping

several neighboring balls in DPG(i−1). A single doubly linked list links the parent

ball in DPG(i) to all its child balls in DPG(i−1). Additionally, each child ball main-

tains a direct pointer to its parent ball. Thus given the center of any ball in DPG(i),

the set of all its children in DPG(i−1) can be found in O (tq + l) time w.h.p., where

l is the number of children of the given ball, and tq is as defined in Theorem 3.2.2.

We assume that each ball in DPG(i−1) has at most one parent in DPG(i), and thus

the balls in HPG(k) form a forest. Now in order to create a mixed resolution sur-

face of the given moleculeM , we start at coarse resolution, say at some level j > 0,

and copy DPG(i) to an initially empty packing grid DPG with the same parameters.
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Now we selectively replace balls in DPG with finer resolution balls from the ap-

propriate level in HPG(k), and we keep replacing until we get the required mixed

resolution representation of M in DPG.

3.3.3 Energetics Computation using DPG

Free energy computations is an integral component in molecular dynam-

ics applications, where it is required to estimate the force fields and hence infer

the motion paths. The difference of free energy between a candidate complex and

the individual molecules is often used to filter false positives in molcular docking

applications. But computing the energy efficiently with acceptable degree of accu-

racy has been a bottleneck in such applications. But leveraging hierarchical DPG,

energetics computation can be performed efficiently.

Generally, the solvation energy Gsol of a molecule is decomposed into three

components, namely, Gcav - the energy to form cavity in the solvent, Gvdw - the

solute-solvent van der Waals interaction energy, and Gpol - the polarization energy

or the electrostatic potential energy change due to the solvation.

Gsol = Gcav +Gvdw +Gpol (3.3.3)

The first two terms Gcav and Gvdw in the sum above are linearly related to

the solvent accessible surface area ΩSAS of the molecule.
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Gcav +Gvdw = γ · ΩSAS (3.3.4)

The last term, Gpol, can be approximated using the Generalized Born (GB)

theory as follows [245].

Gpol = −τ
2

∑
i,j

qiqj√
r2
ij +RiRje

−
r2
ij

4RiRj

, (3.3.5)

where τ = 1− 1
ε
, and Ri is the effective Born radius of atom i (see Figure 3.5(a)).

The Ri’s can be approximated as follows.

R−1
i =

1

4π

∫
Γ

(r− xi) · n(r)

|r− xi|4
dS, (3.3.6)

where Γ is the boundary of the molecule, n(r) is the normal of the molecular sur-

face at r pointing out of the molecule, and xi is the center of atom i. A discrete

approximation of R−1
i based on equation 3.3.6 is as follows [22].

R−1
i =

1

4π

N∑
k=1

wk
(rk − xi) · n(rk)
|rk − xi|4

, (3.3.7)

where the rk’s are N carefully chosen integration points on the boundary of the

molecule, and wk is a weight assigned to rk in order to achieve higher order of

accuracy for small N (see Figure 3.5(b)).
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(a) (b)

Figure 3.5: (a) Gpol is computed based on Born radii and charges of each atom pair,
(b) Born radii of an atom can be approximated based on integration points, shown
as red dots, sampled on the surface

The non-polar terms Gcav and Gvdw can be computed directly from the sol-

vent accessible surface (SAS) area ΩSAS of the molecule (see equation 3.3.4). The

SAS of the molecule can be extracted in O (m̃ logw) (w.h.p.) time and O (m̃) space

using a DPG data structure, where m̃ is the number of atoms in the molecule. The

DPG data structure outputs the SAS as a set of spherical (convex and concave) and

toroidal patches, and we add up the area of each patch in order to calculate ΩSAS.

In order to approximate the polar term Gpol first we need to approximate

the Born radius Ri of each atom i, the details of which is presented in Section

3.3.3.1. Assuming that m̃eδ is an upper bound on the number of atoms within dis-

tance δ̃ from any given point in space, the time spent for computing all Ri’s is

O
(
N log logw +Nm̃eδ) which reduces to O (N log logw) (w.h.p.) since m̃eδ is a

constant (though could be quite large) for constant δ̃. Once all Ri’s are computed

Gpol can be computed using equation 3.3.5 in O (m̃2) time in the worst case. The

space usage is O
(
m̃+Nm̃eδ) which is O (m̃+N) for constant δ̃.
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3.3.3.1 Discrete Approximation of Born Radii

We use the discrete approximation equation 3.3.7 for computing Ri. Given

the solvent excluded surface (SES) of the molecule, it has been shown in [21] how

to choose N integration points rk and weights wk optimally in order to reduce the

error in approximation. Figure 3.6 shows the distribution of integration points on

the surface of 1MAG.PDB. We compute the SES using the A-spline based method

introduced in [288], produce a quality improved meshing of the surface using the

method of [286] and then sample integration points and their weights following

[21].

Observe that direct computation ofR−1
i using Equation 3.3.7 requiresO(n2)

time, where n is the number of atoms and assuming that the number of sampled

integration points is alsoO(n). However, since the terms in the summation diminish

very fast with the increase of distance, distance cutoffs can be used to approximate

it. Given, the set of atoms A, the set of integration points Q sampled on the surface,

and two user defined parameters α, δ > 0, for every integration point q ∈ Q, we

place each atom a ∈ A in one of the following three categories based on the distance

d between q and the center of a: (1) near (d ≤ δ), (2) mid-way (δ < d ≤ αδ), and

(3) far (αδ < d). Figure 3.7 shows an example in 2D. For the near categories,

the computation is performed exactly. For the mid-way category, clusters of atoms

and integration points are viewed as pseudo atoms and pseudo-integration points

and hence a coarse computation is performed. And, for the far category a single

average distance is used for all pair of clusters.

To cluster the atoms and integration points, first all atoms and integration
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(a) (b)

(c)

Figure 3.6: Gaussian integration points (c) on the surface of nuclear transport factor
2 (1A2K) computed after generating a smooth surface (b) from the collection of
balls model (a)

points are inserted into two separate (DPG) data structures. Let us denote them as

Pa and Pi respectively. The size of the cells for both are set to δ. Now, each cell of

the two (DPG)s contains a set of atoms (or integration points). Hence, it is natural

to consider each cell as a cluster. So, we use a constant-time cell-membership query

for each cell to get the list of atoms (or integration points), and compute their aver-

age center. For integration points we additionally need to compute the approximate

normals. The approximate normal of the cluster is defined as a weighted sum of

the normals of each integration point in the cluster. Then, each cluster is viewed
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(a) (b)

Figure 3.7: (a) A simple 2D example depicting definition of near, medium and far
atoms (centers shown as green dots) from a particular integration point xi. In the
example, 2 atoms are near, 7 are medium and 3 are far. (b) After cluster using hi-
erarchical (DPG), each cell contains a pseudoatom (centers shown as blue circles).
Now 2 atoms are near, 3 clusters are medium and 2 clusters are far

as a pseudoatom (or pseudo-integration point) and inserted into separate (DPG)s,

denoted P′a and P′i. RANGE queries are used to identify the near, mid-way and

far atoms/pseudoatoms and their partial contribution to the sum are updated based

on their distance category. Finally, R−1
i is performed by summing up the partial

contributions of each atom and pseudoatom in Pa and P′a.

3.3.4 Maintenance of Flexible Molecules

Suppose we are given a flexible molecule decomposed into several (mostly)

rigid domains which interact either through connected chain segments or large in-

terfaces. We refer to these chain segments and interfaces as connectors. Domains

may move with respect to each other through motions applied to the connectors.

Two domains connected by at least one connector may undergo bending motion ap-

plied to some hinge point around some hinge axis. If they are connected by only one

connector, a twisting motion can also be applied to the connector by updating tor-
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sion angles along its backbone. If two domains share a large interface area they may

undergo a shearing motion with respect to each other. However, though domains

are mostly rigid they may have flexible loops and side-chains on their surfaces.

We maintain a separate packing grid data structure Pi for each domain Di.

If two domains Di and Dj are connected and i < j, the set Sij of all connectors

between these two domains are included in Pi, and a transformation matrix Mij is

kept with Pi that describes the exact location and orientation of the grid structure of

Pj with respect to that of Pi. Whenever some motion is applied to the connectors in

Sij , we update Pi in order to reflect the changes in the locations of the atoms in these

connectors, and also update Mij in order to reflect the new relative position and ori-

entation of Pj with respect to Pi. Hence such an update requires O (1 +mij logw)

time (w.h.p.), where mij is the number of atoms in the connectors in Sij . We defer

the tests to check whether any two domains intersect due to these movements un-

til we need to construct the surface of the entire molecule in response to a surface

query. At that point we extract the surface atoms from each Pi and insert them into

an initially empty packing grid data structure P after applying necessary transfor-

mations. Thus generating the surface of the entire molecule requires O (m̂ logw)

time (w.h.p.), where m̂ is the sum of the number of atoms on the surface of each

domain. If we need to update the conformation of a flexible loop or a side-chain

on the surface of some domain Di, we directly update the locations of the atoms

affected by this change in Pi. Such an update requires O (m̃ logw) time (w.h.p.),

where m̃ is the number of atoms affected. Therefore, we have the following lemma.

Lemma 3.3.1. The surface of a flexible molecule decomposed into (mostly) rigid

70



domains can be maintained using packing grid data structures so that

(i) updating for a bending/shearing/twisting motion applied between two do-

mains takes O (1 +m logw) time (w.h.p.), where m is the number of atoms

in the connectors between the two domains;

(ii) updating the conformation of a flexible loop or a side-chain on the surface

of a domain takes O (m̃ logw) time (w.h.p.), where m̃ is the number of atoms

affected by this change; and

(iii) generating the surface of the entire molecule requires O (m̂ logw) time (w.h.p.),

where m̂ is the sum of the number of atoms on the surface of each domain.

3.4 Results

This section presents and analyzes the performance of the (DPG) data struc-

ture. After discussing the implementation details and the testing platform in Section

3.4.1, the performance of the basic functionalities of (DPG) are reported in Section

subsec:performance. Sections 3.4.3 and 3.4.4 respectively analyzes performance of

(DPG) in molecular surface maintenance and energetics calculation.

3.4.1 Implementation Details

In our current implementation, instead of the 1D integer range-reporting

data structure presented in [184], we have implemented a much simpler data struc-

ture that supports both updates and distance queries in expected O (logw) time and
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uses linear space [75]. Since w is usually not more than 64, for most practical pur-

poses a O (logw) query time should be almost as good as O (log logw) time. This

data structure builds on binary search trees, dynamic perfect hashing, and y-fast

trees [272]. However, instead of dynamic perfect hashing we used “cuckoo hash-

ing” [209] since it is much simpler, and still supports lookups in O (1) worst-case

time, and updates in expected O (1) time.

In the following section, we report the results on the performance of our

implementation of the packing grid data structure for the basic queries and updates.

All experiments are performed on a 3 GHz 2×dual-core (only one core was used)

AMD Opteron 2222 processor with 4 GB RAM. And, in Section 3.3.3.1, results of

using hierarchical DPG to approximate born radii for solvation energy computation

is reported.

3.4.2 Performance Analysis of Updates and Queries

To measures the performance of the update and query functions of DPG,

we use more than 180k quadrature points, generated for energetics computations by

sampling uniformly at random on the surface of PSTI (a variant of human pancreatic

trypsin inhibitor: 1HPT.pdb) after protonation using PDB2PQR [3]. These points

were randomly partitioned into four equal groups. Group 1 was first inserted into

DPG and range queries were performed from each atom center of the molecule to

report all quadrature points lying within a given distance from the center. Average

running time was measured after executing each query multiple times. The same

experiment was carried out with query distances 2, 4, 8 and 16 . After running
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QUADR.
POINTS

QUERY
DISTANCE

(Å)
AVG. TIME (MS) / QUERY

AVG. # POINTS RETURNED
/ QUERY

AVG. # POINTS RETURNED
/ MS

45, 654 2 | 4 | 8 | 16 0.311 | 0.566 | 1.420 | 3.379 118 | 775 | 4, 466 | 22, 839 379 | 1, 367 | 3, 144 | 6, 758
91, 309 2 | 4 | 8 | 16 0.588 | 1.139 | 2.801 | 6.158 225 | 1, 623 | 9, 284 | 44, 518 382 | 1, 425 | 3, 314 | 7, 229

136, 963 2 | 4 | 8 | 16 0.973 | 1.845 | 4.436 | 9.572 329 | 2, 435 | 14, 496 | 70, 016 338 | 1, 320 | 3, 268 | 7, 314

182, 618 2 | 4 | 8 | 16 1.304 | 3, 219 | 5.855 | 12.661 439 | 3, 401 | 19, 307 | 93, 443 377 | 1, 314 | 3, 297 | 7, 381

Table 3.2: Performance of the QUERY function of packing grid. We take a molecule
(1HPT: a variant of human pancreatic trypsin inhibitor) consisting of about 850
atoms after protonation using PDB2PQR [3], and sample approximately 184,000
quadrature points uniformly at random on its surface. We randomly assign each
point to one of four groups and thus obtain four approximately equal-sized groups.
We then run queries from the 800 atom centers (100 queries per atom) on group 1;
merge groups 1 and 2, and run queries on this merged group; merge groups 1, 2 and
3, and run queries again; and finally run queries on the entire set.

experiments with group 1, group 2 was also inserted into the data structure and

the same set of experiments were performed again. In the same manner groups 3

and 4 were also added subsequently so that the results gives a clear measure of the

scalability of the data structure. Table 3.2 shows the results of this experiment. The

time required is O (logw +K) where K is the size of the output or in this case, the

number of points returned. The fifth column of the table shows that, as the point set

becomes denser, the efficiency of the data structure remains almost the same.

Table 3.3 reports the performance of update functions of DPG’s range re-

porting data structure. Four different macromoleculeswere used, and for each of

them all atoms were first randomly inserted into the data structure followed by the

random deletion of all atoms. The reported insertion and deletion times are aver-

ages of four such independent runs. The average time for a single insertion/deletion

was never more than 5 µs.
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MOLECULE NUMBER INSERT DELETE
(PDB FILE) OF ATOMS Total Average Total Average

Time (ms) Time (µs) Time (ms) Time (µs)
GroEL (1GRL) 29,274 97 3.3 118 4.0

RDV P8 (1UF2: Chain P) 193,620 746 3.9 846 4.4
RDV P3 (1UF2: Chain A) 459,180 1,813 3.9 2,094 4.6

Dengue (1K4R) 545,040 2,176 4.0 2,432 4.5

Table 3.3: Insertion and deletion times of our current packing grid implementation.
The results are averages of 4 runs. In each run, all atom centers are randomly
inserted into the data structure followed by random deletion of all atom centers.

Figure 3.8: RDV capsid protein P3 chain A. The entire structure generated by ap-
plying all sixty transformations is rendered in transparent green. The chains gener-
ated by the first four transformations are rendered opaque and in atom-based color-
ing.

3.4.3 Performance of Molecular Surface Maintenance

We compared the performance of DPG with the 3D hashing used in [92,

93] in producing and maintaining molecular surfaces. As our experimental setup

we used the same implementation of 3D arrangement and surface generation [93],

but switched between the two different range query data structures. We measured

the space and time requirements for generating the surface of various molecules

and macromolecules. In addition to the molecules used in the experiments of [92,
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93], we ran our experiments on some viruses and ribosomes we are interested in.

To verify scalability, multiple chains of the same protein were inserted. For virus

capsids as multiple chains are inserted, not only the number of atoms increases

but also the overall structure becomes sparser. For example, Figure 3.8 shows that

though a single chain is dense, if four chains are considered together then their

bounding volume becomes sparse. The results of this experiment are reported in

Table 3.4. From the table, one can verify that the space requirement of the DPG

range query data structure is linear in the number of atoms. Also, its running times

are comparable with that of 3D hash while using much less memory. The difference

in space requirement becomes more pronounced for larger and sparser structures.

Though 3D hash performs insertions and queries in optimal constant time, using

too much memory can adversely affect its running time when the set of atoms is

sparse as in virus capsids. For example, in the case of RDV P3 with 4 chains, 3D

hash operations run slower than DPG range reporting operations. We believe that

this slowdown is due to page faults caused by excessive space requirement of 3D

hash.

3.4.4 Performance of Born Radii and Polarization Energy Calculation

The approximation scheme described in the Section 3.3.3.1 was applied to

compute the Born Radii for 60 complexes of the ZDock Benchmark 2.0. Then

these approximate Born radii were used to compute the polarization energy GPol.

For each complex, the approximation performance was tested by comparing the

results and the speed with an exact implementation of the discrete formulation of
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MOLECULE NO. OF NO. OF NUMBER OF CELLS TIME (SEC)
(PDB FILE) CHAINS ATOMS DPG 3D hash DPG 3D hash

Trypsin Inhibitor (4PTI) 1 454 196 1,089 0.58 0.54
Carbonic Anhydrase I (1BZM) 1 2,034 856 3,360 2.73 2.58

Fasciculin2 with 1 4,116 1,726 8,568 6.20 5.70
Acetylcholinesterase (1MAH)
Anthrax Lethal Factor with 1 5,614 2,389 16,456 8.52 8.13

MAPKK2 (1JKY)
RNA Polymerase II (1I3Q) 1 11,114 4,682 45,177 17.36 16.23

Glutamine Synthetase
(2GLS)

1 3,636 1,444 9,177 5.43 5.06
5 18,180 7,275 41,400 37.10 34.80

Nicotinic Acetylcholine Receptor
(2BG9)

1 2,991 1,199 10,752 4.44 4.29
5 14,955 6,027 31,200 24.31 22.95

Rice Dwarf Virus (RDV) P8
(1UF2: Chain P)

1 3,227 1,348 9,261 4.47 4.23
2 6,454 2,739 1,124,040 9.23 8.56
3 9,681 4,115 2,506,480 15.17 14.31
4 12,908 5,467 4,426,110 19.36 18.14
5 16,135 6,848 4,426,110 30.79 30.20
6 19,362 8,224 6,052,800 35.65 34.42
7 22,589 9,605 6,052,800 40.28 38.86
8 25,816 10,981 6,332,160 45.22 44.44

Rice Dwarf Virus (RDV) P3
(1UF2: Chain A)

1 7,653 3,229 38,760 10.99 10.23
2 15,306 6,458 927,442 22.73 21.44
3 22,959 9,739 1,992,747 40.48 39.62
4 30,612 12,985 2,591,700 119.28 128.37

Dengue Virus
(1K4R: Chains A & B)

2 6,056 2,622 20,706 8.46 7.71
4 12,112 5,237 138,600 17.56 16.52
6 18,168 7,846 333,060 33.73 32.62

Table 3.4: Comparison of the performance of the 3D range reporting data structure
used by DPG, and the 3D hash table used in [93]. The same 3D arrangement code
was used in both cases [93]. Table shows the comparative running times and the
space requirement (in terms of the number of cells used) for surface generation of
different molecules. To verify scalability, molecules of varying sizes and in some
cases, multiple chains were used. To generate multiple copies of the molecule we
used the transformation matrices given in the corresponding PDBs (e.g., to generate
k copies we used the top k matrices).

Born Radii. Three different approximations were performed by varying the D and

M parameters, to understand the accuracy/speed tradeoff. In our results, we shall
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refer to them as coarser, medium and finer approximations.

Figure 3.9(a) shows that the average error is between 5−10% for most of the

complexes and it is higher than 20% for only 3 complexes. But interestingly, Figure

3.9(b) shows that even with Born Radii containing 10% or more error, the polariza-

tion energy can be computed very accurately. Only 7 complexes have more than 2%

error, and even the maximum error is less than 9%. So, the approximation is quite

suitable and accurate enough to be used in practice. Another interesting aspect to

notice in both Figure 3.9(a) and 3.9(b) is that, the errors consistently decrease for

finer approximations.

Figure 3.9(c) shows the speedup gained with respect to using the exact

computation. The approximation method consistently achieves 10 times or more

speedup. Also, it is clear that finer approximation result is less speedup. So Figure

3.9(d) plots the speedup/error to compare the trade-offs and identify which level of

approximation is most suitable. Note that the values on the y axis are not normal-

ized, so the plot is only useful in comparing the different level of approximation.
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(a) (b)

(c) (d)

Figure 3.9: (a) Comparison of the approximation errors for Born Radii computation
at various levels of approximation. Clearly, finer approximation scheme has consis-
tently better accuracy than others and has an average error of 9.83 over the entire set
of complexes. (b) Comparison of the approximation errors for Gpol computation at
various levels of approximation. The average error over all complexes is only 1.43.
Also, finer approximation scheme has consistently better accuracy than others. (c)
Comparison of the speedup (with respect to the exact implementation) for Born
Radii computation at various levels of approximation. On an average, DPG based
approximation is more than 10 times faster. Also, notice that coarser approximation
is consistently faster than finer ones. (d) Comparison of the speedup/error tradeoff
(higher ratio is favorable) for Born Radii computation at various levels of approx-
imation. Better trade-off is achieved for coarser models. But the actual choice
should depend on the application.
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Chapter 4

Dynamic Construction of Multi-resolution Smooth
Surface Representation of Molecules

We report the Dynamic Adaptive Grid data structure [207] which adaptively

subdivides space to provide higher resolution sampling near the boundary (surface)

of a molecule with n atoms in O(n log n) time. It can support any surface ap-

proximation as long as it is expressed as a level set of a volumetric function. Our

implementation includes the van der Waals surface, the solvent accessible surface

(SAS), and the solvent excluded surface (SES) all of which requires the evaluation

of an anlytical signed distance function at each gridpoint, and a faster Gaussian

integration based surface approximation. This grid-based approach prodives si-

multaneous maintenance of molecules in atomic, smooth surface and volumetric

representations, making it applicable for a wide range of applications. Also, exper-

iments on a large set of proteins showed that our algorithm runs faster and requires

less memory than regular uniform grid-based approaches. Finally, when an atom is

moved (added or removed), the surface can be dynamically and locally updated by

our algorithm inO(log n) time. Experiments showed that the constant hidden in the

O(log n) update is not negligible, and dynamic updates are profitable if fewer than

10% of the atoms are moved in a step, otherwise reconstruction of the entire grid is

faster. This indicates that, in many applications, for example in docking and struc-

79



ture refinement, where only a fraction of the atoms need to be updated frequently,

the dynamic algorithm we report here is beneficial.

4.1 Introduction

Probably the simplest model for molecules is as a collection of atoms, each

atom represented as hard spheres, with radii equal to their van der Waals radii.

The boundary of this arrangement of spheres is a possible surface representation

and is usually referred to as the van der Waals Surface (vdW). Lee and Richards

[157] proposed the Solvent Accessible Surface (SAS) as the boundary of the region

which is accessible for solvent molecules. It is modeled as the locus of the center

of a water molecule, considered as a sphere with radius 1.4Å, as it rolled along

the protein surface. While both of these models are sufficient for visualization

purposes, they are not suitable for simulations and energetics computations that

require numerical integrations over the surface, since it contains singularities at the

sphere-sphere intersections. We need smooth surfaces for such applications.

Richards [213] proposed a model commonly known as the Solvent Contact

Surface (SCS), or Solvent Excluded Surface (SES), as the boundary of the volume

not penetrated by a solvent molecule. This surface is composed of convex patches

where the probe touches the atom surfaces, concave spherical patches when the

probe touches more than 2 atoms simultaneously and toroidal patches when the

probe rolls between two atoms. An even smoother representation is to represent

each atom using a Gaussian kernel whose mean is at the center of the atom [46, 50,

78, 110, 111]. A volumetric function is defined over the entire space as a summation
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Figure 4.1: Different surface representations for the same collection of atoms. The
vdW and SAS surfaces are non-smooth and represents each atom as a hard sphere
with radius r and r + rp respectively, where r is the van der Waals radius of the
atom, and rp is the radius of the solvent (1.4Åin the case of water). The SES is a
smooth surface, where the singuralities of the vdW surface are removed by using
toroidal patches to cover pairwise intersections, and concave patches to cover 3-way
or higher intersections of the vdW spheres. Finally the Gaussian surface is defined
as a level set of a volumetric function defined as a sum of Gaussian kernels placed
at the centers of the atoms.

of these Gaussian kernels, and a level set of this volumetric function is considered

the molecular surface, usually called the Gaussian Molecular Surface (GS). Some

variations on the Gaussian formulation were discussed in [85, 103, 280]. Figure 4.1

shows examples for each of the four representations we discussed here.

Since Richards introduced the SES definition, a number of techniques have

been devised to compute the surface, for both static and dynamic cases, and using
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both implicit and explicit representations. Connolly introduced two algorithms to

compute the surface. First, a dot based numerical surface construction and second,

an enumeration of the patches that make up the analytical surface (See [71]). In

[264], the authors describe a distance function defined over a grid for computing

surfaces of varying probe radii. Our data structure contains approaches similar to

their idea. A number of algorithms were presented using the intersection informa-

tion given by voronoi diagrams and the alpha shapes introduced by Edelsbrunner

[87], including parallel algorithms in [261] and a triangulation scheme in [4]. SES

based on arrangment of spheres for both static and dynamic cases were reported in

[92, 93]. Another computation of SES is described in [221], using Reduced sets,

which contains points where the probe is in contact with three atoms, and faces

and edges connecting such points. Non Uniform Rational BSplines ( NURBs ) de-

scriptions for the patches of the molecular surfaces are given in [18], [17] and [19].

You and Bashford in [279] defined a grid based algorithm to compute a set of vol-

ume elements which make up the Solvent Accessible Region. Another grid-based

algorithm using 2D arrangment of circles was reported in [24].

Various modifications of the Gaussian kernels and their effects were ana-

lyzed in [85, 103, 280]. Recently, Zhang et al. considered representing the molecu-

lar surface as a level set of a high order polynomial and showed that the additional

degrees of freedom available from such a model can be used to satisfy user-defined

constrains and quality metrics for the molecular surface [20]. In this paper, we also

report that the prevalent choice of Gaussian parameter blobbiness and isovalue to

be 2.3 and 1.0 respectively does not always lead to surfaces close to the SES model.
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We found that the choice of the parameters depend on the property of the molcule

one is interested in. For example, to get a better estimate of the surface area, small

blobbiness (1.0-1.2) with large isovalue (1.8-2.2) is required.

In many applications such as docking and pairwise alignment of molecules

[23, 61, 65, 151], a volumetric/grid representation is more amenable for applying

FFT-based fast computations. So, in this paper we first show that each of the four

surface types can be expressed as level sets of volumetric functions and develop a

data structure and algorithms to support and maintain atomic, smooth surface and

volumetric representation of a molecule simultaneously. Additionally, our octree

based scheme allows one to sample/construct the surface at multiple resolutions

with provable approximation errors. Note that other existing fast approximation

algorithms like [269–271] do not provide theoretical error bounds.

4.2 Molecular Surfaces as Level Sets

Given a set of atoms M = {ai, . . . , an}, where the center and radius of each

atom is ci and ri, we define a volumetric function ΦM(x) : R3 7→ R and use its

iso-contours Γ (ΦM , v) = {x|ΦM(x) = v}, where v is a scalar, to provide a family

of molecular surfaces. In the following, we analyze three specific cases.

4.2.1 Level Set of Sum of Gaussian Kernels

Define ΦM
GS(x) as follows-
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ΦM
GS(x) =

∑
i

e
−β(1− ‖ci−x‖2

r2
i

)
(4.2.1)

where β is called the blobbiness parameter, which controls the width (or the decay

rate) of the Gaussian kernel. Different choices of blobbiness and isovalues v would

lead to different surfaces, not only in terms of the area/volume, but also in terms

of topology. Traditionally, one chooses a β and v such that the resulting isosurface

approaches the vdW or SES surface.

Figure 4.2: The different molecular surfaces and regions are shown for a 3 atom
model in 2D. The SAS surface is the locus of the center of the rolling probe sphere.
The VDW surface is the exposed union of spheres representing atoms with their
van der Waals radii and contains the VDW volume. The lower side of the rolling
probe defines the smooth SES which contains parts of the VDW surface and reen-
trant patches. We also define the SAS volume as the region between the SAS and
SES. The region between the SAS and VDW volumes is later refered to as the SES
volume.

4.2.2 vdW Surface as a Level Set

Define ΦM
vdW (x) as follows-

ΦM
vdW (x) = sMvdW (x)δMvdW (x) (4.2.2)
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where sMvdW (x) is a sign function indicating whether the point x is inside or outside

the vdW sphere of any atom. In other words, sMvdW (x) = 1 if ∃i‖ci−x‖2 ≤ r2
i , and

−1 otherwise. And δMvdW (x) is the shortest distance from the point x to the vdW

sphere of any atom, in other words, δMvdW (x) = mini|‖ci − x‖ − ri|.

Functions of this form are called signed distance functions. Note that the

Γ (ΦM
vdW , 0) defined the vdW surface.

4.2.3 SAS and SES Surfaces as Level Sets

Since, the definitions of both SAS and SES depends on rolling a solvent

molecule, perhaps it comes as no surprise that both can be defined as level sets of

the same volumetric function defined as follows-

ΦM
SAS(x) = sMSAS(x)δMSAS(x) (4.2.3)

where sMSAS(x) is a sign function indicating whether the point x is inside or outside

the solvent enlarged sphere of any atom. In other words, sMSAS(x) = 1 if ∃i‖ci −

x‖ ≤ (ri + rp), and −1 otherwise. And δMSAS(x) is the shortest distance from the

point x to the SAS surface. Computing δMSAS(x) is not trivial and is described in the

next subsection.

• Γ (ΦM
SAS, 0) defines the SAS surface.

• Γ (ΦM
SAS, rp) defines the SES surface.
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See Figure 4.2 for 2D and 3D examples of the vdW, SAS and SES surfaces for an

intuitive understanding of these particular signed distance functions and the chosen

iso-values.

4.2.3.1 Computing Signed Distance Function ΦM
SAS(x) from the SAS

Note that, we do not really have an analytical representation of the SAS,

and hence cannot compute the distance δMSAS(x) directly. We do however, have

analytical representation of the SAS for individual atoms. Here we want to compute

δMSAS(x) using only local per atom definitions of the SAS.

Figure 4.3 provides an example that shows the complexity of computing

δMSAS(x) using local information only. In that 2D example, we see that the SAS

boundary of individual atoms gets buried when two or more atoms intersect and

hence do not contribute to the SAS boundary of the entire molecule. As such, if the

closest point on the molecular SAS, from any point x may not be the closest point

on the atomic SAS from the same point. We need to consider several cases. First

we define some regions of the intersections of the spheres.

• Cone of intersection If the SAS boundaries of two atoms ai and aj intersect,

then letCij define the circle of intersection of the spheres. Then we define two

infinite cones with apexes at ci and cj and going throughCij . The intersection

of these cones are defined as CIij . A 2D anlog of this can be seen in 4.3 as

the shaded quadrilateral. Note that for any point x inside CIij , the closest

boundary point, not buried by ai or aj , must lie on Cij .

86



Figure 4.3: A 2D example with only 2 atoms showing that multiple cases should be
considered when computing distance to the solvent accessible surface (SAS). The
point p1 lies inside the SAS of only one atom, and the its closest point on the SAS
is simply the closest point on the atom. But in case when the point lies within the
intersection region of 2 atoms (eg. p2, the closest point on the SAS is no longer the
closest point on either atom (since that closest point is not part of the SAS, but is
actually buried inside the SAS). In this case, the closest point must be chosen from
the intersection of the two atoms.

• Tetrahedron of intersection When 3 spheres ai, aj and ak have a common

intersection, then common region is like a trigon, three spherical patches with

converging onto exactly 2 points of intersections tijk1, and tijk2. Then we

define two tetrahedrons Tijk1 = cicjcktijk1 and Tijk2 = cicjcktijk2 as the

tetrahedrons of intersection. For any point inside Tijk1, the closest boundary

point, not buried by ai, aj or ak, is exactly tijk1; and similarly for Tijk2.
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Let exposedM(x) is an indicator function which is true if x is not inside

the SAS of any atom of M . Let closest(P,x) define the closest point y belonging

to the set of the point P from the given point x; and let d(P,x) be the Euclidean

distance between them if y is exposed, otherwise it is Rrp, where R > 1 is some

constant.

Now, for each point x, let NA(x) be a set of atoms such that x is inside

the SAS of the atoms; NCI(x) be a set of cone intersections that contain x; and

NT (x) be a set of tetrahedral intersections that contain x. Let nA, nCI and nT be

the cardinalities of these sets. Finally, we define dA, dCI and dT as follows-

• dA = minai∈NAd(ai,x)

• dCI = minCIij∈NCId(Cij,x)

• dT = minTijkl∈NT d(tijkl,x)

We are now ready to define the distance function.

• If x is exposed, then δMSAS(x) = mini|‖ci − x‖ − ri − rp|

• If x is not exposed, then δMSAS(x) = min(dA, dCI , dT )

Note that efficient computation of this function requires efficient computa-

tion of exposedM(x), NA(x), NCI(x) and NT (x). We use the Dynamic Packing

Grid [14, 24] data structure to compute these in quasi-constant time. Details of the

data structure is given in Chapter 4.4. In Section 4.4, we shall discuss its augmen-

tation for the purposes of efficient computation of SES.
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4.3 Dynamic adaptive grids for molecular surface computation

Given a molecule M , our algorithm constructs an adaptive octree T . The

octree is subdivided at a higher resolution near the boundary of the molecule and

is coarsely subdivided elsewhere. The dual of the highest resolution cells of the

octree is contoured based on a user-defined isovalue to generate a smooth surface

approximation of M . We define the resolution of the mesh as the resolution of the

dual grid, which is equal to the resolution of the smallest cells (dmin) of the octree.

The construction runs in O(n log n) time provided that dmin is linearly related to the

maximum radius of the atoms. Refer to Sections 4.3.1 and 4.3.2 for details about

the model and the construction.

We define an update as adding, removing or moving an atom ai. In Section

4.3.4 we discuss a O(log n) time algorithm for locally updating the octree while

maintaining the adaptive subvision property.

4.3.1 The octree and its dual

We define an octree node u as a 3-dimensional cube with a specific length,

a center and a function value. The length LENGTH(u) is the Euclidean length of

an edge of the cube, BOX(u), representing the node. The center CENTER(u) is the

geometric center of the cube. The function value VAL(u) is defined as a volumetric

function ΦM(CENTER(u))), where M is the set of atoms. We define the sign of a

node SIGN(u) = 1 if VAL(u) − isoV alue is positive and −1 otherwise. Refer to

Section 4.2 for possible choices of F and corresponding iso-values.

By CHILD(u) we denote the set of non-empty octree nodes obtained by sub-
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dividing node u, and PARENT(u) points to the parent of u in the octree. CHILD(u) =

NIL if the node is a leaf of the octree and PARENT(u) = NIL if u is the root. For

convenience, we set LEAF(u) to TRUE if u is a leaf, and FALSE otherwise. N(u)

denotes the neighbor cells u. DEPTH(u) denotes the depth of u. Each leaf u of the

octree stores a list of atoms ATOM(u) which intersect its bounding box.

The octree T contains a reference to the root node of the tree, a list of atoms

M , a positive number dmin specifying the minimum acceptable length of any node

of the octree, and a number isoV alue corresponding to the level-set of F represent-

ing the molecular surface.

Given M , dmin and isoV alue, the octree is constructed by iteratively re-

fining (splitting) nodes which contain the contour corresponding to the specified

isoV alue. Other parts of the octree remain coarse. The refinement continues un-

til dmin ≤ LENGTH(v) ≤ 2 ∗ dmin for every node v containing the contour. Let

BOUNDARY(T ) define the set of all such nodes. We provide a simple 2D example

in Figure 4.4(a).

We construct a dual grid G based on the nodes in BOUNDARY(T ). The

length of each cell in the dual grid is equal to LENGTH(v) where v ∈ BOUNDARY(T ).

The vertices/grid-points of the dual grid are made congruent to the center of the

nodes in BOUNDARY(T ). See Figure 4.4(b) for an example dual grid superimposed

on an octree. Each grid-point gp of G is assinged a value equal to VAL(w), where

gp = CENTER(w). Finally, we use fast marching cubes to produce a mesh for the

isocontour in each of the gridcells of G.
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(a) (b)

Figure 4.4: (a) A 2D example of adaptive decomposition. Cells are adaptively
subdivided depending on their distance from the boundary. In the figure, we color
the a cell u- (i)light green if u ∈ BOUNDARY(T ) and SIGN(u) = 1, (ii) light blue
if u ∈ BOUNDARY(T ) and SIGN(u) = −1, (iii) dark gray if u /∈ BOUNDARY(T )
and SIGN(u) = 1, and (iv) white if u /∈ BOUNDARY(T ) and SIGN(u) = −1. Atom
centers are shown in red and the isocontour representing the molecular surface is
shown in blue. (b) A zoomed in view of a part of the octree with the dual grid
superimposed on it. Note that, the dual grid is very sparse, and yet sufficient to
compute the contour.

Theorem 4.3.1. The dual of a dynamic octree containing a molecule with n atoms

has θ(k) cells provided that dmin = Θ(rmax) where rmax is the radius of the largest

atom in M and k < n is the number of atoms on the boundary of the molecule.

Proof. Since dmin = Θ(rmax), each atom intersects a constant number of octree

leaves at the lowest level (see Theorem 2.1 and Lemma 2.1 in [14]). So, if k atoms

contribute to the molecular surface, the number of such leaves can be at most Ck,

where C is a constant. Hence, the number of dual cells is θ(k). �
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4.3.2 Construction

Given a molecule M , a positive number dmin specifying the expected res-

olution of the dual grid and the isovalue for the surface, we initialize an Octree T

with a single node u (root of T ), such that BOX(u) is large enough to contain all of

the atoms. All atoms are inserted into u and VAL(u) is computed.

The octree is refined by iteratively subdividing cells which are on the bound-

ary of the molecule. Since we define the boundary as a isocontour Γ (ΦM , isoV alue),

the boundary intersects an edge (vi, vj) of dual cell gc if and only if SIGN(vi) and

SIGN(vj) are different, where vi and vj are neighboring octree cells. We consider

all such (vi, vj) pairs as being on the boundary and mark them for subdividing.

To split a node u, we create its children u1, . . . , u8. Then, we update the

list of atoms in the children as ATOMS(vi) = {a|a ∈ ATOMS(u)&(BOX(vi) ∩ a) 6=

φ. The intersection detection is performed using the Dynamic Packing Grids data

structure in constant time per atom. The number of times an atom is checked for

intersection is bounded by the maximum depth of the octree. After assigning the

atoms, we compute VAL(vi).

Signs of each of the newly created nodes are compared with their neighbors

to identify pairs of nodes on the boundary and marked for splitting. The process

continues until for each leaf cell v, dmin ≥ LENGTH(v).

Special note on initialization Let u and v be two neighboring cells of the oc-

tree such that SIGN(u) 6= SIGN(v), then the isocontour crosses the line connecting
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Figure (a) shows the initial octree, which is iteratively refined and the
results of each successive iterations are shown in Figues (b)-(f). We follow the
same coloring convention used in Figure 4.4. Note that only the cells belonging to
BOUNDARY(T ) are split in the next iteration.

CENTER(u), CENTER(v) an odd number of times (and at least once). Otherwise, the

isocontour crosses the line an even number of times (or never). So, if we define the

minimum topological feature size εΦM ,isoV alue (eg. width of a pocket/tunnel) of the

molecule M under the given function and isoValue, then no grid-based algorithm

whose finest level grid-size dmin > εΦM ,isoV alue can produce a topologically accu-

rate surface. So, we assume that epsilonΦM ,isoV alue is known or the user specifies a

specific value ε such that s/he is willing to tolerate errors below that threshold.
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We incorporate this into the algorithm by ensuring that the octree is uni-

formly subdivided until every leaf has length at most ε. Let the minimum depth

required to achieve this is lmin. Note that after this point, we continue to subdivide

adaptively near the boundary until the lowest level leaves dmin ≥ LENGTH(v).

Contouring Once the octree is constructed, the surface is computed by dual con-

touring (see previous section), based on the cells corresponding to any level (greater

than lmin) of the octree, with progressively finer (deeper) level nodes providing pro-

gressively better approximation of the surface.

Figure 4.5 provides a detailed example of the octree construction algorithm.

4.3.3 Analysis

Our grid-based algorithm is a discrete approximation of a continuous do-

main (the isocontour). Hence it does not generate a perfect representation as ana-

lytical methods would produce. However, we can provide theoretical bounds on the

topological and geometric errors.

Theorem 4.3.2. Dual contouring is performed using gridcells at any level l > lmin

of the octree produces a isocontour with bounded geometric error if εΦM ,isoV alue >

dmin.

Proof. There can be three types of error. The severest error is like the one shown

in Figure 4.6(a), where very small features lie on in between grid centers and hence

discrete evaluation of ΦM at the grid-centers fail to detect such features. In molec-
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(a) (b)

Figure 4.6: (a) Topological error. If the minimum dimension of such a topological
feature (like the tunnel in the figure) is less than ε, then it is lost during the contour-
ing. (a) Geometric error. The approximate isocontour (light blue) is only slightly
off the actual isocontour (dark blue). The error is bounded by the cell size.

ular applications, however, typically the feature sizes are bounded by the smallest

radius. There can sometimes be small tunnels and pockets whose width is less

than the smallest radii, but for most purposes such tunnels are inaccessible to other

molecules including water, and hence loss of such features will not affect the molec-

ular properties calculation too much. The second type of error can that happen is

when the isocontour goes through a dual cell which is not identified, but its neigh-

bor is identified (see Figure 4.6(b)). In this case, the maximum distance between

the actual and the approximate contour is at most dmin. Since, we assumed that the

smallest topological feature size εΦM ,isoV alue > dmin, this error is only a geometric

error. Finally, the last type of error is simply due to the limitation of contouring

where the correct dual cells are contoured, but the approximated contour inside a
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dual cell is slightly off the real isocontour within the same cell. Here, the maximum

error, in terms of Hausdorff distance, can be at most dmin/2. The proof follows. �

Theorem 4.3.3. A dynamic octree containing a molecule with n atoms is con-

structed in O(n lg n) time if dmin = Θ(rmax).

Proof. Since, dmin = Θ(rmax), following Theorem 2.1 and Lemma 2.1 in [14], the

number of cells in the lowest level (with length dmin) is O(n). By the same logic,

the number of nodes at any level above that is also bounded by O(n). Finally, since

the maximum dimension of the bounding box is at most nrmax assuming that the

molecule M is compact, the depth of the octree is log nrmax

dmin
= log n.

At each node, the decisions to split/merge takes constant time, computing

the function value requires summing over the atoms intersecting the cell and may

require BigOh(n3) time per node at worst. This is addressed in section 4.4 to make

sure that only a constant number of atom is required to compute the value at a cell.

Finally, during split, we must go over the list of atoms and copy them to new nodes,

indicating a worst case O(n) time per node. However, note that evergy atom will

be copied/moved at most log n time during the entire construction, hence the cost

is amotized to O(1) per node.

Hence the overall amostized cost of construction is O(n lg n). �
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4.3.4 Update

When an atom is updated from a to a′ by either changing the position or the

radius, we must update the function values VAL(v)|v ∈ T&(BOX(v)∩(a∪a′)) 6= φ.

For each updated cell v, we verify whether it should be split or merged. An internal

node v is marked for merging if all of its children have the same sign and none of

them are candidates for splitting. Once a cell is marked for merging, it cannot be

split again for the same update operation. The decision to split is made based on

the same criteria described in Section 4.3.2. We iteratively split cells and identify

new cells for splitting/mergning until no more cells are marked for splitting. Then

we merge the cells marked for such.

Note that, if the update of the atom does not change the boundary of the

molecule, then our algorithm would only update the function values, but would not

split/merge any cells.

Theorem 4.3.4. After completion of UPDATEOCTREE(a, a′), if dual contouring is

performed using gridcells at any level l > lmin of the octree produces a isocontour

with bounded geometric error if εΦM ,isoV alue > dmin.

Proof. The accuracy of the merge operation (and decision) follows from the accu-

racy of split operation (and decision) discussed in Theorem 4.3.2, since the merger

is performed if only if the merged cell would not have been marked for splitting if

we had started constructing the octree with the moved atom in the new position.

�
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Theorem 4.3.5. UPDATEOCTREE(a, a′) completes in O(lg n) time for a dynamic

octree containing a molecule with n atoms.

Proof. A single atom intersects at most a constant number of leaf cells. Hence, the

total number of nodes affected by the move at any level of the octree is bounded by

the depth O(log n). The proof follows, since the algorithm spends O(1) time per

node (see proof of Theorem 4.3.3). �

4.4 Augmented Dynamic Packing Grids for SES Molecular Sur-
face Computation

We describe a data structure and algorithm which supports O(1) time up-

dates (add/remove/move an atoms) such that the molecular surface after the update

is consistent. As a by-product, the algorithm also updates the list of exposed atoms

and boundary cells (SAS).

The algorithm is an augmentation of the octree based surface construction

algorithm for the purpose of computing the Solvent Excluded Surface. As we have

dicussed in Section 4.2, SES computation requires evaluation of the signed distance

function and the computation is slightly more involved that than the sum of Gaus-

sian kernels. The octree always uses all atoms inside a cell to define the function

values in the cell, but this becomes extremely costly when θ(n) atoms are in a cell,

during the initial stages of the construction and leads to O(n3) computations for

the double and triple intersections. Here, we propose to use a mixed model, where

a simple uniform grid G with a constant grid spacing of rp/2 is created initially,
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but the SDF is not computed on the grid directly. Rather, we also create separate

Dynamic Packing Grids (DPG) with a constant grid spacing of 2rmax and use the

DPGs to label gridpoints and gridcells of G. We show that the labeling is suffi-

cient to identify all the gridcells where the SES boundary lies, and also the atoms

which contribute to the SES boundary. Once this classification is achieved, the reg-

ular octree based refinement can be performed only at the boundary cells and the

number of atoms that contributes to the boudary and intersects a given cell is also

reduced to a constant, and hence the overall construction time reduces from O(n3)

toO(n log n), without any loss of accuracy. Furthermore, we show that the labeling

can be updated under dynamic motions of the atoms in constant time per atom.

4.4.1 Notations

Let the moleculeM is represented as a collection of atoms ai and each atom

is represented using a center ~ci and radius ri. Let the radius of the probe be rp. Let

the dynamic adaptive grid be defined as a set of gridpoints and a set of gridcells.

We also assume that each grid cell contains exactly 8 gridpoints.

A grid point gp is marked as VV DW if it is inside the vdW surface of at least

one atom, is marked VSAS if it is not inside the vdW surface of any atoms, but inside

SAS surface of at least one atom, and is marked VOUT if it is not inside the SAS

of any atoms. We mark a gridcell gc as CBURRIED iff ∀gpj ∈ gc, (gpj ∈ VV DW ),

as CSAS iff ∃gpj ∈ gc, (gpj ∈ VV DW ) ∧ ∃gpk ∈ gc, (gpk ∈ VSAS), as CBAND iff

∀gpj ∈ gc, (gpj ∈ (VSAS−VV DW )), CV DW iff ∃gpj ∈ gc, (gpj ∈ (VSAS−VV DW ))

∧ ∃gpk ∈ gc, (gpk /∈ VSAS), and COUT iff ∀gpj ∈ gc, (gpj /∈ VSAS). See Figure 4.7
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for a 2D example.

Figure 4.7: A 2D example grid with uniform grid spacing showing how the grid-
points and the gridcells are labeled based on thier positions with respect to the vdW
and SAS surfaces. SAS boundary of the atoms are shown as blue lines, vdW bound-
ary of atoms are shown as dark green lines. Gridpoints labeled vdW, SAS and OUT
are marked red, green and unmarked in the figure. Gridcells labeled CBURRIED,
CV DW , CBAND, CSAS and COUT are shaded brown, light green, dark blue, light
blue and white.

If the SAS boundary of an atom ai contains at least one gridpoint marked as

VSAS , then ai is marked as an exposed atom (see Lemma 4.4.1 for details).

4.4.2 Algorithm Sketch

During an update, the algorithm uses DPG to identify and re-classify the af-

fected grid-points (as VV DW /VSAS/VOUT ) and then uses these classification to mark

atoms and gridcells. The algorithm maintains 4 separate packing grids, namely, (i)

for all atoms, (ii) for exposed atoms, (iii) for grid-points marked as VSAS , and (iv)

for gridcells marked as CSAS .
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Figure 4.8: Updating the labeling of the grid points and gridcells when an atom is
added. (left) before adding, (right) after adding.

Add When an atom is added (cf. Figure 4.8), it can have the following effects-

• Some grid-points might be marked as VSAS . This is reflected in steps 2-3 of

the pseudocode for the Add method.

• Some grid-points might be marked as VV DW . This is reflected in steps 4-5 of

the pseudocode for the Add method.

• The new atom will be marked either buried/exposed. The new atom is ex-

posed if it marks a gridpoint as VSAS (i.e. it contributes to the surface). This

is handled by step 3(a)iii of the pseudocode.

• Some exposed atoms might get buried. Only exposed atoms intersecting the

current atom are affected. If any of those exposed atoms no longer contributes

to the surface (does not contain any gridpoint marked VSAS within its solvent

enlarged volume), then it is marked as buried (see step 6 of the algorithm for

Add).
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Figure 4.9: Updating the labeling of the grid points and gridcells when an atom is
added. (left) before removing, (right) after removing.

Remove When an atom ai is removed (cf. Figure 4.9), it can have the following

effects-

• Some gridpoints marked as VSAS can become VOUT . (see step 4a ofRemove).

• Some gridpoints marked as VV DW can become VSAS . And a previously buried

atom which contains the gridcell within its solvent inflated volume would

become exposed. Step 4b of the algorithm handles this case.

Updating the surface Any change in the classification of grid-points immedi-

ately affects the classification of the eight cells neighboring that point. Once a cell’s

classification is updated the contour/mesh inside the cell need to be recomputed. We

use three auxiliary lists Crem, Cadd and Cmod to facilitate the management of the up-

date. Crem is the list of cells whose classification changed from CSAS to something

else. Cadd are the cells whose classification changed from something else to CSAS .

Cmod contains cells whose classification remain CSAS , but the surface inside the
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cell needs to be modified (re-contour) to account for the recent movement of atoms.

4.4.3 Analysis

Correctness

Lemma 4.4.1. In a grid with a grid spacing of rp/2, an atom ai is buried if SSAS(ai)

does not contain any grid-point marked as VSAS .

Proof. First of all, if the grid spacing is rp/2, then it is easy to show that if one

corner of a grid-cell is marked as VV DW , then no part of the cell is outside the

SSAS .

SSAS(ai) can intersect a cell in two different ways. Either the intersection

contains at least one corner of the cell or it does not contain any corners.

If the intersection contains a corner, then that corner must be marked as

VV DW . And since all of these cells are completely inside the SSAS (before adding

ai), ai cannot have exposed surface inside these cells.

On the other hand if SSAS(ai) intersects only a face f of a cell Gk and

does not contain any corner, then clearly it has to contain at least one corner g of

the neighboring cell Gl on the opposite side. According to the assumption of the

lemma, g is marked VV DW and whichever atom aj has g inside its V DW surface,

has the entire face f buried inside its SAS and hence the portion of ai inside Gk is

also completely buried ubsude the SAS of inside aj .

Hence, ai is not exposed inside any cell it intersects. In other words, it is

buried. �
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Lemma 4.4.2. Add(ai, ci, ri) and Remove(ai, ci, ri) correctly updates the list of sol-

vent exposed atoms.

Proof. An atom aj is marked buried only if SSAS(aj) contains no gridpoints marked

as VSAS (see step 5(c) of Add method). And an atom aj is marked as exposed as

soon as SSAS(aj) has at least one gridpoint marked as VSAS (see step 2(a)i of Add

and step 3(b)i of Remove). The correctness follows from Lemma 4.4.1. �

Lemma 4.4.3. UpdateCells(g) correctly updates the lists Crem, Cadd and Cmod.

Proof. Trivially follows from the definitions and the algorithm. �

Time Complexity

Lemma 4.4.4. UpdateCells(g) operate in constant time.

Proof. There are exactly 8 cells neighboring g and to classify each cell, the classifi-

cation of exactly 8 gridpoints need to be checked. So, the total number of operations

is constant. �

Lemma 4.4.5. Add(ai, ci, ri) and Remove(ai, ci, ri) operate in constant time.

Proof. Each range query of DPG runs in expected time O(lglgh + k) where h is

the word size in the memory, and k is the number of results returned (see Theorem

2.3 in [14]). h is clearly constant. The value of k depend on the type of the query.

We discuss each of them separately.
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A query in DPGexpatom or DPGatom with a distance cutoff of O(rmax)

always returns O(1) results (see Theorem 2.1 in [14]).

A query in DPGgrid or DPGsasgrid would return O( rmax+rp
gridspacing

)3. Provided

that the grid spacing is O(rp) and rp ≈ rmax, the number of results returned be-

comes O(1).

Hence all the queries runs in constant time and also returns constant number

of results. Which means all internal loops run in constant time as well and hence

the total complexity remains constant.

The rest follows from Lemma 4.4.4. �

4.5 Results
4.5.1 Construction Accuracy

We have previously provided theoretical proofs that only the cells marked

as boundary cells need to be contoured to get an airtight surface. In Figure 4.10, we

provide practical examples showing that the SES is indeed correctly recovered.

The generated smooth solvent excluded surfaces using MSMS [222] for

the molecules in Zlab’s non-redundant protein benchmark. For the same dataset,

we also applied our dynamic octree algorithm to compute approximate SES. Since

MSMS computes an analytical representation of the SES, it is considered the ground

truth in this context, and we report the error in terms of surface area, volume and

Hausdorff distance between surfaces produced by MSMS and our algorithm (see

Figure 4.11). We found that the average errors for area and volumes are 2.7% and
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Figure 4.10: 3 separate examples with 2, 4 and 40 atoms showing the results of SES
computation using the DAG. Notice that our level set of signed distnace function
formulation correctly produced the re-entrant patches (green) of the SES.

1.53% respectively. The average distance between the surfaces are 0.255Å.

4.5.2 Construction Time

We compared the time required to compute volume representation and iso-

value based surface construction using regular uniform grids, and octrees such that

the grid-size of the lowest level of the octree matched the grid-size of the regular

grid. Note that, the accuracy/quality of the surfaces produced from both would be

similar, but the runtime is expected to be different. The regular grid would have to

compute the function values at more positions, on the other hand an irregular data

structure like an octree incurs some maintenance overhead. In our experiment (see

Figures 4.12 and 4.13) on the dataset mentioned above, we found that the dynamic

octree requires less time and less memory than the regular grids.
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Figure 4.11: The plot compares the surface area, volume and average distance of
the solvent excluded surfaces (SES) for various proteins generated by our DAG
data structure to those generated by analytically modeling the SES as a collection
of spherical and toroidal patches.

4.5.3 Updates

Theoretically, each update operation runs in O(log n) time and the over-

all construction from the scratch runs in O(n log n) time (see Theorems 4.3.3 and

4.3.5). This would indicate that it is always preferable or at least equivalent to con-

struct the octree using a sequence of updates. However, the runtime for update has a

larger constant which makes it slightly slower. For a large set of proteins, we moved

different number of atoms and applied the update operation to recompute/update the

surface to identify a threshold where reconstruction from scratch becomes more at-

tractive than locally updating the surface. We found that even when upto 6% of the
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Figure 4.12: Comparison of the construction time using regular grids and adaptive
grids. The numbers on the x-axis represent the resolution of the grid in terms of
the number of gridpoints on each direction. The octree based construction clearly
outperforms regular grid based construction. Note that this plot shows the runtimes
for Gaussian surfaces.

atoms are moved, dynamic update provides 4 times faster performance than recon-

struction. In fact, reconstruction only becomes a better choice if more than 10% of

the atoms are moved (see Figure 4.14.

4.5.4 Choice of blobbiness and isovalue for Gaussian surfaces

Gaussian representation of the molecular surface is attractive for several

reasons including the higher degree of continuity, simple computation (as opposed

to computing arrangment of spheres for SES), and an intuitive relationship of the

Gaussian blurring model to electron scattering of molecules, making it a better

choice for energetics and force calculations. However, for shaphe based analysis
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Figure 4.13: Comparison of the memory requirement of regular grids and adaptive
grids.

or comparison of molecules, an SES approximation seems more favorable. We

postulate that for such applications, it is possible to choose appropriate values for

the Gaussian paramters to make the isosurface as close to the SES as possible.

Similar ideas and analysis were also reported in [284] and [20]. In [284], in par-

ticular it was reported that a blobbiness (β) of 0.9 was a good choice for shape

complementarity analysis. In this paper, we compared the Gaussian surfaces at dif-

ferent blobbiness and isovalues to their SES counterparts, in terms of surface area,

volume, average distance and Hausdorff distance. Note that, given two surfaces

A and B represented as a collection of points, we define the average distance as

1
|A|
∑

p∈Aminq∈Bdist(p, q) and the Hausdorff distance asmaxp∈Aminq∈Bdist(p, q).

We found that low blobbiness is better for area, and Hausdorff distances.

Average distance is also low for low blobbiness, if a large enough isovalue is se-
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Figure 4.14: The plot compares the time required to dynamically update the surface
when a fraction of the total atoms are moved, vs, the time required to reconstruct
the entire surface.

lected. For instance, a blobbiness of 1 and isovalue of 2.0 provides low errors in all

three terms. However, to minimize volume error, an even larger isovalue might be

chosen. Interestingly, there are other choices which provide similar error bounds

for volume and average distace. But we believe the area and Hausdorff distance

provides a more reliable estimate of the closeness of the surfaces.

Algorithm Details
Algorithms for Constructing Octree
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Figure 4.15: Difference, in terms of area, between Gaussian and SES surfaces for
different choices of blobbiness and isovalues. The different lines represent differ-
ent choices of blobbiness, then for each blobbiness the x-axis represents different
isovalues and the y-axis represents the percentage error.

Figure 4.16: Difference, in terms of volume, between Gaussian and SES surfaces
for different choices of blobbiness and isovalues. The different lines represent dif-
ferent choices of blobbiness, then for each blobbiness the x-axis represents different
isovalues and the y-axis represents the percentage error.
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Figure 4.17: Difference, in terms of average distance between surfaces, between
Gaussian and SES surfaces for different choices of blobbiness and isovalues. The
different lines represent different choices of blobbiness, then for each blobbiness
the x-axis represents different isovalues and the y-axis represents the percentage
error.

Figure 4.18: Difference, in terms of Hausdorff distance, between Gaussian and SES
surfaces for different choices of blobbiness and isovalues. The different lines repre-
sent different choices of blobbiness, then for each blobbiness the x-axis represents
different isovalues and the y-axis represents the percentage error.
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CONSTRUCTOCTREE(Molecule, dmin, ε, isoV alue) {Constructs a octree for the atoms in set Molecule}
Inputs: Molecule is a set atoms in 3-dimensions. dmin is a positive number specifying the minimum length of
a cell of the octree. ε is the expected minimum feature size. isoV alue is a real number used to define the surface.
Output: This routine constructs a dynamic octree from the atoms in Molecule. The octree is adaptively refined
based on function values in cells and the given isoV alue, while maintaining the constraint that LENGTH(u) ≥
dmin for all cells in the octree. Where, BOX(u) denotes the cube corresponding to any octree node (cell) u and
LENGTH(u) denotes the length of a side of BOX(u).

1. create an octree T with a single node u as the root

2. make BOX(u) large enough to contain all atoms in Molecule

3. minDepth← log2(LENGTH(u))

4. DEPTH(u)← 0

5. intialize set newLeaves← {u}

6. intialize set markedNodes← φ

7. while MARKFORREFINEMENT(newLeaves,
minDepth, isoV alue,markedNodes) {Finds nodes for splitting}

8. clear newLeaves

9. for each node v ∈ markedNodes

10. SPLIT(v, dmin, newLeaves)
{refines the octree and populates newLeaves}

11. return T

Figure 4.19: Algorithm for the construction of a dynamic octree from a given set M of atoms in
3D

Algorithms for Updating Octree

4.5.5 Details for efficient cell classification using augmented DPG

• Initialization:

1. Consider a grid GP with uniform grid-size of rp/2

2. Mark all cells of GP as COUT . Each cell contains a list of pointers to

the mesh inside the cell. Initially the list is empty.

3. Mark all grid-points of GP as VOUT
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MARKFORREFINEMENT (newLeaves,minDepth,
isoV alue,markedNodes) {Identifies all nodes which should be split}
Input: A set of newly created octree leaves newLeaves, the isoV alue and a boolean contourDetected
denoting whether the the current octree contains a contour. If DEPTH of a node is less than minDepth, then it is
automatically marked for splitting. Otherwise, isoV alue is used to mark nodes for splitting. Output: Populates
the markedNodes set of nodes which should be split. Returns true if such nodes are found.

1. refineReq ← FALSE

2. for each node u ∈ newLeaves

3. if DEPTH(u) < minDepth or SPLITREQUIRED(u, isoV alue)

4. for each node w ∈ N(u)

5. if (VAL(u) − isovalue) ∗ (VAL(w) − isovalue) < 0
then {contour is between the centers of u and w}

6. if w /∈ markedNodes then add w to markedNodes

7. if u /∈ markedNodes then add u to markedNodes

8. refineReq ← TRUE

9. return refineReq

Figure 4.20: Algorithm for identifying candidates for splitting

4. Insert all grid-points into a DPG. Let’s call it DPGGP

5. Create an empty DPG, named DPGatom for storing all the atoms

6. Create an empty DPG, named DPGexpatom for storing all the exposed

atoms

7. Create an empty DPG, named DPGsasgrid for storing all grid points

marked VSAS

8. Define empty lists Crem, Cadd and Cmod.

• Add(ai, ci, ri):

Given an atom ai with center ci and radius ri, (i) updates classifications of

atoms, gridpoints and gridcells, (ii) updates the DPGsDPGatom,DPGexpatom
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SPLIT(u, dmin, newLeaves) {Splits the node u}
Input: An octree node u and a positive number dmin. newLeaves is a set where reference of the children are
added. Output: This routine splits node u, by creating its children and distributing the atoms intersecting u to
the children. And finally, it computes F(M, CENTER(u)) for each v ∈ CHILD(u).

1. if LENGTH(u)/2 < dmin then return

2. else

3. create children nodes of u

4. for each v ∈ CHILD(u) do

5. copy atoms from u which intersect BOX(v) to v

6. VAL(v)← F(M, CENTER(v))

7. LEAF(v)← TRUE

8. DEPTH(v)← DEPTH(u) + 1

9. add v to newLeaves

10. clear the list of atoms of u

11. LEAF(u)← FALSE

Figure 4.21: Algorithm for splitting an octree node u.

SPLITREQUIRED (u, isoV alue) {Decides whether to split u}
Input: An octree node u and the isoV alue. Output: Based on VAL(u) and the values of its neighbors, decides
whether the iso-contour potentially intersects u, in which case u should be split and SPLITREQUIRED returns
TRUE.

1. for each node w ∈ N(u)

2. if (VAL(u)− isovalue) ∗ (VAL(w)− isovalue) < 0 then

3. return TRUE

4. return FALSE

Figure 4.22: Algorithm for deciding whether a specific node u should be split

and DPGsasgrid, (iii) updates the lists Crem, Cadd and Cmod, and finally (iv)

updates the surface mesh.

1. Reset Crem, Cadd and Cmod

2. Let, G1i = all gridpoints inside SSAS(ai).
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MERGEREQUIRED (u, isoV alue) {Decides whether to merge u}
Input: An octree node u and the isoV alue. Output: Returns true if u can be coarsened, i.e. u does not contain
the isocontour.

1. merge← TRUE

2. for each node v ∈ CHILD(u)

3. if CHILD (v) 6= NIL then

4. merge← merge&MERGEREQUIRED(v, isoV alue)

5. else

6. merge← merge&!SPLITREQUIRED(v, isoV alue)

7. return merge

Figure 4.23: Algorithm for deciding whether children of a specific node u should be merged

MERGE(u) {Merges the subtree under u}
Input: An octree node u and a positive number dmin. newLeaves is a set where reference of the children are
added. Output: This routine merges the subtree under u. A node is merged by removing its children and copying
the atoms in the children back to the parent. Finally, u is marked as a leaf.

1. if CHILD(u) = NIL then return {It is already a leaf}

2. else

3. for each v ∈ CHILD(u) do

4. if CHILD(u) 6= NIL

5. MERGE(v)

6. copy atoms from v to u

7. delete v

8. LEAF(u)← TRUE

Figure 4.24: Algorithm for merging the children of an octree node u.

3. For each grid-point g ∈ G1i

(a) If g is marked VOUT

i. Mark g as VSAS

ii. Insert g into DPGsasgrid
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iii. Mark ai as exposed.

iv. Insert ai into DPGexpatom

v. UpdateCells(g)

4. Let, G2i = DPGGP − > Range(ci, ri)

5. For each grid-point g ∈ G2i

(a) If g is marked as VSAS

i. Mark g as VV DW

ii. Remove g from DPGsasgrid

iii. UpdateCells(g)

6. If ai is exposed

(a) Let Ai = DPGexpatom − > Range(ai, ri + rmax)

(b) For each aj ∈ Ai

i. If DPGsasgrid − > Range(aj, rj + rp) is empty then remove

aj from DPGexpatom

ii. Mark aj as buried.

7. Insert ai into DPGatom

8. UpdateContour()

• Remove(ai, ci, ri):

Given an atom ai with center ci and radius ri, (i) updates classifications of

atoms, gridpoints and gridcells, (ii) updates the DPGsDPGatom,DPGexpatom
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and DPGsasgrid, (iii) updates the lists Crem, Cadd and Cmod, and finally (iv)

updates the surface mesh.

1. Reset Crem, Cadd and Cmod

2. Remove ai from DPGatom

3. Let, G1i = DPGGP − > Range(Ci, ri + rp)

4. For each grid-point g ∈ G1i

(a) If g is marked as VSAS

i. Remove ai from DPGexpatom

ii. If DPGexpatom − > Range(g, rmax+ rp) is an empty set

A. Mark g as VOUT

B. Remove g from DPGsasgrid

C. UpdateCells(g)

(b) Else if g is marked as VV DW

i. If A1g = DPGatom − > Range(g, rmax) is an empty set and

A2g = DPGatom− > Range(g, rmax+ rp) is not empty

A. Mark g as VSAS

B. Mark each aj ∈ A2g as exposed and insert it intoDPGexpatom

C. UpdateCells(g)

5. UpdateContour()

• UpdateCells(g):
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1. For each gridcell C which is a neighbor of g

(a) Update the classification of C based on the definition of the classes.

(b) If applicable, add C to the appropriate list among Crem, Cadd and

Cmod.

• UpdateContour():

1. For each gridcell C ∈ Crem ∪ Cmod

(a) Remove the mesh inside C.

2. For each gridcell C ∈ Cadd ∪ Cmod

(a) Compute a function F inside C: either a sum of Gaussian of atoms

in the neighborhood of C, or a sign distance function for C

(b) Contour a level set F

(c) Add the mesh to C

• Move(ai, ci1, ci2, ri):

1. Remove (ai, Ci1, ri)

2. Add (ai, Ci2, ri)

• getExposedAtoms(): Return all atoms in DPGexpatom
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UPDATEOCTREE(a, a′, isoV alue) {Updates the octree when atom a moves to a new position a′}
Input: The previous and new positions of an atom, and the isoV alue. Output: This routine updates the octree
by modifying the function values of affcted cells. The change in function values might produce a shift in the
isocontour. So, the octree is refined/coarsened locally to reflect the change.

1. affectedNodes← {u|(BOX(u)
T

(a ∪ a′)) 6= ∅} {identified by traversing the octree}

2. intialize set markedForMerge← φ

3. intialize set markedForSplit← φ

4. while affectedNodes 6= φ do

5. for each u ∈ affectedNodes do

6. if MERGEREQUIRED(u, isoValue) then

7. add u to markedForMerge

8. mark u

9. remove u from markedForMerge

10. for each u ∈ affectedNodes do

11. remove u from affectedNodes

12. for each node w ∈ N(u)

13. if (VAL(u)− isovalue) ∗ (VAL(w)− isovalue) < 0 then

14. if w is not marked then

15. add w to markedForSplit

16. mark w

17. if u is not marked then

18. add u to markedForSplit

19. mark u

20. for each node v ∈ markedForSplit

21. SPLIT(v, dmin, affectedNodes)

22. unmark v

23. remove v from markedForSplit

24. for each u ∈ markedForMerge do

25. MERGE(u)

26. unmark u

Figure 4.25: Algorithm for updating the octree due to atom a moving to a′
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Chapter 5

Design and Calibration of Scoring Functions for
Predicting of Protein-Protein Assemblies

In this chapter1, we report the F2Dock 2.0 + GB-rerank protocol which im-

proves the state of the art in initial stage rigid body exhaustive docking search,

scoring and ranking by introducing improvements in the shape-complementarity

and electrostatics affinity functions, a new knowledge-based interface propensity

term with FFT formulation, a set of novel knowledge-based filters and finally a

solvation energy (GBSA) based reranking technique. Our algorithms are based on

highly efficient data structures including the dynamic packing grids and octrees

which significantly speed up the computations and also provide guaranteed bounds

on approximation error. The improved affinity functions shows superior perfor-

mance compared to their traditional counterparts in finding correct docking poses

at higher ranks. We found that the new filters and the GBSA based reranking indi-

vidually and in combination significantly improve the accuracy of docking predic-

1Part of contents of this chapter appeared in the article-
R. A. Chowdhury, M. Rasheed, D. Keidel, M. Moussalem, A. Olson, M. Sanner, and C. Bajaj.
Protein-protein docking with f2dock 2.0 and gb-rerank. PLoS ONE, 8(3):e51307, 2013.
RAC (major contributor) and MR developed the scoring functions, and wrote the code ; MR devel-
oped and applied the machine learning approaches (Section 5.3); RAC, MR, DK, MM processed and
curated dataset; RAC, MR, DK, MM performed experiments and summarized results; MR, RAC,
DK, AO, MS and CB analyzed the data and wrote the paper.
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tions with only minor increase in computation time. We compared F2Dock 2.0 with

ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in

ZLab Benchmark 4.0, F2Dock 2.0 finds a near-native solution as the top prediction

for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2Dock 2.0 finds

a near-native solution within the top 1000 predictions for 106 complexes as op-

posed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes

where F2Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which

indicates that the two docking protocols can also complement each other.

5.1 Introduction

The study of protein-protein interactions plays an important role in under-

standing the processes of life [100]. Though advancements in X-ray crystallogra-

phy and other imaging techniques have led to the extraction of near-atomic resolu-

tion information for numerous individual proteins; the creation, crystallization and

imaging of macromolecular complexes, as extensively required for drug design, still

remains a difficult task. Among the atomic structures of proteins deposited in the

Protein Data Bank [40], only a very small percentage are complexes. Hence, the

need for fast and robust computational approaches to reliably predict the structures

of protein-protein complexes is growing. An important step towards understand-

ing protein-protein interactions is protein-protein docking which can be defined as

computationally finding the relative transformation and conformation of two pro-

teins that results in a stable (energetically favorable) complex if one exists.

Given two rigid proteins and some characteristic (e.g., electron density)
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function(s) of the molecules, one can construct an appropriate representation of

them and also define a correlation function based on cumulative overlap of the char-

acteristic functions. Then it is possible to conduct a combinatorial search in a 6D

parameter space of all possible relative translations and orientations of the two pro-

teins to find the optimal. Hence in computational perspective, docking is a search

over the space of possible orientation of two proteins to find the (set of) optimum(s)

of a scoring function designed to mimic physico-chemical interaction of proteins.

The combinatorics of the search can be reduced by using coarse grids and

rotational angles [142], and by using a-priori knowledge of suitable binding sites

[102]. For docking without prior knowledge about possible binding sites, exhaus-

tive sampling is required to improve the probability of finding the global minimum

energy configuration. In such cases, Fast Fourier Transforms has been used to speed

up the cumulative scoring function computations [102, 142, 215]. Spherical Fourier

correlation based approaches were presented in multiple studies [86, 150, 175, 214,

215]. However, if binding sites are known, or inferred based on some initial stage

docking, then a finer resolution search involving local flexibility can be applied to

improve the accuracy of the fit [73, 80, 128].

Accuracy of docking predictions is dependent on the scoring model’s abil-

ity to distinguish between native and non-native poses. Docking based on struc-

tural (shape) complementarity alone has shown to be adequate for a range of pro-

teins [61, 102, 114]. To represent shape complementarity, a grid based double skin

layer approach became the base of many variations and software, e.g., DOT [170],

ZDOCK [60], PIPER [151], MolFit [32, 33] and RDOCK [159]. However, en-
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ergy and bioinformatics based scoring terms have been shown to improve the accu-

racy of predictions and a combination of multiple scoring terms have become the

norm in current docking software. For example, DOT 2.0 [170] is based on van

der Waals energy and Poisson-Boltzmann electrostatics, ZDock 3.0.2 [179] uses

pairwise shape complementarity, electrostatics, and pairwise potentials known as

Interface Atomic Contact Energies (IFACE), PIPER [151] is based on shape com-

plementarity and electrostatics using a Generalized Born (GB) type formulation,

and uses a new class of structure-based potentials referred to as DARS (Decoys As

the Reference State) where the potentials are derived from a large set of docking

conformations as decoys. FRODOCK [104] is a recent spherical harmonics based

docking tool that uses van der Waals, electrostatics and desolvation potential terms

in its correlation function. Some docking or reranking techniques solely use coarse-

grained potentials trained on large benchmark of decoys [162, 210]. We leave the

reader to consult the reviews [49, 112, 120, 197, 216] for further information.

In [56] we described a non-equispaced Fast Fourier Transform (NFFT) based

rigid-body protein-protein docking algorithm for efficiently performing the initial

docking search (based on shape and electrostatics complementarity). Compared to

traditional grid based Fourier docking algorithms, the algorithm was shown to have

lower computational complexity and memory requirement. The algorithm was ex-

tended in [26] to F2Dock (F 2 = Fast Fourier), which included an adaptive search

phase (both translational and rotational) for faster execution.

Here, we describe a new version (F2Dock 2.0) which includes improved

shape-complementarity and electrostatics functions as well as a new on-the-fly
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affinity function based on interface propensity and hydrophobicity. The current

version uses uniform FFT, but exploits the sparsity of FFT grids for faster execu-

tion and restricts its search within a narrow band around the larger molecule. A

clustering phase penalizes docking poses that are structurally similar to poses with

better scores and a set of efficient on-the-fly filters penalize potential false positives

based on Lennard-Jones potential, steric clashes, interface propensity, interface

area, residue-residue contact preferences, antibody active sites, and glycine rich-

ness at the interface for enzymes. The filters are implemented using fast multipole

type recursive spatial decomposition techniques [25, 66]. A solvation energy based

reranking program GB-rerank [28, 66] has also been implemented using an approx-

imation scheme which can be tuned for speed-accuracy trade-off. Both F2Dock 2.0

and GB-rerank have been implemented as multithreaded programs for faster execu-

tion on multicore machines. Our molecular visualization software TeχMol serves

as a front-end to F2Dock 2.0 in a client-server mode of execution [15]. F2Dock has

been calibrated based on an extensive experimental study of the rigid-body com-

plexes from Zlab benchmark 2.0 [180] and tested on Zlab benchmark 4.0 [129]

(which includes the complexes from benchmark 2.0).

5.2 Scoring and Search Protocol

Let A and B be two proteins with MA and MB atoms respectively. With-

out loss of generality, we assume that MA ≥ MB, i.e., A is the larger of the two

proteins. We refer to A and B as "receptor” and "ligand”, respectively.

Figure 5.1 gives a high level overview of the algorithm. The rest of this sec-
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Figure 5.1: High-level overview of rigid-body protein-protein docking using
F2Dock 2.0 and GB-rerank. F2Dock 2.0 performs exhaustive 6D search in dis-
cretized rotational and translational space where it computes a score for each sam-
pled orientation of the ligand with respect to a stationary receptor. The scoring
function is a weighted combination of shape complementarity, electrostatics and
interface propensity based affinity terms. The top few orientations (poses) of the
ligand are kept in a priority queue. Then top several thousand poses from the queue
are clustered based on the distance between the geometric centers of different poses
of B. All but the best scoring pose of a cluster is penalized by reducing the score.
The resulting reordered list is then passed through several soft filters in order to fur-
ther penalize potential false positives. Finally, as a separate post-processing step,
the ranked docking poses are re-scored and reranked based on the change in solva-
tion energy caused by each pose.

tion details the various aspects of the algorithm. Even greater details are available

in [65].
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5.2.1 Overall Strategy

First, F2Dock 2.0 performs exhaustive search in 6D space of relative config-

uration of B with respect to A. We use a discrete and uniform sampling of 3D rota-

tional space and then use FFT to score a discrete 3D translational space. Given NR

rotational samples and N3 translational grid, F2Dock 2.0 computes NRN
3 scores.

However, only a constant multiple of NR scores and their corresponding poses are

retained for the next step. Let us denote this set as Q. A particular pose is ex-

pressed as a tuple < t, r, s > where t is the translation, r is the rotation and s is the

corresponding score.

We apply a very simple clustering scheme based on proximity of the poses

in Q to reshuffle the order such that the top few poses are dissimilar to each other.

Though this step does not affect the overall ratio of true and false positives, it in-

creases the chance of finding at least one near-native solution at the top of the order.

It is important because the next stage of filtering is only performed on the top few

(2000 by default) poses. Let this reduced list be called Q′.

The filters are designed based on knowledge-based scoring potentials to up-

date the scores of the poses of Q′, reorder them and output them as final predictions

from F2Dock 2.0. Some filters are defined only for specific types of proteins like

Antibodies or Enzymes.

The results from F2Dock 2.0, or a subset of it, can optionally be reranked

using a solvation energy (generalized Boltzman model) based reranker called GB-

rerank which generally improves ranks of near native solutions.
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5.2.2 Phase I (Exhaustive 6D Scoring and Search with FFT):

F2Dock exhaustively searches over a discretized SO3 × R3 space. First, it

samples the rotational space SO3 uniformly [181] and applies the rotation on the

ligand after placing it’s mass center at the origin. Then it scores each relative posi-

tions of the rotated ligand w.r.t. the stationary receptor over the set of translations in

R3. FFT (Fast Fourier Transform) based 3D convolution is used to compute scores

for all points on the uniform 3D translational grid. The current version uses uniform

FFT, but exploits the sparsity of FFT grids for faster execution, and also restricts its

search within a narrow band around the larger molecule. The top several thousand

poses from this FFT-based scoring phase are inserted in a priority queue sorted by

the scores.

The scoring function is a weighted combination of shape complementarity,

electrostatics and interface propensity (or hydrophobicity) based affinity terms. We

briefly introduce the terms here (refer to [26, 65] for further details).

5.2.2.1 Shape Complementarity

Shape complementarity was originally introduced to model the lock-and-

key matching idea of docking, i.e the proteins have complementary shapes at the

binding interface. Energetically, this models the van der Waals interaction to some

extent.

F2Dockuses an improved double-skin layer approach to shape complemen-

tarity. Atoms on the ligand which are exposed to the solvent are considered skin

atoms, and the remaining atoms are considered core. All atoms of the receptor are
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core and a layer of atoms are added outside the solvent excluded surface (SES) of

the receptor and these extra atoms are considered the skin for the receptor. The

shape complementarity function is designed to maximize skin-skin overlaps and

minimize skin-core and especially core-core overlaps, since it indicates that the

ligand is coming close to the receptor without penetrating it. This can be achieved

numerically by assigning positive real affinity values on the skin atoms and positive

imaginary affinity values on the core atoms. Hence, a convolution would generate

positive real contributions SSS from skin-skin overlaps, negative real contributions

SCC from core-core overlaps and positive imaginary contributions SSC from skin-

core overlaps. The complete shape complementarity score is defined as a weighted

combination of them - Sshape = WSSSSS+WCCSCC+WSCSSC , whereWSS ,WCC

and WSC control the relative importance of the different terms. For example, a high

WCC would heavily penalize any penetrations.

F2Dock improves on the above double-skin idea by further refining the affin-

ity values assigned to the atoms. First, F2Dock uses a depth based scheme for as-

signing affinity values to the core atoms which penalizes deeper penetrations more

than shallow ones. Secondly, F2Dock assigns the affinity values on skin atoms

based on curvature to promote binding near pockets and mouths. And finally, the

receptor’s skin atoms do not touch its SES, but are placed a small distance away

to define a ‘floating’ skin. This tries to mimic the fact that in most complexes the

SES of the ligand and receptor does not actually touch each other, but rather stay at

a very close distance.
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5.2.2.2 Electrostatics

F2Dock models long distance electrostatic interactions using the simplified

model for Coloumbic electrostatics proposed by Gabb et. al. [101] which allows

efficient FFT-based computation of the term during docking search. Two affinity

functions fEA and fEB are defined for molecule A and B, respectively.

fEA (x) =
∑
k∈A

qk
E(x− ck)(x− ck)

· gEA,k(x)

and fEB (x) =
∑
k∈B

qkδ(x− ck) · gEB,k(x),

where, qk is the Coloumbic charge2 on atom k, δ(x) is the Kronecker delta function

with value 1 at ||x|| = 0, and 0 everywhere else, gEA,k(x) = gEB,k(x) = 1 andE(x) is

the distance dependent dielectric constant [101]. The convolution of the two affinity

functions produce the electrostatic score Selec

5.2.2.3 Interface Propensity or Hydrophobicity

Unlike shape complementarity (vdW) and electrostatics (Coloumbic) terms

which are based on molecular free energies, the Interface propensity or Hydropho-

bicity term is based completely on statistical and empirical observations. It has been

observed that Hydrophobic residues tend to be found near the core of the molecules

and Hydrophilic residues are found on the surface. However, if there are some Hy-

drophobic residues on the surface of a protein, then they tend to act as binding sites

so that they can get buried by forming a complex with another protein. Based on

2charge assignments are made using PDB2PQR [3]
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this idea, we reward docking poses where the binding interface contains Hydropho-

bic residues. We use per residue Hydrophobicity values from [44] to define weights

on the surface atoms and then compute the convolution using FFT. Refer to [65] for

details about the formulation and FFT adaptation.

However, there are other factors which also promotes the possibility of a

residue to be on the binding interface. Jones and Thornton [133, 134] studied the

interface of 63 protein-protein interfacs and computed a interface propensity value

IP for each residue type. The interface propensity is defined as the log normalized

probability of a residue being on the binding interface given that it is present in

the molecule. The IP values for the 20 amino acid residues lie between -0.38 (for

ASP) and 0.83 (for TRP). A residue with a higher IP value is likely to occur more

frequently in a protein-protein interface than one with a lower IP value. After

assigning the IP values to atoms (based on their residues), we follow the same

technique used for Hydrophobicity to compute a score SIP for a given pose.

In F2Dock, we model interface propensity and hydrophobicity as alternate

ways of modeling the same phenomenon and the user has a option to select either

one.

5.2.2.4 Overall score of Phase I

The overall score of phase I is-

SphaseI = SshapeWshape + SelecWelec + SIPWIP

where, Wshape, Welec and WIP controls the relative importance of the dif-
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ferent scoring terms. We have observed that the contribution of the terms vary

significantly for different class of complexes (Enzymes, Antibodies, Others etc.),

and hence the weights must be learned separately for each class.

5.2.3 Phase II (Bioinformatic scoring terms computed by fast multipole meth-
ods)

In this phase, the top several thousand poses, inserted into the priority queue

in phase I based on their SphaseI , are evaluated using several statistical scoring terms

to prune away false positives. Each of the terms reward or penalize a pose by

updating its score. When all the terms have been applied, the final updated scores

are used to re-rank the poses. The terms are computed using fast multipole type

recursive spatial decomposition techniques [66].

We briefly introduce these terms below. Refer to [65, 66] for details.

5.2.3.1 Proximity Clustering

The poses in the priority queue are examined for structural similarity based

on how close the geometric centers of B are to each other (note that A is kept

static). If a structurally similar docking pose with a better score exists, then the

docking pose with lower score is further penalized by reducing its score.

5.2.3.2 Lennard-Jones

Penalize if the Lennard-Jones potential of a docking pose is above a thresh-

old. We approximate the Lennard-Jones (LJ) potential between molecules A and
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Bt,r given by the following expression.

LJ(A,Bt,r) =
∑

i∈A,j∈Bt,r

(
aij

r12ij
− bij

r6ij

)
,

where rij is the distance between atoms i ∈ A and j ∈ Bt,r, constants aij

and bij depend on the type (e.g., C, H, O, etc.) of the two atoms involved. For any

fixed pair of atom types aij and bij are fixed, and are calculated from the Amber

force field.

5.2.3.3 Steric Clash

Penalizes all docking poses with the number of steric (atom-atom) collisions

above a threshold. Two atoms a ∈ A and b ∈ B with van der Waals radii ra and rb,

respectively, are said to be in a clash provided the distance between their centers is

smaller than α(ra + rb), where α is a user-defined positive constant.

5.2.3.4 Interface Area (Dispersion)

Penalizes a docking pose if the interface area is outside acceptable range.

Interface area is computed by defining a smooth surface representation (triangulated

mesh) of the proteins. Then Gaussian quadrature points are sampled on the triangles

such that the weight of a quadrature point corresponds to the area of the triangle

supporting it. Hence, the interface area is the sum of the weights of the quadrature

points which are on the interface (have a neighboring quadrature point on the other

surface within a distance threshold).
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5.2.3.5 Interface Propensity or Hydrophobicity

Using statistical information from [134] it computes a score for each pose

which from a high level can be viewed as the ratio of the interface area of the pose

corresponding to residues that typically appear in high frequencies in protein inter-

faces to the interface area corresponding to residues that appear in low frequencies.

A docking pose is penalized if this ratio is below a threshold. Alternatively, Hy-

drophobicity values from [44] can be used.

5.2.3.6 Residue-Residue Contact

It was observed in [106] that large hydrophobic residue pairs typically have

high contact preferences while the smallest contact preferences were observed be-

tween pairs of residues that are small in size. Interfaces do not seem to favor con-

tacts between hydrophobic and polar residues, and between charged residues that

do not have charge complementarity. F2Dock uses the pairwise contact preference

values listed in either Table III (without volume normalization) or Table IV (nor-

malized w.r.t. residue volumes) of [106]. This term penalizes a pose if the sum

of residue-residue contact values of the given pose fall below a threshold. Two

residues are considered to be in contact if the distance between their Cβ atoms (Cα

for Gly) is less than 6 Å.

5.2.3.7 Antibody-Antigen Contact

This term uses statistical information on antibody-antigen contact prefer-

ences derived in [1, 169]. It is based on the observation that in each antibody each
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of the following three regions will make at least one antigen contact: (1) either

CDR-L1 or CDR-H1, (2) CDR-L3, and (3) CDR-H3.

5.2.3.8 Glycine Richness

This term exploits the observation that enzyme active sites are rich in glycines,

particularly G-X-Y and Y-X-G oligopeptides, where X and Y are polar and non-

polar residues, respectively, and G is glycine [277].

5.2.4 Phase III (Solvation Energy Based Reranking)

The ranked docking poses obtained from phase I are re-scored and reranked

based on the change in solvation energy caused by each pose. The polar part of

the solvation energy is approximated using the surface-based formulation of Gener-

alized Born (GB) energy [28], and implemented using a fast octree-based approx-

imation scheme which we describe in detail in [66]. Among the non-polar parts

the dispersion energy is also approximated using octrees while the cavity form-

ing energy is approximated by computing an approximate interface area of the two

molecules using our fast linear-space Dynamic Packing Grid (DPG) data structure

described in [25].

5.3 Learning the Best Combination and Weighting of Scoring
Terms

Several machine learning based approaches have been proposed recently.

Ravikant and Elber in [211] used quadratic programing [187] to learn 441 inter pa-
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rameter for residue contact potentials in which their objective function maximizes

a distance metric between correct solution and decoys. Similarly, Andersson et al.

in [6] used a multi-variance approach to optimize linear parameter sets. Hetenyi et

al. in [124] used linear regression models to learn the linear relationship between

multiple score terms and empirical binding free energy. Other than linear models,

Teramoto et al. in [248] used random forest classifier as supervised scoring method

and Gozalbes et al. in [109] learned threshold parameters from statistical results of

empirical data. Adaptive parameter swiping is another type of learning approach

in which the initial parameter values are randomly sampled and then updated in an

iterative manner. Pham et al in [196] and Seifert et al. in [232] used gradient de-

scend and line search for high dimensional searching and Antes et al. in [9] used a

neural network to parameterize the relationship between parameter vector and ob-

jective function (RMSD for top 5 results). Genetic programming [242] has also

been applied in parameter space search where evolution and mutation are exploited

to update the generation of parameter vectors. Another score driven approach is

applied by Yang et al. in [278] in which multiple criteria (Z-scores etc.) are used to

instruct the iterative steps. Notice that the learning approaches presented in all the

previous work assume homogeneity of the parameters they are trying to learn, i.e.

they are applicable for either linear sums of weighted terms, or for interval thresh-

olds etc. Here, we identify the different types of parameter spaces and the need for

tailoring the learning methods for each. We design a multi-stage mixed learning

model, a combination of quadratic programming and random forest classifiers, for

optimizing the parameters of the scoring functions described above.
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5.3.1 Quadratic Programming

The quadratic programming approach targets at maximizing the separating

distance between correct and incorrect solutions. For transformation τ , recall the

scoring function

E(τ) = wT · Pτ

The parameter vector we need to train is

w = [wss, wsc, wcc, welec, whbond, wip]

and Pτ is the corresponding feature vector for a given transformation τ . The training

data (input) of the algorithm is a set of n receptor-ligand pairsX = {X1, X2, ..., Xn}

whereXi = {Xi1, Xi2} and their corresponding correct transformation τ = {τ1, τ2, ..., τn}.

The algorithm input also includes a constant C, tolerated error v and size of region

in output space ε.

At the beginning of the algorithm, we sample set of clusters Γ0
i = {G1, G2, ...}

where Gj = {τ1, τ2, ...} of incorrect transformations for each receptor-ligand pair

Xi1, Xi2. In this definition, Γk is a set of clusters, Gk is a cluster and τk is a trans-

formation. Then we compute the set constraints for each set of clusters such that

Si ← {∀Gk ∈ Γ0
i∀τ

j
i ∈ Gk : wT (Pτi − Pτ j

i
) ≥ 1− δik

∆(τi, τ
j
i )
}

In this step, we compute a slack variable δik for each cluster Gk so that the error

between all transformations τ ji in Gk and the correct transformation τi cannot vio-

late the minimum threshold 1− δik
∆(τi,τ

j
i )

where ∆(τi, τ
j
i ) is the rmsd value between

137



τi and τ ji . We solve the QP

(w, δ) = arg min
w,δ

1

2
||w||2 +

C

n

∑
i,k

δik

to get the minimum value of each slack variable δik which maximize the separating

distance between scores of correct and incorrect transformations. Until now we

have assigned the initial values for the variables which will update during iterations:

• Γ0
i : Initial set of clusters

• w: Initial values for parameter vectors

• δ: Initial values for slack variables

Then we begin the iteration. In the αth iteration, we find the set of top violated

transformations Tαi in each set of clusters Γα−1
i and re-cluster them. For each cluster

Gk in Tαi , we will use it to generate the kth cluster Γαik for the new set of clusters

Γαi . The generating process is described as: For each transformation τ ji in Gk, if it

is possible for it to violate the constraint for the kth cluster such that

∆(τi, τ
j
i )(1− wT (Pτi − Pτ j

i
)) > 0

We’ll determine whether to add this transformation into the new cluster Γαik by the

following two criteria:

• If the kth cluster exists in set Γα−1
i but transformation τ ji violates the slack

variable δik that

wT (Pτi − Pτ j
i
) < 1− δik + v

∆(τi, τ
j
i )

add τ ji into Γαik.
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• If the kth cluster doesn’t exist in set Γα−1
i , add τ ji into Γαik.

If either criteria is met, we will add the transformation into Γαik. After all the new

clusters are generated, we have the new set of clusters Γαi . Similar as the beginning,

we set constraint δik for each cluster Gk in Γαi such that

Si ← {∀Gk ∈ Γαi ∀τ
j
i ∈ Gk : wT (Pτi − Pτ j

i
) ≥ 1− δik

∆(τi, τ
j
i )
}

and solve the QP

(w, δ) = arg min
w,δ

1

2
||w||2 +

C

n

∑
i,k

δik

again to update w and δik.

Until now the three variables Γ, w and δ are all updated and then we use

them to begin the iteration α + 1. The iteration will terminate if no new constraint

is generated during the iteration and the w at that time is our final output.

5.3.2 Random Forest Classifier

The random forest classifier [51, ?] consists of multiple decision tree clas-

sifiers each of which satisfies the conditions below:

• Nodes are constructed from a subset of data. Root node contains all data.

Each data item is a vector.

• At each node, search through all variables to find best split into two children

nodes.

• Split all the way down and then prune tree up to get minimal test error
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The generation process of the random forest is described as:

• Root node contains a bootstrap sample of data of the same size as original

data. Each tree has different bootstrap sample

• For each node, a random subset of training samples are selected and the best

split is found by searching through these samples. The search algorithm is

called classification and regression tree (CART) search with Gini criterion.

The Gini criterion is a statistical measure of the statistical dispersion of a

set of data points. In the CART algorithm, each split only depends on one

predictor value i.e. one dimension of the training sample. For a training set

with k training samples, there are k possible splits for each dimension.

• Find each dimension’s best split: Sort the value of this dimension from the

smallest to the largest. For the sorted values, go through each value from top

to examine each candidate split point (call it v, if x CORRECT v, the case

goes to the left child node, otherwise, it goes to the right) to determine the

best. The best split point is the one that maximize the splitting criterion the

most when the node is split according to it.

• the Gini criterion for node t is defined as:

∆i(s, t) = i(t)− PLi(tL)− PRi(tR)

where

t(t) = 1 =
∑
j

p2(j|t)
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Gini criterion describes the purity of the node and the split the maximize

∆i(s, t) will be found. Note that for n k-dimensional examples there are nk

possible splits.

• Normally a large number of trees (> 100) are generated and the final predic-

tion result is the average of the votes of all trees.

For a docking exercise, we represent each relative pose using a vector con-

taining the score for each individual term of the multi-term scoring model. These

score vectors are used as data items for the random forest. During the training step,

we label score vectors corresponding to transformations with rmsd smaller than 5

as positive training sample and all transformations with rmsd greated than 20 are

labeled as negative. We have used 1342 positive training samples and 214,532 neg-

ative training samples in total drawn from all complexes. The number of decision

trees contained in the forest is set to be 500. Given a test pose, we simply compute

the rf-score as the average of the votes of all trees with the corresponding score vec-

tor used as input. Finally, for each complex, we take the originally ranked results

(top 10, 000) and use their rf-scores for reranking.

5.3.3 Dataset Preparation

F2Dock takes two PDB files as inputs. First the PDB files are processed

by PDB2PQR [79] where missing atoms such as Hydrogens are added, the protein

is optimized for hydrogen bonding, and charge and radius parameters are assigned

using the AMBER force-field available in PDB2PQR. If the given PDB has missing
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residues or too many residues with missing backbone atoms, then our curation pro-

cess fails and F2Dock cannot be used without manually curating the PDB or using

other curation software.

Then pseudo-atoms are added above the surface of the receptor (i.e., station-

ary molecule), and surface atoms of the ligand (i.e., moving molecule) are detected.

These atoms are marked as skin atoms, and the rest as core atoms.

5.3.4 Parameter Selection Based on Complex Type

F2Dock 2.0 has several free parameters in its pipeline. We can broadly clas-

sify the parameters into several groups. For parameters like the charge and radii

of atoms, or the hydrophobicity and interface propensity of residues etc., we either

use well-established parameters (for example, from the AMBER [54] force field)

or derive from previously published results (for example, interface propensity val-

ues from [134]). Some parameters are internal to a scoring function for example

the distance dependent dielectric for electrostatics, or the thickness of the skin used

in shape complementarity. These parameters are trained using manual parameter

sweeps based on a small number (4-5 per complex type) of complexes. However,

we produced multiple configurations for each complex and chose the set of parame-

ters which maximizes the corresponding individual scoring term for the near native

poses. A similar strategy was used for selecting the thresholds used to penalize

poses during filtering. Finally, there are the parameters that govern the weights as-

signed to different scoring terms when they are combined as well as the weights (or

percentages) by which poses are penalized. These parameters are the most difficult
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to train as the scoring terms are not independent and the relative influence of a term

might vary for different complexes. These parameters were trained based on the 60

complexes from Zlab’s protein-protein benchmark 2.0 [180] as follows.

The complexes in the benchmark are categorized into four main types: Antibody-

Antigen (A) and Antibody-bound Antigen (AB), Enzyme-Inhibitor/Enzyme-Substrate

(E), and other (O) types. We identify that the classification is not only functional,

but it also has significant effect on scoring function design since different scoring

terms bear different level of significance for different categories of complexes. For

example, it is known that binding interfaces of Enzymes are rich in Glycines, which

lead us to design a filter based on Glycine richness and it is applied only for Enzyme

type of complexes. For each class of complexes (9 Antibody-Antigen, 9 Antibody-

bound Antigen, 21 Enzyme-Inhibitor/Enzyme-Substrate and 21 Others), we train

the weight parameters separately. The objective for the training is to improve the

ranks of near-native solutions for as many complexes as possible. We performed

parameter sweeps for each of the weights that combines the FFT based scores based

on the above objective for each of the categories. Then we examined the effect of

applying each of the filter, one at a time, and controlled its penalty to improve the

results.

We do realize that our manual scheme has its drawbacks, specially since it

does not sufficiently cover the entire space of possible values for the parameters.

We are actively trying to use machine learning schemes to train the parameters in a

more robust way. However, so far our attempt of using quadratic programming and

random forest learning based on thousands of negative and positive examples based
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on this benchmark have failed to produce a set of parameters which outperform the

manually calibrated set of parameters.

Default values of all the parameters for different types of complexes can

be found in the user manual for F2Dock 2.0 downloadable from our website (link

given in the abstract).

5.3.4.1 Automated Detection of Complex Types

Since F2Dock 2.0’s parameters are optimized separately for antibody-antigens

and enzyme-inhibitors/ enzyme-substrates, and a general set of parameters are used

for all other types of complexes, the user only needs to specify the complex type to

ensure the set of optimized parameters are applied. If the type is unknown, F2Dock

2.0 tries to determine which set of parameters to use as follows. If F2Dock 2.0 lo-

cates the six CDR loops (L1, L2, L3, H1, H2 and H3) in the protein sequence using

the algorithm in [174], it identifies it as an antibody and uses the corresponding pa-

rameter set. Otherwise, if neither molecule is identified as an antibody and at least

one of the molecules has at least 200 residues and at least 8% of its surface residues

are Glycines then F2Dock 2.0 uses the enzyme complex parameter set. Finally, if

both tests fail, a set of parameters for the general case is used. Among the com-

plexes in the Zlab benchmark 2.0, F2Dock 2.0 fails to identify only one antibody

(1KXQ) and three enzymes (1AY7, 1UDI and 2MTA). See supplement for details.
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5.4 Results

We present the results of our experiments to explore the contribution of

the new scoring terms and filters available in F2Dock 2.0 as well as the solvation

energy based re-ranker GB-rerank on prediction accuracy. These experiments are

carried out on the set of complexes in Zlab’s benchmark 2.0 [180] which contains

60 complexes. Then we run F2Dock 2.0 with the best set of parameters on the

complexes in the Zlab benchmark 4.0 [129], and compare the performance with

ZDock 3.0.2 [179]. The complexes in both the benchmarks are categorized into

rigid-body (easy), medium and difficult (flexible) based on the RMSD between

the bound and unbound states of the proteins. They are also categorized into four

main types: Antibody-Antigen (A) and Antibody-bound Antigen (AB), Enzyme-

Inhibitor/Enzyme-Substrate (E), and other (O) types. As mentioned before, F2Dock

2.0 uses different set of parameters for the different categories and we have also

compared our results for each category separately.

5.4.1 Evaluation Criteria

F2Dock 2.0’s search leaves the receptor stationary and searches over the

orientations of the ligand. Hence, to evaluate the accuracy of a predicted pose, we

compute the deviation between the predicted position of the ligand and its correct

position as the root mean squared distance (RMSD) of the interface atoms. Note

that correct position of the ligand for unbound test cases can be approximated by

aligning the unbound components to their bound counterparts. The unbound lig-

ands in the ZLab benchmarks are provided after alignment with bound counterparts
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and hence can be used as the approximate truth without further manipulations. We

assume that an atom is on the interface if the distance between its center and the cen-

ter of any atom on the other molecule is less than 10Å. We define LI as the set of all

backbone atoms of the ligand which are on the interface when the ligand is placed

in its native pose w.r.t the receptor (to find the native pose for an unbound case, we

simply align the unbound receptor and unbound ligand to their bound counterparts).

If the position of ligand atom ai is x∗i in the native pose and xPi in a predicted pose P ,

then the interface RMSD is computed as IRMSD =
√

1
|LI |
∑

ai∈LI
(|x∗i − xPi |2).

A predicted solution is considered a hit provided its IRMSD value is at most 5Å.

In the remaining text and supplement, we refer to the hit with the lowest

RMSD as the ‘best’ hit and the hit with the highest rank as the ‘top’ hit. In most of

our results, we compare protocols based on the rank of the ‘top’ hit. Given a set of

complexes C, and a protocol S, we define CS(x) as the set of complexes such that

for each complex c ∈ CS(x), the top hit lies within the range [1, x]. Clearly, for a

given x a higher CS(x) is better. Hence, to compare the accuracy of two protocols

S1 and S2, we can simply compare CS1(x) and CS2(x) for different x. In general

we use a few specific values for x ([1,1], [1,5], [1,10], [1,50], [1,100], [1,500] and

[1,1000]). We are specially interested in the first few ranges which shows off the

accuracy of the scoring model, and the last range which shows off the applicability

of the model over a broad range of complexes.

Two residues Ri ∈ A and Rj ∈ B are considered to be in contact if the

distance between the centers of any atom aii ∈ Ri and any atom ajj ∈ Rj is less

than a threshold. The set of residue-residue contacts for the native pose of the
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receptor and ligand are defined as the native contacts N. For a given predicted

pose, we compute the set of residue-residue contacts for that pose as C. The set

of native contacts for that pose is hence defined as N′ = N ∩ C. Now, we define

another metric based on native contacts as Fnat = |N′|/|N|. We follow the well

known CAPRI criteria that uses a combination of Fnat and IRMSD to classify

predictions as high, medium, acceptable and incorrect.

5.4.2 Analyzing the Improvements due to New Affinity Functions and Filters

5.4.2.1 Effectiveness of the New Skin-Core Definition

We have compared the new improved double skin approach to the tradi-

tional approach (used in F2Dock [26]) in terms of their prediction accuracy on the

rigid-body complexes of the Zlab Benchmark 4.0. In these tests only the shape

complementarity term was used, and hence the results are not as accurate as the

default combination of scoring and filtering terms can produce.

In Figure 5.2(a), we clearly notice the improvement offered by the floating

skin approach over the traditional which validates our idea that a softer definition of

skin is better for unbound docking. However, the traditional skin approach performs

slightly better for the bound-bound (re-docking) test cases (Figure 5.2(b)). Figure

5.2(c) shows that as a result of the improved skin definition, F2Dock 2.0’s shape

complementarity function outperforms DOT and ZDock on the rigid complexes

from Zlab benchmark 2.0 (bound-bound).
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Figure 5.2: Effectiveness of the New Skin-Core Definition. (a-b) Comparison of
the performance of F2Dock 2.0’s shape complementarity function with traditional
skin and the new floating skin approach, in terms of the number of complexes for
which the top hit is within the ranges mentioned in the X-axis. (a) On the rigid-body
unbound-(un)bound complexes from Zlab Benchmark 4.0. (b) On the rigid-body
bound-bound complexes from Zlab Benchmark 4.0. (c) Comparison of the shape
complementarity functions of DOT, ZDock 2.1 and F2Dock 2.0 on the rigid-body
bound-bound complexes from Zlab benchmark 2.0.

5.4.2.2 Effects of Various Filters on Quality of Solutions

Figure 5.3(top) shows how the number of test cases (rigid-body test cases

from Zlab benchmark 2.0 [180]) with at least one hit in top 1, top 10, top 50, top

100, top 500 and top 1000 changes as various affinity functions and filters in F2Dock

2.0 are applied. The filters are applied to the top 2000 predictions after using the

FFT based affinity terms and clustering. In this experiment, we have specified the
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Figure 5.3: Analysis of the efficacy of the different filters and affinity terms used
in F2Dock 2.0. (top) Improvements in the rank of the top hit (of rigid-body test
cases from Zlab benchmark 4.0) as various affinity functions and filters in F2Dock
2.0 are activated one after another. (bottom) Improvements in the rank of the top
hit for the Enzyme type of complexes from Zlab benchmark 4.0.

complex type (A/AB, E and O) for each test case. Clearly, each of the filters (except

interface area filter) individually improves the ranks of the top solution, and the

best outcome is generated when the default combination of filters are used. For

example, after the FFT based scoring, we get a hit at rank 1 for 10 complexes, but
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after filtering it improves to 17. Since the antibody and enzyme filters do not apply

to all types of complexes, we compare their effect only on the particular type of

complexes. For example, Figure 5.3(bottom) shows the effectiveness of the enzyme

filter.

Figure 5.4: Changes in the rank of top hit as various options in F2Dock
2.0 are activated one after another (on the rigid-body test cases from Zlab
benchmark 2.0 [180]). (a) Lennard-Jones Filter (LJ), clash filter (CL) and
proximity clustering (PC) are activated after shape complementarity (SC), (b)
electrostatics & charge complementarity (EL) after SC+LJ+CL+PC, (c) inter-
face propensity (IP) after SC+LJ+CL+PC+EL. (d) interface propensity filter
(PF) after SC+LJ+CL+PC+EL+IP, (e) residue-residue contact filter (RC) after
SC+LJ+CL+PC+EL+IP+PF, and (f) antibody contact filter (AF) or glycine filter
(GF) after SC+LJ+CL+PC+EL+IP+PF+RC.
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The series of plots in Figure 5.4 shows a detailed breakdown of the effect

of different scores/filters for each complex separately. On the X-axis, we list the

complexes and the Y-axis shows the change of the rank of the top hit. In the figures,

an improvement is defined as producing the top hit at a better rank. We use the

results of using just shape complementarity as the base case and analyze the relative

improvements as more and more terms are added.

When we activate Lennard-Jones filter, clash filter and proximity clustering

after shape complementarity we get hits for 4 new test cases, and the rank of the top

hit improves for 15 more (see Figure 5.4(a)). However, we also lose hits in top 1000

for 3 test cases, and the rank of the top hit degrades for one test case. Overall, the

application of these filters and clustering seem largely beneficial. The best results

are obtained for enzyme-inhibitor/enzyme-substrate complexes, as for more than

50% of these complexes rank of the top hit improves.

When electrostatics is turned on we get hits in top 1000 for 9 test cases for

which we did not have a single hit before, and for 14 other cases rank of the top

hit improve (see Figure 5.4(b)). However, we lose hits 1 test case, and for 4 others

rank of the top hit degrades.

The FFT-based interface propensity scoring is activated next which im-

proves the rank of the top hit for 30 test cases (i.e., for around 50% of all cases)

among which 7 cases did not have a single hit before (see Figure 5.4(c)). Among

these 7 cases with new first hits 5 are antibody-antigen or antigen-bound antibody

complexes, and none are enzyme-inhibitor or enzyme-substrate.
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The interface propensity filter is turned on next. It improves the rank of the

top hit for 25 complexes, and degrades for 5 (see Figure 5.4(d)). For 3 test cases we

did not have a single hit in top 1000 before among which 2 are antibody-antigens.

The residue-residue contact filter which is activated next improves the rank

of the top hit for 27 test cases, and degrades for none (see Figure 5.4(e)). The

enzyme-inhibitor and enzyme-substrate complexes seem to have benefited the least

from this filter.

Next we apply the antibody contact filer and the Glycine filter. The antibody

contact filter improves the rank of the top hit for 9 antibody-antigen and antigen-

bound antibody test cases, and degrades for 3, while the Glycine filter slightly im-

proves the same for 4 enzyme-inhibitor/enzyme-substrate complexes (see Figure

5.4(f)).

More comparisons with respect to the RMSD of the best hit, the total num-

ber of hits, and the lowest RMSD are provided in the supplement.

5.4.2.3 Effects of Post-processing with GB-rerank

Figure 5.5 shows the impact of applying GB-rerank (after the initial docking

phase) on the rigid-body test cases from Zlab benchmark 2.0 [180]. GB-rerank

improves the ranks of the top hit for 9 antibody-antigen and antigen-bound antibody

complexes, and 10 complexes of type "other" (see Figure 5.5).

The post-processor is least effective on enzyme-inhibitor/enzyme-substrate

complexes since the enzyme filter has already improved the ranks quite well. On
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Figure 5.5: Effect of performing GBSA based reranking. The plot shows the
change of the rank for the first hit. A positive change indicates that the reranker im-
proves the result. For most complexes, specially for complexes where a knowledge-
based based filter (Antibody or Enzyme) could not be applied, GB-rerank improves
the rank of top hit compared to the results produced by F2Dock 2.0 (for the rigid-
body test cases from Zlab benchmark 2.0 [180]).

the other hand, for the ‘other’ complexes, GB-rerank produces the most significant

improvements, since specific filters cannot be applied in these cases. Hence if the

complex is known to be Enzyme, then GB-rerank should not be applied.

5.4.2.4 Performance of F2Dock 2.0 with and without User-specified Complex
Type

Figure 5.6 compares the performance of F2Dock 2.0 with and without user-

specified complex types on Zlab’s protein-protein docking benchmark 2.0. When

no complex type is specified F2Dock 2.0 tries to identify antibody-antigen com-

plexes by locating the CDR loop regions of the antibody. Among the 17 such
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Figure 5.6: Performance of F2Dock 2.0 with and without user-specified com-
plex type. When complex type is not specified in the input, F2Dock 2.0’s perfor-
mance does not change significantly. In most cases, it can automatically detect the
complex-type and apply the correct set of parameters. Tests are based on rigid body
cases from Zlab’s Protein-protein docking Benchmark 2.0.

complexes in our experiments 16 are correctly identified by F2Dock 2.0. It fails

to identify 1KXQ which is an antibody-antigen complex from a Camelid (camels,

llamas, etc.) [77]. Camelids produce functional antibodies that do not have light

chains and CH1 domains, and so F2Dock 2.0’s antibody detection system fails to

identify such antibodies. Hence for 1KXQ the set of parameter values optimized

for complexes of "other" type is applied, and the result is only slightly worse than

what is obtained with the parameter set optimized for antibody-antigen complexes.

F2Dock 2.0 fails to select the correct parameter set for the following three enzyme-

inhibitor/enzyme-substrate complexes among the 21 included in the experiments:

1AY7, 1UDI and 2MTA. While for 1UDI and 1AY7 F2Dock 2.0 is still able to get

a hit in the top 100 and top 500, respectively, it fails to get any hit in the top 1000

for 2MTA. For all other complexes the results remain the same except for 1WEJ for
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which we get slightly different results in the two set of experiments due to the non-

determinism (arising from multiple concurrent threads) that exists in the proximity

clustering phase.

5.4.3 Comparison with ZDock

In this section we compare the performance of F2Dock 2.0 and ZDock 3.0.2

[179, 199] on the complexes from Zlab benchmark 4.0 [129]. We acquired the exe-

cutable for ZDock 3.0.2 from their website and ran it following the steps specified

in the accompanying instructions and used the PDB files downloaded from ZLab’s

website without any modification. F2Dock 2.0 used the same set of PDBs after per-

forming the preprocessing we mentioned in Section 5.3.3. Note that ZDock 3.0.2

also applies their own preprocessing which is part of the mark_sur script provided

with the executable. Both programs used 15◦ rotational sampling. F2Dock 2.0 used

user-specified complex types.

In Figure 5.7, we show a summary of the performances in terms of the

number of complexes where each protocol found at least one hit in different ranges

(see the X-axis). Note that having a higher Y-axis value for any instance shows that

the corresponding protocol is successful on complexes than the other. In Figure

5.7(a) we compare the performances over the entire Zlab benchmark 4.0 containing

176 complexes. We find that for each of the ranges except one, F2Dock 2.0 performs

better than ZDock 3.0.2. F2Dock 2.0 is specially impressive since it gets a hit at rank

1 for 22 of the complexes (which is 1/8th of the dataset) as opposed to 13 found by

ZDock 3.0.2. Overall both ZDock 3.0.2 and F2Dock 2.0 finds at least one solution
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Figure 5.7: Comparison of ZDock 3.0.2 [179] and F2Dock 2.0. (a) On all
176 complexes from Zlab Benchmark 4.0 [129], (b) On 25 antibody-antigen
and antigen-bound antibody complexes, (c) On 52 enzyme-inhibitor and enzyme-
substrate complexes, and (d) on the 99 other type of complexes.

for about the same number of complexes, 104 and 106 respectively.

Figures 5.7(b)-(d) compares F2Dock 2.0 and ZDock 3.0.2 using the same

metrics but considers each type of complex separately. For antibodies there is not

much to choose between the two protocols. For other types F2Dock 2.0 is successful

for a lower number of complexes, and is comparable only at relatively high ranks.

However, for Enzymes, F2Dock 2.0 completely outperforms ZDock 3.0.2 across

the board.

Based on these results, we can clearly see that F2Dock 2.0 produces much

more reliable predictions for Enzymes, but there is not much difference for anti-

bodies and other type of complexes. But Tables 5.1 to 5.4 shows that even for anti-
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bodies and other types F2Dock 2.0 provides significant contributions since the two

protocols are often successful for different complexes and hence compliment each

other. For example, among the antibodies, F2Dock 2.0 finds a solution for 1QFW

and 1I9R for which ZDock 3.0.2 does not find any solutions, on the other hand

ZDock 3.0.2 finds a solution for 1NSN where F2Dock 2.0 fails. Similarly among

the other complexes, only F2Dock 2.0 is successful for 1J2J, 2A5T, 2A9K, 2HQS,

3BP8, 1K5D, 1R6Q, 2Z0E, 3CPH and 1ATN. Hence, it is advisable to use both of

these protocols specially for other type of complexes to increase the possibility of

finding a correct solution.

Figure 5.8: Comparison of the rate of success of F2Dock 2.0 and ZDock 3.0.2.
On the 176 complexes from ZLab’s benchmark 4.0. Rate of success is defined as
the percentage of the hits found within the top x ranks, where x is the corresponding
value of the X-axis. Clearly F2Dock 2.0 has a better ratio.

Next we compare the rate of success of the two protocols. Let us assume

that the total number of hits (counting multiple hits found for a complex) found

within a range [0, x] across all the complexes be H(x). Now we define the rate of

success as y(x) = H(x) ∗ 100/H(1000) which measures how quickly a protocol
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finds its hits. A protocol with a higher ratio has higher true positive rate near the

top of the list. If we plot this function, we expect to see a curve which rises sharply

and then gradually flattens and converges to y(x) = 1.0. In Figure 5.8, we see that

F2Dock 2.0 has consistently better success rate than ZDock 3.0.2.

A closer look at Tables 5.1 to 5.4 shows that the RMSDs of the predictions

by F2Dock 2.0 is poorer than ZDock 3.0.2 in more occasions than it is better. This

is due to our softer skin approach which rewards docking poses which have slightly

larger gap between them, and our stringent clash and VDW filters which discard

ligand poses which comes too close. This is beneficial for unbound complexes with

larger conformational change, but prevents ligands of rigid (easy cases in the bench-

mark) from getting as close as they could be placed. The result clearly shows that

ZDock 3.0.2 gets better RMSDs for rigid cases, and F2Dock 2.0 is better for non-

rigid cases. At this point, it should be mentioned that F2Dock 2.0 is designed solely

as a initial stage docking tool, which can quickly perform exhaustive search and

return good leads at high ranks. Hence the poses it finds are generally acceptable or

medium quality as defined in the criteria used in the CAPRI [131] challenge (tables

summarizing F2Dock 2.0’s performance using the CAPRI criteria can be found in

the supplement). Local refinements (rigid body or flexible) can then be performed

on a small number of top solutions to further improve their RMSDs and minimize

the energies. There are a host of such tools available including ROSETTA [73],

Amber [54], FireDock [8] etc.

We conclude this section with the observation that F2Dock 2.0 shows better

overall performance, with significant improvement for Enzymes. For other type of
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complexes the performance is comparable and sometimes complementary.

5.4.4 Running Times

To evaluate the average running times and the relative consumption by each

scoring term/filter we performed a set of experiments run on a 3 GHz 2×dual-

core (i.e., 4 cores) AMD Opteron 2222 processor with 4 GB RAM. On average,

the FFT phase took around 23 minutes or 35% of the total running time, the in-

terface propensity filter took 20%, GB-rerank accounted for around 42%, and the

remaining 3% is spent on the other filters. GB-rerank and interface propensity filter

take longer to compute than other filters, since the computation is based on surface

quadrature points, whose number is a constant multiple of the number of atoms.

Figure 5.9 shows how the different components of F2Dock 2.0 and GB-rerank con-

tribute to the total running time of the docking and reranking process on the rigid-

body test cases from Zlab benchmark 2.0 [180]. Overall, about 30% time is taken

up by the FFT based affinity functions, 30% is taken up the the filters (mostly the

interface propensity filter), and around 40% by the GB-rerank.

F2Dock 2.0 leverages from the embarrassingly parallel nature of the compu-

tation using multithreaded computations on multi-core machines. Note that each of

the NR FFT computations are independent of each other and can be run in parallel.

Scores for each of filter terms for each of the poses in Q can also be computed in

parallel. Specifically, given q cores and T tasks the simplest strategy is to distribute

T/q tasks to each cores. But this approach often leads to unbalanced exploitation

of the cores if the tasks given to different cores take different amount of time to
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Figure 5.9: Running time of F2Dock 2.0 and its components. (a) Average running
time of each affinity function and filter of F2Dock 2.0. GB-rerank consumes a major
portion of the time (42%), the FFT phase takes about 30% time and the rest is taken
by the filters and clustering. The labels in the figure are actual time in minutes. (b)
Running times of F2Dock 2.0 on the rigid-body test cases from Zlab benchmark 2.0
[180] showing percentage of running time due to each affinity function and filter of
F2Dock 2.0 for each complex.

complete. For example, the running times of the filters are proportional to the size

of the interface which varies between different poses. So our technique initially

sends only one task to each core and maintains a queue of remaining tasks, and

then whenever a core is done with its task, it gets another one from the queue.

This scheduling ensures that every core is exploited equally and hence the overall

completion time is quicker.

5.5 Conclusion

We have developed an enhanced version (F2Dock 2.0) of our protein-protein

docking program F2Dock 2.0 with improved scoring functions, complete with dy-

namic clustering and filtering and generalized Born based solvation energetic rerank-
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ing. The on-the-fly FFT-based scoring function is a weighted combination of shape-

complementarity, Coulombic electrostatics complementarity, and interface propen-

sity terms. The on-the-fly docking also includes filters based on Lennard-Jones

potential, steric clashes, residue-residue contact statistics and an extremely fast ap-

proximation of solvation energy using a newly developed fast multipole type im-

plementation with octree data structures. Our implementation results and numerous

tests show that each of these terms and filters significantly improves the accuracy

of docking predictions. Our use of highly efficient data structures including the

dynamic packing grids for near constant time neighborhood search and near-far

distance clustering using octrees, significantly speed up the computations for each

of the ’on-the-fly’ scoring and filtering terms. GB-rerank’s solvation energy based

post-processing suite is also optimized using these efficient data structures with

the best tradeoffs of docking accuracy vs. speed. The entire software is highly

parallel and can be run efficiently on multicores and clusters of multicores (e.g.,

many modern supercomputers). We have also developed a GUI based interface

(TexMol) for easily preparing and running a docking process and interactively vi-

sualize, compare different solutions along with several relevant statistics including

interface area, residue contacts, binding energy etc.
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Rank of RMSD of Rank of Lowest
First Hit First Hit Lowest RMSD RMSD

Difficulty Complex ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock
Easy 1AHW 354 8 4.5 4.4 1242 457 0.9 1.8

1BJ1 1 63 1.9 2.3 1 63 1.9 2.3
1BVK 184 205 3.6 4.9 358 264 1.9 4.1
1DQJ 374 74 4.0 4.9 1787 74 3.3 3.6
1E6J 3 126 4.1 5 181 126 2.7 5
1FSK 1 1 2.9 3.2 2 3 1.8 1.5
1I9R - 9 - 3.9 - 9 - 3.9
1IQD 18 4 4.3 3 68 4 1.7 3
1JPS 1266 186 2.1 2.7 1266 186 2.1 2.7
1K4C 583 105 2.9 4.4 583 165 2.9 2.2
1KXQ 2 1 1.2 1.6 2 1 1.2 1.6
1MLC 57 11 2.0 3.8 57 114 2.0 1.3
1NCA 11 168 1.7 3.7 11 168 1.7 3.7
1NSN 1267 - 1.6 - 1267 - 1.6 -
1QFW - 80 - 1.9 - 80 - 1.9
1VFB 250 191 3.1 4.8 560 434 2.9 3.4
1WEJ 9 5 1.5 3.2 9 5 1.5 3.2
2FD6 3 62 5.0 4.4 282 62 3.3 4.4
2I25 2 122 3.0 3.9 40 242 1.7 2.6
2JEL 4 1 3.5 3.3 753 1 2.6 3.3
2VIS - - - - - - - -

9QFW 2 1 4.0 3.9 48 3 1.9 2.9
Medium 1BGX - - - - - - - -

Hard 1E4K - - - - - - - -
2HMI - - - - - - - -

Table 5.1: Comparison of the performance of F2Dock 2.0 and ZDock 3.0.2 for each
of the 25 antibody-antigen and antigen-bound antibody complexes from ZLab’s
benchmark 4.0 in terms of the rank and RMSD of the top hit and the best hit. Bold-
faced entries indicate better performance on the particular metric for the complex.
Empty entries indicate that no hits were found for that complex by the correspond-
ing protocol.
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Rank of RMSD of Rank of Lowest
First Hit First Hit Lowest RMSD RMSD

Difficulty Complex ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock
Easy 1AVX 25 1 3.5 4.5 194 4 1.5 2

1AY7 577 2 2.5 4 577 6 2.5 2.5
1BVN 3 1 1.2 3.2 3 2 1.2 3
1CGI 10 76 4.0 3.4 173 199 2.6 3.3
1CLV 3 1 2.3 2.5 21 350 2.3 2.1
1D6R - 59 - 4.6 - 249 - 4.3
1DFJ 1 9 4.1 4.4 2 9 3.2 4.4
1E6E 5 20 3.2 4.7 10 20 1.5 3.9
1EAW 68 1 3.4 1 579 1 1.7 1
1EWY 53 14 4.2 3.2 231 14 3.6 3.2
1EZU 841 170 4.9 4.5 841 1554 4.9 3.8
1F34 62 2 3.4 4.3 925 3 2.4 3.7
1FLE 31 3 5.0 3.7 1102 192 3.4 3
1GL1 73 326 2.6 3.8 73 881 2.6 2.3
1GXD 1173 - 4.9 - 1173 - 4.9 -
1HIA - 18 - 3.4 - 258 - 2.2
1JTG 1 7 2.6 4.6 1 1173 2.6 3.4

1MAH 1 1 3.1 2.7 4 4 1.4 1.9
1N8O 7 11 3.4 4.8 20 1330 0.6 4
1OC0 1590 - 4.8 - 1590 - 4.8 -
1OPH 1694 - 3.9 - 1694 - 3.9 -
1OYV 15 7 4.9 3.6 153 105 3.3 2.9
1PPE 1 1 2.9 2.3 3 3 1.1 1.3
1R0R 138 39 2.2 4.3 1298 1164 2.0 1.4
1TMQ 16 1 3.6 4.8 885 515 3.0 2.4
1UDI 24 1 3.5 3.1 24 229 3.5 2.5
1YVB 1 - 2.4 - 18 - 2.2 -
2ABZ - 5 - 2.8 - 5 - 2.7
2B42 3 1 4.2 3.9 6 12 0.6 2.2
2J0T - 19 - 2.8 - 21 - 2.6

2MTA 76 90 4.4 4.3 716 100 0.7 3.7
2O8V 29 654 5.0 3.7 852 654 4.0 3.7
2OUL 1 1 1.7 4.9 1 329 1.7 3
2PCC 496 10 2.6 4.3 496 10 2.6 4.3
2SIC 5 1 1.1 1.1 5 1 1.1 1.1
2SNI 177 1 3.8 4.7 299 403 2.8 1.3

2UUY 693 7 4.4 4.1 1946 44 3.1 3
3SGQ 428 110 4.0 2.6 576 624 1.0 2
4CPA 1 1 4.4 4.8 465 202 2.5 2.4
7CEI 1 1 4.4 4.1 88 2 0.8 1.4

BOYV - 220 - 3.6 - 220 - 3.6
Medium 1ACB 126 22 4.4 3.2 393 49 2.6 2.6

1IJK 81 88 3.0 4.8 1317 142 2.0 3.4
1JIW - - - - - - - -
1KKL - - - - - - - -
1M10 - - - - - - - -
1NW9 - 321 - 4.9 - 321 - 2.3

Hard 1F6M - - - - - - - -
1FQ1 - - - - - - - -
1PXV - - - - - - - -
1ZLI - - - - - - - -
2O3B - - - - - - - -

Table 5.2: Comparison of the performance of F2Dock 2.0 and ZDock 3.0.2 for each
of the 52 enzyme-inhibitor and enzyme-substrate complexes from ZLab’s bench-
mark 4.0 in terms of the rank and RMSD of the top hit and the best hit.
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Rank of RMSD of Rank of Lowest
First Hit First Hit Lowest RMSD RMSD

Difficulty Complex ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock
Easy 1A2K 1348 44 4.3 2.4 1894 44 3.2 2.4

1AK4 1090 964 3.5 4.3 1090 964 3.5 4.3
1AKJ 546 39 2.9 3.4 1632 39 1.7 3.4
1AZS 42 - 2.9 - 61 - 2.0 -
1B6C 1 3 2.9 4 1 3 2.9 4
1BUH 30 431 3.6 4.8 1961 431 3.0 4.8
1E96 1171 278 3.8 5 1171 314 3.8 4.2
1EFN - - - - - - - -
1F51 589 - 4.6 - 589 - 4.6 -
1FC2 - 1190 - 5 - 1570 - 4.1
1FCC - - - - - - - -
1FFW 73 325 4.5 4.7 1349 1291 4.0 3
1FQJ - - - - - - - -
1GCQ 1105 - 1.4 - 1105 - 1.4 -
1GHQ - - - - - - - -
1GLA 1708 - 3.9 - 1708 - 3.9 -
1GPW 3 1 3.6 3.7 134 5 2.1 2.6
1H9D 1006 - 4.5 - 1006 - 4.5 -
1HCF 175 1225 4.0 4.7 225 1225 1.9 4.7
1HE1 1141 574 4.7 4.9 1141 574 4.7 4.9
1I4D 571 - 4.2 - 571 - 4.2 -
1J2J - 182 - 4.6 - 182 - 4.6

1JWH 7 - 3.6 - 78 - 1.9 -
1K74 2 3 1.2 3.8 2 7 1.2 2.6
1KAC 592 8 4.5 4.4 1527 99 1.9 4.1
1KLU 1957 - 3.4 - 1957 - 3.4 -
1KTZ 535 98 2.8 3.9 535 166 2.8 2.9
1KXP 1 7 1.6 3.5 1 260 1.6 2.6
1ML0 4 2 3.1 4.3 8 123 3.1 3.2
1OFU 84 - 4.5 - 347 - 3.1 -
1PVH 748 - 4.5 - 1192 - 1.5 -
1QA9 - - - - - - - -
1RLB 3 555 4.6 5 232 555 3.4 5
1RV6 2 2 1.3 4 2 694 1.3 2.2
1S1Q 756 - 1.9 - 1243 - 1.4 -
1SBB - - - - - - - -
1T6B 58 525 3.6 4 1510 752 2.8 2.7
1US7 74 - 1.1 - 74 - 1.1 -

1WDW 2 1 1.2 2.5 2 1 1.2 2.5
1XD3 8 1 4.0 4.2 86 1298 2.6 3.9
1XU1 912 - 5.0 - 912 - 5.0 -
1Z0K 8 307 3.3 3.3 8 307 3.3 3.3
1Z5Y 20 - 3.4 - 423 - 2.5 -
1ZHH - - - - - - - -
1ZHI 65 202 4.4 4 324 202 2.1 4
2A5T - 268 - 3.6 - 618 - 2.9
2A9K - 558 - 3.4 - 558 - 3.4
2AJF 475 - 3.6 - 475 - 3.6 -
2AYO 37 1108 3.3 2 138 1108 2.5 2
2B4J - - - - - - - -
2BTF 53 95 4.7 4.5 148 377 3.8 3.4
2FJU 261 228 3.2 4.2 261 333 3.2 3.5

Table 5.3: Comparison of the performance of F2Dock 2.0 and ZDock 3.0.2 for each
of the 99 other type of complexes from ZLab’s benchmark 4.0 in terms of the rank
and RMSD of the top hit and the best hit. Continued as Table 5.4.
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Rank of RMSD of Rank of Lowest
First Hit First Hit Lowest RMSD RMSD

Difficulty Complex ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock
Easy 2G77 15 8 1.5 3.7 15 917 1.5 1.3
Cont 2HLE 31 4 4.1 3.8 31 4 4.1 3.8

2HQS - 27 - 4.1 - 125 - 2.7
2OOB - - - - - - - -
2OOR 766 16 4.4 4 766 63 4.4 2
2VDB 5 - 1.2 - 5 - 1.2 -
3BP8 - 474 - 5 - 699 - 3.3
3D5S 71 1 3.1 3.2 609 4 2.5 2.7

Medium 1GP2 61 193 4.4 4 107 193 2.8 4
1GRN 1299 401 4.3 4.8 1299 401 4.3 4.8
1HE8 - - - - - - - -
1I2M 267 545 2.2 2.6 267 545 2.2 2.6
1IB1 - - - - - - - -
1K5D - 521 - 4.3 - 521 - 4.3
1LFD 85 990 4.6 4.6 466 1235 4.5 4.1
1MQ8 1455 - 3.2 - 1455 - 3.2 -
1N2C - - - - - - - -
1R6Q - 180 - 3.7 - 311 - 3.5
1SYX 211 2 4.8 4.7 211 11 4.8 3
1WQ1 81 - 4.0 - 81 - 4.0 -
1XQS 19 61 3.8 4.2 45 833 2.6 3.7
1ZM4 6 - 4.1 - 631 - 2.7 -
2CFH 1 119 3.8 2.6 2 119 1.7 2.6
2H7V 1112 - 4.6 - 1112 - 4.6 -
2HRK 3 - 3.7 - 3 - 3.7 -
2J7P - - - - - - - -
2NZ8 64 - 4.5 - 64 - 4.5 -
2OZA - - - - - - - -
2Z0E - 169 - 3.9 - 169 - 3.9
3CPH - 250 - 4.3 - 250 - 4.3

Hard 1ATN - 1307 - 2.7 - 1307 - 2.7
1BKD - - - - - - - -
1DE4 84 - 4.7 - 84 - 4.7 -
1EER - - - - - - - -
1FAK - - - - - - - -
1H1V - - - - - - - -
1IBR - - - - - - - -
1IRA - - - - - - - -
1JK9 510 422 4.2 2.5 790 422 4.1 2.5
1JMO - - - - - - - -
1JZD 44 144 4.6 4 44 144 4.6 4
1R8S - - - - - - - -
1Y64 - - - - - - - -
2C0L - - - - - - - -
2I9B - - - - - - - -
2IDO 130 156 3.6 4.5 154 156 3.5 4.5
2OT3 121 - 4.6 - 327 - 4.5 -

Table 5.4: Comparison of the performance of F2Dock 2.0 and ZDock 3.0.2 for each
of the 99 other type of complexes from ZLab’s benchmark 4.0 in terms of the rank
and RMSD of the top hit and the best hit (cont.).
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Chapter 6

Characterization, Enumeration and Construction of
Almost-regular Polyhedra

The symmetries and properties of the 5 known regular polyhedra are well

studied. These polyhedra have the highest order of 3D symmetries, making them

exceptionally attractive templates for (self)-assembly using minimal types of build-

ing blocks, from nanocages and virus capsids to large scale constructions like glass

domes. However, the 5 polyhedra only represent a small number of possible spher-

ical layouts which can serve as templates for symmetric assembly. In this paper,

we formalize the notion of symmetric assembly, specifically for the case when only

one type of building block is used, and characterize the properties of the correspond-

ing layouts. We show that such layouts can be generated by extending the 5 regular

polyhedra in a symmetry preserving way. The resulting family remains isotoxal and

isohedral, but not isogonal; hence creating a new class outside of the well-studied

regular, semi-regular and quasi-regular classes and their duals Catalan solids and

Johnson solids. We also show that this new family, dubbed almost-regular polyhe-

dra, can be parameterized using only two variables and constructed efficiently. In

Chapter 7, we discuss some applications on modeling, predicting and analyzing the

structures of virus capsids of various sizes.
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6.1 Introduction

Regular polyhedra are combinatorial marvels. They are simultaneously

isogonal (vertex-transitive), isotoxal (edge-transitive), and isohedral (face-transitive).

In this context, transitivity means that every vertex (or edge or face) are congruent

to each other, and for any pair of vertices (or edges or faces), there exists a sym-

metry preserving transformation of the entire polyhedron which isometrically maps

one to the other. Note that two vertices are congruent if they have the same number

of edges incident on them with the same angles between the edges; congruency for

edges and faces are defined in the general way.

Transitivity plays a vital role is assembly, specially self-assembly. For in-

stance, if we consider each face as a building block, then face transitivity indicates

that a single type of block is sufficient to form a shell-like structure; and edge-

transitivity indicates that there is exactly one way to put any two blocks together.

Viruses, natures smallest organisms, utilize this simplicity by having only encoding

the blueprint (RNA/DNA) for a single type of protein, multiple copies of which

can follow a simple assembly rule to form a shell, called a capsid, within which

the same RNA/DNA (and more) can be safely stored. There are only 5 regular

polyhedra- the tetrahedraon, the cube, the octahedron, the dodecahedron and the

icosahedron with respectively 4, 6, 8, 12, and 20 faces. But, more than half of the

viruses, though they seem to have the polyhedral symmetry, have capsids which are

formed by more than the number of faces of the corresponding polyhedron. In other

words, the building blocks seem to be arranged in a different (denser) layout where

the faces of the original polyhedra is subdivided into smaller facets. In this paper,
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we refer to these families as almost-regular polyhedra. These polyhedra preserves

the global polyhedral symmetry, and also introduce local symmetries so that only

one type of building block still suffices.

Caspar and Klug [55] first addressed this layout of virus capsids, using tri-

angular tiles, and called it ‘quasi-symmetry’. A similar class of assembly is seen

in fullerene like particles, with 12 pentagonal and many hexagonal faces, which

was first characterized by Goldberg [108]. Recently, several researchers have de-

veloped efficient constructions and parameterizations of Goldberg-like particles

[96, 125, 231]. Recently, Deng et al. [76] studied extensions of Goldberg’s construc-

tion to other platonic solids, but their study is not exhaustive in characterization and

enumeration of all the possible cases. In another recent work, Schein and Gayed

[225] developed a numerical optimization scheme that takes a Goldberg-like poly-

hedra, which by construction does not have planar faces and is not always convex,

and produces strictly convex polyhedra while preserving the edge-lengths. How-

ever, the resulting polyhedra no longer have any face-transitivity, and even though

the edges have the same length, they are not strictly congruent as their neighboring

faces are different- hence making such polyhedra unsuitable for using as layouts

for assembly. In this paper, we study the class of spherical tilings which preserve

global symmetry, keeps edge-lengths equal and makes the faces as congruent as

possible, but relaxes the convexity condition.

We believe that our results will greatly impact research in several areas in-

cluding the field of nano-materials, where the primary focus is to understand, an-

alyze and design components at the atomic level, which can self-assemble to cre-
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ate nano-structures with desirable properties. For example, gold nanorods have

been used in cancer imaging and therapy [58, 275], virus capsids and protein-cages

have been used for targeted drug delivery [238]. One of the emerging topics of

research in nanotechnology is the engineering and design of nano-particles for spe-

cific applications. For example, designing a protein-cage or modifying a virus cage

[234, 241, 244] which can contain/hold desired quantity of a drug and only disso-

ciates when it reaches a specific organ/tissue to release the drug, and have specific

tensile strength, deformability and mass. Advanced scientific computation tech-

niques, to explore and automatically predict possible nano-structures that can be

formed symmetrically by one type of building block (eg. an engineered protein)

and to automatically analyze mechanical and biophysical properties of entire nano-

shells involving millions of atoms etc. would surely accelerate the development of

new nano-shell structures. Our theoretical groundwork would greatly support such

extensive computational techniques, for instance we show that even though assem-

bly prediction is an NP-hard problem, but using our symmetry characterization, a

symmetric assembly of n particles can be predicted using a algorithm whose run-

ning time is only polynomial in n.

6.2 Characterization of Almost-Regular Polyhedra

First, we briefly introduce the concepts of symmetry groups, symmetry axes,

order etc. Symmetry groups consists of a set of symmetry operations, i.e. transfor-

mations which maps an object to itself, such that the set is closed under the com-

position (one transformation followed by another) operation. The actions of the
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polyhedral symmetry groups can be expressed as pure rotations around different

axis through the center of the polyhedra, which we assume to be at the origin with-

out loss of generality. We generally refer to the points of intersection of these axes

with the polyhedra as the locations of symmetry, and refer to the axes as the sym-

metry axes. For instance, the octahedron have 6 axes of 4-fold rotational symmetry1

going through the four vertices, 8 axes of 3-fold rotational symmetry going through

the centers of the faces, and 12 axes of 2-fold rotational symmetry going thorugh

the centers of the edges.

Interestingly, duals of regular polyhedra are also regular- tetrahedron is self-

dual, octahedron and cube are duals of each other, and icosahedron and dodecahe-

dron are duals of each other.

6.2.1 The Almost-Regular Polyhedra and Their Duals

The almost-regular polyhedra have exactly the same number of rotational

symmetry axes with the same symmetry orders as any specific regular polyhedron,

such that there exists a rigid body transformation that perfectly aligns these axes

to those of the regular polyhedron. We refer to these as the global symmetry axes

and locations. We shall refer to these global symmetry axes as gv-symmetry axes,

ge-symmetry axes and gf-symmetry axes respectively for axes of symmetry go-

ing through, respectively, the vertices, edge-centers and face-centers of the regular

polyhedron. Additionally, all vertices, faces and edges of an almost-regular poly-

1n-fold rotational symmetry, also referred to as the symmetry order n, means that a rotation by
2π/n maps the polyhedron to itself
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hedron must have locations of local symmetry. Local symmetry operations map

the vertices, edges, faces immediately neighboring the location of local symmetry

to themselves, but may or may not map the remaining parts of the polyhedron to

itself. These axes will be referred to as lv-, le-, and lf-symmetry axes.

a b c d

A
B

C

D

A
B

C

D

A
B

C

D

A
B

C

D

E

E
F

G

Figure 6.1: Illustration of the criterion for almost-regular polyhedra. The poly-
hedra shown in (a) and (d) are not almost-regular. In (a), the global symmetries
are preserved, but the local symmetries are not (for example, it is not locally 2-fold
symmetric around the center of DE). In (d), local symmetries are intact (note that
DEFG and other creased faces are considered a single face), but the global 3-fold
symmetries are not (for example, around the center of ABD).

It is clear that the almost-regular polyhedron must be isotoxal, isohedral and

have only cyclic symmetric faces. However, it is not neccessarily isogonal. This

class is similar to the Catalan solids, but an important distinction is that the Catalan

solids allow non-symmetric faces (hence, are not isotoxal), as long as all the faces

are congruent (for example, the solid in Figure 6.1(a) is a Catalan solid, but is not

almost-regular.

Note that, the transivity properties that make regular polyhedra suitable for

assembly, is preserved in almost-regular polyhedra, but now the class is richer and

more importantly can model structures with more than 20 building blocks.
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The duals of almost-regular polyhedron would have regular faces, be iso-

toxal and isogonal, may or may not be isohedral, and may or may not be convex.

The closest known family is the semi-regular polyhedra (duals of Catalan solids)

which are also isotoxal and isogonal. But the semi-regular polyhedra, which in-

cludes the 13 Archimedean solids and the family of prisms with regular faces, are

always convex.

6.2.2 Related Prior Work

Our construction scheme closely follows the one proposed by Goldberg

[108]. The family of polyhedra generated by the Goldberg construction rule [108]

are fullerene like structures. Fullerene like structures have icosahedral symmetry

(symmetry group of the icosahedron), and consists of many hexagonal faces and

exactly 12 pentagonal faces. The soccer ball is the smallest example of such struc-

ture. See Figure 6.2 for an illustrative description of the construction.

Caspar and Klug [55] were studying virus capsids and their symmetric or-

ganization and inspired by Goldberg’s construction, they proposed a similar ap-

proach, but using a triangular lattice, instead of a hexagonal one, and required that

the corners of an edge of the unfolded icosahedron falls on the vertices of the lat-

tice (Figure 6.3). Since, the triangular lattice is simply the dual of the hexagonal

lattice, the mapping is essentially the same. But the refolded polyhedron now has

only regular triangular faces. It has 12 vertices where 5 such faces are incident, and

many vertices where 6 faces are incident- the first set are exactly the original ver-

tices of the icosahedron. Notice that this polyhedron is exactly the dual of the one
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A

(3,-1)

(a) (b) (c) (d)

Regular polyhedron Unfolded regular polyhderon
Or

The 'Net' of the polyhedron

Laying the 'Net' onto a 2D lattice Refolding. The lattice edges are
'etched' onto the faces of the polyhderon

1. Unfold 2. Map to
 lattice

3. Refold

Figure 6.2: Illustration of the Goldberg construction. The Goldberg construction
involves unfolding an icosahedron (see (a) and (b)), and then mapping the unfolded
icosahedron onto a 2D hexagonal lattice scaled and oriented such that all corners of
the unfolded icosahedron (its original vertices) falls on the centers of some hexagon
of the grid (some example scale and orientations (for one triangle only) are shown
(c)). Finally, the icosahedron is folded back, along with the hexagonal grid etched
onto its faces. For example, for the scaling and orientation of the red triangle in (c),
would result in the tiled icosahedron shown in (d). Notice that the new polyhedron
has exactly 12 regular pentagonal faces where the icosahedral vertices originally
were, and many regular hexagonal faces.

constructed using Goldberg’s method (shown in Figure 6.2(d), and also overlayed

in Figure 6.3(b)).

Polyhedra produced by Caspar and Klug’s construction method are almost-

regular, and the ones produced by Goldberg’s are duals of almost-regular. But no-

tice that both Goldberg, and Caspar and Klug focused only on the icosahedral case

and considered a specific unfolding onto specific 2D lattices, and hence only cov-

ers a fraction of the possible almost-regular polyhedra and their duals. Separately,

Pawley [194] studied other ways of wrapping different polyhedra using different

lattices from the wallpaper group. However, Pawley did not provide any theoreti-

cal characterization of the factors related to the possibility or impossibility of such

wrappings. We address this issue in the following section.
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Figure 6.3: Illustration of the Caspar-Klug construction. The Caspar-Klug con-
struction involves unfolding an icosahedron onto a triangular lattice scaled and ori-
ented such that all corners of the unfolded icosahedron (its original vertices) falls on
the vertices of the grid (some example scale and orientations (for one triangle only)
are shown (a)). Then, the icosahedron is folded back, along with the grid etched
onto its faces. For example, for the scaling and orientation of the yellow triangle in
(a), would result in the tiled icosahedron shown in (b).

6.2.3 Characterizing All Possible Almost-Regular Polyhedra

Both Goldberg and Caspar-Klug constructions can be expressed as unfold-

ing a regular polyhedron onto a 2D lattice and then refolding it with the lattice

etched onto its faces. Pawley’s wrapping idea is equivalent. We call these pro-

cedures unfold-etch-refold method. Here, we prove the conditions that must be

satisfied to produce almost-regular polyhedra using the unfold-etch-refold idea for

any regular solid, unfolded in any way, onto any 2D lattice.

Shepherd’s conjecture [237] states that all convex polyhedra have a non self-

overlapping planar unfolding with only edge-cuts. This conjecture is not proved
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or disproved yet for all possible convex polyhedra, however for the set of special

classes we are interested in, it is true. Hence, in principle it is possible to unfold

one such polyhedra and lay it down on a 2D grid, use the grid to draw tiles of the

unfolded polyhedron, and then fold it back up to get a tiled polyhdron. However,

every polyhedron actually have many unfolding. For example, isosahedron have

43380 unique unfoldings. Caspar and Klug’s construction produced almost-regular

polyhedra using 1 such unfolding, but it is not clear whether other unfoldings would

also produce similar almost-regular polyhedra, or different types of almost-regular

polyhedra, or not be almost-regular. To address this question, we characterize the

relationship of the local and global symmetries of the almost-regular polyhedra, and

the etched polyhedra (henceforth called tiling) produced using unfold-etch-refold

construction.

First of all, we prove that the lattice onto which the polyhedron is unfolded

must be regular.

Lemma 6.2.1. The polyhedra generated by an unfold-etch-refold using any regu-

lar polyhedra and unfolded in any way, cannot be almost-regular if a non-regular

grid/lattice is used.

Proof. The unfold-etch-refold essentially wraps the lattice/grid over a regular poly-

hedron, thereby vertices, edges and faces of the regular polyhedron is suppressed,

and a new set of vertices, edges and faces appear, all of which belong to the lattice.

Now, the local symmetry condition of the almost-regular polyhedron requires that

every face be symmetric around its center and be congruent to each other. This
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cannot be satisfied if the lattice itself was not regular nor symmetric around some

points. �

There are exactly 3 regular lattices in 2D- the square lattice, the triangular

lattice and the hexagonal lattice. The square lattice have 4-fold rotational sym-

metries at each vertex and face-center, the triangular lattice have 6-fold and 3-fold

symemtries at each vertex and face-center; and the hexagonal lattice have 3-fold and

6-fold symemtries at each vertex and face-center. All of them have 2-fold symmetry

on the center of each edge.

Among regular polyhedra, the tetrahedron, the octahedron and the icosahe-

dron have 3-fold symmetries at face-centers and respectively 3, 4 and 5-fold sym-

metries at vertices. The cube has 4-fold symmetries at vertices and face-centers.

The dodecahedron has 3-fold and 5-fold symmetries at vertices and face-centers.

Now we prove another lemma relating the symmetries of the regular polyhedra and

the lattice wrapped onto it. We address satisfying global symmetry conditions at

gf-, ge-, gv-symmetry axes.

Lemma 6.2.2. To satisfy gf-symmetry conditions, all gf-axes must go through a

point of the lattice that have cn-fold rotational symmetry where n is the order of

rotational symmetry around the gf-symmetry axes of the regular polyhedron and c

is a positive integer.

Proof. Recall that a polyhedra is almost-regular iff it has exactly the same number

of rotational symmetry axes with the same symmetry orders as any specific reg-

ular polyhedron, such that there exists a rigid body transformation that perfectly
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aligns these axes to those of the regular polyhedron. Since, the unfold-etch-refold

is a wrapping, the expected locations and axes of global symmetry of the new

tiled/etched polyhedra, and the underlying regular polyhedra are already aligned.

For example, in Figure 6.3(b), A, B and C are locations of 5-fold global symmetry

and D is a location of 3-fold local symmetry. Let, D be the location of one axis of

symmetry goind through the face of the regular polyhedron and n be its symmetry

order. Depending on the chosen unfolding and mapping, a particular gf-symmetry

axis can have the following three cases-

• If gf-symmetry axis goes through a vertex of the tiled polyhedra, then clearly

the tiled polyhedra can only be n-fold symmetric around that axis, if the lat-

tice have cn-fold rotational symmetry around its vertices.

• If gf-symmetry axis goes through the center of a face of the tiled polyhedra,

then the tiled polyhedra can only be n-fold symmetric around that axis, if the

lattice face is cn-regular.

• If gf-symmetry does not go through a vertex or a face-center, then clearly the

tiled polyhedra can not n-fold rotational symmetric around the axis, irrespec-

tive of the symmetry of the regular grid.

Hence, the lemma is proved for any unfolding/mapping. �

A regular 2D grid/lattice can be parameterized using two vectors e1, e2, and

a fixed originO as follows. LetO is a vertex of the lattice. O has at least 2 neighbors
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U and V such that the vectors O → U and O → V are not colinear. Then, defining

e1 = O → U and e2 = O → V , every point of the lattice can be expressed as

linear combinations he1 +ke2 where h and k are integers. This defines a coordinate

system L withO as the origin and e1, e2 as the primary axes and a co-ordinate (h, k)

representing points on the 2D plane, such that if both h and k are integers then, the

point lies on the lattice (is a lattice vertex).

e1
e2 e2

e2
e1

e1

O O
O

(1,0)

(2,1)(0,1)

(1,2)

(1,-1)

(1,0)

(0,1)(-1,1)

(-1,0)

(1,1)

(3,-1)
(1,0)

(-1,-1)

(2,1)(0,1)

(1,3)

Lattice coordinate systems

Hexagonal Triangular Square

Figure 6.4: Coordinate systems for the 2D regular lattices. In the figures, O is
the origin and e1 and e2 are two coordinate axes. Any point (x, y) can be reached
by vector xe1 + ye2 from the origin. Coordinates of some of the lattice points are
shown.

Lemma 6.2.3. A lattice described in the L coordinate system is 2-fold rotationally

symmetric around a point (x, y) for the following cases-

• Triangular lattice: if and only if both 2x and 2y are integers

• Square lattice: if and only if both 2x and 2y are integers

• Hexagonal lattice: if and only if both 2x and 2y are odd integers, or x =

2(y + 1)− 3k where x, y and d are integers.

Proof. Triangular lattices have 2-fold (or multiples of 2-fold) symmetries around

their vertices and edge-centers, both of which satisfy the condition that 2x and 2y
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are integers. Also, no other point satisfy these conditions. Square lattices have

2-fold (or multiples of 2-fold) symmetries around their vertices, face-centers and

edge-centers, all of which satisfy the condition that 2x and 2y are integers. Also,

no other point satisfy these conditions. Hexagonal lattices have 2-fold (or multiples

of 2-fold) symmetries around their face-centers and edge-centers. The edge-centers

satisfy the condition that both 2x and 2y are odd integers. The face centers are

integer solutions of x, y for the family of lines x = 2(y + 1) − 3d where d is an

integer. No other point satisfy either of these conditions. �

Lemma 6.2.4. If a face T of a regular polyhedron is mapped to a 2D regular lattice

in the following ways, then the part of lattice inside T is n-fold rotational symmetric

around the center of T, where n is the rotational symmetry around the gf-axes of

the regular polyhedron, and the set of faces intersected by each edge of T is 2-fold

rotationally symmetric around the center of the edge (location of the ge-axes of the

regular polyhedron).

1. If T belongs to either a tetrahedron, a octahedron or a icosahedron and is

mapped to triangular lattice, such that all corners have integer coordinates.

2. If T belongs to either a tetrahedron, a octahedron or a icosahedron and is

mapped to a hexagonal lattice such that all corners fall on face centers of the

lattice (have integer coordinates (x, y) such that x = 2(y + 1)− 3d where x,

y and d are integers).

3. If T belongs to a cube and is mapped to a square lattice, such that either all
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the corners fall on vertices of the lattice, or all the corners fall on face-centers

of the lattice.

Proof. First, we show that such mapping is possible.

1. T is an equilaterial triangular face being placed on a triangular lattice. With-

out loss of generality, we assume that one corner is placed at the origin and

another at (h, k) where h and k are integers. Then, it is trivial to show that

the third point can be at (h+ k,−h).

2. T is an equilaterial triangular face being placed on a hexagonal lattice. Note

that the hexagonal lattice is simply the dual of the triangular lattice, hence a

mapping that puts corners of T on vertices of the triangular lattice would put

corners of T on face-centers of the hexagonal lattice.

3. T is a square being placed on a square lattice. Without loss of generality,

we assume that one corner is placed at the origin and another at (h, k) where

h and k are integers. Then, it is trivial to show that the other points can be

placed at (h− k, h+ k) and (−k, h).

When an equilaterial triangular face T = ABC is placed on a triangular

lattice such that the corners are at (0, 0), (h, k) and (h+ k,−h), the the center O of

T is at (2h+k
3
, −h+k

3
) which is at a face center, or at a vertex (if h = k, or k = −2h).

Hence O falls on a location of 3-fold or 6-fold symmetry. Hence, gf-symmetry is

satisfied. The center (x, y) of any edge would satisfy the condition that 2x and 2y
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are integers, and hence falls on a location that have 2-fold (or 6-fold) symmetry and

satisfies the ge-condition.

Similar arithmetic can be applied to prove the theorem for the remaining

two cases. �

We shall refer to the mapping described in Lemma 6.2.4 a compatible map-

ping.

Lemma 6.2.5. For any unfolding of a regular polyhedron onto a regular lattice, if

any face T is compatibly mapped, then all faces are also compatibly mapped. And,

the etching inside each face are congruent.

Proof. For any unfolding, there must be at least another face adjacent to T and

shares an edge with it. Let that edge be AB. According to Lemma 6.2.3, for each

other point P belonging to T, there exists a point P ′ produced by rotating P around

the center of AB by 180 degrees. Also, if P was on a vertex (or a face-center),

then P ′ will also be the same. Since only a rigid body motion is applied, the new

face T′ = ABP ′ . . . will also be regular and be congruent to T (i.e. it is exactly the

unfolded face which was neighboring T along AB). Also, for any point X in T, the

same transformation would map it to a point X ′ inside T′ such that the location of

X with respect to the corners of T is the same as the location of X ′ with respect to

the corners of T′. Hence the etching inside T and T′ are congruent. By propagation

of the same argument, all unfolded faces have corners at integer coordinates and are

congruent, irrespective of the unfolding. �
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Lemma 6.2.6. For any unfolding of a regular polyhedron onto a regular lattice,

if any face T is compatibly mapped, then the resulting polyhedron will be almost-

regular or a dual.

Proof. The polyhedron generated by unfold-etch-refold method have local symme-

try, due to the lattice being regular.

Lemma 6.2.4 showed that within the face T, it satisfies global symmetry

around the gf-axes. Even after the faces are folded back into the complete polyhe-

dron, the congruency of the all the face (Lemma 6.2.5) guarantees that the remain-

ing faces would also map to each other (including the etching inside them).

Lemma 6.2.5 showed that all faces (and edges) are congruent, and also that

the etching is 2-fold symmetric around the edges of the face T. Hence when folded

back, the etchings from a neighboring face T′ will match up perfectly (intersect the

shared edge of T and T′ at exactly the same points), and in case there are fractions of

a lattice-face inside T, exactly its complement will show up on the other side (inside

T′) of the shared edge, thereby all etched-faces are complete. Topologically, the

etched-faces that cross the face boundaries and the ones that do not, are identical.

After folding back, the corners of the faces T,T′, . . . meet at a point. Note

that since all faces are congruent (Lemma 6.2.5) and all corners of each face are

also symmetric to each other (Lemma 6.2.4), gv-symmetry is satisfied. Moreover,

when T was mapped such that the corners fell on vertices of the lattice, then the

gv-axis is surrounded by exactly n congruent and regular etched-faces, where n is

the rotational symmetry of the gv-axis, and not the rotational symmetry around the
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lattice-vertices. For instance, mapping a tetrahedron onto a triangular lattice will

produce 4 vertices where 3 edges are incident, and many more (depending on the

scale of the mapping) where 6 edges are incident. Hence, two types of vertices

appear on the polyhedron, the ones coinciding with the gv-axis and the ones that do

not. On the other hand, if T was mapped such that the corners fell on face-centers

of the lattice, then the gv-axis is surrounded by exactly a regular polyhedron with

nc-fold symmetry, where n is the rotational symmetry of the gv-axis and c is an

integer. Other etched faces will simply depend on the regularity of the lattice. For

example, if an icosahedron is mapped to a hexagonal grid, then there would be 12

pentagonal faces and many hexagonal faces.

Hence, the polyhedron is almost-regular if the corners of the faces fell on

lattice vertices, or dual if the corners fell on face-centers. Tetrahedron mapped

to triangular grid’s face-centers is an exception, where the dual construction also

produce almost-regular polyhedron. �

Figure 6.5 shows a few examples of constructing almost-regular polyhedron

and their duals by mapping a face of regular polyhedron on regular lattices in a

compatible way. Note that the etched-faces that cross an edge of T are geometrially

not identical to the ones that do not. The ones crossing the boundary have a crease

inside them, or if they are flattened, they are no longer regular. This is addressed in

the Section 6.3.4.

Now we show that any deviation from a compatible mapping results in a

violation of some global symmetry condition.
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Almost-regular Polyhderon

Dual of almost-regular Polyhderon

Mapping that puts 
corners at vertices

Mapping that puts 
corners at face-centers

Not isogonal.
Have both
5-fold and 
6-fold vertices

Isotoxal
and
Isohedral

Not isohedral.
Have both
Pentagonal 
and 
hexagonal 
faces
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and
Isogonal
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at the corners
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have 3 incident edges

Almost-regular
Dual of almost-regular

Both type of construction for
Cube on square lattice

Figure 6.5: Illustration of the constructing almost-regular poleyhdron and their
duals. Top row shows how placing corners of a polyhedral face on vertices of a
compatible lattice produces an almost-regular polyhedron. The black lines show
the original polyhedron, and the red lines show the etching/tiling induced by the
lattice. The second row shows and example of placing the corners at face centers
and producing duals of almost-regular polyhedron. Finally, the bottom row shows
examples of both primal and dual construction using square lattice.

Lemma 6.2.7. If a regular polyhedron is mapped to a regular lattice without ful-

filling the compatible mapping conditions, then the resulting polyhedron cannot be

almost-regular.

Proof. If some corners of a face T fall on lattice vertices (or face-centers) and other

don’t, then the etching inside the face cannot be symmetric around the center of the

face. Hence the polyhedron is not almost-regular.

If none of the corners of T fall on lattice vertices (or face-centers), and the

center of the face is not on a lattice vertex or center of a lattice face, then again the

polyhedron is not almost-regular (by Lemma 6.2.2).
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Finally, we consider the case where none of the corners of T fall on lattice

vertices (or face-centers), but the centerO of T is on a lattice vertex or a face-center.

This would not violate the symmetry around the gf-symmetry axes. But we shall

show that it would violate the symmetry around the ge-symmetry. Since, we are

mapping a regular polyhedron onto a compatible lattice, there exists a mapping that

would place a face T′ such that the center falls at O, and the corners lie at integer

coordinates. We can generate T by sclaing and/or rotating T′ around O. Now,

we shall prove that any scaling or rotation of T that moves the vertices off lattice-

vertices violate ge-symmetry. The proof depends on the geometry of coordinate

system and here we shall only show if for the cube mapped to the square lattice

case. Other cases follow the same pattern of proof.

Without loss of generality, we assume that the center O is the origin, and

we focus on one edge AB of the face T with integer coordinates (x1, y1) and

(x2, y2). Hence, the midpoint C(x1+x2

2
, y1+y2

2
) falls on a face-center, vertex, or

edge-center. After rotating around O by θ degrees, the new location of the cen-

ter will be C ′( (x1+x2)cosθ−(y1+y2)sinθ
2

, (x1+x2)sinθ+(y1+y2)cosθ
2

). Hence, C ′ can be on a

2-fold location if and only if the numerators are integers, which can only happen if

θ is a multiple of π/2 and in that case, T′ coincides with T.

Now, if T was scaled by s then the new position of the edge-center C would

be C( (x1+x2)s
2

, (y1+y2)s
2

), and again the numerators are integers iff s is an integer.

And if s is an integer, then the corners of T′ would also be on lattice vertices or

face-centers.

Hence, scaling or rotating T around its center O will not keep the C on a

185



face-center, vertex, or edge-center unless the corners of the transformed face T′ fall

on lattice-vertices. Finally, the fact that a regular lattice is not 2-fold symmetric

around any point other than the face-centers, vertices, or edge-centers completes

the proof. �

Finally, we conclude our characterization with the following theorem.

Theorem 6.2.1. The polyhedron generated by an unfold-etch-refold is almost-regular

if and only if a compatible mapping of a regular polyhedron onto an unfold-etch-

refold compatible lattice is performed.

Proof. The proof follows from Lemmas 6.2.1, 6.2.2, 6.2.6 and 6.2.7. �

6.3 Construction and Combinatorics of Families of Almost-regular
Polyhedra

In the previous section we characterized the conditions that must be satisfied

by a unfold-etch-refold protocol to produce an almost-regular polyhedron. The

characterization immediately lends itself to efficient generation of families of such

polyhedra whose topology can be parameterized using just two variables (discussed

below). Furthermore, the symmetry at global and local levels lets us represent the

geometry using a minimal set of points. Finally, we show how these properties

lead to efficient optimization algorithms for constructing 3D shapes with spherical

symmetries.
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For the sake of simplicity of presentation, the discussion in this section,

in some cases, is focused solely on mapping icosahedron onto triangular lattices.

Other compatible mappings can be discussed in the same manner with almost no

difference in the theorems/lemmas presented here except for minor changes in the

counting parts. In many cases, the differences are mentioned in the text, but de-

tailed/proved only for the icosahedral case. The choice to focus on the icosahedral

case is primarily due to two reasons- first, it has the highest level of symmetry

among the regular polyhedra which have a compatible mapping, and second, it has

applications in modeling viruses, fullerenes etc.

6.3.1 Topological Considerations

Let L be a lattice with origin O and axes H and K. Any point in the lattice

is expressed using coordinates (h, k) where both h and k are integers.

Lemma 6.3.1. Assuming that one corner A of the face T of the polyhedron is

mapped to the origin O of the lattice (or the nearest face-center for dual construc-

tions). Then specifying the position of another compatibly placed point B(h, k) is

sufficient to parameterize the entire mapping.

Proof. Since T is regular, there is exactly 2 possible ways to define the other points

of T. Lemma 6.2.4 showed that both of these choices will result in a compatible

mapping as long as A and B are also compatibly mapped. Also by Lemma 6.2.5,

these two are congruent. So, any one of them can be chosen arbitrarily. �

We mention the following lemma whose proof is immediate.
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Lemma 6.3.2. Topology of any almost-regular polyhderon or its dual can be ex-

pressed using a tuple < P,L, h, k >, where P is a regular polyhderon, L is a

lattice represented using two axes, and h and k are integers.

6.3.2 Combinatorics and Symmetry

We consider the case where P is the icosahedron whose symemtry group

will be denoted as I , and L is the triangular lattice which will be denoted as L3.

Now, we discuss some properties of the lattice.

Definition 6.3.1. We define each triangle of the lattice L3 as a small triangle and

would use t to denote such a triangle. Let us define a triple < i, j, k > where i

and j are integers and k ∈ {+,−}. Now we define the triangle produced by the

intersections of the lines h = i, k = j and h + k = i + j + 1 and the vertices

(i, j), (i + 1, j) and (i, j + 1), as tij+. Similarly, the triangle tij− have vertices

(i, j), (i+ 1, j − 1) and (i+ 1, j), and is produced by the intersections of the lines

h = i+ 1, k = j and h+ k = i+ j.

The proof of the following lemma is immediate from this definition.

Lemma 6.3.3. ti1j1k1 coincide with ti2j2k2 if and only if i1 = i2, j1 = j2 and

k1 = k2. For any small triangle in L3, there exists a triple < i, j, k > such that tijk

represents that small triangle.

Through etching, the triangular lattice L3 produces a tiling of a face T

(which will be called a large triangle in this section) of P where each tile is a small

triangle. Now we consider some properties of this tiling.
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Assuming A is at (0, 0), B is (h, k) such that h and k are integers, the tiling

produced by L3 on T satisfies-

• The area of T is
√

3
4

(h2 +hk+ k2), which is equal to the area of h2 +hk+ k2

small triangles.

• In addition to A,B and C, T includes exactly h2+hk+k2−1
2

more vertices of

L3. Note that any vertex that lie on an edge of T is counted as half a vertex.

• Each edge of T is intersected by at most 2(h+k)− 3 lines of the form h = c,

k = d and h+ k = e, where c, d and e are integers.

• The number of small triangles intersected by any edge of T is at most 2(h +

k − 1).

Now, some combinatorial properties of the overall tiled polyhedron-

• There are exactly 20(h2 + hk + k2) small triangles, and the same number of

local 3-fold axes.

• The 12 gf-symmetry axes are surrounded by 5 small triangles.

• There are exactly 10(h2 + hk + k2 − 1) vertices (not lying on the gf-axes)

with 6-fold local symmetry.

Similar properties can easily be derived for other mappings as well. The

important point to note is that not only the topology, but also the symmetry and

combinatorics are also parameterized by only h and k.
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6.3.3 Construction and Geometric Considerations

Note that given a point P with coordinate (i, j) inside T, there exists two

other points Q and R such that P , Q and R are 3-fold symmetric around the center

D of T. The two points Q and R have coordinates (h − i − j, k + i) and (h +

k + j,−h− i) respectively. This can be seen by noticing that stepping along the H

and K axis by i and j units from A(0, 0) is C3 symmetric (around D) to stepping

in −H + K and −H directions by the same units from B(h, k), and stepping in

−K and H −K directions by the same units from C. We can further extend it to

triangles and deduce the following.

Lemma 6.3.4. IfA(h1, k1),B(h2, k2) and C(h3, k3) are three points in theHK co-

ordinate system such that h1, h2, h3, k1, k2, k3 are integers and ABC is an equilat-

eral triangle whose centroid isO, then the small triangles th1+i,k1+j,±, th2−i−j−1,k2+i,±

and th3+j,k3−i−j−1,± are C3 symmetric around O.

Now, we define the minimal set of points or non-redundant set of points S

such that no two points si, sj ∈ S are C3 symmetric to each other around D, and

all points in S lie inside or on T. Clearly, |S| = dh2+hk+k2

3
e. Note that applying C3

operations on S produces all points inside and on T.

Now we are ready to specify a concrete algorithm for computing almost-

regular polyhedra (see Figure 6.6).

Theorem 6.3.1. The algorithm TILINGGEN constructs a minimal geometric repre-

sentation of the almost-regular polyhderon in terms a set of points S embedded onto

the XY plane and a set of 3D transformations Tall.
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TILINGGEN(P,L, h, k)
Constructs an almost-regular polyhderon using compatible mapping of polyhderon P onto lattice L, such that the
scaling and combinatorics are specified by h,k

1. Assume that the lattice coordinate system is aligned with the Cartesian coordinate system such that the
origings coincide and one of the axes is aligned to the X axis, and the other lies on the XY plane.

2. Place one point A at the origin (0, 0) of the lattice, a second point at (h, k). Compute the other corners
of the face T. Note that we only need to know the number of vertices n of T.

3. Let TC be the set of cyclic symmetry operations aruond D, such that |TC| = n.

4. Compute the location of the center D of the face T.

5. Initialize empty set S

6. For each lattice point p inside or on T do

7. Add p to S if and only none of the trasnformations in TC applied to p produces a point which is
already in S.

8. Compute the transformation Tmap which maps the face T to a face of the polyhedron P. Tmap is
composed of TmapT TmapSTmapA such that TmapA translates T along the lattice to take D to the
origin O, TmapS is a scaling that resizes T to the size of the faces in P, then TmapT is a translation
along Z-axis by an amount equal to the distance from the center of P to a face-center.

9. Let TP be the set of global symmetry operations (from the symmetry group of P.

10. Define a set of tranformations Tall = {T2TmapT1|T2 ∈ TP&T1 ∈ TS}.

11. All points on the almost-regular polyhedron is now generated by simply computing Tall(S).

Figure 6.6: TILINGGEN: Algorithm for constructing an almost-regular polyhderon
using compatible mapping

Proof. Follows from the definition of S and Lemma 6.2.6. �

Some polyhderon generated by applying TILINGGEN are shown in Figure

6.7.

Note that if the tiles that cross the boundaries of a face T of P are not regular,

they would look like they have a crease along the edge of the T by definition of the

unfold-etch-refold technique. Tiles generated by this algotithm will also have the

same problem and such tiles will be non-regular, and in some cases even non-planar.

191



In the next section we address this issue.

Figure 6.7: Some polyhderon generated by applying TILINGGEN.

6.3.4 Curation of Tiles

As mentioned before, sometimes the lattice faces, which corresponds to

tiles/faces of the genrated almost-regular polyhderon, crosses the boundary of the

polyhedral face T embedded on the lattice. During folding, these faces get warped.

There can be exactly three types of scenarios-

1. For mapping to a square or triangular lattice, if one corner of T is at (0, 0),

and the other corner is at (h, k) such that either h = 0 or k = 0, then no

lattice face crosses the edges of T, and no curation is required. (see Figure

6.8 top row).

2. For mapping to a square or triangular lattice, if one corner of T is at (0, 0),

and the other corner is at (h, k) such that h = k then some lattice faces are
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exactly bisected by the edges of T. The curation is quite trivial in this case.

If, h = k, the center of T would lie on a lattice vertex. Let the center be

D, and the face T be ABC. Then, folding along AD, BD and CD will

not warp any lattice face. Additionally, connecting D to the centers of the

neighbring polyhedral faces T would satisfy all global symmetry conditions

as well. This folding will produce a base polytope which actually looks like

the almost-regular polyhedron with h = k = 1. In fact, for any integer i,

to polyhedron generated for h = k = i is nothing but subdivisions of the

faces of the h = k = 1 polyhedron. Interestingly, in some cases, the new

folding produces a polyhedron with base geometry like some Catalan solids,

but will unlike Catalan solids, these will have regular faces and may be non-

convex. For example, the h = k = 1 polyhedron have the same topology as

the pentakis dodecahedron (see Figure 6.8 middle row).

3. For mapping to a square or triangular lattice, if one corner of T is at (0, 0),

and the other corner is at (h, k) such that h 6= k,&h, k > 0, and for all

mappings on the hexagonal lattice, some lattice faces cross the edges of T

in variable ways, and there are no folding lines which can avoid the crossing

while maintaining global symmetry (as the lines will not meet at the center of

the face T). See Figure 6.8 bottom row. In this case, no exact solution exists,

and we provide a numerical approximation which maximizes the regularity

while ensuring that global symmetries are not violated (see below).
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(0,0) (h,0) (h,0)(h,0)

(h,h)
(h,h)

(h,k)

(h,k)

(0,0)
(0,0)

(0,0) (0,0)

(0,0)

(0,0)

(0,0)

One corner is 
assumed to be 

at (0,0)

Second corner 
is at (h,k)

If 
h = 0, 

or k = 0

If 
h = k

If 
h ≠ k

h, k > 0

● No lattice face crosses 
the polyhedral edges

● No curation needed 

● Some lattice faces cross polyhedral edge and gets 
warped (symmetrically) 

● Can be curated by folding 
along different edges (dashed 
lines) 
● e.g. Icosahedron is folded 

like an almost-regular 
polyhderon with h=1, k=1 

● Lattice faces cross the 
polyhedral edges in 
different ways

● Numerical curation 
required

Red lines show the polyhderal face

Figure 6.8: Different cases of warping of tiles, and their curations.

6.3.4.1 Curation as a Numerical Optimization Problem

The goal of curation would be to make all the faces as regular as possible

without violating global symmetry. A similar problem for specifically the family

of polyhedra generated by mapping an icosahedron onto a hexagonal lattice was

addressed in [225]. In that work Schein and Gayed aimed to make all the hexagonal

faces that cross the face boundary, and become creased/non-planar, into planar ones

while keeping the edge lengths equal. They also showed that it was possible to

provide an efficient numerical solution to the problem which also ensure that no

two hexagonal/pentagonal tiles lie on the same plane and the overall polyhedron is

convex. However, the shapes of the hexagons are allowed to get distorted such that

the angles are no longer equal, and may vary a lot within the same hexagon. This is

a very elegant mathematical solution, however, the faces are no longer congruent (or
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even nearly congruent) to each other. This makes such a polyhedron non-amenable

for modeling structures formed using a single type of building block, for instance

viral capsids. In contrast, we want to maintain the congruence of the tiles as much

as possible.

For the cases of mapping a polyhedron onto a triangular lattice, the gener-

ated polyhedra falls under the class called deltahedra, polyhedra whose faces are all

equilateral triangles. Even though there are an infinite family of deltahedra [255]

(our families are also infinite), It has been known since Freudenthal and van der

Waerden’s work [99], that there are exactly eight convex deltahedra, having 4, 6, 8,

10, 12, 14, 16 and 20 faces; among them only three are regular or have symmetries

like the regular ones. So, our family of almost-regular polyhedra cannot be convex

and regular at the same time. We prioritize regularity.

First we introduce some notations-

• Let the set of all points on the generated polyhedron be Sall = Tall(S).

• Let E1 be the set of lattice/tile edges on the generated polyhedron

• Let E2 be the set of diagonals of all the tiles on the generated polyhedron

• Let, for any point p ∈ Sall, the functions s(p) and t(p) returns respectively a

point q ∈ S and a transformation T ∈ Tall such that p = T (q).

• Let dist(u, v) is the square of the Euclidean distance between two points.

In our calculations we shall only update the positions of the points in S, and

all other points p ∈ Sall on the polyhedron will be generated as t(u)(s(u)). This
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ensures that the points are always moved in a symmetric way with respect to the

global symmetry axes. Hence global symmetry is never violated.

Let S0 be the initial positions of the points in S. As we update the loca-

tions of the points in S in our algorithm, the displacement of each point p ∈ S

will be defined as δ(p) = (dist(p, p0))2, where p0 ∈ S0 is the initial position of

p. ALso, the length of a line segment e(u, v) ∈ E1 ∩ E2 will be computed as

dist(t(u)(s(u)), t(v)(s(v))) and be denoted l(e).

Let us also define µ1 = 1
|E1|
∑

e∈E1
(l(e))2 and µ2 = 1

|E2|
∑

e∈E2
(l(e))2.

Finally, we define an energy function F(S) as follows-

F(S) = 1
|E1|(

∑
e∈E1

(l(e)− µ1)) + 1
|E2|(

∑
e∈E2

(l(e)− µ2)) + 1
|S|(
∑

p∈S δ(p))

Now, we minimize the function F(S) over the positions of the points in S.

This is clearly a quadratic optimization problem over h2 + hk + k2 vari-

ables, and for most practical values of h and k it can be solved efficiently using

any numerical solution techniques. We chose to use the limited memory variant of

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [52] due to its faster con-

vergence rates. the BFGS algorithm requires the first and second derivatives (hes-

sian) of the energy function. In our case, the energy function, if expanded is a

simple polynomial of the free variables and can the first and second derivatives are

straight-forward to compute, making the application of BFGS possible.
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6.4 Conclusion

We have characterized a new family of polyhedra with regular faces such

that it is isotoxal, isohedral, and have exactly 2 types of vertices; as well as a dual

family which is isogonal, isotoxal and have exactly 2 types of regular faces. We

have shown that both of polyhedrons of these families generated by unfolding a

regular polyhedron onto a lattice in a compatible way, thereby allowing the lattice

vertices, edges and faces to etch out a tiling on the unfolded polyhedron, and finally

folding it back again. Further, the compatible ways are specified using only a couple

of integer parameters. We also provided a deterministic and efficient algorithm for

generating such polyhedra of any size (determined by the two parameters). We

have proved that our construction covers all possible polyhedron which satisfies

the stated properties. When considering the geometric aspects of the generated

polyhedra, we characterized the cases where the faces may become non-regular,

and provided solutions for each case.

Finally, we point out that our class of polyhedron is not similar to the known

families like Catalan solids, Johnson solids, or Archimedean solids. Some Catalan

solids like the tetrakis hexahedron, triakis octahedron, triakis icosahedron, rhombic

dodecahedron, rhombic triacontahedron, or pentakis dodecahedron may seem like

they satisfy the properties of almost-regular polyhedron, but actually all of them

violate either the global of the local symmetry conditions. Also Archimedean solids

like the truncated cube can be generated by placing the triangles of a tetrahedron

on a hexagonal lattice such that the corners of each triangle fall on the centers of 3

faces surrounding a single face. Many other Archimedian solids are isogonal and
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isotoxal, but are none of them (not even the truncated cube) are duals of of any

almost-regular polyhedron.
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Chapter 7

Predicting Symmetric Spherical Shell Assemblies

We use our characteriation of tiled, symmetric shell structures (described in

Chapter 6 to address the computational problem of predicting the assembly of 3D

spherical shell structures from primitive 3D building blocks (or primitive tiles). We

provide an efficient polynomial time, shell assembly approximation solution (based

on a combinatorial and motion-space search, and complementarity scoring) to an

otherwise NP-hard geometric optimization problem. Our 3D shell assembly pre-

diction, first uses a small set of tiles to generate either periodic or aperiodic surface

tilings, parameterized by a small set of inter-tile matching rules. To form a 3D shell,

we decorate each tile using appropriate number of copies of the given 3D blocks.

The decorations must cover the tile, and those placed on a single tile must have a

favorable and symmetric ‘interface’ with each other. Furthermore, the interfaces of

the decorated tile with its neighboring tiles must follow the symmetry imposed by

the inter-tile matching rules. The problem thereby reduces to a multi-dimensional

search (and maximal scoring) of a consistent set of symmetric interfaces between

each unique pair of neighboring decorations of the chosen tiling. We have success-

fully applied this procedure to the prediction of spherical protein shells of biological

viruses of different sizes, all of which exhibit icosahedral symmetry. Our imple-

mented technique has been successful in predicting the tiling/packing of known
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and experimentally reconstructed protein shell structures of a fixed size, amongst

several other computed assemblies of various sizes. The success of our prediction

mechanism based on complementarity scoring is specially noteworthy in light of

the complicated biophysical/biochemical interactions between protein structures in

nature, and provides testimony to the stability of such tiled shell structures.

Figure 7.1: Automated prediction of compact symmetric shell assemblies from
primitive building blocks. Figure shows three example shell structures of different
sizes and thicknesses assembled using 240, 60 and 120 copies of the corresponding
building blocks.

7.1 Introduction

In general, 3D assembly requires determining the correct arrangement (aka

relative positions and orientations) of a set of building blocks, to yield the final cor-

rectly assembled structure. As the 3D analog of 2D jigsaw puzzles, the 3D build-

ing blocks (henceforth called primitive tiles or p-tiles) are the puzzle pieces, and

these as well as the target assembled structure may have various free-form shapes.

Assembly prediction with n blocks in 3-dimensions can be cast as a combinato-

rial geometric optimization problem with a search space of 6(n − 1) dimensions.

The optimization becomes computationally prohibitive for such high dimensional
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search spaces, particularly since typically n >= 100. However, and as we show

here, the optimization problem is made tractable by imposing restrictions on the

shape and properties of the building blocks, and assemblies.

Prior work has addressed this problem from the perspective of reconstruct-

ing or reassembling historic 3D artifacts or statues from fractured 3D pieces recov-

ered by archaeologists. For example, [127] and [191] both assume that the neigh-

boring fractured pieces have good shape complementarity and use shape descriptor

based matching to find possible interfaces between each pair of components. The

remaining challenge is then to select a subset of those interfaces which are consis-

tent, and optimize a global assembly. The approach is equivalent to computing the

best simple spanning tree from a multi-graph where each graph node represent a p-

tile, and k edges between two nodes represent k possible interface configurations.

The number of simple spanning trees is exponential in the number of components,

i.e. O(nn−2kn−1). Furthermore, its quite easy to reduce the known NP-hard 2D

Monkey Puzzle problem to the more difficult 3D assembly problem. One can show

that a polynomial time approximation scheme (PTAS) can be designed if the num-

ber of parallel edges between each pair of nodes is at most 2. However, for all

practical cases, PTASs do not exist. The paper [127] proposed a greedy forward

search algorithm and [191] used genetic programming to solve this combinatorial

problem. A simpler greedy algorithm was used by [130] for predicting the assembly

of multiple proteins. The 2D counterpart is a well-studied problem, for both texture

or image driven matching [62, 219] as well as based purely on the shape [107].

Here, we provide an efficient polynomial time solution to the 3D assem-
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bly problem for the special case of symmetric shell structures. We show that the

combinatorial search space has only 6 degrees of freedom, irrespective of the total

number of components used in the final assembly. Moreover, we can predict shell

assemblies with different local symmetric arrangements, using periodic and/or ape-

riodic tilings, as well as of varying size. These symmetric shell assemblies occurs

often and in many shapes and sizes, i.e. in the shape of bucky balls, fullerene domes,

carbon-nano tubes, quasicrystals and protein shells that house the genome of viruses

[55, 83, 113, 224, 233].

The 3D symmetric shell assembly problem can be stated as a problem of

predicting the local arrangement of multiple copies of a single 3D p-tile, to form

a closed shell structure, enclosing an inner void space. See for example, figure

7.1. Local symmetry indicates that each p-tile has the same kind of interfaces with

its neighbors, and each of the interfaces have d-fold cyclic symmetry for certain

integer ds. In some cases, we allow the pieces to be quasi-symmetric where the

number of interfaces remain the same for every p-tile, but the cyclic symmetric

order of each interface may vary. Global symmetries are also achieved for the 3D

assembled shell structures, and provides shell structure which are invariant under

some transformations. For example, given a 3D triangular prism tile with extremely

small thickness, a simple tetrahedron shell can be predicted and assembled using

four copies of the 3D tile.

Our solution to the 3D shell assembly problem is a combinatorial and ge-

ometric search and optimization, over the space of all symmetric placements of

p-tiles on a shell, such that the arrangement maximizes a local (and a global) scor-
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ing function. The scoring functions are designed to reward complementarity at the

interfaces of neighboring p-tiles, where an interface is defined as the portion of one

p-tile which is within a distance from any point on the neighboring p-tile. We show

that the symmetric search space is sufficiently characterized by the space of regular

and semi-regular tilings of regular polytopes and their decorations. A tiling or tes-

sellation is a covering of a given space using a set of non-overlapping tiles, and a

decoration is the strategic placement of components on each tile such the same type

of tiles, are decorated the same way.

To the best of our knowledge this 3D symmetric shell assembly problem

has not been approached as a prediction problem before. Previous papers with

some similarity include:[163] where they describe a method to decompose a given

surface into polyominos and then transform them by adding notches and knobs

to create a set of 3D tiles which has a unique reassembly solution; and [202] de-

scribe algorithms to compute optimal geodesic patterns on free-form shells. Other

related works analyzing, enumerating or classifying symmetric shells include[55,

173, 193].

Our discussion is organized as follows. In Section 7.2 we provide a brief

description of our algorithm. We discuss the mathematical principles of symmetric

tilings in Section 7.3 and show that given a specific p-tile and a desired size for

the final shell, only a small finite number of possible tilings need to be considered

for decoration. We also describe how to pre-compute all possible tilings. In Sec-

tion 7.4, we explain the decoration algorithm in greater detail. Finally in Section

7.5, we apply this algorithm to predict the shapes of biological virus protein shell
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Figure 7.2: Overview of the algorithm. Given a 3D p-tile, we compute possible
cyclic symmetric arrangement (henceforth c-tiles) that can be formed by them and
then use many such c-tiles to decorate precomputed sets of spherical tilings. The
c-tile computation requires a geometric search and optimization over 4 dimensional
space. The complexity of selecting appropriate c-tiles for a specific spherical tiling
is polynomial in the number of unique tiles that are used to cover the tiling. Fi-
nally, placing the decorations for optimal global arrangement requires only a 2-
dimensional search.

structures exhibiting global icosahedral symmetry (and quasi-symmetry). Symmet-

ric shells made of 3D molecules, and their corresponding inter-molecular interfaces

are much more difficult to score since they do not have sharp features, or yield ex-

act shape complementarity. Additionally, there our other bio-physical factors like

electrostatics complementarity that often play a much bigger role in stabilizing the

interface between neighboring molecular building blocks. These stabilizing forces

cause for spontaneous self-assembly of the shells to occur, a phenomena that is still
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not fully characterized however but truly one of the marvels of nature. So in this

application of predicting molecular assemblies, we construct and optimize a com-

bined multi-term biophysical and bioinformatics based scoring function. The scor-

ing function include shape and electrostatic complementarity terms, polarization

energy and terms based on knowledge-based potentials defined on the interface.

We however surprisingly found that even though the molecular shell assembly is

weakly scored, our algorithm in many cases produces the native (experimentally

observed) assembly configurations as one of its predictions. Note, that for non-

biological applications (architectural or manufacturing or 3D interlocking puzzles),

using only shape complementarity scoring suffices in yielding 3D shell assemblies.

7.2 Sketch of the Algorithm

Below, we present the overall algorithm (Figure 7.2 provides a simple ex-

ample flow). Separate sections are dedicated for the exposition of different aspects

of the algorithm as well the mathematical foundation behind it.

1. We pre-compute the possible tilings of spherical shells. The layout of the

tiling is uniquely described by specifying the details of each tile and unique

inter-tile interface. A tile is described using five parameters (u1,u2, d, l, f).

• u1 is a unit vector pointing from the origin to the center of symmetry of

the tile.

• u2 is a unit vector pointing from the center of symmetry of the tile to

one representative corner of the tile.
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• d is the distance of the tile from the origin along u1.

• l is the distance from the center of symmetry of the tile to one corner of

the tile along u2.

• f is the order of symmetry of the decoration to be placed inside the tile.

The interfaces are described by simply listing each unique type of interface

and the number of such interfaces in the entire tiling. A pair of tiles have an

interface if they are neighbors on the tiling. Note that all inter-tile interfaces

essentially correspond to a cyclic symmetric configuration. For example, 5

tiles meeting at a vertex with 5-fold symmetry produces 5 interfaces of the

same type. Section 7.3 describes the mathematical principles of enumerating

and generating all possible spherical tilings.

2. Given a 3D p-tile we compute cyclic symmetric configurations (aka c-tiles) of

different orders. The search for such configurations is carried out by optimiz-

ing a local score, based on the interface of a pair of c-tiles, over a 4D search

space. Several configurations of each order are generated and ranked by their

scores. Section 7.4.1 provides details on the search space, the sampling and

search strategy and the principles of scoring. Each c-tile is represented using

five parameters (v1,v2, c, o, s).

• v1 is a unit vector representing the symmetry axis.

• v2 is a unit vector orthogonal to the symmetry axis pointing to the cen-

troid of one copy from the center of symmetry.
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• c is the center of symmetry.

• o is the order of symmetry.

• s is the score of the c-tile configuration.

3. We compute a graph G where each node represents a c-tile and we add edges

between two nodes if the interface configurations are consistent. Further de-

tails about this step can be found in Section 7.4.2.

4. For each tiling from the precomputed set, we first identify the set of unique

tile types and their corresponding order f . We search G to find cliques which

include exactly one node corresponding to each required order. For each

such clique we perform the following procedure to find a globally acceptable

assembly.

• Align a c-tile of required order onto each tile, by moving c to the origin

and aligning v2 and v1 with u2 and u1 and then translating it along

u1 by d. This produces a assembly which has the required kinds of

symmetry. However, since we have not adjusted the scale of the shell

to match the scale of the p-tile, this layout is not a proper assembly yet.

Also note that, though the alignment of v1 with u1 is sacred due to

symmetry, the alignment of v2 with u2 is only necessary for ensuring

that all c-tiles are decorated the same way. it does not ensure that this is

indeed the correct way to orient the c-tile to cover the unique spherical

tile. Hence we move to the next step.
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• We search the space of scaling and rotations. Symmetry preserving scal-

ing is performed by simply translating each c-tile along the respective

u1 vectors by multiples of d. For each scaling search the space of rota-

tions around the u1 axis. Apply the same rotation for each spherical tile

of the same type to preserve global symmetry. The angles only need to

be sampled within a band [−π/f, π/f ]. The scaling is also performed

within a band such that the scaled l is within [t/2, 2t] where t is the

farthest point from c if the entire c-tile is projected onto the plane per-

pendicular to v1. If l is outside this band then there is guaranteed to be

no contact or penetrations respectively.

• Report the scale and rotation which produces the best global score.

The global score is computed as weighted sum of the scores for each

unique interface, where the weights are simply the number of interfaces

of the corresponding type. See Section 7.4.3 for further details about

the global optimization step.

7.3 Enumerating All Possible Symmetric Tilings of Spherical
Shells

The symmetric search space can be adequately characterized using a math-

ematical framework dealing with tilings and decorations. In the next few subsec-

tions we briefly introduce this framework and how it characterizes the search space

as well as motivates a search strategy. First we describe the concept of tilings and

various kinds of symmetry related to the tiling. Then we describe a formal way of
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generating and enumerating all tilings which have specific kinds of global symme-

try using their root systems. Next, we show how an extension of the root system

lets us generate denser tilings, which can be decorated using more puzzle pieces to

generate larger shells, such that the global symmetry is preserved and local sym-

metry is created. Finally, after elaborating the concept of decorations we will show

how the search space is restricted to only 6 DOFs.

Figure 7.3: Left A semi-regular aperiodic tiling of a spherical surface using two
types of tiles, a kite and a rhomb. The tiles are decorated with petal-like building
blocks at the corners. The cyclic symmetry relationships between the decorations
in each tile are shown by squiggly lines. Right The set of vertex stars of the tiling.

7.3.1 Tiling and Symmetry

A tiling or tessellation is a covering of a given space using a set of non-

overlapping tiles. Formally, given a space S, a tiling of S is a set of tiles t1, . . . , tk

such that S =
⋃k
i=1 tk and ∀i 6=jti ∩ tj = φ. A 2D tiling is regular if all tiles are

congruent regular polygons and have edge-to-edge interfaces, i.e. each interface

spans an of the tile. The definition can easily be extended to higher dimensions. A
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tiling is sometimes called semi-regular if the congruency restriction is lifted. Notice

that regular and semi-regular tilings consists of only one and a few unique types of

tiles respectively. In edge-to-edge tilings, the tiles meeting at a vertex are called

a vertex star and the collection of all unique vertex stars is called the vertex atlas.

See Figure 7.3 for an example (both images are from [89]). Again, regular and

semi-regular tilings have very small vertex atlases.

7.3.1.1 Symmetries of Tiling

A regular tiling is often expressed using Schäfli notations. If a tiling consists

of regular polygons with p edges and q of them meet at each vertex, then its Schäfli

notation is {p, q}. It is easy to see that for 2D regular planar tiling, the angles of the

polygons are 2π/q = (p−2)π/p or (p−2)(q−2) = 4, which has only three integral

solutions producing the tilings by squares, by equilateral triangles and by hexagons.

Regular and semi-regular tilings exhibit various kinds of symmetry. For example, a

regular tiling of an infinite 2D plane using equilateral triangles is invariant under any

translation in the direction of any of the edges by a magnitude equal to an integer-

multiple of the edge-lengths. It is also invariant under rotations by multiples of 60

degrees around any vertex or reflections around any edge. All of these operations

under which a tiling remains invariant forms the set of elements for symmetry group

of the tiling. Any two of these operations can be composed (multiplications of

transformation matrices) and the resulting operation is also member of the set. In

other words, the elements of a symmetry group are closed under the application of

the composition operation. The order of a group is the number of of its elements.
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Interested readers should consult [72] for more details on symmetry groups, their

representations, classifications and enumerations.

Figure 7.4: A periodic and an aperiodic tiling.

At this point we would like to point out that it is possible to produce semi-

regular tilings which have rotational and reflection symmetries, but lacks transla-

tional symmetries. These tilings are classified as aperiodic tilings, and tiles which

can only be used to produce aperiodic tilings are called aperiodic tiles. tilings which

have translations symmetry as well are called periodic tilings. See Figure 7.4 for

examples of 2D aperiodic tilings (the images were acquired from wikimedia and

they are licensed for public use under the creative commons).

7.3.1.2 Tiling of Spherical Shells

We are specifically interested in regular tilings of a shell (tiling a sphere

with 2D tiles) and their symmetries. A sphere can be tiled regularly iff integral

solutions exists for (p − 2)(q − 2) < 4, since polygons mapped to the sphere have
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larger angles. We can easily find that there are only 5 non-degenerate solutions.

These solids, usually called the Platonic solids, are the tetrahedron {3, 3}, the cube

{4, 3}, the octahedron {3, 4}, the icosahedron {3, 5} and the dodecahedron {5, 3}.

Note that the cube and icosahedron are duals of each other, the icosahedron and the

dodecahedron are duals, and the tetrahedron is self-dual. The tetrahedral symmetry

group Td has order 24, the octahedral (and cubic) symmetry group Oh has order 48

and the icosahedral (and dodecahedral) symmetry group Ih has order 120.

Hence, given a puzzle piece we would like to make a shell which has any

of the above 5 symmetry groups. However, to make larger shells we need to find

a way to subdivide each facet of these polyhedra into regular tiles and then place

puzzle pieces in each of the tiles. This subdivision also has to follow the global

symmetry of the polyhedra. The next two subsections address this.

7.3.2 Generating all Symmetric Tiling

Here, we identify the minimal representation/parameterization which is suf-

ficient for generating a tiling with specific global symmetry. We employ two pri-

mary techniques in this regard. The first, uses the unfold-etch-refold scheme de-

scribed in Chapter 6 to generate families of almost-regular polyhedra. These polye-

hdra have congruent regular faces and define regular spherical tilings with the re-

quired global symmetries. The second approach uses minimal representations of

the symmetry groups of the planotic solids and extends them using Kac-Moody

algebra to generate denser 3D point groups. Tilings generated by this approach

may be semi-regular. Finally, the tilings generated by both of these methods can be
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locally subdivided without violating global symmetries.

Figure 7.5: An example reflection group. The image shows a 2D projection of
a sphere showing the fundamental region (yellow triangle) as well the resultant
tiling of the sphere by repeated reflections of the fundamental regions. The three
mirror planes (projected here as edges of the yellow triangle) have dihedral angles
of 90, 60 and 36 degrees between them. This Kaleidoscope generates a tiling of the
sphere with 12 locations of 5-fold, 20 locations of 3-fold and 60 locations of 2-fold
symmetries.

7.3.2.1 Generating Tilings using Reflection Groups

Let us consider several distinct planes going through the origin. Each plane

can be thought of as a one-way mirror such that the ‘front’ sides of the planes cut

out a polygonal cone-like region out of a sphere centered at the origin. If finite

number of repeated reflections by the mirrors of the polygonal region reproduces
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the complete sphere then the planes define a finite reflection group. A reflection

group is irreducible if they cannot be emulated using (compositions of) a smaller

group. The planes and their reflections form circular intersections with the sphere.

The circles also intersect each other. Interestingly the intersection of the circles are

governed by the dihedral angle between the planes. If there are three planes and the

angles are a1, a2 and a3 such that π/ai = ri is an integer, then the points where

the circles intersect will have r1, r2 and r3 fold rotational symmetries. For exam-

ple, using the H3 reflection group with angles equal to 90, 60 and 36 degrees we

can generate the icosahedral symmetries. Furthermore, the number of copies of the

fundamental region created by reflection is equal to the order of the corresponding

symmetry group (see Figure 7.5). Coxeter [72] enumerated all finite irreducible

reflection groups corresponding to the regular 3D solids as well as for other dimen-

sions.

To generate a denser tiling of a platonic solid than that generated by the

corresponding reflection group, we need to extend it. The extension is easier to

model using the concept of root systems that we discuss now.

Generating Reflection Groups using Root Systems A root system is a set of

vectors with one endpoint at the origin. It defines a basis for generating root lattices.

For example, the unit length vectors along the Cartesian X and Y axis forms a

root system which generates a 2D chessboard lattice. Each reflection group can

be mapped to a unique root system (and vice versa) by defining vectors starting at

the origin and perpendicular to the mirror planes. The root vectors pointing to the
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Table 7.1: List of all finite non-decomposable crystallographic root systems relevant
for 3D. We did not include G2, F4, E6, E7 and E8 since they are only defined for
specific dimensions and we are also not interested in their projections to 3D. In this
table, n represents the dimension and ei, ej are the basis vectors of the coordinate
systems of the corresponding dimensions.
Name Order Roots
An n(n+ 1) Project ei − ej (1 ≤ i, j ≤ n+ 1) to n-space
Bn 2n2 {±ei,±ei ± ej} (1 ≤ i, j ≤ n)
Cn 2n2 {±2ei,±ei ± ej} (1 ≤ i, j ≤ n)
Dn 2n(n− 1) {±ei ± ej} (1 ≤ i, j ≤ n)

inside of the fundamental cone of the reflection group are called the fundamental

roots. The entire root system can be generated by applying the reflections on the

fundamental roots. For example, the root system generated by the H3 root system

generates points at the vertices of an icosahedron.

Root systems have been studied in detail by Crystallographers to describe

lattices and quasi-lattices. There are only a finite number (for a specific dimen-

sion) of irreducible crystallographic root systems which we have listed in Table 7.1.

However, the crystallographic root system allows only 2,3,4 and 6 fold symmetries.

However, a non-crystallographic root system can be generated by projection from

higher dimensional a crystallographic root system [233]. In particular, the icosa-

hedral group can be generated by projecting the D6 root system to 3 dimensions

along a specific direction which maps the 6 roots of the D6 system to 6 non-planar

vertices of an icosahedron.
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Extending the Root System to Generate Local Symmetries Reflection opera-

tions on the fundamental roots generate the vertices and tiling of the corresponding

basic polyhedra. To generate a denser tiling, we extend the root system by adding

another root. Given a root system with vectors v1, . . . , vk, the additional root can

be computed by first computing a Cartan matrix C such that each entry cij of the

matrix defined as 2(vi.vj)/(vj.vj) where . indicates the dot product. Then this ma-

trix is expanded by adding a new row and new column using the affine extension

method of Kac-Moody algebra. The new row and column describes the additional

root and its relationship to the others.

For example, for the icosahedral root system H3, the extended root corre-

sponds to a simple translation operation. Hence, when used in conjunction with the

original roots and the corresponding reflection planes, it generates a series of new

points at different radial levels. It can also be shown that the same set of points

can also be generated by integer linear combinations of the original roots [193].

Note that the planes perpendicular to the extended set of points would intersect the

sphere and generate new geodesic intersections which would correspond to local

symmetries. The global symmetries remain unchanged since the original roots are

still used, and the local symmetries are also distributed in a way that remain invari-

ant under the global symmetry operations since they are generated by appropriate

extension on the root system corresponding to the global symmetry.

Figure 7.6 summarizes the process of computing possible tilings.

Note that there are only a few (4) root systems relevant for regular or semi-

regular tiling of a spherical shell. The root systems can be extended to generate

216



Figure 7.6: Pipeline of generating all possible regular and semi-regular tiling of
spherical shells.

local symmetries, thereby increasing the number and density of tiles on the sphere.

The number of unique extensions of each root system is also limited since many

of the roots are colinear and hence does not affect the tiling. For example, [145]

showed that there are exactly 342 possible unique extensions which can be made

using the icosahedral root system, and among them there are only 26 unique outer

shell configurations (the extended system produces vectors of many sizes, the outer

shell refers to the distribution of the longest vectors).

7.3.3 Subdivisions

There is a fractal like process which divides a group of unique tiles into

scaled copies of the same group (in other words, does not change the number of tile

types or the vertex atlas). For example, in Figure 7.7 we show a set of tiles their

decompositions.

7.4 Decorating the Tiles

Given a spherical tiling, it is easy to identify the set of unique tiles and

unique tile-tile interfaces. Since the tiling must be edge-to-edge, neighboring tiles
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Figure 7.7: Subdivision of tiles while maintaining symmetry produces scaled ver-
sions of the same tile set

meet at their vertices. Each of these vertices correspond to cyclic symmetric loca-

tions. The decoration process deals with placing the 3D c-tiles onto each tile such

that following hold.

1. The same type of tiles are decorated exactly the same way.

2. If more than one p-tile is needed to decorate a tile, then they must have local

cyclic symmetry.

3. All c-tiles must have the same number and types of interfaces (with neigh-

boring c-tiles) after placed as decorations.

4. The decoration scheme should minimize gaps between the c-tiles and gener-

ate as airtight a shell as possible, note that a perfect airtight shell may not be

possible to make using a given building block (consider the case when a ball

is given as a building block).
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The first condition is trivial to fulfill. The second condition requires us to

find favorable cyclic symmetric arrangements (c-tiles) of different orders using the

3D p-tiles. We accomplish this by optimizing a local score over a 4D search space

(see Section 7.4.1). According to the third condition, if there are multiple types of

tiles which need to be decorated using c-tiles with different order, then we also need

to ensure that the selected c-tiles are consistent with each other. For example, if a

p-tile is to be involved in both a 3-fold and a 5-fold c-tile, then it has to support both

simultaneously. Hence, the footprint of the 3-fold interface and 5-fold interface

must be disjoint. Finally, to fulfill the third and fourth condition, we define a global

score which needs to be optimized by motions which leave the intra and inter-tile

symmetries intact (see Section 7.4.3).

Figure 7.8: Top row: 3 best scoring trimers, and bottom row: 3 best scoring
pentamers composed using copies of a single building block.
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7.4.1 Computing Cyclic Symmetric c-tiles

Due to the symmetry, the number of unique tiles and unique tile-tile inter-

faces are very few for any given tiling. So, to identify a set of c-tile sufficient for the

decoration, we need to search only a few types of cyclic symmetric configurations.

In general, to find a favorable (under a specific metric/scoring model) arrangement

between two 3D objects one needs to search over 6 degrees of freedom. For exam-

ple, we can keep one stationary and rotate the other using 3 DOFs and then translate

it using 3 DOFs. However, for the case of cyclic symmetric configurations involv-

ing q copies, 4 DOFs in total is sufficient since one translational DOF is lost because

the centroids of the pieces would lie on a plane perpendicular to the symmetry axis

and one rotational DOF is lost since two copies are related by a rotation of 2π/q

around the symmetry axis.

We define a favorable symmetric arrangement as an arrangement which

maximizes a local score.

Following the method of [198], we take one p-tile A and place its centroids

at the origin and then sample the rotations Z and the X axis. For each rotational

sample, we make a copy B and rotate it by 2π/q degrees around the Z axis and

finally search for favorable relative positions of B w.r.t. A by sampling the space of

translations on the XY plane. Hence, there are only 4 degrees of freedom. Once

the relative position of the copy with respect to the other is found, the remaining

ones can be computed by repeatedly applying the relative transformation. More

specifically, if the relative transformation between the two is given by M , then we

can generate the complete cycle as and form a macro-tileO(A,M, q) = A∪M(A)∪
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M2(A) ∪ ... ∪M q−1(A). Since the scoring model is not expected to be perfect, we

produce a list of k top scoring relative transformations for each order. For example,

Figure 7.8 show the best three macro-tiles of order 3 and 5 respectively.

Figure 7.9: (a)-(c) A pentamer and two different trimer configurations using a given
building block. (d)-(e) Testing for consistency between two c-tiles by aligning one
component of the c-tiles and then verifying whether the remaining components from
different c-tiles are clashing. There are clashes in (d). But in (e), we find a consistent
pair.

7.4.2 Finding Consistent Pairs of Cyclic Symmetries

A simple technique to verify the consistency between a pair of c-tilesC1 and

C2, is to verify if they induce disjoint interfaces on their constituent p-tiles, where

an interface is defined as part of the surface of a p-tile which comes into contact with

its neighboring p-tile while forming the c-tile. If the interfaces are not disjoint, then
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clearly the same p-tile cannot be part of both C1 and C2 at the same time. However,

parts of C1 and C2 may clash/penetrate even if the interfaces are disjoint. So, in

this case, we further verify that the arrangement O(A,M1, q) ∪ O(A,M2, r) does

not have severe penetrations/overlaps, wherre M1 is the the relative transformations

of order q which forms C1, and M2 is of order r and forms C2 (see Figure 7.9 for

examples). To compute the penetration scores, we first align both c-tiles such that

the centroid of one p-tile of each lies at the origin and the principal components

of the p-tile aligns with the coordinate axes. Then, we only need to verify that the

remaining parts of the c-tiles are not clashing.

Figure 7.10: Searching for correct scaling of shell. Symmetric assemblies where
the c-tiles are translated, (a) foo far away, (b) at the correct distance, and (c) too
close. In (a) the decorations are not making any interface across tiles and in (c)
decorations from different tiles are penetrating.
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7.4.3 Global Optimization

As we have already discussed in the algorithm sketch, the decoration and

global optimization phase starts with aligning a tile (u1,u2, d, l, f) with a c-tile

(v1,v2, c, o, s). The shell produced by this alignment step fulfills the first three

conditions stated above, but the fourth remains to be satisfied (see Figure 7.10 and

Figure 7.11). It is addressed by sampling two degrees of freedom, a translation

along u1 to scale the shell and a rotation around u1 to possibly improve interfaces

across tile-boundaries.

Figure 7.11: Searching for correct orientation of the decoration. Two assemblies
are shown here, both are at the same scale. The orientation of the decoration in the
left figure is perfect for creating complementary interface with the decorations on
neighboring tiles. However, the orientations of the decorations on the right figure
causes penetrations as well as leaves a lot of empty spaces.

We initially set broad limits for the translations such that the scaled l is

within [t/2, 2t] where t is the farthest point from c if the p-tile is projected onto the

plane perpendicular to v1. We coarsely sample translation steps T between these

limits. For each translation, we also coarsely sample rotations R within a band

[−π/f, π/f ] and for each sample in (T,R) we compute two scores. One score is

designed to penalize penetration the other is to award proximity. Both can be com-

puted together using complex valued affinity functions defined on a double-skin
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representation of the surfaces (similar approach have been used by others, for ex-

ample [60, 170]). Note that, because of the symmetry it is not necessary to score all

the interfaces between all the tiles. Rather, it is sufficient to compute the score for

one copy of each unique type of inter-tile interfaces. Since this list is pre-computed,

we simply compute the relative orientation of the corresponding c-tiles which dec-

orate those tiles and compute the score. The tilings generated by the almost-regular

polyhedron needs only a single type of tile and tilings based on extended root sys-

tems require only a limited number (2 for icosahedral). The total number of unique

local interfaces are also bounded. For instance, if dihedral angles are ignored (as-

suming that the tiles are projected to a sphere), then there are exactly 2 types of

neighborhoods for the regular case, and upto 16 types (usually much smaller) of

vertex atlases for the semi-regular case. So, the number of unique interfaces to

score is a small constant only.

The coarse sampling quickly recognizes all scales which are either too big

or too small and retains a very narrow band. Then we perform a more refined

sampling within that band.

7.4.3.1 Heuristics to Bound the Search Space

In most situations some information is known or some design goals are pre-

specified which can help restrict the range of allowed subdivisions and/or the scale

parameter m. For example, we consider the following special cases-

• The expected diameter, or volume (either inner, outer or average) of the shell

is known.
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• The expected number (or range of numbers) of proteins on the capsid is

known.

• The EM density map of the capsid is known, giving both the diameter as well

as the thickness of the shell.

Definition 7.4.1 (Order of a tiling/layout). We define the order nL of a tiling L as∑
ti∈L fi, where fi is the order of internal symmetry of the tile ti.

Lemma 7.4.1. If the expected number of proteins on the capsid is within [nmin, nmax],

then the space of possible tilings is restricted to all tilings such that nmin ≤ nL ≤

nmax.

We are also able to bound the space of tilings and decoration based on the

shape of the p-tiles (proteins). We define the shape using the principal components,

in other words by replacing the p-tile with a ellipsoid. Let the three main diameters

be 2a, 2b, 2c (in decreasing order of magnitude). The most number of proteins

can be used to tile the shell if their smallest cross-section is orthogonal to the u1

vectors. We estimate the footprint as 2bc (allowing penetrations of the ellipsoids).

The thickness of the shell is estimated to be 2a in this case. On the other hand,

the sparsest configuration is achieved when the thickness is 2c. However, the lower

bound would depend on the global and local symmetry requirements which dictates

the number of interfaces a p-tile must have. For example, if we are using a triangular

tiling, then the sparsest case is when a is equal to the in-radius of the small triangles,

and hence each p-tile leaves a
√

3a2 size footprint.
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Definition 7.4.2 (Footprint of a p-tile). If a p-tile is approximated as a ellipsoid

of diameters (2a, 2b, 2c), then for a triangular tiling the maximum and minimum

footprint of the p-tile on the surface of a shell is respectively approximated as

F p
min = 2bc and F p

max =
√

3a2.

Similar bounds can be derived for other types of symmetric tiles as well.

Definition 7.4.3 (Footprint ratio of tile). We define the footprint ratio F t of a tile as

at/(aS × f) where at is the surface area of the tile and aS is the surface area of the

entire shell.

Definition 7.4.4 (Footprint ratio of a tiling/layout). We define the footprint ratio

FL of a layout L as the average footprint ratio of all its tiles.

Depending on the amount of prior information the search space can be re-

stricted in the following ways-

• Given a p-tile and an expected surface area AS of the shell (as either expected

radius, area or volume), the space of possible tilings is restricted to all tilings

whose footprint ratio satisfies F p
min/AS ≤ F ≤ F p

max/AS . Also, the scale of

the shell has to be within the range defined as R− 2a ≤ m ≤ R+ 2a, where

R is the expected radius of the shell.

• Given a p-tile, the expected surface areaAS of the shell and a range [nmin, nmax]

for the number of proteins, the space of tilings is restricted to all tilings such

that nmin ≤ nL ≤ nmax, and the possible orientations of the p-tiles on the
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surface is also restricted such that the footprint of the p-tile F p ≈ F t the

footprint ratio of the chosen tiling.

• If both the expected surface areaAS as well as thickness of the shell is known

(e.g. from the EM density map), then the possible orientations of the p-tiles

on the surface is also restricted such that the average thickness of the p-tile in

a direction orthogonal to the surface is approximately equal to the expected

thickness. Moreover, if F p∗
min and F p∗

max define the range of footprints for

the allowed set of orientations of the p-tile, then space of possible tilings

is restricted to all tilings whose footprint ratio satisfies F p∗
min/AS ≤ F ≤

F p∗
max/AS . Also, the scale of the shell has to be within the range defined as

R− 2a ≤ m ≤ R + 2a, where R is the expected radius of the shell.

7.4.4 Scoring

The design objective of both the local and global scoring functions is to

distinguish between acceptable and non-acceptable solutions as well to rank the

acceptable solutions. Our search procedure can be used in conjunction with any

scoring function as long as it conforms to this principle.

We speed up the scoring by using FFT based fast summation techniques

which defines affinity functions on the two components such that the convolution

of the affinities is the score and then computes the score for all translational sam-

ples (or rotational samples if spherical FFT is used [215]) by two forward and one

inverse FFT computations. Further details on FFT based fast summation can be

found in [142].
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Some scoring terms are however not easy to decompose and express as con-

volutions. So, as a rule of thumb, we use such terms only as filters and for re-

finement steps. We have also developed fast multipole implementations for several

scoring terms which only depends on pairwise summations over neighboring sur-

face points at the interface of two components. The complexity of the algorithms

are linear to the size of the interface.

Since scoring terms need to be custom-made based on the application and

nature of the building blocks, we defer the description of different terms until Sec-

tion 7.5 where we introduce them in the context of protein-protein interfaces.

7.5 Application in Molecular Biology

Viruses are an amazing example of symmetry and economy of design. Viruses

usually have some generic material (DNA/RNA) packed inside at least one layer of

a membrane or shell. This shell, usually called the capsid, protects the genetic ma-

terial as well as acts as a delivery vehicle. The shell is formed by multiple copies

of a protein assembled together. The shell disassembles when the virus reaches the

host (victim) cell’s nucleus to release the genetic material. The genetic material

encodes a blueprint for making new copies of the protein which forms the shell.

Many copies of the DNA/RNA as well as the proteins are manufactured by piggy-

backing the molecular machinery of the host cell and in the process depleting all

its resources. Then the newly created proteins automatically assembles themselves

into the same shell structure. For us, the most relevant aspect of this process is

that the shells are generally icosahedral and the number of proteins in each shell
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often exceed the global symmetry order, and hence produces local symmetries. So,

their shells falls within the categories of the shell structures our algorithm can pro-

duce. Hence, we chose several viruses to verify whether the shells generated by our

algorithm matches the experimentally observed shells and their symmetries.

In this section we first briefly discuss the current knowledge on the struc-

tures of viral capsids. Then we describe the properties of the proteins (puzzle

pieces) and explain how the properties dictate the design of scoring functions. Fi-

nally we describe the results of applying our algorithm and contrast it with real data

acquired by cryo-electron microscopy and x-ray crystallography.

7.5.1 An Overview of the Symmetry of Viral Capsids

Though there are some viruses whose capsids are shaped like tubes, fila-

ments or sometimes without a fixed shape, the shape found most predominantly is

the spherical one. It was observed long ago that all spherical viruses have icosa-

hedral symmetry. We have already seen that the icosahedral or dodecahedral sym-

metry provides the highest symmetry order among all regular polytopes and hence

allows the construction of larger shells using the same p-tile. Recent studies have

also shown that icosahedral shells are also the most stable both in terms of biochem-

ical interactions as well as against external pressure [282]. However, the presence

of capsids of different sizes suggested that the number of copies of proteins used in

each are different and it a general characterization to address this issue was first put

forward by Caspar and Klug in their seminal work in [55].

The Caspar-Klug model introduced the concept of local symmetries and
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Figure 7.12: (a) The Caspar-Klug model lays out the icosahedral faces on a hexag-
onal grid. Larger triangles on the grid contain smaller triangles. With one cor-
ner of the large triangle fixed at (0, 0) and another at (h, k), it would contain
T = h2 + k2 + hk small triangles. The model decorates each small triangle with
3 proteins. Icosahedrons made by larger triangles hence contains 60T proteins. (b)
An example capsid (Nudeaurelia Carpensis Virus) with T = 4.

quasi-equivalence. They showed that the triangular faces of an icosahedron can

be unraveled and placed on a regular hexagonal grid such that the corners of the

icosahedra have integer coordinates. If we imagine that one corner lies at the origin,

then the smallest such triangle we can lay out on this grid would have the other

endpoints at (1, 0) and (0, 1). Caspar and Klug proposed that this small triangle is

composed of three copies of the protein placed at each corner resulting in a capsid

with 60 proteins. However, if the size of the triangle is increased such that the

corners still have integer coordinates, then these large triangles would contain many

smaller (unit sized) triangles. If a large triangle has two corners at (0, 0) and (h, k)

coordinates, then the number of small triangles in it is exactly h2 + k2 + hk. This

number is called the T -number. According to the Caspar-Klug theory, a capsid has
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exactly 60T triangles, 12 vertices with 5-fold symmetry corresponding to corners

of large triangles, and 10(T−1) locations of 6-fold symmetry where small triangles

meet each other (see Figure 7.12).

According to our formulation, the Caspar-Klug model produces tilings of

the icosahedron with only a single type of tile, a triangle. Different T number

changes the density of the tiling, but the types of symmetry requirement at the

vertices remain the same.

Figure 7.13: (a) Simian Virus, pseudo T = 6. (b) The inner shell of the Rice Dwarf
Virus which is pseudo T = 2. Both of these only allows aperiodic tiling. We show
one such tiling in (a). In (b) we show a failed attempt tile using Caspar-Klug like
triangles.

However, Caspar-Klug theory fails to explain the capsid structure of some

viruses in the Papilloma, Papova and Polyoma families. For example, the Simian

Virus 40 (of Papova family) is predicted to have T=7 capsid, i.e 420 proteins with

12 locations with 5-fold symmetry and 60 locations with 6-fold symmetry, but in
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reality it has only 360 proteins and 72 locations with 5-fold symmetry. Another

example is the inner layer of the capsid of the Blue-tongue virus which has 120

proteins or T=2, a fact considered impossible under the Caspar-Klug model. See

Figure 7.13.

These viruses must be tiled using aperiodic tiles. It has been shown that all

such capsids can be tiled using either rhombus tiles, or a rhombus and kite tiles.

The rhomb has two angles each of π/5 and 4π/5. The kite has three angles of 2π/5

and one angle of 4π/5. Notice that the extended root system is able to produce such

tilings as well. The decoration of these tiles is done by placing two proteins on the

rhomb tiles and placing three proteins on the kite tile, leaving the corner with the

largest angle empty.

We have studied several viruses with differing sizes and requiring different

kinds of tilings and present the results after describing the scoring model.

7.5.2 Scoring Function Design based on Physico-chemical Properties of Protein-
Protein Interfaces

Proteins are polypeptides, or a sequence of amino acids (peptides). There

are 20 naturally produced amino acids for proteins. Each amino acid has differ-

ent number and arrangements of atoms and hence different chemical properties.

They have different polarities, different affinity towards the solvent (cellular envi-

ronment) surrounding the protein. The interactions with the solvent, other amino

acids on the same protein as well as other proteins makes the polypeptide chain to

fold and coil and finally produce a more compact 3D shape. This final shape is of-
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ten referred as the tertiary structure of a protein. For our purposes, we assume that

the tertiary structures are given to us. When proteins form complexes, they undergo

further changes and forms quaternary structures. Here, we consider the tertiary and

quaternary structures to be the same (i.e. assume rigidity).

Proteins form complexes to minimize their free energy. If the net change in

free energy due to the binding of the proteinsA andB is δE = E(A+B)−E(A)−

E(B), then the stability of the complex is proportional to e−δE . Hence, we would

like to design our scoring function F → R such that it is positively correlated with

δE and hence its minimization leads to favorable complex structures.

There are several ways to model the free energy. From the most compre-

hensive quantum mechanical models to purely empirical statistical potentials. We

choose to use a a collection of terms including a semi-empirical model called the

Gibbs free energy model which is based on statistical thermodynamics, and several

empirical potentials. We have found that after training [208] based on large set of

positive and negative examples, a combination of these terms can successfully dis-

tinguish between correct and incorrect configurations/interfaces [65]. See Chapter

5 for details.

7.5.2.1 Scoring Terms Based on Statistical Thermodynamics

Under this model, the free energy E of a molecule of a molecule (or a com-

plex) is given by

E = EMM +Gsol − TS (7.5.1)
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EMM is called the molecular mechanical energy. It represents energy due to

the atom-atom interactions among atoms of the molecule(s). Gsol is the solvation

energy representing the interaction of the molecule(s) with the solvent. T is the

temperature and S in the entropy. The change of TS is too time-consuming to

compute accurately and in most cases, the change is negligible.

The molecular mechanical energy is decomposed into bonded and non-

bonded interaction terms (see Equation 7.5.2). The bonded energy terms mea-

sure the energy required to deviate from an optimal bonded position (for example,

changing the length of a bond). These terms are considered constant when it is

assumed that the proteins are rigid.

EMM = Ed + Etheta + Ephi︸ ︷︷ ︸
bonded interactions

+ Evdw + Ecoul︸ ︷︷ ︸
nonbonded interactions

(7.5.2)

Evdw =
∑
i

∑
j>i

(
aij
r12
ij

− bij
r6
ij

)
and Ecoul =

∑
i

∑
j>i

qiqj
ε(rij)rij

, (7.5.3)

However, the change of the non-bonded interactions (Equation 7.5.3) are

very relevant to the scoring. The first term is called the VDW interaction which

represents short range attraction (of electron of one atom to the proton of the other)

and a very high repulsion if the distance rij gets too close (representing the positive

nuclei of the atoms coming too close). The aij and bij are two weights which have

been determined based on quantum mechanics for different types of atom-atom

pairs. This energy encourages two molecules to come close to each other such that
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their shapes complement each other, but does not allow penetration. This term can

also be approximated using simple geometric complementarity. The second term of

the non-bonded interaction is the long range electrostatic interaction between two

molecules. This term is dependent on the charges q as well the distance dependent

dielectric ε(rij) of the solvent.

Several models for the solvation energy Gsol have been proposed. Here, we

present an implicit solvation energy model called the GBSA model [105].

Gsol = Gcav +Gvdw︸ ︷︷ ︸
nonploar

+Gpol︸︷︷︸
polar

(7.5.4)

Gcav depends on the volume of the protein and the exposed surface area and

Gvdw is the Van der Waals interaction between exposed atoms and solvent atoms.

The polar partEpol, can be approximated using Generalized Born (GB) theory [245]

as-

Epol = −τ
2

∑
i,j

qiqj/

√
r2
ij +RiRje

−
r2
ij

4RiRj , (7.5.5)

where τ = 1 − 1
ε
, and Ri is the effective Born radius of atom i. There are other

models for Epol as well, e.g. [250].

7.5.2.2 Knowledge-based Scoring Terms

We have also designed and used several light-weight scoring models based

on observed properties of the interfaces of protein-protein complexes. These mod-

els have the advantage of being computationally cheap and they can also be trained

for specific types of interactions separately. Below we list the terms we have used.
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• Interface Propensity: The relative probability of a residue (amino acid) ap-

pearing on the interface, given that it appears somewhere in the protein is de-

fined as the interface propensity of the residue. Per-residue interface propen-

sity values were computed in [134] which are based on the relative frequen-

cies of different residues in the interfaces of a set of 63 protein-protein com-

plexes. For each candidate assembly, we compute the residues which are on

the interface and sum up their interface propensities.

• Steric Clash: Due to extremely high repulsion forces between the nuclei

of two atoms, they cannot come too close to one another. We penalize all

arrangements where the center of atom gets too close to the center of another

atom.

• Interface Area: Larger interface area reduces the interactions with the sol-

vent and also reduces the DOF of more atoms and reducing the entropy. So,

we score assemblies with larger interface areas higher.

All of these terms can be computed as simple linear sums over the atoms

which are on the interface of a complex. We have developed efficient data structures

[14, 24] for computing such sums in time linear to the size of the interface.

7.5.3 Results

Below we present the results of applying our algorithm to some biological

viruses with the aim of reproducing the capsid structures seen in nature as well to

predict new compact shells of different sizes using the same p-tile. In the results
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below we have also mentioned the global scores of the assemblies which is defined

in terms of the three knowledge-based terms introduced above. If the interface

propensity score is IP , the number of clashing atoms is NC and the interface are is

IA, then the score is defined as wIP ∗ IP +wNC ∗n−NC+wIA ∗ IA. NC scores

can range from 0 to n2 where n is the number of atoms, IP usually ranges between

0 and 25, and IA usually ranges between 0 and 0.3 (it is a ratio of the interface area

and the total area).

7.5.4 Reproducing Known Shell Structures

Assembling a T=1 Shell We took one protein out of the 60 which makes a T = 1

shell for the Tobacco Necrosis Virus (TNV). The capsid structure, reconstructed

from microscopic images by [135], is available as a atomic resolution in the protein

data bank [2].

Figure 7.14: (a)-(b): Top 2 predicted models for the Tobacco Necrosis Virus. (c):
The experimentally observed capsid. Our second prediction reproduces the original
structure.

A T = 1 configuration is the simplest instance of icosahedral packing and
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we can either use a layout based on dodecahedral point set or a layout based on

icosahedral point set. In either case, only one type of cyclic symmetric oligomers

are needed. Figure 7.14 shows the top two predictions produced by our algorithm

with scores 447.5756 and 355.7908 respectively.

Assembling a T=4 Shell The capsid of the Nudaurelia Carpensis Virus (NCV)

[123] is formed by 240 copies of a single protein. Hence, it is modeled as a T = 4

capsid. We use a tiling with only triangular tiles generated from the icosahedral

system via decomposition. Figure 7.15 shows the top two predictions whose scores

are 163.9997 and 91.2074 respectively.

Figure 7.15: (a)-(b): Top 2 predicted models for the Nudeaurelia Carpensis Virus.
(c): The experimentally observed capsid. Our first prediction reproduces the origi-
nal structure.

Assembling a T=2 Shell The inner shell of the Rice Dwarf Virus (RDV) [185]

is composed of 120 proteins. We mentioned before that this cannot be tiled using

periodic tiles. The tiling which matches it best is an extension of the dodecahedral

roots which produces a tiling with rhombs. There are 60 rhombs in total such that
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five such rhomb meets a the vertex on the axis along one the dodecahedral root

vectors.

Figure 7.16: (a)-(b): 2 predicted models for the Rice Dwarf Virus (inner shell). (c):
The experimentally observed capsid. Our first prediction reproduces the original
structure. We show the second figure as an example case where the macro-tiles
used for decoration cannot be transformed in anyway to produce tighter interfaces
without causing penetrations.

Our algorithm handles this by composing consistent sets of 5 fold and 2 fold

symmetric configurations and then decorating using these (Figure 7.16). The score

of the first pose shown in Figure 7.16 is 591.6053 and the score is 71.2835 for the

other one. The other result is included to highlight that even with consistent macro-

tile, sometimes it is not possible to get a compact shell. However, the interface

based affinity functions do have the ability to rank such cases lower.

Assembling a T=13 Shell The outer shell of the Rice Dwarf Virus (RDV) [185]

is composed of 780 proteins. This corresponds to the T=13 tiling. T can be 13 for

h=1, k 3 or h=3, k=1, giving rise to two different chirality of the tiling- one of them

matches the correct chirality (Figure 7.17 (top-right)), and the other do not (Figure
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7.17 (bottom-right))

  

Native structure of Rice Dwarf Virus
780 proteins

Predicted structure of Rice Dwarf Virus

Another predicted structure of Rice Dwarf Virus
Wrong decoration. Right tiling

Another predicted structure of Rice Dwarf Virus
Wrong tiling (chirality), right decoration

Figure 7.17: The top row shows the correct and a predicted structure for the rice
dwarf virus outer shell. The bottom row shows two predictions which are incorrect
due to wrong geometry (left), and wrong topology/tiling (right).

This is a particularly difficult problem for an automated search and ranking

procedure to handle, since for geometrically and energetically there is very little

difference, if at all, between the interfaces between the proteins in the two different

models.
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7.5.5 Modeling Virus Shells that Match EM-maps

This is one application where our technique really shows its practicability.

In many cases, it is possible to get a coarse representation of the virs capsid using

Electron-microscopy imaging, but the resolution is sufficient to identify individual

atoms of even groups of atoms with certainty. The sequence of the protein is also

easy to get. However, it is extremely difficult to crystallize the protein and get an

atomic resolution model.

Figure 7.18: EM-based prediction of viral shells

In this type of scenarios, the current approaches like [91] segment the EM-

map based on prior knowledge about the symmetry, generate homology models

(computationally predicted template based models) for the protein using the se-

quence, and then fit copies of the protein into the segments to produce the whole

shell (See Figure 7.18). However, this process is error-prone due to unreliability

of the segmentation, and often result in poor interfaces between the assembled pro-

teins. On the other hand, using our approach, we assemble the wntire capsid based
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on the interface quality, and by decorating a tiling of the known symmetry and size

while ensuring that the assembled shell fits to the density. This approach results in

better interfaces.
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Figure 7.19: Comparison of segmentation-based methods with ours

For example, we applied both of the techiques to model the Helminthospo-

rium victoriae virus 190S whose EM map and sequence were available. For the first

method, VolumeRover [285] was used to segment the EM-map and then homology

models produced by swiss-model were fit into the segments using PF2Fit [23, 41].

The results are shown in the top row of Figure 7.19. The middle and bottom row

of the figure shows the results obtained by applying our docking based approach.

Our approach not only results in more symmetric interfaces, it also produces more

compact interfaces at 2-, 3-, and 5-fold locations.
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7.5.5.1 Assembling Multiple Sized Shells Using the Same Protein

In the above sections, we focused our search based on prior knowledge of

the target. In figure 7.20 we show that our algorithm can easily produce shells of

different sizes using the p-tiles. Here we used the same protein, and the same c-

tile but decorated tilings of different complexities and reported the highest scoring

models for each size.

  

Predicted capsid 
with T=4

Predicted capsid 
with T=1

Predicted capsid 
with T=39

Figure 7.20: Shells of different sizes using the same protein

7.5.6 Running Times

Computing lists of possible c-tiles is the most time consuming part of the

algorithm. Given a tiling and lists of c-tiles, decorating the tiles usually finishes
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Table 7.2: Comparative running times for different sized datasets.
Dataset Number c-tile Number of Decoration

of points time time
(minutes) tiles (seconds)

TNV 4281 12.4 T1 (20) 12.55
T4 (80) 11.93

NCV 12402 21.2 T1 (20) 37.78
T4 (80) 38.27

RDV 76530 67.4 T2 (60) 65.33

within one minute even for really large p-tiles. As expected, the decoration time

does not depend on the total number of tiles, rather on the number of unique in-

terfaces and of course the size of the 3D tile. Table 7.2 presents the running times

as well as provides a glimpse of the size of each dataset. The experiments were

performed on a machine with 12GB memory.

7.6 Conclusion

Our polynomial time, 3D shell assembly prediction solution has several

novel features. By characterizing our search space to symmetric decorations of 2D

periodic and non-periodic tesselations, we are able to reduce the otherwise poten-

tially huge combinatorial search space to only 6 motion parameter dimensions, and

independent of the number of 3D tiles used to create the assembly. Furthermore,

the use of finite symmetry groups of polyhedra, and their root systems and their

extensions, yields a generalized procedure of subdividing such spherical tilings to

have increased complexity while preserving local symmetries. This allows us to
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predict 3D shell structures of varying sizes, typically relevant for tiled domed ar-

chitectures. We have also successfully applied this procedure to the prediction of

spherical protein shells of biological viruses of different sizes, all of which ex-

hibit icosahedral symmetry. Our implemented technique has been successful in

predicting the tiling/packing of known and experimentally reconstructed protein

shell structures of a fixed size, and moreover predicts possibilities of different sized

shells. In this sense our method provides emergent solutions for biological discov-

ery. Our shell assembly predictive solution based on mixed biophysical and knowl-

edge based models, is specially noteworthy in light of the complicated biophysi-

cal/biochemical interactions between protein structures in nature, and provides tes-

timony to the stability of such tiled shell structures. Our 3D assembly method is

also generalizable to flexible 3D assemblies, wherein the p-tiles are deformable

and of parameterized flexibility. Our search space only increases from 6D with the

additive deformation dimensions of a single p-tile.
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Chapter 8

Multi-resolution and Data-driven Modeling and
Validation of Molecular Assemblies

Elucidating functionally important structural details at finer resolutions of

highly flexible proteins or proteins with large variable domains remains an elusive

task. It is difficult to discern a complete and high resolution structure of such pro-

teins in their native state. For such proteins, x-ray crystallography reports atomic

resolution structure but often cannot resolve the variable regions, or has to remove

those regions entirely before the protein becomes amenable to crystallization, a

process which can also induce conformational changes to the retained part as well.

On the other hand, electron-microscopy (EM) can often produce lower resolution

model of the entire protein in its in-vitro state. Here, we report a computational pro-

tocol that not only model structures of protein complexes involving multiple chains

while optimizing both inter-protein interaction potentials as well as internal struc-

ture of each protein, but also model the missing variable parts at atomic resolutions.

The protocol uses known EM models are coarse constraints to restrict and vali-

date the conformational search, uses known partial structures and prior knowledge

on binding sites to train/learn high confidence scoring model tailored to the target

complex. It also uses a consensus of multiple state of the art structure vaidation

protocols for structural refinement.
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This comprehensive multi-resolution protocol promises to greatly accelarate

structure and functional study of molecular complexes, as evidenced by our appli-

cation of the protocol in determining the first rigorously validated and complete

atomic resolution model of HIV spike protein gp120 in complex with 17b and CD4,

a complex which is the precursor to HIV infection of a host cell. gp120 have several

variable regions which are known to play an important role in binding to CD4 and

then CCR5 which acts as a precursor to infection. But the precise structure and con-

figuration of these variable regions’ interaction with CD4 and CCR5 have not been

resolved yet by x-ray crystallography. We found that the method was extremely

successful in predicting near-native configurations for a large set of protein-protein

complexes involving the HIV spike protein gp120 and various antibodies. In 18

out of 32 cases, our method picked the lowest RMSD solution as the top solution.

Further, we showed that our validated scoring model can be combined with off-the-

shelf threading and energy minimization algorithms to produce reliable models of

the variable regions.

8.1 Introduction

A key component of the study of molecular interactions is to resolve the

structure and biophysical properties for the entire complex as well as for the inter-

faces (regions of contact) between proteins. Resolving the structure of a molecule

at the atomic resolution ( 2Å) is not a trivial problem. Several experimental proto-

cols have been developed, most prominently X-ray Crystallography [146], Nuclear

Magnetic Resonance (NMR) [31, 274], and Cryo electron microscopy (EM) [97].
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According to the protein data bank repository 85372 atomic resolution structural

models have been resolved using x-ray crystallography, 10512 models by nuclear

magnetic resonance techniques as of the end of December 2013. X-ray crystallog-

raphy, first applied for proteins in 1958 to resolve the structure of the Myoglobin

molecule [146], works by crystallizing a purified sample of the protein-complex

and then analyzing the scattering pattern of x-ray shot at the specimen. However,

many proteins, for example proteins with disordered regions are difficult to crys-

tallize, and most insoluble membrane proteins, x-ray crystallography cannot be

applied [165], leaving a large portion of the protein landscape beyond its reach.

Another drawback of x-ray crystallography is the possibility that the crystallization

process induces conformational changes in the protein and the resolved structure is

not the natural state of the protein. Nuclear magnetic resonance (NMR) [31, 274]

is applicable to an even smaller set of proteins since the magnetic response from

the nuclei of the atoms, which is used to resolve their position and type, tends

to decay too quickly for large molecules. The largest structure resolved by NMR

[94] is still much smaller than macromolecules like viral capsids and ribosomes.

Cryo electron microscopy (EM) is an alternate technique which while does not re-

solve atomic positions, it is however able to provide a volume occupancy model

for a protein-complex in its natural state. Experimental protocols like isothermal

titration calorimetry (ITC) are used to analyze the thermodynamic properties of

protein-protein or protein-small molecule interactions [200].

Our comprehensive computational protocol (Figure 8.1) completes partial

atomic resolution x-ray structures by integrating available data from other x-ray
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structures, coarse resolution EM models, as well as stoichiometry and binding site

information. It first generates an ensemble of feasible structural models for each

missing fragment, and then clusters, ranks and assembles them into complete mod-

els while optimizing a multi-term scoring function which takes into account the

agreement of the complete structure with the EM model, the feasibility of the inter-

faces between the fragments and other ligands, and stereochemistry. Our protocol

bridges a gap between ab-initio loop/fragment modeling and threading/homology

modeling. Ab-initio loop modelers can accurately predict or model loops which are

fairly short, and fails for longer loops. For example, among the most popular loop

modelers ModLoop [95] and FREAD [63] support loops up to 20 residues long,

FALC-Loop [158] supports loops between 4-12 residues, and YASARA, based on

Canutescu and Dunbrack’s algorithm [53], supports loops of up to 18 residues. This

makes it impossible to directly use such tools to model the large variable regions

(for example, the V1V2 loop of gp120 is 66 residues long). Threading and homol-

ogy modeling, on the other hand, have been successful [91, 230, 273] in modeling

small to medium sized proteins (about 100 residues). This range is sufficient for

modeling to missing portions of most complexes. However, the current tools does

not take into account the interplay between multiple chains in a complex, and hence

are not applicable for modeling complexes with more than one chain. There are

some recently reported integrative modeling tools [121, 156, 263] which can han-

dle multiple chains. They separately model components (protein chains or RNA)

of a macro-molecular assembly by homology and/or threading, segment EM map

of the complete macro-molecule, and then fit the individual homology models into
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different segments of the EM model. While these methods improve the tertiary

arrangements, they do not address modelling partial fragments of proteins, loop

closure and satisfaction of local stereochemical constraints. Here, we address this

limitation. Also our method does not require pre-segmentation of the EM model

(which can become arbitrary and error-prone).

Our protocol was calibrated and rigorously validated based on a control set

of high resolution structures of gp120 and achieved statistically significant corre-

lation with ground truth. Finally, the validated protocol was used to generate a

complete structural model of the envelope glycoprotein gp120 of HIV (including

all its variable loops) in complex with CD4 with 17b.

gp160, the only solvent accessible protein of mature HIV-1, forms spikes

protruding outside a bi-layer lipid membrane. It is cleaved by a fusion peptide at

position 512 into a membrane extremal gp120 chain and a partially buried gp41

chain. gp120 itself has a relatively conserved core and several variable regions

named V1, V2, V3, V4 and V5, spanning residues 131-156, 157-196, 297-330, 385-

418 and 461-471 respectively. gp120 is believed to be instrumental in the initiation

of the process of infecting a cell [190]. It first binds with the primary receptor CD4

present on the surface of T-cells and then binds with chemotaxis receptor CCR5.

This induces conformational changes to gp120 and then to gp41, which starts to

fuse with the membrane of the host cell and the RNA of the virus is released into the

cell [140]. Understanding the structural basis of these interactions, and designing

antibodies to disrupt them have been the mainstay of anti-HIV research for almost

30 years.
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Elucidating the structure of gp120 in its native state have proved extremely

challenging for several reasons. The variable domains V1/V2, V3, V4 and V5 are

highly flexible and the surface is heavily glycosylated- both of which makes it hard

to purify and crystallize gp120, and also introduce heterogeneity in EM imaging

leading to low resolution reconstruction. All of the previously reported x-ray mod-

els of the complex of gp120 with CD4 and 17b, are missing the V1V2 and V3

loops. Out of around 480 residues of gp120, only 321 are present in x-ray mod-

els 1G9M, 1GC1 and 1RZJ [126, 152] deposited in the protein data bank (PDB).

Other x-ray models in the PDB are missing even more residues (please see Discus-

sion). At the low resolution end, there exists an EM model, EMD:5020 [161] at

20Å resolution, of the same complex (gp120+CD4+17b). Though the resolution is

insufficient to correctly identify locations of secondary structural components or for

manually grafting missing fragments, it does provide coarse spatial restraints. For

instance, rigidly fitting 1GC1 into EMD5020 validates that the relative orientations

of the three molecules in the x-ray model are close to their in-vitro state and also

reveals large unoccupied portions of the EM map, where the variable missing loops

are expected to be (Figure 8.4D). This provides the starting point of our protocol.

In the final model we report here, the variable loops occupy the vacant re-

gions of the EM map. Moreover it improves the interface of gp120 with CD4 and

17b. The tertiary architecture of the variable loops in our model mostly agrees

with recently submitted complete models of gp120 complexed with PGV04 and

PGT122 [136, 167], however the ternary arrangement of the loops with respect to

each other and specially 17b is vastly different, reinforcing previous observations
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(e.g. [243]) that the loops undergo large conformational changes when bound to dif-

ferent partners. Our model also shows some new residue-residue contacts of CD4

and 17b with gp120, which upon experimental validation (e.g. isothermal titration

calorimetry), can lead to new insights for neutralizaing antibody design.

Our results exhibit it is possible to generate improved-resolution structural

models with high confidence. Our computational protocol and our reported model

of gp120, can additionally be applied to generate complete improved resolution

structural models of gp120 in complex with only other partners based on several

recently reported EM-maps with resolutions between 16-25 in [29, 147, 148, 220,

254] for instance. It could of course also be applied to the structural refinement of

many more lower resolution EM models of other macromolecules as well.

8.2 Materials and Methods

Given sequences of one or more chains and a low resolution EM map of a

complex, we first identify the best representative atomic structure of the complex

involving the chains in the protein data bank, and fit the structure into the density

map (Figure 8.1A). Then we identify fragments of the sequence for which atomic

structure is missing, identify corresponding locations in the fitted density map, and

then generate and fit multiple models for each fragment (Figure 8.1B-C). In the

second stage, a diverse subset of the fragments are chosen (Figure 8.1D) based on a

scoring function which rewards favorable fitting with a EM density map of the pro-

tein complex, favorable interactions of the fragments with the partial chains derived

from the protein data bank, lower energy (under the GBSA model), and better stere-
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ochemistry (measured as a consensus of a large set of protein structure quality as-

sessment tools). See supplement for details. Different combinations of the selected

fragments are then assembled in all possible combinations to generate an ensem-

ble of complete models (Figure 8.1E). In the third stage, the complete models are

ranked by their scores after structural optimization and energy minimization [64],

and a small subset of these complete models are selected. Then Local refinement-

based docking [65] and fitting [23, 42], together with energy minimization is used

to improve the binding interactions of chains in the selected models, and a single

one out of these co-optimized models is chosen (Figure 8.1F-G). If multiple good

candidates are generated, we perform binding site analysis to rank them.

Our search and scoring protocol was tested on 20 existing crystal structures

of gp120 complexed with CD4 and/or 17b, and it successfully predicted a near-

native pose as the top-ranked solution in 13/16 cases for gp120-17b interactions

and 11/16 cases for gp120-CD4 interactions (with 3 more cases having a correct

solution within top 10). In 18 out of the overall 32 cases, our method picked the

lowest RMSD solution as the top solution. Hence, it is strongly validated that the

scoring method clearly distinguishes between native and non-native poses, and the

algorithm successfully samples the conformational space to find the native confor-

mation.

8.2.1 Protocol Details

Stage 1: Fragment Modeling For each fragment of gp120 (core, v1v2, v3, and

v4), we use two state of the art homology/threading platforms, namely Swiss-Model
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Figure 8.1: Integrative refinement and validation protocol for modeling proteins with vari-
able domains. (A)-(B) Given a sequence we identify candidate partial crystal structures and EM-
maps for the protein and identify the fragments which are missing in the crystal model and cor-
responding regions in the EM. (C) Threading and homology modeling to generate ensemble of
candidate models for each fragment. (D) Existing partial crystal structures, known binding inter-
faces, prior knowledge about residue contacts and stereochemical properties of proteins are used to
calibrate a multi-term scoring function which is used to rank the clusters and select small number
of models for each fragment. The same scoring model is used in ranking and selecting models in
the remaining steps as well. (E) Fragments are assembled in all possible combinations to generate
a large set of complete models, which are then refined iteratively in terms of both the energy and
stereochemistry. (F) A small set of refined models are now co-optimized with other chains in the
complex to improve the ternary interfaces and fitting to the EM-map. A single model (G) is cho-
sen based on the scoring function and binding site analysis. (H) Further analytics are performed to
validate the model, compare with previous models and also to infer new kinematic, energetic, and
binding information.

[230] and I-TASSER [217], to generate multiple initial models, based on different

templates and having different folds. Each model was then flexibly fit using PF3Fit

[23, 42] into EMD5020 [161]. The fitted models were next clustered based on their

fold similarity (measured using TM-score [276]), and the best scoring model from

each cluster was picked (Figures 8.1A-B).
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Stage 2: Chain Modeling The selected fragments were assembled in all possi-

ble combinations to form a large set of models. These assembled structures are

not stereochemically sound as the bond lengths/angles at the joint are too far from

ideal (Figure 8.1C for example). To remove the gaps in the chain and improve the

stereochemistry, we used the threading pipeline of Swiss-model [230] where the

assembled model was specified as template to generate a new model with better lo-

cal stereochemistry but whose 3D folds exactly match the assembled model (Figure

8.1D). Then energy minimization was performed on the new model using KoBaMin

[64]. The two steps were repeated until no significant improvement was observed.

A few of the improved models were selected (based on their score).

Stage 3: Co-optimization and Trimer Modeling In the previous steps, CD4 and

17b were kept fixed at their gp120 bound configuration in 1GC1 [152], and each

of the generated models were aligned with the gp120 core of 1GC1 to evaluate the

quality of the interface with CD4 and 17b. Now, we applied a multi-scale dock-

ing protocol, F2Dock [65], to refine the configuration of CD4 and 17b for each of

the selected models. For some of the models, the refined configurations removed

all clashes and also improved residue contacts. The complete model of the com-

plex (for each selected model) was energy-minimized using KoBaMin [64] (Figure

8.1E). Finally, one model was chosen and the trimeric complex was formed by fit-

ting. If multiple good candidates are generated, we perform binding site analysis to

rank them.
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Stage 4: Binding Site Analysis The binding site analysis applies our exhaustive

docking protocol [65] and verify that known binding sites remain the most favor-

able binding sites even after the missing regions have been added. We consider

the top 1000 docking results and for each residue Ri on the receptor (gp120), we

count the number Ci of poses of the ligand (CD4 or 17b) for which the residue is

on the contact region (Figure 8.1F). Then we define the probability of the residue

Ri being part of the binding site as Pi = Ci/1000. These statistical inference of

binding site is then compared to known binding site data available from known

bound structures (in which variable regions are missing). Let, BS be the set of

residues that belong to the binding site of the known structure, and NBS be the

set of residues which do not. Then the quality of a complete model is defined as

1
|BS|
∑

Ri∈BS Pi −
1
|NBS|

∑
Rj∈NBS Pj .

Details of the application of the protocol for modeling gp160+CD4+17b

complex can be found in supplement.

8.2.2 Model Evaluation Criteria (Scoring Function)

Evaluating Local Stereochemistry, Tertiary Folds, and Contacts We use an

ensemble of methods consisting of Verify3D [166], PROCHECK [168], ERRAT

[68], ProSA [239], and MolProbity [74]. Note that it is possible for a structure to

get perfect scores in local stereochemistry checkers like PROCHECK but have poor

tertiary structural folds and get bad scores in global correlation tools like Verify3D,

ERRAT, ModEval etc. On the other hand, there are high resolution structures de-

posited in the PDB database which contain local errors and have poor PROCHECK
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Figure 8.2: Illustration of scoring terms In (A), we show two different models of gp120, and
their interface with CD4 (yellow). The blue model was generated by Swiss-model [230] using
1G9N:G as template, and our optimized model is shown in red. (B) comparison of the binding
footprints of CD4 on two different gp120 models. The one on top is a model generated by Swiss-
model [230] using the PDB 3IDY as template, the one at the bottom is our final model. (C) provides
a graphical understanding of external total ratio (ETR) which measures the fraction of atoms of a
model lying outside a isosurface of the density map. We used the recommended isovalue (1.0) [161]
and rendered with transparency so that atoms lying outside will be distinguishable from those inside.
The blue model was generated by Swiss model using 1GC1 chain G as template and the V3 loop is
almost complete outside the isosurface. Our optimized model, shown in red, has only a few atoms
outside the isosurface. In (D), we compare two models in terms of how much of the density map
they are covering. The model on top is actually a crystal structure (1GC1:Chain G) and has poor
MIS 53.78 compared to the model below (optimized model) whose MIS is 64.39.

score. So, we consider a model as high quality only if it scores well in each of

the validation tools. Note that, PDB evaluation suite ADIT, Modeval [236] and

Qmean z-score [34] were used for independent validation the final model, but not

used during the scoring and search.
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Evaluating Quaternary Contacts/Protein-Protein Interactions When the pro-

tein is in complex, then the quaternary structure quality, i.e. the quality of the in-

terface between the proteins must also be considered. We use five scoring terms

which can be efficiently computed. The first two terms, clash and severe clash,

compute the number of atoms of one protein whose center lies, respectively, too

close and inside the VDW volume of any atom of the other (See Figure 8.2A for an

example). Good crystal structures typicaly have no severe clashes, and fewer than

10 clashes. The third scoring term, interface area, is computed as the part of the

molecular surface of one protein which is within 2Å from any point on the molecu-

lar surface of another protein (Figure 8.2B). Interface area can vary a lot depending

on the type of the proteins involved and approriate thresholds must be calibrated

(see calibration in the Results section and Figure 8.3). The last two terms are statis-

tical residue-residue contact scores, computed based on contact potentials for each

residue-residue types reported by Glaser et al. [106], where positive and negative

potentials indicate, respectively, higher and lower probabality of the finding such

contact on an interface. These scores were applied in [65] and successfully ranked

native interfaces, specially for antibody-antigen complexes.

Evaluating Quality of Fitting We used two scoring terms, ETR and MIS, to eval-

uate the quality of fitting of a model to an EM-map. The external-total ratio (ETR)

[195] is defined as −Nout/N where Nout is the total number of atoms of the model

which lies outside a given isocontour of the density map, and N is the total number

of atoms. Lower ETR indicates better fitting (see Figure 8.2C). The mutual informa-
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tion score (MIS) [235, 262], is given by MIS =
∑

x∈B
∑

y∈A p(x, y) log
(

p(x,y)
p(x)p(y)

)
where p(x) and p(y) are the percentage of voxels in the volumetric representation

of the model B and the density map A that take on intensities equal to x and y

respectively and p(x, y) is the percentage of voxels in B with intensity x that are

aligned with voxels in A with intensity y. Essentially, MIS is maximized when the

model has larger overlap with the map (see Figure 8.2D).

Overall Score We have primarily two different types of score/validation. The

first, sinternal, is a set of scores to evaluate the stereochemistry and tertiary folds

using a consensus of several state of the art structure assessment tools. The send set

of scores, developed by us, evaluates the ternary interactions and fitting to a density

map. The overall score for them are defined as-

sinternal = g(φ−ψ) + g(all) + zV erify3D + zProSA + zMolProbity + zERRAT

and

sexternal = zcl + zRCP + zRCN + zIA + zETR + zMIS

where g(φ−ψ), g(all), zV erify3D, zProSA, zMolProbity, zERRAT , zcl, zRCP , zRCN ,

zIA, zETR, zMIS are PROCHECK g-factors for φ − ψ angles and for all angles,

z-score of Verify3D, ProSA, MolProbity and ERRAT’s composite scores, and z-

scores of clash, positive residue contact, negative residue contact, interface area,

ETR and MIS scores respectively. The z-score for a term X is defined as (sX −

µX)/σX where sX is the raw score of the model, and µX and σX are the mean and

standard deviation of the raw scores over all structures, or a benchmark/control set
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of structures. Details on the control is presented in the next section.

The sum of the z-scores intuitively means that a model have to be better

than average in all aspects to be considered as accurate. Notice that some of the

scoring terms are complementary to each other and provide check and balance. Poor

models may get better score in some terms, but not all. For example, a model of

gp120 which penetrates CD4 when placed at the correct orientation (derived based

on 1GC1), will get high scores for interface area and positive residue contacts, but

will get penalized by clashes and negative residue contacts.

8.2.3 Protocol Calibration for Modeling gp120

We have primarily two different types of scoring terms- a set of terms to

evaluate the stereochemistry and tertiary folds using state of the art structure assess-

ment tools, namely Verify3D, PROCHECK, ERRAT, ProSA, ModEval, and Mol-

Probity [68, 74, 166, 168, 236, 239]; and another set of terms, developed by us, to

evaluate the ternary interactions and fitting to a density map [10, 65, 106, 235, 262]

(see supplement for details). The quality of a structure X for a specific term is de-

fined as (sX −µX)/σX where sX is the raw score of the model, and µX and σX are

the mean and standard deviation of the raw scores over all structures in a control

set (see below). The overall quality of the model is a sum of the qualities for each

term.

Mean and variance of PROCHECK g-factors, Verify3D, ProSA and Mol-

Probity composite scores over a large set of non-redundant proteins was reported

in PSVS [43]. We verified if the distribution of the scores reported in PSVS accu-
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A B

Figure 8.3: Controls, calibration and validation of scoring methods. Our control or benchmark
consist of 20 gp120 structures from the PDB. They are listed by their PDBIDs in the tables. The table
in (A) details the z-scores for each term in sinternal. The rows beside ‘Control’, describe the min,
max, mean and standard deviation of the z-scores of the 20 models in the control set. At the bottom
of the table, the mean (avg) and standard deviation of scores for models with different resolutions,
as reported in [43], are given. On average, the scores for the models in our benchmark correspond to
the low-resolution (< 3.5Å) class and agrees with the actual resolutions (shown in the last column
of the table). Also, the sum of z-scores (i.e. sinternal) for individual models in the control set,
have a high correlation with corresponding actual resolutions. Hence, sinternal is a statistically
sound metric for tertiary structural and stereochemical quality. The table in (B) reports the interface
and fitting based scores (sexternal). Again, notice that the overall score is highly correlated with
whether or not the gp120 model is in a co-crystallized state with CD4 and/or 17b (mentioned in the
last column of the table). Hence, the validity of the interface and fitting based scores to distinguish
correct interface/neighborhood is also established. Finally, the star, check, exclamation and cross
icons visually highlight scores which are ≥ µ+ 2σ, ≥ µ+ σ, ≥ µ and < µ respectively.

rately represent the quality of the structures in our control set (see Figure 8.3A). We

found that most of the structures in our benchmark had scores which lie within 2σ

from the mean score (µ) for structures in the low-resolution class of PSVS (resolu-

tion between 2.5− 3.5Å). The actual resolution of the structures in our set (Figure
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8.3A) ranges from 1.89 to 3.51, and hence the z-scores and ranges prescribed by

PSVS are validated. More importantly, we found that sinternal can correctly distin-

guish between low and high resolution crystal structures within the control set. The

Pearson correlation coefficient of sinternal and corresponding resolutions across the

20 models is -0.5927 which corresponds to a tail probability of 0.006175. The cor-

relation is statistically significant and hence if the sinternal of a model is higher than

the average value (-8.14) of the control set, we can accept it, with high confidence,

as a high resolution and stereochemically accurate model.

The objective of sexternal is to distinguish between correct and incorrect

interfaces/sites offered to the binding partners (e.g. CD4 and 17b), and correct and

incorrect conformations for fitting/alignment to the EM map. For each term in

sexternal, we computed the distribution of values observed on a control set of 20

existing crystal structures of gp120 (see Figure 8.3B). The last column in Figure

8.3B shows which gp120 models were co-crystallized with CD4 and 17b and hence

have a correct site topology. The correlation between this labeling and sexternal is

0.7363 and is statistically even more significant.

In conclusion, if a model is rated as high quality under both sinternal and

sexternal, then the model is indeed high quality with high probability.

8.2.4 Search Protocol Validation

Our multi-resolution docking/fitting algorithm and scoring/ranking scheme

was validated by applying it to predict the correct binding interactions with gp120

and other molecules from a large set of co-crystallized structures. We first compute
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gp120-17b First Near-Native Pose Best Pose
Receptor Ligand

(PDBID-Chain) (PDBID-Chain) Rank RMSD Rank RMSD
1G9M-G 1G9M-HL 71 4.1 441 3.3
1G9N-G 1G9N-HL 1 1.3 1 1.3
1GC1-G 1GC1-HL 1 2.4 13 2.1
1RZJ-G 1RZJ-HL 1 1.7 1 1.7
1YYL-G 1YYL-HL 1 2.3 168 1.4
1YYM-G 1YYM-HL 1 0.9 1 0.9
2I5Y-G 2I5Y-HL 1 1.4 1 1.4
2I60-G 2I60-HL 1 2.3 152 1.5

2NXZ-A 2NXZ-CD 7 2.1 19 1.8
2NY0-A 2NY0-CD 1 2 1 2
2NY1-A 2NY1-CD 1 1.3 1 1.3
2NY2-A 2NY2-CD 1 1.5 1 1.5
2NY3-A 2NY3-CD 1 2.2 1190 2.1
2NY4-A 2NY4-CD 1 1.8 31 1.6
2NY5-A 2NY5-CD 1 2.1 1 2.1
2NY6-A 2NY6-CD 56 4.7 276 1.7

Table 8.1: Performance of multi-resolution docking (F2Dock + PF3Fit) on pre-
dicting 17b binding Result of applying F2Dock+PF3Fit to predict the orientation
of 17b w.r.t. gp120. Both 17b and gp120 were extracted from co-crystallized struc-
tures available in the PDB. The co-crystallized structure was fitted to the density
map. Then, given a randomly transformed 17b and keeping gp120 fixed at the fitted
position, the docking protocol predicted the orientation of 17b which maximizes a
scoring term similar to sexternal mentioned in the text. A predicted pose was con-
sidered acceptable (near-native) if it was within 4Å RMSD of the fitted position
of 17b (before it was randomly moved). The rank of the first such pose, in the
ordered list of predictions, and its RMSD is reported in the table. The best pose,
on the other hand, is defined as the pose with the lowest RMSD across the first
2000 predictions. Notice that our docking protocol successfully predicted a near-
native pose as the top-ranked solution in 13/16 cases. Hence, it is strongly validated
that the scoring method clearly distinguishes between native and non-native poses,
and the algorithm successfully samples the conformational space to find the native
conformation. Also, in most cases, the top solution is the best solution as well.

the best fitting of 1GC1, a complex that includes gp120 core, CD4 and 17b, to the

density map EMD5020. Then, for each crystal structure, we computed the best
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rigid body transformation which would align the gp120 chain to the fitted gp120.

The transformation was applied to the entire structure (including other chains like

CD4, 17b etc.). After the alignment, we kept the position of gp120 fixed, and

created a copy of the other molecules and applied a random transformation to each.

The randomly moved molecule is used as ligand, and the fixed gp120 is used as

receptor for our multiresolution docking prediction tool. The position of the other

molecule before applying the random transformation is considered the native state.

If a predicted pose is within 4Å RMSD from this reference state, then the prediction

is considered acceptable.

gp120-cd4 First Near-Native Pose Best Pose
Receptor Ligand

(PDBID-Chain) (PDBID-Chain) Rank RMSD Rank RMSD
1G9M-G 1G9M-C 1 1.3 1 1.3
1G9N-G 1G9N-C 116 3.7 116 3.7
1GC1-G 1GC1-C 1 1.6 1 1.6
1RZJ-G 1RZJ-C 1 1.2 1 1.2
2B4C-G 2B4C-C 4 2.6 4 2.6
2NXZ-A 2NXZ-B 1 1.2 1 1.2
2NY0-A 2NY0-B 1 0.8 1 0.8
2NY1-A 2NY1-B 1 2.4 2 0.9
2NY2-A 2NY2-B 1 1.2 1 1.2
2NY3-A 2NY3-B 1 1.7 1 1.7
2NY4-A 2NY4-B 1 1.5 1 1.5
2NY5-A 2NY5-B 1 1.5 1 1.5
2NY6-A 2NY6-B 4 1.9 4 1.9
2QAD-A 2QAD-B 1 1.9 1 1.9
3JWD-A 3JWD-C 9 3 9 3
3JWO-A 3JWO-C 0 10 0 10

Table 8.2: Performance of multi-resolution docking (F2Dock + PF3Fit) on pre-
dicting CD4 binding An experiment similar to the one reported in table 8.1 with
CD4, instead of 17b. Again, we get a near-native solution at rank 1 in 11/16 cases
and within rank 10 in 14/16 cases. 3JWO is the only case where our method could
not find any near native solutions.
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For each of the complexes, we applied the above procedure and observed

the rank and RMSD of the first acceptable prediction. An acceptable solution at

high rank indicates that the scoring functions are capable of discriminating between

native and non-native poses. A low RMSD indicates that the conformational space

is sampled sufficiently.

Our docking protocol successfully predicted a near-native pose as the top-

ranked solution in 13/16 cases for gp120-17b interactions and 11/16 cases for gp120-

CD4 interactions (with 3 more cases having a correct solution within top 10). In

18 out of the overall 32 cases, our method picked the lowest RMSD solution as

the top solution. Hence, it is strongly validated that the scoring method clearly

distinguishes between native and non-native poses, and the algorithm successfully

samples the conformational space to find the native conformation. Tables 8.1 and

8.2 provide further details.

8.3 Results
8.3.1 Structure of gp120 in Complex with CD4 and 17b

We report the structure of gp120 trimer generated using our calibrated in-

tegrative protocol. Please see supplement for detailed report on the outcome of

different stages of the protocol. The final structural model consists of a cleaved

gp120 bound to CD4, 17b and a peptide model of gp41 (Figure 8.4A) and fits

well (Figure 8.4D) into the density map EMD5020 [161]. We use two metrics to

quantitatively assess the quality of fitting- excluded total ratio (ETR) and mutual

information score (MIS). Low ETR indicates that a smaller fraction of backbone
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atoms lie outside a specific boundary representation of the EM model. High MIS

indicates that larger portion of the EM model is occupied. Our complete gp120

model has an ETR score of 0.064. The optimized configurations of 17b and CD4

chains also show excellent fitting accuracy with ETRs 0.086 and 0.015 respectively.

For comparison, the best rigid body fitting of 1GC1 with the density map have ETR

scores of 0.005, 0.112 and 0.03 for the gp120, 17b and CD4 chains respectively.

The overlap scores (MIS) for the gp120, 17b and CD4 in the new model are 61.03,

50.88 and 54.99 respectively (compared to 53.85, 49.65 and 53.78 respectively for

1GC1).

Note that the variable regions not only fit well with the density, but also

lie on the periphery of the complex (Figures 8.4B-C). This agrees with previous

reports in [29, 161, 254] regarding the expected positions of the variable loops in

the open conformation (when bound to CD4 and 17b). The general configuration

of CD4 and 17b in the trimer also matches well with the EM map, as well as with

previously reported models of gp120 co-crystallized with CD4 and 17b. However,

in comparison with 1GC1, our model of 17b undergoes a small shearing motion

(small tilt and twist w.r.t. the binding site). The footprint on the core remains almost

identical, but the light chain comes in contact with the V3 loop (Figure 8.5A). The

model of gp41 is based on the one reported in [136]. However, a direct fitting of the

model in [136] does not correlate well with EMD5020. Application of our protocol

improved the fitting while preserving favorable contacts with gp120. Figure 8.4F

in particular shows the difference between the two configurations.

Our model also preserves the binding interactions (residue contacts) at the
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Figure 8.4: Model Overview (A) Quaternary architecture of the model shows that three copies
of gp120 and gp41 forms the central part of a trimer (3-fold cyclic symmetry). Also three copies
of CD4 and 17b are attached to the three gp120s. A small opening through the center along the
symmetry axis is also visible. (B) shows the model from a direction orthogonal to the symmetry
axis. gp120 is rendered using smooth surface representation. The core is colored pale green and
the variable loops are highlighted using different colors. The gp41 model occupies the center of
the trimer (all three copies are shown). Notice that all the variable regions (except V3) are away
from the central area. (C) provides a different view of the same. (D) shows the fitting of our model
into EM density map EMD5020 [161]. Our model include the variable loops which are missing in
previously reported x-ray structures of the same complex (e.g. 1GC1 [152] as shown in the inset).
(E) compares the gp120 model from 1GC1 with our model. Note that the core as well as the V1/V2
stub aligns almost perfectly. Finally, (F) compares the gp41 model from 4NCO [136]. Though we
used the same models for the two heptad-repeats (HR1 and HR2), to improve the fitting as well as
to improve the interface with gp120, the HR1 part in particular was moved closer to the center of
the trimer. But there is still an opening as seen in (A).

gp120-CD4 interface as well as places the PHE43 ring of CD4 into the CD4 bind-

ing pocket (Figure 8.5D). However, though we used the x-ray model 1GC1 fitted

to EMD 5020 as the starting point of our protocol, repeated application of flex-

ible fitting and local refinement docking resulted in relative orientations between

gp120-CD4 and gp120-17b, which are slightly different from the corresponding ori-
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entations present in 1GC1 (Figure 8.5A). This change of orientation, together with

minor side chain movements for energy minimization and stereochemistry correc-

tions, resulted in small changes to binding contacts between gp120 core with CD4

and 17b (see Figure 8.5E-H). Finally, our model also have disulphide bonds at ex-

pected locations (between residues 119-205, 218-247, 228-239, 296-331, 378-445

and 385-418).

Please see Discussion for a further comparison of our model with existing

crystal structures.

8.3.2 Quality Assessment of the Model

Ramachandran plot analysis by Procheck [168] showed 89.6% residues in

most favored, 7.6% in additionally allowed, 1.4% in generously allowed and only

1.4% in disallowed regions (see Figure S18). Overall Procheck g-factor is -0.22

for φ − ψ angles only and −0.04 for all, both of which is extremely favorable and

correspond to high resolution (< 2) structures [43]. In total only 10 bad contacts

were reported and 3.6% residues were found to have bad planarity.

ProsaII [239] composite score for the model is 0.76 which is also represen-

tative of high resolution structures [43]. MolProbity [74] composite score for the

model is 30.44 (z-score -3.70), which in general indicates that a model is in the low

resolution range. However, we note that among existing x-ray models of gp120,

1G9M, 1G9N, 1GC1, 1RZJ and 3RJQ all have worse MolProbity scores. Verify3D

[166] reports that more than 71% of the residues have a 1D-3D score above 0.2,

which is in acceptable range according to Verify3D’s guidelines.
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Figure 8.5: Closer look at the model (A) We superimposed the position of 17b derived from
1GC1 on our model of 17b to contrast them. The heavy and light chains of our model of 17b is
colored dark and light blue respectively. The model from 1GC1 is colored using dark and light gray.
In our model, the position of 17b was changed to optimize the fitting of 17b and the V3 loop into
the density, while still ensuring favorable interaction between gp120-17b (see text). (B) A detailed
look at the conformation of the V1V2 loop and stub. Notice the 4 anti-parallel beta sheets between
residues 126-178, which is similar to the 4 anti-parallel ’Greek-key’ formation reported in [164].
The β2 and β3 sheets at the stub shows the same orientation w.r.t. β20 and β21 as reported in
existing crystal structures, but is opposite of the models in 4NCO and 3J5M. (C) V3 loops from
3 existing structures are compared with our model (the models are superimposed by aligning the
cores). The conformation from 3J5M covers the 17b site and also contains beta sheets. Our model
is conformationally closest to the V3 of 2B4C. (D) shows the nestling of PHE43 ring of CD4 inside
the CD4 binding pocket of gp120. Figures (E) and (F) shows the contacts between 17b and gp120.
In these figures, the residues in contact are rendered as sticks. Contact residues belonging to gp120
are colored red, and those belonging to 17b is colored yellow. gp120 itself is colored blue, with
the V1V2 and V3 loops highlighted in orange and gray colors. 17b is colored green. The dashed
lines indicate polar contacts. The two figures show the same set of contacts from two different
perspectives and omits gp120 and 17b respectively. Note that the residues which lie outside the
rendered surface actually belongs to the omitted molecule. Figures (G) and (H) shows the contacts
between CD4 and gp120 in a similar manner.

Please refer to supplement, specially Figures S18-S21, for a more detailed

analysis of the quality in comparison with existing crystal structures of gp120, and

models produced by naive application of homology/theading.

We used the PDB validation software (ADIT), Modeval [236] and Qmean
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z-score [34] to provide independent validation of the quality. PDB validation soft-

ware (ADIT) reports RMS deviation for bond angles at 0.7 degrees and bond length

deviation of 0.003Å, both of which is quite acceptable. ModEval [236] predicted an

RMSD of 3.378 (for the gp120 chain only). The Qmean z-score was -1.666 which

is within the acceptable range for a protein of this size. A plot showing the quality

of our model with respect to existing x-ray models in terms of Q-mean z-scores

in given in Figure S19 (top). The model, colored by per residue error under the

ANOLEA [178] score, is also shown in Figure S19 (bottom).

8.4 Discussion
8.4.1 Significance of the New Model

The new model adds to the current understanding of the interaction of gp120

with CD4 and 17b. None of the previously reported crystal structures of gp120 in

complex with either or both of CD4 and 17b include the variable loops V1V2 and

V3 (see Figure 8.6B and S1). Among models bound to other partners, only 2B4C

contains the V4 loop, and only 2B4C and 2QAD contains V3 loop. The parts of

gp120 which is in contact with gp41 (mostly the residues at the start and end of the

chain) are also reported only in a few structures (e.g. 3JWD [188]). There are only

two recent models (PDBID: 4NCO and 3J5M) of gp120 in complex with antibodies

PGV04 and PGT122 [136, 167] which include all the variable regions. However,

a study of existing structures revealed that even the structure of the relatively con-

served core region of gp120 depend on the binding partner (see Figure 8.6A and

Supplement). This is further highlighted when we aligned the gp120 model in
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3J5M, which contains the variable loops but is partnered with PGV04, to 1GC1

which does not have the variable loops but is bound with CD4 and 17b. We find

that the conformation of the V1/V2 and V3 loops of 3J5M is occluding the binding

site of 17b (Figure 8.6C) and hence cannot possibly be the correct configuration of

the loops when gp120 is bound to CD4 and 17b. Finally, though there have been

previous attempts [115, 266] at modeling gp120 with variable loops, but the pro-

tocols depended on manually grafting loop fragments extracted from other crystal

structure to the core without rigorous validation, refinement and fitting. Also, direct

application of state of the art homology modeling/threading tools produce energet-

ically and stereochemically favorable models, but cannot correctly handle ternary

constraints (see Supplement for details). So, we present the first validated high

quality model of gp120 in complex with CD4 and 17b.

8.4.2 Comparison of New Model with Existing Atomic Models

To compare our model with existing x-ray structures, we aligned our gp120

model with 42 different x-ray structures available in the Protein Data Bank (PDB)

using TM-Align [287]. TM-Align uses a scoring scheme called TM-score [276]

which has better accuracy than RMSD in identifying alignments which correctly

superimposes the structural motifs. In fact, it was reported that a TM-score higher

than 0.5 indicates that two proteins have the same fold. We found that the core of our

model has very high similarity with the x-ray models where gp120 is in bound state

with CD4 and 17b, and also where gp120 is unliganded. For this class, the average

TM score is 0.9545 and average RMSD is 1.575. However, our model is different
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Figure 8.6: Structural summary of existing gp120 models (A) A heatmap based on TM-score of
alignment and corresponding clustering of the gp120 models shows that the clusters are completely
correlated with the partners of gp120 in different models; models with same partners or partners with
same binding site are clustered together. In (B), all the structures (except 4NCO and 3J5M) have
been superimposed. The variable regions are marked out. The membrane proximal extremal region,
which comes in contact with gp41 is also shown. The inner and outer regions refers to whether
that part is buried/exposed when gp120 forms a trimer, the inner part being closer to the axis of
symmetry. From this figure, it is immediately clear that the core is more conserved than the variable
regions. Another interesting aspect is the wildly different loop structures of 3IDX, 3IDY and 3HI1.
(C) superposing the cores of 3J5M and 1GC1 gives us a relative configuration of the gp120 chain of
3J5M and the 17b from 1GC1. The V1V2 and V3 loops of 3J5M is occupying the binding site of
17b and hence is not in a configuration amenable for binding with 17b.
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from the cores of 3HI1, 2NY7, 3IDX and 3IDY where gp120 is in bound state with

fab F105, b12, b13 and b14. The average TM-score and RMSD in this case are

0.8452 and 2.526 respectively. In Figure 8.4E, we show our model superimposed

on the gp120 chain of 1GC1.

The V1V2 region of the new model forms 4 beta sheets between residues

126-178, which is similar to the conformations observed in 4NCO, 3J5M and 3U4E

[137, 167, 177] (note that the V1V2 conformation reported in [177] does not include

the core). However, the lengths of the beta sheets in our model is somewhat shorter.

The orientation of the β2 and β3 sheets (the V1V2 stub) w.r.t. the β20 and β21

sheets observed in both 4NCO and 3J5M, are flipped compared to other crystal

structures (e.g. 1GC1) containing the V1V2 stubs. Our model however has the

same orientation as in 1GC1 (Figure 8.5B). The V3 variable region of our model

does not contain any sheets or helices, similar to the models reported in 2B4C and

2QAD and moreover the ternary configuration is also quite similar. However it

differs from the PGV04 and PGT122 bound models reported in 3J5M and 4NCO

respectively [137, 167], where the V3 region contains two small anti-parallel beta

sheets (Figure 8.5C).

8.4.3 CD4-induced Conformational Change of Variable Loops

In both 4NCO and 3J5M, the V1V2 and V3 loops are bundled together and

covers the 17b binding site (Figure 8.7A). In 4NCO, we do notice that to allow the

binding of PGT122, the V1V2 loop shifts a little bit. Despite this shift, both of

these configurations the V1V2 loop remain quite far from PGV04 or CD4 binding
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Figure 8.7: Dynamical implications. (A) Superposition of the gp120 models from 4NCO and
3J5M (blue and red), bound to PGT122 and PGV04 respectively. The V1/V2 and V3 loops occupy
the same general location in both cases. But in the PGT122 bound configuration, the V1V2 loop
have a noticeable shift to avoid clash with PGT122. In (B), we see that 17b, which binds on the
core near the V3 loop has large clash with both V1V2 and V3 loops of 4NCO (blue), and to allow
the binding of 17b, both loops must move away to the configuration observed in our model (green).
(C) EM model of gp120 bound with only 17b (EMD 5456) also shows a similar move of the V1V2
loop. Interestingly, gp120 bound with only soluble CD4 (EMD 5708), also have the V1V2 loop at
the same ternary configuration. So, the movement of V1V2 is not only a result of repulsion by 17b,
but maybe also due to an attraction towards CD4. On the other hand, b12, which also bind at the
same site as CD4, does not allow/require V1V2 to move away from its unliganded configuration, and
this may be another mechanism to prevent further binding at the 17b site (by CCR5 for instance).
(D)-(E) shows glycans derived from 1RZJ [126], and 4NCO [167] mapped onto our model. Note
that the configurations of the glycans are distal from the CD4 and 17b chains. (F) Predicted LYS-
LYS crosslinks on the gp120-CD4-17b complex. The CD4bs is heavily crosslinked, and there are
also quite a few crosslinks between the V1V2 loop and CD4 (please see Figure S20 for other types
of crosslinks).

site. However, this configuration of the loops occludes the expected binding site of

17b (Figure 8.6C). We note that though PGT122 binds near the V3 loop, it has a

very small footprint on gp120 itself and the binding is heavily glycan-dependent.

On the other hand, 17b has a large footprint on the core of gp120 (as reported in

many x-ray models including 1GC1, 1G9M, 1RZJ etc. [126, 152, 153]), as well as

on the V3 loop, as seen in our model. In our model the V1V2 loop is pushed off
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from the 17b site and squeezed into the space between 17b and CD4 (Figure 8.7B).

Such configuration of the V1V2 loop is further validated from EMD5456 [254] and

EMD5708 [29] where gp120 is bound with only 17b and only CD4 respectively

(Figure 8.7C). However, the configuration is vastly different from unliganded, or

b12-bound state seen in EMD5019 and EMD5021 [161] respectively. A similar

conclusion was reached by [116] based on different EM models and hydrogen-

deuterium exchange experiments. It was reported in [161] that gp120 undergoes a

twisting motion around the trimer symmetry axis to expose the CD4 binding site.

Our results further implies that motion of V1V2 induced by CD4 actually enables

CCR5 binding. Also, EMD5021 and the footprint analysis (below) show that other

antibodies might not induce or even prevent a similar motion of the V1V2 loop.

8.4.4 Antibodies Binding at CD4bs Does not Induce the Same Motion of Vari-
able Loops

We computed the footprint of different antibodies whose x-ray structures in

bound state with gp120 (core or complete) are available. We transformed the bound

gp120-antibody complex such that the gp120 chain aligns with our gp120 model.

Alignment was performed using PyMOL [228]. Then, for each antibody, all heavy

atoms of our gp120 model were classified as in-contact, clashing and far based on

the distance between the atom and the closest atom on the antibody. Figure 8.8

shows the results by coloring gp120 using blue, red and green for the three classes,

and also shows the number of atoms in-contact and clashing. The notable aspect

is that even though NIH45-46, PGV04, VRC-PG4, VRC03 and b12 bind at the

same site as CD4, they clash with the V1V2 loop. Hence, the configuration of
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Source # of atoms # of atoms
Epitope Antibody Model in contact in clash

CD4 new model 169 0
NIH45-46 4JDT 161 8

Near NIH45-46 3U7Y 241 8
CD4bs PGV04 3J5M 189 7

VRC-PG04 3SE9 241 7
VRC03 3SE8 355 39

17b new model 135 0
Near 17b 48d 4DVR 131 1
binding 48d 3JWD 172 1

site PGT122 4NCO 70 3
X5 2B4C 87 2
b12 2NY7 573 117
b13 3IDX 524 128

Other b14 3IDY 507 125
f105 3HI1 539 156
PG9 3U2S 90 36

Table 8.3: Comparison of the footprint of different antibodies on our gp120
model. The antibodies are grouped by their epitope. The last two columns report
the number of atoms of gp120 which comes in contact with the antibody, and the
number of atoms of gp120 which clashes with the antibody. Two atoms a and
b are considered to be in contact if the distance between their centers is less than
ra+rb+1 where ra and rb are the radii of the atoms. Two atoms are considered to be
clashing if the distance between their centers is less than min(ra, rb). The contacts
and clashes with the antibodies were computed after aligning our gp120 model
to the x-ray model containing the antibody bound with gp120 (core or complete).
As expected, antibodies that bind to the b13, b14, f105 epitopes have heavy clash
with the V1V2 loop, since in our model the loop partially occludes these epitopes.
But the interesting aspect is that all antibodies which bind at the CD4 binding site,
also have clashes with the V1V2 loop. So, the V1V2 loop must be in a different
configuration when gp120 binds with these antibodies. For example, in EMD5021
[161], we see that when b12 binds with gp120, the V1V2 loop stays in a similar
ternary configuration as seen in the unliganded state.

V1V2 we found as optimal, is not optimal for those antibodies. This indicates that

these neutralizing antibodies not only prevents CD4 binding, and thereby prevent
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attachment to the cell membrane, they restrict the motion of V1V2 loop providing

a second mechanism to prevent CCR5 binding.

  

CD4 17b 48d PGT122 X5

NIH45-46 NIH45-46 PGV04 VRC-PG4 VRC03

b12 b13 b14 f105 PG9
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169 (8)
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690 (117) 652 (128) 632 (125) 695 (156) 126 (36)

Figure 8.8: Binding footprints, clashes and kinematic implications. The footprint of different
antibodies on our gp120 model are shown. In each figure, gp120 is colored lime, and the antibody
is colored light orange (and rendered as ribbons). The parts of gp120 in contact with the antibody
are colored blue, and the parts which have steric clash is colored red. In each figure, the name of
the antibody is given. The positions of CD4 and 17b are based on our model. The positions of the
rest are derived by aligning the gp120 model, which the antibody was co-crystallized with, to our
model of gp120 (please see Table 8.3 for details). The numbers beside the figure report the number
of atoms of gp120 which comes in contact, and the numbers inside the braces report the number of
atoms of gp120 which have a clash with the antibody. Interestingly, though NIH45-46, VRC03, b12
etc. bind at the same site as CD4, we found that they have clashes with the V1V2 region.

8.4.5 Possible Crosslinks Indicate Clues to Conformational Change

Chemical crosslinking is often used to generate low resolution distance con-

straints between parts of a protein (or multiple proteins). We used Xwalk [138],

a computational tool which mimics crosslinking experiments by calculating the

distance between two residues along the surface of the proteins, to identify inter-

domain(gp120-CD4 and gp120-17b) crosslinks in our model. We considered only

crosslinks between ARG, ASP, GLU and LYS residues whose C-beta atoms were

within 25Å of each other (Figure 8.7F and S4). As expected, we observed a high
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number of crosslinks between residues at the CD4 binding site with CD4 and 17b

binding site with the heavy chain of 17b. However, we also identified a large num-

ber of crosslinks between CD4 and the V1V2 region, and a few crosslinks between

the light chain of 17b with the V3 region. The crosslinks between 17b-CD4, and

17b-V1V2 were very few. The lack of crosslink constraints between 17b and the

V1V2 region, and the presence of high number of crosslink constraints between

CD4 and V1V2, provides structural explanation for the conformational motion of

the loop, specially the preference of the V1V2 to move away from the 17b binding

site (or by extension, the CCR5 binding site).

8.4.6 Modeling Glycans

HIV-1 Env is heavily glycosylated. Though possible glycosylation sites are

not difficult to identify, the exact type and configuration of the glycan, which can

vary wildly between strains and depending on the bound partner [48], is difficult

to model with high-confidence unless finer resolution EM-maps are available. Gly-

cans have recently become targets of many recent antibodies which bind to glycans

near V3 loop [136, 149], V1V2 loop [82, 177, 189], gp41-gp120 interface [45, 223]

etc. However, glycan dependence of the CD4 and 17b binding interactions is still

not clear. We have extracted glycans from 1RZJ for the glycosylation sites on the

core and 4NCO for those on the variable loops. The glycans were grafted to their

respective locations on the new model (see Figure 8.7(D-E). While all of the gly-

can sites including the ones on the variable loops seem distal from the CD4 and 17b

binding sites in this static model, a more rigorous study of the glycan configurations
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is warranted for a better understanding of the possible effect of the glycans on CD4

and 17b binding. For example, recently it was reported that some antibodies like

PGT121 which binds far from the CD4bs, still manages to prevent CD4 binding

by induced conformational changes to the glycans and variable loops [137]. We

are currently exploring new scoring models which would use recently developed

databases [132] of glycan structures to effectively quantify the quality of specific

glycan configurations and their interactions with the protein chains.

8.5 Detailed Description of Different Stages of the Modeling Pro-
tocol Applied to gp120

Quality of Initial Stage Template-based Models Swiss-model [230] and I-TASSER

[217] are two state of the art modeling software performing well at CASP chal-

lenges. When we tried to generate models using UniProtKB sequence P04578 (the

same sequence as 1GC1:Chain G) to produce models which contained the variable

regions, the sequence alignment and template identification tools picked 3JWD and

4NCO as templates. However, neither the model produced by Swiss-model or the 5

models produced by I-TASSER scored within 2 standard deviations of the expected

sexternal and sinternal values. Then, we generated more models (61 in total) by man-

ually selecting different templates (gp120 cores from different crystal structures).

Figure 8.10 shows a superposition of all the models generated in this stage.

In Figure 8.9(A-B) we have plotted the distribution of these models and

compare the distribution with the crystal structures in our control set with respect

to the range of sexternal and sinternal values. The plots show that the I-TASSER
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models are in general poorer quality under both the scoring terms. Swiss models

on the other hand have better scores, but sinternal is still not close to the crystal

structures. Actually there was only one swiss-generated model which was assessed

as low quality in terms of sinternal, and every other model was assessed as un-

acceptable. Also there was only 1 medium and 1 low quality model in terms of

sexternal. Energetically, however, the I-TASSER models have lower solvation en-

ergy (Figure 8.9(C)). We noticed that in most of the I-TASSER models, the V1V2

loop conformation brought it close to the core, introducing clashes with CD4, but

lowering solvation energy by reducing exposed area. Finally, the average scores of

the two sets of models are given in the tables in Fig 8.9(D-F). Detailed score for

each model can be found in Figure 8.11-8.14. In these detailed figures, the models

are identified by the template used for their core and since Swiss-model reports 5

candidate models, numbers 1-5 are used to distinguish them. Additionally, we also

tried to use the bound configuration of gp120, CD4 and 17b (from 1GC1) together

as templates to achieve better sexternal by ensuring fewer clashes with CD4 and 17b.

However, these attempts produced even worse results (I-TASSER), or no results at

all (Swiss-model).

Quality of Fragments Each of the initial models were decomposed into frag-

ments (core, V1V2, V3, V4, C-termini and N-termini). We found that though an

initial model scored poorly, it might contain a fragment which is locally quite fea-

sible and gets a high score when considered on its own. For example, in Figure

8.15, we report the sexternal score for all V1V2 fragments, and notice that there are
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a few acceptable ones. Then the fragments were clustered based on similarity un-

der TM-score [276]. Some clusters for V1V2 and the four selected structures are

shown in Figure 1(A-B) of the main text. Similar analyses were also done for the

other fragments.

Quality of Models Generated by Fragment Assembly and Refinement Since

all the component fragments are already fitted into the density map in their correct

relative orientations, assembly does not require any major reconfiguration. How-

ever the structures are not stereochemically sound as the bond lengths/angles at the

joint are too far from ideal (see Figure 1C in the main text for example). However

after local structural refinement and energy minimization, the stereochemical and

energetic quality of the models are significantly improved. Also, sexternal scores

are better than initial model, which is unsurprising given the procedure of fragment

selection employed in our protocol. Please see Figures 8.9(D-F) for a summary of

the scores (in the Figure, these models are referred to as ‘spliced models’. Detailed

breakdown of scores for each model is given in Figure 8.16. Figure 8.17 shows

a superposition of all the spliced models. In the figures (as well in the following

text), the models are simply identified using different numbers (and do not carry

any other meaning).

We clustered the spliced models based on TM-scores and then selected six

models which were in different clusters (see the clusters in Figures 8.18-8.19) and

received high sexternal scores. Two of the models (Model31 and Model56) were

rated medium quality, 1 model (Model25) was rated low quality, and the other three
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(Model20, Model23 and Model35) were rated unacceptable. The six selected mod-

els are shown in Figure 8.20. Note that poorer models were also selected to ensure

diversity, and in fact Model35 became high quality after co-optimization further

energy minimization (see next section).

Quality of Models After Co-optimization We first applied our docking [65] and

fitting [23, 42] protocols to improve the relative configuration of gp120, CD4 and

17b with each other as well as with respect to the EM map EMD5020. As a re-

sult, the score for almost all the terms improved significantly (compare the scores

reported in Figure 8.16 to the ones in Figure 8.21-8.22). Also, Figures 8.9(A-F)

show all the optimized (the term ‘final’ also used in some of the Figures) models

have very good energetics and sinternal scores. However, two models (Model20 and

Model23) have quite poor sexternal scores.

Model31 and Model35 both are assessed as high quality in terms of both

sinternal and sexternal scores, and considered medium quality in terms of energy.

Note that high quality means that they scored better than average crystal structures

in our control, and according to the validation and correlation mentioned before,

their qualities are equivalent to resolutions better than 3.5Å. However, our binding

site analysis (see next section) revealed that Model31 was better than Model35 in

terms of the binding interface offered to CD4 and 17b. So, Model31 was was further

refined using side-chain repositioning at the interfaces to remove any clashes and

improve residue contacts. The quality of this final model is described separately in

a later section.
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Binding Site Analysis The binding site analysis is performed by docking (using

F2Dock [65]) CD4 and 17b with the optimized models, and F2Dock reports the top

1000 possible binding poses. We define the parts of the surface of gp120 which is in

contact with the CDR loops of CD4 and 17b in a docking pose as the footprint/site

of that particular pose. For each point on the surface of gp120 model, we compute

the ratio of the number of poses whose footprint includes the point, and the total

number of poses as the probability of that point being on the binding site. We

found that model31 showed more binding specificity near the correct CD4 and 17b

binding sites compared to model35 (see Figures 8.9(G-J)). Hence, Model31 was

chosen as the final model.

283



Figure 8.9: Overview of the modeling excercise (more details in Figures 8.10 to 8.24). In
(A)-(C) we plotted the distribution of models generated by direct application of Swiss-model [230]
and I-TASSER [217] with different templates, the models made by selected assembly, the optimized
models and crystal structures in terms of overall interface and fitting score, overall validation score
and solvation energy z-score. The distributions show that the optimized models get, in general,
similar scores as crystal structures. Swiss models and spliced model distributions are slightly lower
quality. Detailed scores for the 6 models which we selected for optimization is given in (D)-(F),
which also reports the average qualities of the models produced by them, as well as the models
we generated by selective assembly. The icons in the last column correspond to classification of
the models as ‘High’, ‘Medium’, ‘Low’ and ‘Unacceptable’ using star, check, exclamation and
cross symbols. From these tables, we find two models, namely Model31 and Model35 which are
consistently ranked high. To chose only one model out of the two, we used our validated docking
protocol to predict possible binding sites for CD4 and 17b on both models and compared the result
with expected binding site. (G) and (H) compare the CD4 binding sites predicted on the two models.
Each point on the surface of the models are colored by the probability of it being at the binding
interface, where blue-red gradient (like a rainbow) is used to show high-low probabilities. Model31
shows higher affinity at the correct site. (I) and (J) compare the 17b binding sites. Both model have
high probabilities near the correct site. Model31 also have slightly lower probability of binding at the
b12 epitope as well, which is not desired. Model35 on the other hand have a very focused predicted
site, but slightly offset from the correct site. Since Model31 shows good binding preference at the
correct sites for both CD4 and 17b, we chose this as our final model. Note that the two models have
the same V1V2 and core fragments, but different V3 and V4 fragments.
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Figure 8.10: Superposition of initial stage models produced by Swiss-Model [230] and I-
TASSER [217]. Notice that the V1V2 loops in most I-TASSER model comes close to the gp120
core and shields the CD4 binding site. Such models score poorly under our sexternal score which
penalizes models that does not offer suitable binding interfaces for CD4 and 17b. Models for the
start/end sections of the gp120 chain produced by I-TASSER were also poor in terms of fitting with
the density map. See scoring details in Figures 8.11-8.14.
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1G9N -­‐625 -­‐189 567.1 -­‐119 4728 -­‐0.038 54.93 -­‐29.22 -­‐27.28 10.58 -­‐20.58 3.283 2.583 -­‐2.26 -­‐62.89
1GC1 -­‐66 -­‐15 266.6 -­‐27.71 3514 -­‐0.111 53.72 -­‐2.257 -­‐1.391 1.521 -­‐0.613 0.596 -­‐0.518 -­‐2.808 -­‐5.469
1RZJ -­‐12 -­‐4 207.8 -­‐17.48 2667 -­‐0.07 60.29 0.347 0.245 -­‐0.251 1.626 -­‐1.28 1.247 0.171 2.106
1YYL -­‐183 -­‐47 345 -­‐44.15 3936 -­‐0.037 57.37 -­‐7.9 -­‐6.151 3.882 -­‐4.21 1.53 2.621 -­‐1.152 -­‐11.38
1YYM -­‐198 -­‐65 409.9 -­‐41.96 4315 -­‐0.062 59.28 -­‐8.623 -­‐8.829 5.841 -­‐3.731 2.37 1.584 -­‐0.287 -­‐11.67
2I5Y -­‐206 -­‐61 390.1 -­‐47.38 4054 -­‐0.053 62.83 -­‐9.009 -­‐8.234 5.244 -­‐4.917 1.793 1.952 1.325 -­‐11.85
2I60 -­‐13 -­‐8 227.6 -­‐27.71 3073 -­‐0.054 57.15 0.299 -­‐0.35 0.347 -­‐0.613 -­‐0.381 1.921 -­‐1.255 -­‐0.031
2NXZ -­‐17 -­‐6 215.4 -­‐24.12 3007 -­‐0.119 56.82 0.106 -­‐0.052 -­‐0.023 0.173 -­‐0.527 -­‐0.838 -­‐1.402 -­‐2.564
2NY0 -­‐32 -­‐9 212.7 -­‐20.89 2981 -­‐0.113 56.66 -­‐0.617 -­‐0.498 -­‐0.104 0.88 -­‐0.584 -­‐0.605 -­‐1.476 -­‐3.004
2NY3 -­‐69 -­‐14 243.8 -­‐34.17 3540 -­‐0.07 55.56 -­‐2.402 -­‐1.242 0.832 -­‐2.026 0.653 1.214 -­‐1.975 -­‐4.946
2NY5 -­‐23 -­‐6 214 -­‐27.71 2844 -­‐0.072 53.47 -­‐0.183 -­‐0.052 -­‐0.064 -­‐0.613 -­‐0.888 1.162 -­‐2.924 -­‐3.561
2NY7 -­‐40 -­‐8 139.8 -­‐8.01 1938 -­‐0.178 57.57 -­‐1.003 -­‐0.35 -­‐2.301 3.698 -­‐2.893 -­‐3.366 -­‐1.064 -­‐7.279
2QAD -­‐155 -­‐42 328.3 -­‐23.69 4620 -­‐0.103 57.14 -­‐6.549 -­‐5.408 3.379 0.267 3.044 -­‐0.175 -­‐1.258 -­‐6.699
3HI1 -­‐181 -­‐54 217.5 -­‐24.55 2572 -­‐0.12 61.72 -­‐7.803 -­‐7.193 0.04 0.079 -­‐1.489 -­‐0.887 0.822 -­‐16.43
3IDY -­‐17 -­‐5 139.3 -­‐18.03 1954 -­‐0.273 56.65 0.106 0.097 -­‐2.316 1.506 -­‐2.859 -­‐7.383 -­‐1.48 -­‐12.33
3JW0 -­‐202 -­‐63 361.8 -­‐31.12 3812 -­‐0.071 60.97 -­‐8.816 -­‐8.532 4.391 -­‐1.359 1.256 1.202 0.483 -­‐11.37
3JWD -­‐199 -­‐67 357.3 -­‐35.72 3975 -­‐0.064 61.14 -­‐8.671 -­‐9.127 4.253 -­‐2.366 1.616 1.466 0.56 -­‐12.27
3RJQ -­‐156 -­‐53 261.1 -­‐24.67 2898 -­‐0.12 61.26 -­‐6.597 -­‐7.044 1.355 0.053 -­‐0.769 -­‐0.885 0.614 -­‐13.27
3SE8 -­‐196 -­‐62 361.8 -­‐31.12 3989 -­‐0.064 60.82 -­‐8.526 -­‐8.383 4.391 -­‐1.359 1.648 1.466 0.411 -­‐10.35
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Figure 8.11: Detailed sexternal scores for initial template-based models generated by Swiss-
Model [230]. The raw scores report the number of minor and severe clashes, the overall positive
and negative residue-contact scores and the interface area, all of which measure the quality of the
interface between a gp120 model, with CD4 and 17b. This table also reports the external total ratio
(ETR) and mutual information score (MIS), which measure the quality of fitting of a model with
the EM density map (EMD5020 [161]. Please see the model evaluation criteria section for details.
The z-scores were computed as deviations from the mean score of a set of existing x-ray models
where gp120 is in complex with CD4, 17b and other antibodies. The last column shows the sum
of z-scores. Finally, the star, check, exclamation and cross icons visually highlight overall scores
which are ≥ µ + 2σ, ≥ µ + σ, ≥ µ and < µ respectively (here (µ) and (σ) relate to the observed
mean and stddev of overall scores for the complexes in our benchmark). We notice that only one of
these initial template-based models have acceptable score.
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1G9M_model1 -­‐446 -­‐127 516.8 -­‐186.2 5686 -­‐0.129 59.82 -­‐20.58 -­‐18.05 9.063 -­‐35.29 5.405 -­‐1.26 -­‐0.043 -­‐60.76
1G9M_model2 -­‐530 -­‐161 608.3 -­‐90.35 5704 -­‐0.106 54.86 -­‐24.63 -­‐23.11 11.82 -­‐14.32 5.445 -­‐0.282 -­‐2.293 -­‐47.38
1G9M_model3 -­‐605 -­‐168 556.4 -­‐109.9 5765 -­‐0.075 54.11 -­‐28.25 -­‐24.15 10.26 -­‐18.6 5.579 1.014 -­‐2.633 -­‐56.79
1G9M_model4 -­‐685 -­‐183 690.6 -­‐131.2 6127 -­‐0.093 57 -­‐32.11 -­‐26.38 14.3 -­‐23.26 6.381 0.27 -­‐1.319 -­‐62.12
1G9M_model5 -­‐351 -­‐93 437.1 -­‐41.17 4973 -­‐0.073 55.67 -­‐16 -­‐12.99 6.66 -­‐3.558 3.827 1.099 -­‐1.925 -­‐22.89
1G9N_model1 -­‐447 -­‐149 544.9 -­‐77.08 5824 -­‐0.11 57.26 -­‐20.63 -­‐21.33 9.91 -­‐11.42 5.71 -­‐0.474 -­‐1.202 -­‐39.43
1G9N_model2 -­‐428 -­‐122 529 -­‐62.64 5370 -­‐0.109 60.01 -­‐19.72 -­‐17.31 9.43 -­‐8.257 4.705 -­‐0.431 0.044 -­‐31.53
1G9N_model3 -­‐718 -­‐197 682.3 -­‐173.9 7022 -­‐0.035 57.97 -­‐33.7 -­‐28.47 14.05 -­‐32.61 8.363 2.735 -­‐0.88 -­‐70.51
1G9N_model4 -­‐459 -­‐136 511 -­‐55.21 6069 -­‐0.124 65.7 -­‐21.21 -­‐19.39 8.886 -­‐6.631 6.252 -­‐1.069 2.629 -­‐30.53
1G9N_model5 -­‐384 -­‐129 491.5 -­‐77.32 5730 -­‐0.109 62.17 -­‐17.59 -­‐18.35 8.299 -­‐11.47 5.503 -­‐0.41 1.026 -­‐32.99
1GC1_model1 -­‐285 -­‐94 525.1 -­‐64.68 4811 -­‐0.058 65.07 -­‐12.82 -­‐13.14 9.313 -­‐8.703 3.467 1.737 2.344 -­‐17.81
1GC1_model2 -­‐852 -­‐237 700.8 -­‐114.8 6670 -­‐0.061 59.34 -­‐40.16 -­‐34.42 14.61 -­‐19.67 7.584 1.609 -­‐0.258 -­‐70.71
1GC1_model3 -­‐249 -­‐67 359.3 -­‐48.82 4630 -­‐0.133 59.07 -­‐11.08 -­‐9.127 4.316 -­‐5.232 3.067 -­‐1.43 -­‐0.38 -­‐19.87
1GC1_model4 -­‐1201 -­‐380 828.2 -­‐242.9 6222 -­‐0.047 56.89 -­‐56.99 -­‐55.69 18.45 -­‐47.69 6.591 2.225 -­‐1.369 -­‐134.5
1GC1_model5 -­‐274 -­‐67 388.5 -­‐34.96 4855 -­‐0.12 60.66 -­‐12.29 -­‐9.127 5.194 -­‐2.199 3.564 -­‐0.877 0.341 -­‐15.39
1RZJ_model1 -­‐386 -­‐113 472.3 -­‐76.2 6126 -­‐0.07 58.32 -­‐17.69 -­‐15.97 7.721 -­‐11.22 6.38 1.226 -­‐0.721 -­‐30.28
1RZJ_model2 -­‐677 -­‐189 628.1 -­‐119.8 5935 -­‐0.054 56.38 -­‐31.72 -­‐27.28 12.42 -­‐20.77 5.956 1.907 -­‐1.603 -­‐61.09
1RZJ_model3 -­‐624 -­‐178 579 -­‐68.85 5313 -­‐0.061 56.16 -­‐29.17 -­‐25.64 10.94 -­‐9.616 4.578 1.63 -­‐1.703 -­‐48.98
1RZJ_model4 -­‐968 -­‐283 825.5 -­‐125.2 7704 -­‐0.09 55.54 -­‐45.76 -­‐41.26 18.37 -­‐21.94 9.872 0.376 -­‐1.984 -­‐82.33
1RZJ_model5 -­‐285 -­‐93 417.8 -­‐76.1 5354 -­‐0.119 59.5 -­‐12.82 -­‐12.99 6.078 -­‐11.2 4.67 -­‐0.856 -­‐0.186 -­‐27.31
1YYL_model1 -­‐428 -­‐141 470.9 -­‐89.99 5612 -­‐0.078 55.77 -­‐19.72 -­‐20.14 7.677 -­‐14.24 5.241 0.908 -­‐1.877 -­‐42.14
1YYL_model2 -­‐524 -­‐157 600.2 -­‐78.39 5599 -­‐0.057 55.9 -­‐24.34 -­‐22.52 11.58 -­‐11.7 5.212 1.8 -­‐1.818 -­‐41.79
1YYL_model3 -­‐509 -­‐171 531.5 -­‐113.3 6115 -­‐0.024 57.37 -­‐23.62 -­‐24.6 9.506 -­‐19.35 6.356 3.203 -­‐1.155 -­‐49.66
1YYL_model4 -­‐570 -­‐173 617.2 -­‐86.55 6274 -­‐0.097 58.81 -­‐26.56 -­‐24.9 12.09 -­‐13.49 6.708 0.1 -­‐0.5 -­‐46.55
1YYL_model5 -­‐673 -­‐173 655.8 -­‐92.79 6464 -­‐0.077 58.01 -­‐31.53 -­‐24.9 13.25 -­‐14.85 7.128 0.929 -­‐0.865 -­‐50.84
2B4C_model1 -­‐444 -­‐117 484.3 -­‐80.67 4931 -­‐0.126 57.15 -­‐20.49 -­‐16.56 8.081 -­‐12.2 3.734 -­‐1.132 -­‐1.252 -­‐39.82
2B4C_model2 -­‐701 -­‐206 585.7 -­‐118 5657 -­‐0.096 53.52 -­‐32.88 -­‐29.8 11.14 -­‐20.37 5.341 0.143 -­‐2.9 -­‐69.33
2B4C_model3 -­‐838 -­‐270 681.1 -­‐91.75 6447 -­‐0.043 56.84 -­‐39.49 -­‐39.33 14.01 -­‐14.63 7.089 2.374 -­‐1.393 -­‐71.36
2B4C_model4 -­‐203 -­‐61 358 -­‐39.93 4520 -­‐0.124 59.39 -­‐8.864 -­‐8.234 4.275 -­‐3.287 2.822 -­‐1.069 -­‐0.237 -­‐14.59
2B4C_model5 -­‐782 -­‐223 732.6 -­‐110 6937 -­‐0.078 55.87 -­‐36.79 -­‐32.33 15.56 -­‐18.62 8.174 0.908 -­‐1.834 -­‐64.93
2I60_model1 -­‐622 -­‐183 570.2 -­‐68.09 4783 -­‐0.07 53.85 -­‐29.07 -­‐26.38 10.67 -­‐9.449 3.406 1.248 -­‐2.753 -­‐52.33
2I60_model2 -­‐699 -­‐210 640.5 -­‐83.56 6455 -­‐0.048 54.21 -­‐32.78 -­‐30.4 12.79 -­‐12.83 7.107 2.183 -­‐2.586 -­‐56.53
2I60_model3 -­‐813 -­‐220 725.5 -­‐92.3 5530 -­‐0.069 53.32 -­‐38.28 -­‐31.89 15.35 -­‐14.75 5.059 1.29 -­‐2.993 -­‐66.21
2I60_model4 -­‐421 -­‐132 577.7 -­‐68.92 5434 -­‐0.107 62.86 -­‐19.38 -­‐18.8 10.9 -­‐9.631 4.848 -­‐0.346 1.341 -­‐31.07
2I60_model5 -­‐1010 -­‐254 819.3 -­‐210.7 6697 -­‐0.06 58.58 -­‐47.78 -­‐36.95 18.18 -­‐40.65 7.643 1.652 -­‐0.606 -­‐98.51
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Figure 8.12: Detailed sexternal scores for initial template-based models generated by I-
TASSER [217]. This table is formatted the same way as the table in Figure 8.11. The scores of
these models are even worse. The reason is that I-TASSER works very well for unliganded or ter-
tiary structure modeling, and hence the models produced by them include a configuration of the
loops which is stable in anSupplementary unliganded state, but does not favor/expose the binding
sites.
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1G9M -1.73 -1.66 -10.01 -2.25 -1.53 -2.66 -19.84
1G9N -2.28 -2.19 -18.49 -2.09 -1.65 -2.90 -29.60
1GC1 -2.60 -2.84 -9.92 -2.09 -1.78 -2.20 -21.43
1RZJ -2.01 -1.83 -18.68 -2.09 -1.65 -3.02 -29.28
1YYL -1.97 -1.42 -14.28 -2.89 -1.61 -4.42 -26.59
1YYM -1.22 -0.83 -10.01 -2.57 -1.70 -1.07 -17.40

2I5Y -1.65 -1.06 -10.60 -2.73 -1.41 -3.62 -21.07
2I60 -1.65 -1.30 -13.39 -2.41 -1.82 -3.77 -24.34

2NXZ -1.10 -0.47 -7.54 -1.77 -1.61 -0.17 -12.66
2NY0 -1.22 -0.95 -10.39 -2.09 -1.86 -2.43 -18.93
2NY3 -1.38 -1.06 -16.84 -2.25 -1.61 -3.12 -26.26
2NY5 -0.87 -0.53 -22.88 -1.93 -1.90 -2.67 -30.78
2NY7 -1.93 -1.54 -14.41 -3.53 -2.07 -3.61 -27.09
2QAD -2.68 -2.54 -4.65 -1.93 -1.12 -3.62 -16.54

3HI1 -1.85 -1.42 -13.25 -2.73 -1.65 -3.09 -23.99
3IDY -2.36 -2.01 -7.41 -2.73 -1.94 -3.36 -19.81

3JWD -2.36 -1.95 -37.99 -2.73 -3.47 -6.20 -54.70
3JWO -2.64 -2.31 -15.83 -2.41 -3.64 -5.86 -32.68
3RJQ -2.01 -1.77 -21.36 -2.41 -2.07 -5.56 -35.18
3SE8 -2.36 -1.95 -38.03 -2.73 -3.52 -6.18 -54.77
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Figure 8.13: Structure validation data (sinternal) for initial template-based models generated
by Swiss model [230]. Each column reports the composite score for the models under different
model evaluation criteria. Please see the model evaluation criteria section in the supplement, as well
as the scoring and validation sections in the main paper for descriptions of the criteria. The overall
score was computed as the sum of individual scores. The overall scores, under the same criteria,
were also computed for a benchmark of x-ray models of gp120 and the mean, < µ, and standard
deviation, < σ of those scores were used to classify these models. The star, check, exclamation and
cross icons in the table visually highlight overall scores which are≥ µ+2σ, ≥ µ+σ, ≥ µ and < µ
respectively. All models, except for one, have poor stereochemistry.
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1G9M_model1 -2.05 -3.02 -29.04 -2.41 -2.11 -10.37 -49.00
1G9M_model2 -1.85 -2.66 -24.69 -2.41 -1.65 -9.18 -42.44
1G9M_model3 -2.28 -3.37 -40.08 -2.09 -1.74 -11.46 -61.02
1G9M_model4 -1.89 -2.72 -30.20 -2.73 -2.40 -10.73 -50.67
1G9M_model5 -1.97 -2.90 -28.53 -2.89 -1.70 -11.35 -49.34
1G9N_model1 -1.97 -3.02 -26.98 -2.73 -2.03 -10.00 -46.73
1G9N_model2 -1.97 -3.02 -23.78 -3.05 -2.07 -8.91 -42.80
1G9N_model3 -1.97 -2.90 -29.12 -2.73 -1.94 -10.64 -49.30
1G9N_model4 -1.97 -3.02 -25.25 -3.21 -1.78 -9.70 -44.93
1G9N_model5 -1.85 -3.13 -28.18 -2.57 -1.57 -10.43 -47.73
1GC1_model1 -1.85 -2.96 -26.13 -2.89 -1.94 -10.34 -46.11
1GC1_model2 -1.69 -2.54 -29.17 -2.89 -1.45 -11.15 -48.89
1GC1_model3 -1.77 -2.84 -29.13 -3.05 -1.99 -10.58 -49.36
1GC1_model4 -1.97 -2.96 -30.18 -2.57 -1.70 -10.63 -50.01
1GC1_model5 -2.12 -3.02 -25.77 -3.21 -2.11 -10.18 -46.41
1RZJ_model1 -1.85 -2.90 -26.37 -2.57 -1.70 -9.35 -44.74
1RZJ_model2 -1.65 -2.48 -27.86 -2.25 -1.86 -10.87 -46.98
1RZJ_model3 -2.28 -3.19 -27.53 -2.41 -1.53 -11.06 -48.00
1RZJ_model4 -2.32 -3.55 -36.32 -3.05 -2.56 -11.28 -59.08
1RZJ_model5 -2.32 -3.25 -25.49 -3.37 -2.11 -10.53 -47.07
1YYL_model1 -2.16 -3.19 -29.30 -2.25 -1.94 -9.72 -48.56
1YYL_model2 -1.89 -3.02 -25.56 -2.73 -1.99 -10.53 -45.72
1YYL_model3 -1.97 -2.84 -31.27 -2.57 -2.07 -11.01 -51.73
1YYL_model4 -2.28 -3.08 -26.30 -2.73 -1.74 -10.09 -46.22
1YYL_model5 -2.05 -3.19 -28.91 -3.21 -2.07 -9.30 -48.73
2B4C_model1 -1.89 -2.90 -25.60 -2.57 -1.65 -9.39 -44.00
2B4C_model2 -1.85 -2.84 -27.67 -2.09 -1.41 -11.04 -46.90
2B4C_model3 -2.28 -3.19 -27.12 -2.09 -1.49 -10.15 -46.32
2B4C_model4 -2.40 -3.61 -39.19 -2.89 -2.48 -12.16 -62.73
2B4C_model5 -2.60 -3.55 -27.58 -2.25 -1.86 -11.60 -49.44
2I60_model1 -2.20 -3.25 -27.75 -2.09 -1.65 -10.14 -47.08
2I60_model2 -1.97 -3.08 -28.61 -3.21 -1.86 -10.99 -49.72
2I60_model3 -2.05 -3.31 -28.50 -2.25 -1.78 -10.72 -48.61
2I60_model4 -1.73 -2.42 -24.81 -3.05 -1.90 -9.46 -43.37
2I60_model5 -2.16 -3.19 -28.53 -2.25 -1.45 -11.32 -48.90
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Figure 8.14: Structure validation data (sinternal) for initial template-based models generated
by I-TASSER [217] In the same format as Figure 8.13. All models have poor scores.
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model01 -­‐24 -­‐10 95.64 -­‐6.82 1124 -­‐0.407 56.23 -­‐0.231 -­‐0.647 -­‐0.131 2.884 -­‐0.169 -­‐6.067 -­‐1.67 -­‐6.032
model02 -­‐316 -­‐90 301.9 -­‐61.02 2288 -­‐0.217 57.34 -­‐14.31 -­‐12.55 6.086 -­‐8.977 2.409 -­‐4.167 -­‐1.166 -­‐32.68
model03 -­‐440 -­‐126 382.4 -­‐89.16 3259 -­‐0.193 58.44 -­‐20.29 -­‐17.9 8.512 -­‐15.13 4.559 -­‐3.933 -­‐0.668 -­‐44.86
model04 -­‐258 -­‐64 223.3 -­‐40.2 2725 -­‐0.273 55.04 -­‐11.52 -­‐8.68 3.716 -­‐4.421 3.376 -­‐4.733 -­‐2.209 -­‐24.47
model05 -­‐682 -­‐180 495.4 -­‐156.7 3401 -­‐0.133 57.45 -­‐31.96 -­‐25.94 11.92 -­‐29.92 4.874 -­‐3.333 -­‐1.119 -­‐75.48
model06 -­‐150 -­‐34 150.6 -­‐34.1 2112 -­‐0.247 55.34 -­‐6.308 -­‐4.217 1.526 -­‐3.086 2.02 -­‐4.467 -­‐2.075 -­‐16.61
model07 -­‐622 -­‐184 393.5 -­‐132.8 2295 -­‐0.197 53.31 -­‐29.07 -­‐26.53 8.845 -­‐24.68 2.425 -­‐3.967 -­‐2.996 -­‐75.98
model08 -­‐332 -­‐114 308.2 -­‐54.2 2574 -­‐0.19 57 -­‐15.09 -­‐16.12 6.276 -­‐7.484 3.042 -­‐3.9 -­‐1.322 -­‐34.59
model09 -­‐390 -­‐130 330.9 -­‐60.66 2633 -­‐0.133 57.19 -­‐17.88 -­‐18.5 6.96 -­‐8.898 3.174 -­‐3.333 -­‐1.236 -­‐39.72
model10 -­‐394 -­‐100 320.3 -­‐74.3 2702 -­‐0.127 58.05 -­‐18.08 -­‐14.04 6.64 -­‐11.88 3.325 -­‐3.267 -­‐0.846 -­‐38.14
model11 -­‐196 -­‐54 163.9 -­‐20.46 1246 -­‐0.227 55.95 -­‐8.526 -­‐7.193 1.927 -­‐0.101 0.102 -­‐4.267 -­‐1.799 -­‐19.86
model12 -­‐236 -­‐78 197 -­‐69.06 2452 -­‐0.23 56.15 -­‐10.46 -­‐10.76 2.924 -­‐10.74 2.771 -­‐4.3 -­‐1.708 -­‐32.27
model13 0 0 5.32 0 137.2 -­‐0.273 54.89 0.926 0.841 -­‐2.854 4.377 -­‐2.353 -­‐4.733 -­‐2.277 -­‐6.074
model14 -­‐308 -­‐92 342.8 -­‐67.84 2649 -­‐0.22 58.51 -­‐13.93 -­‐12.85 7.319 -­‐10.47 3.207 -­‐4.2 -­‐0.635 -­‐31.55
model15 -­‐478 -­‐120 332.9 -­‐47.38 2762 -­‐0.213 59.42 -­‐22.13 -­‐17.01 7.02 -­‐5.992 3.458 -­‐4.133 -­‐0.222 -­‐39.01
model16 -­‐146 -­‐36 67.92 -­‐33.74 1355 -­‐0.337 58.95 -­‐6.115 -­‐4.515 -­‐0.967 -­‐3.007 0.343 -­‐5.367 -­‐0.436 -­‐20.06
model17 -­‐648 -­‐184 390.1 -­‐99.58 2960 -­‐0.073 58.12 -­‐30.32 -­‐26.53 8.744 -­‐17.42 3.898 -­‐2.733 -­‐0.815 -­‐65.18
model18 0 0 14.9 0 235.9 -­‐0.263 62.69 0.926 0.841 -­‐2.565 4.377 -­‐2.134 -­‐4.633 1.263 -­‐1.927
model19 0 0 23.86 -­‐6.82 338.7 -­‐0.34 52.82 0.926 0.841 -­‐2.295 2.884 -­‐1.907 -­‐5.4 -­‐3.216 -­‐8.167
model20 -­‐294 -­‐78 226.4 -­‐67.12 2984 -­‐0.217 58 -­‐13.25 -­‐10.76 3.81 -­‐10.31 3.949 -­‐4.167 -­‐0.867 -­‐31.6
model21 -­‐364 -­‐104 313.5 -­‐74.66 2529 -­‐0.23 56.41 -­‐16.63 -­‐14.63 6.433 -­‐11.96 2.942 -­‐4.3 -­‐1.589 -­‐39.73
model22 -­‐418 -­‐100 302.8 -­‐74.3 3273 -­‐0.143 57.77 -­‐19.23 -­‐14.04 6.112 -­‐11.88 4.59 -­‐3.433 -­‐0.97 -­‐38.85
model23 -­‐928 -­‐266 703.7 -­‐159.7 5414 -­‐0.097 57.17 -­‐43.83 -­‐38.73 18.2 -­‐30.57 9.329 -­‐2.967 -­‐1.242 -­‐89.81
model24 -­‐154 -­‐66 167.3 -­‐27.28 1331 -­‐0.263 58 -­‐6.501 -­‐8.978 2.027 -­‐1.593 0.291 -­‐4.633 -­‐0.868 -­‐20.26
model25 -­‐198 -­‐54 203.2 -­‐47.74 1495 -­‐0.133 53.96 -­‐8.623 -­‐7.193 3.11 -­‐6.071 0.654 -­‐3.333 -­‐2.701 -­‐24.16
model26 -­‐258 -­‐78 208.2 -­‐61.02 2498 -­‐0.13 59.35 -­‐11.52 -­‐10.76 3.26 -­‐8.977 2.874 -­‐3.3 -­‐0.255 -­‐28.68
model27 -­‐408 -­‐124 363.2 -­‐80.76 3142 -­‐0.103 57.49 -­‐18.75 -­‐17.61 7.931 -­‐13.3 4.3 -­‐3.033 -­‐1.097 -­‐41.55
model28 -­‐326 -­‐110 296.7 -­‐60.3 2919 -­‐0.047 55.63 -­‐14.8 -­‐15.52 5.928 -­‐8.819 3.806 -­‐2.467 -­‐1.941 -­‐33.81
model29 -­‐502 -­‐158 391.2 -­‐73.94 3964 -­‐0.167 58.53 -­‐23.28 -­‐22.66 8.777 -­‐11.8 6.119 -­‐3.667 -­‐0.627 -­‐47.15
model30 -­‐602 -­‐152 372.7 -­‐87.94 3498 -­‐0.183 57.53 -­‐28.11 -­‐21.77 8.219 -­‐14.87 5.087 -­‐3.833 -­‐1.08 -­‐56.35
model31 -­‐234 -­‐76 281.4 -­‐27.28 1677 -­‐0.17 55.56 -­‐10.36 -­‐10.47 5.467 -­‐1.593 1.055 -­‐3.7 -­‐1.975 -­‐21.57
model32 -­‐398 -­‐120 275.8 -­‐76.68 2754 -­‐0.157 55.84 -­‐18.27 -­‐17.01 5.298 -­‐12.4 3.442 -­‐3.567 -­‐1.848 -­‐44.36
model33 -­‐664 -­‐210 373.2 -­‐97.08 3442 -­‐0.193 54.29 -­‐31.1 -­‐30.4 8.233 -­‐16.87 4.963 -­‐3.933 -­‐2.55 -­‐71.65
model34 -­‐930 -­‐286 541.3 -­‐112 4285 -­‐0.163 53.6 -­‐43.92 -­‐41.71 13.3 -­‐20.13 6.831 -­‐3.633 -­‐2.863 -­‐92.13
model35 -­‐2 0 29.28 0 455.3 -­‐0.177 57.82 0.829 0.841 -­‐2.131 4.377 -­‐1.649 -­‐3.767 -­‐0.947 -­‐2.447
model36 -­‐454 -­‐136 415.6 -­‐33.38 2757 -­‐0.303 54.34 -­‐20.97 -­‐19.39 9.513 -­‐2.928 3.448 -­‐5.033 -­‐2.529 -­‐37.89
model37 -­‐24 -­‐4 68.68 -­‐6.82 715.7 -­‐0.897 58.8 -­‐0.231 0.245 -­‐0.944 2.884 -­‐1.072 -­‐10.97 -­‐0.503 -­‐10.59
model38 -­‐208 -­‐60 238.9 -­‐47.38 1493 -­‐0.13 55.03 -­‐9.105 -­‐8.085 4.186 -­‐5.992 0.648 -­‐3.3 -­‐2.217 -­‐23.86
model39 -­‐10 -­‐6 56.76 -­‐13.64 601.4 -­‐0.19 56.4 0.444 -­‐0.052 -­‐1.303 1.392 -­‐1.325 -­‐3.9 -­‐1.591 -­‐6.337
model40 -­‐584 -­‐178 393.6 -­‐81.12 2875 -­‐0.18 56.3 -­‐27.24 -­‐25.64 8.848 -­‐13.38 3.708 -­‐3.8 -­‐1.64 -­‐59.14
model41 -­‐508 -­‐140 339.4 -­‐74.66 3839 -­‐0.133 58.1 -­‐23.57 -­‐19.99 7.216 -­‐11.96 5.843 -­‐3.333 -­‐0.822 -­‐46.62
model42 -­‐790 -­‐230 547.9 -­‐85.44 3605 -­‐0.133 57.15 -­‐37.17 -­‐33.37 13.5 -­‐14.32 5.325 -­‐3.333 -­‐1.254 -­‐70.63
model43 -­‐164 -­‐54 205.1 -­‐27.28 1065 -­‐0.167 56.08 -­‐6.983 -­‐7.193 3.167 -­‐1.593 -­‐0.299 -­‐3.667 -­‐1.741 -­‐18.31
model44 -­‐830 -­‐206 563.2 -­‐157.8 4069 0 53.28 -­‐39.1 -­‐29.8 13.96 -­‐30.16 6.352 -­‐2 -­‐3.008 -­‐83.76
model45 0 0 24.72 -­‐20.1 381.4 -­‐0.423 52.36 0.926 0.841 -­‐2.269 -­‐0.022 -­‐1.812 -­‐6.233 -­‐3.427 -­‐12
model46 -­‐22 -­‐8 25.4 -­‐6.82 411 -­‐0.383 55.79 -­‐0.135 -­‐0.35 -­‐2.248 2.884 -­‐1.747 -­‐5.833 -­‐1.869 -­‐9.298
model47 -­‐14 -­‐6 31.1 -­‐13.64 605.1 -­‐0.153 54.52 0.251 -­‐0.052 -­‐2.077 1.392 -­‐1.317 -­‐3.533 -­‐2.446 -­‐7.782
model48 0 0 46.58 0 582.3 -­‐0.553 52.07 0.926 0.841 -­‐1.61 4.377 -­‐1.368 -­‐7.533 -­‐3.557 -­‐7.925
model49 -­‐18 -­‐4 30.6 -­‐6.82 612.3 -­‐0.32 53.56 0.058 0.245 -­‐2.092 2.884 -­‐1.301 -­‐5.2 -­‐2.881 -­‐8.286
model50 -­‐10 -­‐2 23.4 -­‐13.64 449.3 -­‐0.363 61.69 0.444 0.543 -­‐2.309 1.392 -­‐1.662 -­‐5.633 0.809 -­‐6.416
model51 0 0 0 0 0 -­‐0.82 58.02 0.926 0.841 -­‐3.014 4.377 -­‐2.657 -­‐10.2 -­‐0.856 -­‐10.58
model52 -­‐120 -­‐22 158.6 -­‐20.46 2650 -­‐0.327 58.86 -­‐4.861 -­‐2.432 1.767 -­‐0.101 3.21 -­‐5.267 -­‐0.479 -­‐8.162
model53 0 0 0 0 0 -­‐0.49 53.91 0.926 0.841 -­‐3.014 4.377 -­‐2.657 -­‐6.9 -­‐2.725 -­‐9.152
model54 0 0 0 0 0 -­‐0.633 54.26 0.926 0.841 -­‐3.014 4.377 -­‐2.657 -­‐8.333 -­‐2.566 -­‐10.43
model55 0 0 0 0 0 -­‐0.857 56.5 0.926 0.841 -­‐3.014 4.377 -­‐2.657 -­‐10.57 -­‐1.546 -­‐11.64
model56 -­‐116 -­‐48 115.9 -­‐13.64 1039 -­‐0.153 58.69 -­‐4.668 -­‐6.3 0.479 1.392 -­‐0.357 -­‐3.533 -­‐0.555 -­‐13.54
model57 -­‐116 -­‐48 115.9 -­‐13.64 1040 -­‐0.157 61.48 -­‐4.668 -­‐6.3 0.479 1.392 -­‐0.355 -­‐3.567 0.714 -­‐12.31
model58 0 0 0 0 0 -­‐0.45 59.88 0.926 0.841 -­‐3.014 4.377 -­‐2.657 -­‐6.5 -­‐0.012 -­‐6.039
model59 -­‐110 -­‐48 115.9 -­‐13.64 1039 -­‐0.153 60.4 -­‐4.379 -­‐6.3 0.479 1.392 -­‐0.356 -­‐3.533 0.222 -­‐12.48
model60 -­‐116 -­‐48 115.9 -­‐13.64 1039 -­‐0.153 58.69 -­‐4.668 -­‐6.3 0.479 1.392 -­‐0.357 -­‐3.533 -­‐0.555 -­‐13.54
model61 -­‐116 -­‐48 115.9 -­‐13.64 1040 -­‐0.153 60.46 -­‐4.668 -­‐6.3 0.479 1.392 -­‐0.355 -­‐3.533 0.25 -­‐12.74
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Figure 8.15: Detailed sexternal scores for V1V2 fragment models. Different thresholds were
used for the z-score computations since only fragments are scored here. Hence the scores are not
directly comparable to the scores in Figures 8.11 and 8.12 for example. But they correctly rank the
fragments, and several fragments are identified which are considerably better than other fragments.
The selected fragments are shown in bold letters. Note that two clusters with the same folds were
not selected.
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model1 -­‐307 -­‐95 486.7 -­‐55.79 6494 -­‐0.131 59.72 -­‐13.88 -­‐13.29 8.156 -­‐6.758 7.195 -­‐1.366 -­‐0.085 -­‐20.03
model2 -­‐319 -­‐98 487.4 -­‐55.79 6471 -­‐0.132 64.21 -­‐14.46 -­‐13.74 8.175 -­‐6.758 7.142 -­‐1.387 1.95 -­‐19.07
model3 -­‐340 -­‐108 487.2 -­‐55.97 6574 -­‐0.178 60.4 -­‐15.47 -­‐15.23 8.169 -­‐6.797 7.372 -­‐3.364 0.223 -­‐25.09
model4 -­‐342 -­‐106 487.2 -­‐55.97 6543 -­‐0.179 60.44 -­‐15.57 -­‐14.93 8.169 -­‐6.797 7.302 -­‐3.406 0.242 -­‐24.99
model5 -­‐325 -­‐102 486.5 -­‐62.25 6707 -­‐0.135 59.25 -­‐14.75 -­‐14.33 8.149 -­‐8.171 7.666 -­‐1.536 -­‐0.298 -­‐23.27
model6 -­‐325 -­‐100 486.5 -­‐62.25 6679 -­‐0.136 67.52 -­‐14.75 -­‐14.04 8.149 -­‐8.171 7.603 -­‐1.579 3.456 -­‐19.33
model7 -­‐168 -­‐49 314.1 -­‐34.75 4558 -­‐0.136 63.41 -­‐7.176 -­‐6.449 2.951 -­‐2.153 2.908 -­‐1.557 1.588 -­‐9.889
model8 -­‐167 -­‐51 314.1 -­‐34.75 4543 -­‐0.136 65.57 -­‐7.128 -­‐6.746 2.951 -­‐2.153 2.874 -­‐1.579 2.568 -­‐9.213
model9 -­‐191 -­‐59 314.6 -­‐34.93 4628 -­‐0.183 60.58 -­‐8.285 -­‐7.936 2.968 -­‐2.193 3.063 -­‐3.576 0.304 -­‐15.66
model10 -­‐192 -­‐59 314.6 -­‐34.93 4618 -­‐0.184 61.68 -­‐8.334 -­‐7.936 2.968 -­‐2.193 3.04 -­‐3.598 0.803 -­‐15.25
model11 -­‐181 -­‐56 314 -­‐41.21 4745 -­‐0.14 60.1 -­‐7.803 -­‐7.49 2.948 -­‐3.567 3.322 -­‐1.749 0.084 -­‐14.25
model12 -­‐184 -­‐55 313.6 -­‐41.21 4753 -­‐0.141 66.93 -­‐7.948 -­‐7.341 2.939 -­‐3.567 3.339 -­‐1.77 3.188 -­‐11.16
model13 -­‐172 -­‐56 309.4 -­‐31.52 4632 -­‐0.095 66.3 -­‐7.369 -­‐7.49 2.811 -­‐1.447 3.072 0.185 2.899 -­‐7.339
model14 -­‐172 -­‐56 309.4 -­‐31.52 4619 -­‐0.095 65.9 -­‐7.369 -­‐7.49 2.811 -­‐1.447 3.043 0.164 2.719 -­‐7.569
model15 -­‐200 -­‐64 310 -­‐31.7 4699 -­‐0.142 60.09 -­‐8.719 -­‐8.68 2.828 -­‐1.486 3.219 -­‐1.834 0.083 -­‐14.59
model16 -­‐201 -­‐64 310 -­‐31.7 4698 -­‐0.143 64.57 -­‐8.768 -­‐8.68 2.828 -­‐1.486 3.218 -­‐1.855 2.114 -­‐12.63
model17 -­‐190 -­‐60 309 -­‐37.98 4831 -­‐0.099 65.07 -­‐8.237 -­‐8.085 2.798 -­‐2.86 3.513 -­‐0.006 2.343 -­‐10.53
model18 -­‐190 -­‐62 309 -­‐37.98 4822 -­‐0.1 66.07 -­‐8.237 -­‐8.383 2.798 -­‐2.86 3.492 -­‐0.027 2.798 -­‐10.42
model19 -­‐179 -­‐55 421.5 -­‐44.98 5360 -­‐0.099 59.6 -­‐7.707 -­‐7.341 6.188 -­‐4.392 4.684 0.015 -­‐0.139 -­‐8.692
model20 -­‐180 -­‐52 422.4 -­‐44.98 5371 -­‐0.099 60.43 -­‐7.755 -­‐6.895 6.217 -­‐4.392 4.707 -­‐0.006 0.235 -­‐7.89
model21 -­‐203 -­‐64 422.2 -­‐45.16 5454 -­‐0.146 60.45 -­‐8.864 -­‐8.68 6.21 -­‐4.431 4.891 -­‐2.004 0.244 -­‐12.63
model22 -­‐203 -­‐62 423.2 -­‐45.16 5395 -­‐0.147 60.41 -­‐8.864 -­‐8.383 6.241 -­‐4.431 4.761 -­‐2.025 0.229 -­‐12.47
model23 -­‐188 -­‐54 421.3 -­‐51.44 5555 -­‐0.103 61.36 -­‐8.141 -­‐7.193 6.185 -­‐5.806 5.114 -­‐0.176 0.656 -­‐9.36
model24 -­‐195 -­‐58 422.9 -­‐51.44 5588 -­‐0.104 61.15 -­‐8.478 -­‐7.788 6.232 -­‐5.806 5.187 -­‐0.197 0.563 -­‐10.29
model25 -­‐45 -­‐15 278.9 -­‐27.35 3788 -­‐0.103 61.47 -­‐1.244 -­‐1.391 1.892 -­‐0.534 1.203 -­‐0.155 0.709 0.4805
model26 -­‐42 -­‐14 279.9 -­‐27.35 3743 -­‐0.103 59.28 -­‐1.1 -­‐1.242 1.921 -­‐0.534 1.102 -­‐0.176 -­‐0.284 -­‐0.313
model27 -­‐69 -­‐20 279.8 -­‐27.53 3823 -­‐0.15 58.59 -­‐2.402 -­‐2.135 1.92 -­‐0.573 1.281 -­‐2.174 -­‐0.6 -­‐4.683
model28 -­‐68 -­‐21 280.4 -­‐27.53 3798 -­‐0.151 64.74 -­‐2.353 -­‐2.284 1.937 -­‐0.573 1.225 -­‐2.195 2.193 -­‐2.05
model29 -­‐61 -­‐17 279.7 -­‐33.81 3929 -­‐0.107 59.3 -­‐2.016 -­‐1.688 1.917 -­‐1.948 1.516 -­‐0.346 -­‐0.278 -­‐2.844
model30 -­‐63 -­‐17 280.1 -­‐33.81 3962 -­‐0.108 59.79 -­‐2.112 -­‐1.688 1.928 -­‐1.948 1.588 -­‐0.367 -­‐0.056 -­‐2.657
model31 -­‐49 -­‐16 274.3 -­‐24.12 3819 -­‐0.062 58.84 -­‐1.437 -­‐1.54 1.752 0.173 1.272 1.588 -­‐0.486 1.3221
model32 -­‐53 -­‐18 275.2 -­‐24.12 3835 -­‐0.062 59.04 -­‐1.63 -­‐1.837 1.781 0.173 1.307 1.567 -­‐0.397 0.9627
model33 -­‐74 -­‐24 275.2 -­‐24.3 3895 -­‐0.109 59.22 -­‐2.643 -­‐2.73 1.779 0.133 1.439 -­‐0.431 -­‐0.315 -­‐2.767
model34 -­‐74 -­‐25 275.7 -­‐24.3 3886 -­‐0.11 60.08 -­‐2.643 -­‐2.879 1.796 0.133 1.42 -­‐0.452 0.077 -­‐2.547
model35 -­‐70 -­‐20 274.5 -­‐30.58 4064 -­‐0.066 58.85 -­‐2.45 -­‐2.135 1.759 -­‐1.241 1.814 1.396 -­‐0.482 -­‐1.338
model36 -­‐66 -­‐20 275.4 -­‐30.58 4023 -­‐0.067 59.91 -­‐2.257 -­‐2.135 1.787 -­‐1.241 1.724 1.375 -­‐9E-­‐04 -­‐0.747
model43 -­‐182 -­‐57 368.9 -­‐34.75 5025 -­‐0.155 63.99 -­‐7.851 -­‐7.639 4.604 -­‐2.153 3.942 -­‐2.365 1.851 -­‐9.612
model44 -­‐182 -­‐57 368.2 -­‐34.75 5017 -­‐0.155 66.34 -­‐7.851 -­‐7.639 4.583 -­‐2.153 3.925 -­‐2.386 2.92 -­‐8.603
model45 -­‐229 -­‐71 369.6 -­‐31.52 4935 -­‐0.191 62.75 -­‐10.12 -­‐9.722 4.625 -­‐1.447 3.742 -­‐3.916 1.287 -­‐15.55
model46 -­‐223 -­‐69 369 -­‐31.52 4961 -­‐0.192 60.58 -­‐9.829 -­‐9.424 4.606 -­‐1.447 3.8 -­‐3.938 0.303 -­‐15.93
model47 -­‐200 -­‐59 370.1 -­‐41.21 5261 -­‐0.171 60.85 -­‐8.719 -­‐7.936 4.64 -­‐3.567 4.463 -­‐3.045 0.424 -­‐13.74
model48 -­‐203 -­‐62 369 -­‐41.21 5238 -­‐0.16 60.31 -­‐8.864 -­‐8.383 4.609 -­‐3.567 4.412 -­‐2.578 0.183 -­‐14.19
model55 -­‐58 -­‐16 333.2 -­‐27.35 4222 -­‐0.122 58.58 -­‐1.871 -­‐1.54 3.529 -­‐0.534 2.163 -­‐0.962 -­‐0.602 0.1819
model56 -­‐60 -­‐17 333.4 -­‐27.35 4278 -­‐0.122 61.66 -­‐1.968 -­‐1.688 3.533 -­‐0.534 2.288 -­‐0.984 0.794 1.4419
model57 -­‐104 -­‐31 333.9 -­‐24.12 4174 -­‐0.158 60.49 -­‐4.09 -­‐3.771 3.549 0.173 2.058 -­‐2.514 0.262 -­‐4.332
model58 -­‐105 -­‐31 336.7 -­‐24.12 4177 -­‐0.159 61.52 -­‐4.138 -­‐3.771 3.635 0.173 2.065 -­‐2.535 0.73 -­‐3.841
model59 -­‐77 -­‐21 336.1 -­‐33.81 4456 -­‐0.138 61.86 -­‐2.787 -­‐2.284 3.614 -­‐1.948 2.681 -­‐1.642 0.885 -­‐1.481
model60 -­‐77 -­‐21 334.6 -­‐33.81 4430 -­‐0.126 59.72 -­‐2.787 -­‐2.284 3.571 -­‐1.948 2.623 -­‐1.154 -­‐0.087 -­‐2.065
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Figure 8.16: Detailed sexternal scores for models generated by fragment assembly, optimiza-
tion and energy minimization. The format as well as the z-score computation model is the same
as described in Figure 8.11. Again, the selected models, based on overall scores (last column) and
clustering (Figures 8.18-8.19), are highlighted in bold. Note that a couple of poor models also got
selected.
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Figure 8.17: Superposition of spliced models (produced by fragment assembly).
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Figure 8.18: Clustering of the fragment assembly models in terms of their similarity under
TM-score [276].
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Figure 8.19: Clustering of the fragment assembly models in terms of their similarity under
RMSD (after alignment with PyMOL [228]).
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Figure 8.20: Comparison of the six models selected for co-optimization.
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model20 -­‐210 -­‐65 462.4 -­‐70.04 5937 -­‐0.097 60.52 -­‐9.202 -­‐8.829 7.421 -­‐9.876 5.96 0.087 0.275 -­‐14.16
model23 -­‐316 -­‐79 496.6 -­‐70.44 6211 -­‐0.096 61.56 -­‐14.31 -­‐10.91 8.453 -­‐9.964 6.567 0.11 0.747 -­‐19.31
model25 -­‐48 -­‐9 255.9 -­‐31.73 3875 -­‐0.118 59.7 -­‐1.389 -­‐0.498 1.2 -­‐1.492 1.395 -­‐0.817 -­‐0.095 -­‐1.698
model31 -­‐25 -­‐7 273.6 -­‐41.78 4085 -­‐0.058 64.39 -­‐0.28 -­‐0.201 1.731 -­‐3.692 1.86 1.737 2.033 3.1886
model35 -­‐22 -­‐2 286.7 -­‐45.01 4357 -­‐0.056 62.68 -­‐0.135 0.543 2.126 -­‐4.399 2.463 1.805 1.258 3.6612
model56 -­‐71 -­‐21 311.1 -­‐40.63 4167 -­‐0.116 61.97 -­‐2.498 -­‐2.284 2.863 -­‐3.44 2.041 -­‐0.749 0.934 -­‐3.133

-­‐12 -­‐4 207.8 -­‐17.48 2667 -­‐0.07 60.29 0.347 0.245 -­‐0.251 1.626 -­‐1.28 1.247 0.171 2.106
-­‐285 -­‐94 525.1 -­‐64.68 4811 -­‐0.058 65.07 -­‐12.82 -­‐13.14 9.313 -­‐8.703 3.467 1.737 2.344 -­‐17.81
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Figure 8.21: In this table we present a summary of the sexternal scores for our optimized
models. Notice that both Model31 and Model35 scored very high.
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model25 0.08 0.47 -2.54 -2.25 -1.53 0.10 -5.67
model31 -0.24 0.18 -2.68 -2.41 -1.41 -0.13 -6.69
model35 -0.24 0.41 -2.65 -1.93 -1.49 0.08 -5.82
model56 -0.24 0.06 -2.75 -2.57 -1.65 -1.20 -8.35
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Min -3.38 -4.61 -5.79 -1.12 -0.99 -1.47 -15.52
Max -0.75 -1.06 0.61 -0.16 -0.50 1.50 -1.91
Avg -1.79 -2.42 -2.55 -0.70 -0.79 0.00 -8.14
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Figure 8.22: This table presents the structure validation data (sinternal) of our optimized
models. All but one model scores very high and hence must have excellent stereochemistry and
comparable to x-ray models with resolution between 2.5 to 3.5Å (please see validation section and
Figure 6 in the main paper).
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Figure 8.23: Comparison of the distribution of models for sinternal terms. PROCHECK g-
factor (φ − ψ), PROCHECK g-factor (all), MolProbity clash z-score, ProSA || z-score, Verify3D
z-score and ERRAT z-score (top to bottom and left to right).
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Figure 8.24: Comparison of the distribution of models for sexternal terms. Clash, interface
area, positive residue contacts, negative residue contacts, external total ratio and mutual information
score z-scores (top to bottom and left to right).
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Figure 8.25: Comparison of Model31 before (red) and after (green) co-optimization and
flexible refinement.
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Figure 8.26: Summary Ramachandran plot of the final model of the trimer. 89.6% residues
are in most favored, 7.6% in additionally allowed, 1.4% in generously allowed and only 1.4% in
disallowed regions.
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Figure 8.27: Quality of model in terms of Qmean z-score and ANOLEA score [178]. (Top)
The Qmean z-score [34] of the final model of the trimer of gp120+CD4+17b is -1.666. In the figure,
each circle represents an x-ray model and the red cross represents our model. In the plot, our model
lies in the range where models have average level of confidence. (Bottom) the surface of the model
(1 part of the trimer) is colored based on ANOLEA score [178]. Only small segments have poor
quality which is quite expected specially since those regions are far from CD4 and 17b and hence
fewer constraints are available to improve their qualities.
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Figure 8.28: Computationally predicted crosslinks. The computationally predicted inter-
domain (gp120-CD4, gp120-17b and CD4-17b) crosslinks are shown. Each crosslinks shown as
a series of contiguous balls, and the actual molecules are shown only using sticks (each stick rep-
resenting a bond). Colors of the crosslink are only meant to keep a distinction between them, and
do not carry any other meaning/interpretation. The figures are arranged like a matrix where each
cell represents crosslinks between residues of the types indicated beside the row and column. For
example, the second from left figure in the bottom row shows crosslinks between LYS and GLU
residue types. We observe a large number of crosslinks between the V1V2 region and CD4, as well
as the V3 region and the light chain of 17b; but very few crosslinks between 17b and the V1V2
region.
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Chapter 9

Conclusion and Looking Ahead

We have developed efficient data structures and algorithms for maintaining

molecules in atomic, smooth surface and volumetric representations, algorithms for

updating such models and computing a range of scoring functions for any given

configuration. We have also developed scoring functions that mimics real physical

attraction-repulsion, and scoring functions based on empirical or knowledge-based

observations, and finally applied machine learning techniques to formulate a com-

bination of the scoring functions that showed excellent discriminatoriness in terms

of separating good models from bad. Finally, we have characterized the space of

possible configurations involving n components. We showed that in generic cases

when no other information is known the space is exponential in n. We also proved

that if it is known that the structure is symemtric, the space can actually be repre-

sented using a constant number of degrees of freedom, irrespective of n. Finally,

we also showed that other forms of prior knowledge, like the outline of the com-

plete complex, and/or probably binding sites, can help in restricting the configura-

tion space and also providing more confidence on the predictions. The algorithms,

scoring models and also the structures we report in this thesis would greatly ac-

celerate molecular modeling, particularly for viruses and proteins with variable re-

gions. But the algorithms are also useful for designing materials and tempaltes for
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building construction, making drug delivery capsules that can self-assemble and

disassemble, making naomaterials etc. The data structures we developed are even

more generic and will be fundamental in accelerating any computation that involves

neighborhood calculation, for example collision detection in computer graphics,

mesh separation in graphics and physical simulations, particle systems, molecular

dynamics etc. to name a few.

Great!

But we are not done yet. We are only at the first lap in fully automated

structure prediction with high accuracy and high confidence. There are many open

issues still to be addressed. I have selected two particular issues that I find partic-

ularly important and interesting. In this chapter I shall present the problems, their

characterization and a first sketch of how to address them.

9.1 Better Models, with High Confidence

Errors cascade in most computations, specially those involving geometry

and complicated (linear or non-linear) numerical methods, like the multi-body as-

sembly problem we addressed in this thesis which is a search over high dimensional

metric spaces for the optimum of non-convex objective functions. The final predic-

tions of these methods incur uncertainties because the input data itself is sometimes

noisy or stochastic, the energy/scoring functions we use are mathematical or statisti-

cal models of a natural phenomenon many of whose parameters are either unknown

or cannot be modeled efficeintly, the representations and computational approxi-

mations introduce more uncertainties in the form of discretization and numerical
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errors, and finally, the search space itself is continuous and the finite number of

samples we use may not cover it adequately. All of these sources of errors make it

improbable that the predicted structure or any other quantity would indeed be the

optimal. Previous approaches to deal with this have mainly been to report multiple

predicted structures instead of one. But it is not clear how to use such a list, or

how large a list is sufficient. We propose to use statistical uncertainty quantifica-

tion. In particular, for each prediction f of the quantity of interest (QOI), we want

to provide a certificate of accuracy in the form of a Chernoff-like tail bound i.e.

Pr[|f −E[f ]| > t] < ε, where E[f ] is the expectation of the true value and t and ε

are two constants.

Whether an adaptive search is performed, or all components are assumed to

be rigid, the prediction problem involves discrete sampling of the configurational

space, computing the score for each sample and then ranking them. For accurate

prediction, we need to bound the error for three issues-

• Given a configurationM which contains uncertainties such that the input data

(e.g. positions of the atoms) are not constants, but random variables whose

mean and distribution are known- then, if we only considered the means of

the variable to compute a scoring term F(Mmean) which we want to mini-

mize (without loss of generality), what is the probability that |F(Mmean) −

F(Mmin)| ≤ t1 where t1 is a non-negative constant.

• Given a configuration M (and ignoring the uncertianties in the model) if we

evaluate F(M) using a discrete representation of M as well as a discrete
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approximation of F, then can we bound the error |FD(MD) − F(M)| ≤ t2,

where FD(MD) is the discrete version?

• Given a configurational space C, over which we want to find the configura-

tion argmaxM∈CF(M), if we only take a discrete subset D ⊆ C, then what

is the guarantee that dist(argmaxM∈CF(M) − argmaxM∈DF(M)) ≤ t3,

where dist is a distance metric between configurations, t3 is a non-negative

constant?

And, then we have to combine these to provide an error bound for the overall

protocol.

Another important aspect, in assembly prediction, specially for molecules

is to account for the internal flexibility of the components. In this case, the search

space does not only contain degrees of freedom for the motion of the components

with respect to each other, but also parts of a component can move with respect to

the remaining part of the component. For evan small molecules the number of atoms

can be much higher than the number of molecules in a complex. We have already

seen that for the generic assembly case, the sample space can be SE(3)n, where

n is the number of components. If every component/molecule had N domains

that move w.r.t. each other, then the total search space can be SE(3)nN , which

would be beyond the power of current supercomupters, or even the supercomputers

of the near future to search exhaustively. So, one needs an adaptive hierarchical

representation of the possible motions so that the space can be searched adaptively
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while ensuring that the true optima is not missed due to the corase-graining. The

problems to consider are-

• Characterizing the possible flexible degrees of freedom, parameterize them,

and develope methods to sample the space.

• Develop algorithms and heuristics to clauster/coarse-grain the DOFs (and the

underlying structural model), to come up with a hierarchical representation

of the flexibility. Develop techniques to parameterize and sample at multiple

resolutions.

• Develop an adaptive sampling and search algorithm that can progressively

sample at different resolution to adaptively refine predictions

Interestingly, the problem of providing error bounds often boils down to the

problem of sampling, or dicretization of the model, the function, or the confiura-

tional space. In the next sections, we address the flexibility and adaptive search

from the perspective of sampling, in particular ensuring low discrepancy and low

dispersion sampling, since it can be proved that such gurantees on sampling is inti-

mately tied to gurantees on the prediction/evalution.

9.2 Characterizing and Sampling the Configuration Space of
Proteins

Let us assume that we want to predict the structure of a protein consisting

of n atoms, belonging to m residues. Hence, the optimization function F depends
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on the position (and possibly charge, radii etc.) of n atoms. Assuming, all other

properties to be constants, the total number of degrees of freedom would be 3(n−1),

since the position of one of the atoms can be arbitrarily chosen.

However, proteins have a distinct topology and introduces constraints which

nullify most of these degrees of freedom. Please see Section 1.1 for a description

of protein structure and composition.First, we describe the so-called internal co-

ordinate system of a protein. The internal coordinate system is represented using

the bond lengths, bond angles and dihedral angles of the protein. Bond length is

simply the Euclidean distance between the centers of two atoms connected by a co-

valent bond. If more than two bonds are incident at an atom, then the angle between

any two of the bonds, is defined as the bond angle. And finally, given three con-

secutive bonds between 4 atoms p-q-r-s, the dihedral angle around the bond q-r is

defined as the angle between the plane containing p-q-r and the plane containing q-

r-s. Though the total number of bond length parameters nb, bond angle parameters

na and dihedral angle parameters nd may be larger than 3(n− 1), it can be proved

that, once a single atom position is fixed, the position of the rest can be expressed

using exactly 3(n − 1) parameters in this coordinate system (i.e. other parameters

are dependent). Now, we address the constraints on these parameters, as observed

in protein structures in nature.

First, the bond lengths are assumed to be almost constant (between two

specific type of atoms), and the bond angle (between three specific types of atoms)

have been observed to be almost always the same and hence are considered to be

constants. Secondly, the dihedral angles are also fixed in many cases, for example
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Figure 9.1: The torsion angle degrees of freedom for a protein. The figure shows
a small section of a protein and marks all the torsion angles which are in general
found to be free degrees of freedom. See the text for more detail.

all carbons (and the Hydrogens connected to them) on aromatic rings lie on the

same plane, thereby fixing the dihedral angles around each bond of the ring to a

constant (180 degrees). It was also found that the backbone atoms of a residue

(as well as the H attached to N, and the O attached to C) all lie on a plane. After

these restrictions are applied, we are left with only a small set of dihedral angles

(also called torsion angles) which might change. Specifically, there are three bonds

incident on every Cα atom that have a free torsion angle, namely φ (around N-Cα),

ψ (around Cα-C) and χ1 (around Cα-first carbon on the side-chain). Further, there

can be upto 3 more torsion angles in a side-chain (denoted χ2, χ3 . . .). See Figure

9.1 for examples.

Hence, overall the number of free degrees of freedom comes down to 6m at
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the most, instead of 3(n−1). Hence the space of possible configurations ifO(R6m).

This is still an extremely large and intractable space. In the next section we describe

discretization techniques which brings the space of possible configurations down to

countable, but still exponential, sets.

Restrictions on the Torsion Angle DOFs First, we quickly review the concept

of rotamers for side chain positions. It was observed that the all values between

[−180, 180] degrees were not equally likely for the χ angles, but rather, for each

residue types very few (usually 3) modes are observed. Based on the observation,

the set of possible configuration for each side-chain were discretized into a small

set of configurations, each called a rotamer for that type of residue.

Similar, but less specific distribution for φ-ψ angles were also found. Es-

sentially, it was found that in different secondary structural motifs, the ratio of the

φ and ψ angles for the same Cα, clusters close together. If the φ and ψ are plot-

ted against each other in a scatter plot (referred to as Ramachandran plot), then

separate regions/clusters are seen, each cluster corresponds to a type of secondary

structural element. However, the range of values in a cluster is too broad to apply a

‘rotamer-like’ concept for backbone torsion angles.

In this article, we shall treat both backbone and side-chain torsion angles

in the same manner, and though we do not use the concept of rotamers and Ra-

machandran plots in our discrete sampling protocol, they can easily be incorporated

to accept/reject specific samples.
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9.2.1 Motion Graph

A protein can naturally be expressed as a graph M(A,B), such that each

node ai ∈ A represents an atom, and each edge (ai, aj) ∈ B represents a cova-

lent bond between the two atoms ai and aj . We can immediately infer that M is

necessarily connected and there is no cycles in M that includes an edge with a tor-

sional DOF (after applying the planarity restrictions described above). Hence, for

the purpose of motion space parameterization, we can consider M to be a tree.

Now, let us assume that a certain atom r ∈ A is selected as the root. Now,

the configurational space of any other atom ai ∈ A, with respect to the root, can

be computed as the product space of all the torsion angles on the r − ai path. The

torsions are also applied strictly in the correct order. Hence, any configuration of

the entire protein parameterized by torsion angles in internal coordinate system,

can be mapped to a configuration represented in Cartesian coordinate system by

additionally fixing the location the root.

9.2.2 Sampling with Bounded Dispersion

Let Θ = {θ1, θ2, . . . , θk} be the set of torsion angles in the motion graph.

Also, let each θi ∈ S1, where S1 is the space of 1D rotations.

Let CI represents the space of possible configurations (S1)k in internal coor-

dinate representation. Let us assume that we choose a finite set SI ⊂ CI of samples.

Now we would like to prove some properties of CI . But we need to introduce some

definitions first.
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Definition 9.2.1 (Metric in ordered product space). Let δI(x, y) represent the dis-

tance between to configurations x, y ∈ CI such that it satisfies the following properties-

• non-negativity: δI(x, y) ≥ 0 for any x, y ∈ CI ,

• identity: δI(x, x) ≥ 0 for any x ∈ CI ,

• symmetry: δI(x, y) = δI(y, x) for any x, y ∈ CI , and

• triangle inequality: δI(x, y) + δI(y, z) ≥ δI(x, z) for any x, y, z ∈ CI .

We define dispersion of a set of samples.

Definition 9.2.2 (Dispersion). The dispersion of a set of N samples SI in a space

CI is defined as dI(SI ,CI) = supx∈CI minxs∈SI δI(x, xs).

Now we want to prove the following-

Theorem 9.2.1. For sufficiently large N , it is guaranteed that dIN(S,C) ≤ εd.

Dispersion in Cartesian Space We showed before that any sample x in the or-

dered product of torsion angles space (CI) can be mapped by a function gI to a

configuration X = gI(x) in Cartesian space (or represented using Cartesian coor-

dinates). In the rest of the article, we shall use upper case (eg. X) to represent

configurations in Cartesian space and lower case (eg. x) to represent configurations

parameterized in other spaces.
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Let the space of mapped configurations be defined as CC = {gI(x)|x ∈

CI}. Similarly define the set SC . We proceed to define a metric δC(x′, y′) and also

dispersion dCN(SC ,CC).

Let, for a given set of samples, dIN = dIN(SI ,CI) and dCN = dCN(SC ,CC).

We have the following result-

Theorem 9.2.2 (adapted from Theorem 6.4 from Niederreiter [186]). If there exists

a value L ≥ 0 such that ∀x,y∈CIδC(gI(x), gI(y)) ≤ LδI(x, y), then dCN ≤ LdIN .

9.2.3 Bounded Error in Prediction Accuracy

Recall that the protein modeling problem aims to find the configuration x∗ =

argmaxx∈CIF(X), where X = gI(x). However, with our sampling we simply

report the configuration xSI
= argmaxx∈SIF(X). Now we want to bound the error

in our prediction.

Definition 9.2.3 (Modulus of continuity). We define ωCI (F, t) = supx,y∈CI&δI(x,y)≤t |F(X)−

F(Y )| as the maximum change of the function value of F with a change (under δI

metric) of at most t in the parameter space.

The following theorem follows trivially from the above definition and The-

orem 9.2.1.

Theorem 9.2.3 (adapted from Theorem 6.3 from Niederreiter [186]). Let,m∗(F) =

maxx∈CIF(X) and mSI
(F) = maxx∈SIF(X). If (CI , δI) defines a bounded metric

space, then m∗(F)−mSI
(F) ≤ ωCI (F, dIN).
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Finally, under some assumptions, the following theorem follows from The-

orem 9.2.3.

Theorem 9.2.4. Let {l0, l1, . . .} be a set of values corresponding to F(X∗0 ),F(X∗1 ), . . .

whereX∗i are the local maxima of F such thatX∗0 = gI(x∗) and F(X∗i ) ≤ F(X∗i+1).

Then, we can guarantee δI(x∗, xSI
) ≤ dIN , iff δI(x∗0, x

∗
i ) ≥ dIN ⇒ l0 − li ≥

ωCI (F, dIN)

9.3 Hierarchical Modeling of Proteins and Their Configuration
Spaces

We define a domain A simply as a set of atoms. A domain A can be parti-

tioned into disjoint domains A1, . . . , Ad such that their union is A, or be combined

with disjoint domains to form larger domains. We say that a Ai ⊂ Aj if the set of

atoms in Ai is a subset of the set of atoms in Aj .

Here we describe a bottom-up (clustering) idea for generating a hierarchy of

domains. We initially consider each atom of the molecule a separate domain. Then,

the backbone atoms of a residue are grouped into a single domain, and the side-

chain atoms are also grouped into one or more domains depending on the structure

and number of free torsion angles of the side-chain (see Figure 9.2. Motion between

these domains are defined as hinge motions (3D rotation around a point, in other

words SO(3)). Notice that clustering of domains is similar to graph clustering where

all nodes of a cluster is collapsed into one super-node, all edges between the nodes

of the same super-node are removed, and if there exists one of more edges between

nodes belonging to two different clusters, then a super-edge is added between the
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corresponding super-nodes.

(a) (b)

(c) (d)

Figure 9.2: Example hierarchical modeling of a protein structure and motion. (a)
At the lowest level of the hierarchy, each atom represents a domain and the motion
is parameterized by the torsion angles. (b) We cluster the backbone atoms of a
residue into a single domain (bead) and the side chains are grouped into one or
more domains. A motion (SO(3)) is defined between two domains if there exists an
atom in one that has a covalent bond with an atom in the other domain. (c) After
another level of clustering, and (d) the final level of clustering.
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In the next step of clustering, one or more residues become clustered into

single domains, and gradually the domains become larger and larger until they cor-

respond to secondary structural motifs, and then larger and larger again until a sin-

gle domain represents the whole molecule.

9.3.1 Motion Space of Coarse Grained Models

At every stage of the hierarchy, we define a motion graph using the domain

at that level as the nodes and the edges representing a relative motion between them.

The presence/absence of an edge is determined based on both the topology of a

finer level of detail model, and the presence/absence of physical contact between

the domains. At very coarse resolutions, where each domain contains multiple

secondary structural components, we annotate the motion space between domains

using SE(3).

In most cases, the motion graph is a tree. Hence, after fixing a root, the space

of possible configurations becomes an ordered product space of SO(3) (see Figure

9.3). Note that the choice of the root determines the order of the product and also

the overall complexity of mapping the product space to the Cartesian coordinate

space. Finally, in certain cases, the motion graph may not be a tree and in these

cases, the space of possible spanning trees of the graph must also be factored into

the configurational space definition.
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(a) (b) (c)

Figure 9.3: (a) A sample coarse-graining step where collections of atoms are
grouped into and replaced by larger beads. Each rotational DOF corresponds to
the space SO(3). The overall configurational space of the entire protein (in this
case, represented as the collection of beads), is a product space. The actual repre-
sentation of the product space depends on the the order in which the SO(3) spaces
are sampled. For example, in (b), the product space is defined by assuming that
the bead named A is located in R3 first, and then the locations of others are re-
solved with respect to A. In this case, the overall space of motion for I and E are
R3x(SO(3))6. On the other hand, the choice of using L as the first bead to resolve,
leads to a worst case motion space of R3x(SO(3))3, as shown in (c).

9.3.2 Sampling with Bounded Dispersion for Coarse Grained Motions

The sampling of the coarse-grained motions is a general case of the atomic

resolution motions we introduced before, the only change being the fact that we

have a product of SO(3) instead of a product of S1.

Again, we define a distance metric δS in this new product space CS =

SO(3) × SO(3) × . . ., and proceed to define the dispersion in this space as fol-
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lows.

Definition 9.3.1 (Dispersion in product of SO(3) space). The dispersion of a set of

N samples SS in a space CS is defined as dSN(SS,CS) = supx∈CS minxs∈SS δS(x, xs).

Now we want to prove the following-

Theorem 9.3.1. For sufficiently large N , it is guaranteed that dSN(SS,CS) ≤ εd.

Dispersion in Cartesian Space Using the similar notations and arguments intro-

duced before (i.e. gS maps a configuration x ∈ CS to its Cartesian representation

X), we can prove the following theorem.

Theorem 9.3.2. If there exists a value L ≥ 0 such that ∀x,y∈CSδC(gS(x), gS(y)) ≤

LδS(x, y), then dCN ≤ LdSN .

9.3.3 Bounded Error in Prediction Accuracy under Coarse Grained Motion

Prediction error is increased when using coarse-grained motions because it

does not provide the same level of control and accuracy as fine-grained motions.

Note that we assume that only the motion is coarse-grained and the function is

evaluated after generating atomic resolution model (in Cartesian space) using the

mapping functions. Under this assumption, most of the mechanism introduced be-

fore would only require minor adjustments only.

Definition 9.3.2 (Modulus of continuity). We define ωCS (FS, t) = supx,y∈CS&δS(x,y)≤t |F(X)−

F(Y )| as the maximum change of the function value of F with a change (under δS

metric) of at most t in the parameter space.

318



The following theorem follows trivially from the above definition and The-

orem 9.3.1.

Theorem 9.3.3 (adapted from Theorem 6.3 from Niederreiter [186]). Let,m∗(F) =

maxx∈CSF(X) and mSS
(F) = maxx∈SSF(x). If (CS, δS) defines a bounded metric

space, then m∗(F)−mSS
(FS) ≤ ωCS (FS, dSN).

Finally, under some assumptions, the following theorem follows from The-

orem 9.3.3.

Theorem 9.3.4. Let {l0, l1, . . .} be a set of values corresponding to F(X∗0 ),F(X∗1 ), . . .

whereX∗i are the local maxima of F such thatX∗0 = gS(x∗) and F(X∗i ) ≤ F(X∗i+1).

Then, we can guarantee δS(x∗, xSS
) ≤ dSN , iff δS(x∗0, x

∗
i ) ≥ dSN ⇒ l0 − li ≥

ωCS (F, dSN)

9.4 Hierarchical Sampling and Search

Let us assume that we have k levels of coarseness in our hierarchical rep-

resentation of the structure and motion of the protien. Also assume that level 0

represents the finest level representation where each atom represents a domain, and

let level k − 1 represents the coarsest level representation where the entire protein

is a single domain. We shall represent the motion/parameter space for the level i,

as Ci.

Now, let us describe a hierarchical search algorithm which leverages from

the hierarchical motion/structure representations as well as the bounds on the error

at any level of the hierarchy to iteratively refine the configuration of a protein and
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get closer and closer to the true maxima m∗(F) of the function F. Recall that F is

applied on X which is generated after mapping a configuration x ∈ Ci to Cartesian

space using gi.

Let, Si be a set of N samples from the space Ci with optimal dispersion diN

for this space. Also, let mi(F) be the best scoring sample in Si.

Definition 9.4.1 (Multi-level distance metric). We define a distance metric δij(x, y)

where x ∈ Ci and y ∈ Cj as δC(gi(x), gj(y)).

Definition 9.4.2 (Finer resolution neighborhood). We define the finer resolution ε

neighborhood of a configuration x ∈ Ci, as follows- Nε(x) = {y|y ∈ Ci−1&δij(x, y) ≤

ε}.

Adaptive Search Algorithm

1. Set Γ as the space Ck−1

2. For i = k − 1 to 0 do

(a) Generate Σ as a set of N samples in space Γ with optimal dispersion

dΓN .

(b) Compute xm as argmaxx∈ΣF(gi(x)).

(c) Set Γ = Ndi
N

(xm).

3. Report g0(xm)
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Theorem 9.4.1 (Correctness of algorithm). Let x∗ = argmaxx∈CIF(X) be the

optimal configuration. Then, for any i between k − 1 to 0, x∗ ∈ Γ . In other words,

the true solution is never excluded from the current space.

The above theorem is a direct consequence of Theorem 9.3.4.

Theorem 9.4.2 (Convergence). Let x∗ = argmaxx∈C0F(X) be the optimal con-

figuration (not necessarily the configuration reported by the algorithm). Let xm
j

and xm
l

be two best configurations computed by the algorithm when i was set to

j and l respectively. Then, we can guarantee than δj0(xm
j
, x∗) ≤ δl0(xm

l
, x∗), iff

0 ≤ j ≤ l ≤ k − 1. In other words, the predicted configuration always gets closer

to the true solution.

A proof of this theorem uses Theorem 9.3.4. It also use the fact that Γ keeps

shrinking, and hence with the same N , one should be getting smaller and smaller

dΓN , and the cycle continues. I believe this part of the proof requires some refer-

ence to dispersion, since dispersion includes a measure on the space and hence is

affected by the shrinking of the space. Then we can apply the relationship between

dispersion and discrepancy to complete the proof.

9.5 Bounding the Errors in Scoring Function Evaluation

The scoring function F(X), for most practical applications, is expressed as

an integral over a domain representing the surface or the volume of the molecule

in the given configuration X . We shall consider two specific examples, one for the

problem of fitting a protein configuration to a 3D volumetric map (reconstructed
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from cryo-electron microscopy imaging, for instance), and the other for the problem

of docking two proteins. We shall briefly describe both of these problems and

present typical scoring functions for them.

9.5.1 Example Scoring Functions used in Fitting

Given a volume V , and a configuration X for a protein, the scoring func-

tion F(X) is designed such that it is maximized when the spatial overlap between

X and V is maximized. In practice, more complicated functions may be used, but

all of them has similar formulation and we can focus only on the spatial correla-

tion/overlap without loss of generality. Let V X be the volume occupied by X . Now

we define two functions F1(p) and F2(p), where p is a point in 3D, as follows-

F1(p) = 1 if p ∈ V X , otherwise 0.

F2(p) = 1 if p ∈ V , otherwise 0.

Now, given a fixed V , the scoring function for different configurations of the protein

is defined as

FV (X) =
∫
p∈D

∫
q∈D

F1(p)F2(q)dpdq

where D is the smallest convex subset of R3 such that V ⊆ D and V X ⊆ D.

9.5.2 Example Scoring Functions used in Docking

The docking problem is more complicated than fitting, but has similar scor-

ing paradigm. Given two proteins, the aim of docking is to find the configuration

of the two proteins (internally and with respect to each other) so that they come
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in contact (docks) in such a way that their interfaces (the region of one which is

in contact with the other) are complementary. The complementarity can be com-

puted/expressed using many ways including shape complementarity, electrostatic

complementarity, atom-atom or residue-residue contact potentials etc. Here we

shall focus on shape complementarity alone, but the formalism we introduce is ap-

plicable to all complementary scoring. Let L and R be the two proteins which will

henceforth be referred to as the ligand and the receptor.

Let ρX be a smooth surface approximation of the boundary of the region

occupied by X . For example, ρX is often approximated as a level set of the sum of

Gaussians defined at the centers of all the atoms of X . Also let, V ρX be the volume

bounded by ρX .

Now let, the distance between a point p, and a surface ρX be defined as

d(p, ρX) = minq∈ρX ‖p− q‖, where ‖p− q‖ is the Euclidean distance between the

points p and q.

Affinity function for the ligand

Define V L
S , or the skin region of L as the set of points p, such that d(p, ρL) ≤ rs

and p ∈ V ρX .

Also define V L
C , or the core region of L as the set of points p, such that d(p, ρL) > rs

and p ∈ V ρX .

Now, we define FL(p) as follows-

FL(p) = 1, i and 0 respectively, if p ∈ V L
S , p ∈ V L

C , and otherwise
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where i is the imaginary number sqrt(−1).

Affinity function for the receptor

Define V R
S , or the skin region of R as the set of points p, such that d(p, ρL) ≤ rs

and p /∈ V ρX .

Also define V R
C , or the core region of R as the set of points p, such that p ∈ V ρX .

Note that the skin of R is actually outside the boundary of R.

Now, we define FR(p) as follows-

FR(p) = 1, i and 0 respectively, if p ∈ V L
S , p ∈ V L

C , and otherwise

where i is the imaginary number sqrt(−1).

Scoring

Now we are ready to define the scoring function F(X). Note that we assume X is

the joint (product) configurational space of L and R, and hence given X , it is trivial

to map it to L and R.

F(X) is defined as the real part of
∫
p∈D

∫
q∈D

FL(p)FR(q)dpdq.

where D is the smallest convex subset of R3 such that V R
S ⊆ D and V L

S ⊆ D.

Clearly, F(X) is maximized when the skins of the ligand and receptor over-

lap maximally, but the cores do not overlap, hence capturing the state when L and

R are close to but not penetrating each other.

Also note that F(X) is defined almost exactly the same for docking, as it

was for fitting.
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9.5.3 Bounding the Error

The different scoring functions we discussed in the previous section can

simply be described as integrals over continuous domains. Though they included

double integral, we shall restrict our discussion bounding the errors of functions to

single integrals. However, the concepts are easily translated to multiple integrals.

Let us define the function we want to evaluate as follows- F(x) =
∫

D
f(u)du.

where D is a convex domain in s dimensional space and f is the integrand.

We shall use a quasi-Monte Carlo scheme to approximate F(X) as follows- F(X) =∫
D
f(u)du ≈ 1

N

∑N
n=1 f(xn) where {x1, x2, . . . , xN} is a set of N samples in D.

Now, we want to prove that if the set of samples satisfy some criteria, then

the approximation error E = |
∫

D
f(u)du − 1

N

∑N
n=1 f(xn)| can be bounded. We

also want to prove that the approximation converges, in the sense that as N → ∞,

the error E→ 0.

9.5.3.1 Discrepancy

Let Is denote the x dimensional unit cube, and let λs be the s-dimensional

Lebesgue measure.

Let P = {x1, x2, . . . , xN} is a set of N samples in Is. Let B be an arbitrary

subset of Is and let B be the set of all arbitrary subsets of Is.

Now, we define A(B,P ) = |B ∩ P | as the number of points in the overlap

of B and P .

Then, discrepancy of a set of samples P in a space is defined as follows-
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DN(B, P ) = supB∈B

∣∣∣A(B,P )
N
− λs(B)

∣∣∣
in other words, a low discrepancy sampling covers any arbitrary subset of the space

uniformly.

In general, computingDN(B, P ) over arbitrary subsets may be difficult, and

we use special types of subsets only.

Star discrepancy The star discrepancy is defined as D∗N(P ) for a set of N points

P = {x1, x2, . . . , xN}, as DN(I∗, P ) where I∗ is the set of all subintervals of Is of

the form
∏s

i=1[0, ui).

Extreme discrepancy The extreme discrepancy is defined as DN(P ) for a set of

N points P = {x1, x2, . . . , xN}, as DN(I, P ) where I is the set of all subintervals

of Is of the form
∏s

i=1[ui, vi).

Isotropic discrepancy The isotropic discrepancy is defined as JN(P ) for a set

of N points P = {x1, x2, . . . , xN}, as DN(J, P ) where J is the set of all convex

subsets Is.

Proposition 9.5.1 (Relationship between discrepancies (adapted from Proposition

2.4 of [186])).

• D∗N(P ) ≤ DN(P ) ≤ 2sD∗N(P )

• DN(P ) ≤ JN(P ) ≤ 4s(DN(P ))1/s
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9.5.3.2 Bounded Variance of a Function

All of the error bounds we shall introduce in the next section depend both on

the discrepancy of the sample, in the sense that lower discrepancy guarantees lower

error. However, the nature of the function also affects the worst case error. For

example if the slope of a 1D function approaches infinity at any point in the domain

(e.g. tanθ), then an error guarantee cannot be provided with any finite sample set.

So, the error bounds we discuss requires that the functions are Lipschitz, and more

specifically are continuous in the domain and have bounded variance. A measure

called the modulus of continuity was already introduced before in this article. Here

we repeat it again and then discuss different definitions of bounded variance.

Definition 9.5.1 (Modulus of continuity).

For a continuous function f on Is, the modulus of continuity is defined as ω(f, t) =

supu,v∈Is&δS(u,v)≤t |f(u) − f(v)|. In other words, the value of f does not change

without bounds if the parameters are close.

Definition 9.5.2 (k dimensional face of Is).

Given a sequence i1, . . . , ik such that 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ s, representing

indices to k distinct dimensions of Is, we define a k dimensional face φ(i1, . . . , ik)

of the domain Is as the set of all points (u1, . . . , us) ∈ Is such that uj = 1 for all

j 6= i1, . . . , ik. [For example, if 1,3 in 3 dimensional space would be a plane.]

For the next two definitions, we assume that not only f is a continuous func-

tion over Is, but also the partial derivatives of f , i.e. δsf
δu1δu2...δus

, are also continuous

in Is.
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Definition 9.5.3 (Variation of f on Is in the sense of Vitaly).

We define the variation of f in the k dimensional face φ(i1, . . . , ik) of the domain

Is in the sense of Vitali as follows-

V k(f, φ(i1, . . . , ik)) =
∫ 1

0
. . .
∫ 1

0
| δsf
δui1

δui2
...δuik

|dui1dui2 . . . duik

Intuitively, The variation in the sense of Vitali measures the change of f on

the k-dimensional face.

Definition 9.5.4 (Variation of f on Is in the sense of Hardy and Krause).

V (f) =
∑s

k=1

∑
1≤i1≤i2≤...≤ik≤s V

k(f, φ(i1, . . . , ik))

Intuitively, variation in the sense of Hardy and Krause represent the varia-

tion of f in all possible k-dimensional faces, for all possible k.

Finally, we say that f has bounded variation if V (f) is finite. In the next

section (specifically in Theorem 9.5.2) we show that if f has bounded variation,

then the intergal F(X) can be approximated with bounded error.

9.5.3.3 Bounds

If f has bounded variation in D ⊆ Is then we can bound the approximation

error as follows.

Theorem 9.5.2 (Bounded error of intergal over convex domain (adapted from The-

orem 2.14 of [186])).

If D ⊆ Is is convex and f has bounded variation V (f) on Is in the sense of Hardy

and Krause, then, for any point set P = {x1, x2, . . . , xN} such that xi ∈ D, we

have-
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|
∫

D
f(u)du− 1

N

∑N
n=1 f(xn)| ≤ (V (f) + |f(1, . . . , 1)|)JN(P )

If we can show on the other hand that f is continuous in Is, then a possibly

tighter bound can be achieved as follows-

Theorem 9.5.3 (Bounded error of intergal over Is (adapted from Theorem 2.13 of

[186])).

If f is continuous in Is, then, for any point set P = {x1, x2, . . . , xN} such that

xi ∈ Is, we have-

|
∫

D
f(u)du− 1

N

∑N
n=1 f(xn)| ≤ 4ω(f ; (D∗N)1/s)

329



Appendix

330



Appendix 1

Background on Proteins, their Interactions and
Symmetry

1.1 On Protein Structure, Representations and Flexibility

A protein is basically a polypeptide chain, i.e. a chain of peptides. A peptide,

or often called an amino acid, consists of an Amine group (NH2), a central carbon

atom (called Cα attached to different residues/side chains R, and another carbon

atom (C) part of a Carboxilic acid group (COOH). A sequence of peptides form a

chain when a Hydrogen from the amine group of one bonds with the Hydroxil part

(OH) of the Carboxilic group to form water, and enabling the N of the first to form

a covalent bond with the C of the second; thereby combining the backbones of the

peptides into a longer backbone (Figure 1.1). Hence, a peptide chain’s backbone

is a sequence of N-Cα-Cβ-N-Cα-Cβ-N. . .-Cβ . Note that all intermediate N is also

attached to a Hydrogen, all Cα is attached to a Hydrogen and a residue, and all

intermediate Cβ is also attached to an Oxygen (O).

There are mainly 20 types of residues (hence, 20 types of amino acids)

found in nature. Some of the residues contain more than 20 atoms (Figure 1.2). In

the rest of the article, we shall use amino acids, peptides and residues synonymously

to mean the collection of atoms on the side-chain as well as the N-Cα-Cβ-O atoms
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Figure 1.1: Structure of peptides (amino acids), and formation of polypeptide
chains (proteins)

attached to the side-chain. When we must distinguish, we shall use the terms ‘side-

chain’ and ‘backbone’.

Each amino acid is often also represented using a single letter, and a se-

quence of such letters is called the primary structure of a protein. The sequence, or

the primary structure, is usually much easier to identify, than the exact locations of

each atom of the protein. When the location of every atom of a protein (in some

coordinate system, or with respect to each other) is defined, then the model is called

the tertiary structure of the protein. Sometimes multiple peptide chains bind with

each other and form complexes, and in that case, if the atomic coordinates of all

the chains are known, then the model is called the ternary structure of the complex.
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Figure 1.2: List of amino acids and their structures

Finally, proteins have two specific motifs, called the α-helices and the β-sheets that

appear as sub-structures. Both of these structures appear by formation of hydrogen

bonds between the NH and CβO of the backbone. In an α-helix, the hydrogen bond

in formed between the residues i and i + 3 or i + 4, and the backbone twists into a

helical structure such that each residue corresponds to about a 100 degree turn and

333



1.5Åpitch. The beta sheet is formed when two sections of the backbone lies paral-

lel (or anti-parallel) to each other to form a planar configuration. Sometimes more

than two sections can also lie in parallel. A protein can contain several α-helices or

β-sheets, as well as some sections where no apparent template or motif is apparent,

such sections are called loops. α-helices, β-sheets and loops are called secondary

structural components of a protein.

Experimental Protocols for Elucidating Protein Structure

Resolving the structure of a molecule at the atomic resolution ( 2Å) is

not a trivial problem. Several experimental protocols have been developed, most

prominently X-ray Crystallography [146], Nuclear Magnetic Resonance (NMR)

[31, 274], and Cryo electron microscopy (EM) [97]. According to the protein data

bank repository 85372 atomic resolution structural models have been resolved us-

ing x-ray crystallography, 10512 models by nuclear magnetic resonance techniques

as of the end of December 2013. X-ray crystallography, first applied for proteins in

1958 to resolve the structure of the Myoglobin molecule [146], works by crystalliz-

ing a purified sample of the protein-complex and then analyzing the scattering pat-

tern of x-ray shot at the specimen. However, many proteins, for example proteins

with disordered regions are difficult to crystallize, and most insoluble membrane

proteins, x-ray crystallography cannot be applied [165], leaving a large portion of

the protein landscape beyond its reach. Another drawback of x-ray crystallography

is the possibility that the crystallization process induces conformational changes in

the protein and the resolved structure is not the natural state of the protein. Nuclear
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magnetic resonance (NMR) [31, 274] is applicable to an even smaller set of proteins

since the magnetic response from the nuclei of the atoms, which is used to resolve

their position and type, tends to decay too quickly for large molecules. The largest

structure resolved by NMR [94] is still much smaller than macromolecules like

viral capsids and ribosomes. Cryo electron microscopy (EM) is an alternate tech-

nique which while does not resolve atomic positions, it is however able to provide

a volume occupancy model for a protein-complex in its natural state.

1.2 On Protein Protein Interaction

Protein-protein interactions are governed by a multitude of different weak

forces including electrostatics interactions, short range attraction-repulsion, polar-

ization properties of the surface atoms, solvent pH etc. to name a few. Also, the

dominant contributor to the affinity between proteins can vary across protein fami-

lies, and also within families.

In simple terms, a perfect scoring function would always score the true con-

figuration of a protein-protein complex higher than any other configurations of the

same proteins. Due to the irregular and highly variable nature of protein-protein

interactions, no scoring model designed so far is perfect, and probably they never

will be.

The scoring function is usually designed to mimic the biophysical interac-

tion and affinity of the proteins, and is trained based on a benchmark of known

solutions. The scoring terms used in docking, molecular dynamics,folding etc. can

broadly be classified into two types: physics (free energy) based and knowledge-
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based (statistical) scoring. We discuss each of the terms in brief below.

Free Energy Based Scoring

The free energy E of a molecule of a molecule (or a complex) is given by

E = EMM + Esol − TS (1.2.1)

EMM is called the molecular mechanical energy. It represents energy due to

the atom-atom interactions among atoms of the molecule(s). Esol is the solvation

energy representing the interaction of the molecule(s) with the solvent. The solvent

is usually considered as water with some charged ions. T is the temperature and S

in the entropy. The change of free energy upon binding or the binding free energy

is defined as δ(A,B) = E(A + B) − (E(A) + E(B)), i.e. the difference of the

total free energies before and after binding. Since, the binding free energy is highly

correlated with the stability of a complex, scoring functions are designed to mimic

or approximate the binding free energy.

Now, we discuss each component of the energy-

EMM = Ed + Eθ + Eϕ︸ ︷︷ ︸
bonded interactions

+ Evdw + Ecoul︸ ︷︷ ︸
nonbonded interactions

(1.2.2)

Ed =
∑

bond length (d)

kd(d−deq)2, Eθ =
∑

bond angle (θ)

kθ(θ−θeq)2, Eϕ =
∑

torsion (ϕ)

kϕ(1−cos[n(ϕ−ϕeq)]),

(1.2.3)
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Evdw =
∑
i

∑
j>i

(
aij
r12
ij

− bij
r6
ij

)
and Ecoul =

∑
i

∑
j>i

qiqj
ε(rij)rij

, (1.2.4)

The molecular mechanical energy is decomposed into bonded and non-

bonded interaction terms (see Equation 1.2.2). The bonded energy terms (Equation

1.2.3) measure the energy required to deviate from an optimal bonded position (for

example, changing the length of a bond). The bonded energy terms are considered

constant for rigid body docking and cancels out when computing the binding free

energy. However, they must be taken into account for flexible docking. Flexible

docking techniques based on molecular or stochastic dynamics must include these

terms in their scoring. On the other hand, if the flexible docking is performed using

the ensemble docking approach, where a collection of low energy conformations

for the molecules are generated and then rigid docking is performed for each pair;

then these terms are only considered during the generation of the ensemble.

The non-bonded interactions (Equation 1.2.3) are the most widely used scor-

ing terms in docking. The first term is called the VDW interaction which represents

short range attraction (of electron of one atom to the proton of the other) and a very

high repulsion if the distance rij gets too close (representing the positive nuclei of

the atoms coming too close). The aij and bij are two weights which have been

determined based on quantum mechanics for different types of atom-atom pairs.

This energy encourages two molecules to come close to each other such that their
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shapes complement each other, but does not allow penetration. So, docking soft-

wares sometimes replace this term with a geometric shape complementarity term.

The second term of the non-bonded interaction is the long range electrostatic inter-

action between two molecules. This term is dependent on the charges q as well the

distance dependent dielectric ε(rij) of the solvent.

Several models for the solvation energy have been proposed. Some of them

take the molecules and ions in the solvent explicitly into consideration. Other mod-

els, termed implicit solvent models applies principles from statistical thermody-

namics to approximate the energy. Here, we present an implicit solvation energy

model called the GBSA model [105].

Esol = Ecav + Evdw(s-s)︸ ︷︷ ︸
nonploar

+ Epol︸︷︷︸
polar

(1.2.5)

Ecav depends on the volume of the protein and the exposed surface area and

Evdw(s-s) is the Van der Waals interaction between exposed atoms and solvent atoms.

The polar partEpol, can be approximated using Generalized Born (GB) theory [245]

as-

Epol = −τ
2

∑
i,j

qiqj/

√
r2
ij +RiRje

−
r2
ij

4RiRj , (1.2.6)

where τ = 1 − 1
ε
, and Ri is the effective Born radius of atom i. There are other

models for Epol as well, e.g. [250].
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Knowledge Based Scoring

An alternate to free energy based scoring, is to design scoring functions

completely based on empirical data. Such models are primarily derived by identi-

fying different properties of the protein-protein interfaces of known complexes. See

[281] for a brief survey of knowledge based scoring terms.

A knowledge based scheme is defined based on the observation that hy-

drophobic residues are more likely to be at the binding interface, since after the

binding they get buried and hence does not come into contact with water (solvent).

For example, Black and Mould [44] developed a set of hydrophobicity based pa-

rameters for each residue and atom types to be used in protein folding studies. The

same model can be applied to docking as well.

A similar idea is to simply observe the frequencies at which different residues

or atoms appear on protein-protein interfaces. The relative probability of a residue

appearing on the interface, given that it appears somewhere in the protein is defined

as the interface propensity of the residue. Per-residue interface propensity values

were computed in [134] which are based on the relative frequencies of different

residues in the interfaces of a set of 63 protein-protein complexes from [133].

Sometimes, specific features can be identified for classes of proteins. For

example, it has been observed [1, 169] that each of three specific regions of an

antibody make at least one contact with the antigen in an antibody-antigen complex.

The regions are: 1) CDR-L3, 2)CDR-H3 and 3) CDR-L1 or CDR-H1. Similarly it

is observed that enzyme binding sites contain a sequence of peptides of the forms
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G−X−Y or Y −X−GwhereG is Glycine andX, Y are any two small non-polar

residues [277]. Information like these are often used to reward or penalize docking

poses for specific type of complexes.

The most popular type of knowledge based scoring is based on defining

pairwise contact potentials between residues or atoms. Similar to interface propen-

sities, such potentials are trained based on observed contacts in a benchmark of

complexes. Tanaka and Sheraga first proposed a potential like this in [246]. Zhou

and Zhou derived distance dependent potentials for 19 different atom types in [289]

and modified it to define residue based potentials in [283]. Other models based on

similar principles include [182, 201, 212, 251, 252]. We should specially mention

that, recently Mayewski developed a multi-body contact potential designed specifi-

cally for scoring complexes involving more than two proteins [176].

Finally, other types observations about the protein-protein interfaces exist,

which may not directly be applied as scoring terms, but can be used to differenti-

ate between native and non-native configurations. For example, the interface area,

interface shape, interface gap, percentage of polar vs nonpolar area etc. have been

shown to be remarkably consistent in native protein-protein interfaces. Bahadur

et al. studied such statistics for protein-protein interfaces in [11], for protein-RNA

interfaces in [13] and for specifically viral capsid proteins in [12].

1.3 On Protein Symmetry

Here we introduce some symmetry classes which are specially relevant for

protein complexes, provide examples and introduce some notations.
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Cyclic Symmetry

In cyclic symmetry, n copies of the same monomer P1, ..., Pn forms a com-

plex. In the complex, each monomer Pi is placed by rotation around a single axis

by 360∗i
/
n degrees such that the interface between Pi and Pi+1 is identical for all

i ∈ [1, n]. We denote a cyclic symmetry involving n copies of a monomer P as

Cn(P ). See figure 1.3 for some examples.

Figure 1.3: Left, C8 symmetry and Right, C4 symmetry.

Dihedral Symmetry

If 2 copies of the same monomer P1, P2 forms a complex, such that there

is a plane p such that P2 is congruent to P1 reflected by the plane p. This can also

be considered a rotation by 180 degrees around a suitable axis. It is customary to

denote 2 bodies in dihedral symmetry as D1(P ). We also use Dn(P ) as a notation

forD1(Dn−1(P )) andD3 and so on. Often we drop the subscript forD1 and simply

use D. See Figure 1.4 for examples.
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Figure 1.4: Dihedral symmetry. D1 on the left, D2 at the middle and D3 on the
right.

Note that this definition of dihedral symmetry is different from the definition

in group theory.

Combination of cyclic and dihedral symmetries

Sometimes combinations of symmetries are found in protein complexes.

For example, a protein P may form a dimer and then the dimer is repeated 4 to

form a cyclic complex (see Figure 1.5). In such cases, we denote the symmetry as

a ordered sequence. For example, the above symmetry will be denoted C4(D1(P )).

Figure 1.5: Different type of mixed symmetry. (a) A dimer of cyclic symmetric
complex (DC8), (b) Cyclic symmetry of dimers (C4D).
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Icosahedral Symmetry

An icosahedron consists of 20 triangles arranged on a shell such that is 5-

fold rotational symmetries at the vertices, 3-fold rotational symmetries at the centers

of the triangles and 2-fold rotational symmetries on the edges. We denote this

symmetry class as I . See Figure 1.6 for an example.

For icosahedral viruses, if the class of local symmetry is restricted to the

Caspar-Klug model only, then we denote it as ICK . See Section 1.4 for details on

icosahedral symmetry.

(a) (b)

Figure 1.6: Icosahedral symmetry. (a) A generic icosahedron showing the faces
and vertices explicitly. (b) A viral capsid exibiting icosahedral symmetry (Cowpea
Mosaic Virus, PDBID 1NY7)

Helical Symmetry

Monomers are arranged on a helix. Each monomers interface with its neigh-

bor relates to a cyclic rotation as well as a shift along the direction of the pitch. We
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denote this class as H . See Figure 1.7 for an example.

Figure 1.7: Helical symmetry (PDBID:1YJ7). Image taken from [7]

Symmetry involving different proteins

Different types of proteins form an asymmetric complex and then the asym-

metric complex is repeated to form a symmetric structure. In such cases, we rep-

resent the asymmetric unit formed by the different proteins as the operand of a

symmetry operation. For example, for the complex shown in Figure 1.8 would be

represented as C4(P +Q).

1.4 On Viral Capsids

Viruses are microorganisms which are responsible for many diseases in hu-

mans as well as many species of animals and plants. Usually viruses have their

genetic material (DNA or RNA) encapsulated by a shell formed by proteins. This
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Figure 1.8: Cyclic symmetry where the asymmetric unit consists of two proteins
(C4(P +Q))

(a) (b) (c)

Figure 1.9: (a) The triangles of an icosahedron can be unfolded onto a 2D hexag-
onal grid, such that corners of the triangles have integer coordinates. (b) Caspar
and Klug’s idea of using different sized triangles on the hexagonal grid to generate
different local symmetry locations on the icosahedron. Corners belonging to only
small triangles are locations of 6-fold symmetry and corners belonging to large tri-
angles are locations of 5-fold symmetries. (c) The capsid of Rice Dwarf Virus. The
symmetry locations were detected using the Caspar-Klug theorem (image generated
using TexMol [15]).

shell is called the viral capsid. Sometimes, the protein shell is also covered by an-

other layer of glycoproteins. Most viruses are actually smaller than a single cell

and contain no ribosomes. Since, ribosomes carry out the process of producing

proteins based on their template in the RNA, viruses must infiltrate the cell of other
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living organism and use their ribosomes to replicate and reproduce. To infiltrate,

the virus attaches to the cell membrane and injects the genetic material into the cell.

There, several copies of the genetic material are transcripted; copies of the capsid

protein are also synthesized. The proteins and the genetic material self assemble to

form new viruses which then penetrates the membrane and are ready to infect other

cells. The viral capsid is of particular interest to design antiviral drugs because it

could potentially prevent the virus from either infiltration or from reproduction (by

inhibiting the self-assembly). Using imaging techniques like electron microscopy

and x-ray crystallography, it has long been established that most viral capsids are

either spherical or helical. it was also observed that the arrangement of the pro-

teins on the spherical capsids exhibit icosahedral symmetry. Several theories and

observations have been proposed to explain and characterize this symmetry and

organization.

Caspar and Klug [55] proposed an elegant and simple formalism to describe

this symmetry. Their idea was that though icosahedral symmetry does not strictly

fall under the class of periodic crystallographic symmetry, but the local interfaces

observed by each protein on the capsid is exactly the same, a concept which was

termed as quasi-symmetry. Assuming that the capsid is a simple icosahedron with

20 triangular faces and 12 vertices with 5-fold symmetry, they showed a way to

unfold the triangles onto a 2D hexagonal grid such that the vertices of the trian-

gles have integer coordinates on the hexagonal grid (Figure 1.9(a)). Their method

enforced quasi symmetry by requiring that the proteins are placed on each corner

of each triangles. So, under the most basic representation, a capsid have 60 pro-
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teins. However, there are capsids with a much larger number of proteins on them.

Caspar and Klug explain the structure of larger proteins by increasing the size of

the triangles such that the corners still have integer coordinates. Hence, these large

triangles would contain many smaller (unit sized) triangles. If a large triangle has

two corners at (0, 0) and (h, k) coordinates, then the number of small triangles in

it is exactly h2 + k2 + hk. This number is called the T-number. So, according

to Caspar-Klug theory, a capsid has exactly 60T triangles, 12 vertices with 5-fold

symmetry corresponding to corners of large triangles, and 10(T − 1) locations of

six-fold symmetry corresponding to corners of small triangles which are not corners

of large triangles (Figure 1.9(b)). This simple theory successfully models most of

the observed spherical viral capsids (for example, (Figure 1.9(c))).

However, Caspar-Klug theory fails to explain the capsid structure of a some

viruses in the papilloma, papova and polyoma families. For example, the Simian

Virus 40 (of Papova family) is predicted to have T=7 capsid i.e 420 proteins with

12 locations with 5-fold symmetry and 60 locations with 6-fold symmetry, but

in reality it has only 360 proteins and 72 locations with 6-fold symmetry (Figure

1.10(a))[160]. Another example is the inner layer of the capsid of the Blue-tongue

virus which has 120 proteins or T=2, a fact considered impossible under the Caspar-

Klug model.

Recently, Twarock et al. proposed a new model with the assumption that the

local symmetries (the arrangement of proteins inside a large triangle) are also gov-

erned by icosahedral symmetry [143, 145, 193, 256–258]. The study of aperiodic

crystal symmetries show that lattices with 5-fold symmetry in 3D can be generated
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(a) (b)

Figure 1.10: (a) The capsid of the Polyoma virus cannot be tiled correctly using the
Caspar-Klug model. The locations and numbers of the proteins are wrong. (b) But
it can be correctly tiled using a set of kite and rhomb tiles. [fig/AssemblyProblem
taken from [256]]

by projection of a regular lattice of 6D. More specifically, a projection from the

root system D6 can be used to generate point samples in 3D which follow icosa-

hedral symmetry. However, Twarock et al. showed that specific affine extensions

of the icosahedral root system H3 can also be used to generate such point samples.

The sampled points are the locations of 5, 6 and 3 fold symmetries. They also

propose a set of tiles which can be used to cover the capsid surface by connecting

the sampled points. The set of tiles include Caspar-Klug’s equilateral triangles as

well as kite, dart and rhombus tiles. Similar to Caspar-Klug theory, these set of

tiles also place proteins at equivalent positions i.e. corners with equal angles. There

are also specific rules on which tiles can can share which of their edges with each

other. These additional set of tiles can be successfully used to explain the structures

and symmetry locations of the capsids for which Caspar-Klug theory fails (Figure
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1.10(b)).

Among other relevant research, Zandi et al. [259, 282] analyzed the capsid

structure by assuming that the building blocks are circular disks and showed that

the most energetically stable organization of such disks has icosahedral symmetry.

This study explains why icosahedral capsids are so prevalent in nature. Recently,

Mannige and Brooks [172] analyzed the structures of different families of icosa-

hedral viruses and determined a class of viral capsids which they call ‘canonical

capsids’. These canonical capsids can be tiled by the Caspar-Klug model. Using

simple topological constraints, it was also shown that in canonical viruses, each

prototile (protein) have exactly 5 interfaces with other prototiles. The same authors

also studied the distribution of dihedral angles at six-fold and 5-fold symmetry lo-

cations [171] and empirically established that the dihedral angles at the five fold

locations are exactly the same, but the dihedral angle at six fold locations increase

with their distance from five fold locations. This study suggests that larger cap-

sids have more probability of looking like icosahedrons with 20 flat triangles, and

smaller capsids would look like perfect spheres (where the proteins are arranged in

icosahedral symmetry).

The special class of multi-protein docking problem introduced in this the-

sis can predict the interactions of proteins within a tile, and also predict the inter-

tile interaction i.e. the rules governing the tile-tile contacts. The solution to this

multi-protein docking problem coupled with the mathematical formalism of the vi-

ral tiling theory also allows us to predict all possible structure of complete and

intermediate states of a capsid.
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