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Active Learning of an Action Detector on Untrimmed Videos

Sunil Bandla, M.S.Comp.Sci.

The University of Texas at Austin, 2013

Supervisor: Kristen Grauman

Collecting and annotating videos of realistic human actions is tedious, yet critical for train-

ing action recognition systems. We propose a method to actively request the most useful

video annotations among a large set of unlabeled videos. Predicting the utility of annotating

unlabeled video is not trivial, since any given clip may contain multiple actions of interest,

and it need not be trimmed to temporal regions of interest. To deal with this problem, we

propose a detection-based active learner to train action category models. We develop a

voting-based framework to localize likely intervals of interest in an unlabeled clip, and use

them to estimate the total reduction in uncertainty that annotating that clip would yield. On

three datasets, we show our approach can learn accurate action detectors more efficiently

than alternative active learning strategies that fail to accommodate the “untrimmed” nature

of real video data.

v



Contents

Acknowledgments iv

Abstract v

Chapter 1 Introduction 1

Chapter 2 Related Work 5

Chapter 3 Approach 8

3.1 Video Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Building the Action Detector . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Applying the Detector to a Novel Video . . . . . . . . . . . . . . . . . . . 11

3.4 Active Selection of Untrimmed Videos . . . . . . . . . . . . . . . . . . . . 13

Chapter 4 Experiments 18

4.1 Datasets and Implementation Details . . . . . . . . . . . . . . . . . . . . . 18

4.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Methods Compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 5 Conclusion 28

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



Bibliography 30

vii



Chapter 1

Introduction

Locating where an action occurs in a video is known as action localization or action de-

tection, while categorizing an action is called action recognition. The difficulty of these

tasks arises from several factors, such as intra-class variations, pose changes, incomplete

actions, and clutter. Researchers have made much progress in recent years to deal with these

issues, most notably with learning-based methods that discover discriminative patterns to

distinguish each action of interest, e.g. [28, 14, 16, 6, 43, 3, 22].

Of course, good learning requires good data. Unfortunately, data collection is par-

ticularly intensive for activity recognition, since annotators must not only identify what

actions are present, but also specify the time interval (and possibly spatial bounding box)

where that action occurs. With insufficient data, methods are apt to overfit and will fail to

generalize to intra-class variations at test time. Yet, the amount of manual supervision re-

quired to annotate large datasets [12, 23] with many action categories can be daunting and

expensive.

While active learning is a natural way to try and reduce annotator effort, its success

has been concentrated in the object recognition literature (e.g., [5, 32, 30, 33]). In fact, to

our knowledge, the only active learning efforts for video have focused on problems other

than activity recognition—namely, segmenting tracked objects [36, 7, 34] or identifying
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Figure 1.1: Left: If we somehow had unlabeled videos that were trimmed to the action

instances of interest (just not labeled by their category), then useful instances would be rel-

atively apparent, and one could apply traditional active learning methods directly. Right:

In reality, though, an unlabeled video is untrimmed: it may contain multiple action classes,

and it need not be temporally cropped to where actions of interest occur. This results in

an unlabeled feature distribution where useful and redundant candidates are hard to distin-

guish. Our approach takes untrimmed and unlabeled videos as input and repeatedly selects

the most useful one for annotation, as determined by its current action detector.

people [40] in video frames. We see that an important challenge in attempting to actively

select video for learning actions is video’s ongoing, “untrimmed” nature. Before passing

through the hands of an annotator, a typical video will not be trimmed in the temporal

dimension to focus on a single action (let alone cropped in the spatial dimensions). In

contrast, a typical image snapshot depicts only a limited number of objects, and may even

focus on a primary foreground object thanks to human photographer framing tendencies.

That makes images and objects more amenable to standard active learning paradigms.

Applying active learning to video clips is non-trivial. Most active learning algo-

rithms assume that data points in the unlabeled pool have a single label, and that the feature

descriptor for an unlabeled point reflects that instance alone. Yet in real unlabeled video,

there may be multiple simultaneous actions as well as extraneous frames belonging to no

action category of interest. As a result, untrimmed videos cannot be used directly to esti-

mate standard active selection criteria. For example, an uncertainty-based sampling strat-

2



egy using a classifier is insufficient; even if the action of interest is likely present in some

untrimmed clip, the classifier may not realize it if applied to all the features pooled together.

Requesting labels on such video would only waste the annotator’s effort. Figure 1.1 depicts

the underlying problem.

Our goal is to perform active learning of actions in untrimmed videos. To achieve

this, we introduce a technique to measure the information content of an untrimmed video,

rank all unlabeled videos based on these scores, and request annotations on the most valu-

able video.

The method works as follows. In order to predict the informativeness of an untrimmed

video, we first use an incrementally updated Hough-based action detector to estimate the

spatio-temporal extents in which an action of interest could occur. Whereas a naive ap-

proach would evaluate all possible spatio-temporal intervals, this step allows us to focus

on a small subset of candidates per video. Next, we forecast how each of these predicted

action intervals would influence the action detector, were we to get it labeled by a human.

To this end, we develop a novel uncertainty metric computed based on entropy in the 3D

vote space of a video. Importantly, rather than simply look for the single untrimmed video

that has the highest uncertainty, we estimate how much each candidate video will reduce the

total uncertainty across all videos. That is, the best video to get labeled is the one that, once

used to augment the Hough detector, will more confidently localize actions in all unlabeled

videos. We ask a human to annotate the most promising video, and use the results to update

the detector. The whole process repeats for a specific number of rounds, or until a given

budget of manual annotation effort is exhausted.

We evaluate our method on three action localization datasets. We examine recog-

nition accuracy as a function of the number of annotated videos, comparing our method

to both passive and active alternatives. The results demonstrate that accounting for the

untrimmed nature of unlabeled video data is critical; in fact, we find directly applying a

standard active learning criterion can even underperform the passive learning strategy. In
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contrast, the proposed approach offers substantial savings in human annotation effort, as it

identifies the most useful videos to label. Furthermore, our experiments offer insight into

the important next steps for research in this area.
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Chapter 2

Related Work

To recognize actions, some approaches leverage body tracking and shape analysis [21, 2,

18, 24], while others use the overall appearance and motion patterns in a video clip by

detecting local spatio-temporal interest points [13, 39] often followed by visual vocabulary

formation and Support Vector Machine (SVM) classification [28, 14, 16].

While most work focuses on the action recognition task alone, some recent work

tackles action detection, which further entails the localization problem. There are three

main strategies: tracking-based, sliding window, and voting-based. Person-centric detec-

tion approaches localize actions with the help of person tracking [21, 10, 41], while sliding

window methods check the classifier’s response for all possible subvolumes [6, 27], possi-

bly incorporating efficient search strategies [43, 42, 3]. Compared to the both of the above,

voting-based methods for action detection [17, 38, 41] have the appeal of circumventing

person tracking (a hard problem of its own), allowing detection to succeed even with partial

local evidence, and naturally supporting incremental updates to the training set. Our active

learning method capitalizes on these advantages, and we adapt ideas from [38, 41] to build

a Hough detector (Sec. 3.2). A voting-based method for object detection [15] treats features

detected in an image as object parts and uses them to cast votes in a 2D space for the object

center in an unseen image. The object center is then obtained by finding peaks in the vote
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space. While we tailor the details to best suit our goals, the novelty of our contribution is

the active learning idea for untrimmed video, not the action detector it employs.

Active learning has been explored for object recognition with images [9, 20, 5, 32,

30, 11, 33] and to facilitate annotation of objects in video [40, 36, 7, 34]. Object recog-

nition models are built in [32] using active learning with multiple instance learning (MIL)

to identify the type of annotation most useful on an image in the unlabeled set. Contex-

tual relationships between regions in an image are studied to find regions that need to be

labeled in an image [30] and active selection of object windows in images to be sent for

annotation is tackled in [33]. Among the above mentioned techniques, methods that ac-

commodate unlabeled multi-object images [32, 30, 33] have some parallels to our problem:

while our method must reason about the informativeness of any possible space-time region

in an untrimmed video, those methods must reason about the informativeness of objects

whose exact spatial extents within the image are unknown. However, whereas the image-

based methods can exploit powerful segmentation algorithms to identify candidate regions

that might be objects, there is no obvious analogy to identify candidate regions that might

be individual actions in video; part of our contribution is showing how voting in space-time

can generate good candidates. Unlike any of the above methods, we propose to actively

learn an action detector.

Active learning itself has been studied for many years in machine learning [29].

As discussed above, untrimmed video makes direct application of existing active learning

methods problematic, both conceptually and empirically, as we will see in the results. We

devise a selection criterion (Sec. 3.4) based on the classic idea of expected error reduc-

tion as evaluated on unlabeled data, which is statistically optimal [4, 25]. Various forms of

expected error reduction have been explored in many domains, including object recogni-

tion [32, 30, 11]. In [11], active learning is used to determine the type of annotation request

to be made on images. The authors evaluate an annotation’s influence by looking at the

amount of entropy reduced on the labels of the entire data. Our formulation is distinct in
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that it handles active learning of actions in video, and it includes a novel entropy metric

computed in a space-time vote space.

Aside from active learning, researchers have also pursued interactive techniques

to minimize manual effort in video annotation. This includes semi-automatic tools that

make crowd-sourcing video annotation easier [35, 44], interactive segmentation methods

for object labeling [37, 19], as well as using external meta-data like movie scripts to find

potentially relevant content for a specified set of actions [14, 6]. While all share our goal

of reducing the load on human labelers, our focus is to select which videos should even be

labeled, not to make the labeling procedure itself easier.
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Chapter 3

Approach

Given a small pool of labeled videos, our method initializes a voting-based action detector

for the class of interest (e.g., an “answer phone” detector). Then we survey all remaining

unlabeled videos, for which both the action labels and intervals are unknown, and identify

the video whose annotation (if requested) is likely to most improve the current detector. To

measure the value of each candidate video, we predict how it would reduce the uncertainty

among all unlabeled videos. We gauge uncertainty by the entropy in the vote space that

results when the current detector’s training data is temporarily augmented to include the

candidate’s predicted action intervals. If our method works well, it will produce an accurate

detector with minimal total manual annotations. Next we explain the details of each step.

3.1 Video Annotations

The few labeled videos used to initialize the action detector are annotated with both the

temporal extent of the action as well as its spatial bounding box within each frame. In

contrast, videos in the unlabeled pool are not trimmed to any specific action. This means

they could contain multiple instances of one action and/or multiple different action classes.

When our system requests a manual annotation for a clip, it will get back two
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Figure 3.1: Our interface that annotators use to trim the actively requested videos.

pieces of information: 1) whether the action class of interest is present, and 2) if it is,

the spatio-temporal subvolume where it is located. To aid in the latter, we enhanced the

VATIC tool [35] to allow annotators to specify the temporal interval in which an action is

located. The interface allows the user to play the video, jump around in time with a slider,

and quickly place start and end points. See Figure 3.1. We will share our interface publicly

to assist other researchers’ labeling efforts.

3.2 Building the Action Detector

Our active learning approach requires an action detector as a subroutine. Taking into ac-

count our need for fast incremental updates with new training data, as well as our desire

to detect actions with only partial evidence, we opt for a voting-based detector. We use

local space-time features to vote on the localization parameters of the action, in a similar

spirit to [38, 41]. In this section we explain how the detector is trained and updated; in the

subsequent section we explain how it is applied to new data.

We first detect space-time interest points (STIPs) [13] (see Figure 3.2(a)) in the

initial set of training videos T . Then at each interest point, we extract a histogram-of-

optical-flow (HoF) and histogram-of-oriented-gradients (HoG) feature [14]. HoG features
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(a) Space-Time Interest Points (b) HoG features

Figure 3.2: Space-Time Interest Points (STIPs) detected on a frame and visualization of

HoG features extracted in a STIP’s neighborhood.

capture the local shape and appearance in space-time volumes in the neighborhood of de-

tected STIPs and HoF features capture the optic flow (see Figure 3.2(b)). We cluster the

HoG and HoF descriptors separately using k-means to build two visual vocabularies. Now

every local feature is associated with two visual word indices whog and whof . Given these

features, training the detector entails two main steps: 1) populating the Hough tables, and

2) prioritizing the votes of more discriminative words. See Figure 3.3 for an illustration of

the training phase.

For the first step, we build one Hough table for HoG and one for HoF, denotedHhog

and Hhof . The two tables are indexed by their respective visual vocabularies. For each

local feature detected in the bounding volume of a positive training instance, we identify

its associated visual words (the nearest k-means cluster centers whog and whof ). Then, for

those words, we add an entry in the Hough tables consisting of the 3D displacement vector

between the local feature’s (x, y, t) coordinates and the action’s center.

For the second step, we rank the words in both tables according to their discrim-

inative power for the action of interest. Following [38], we use precision and recall. Let
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Figure 3.3: Overview of training of the detector.

Tp ⊆ T consist of the positive labeled training intervals. For each HoG or HoF word w,

PRECISION(w) =

∣

∣T w
p

∣

∣

|T w| ; RECALL(w) =

∣

∣T w
p

∣

∣

|Tp|
,

where
∣

∣T w
p

∣

∣ is the number of positive intervals containing word w, |Tp| is the number of

positive intervals, and |T w| is the total number of training examples with word w (whether

positive or negative). We score each word by its F -measure, i.e., the harmonic mean of its

precision and recall. We sort the HoG and HoF words separately by their F -measures, and

maintain the sorted listsWhog andWhof as part of the detector. At test time, only the most

discriminative words will cast votes.

Our full action detector D trained on data T consists of the Hough tables and sorted

discriminative words: D(T ) = (Hhog,Hhof ,Whog,Whof ). Adding a newly labeled pos-

itive instance entails both expanding the Hough table and revising the F -scores; adding a

negative entails revising the F -scores only. Thus, as active learning proceeds, certain words

may gain or lose entry into the list of those that get to cast votes during detection.

3.3 Applying the Detector to a Novel Video

Given a novel test video, we detect any space-time subvolumes likely to contain the action.

First, we extract STIPs and HoG/HoFs, and map them to visual words. Then, for any words
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Figure 3.4: Overview of application of the detector on an unseen video.

appearing in the top N = 100 discriminative words in Whog and Whof , we look up the

corresponding entries inHhog andHhof , and use those 3D displacement vectors to vote on

the probable action center (x, y, t). We apply Mean-Shift clustering on the 3D vote space

to discover the primary modes, discarding any clusters with fewer votes than the average

cluster.

To obtain the bounding volume of the detected action, we backproject from these

surviving vote clusters to features in the video. That is, we collect the 3D positions of

all local features whose votes contributed to a given cluster. Then the coordinates of the

detected action’s bounding volume are determined by the minimum and maximum value of

those backprojected positions in each dimension. See Figure 3.4 for an illustration of how

the detector is applied on a novel video.

This voting procedure assumes that an action at test time will occur at roughly the

same time-scale as some exemplar from training. It maintains some flexibility to time-scale

variations, since any variation present in the training set is captured, and the clustering of

votes into broad “bins” permits leeway in the precise alignment.

Finally, we sort the resulting detection hypotheses by the number of votes in the

clusters that led to them. In the ideal case, a true detection would have nearly all votes cast

near its action center. Hence, we treat vote count as a measure of detection confidence.
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3.4 Active Selection of Untrimmed Videos

At this stage, we have an action detector D(T ), and an unlabeled untrimmed pool of video

clips U . The active learning loop iterates between examining the unlabeled data, requesting

the most useful annotation, and updating the detector.

The key technical issue is how to identify the untrimmed video that, if annotated,

would most benefit the detector. In active learning, the statistically optimal criterion is to

select the unlabeled data point that leads to the greatest expected reduction in error on all

unlabeled data once used to augment the training set, as doing so optimizes the metric that

the classifier will ultimately be evaluated on [4, 25]. Motivated by this general idea, we

define a criterion tailored to our problem setting that seeks the unlabeled video that, if used

to augment the action detector, would most reduce the vote-space uncertainty across all

unlabeled data. Specifically, the best video v to annotate is:

v∗ = argmax
v∈U

max
l∈L

S(T ∪ vl), (3.1)

where L = {+1,−1} is the set of possible labels, and vl denotes that the video v has been

given label l. S(·) is a scoring function that takes a training set as input, and estimates the

confidence of a detector trained on that data and applied to all unlabeled data (to be defined

next). Thus, the objective function considers how the detector might change after updating

it with any possible next annotation.

With untrimmed videos, scoring confidence is non-trivial. In particular, if we were

to consider vl as a potential positive (denoted v+) by simply updating the detector with

vote vectors extracted from all features within it, we are likely to see no reduction in

uncertainty—even if that video contains a great example of the action. The reason is that

the features outside the true positive action interval would introduce substantial noise into

the Hough tables.

We overcome this problem by first estimating any occurrences of the action within
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v using the current detector and the procedure given in Sec. 3.3, and then predicting their

individual impact. Suppose there are K detected occurrences in v. We use the bounding

volume for each one in turn to temporarily augment the training set T . This yields a series

of K temporarily modified detectors D(T ∪ v̂+

k ), for k = 1, . . . , K, where v̂k denotes the

k-th detection subvolume. We estimate the confidence value for the entire unlabeled dataset

U according to each of these detectors in turn, and record the maximum value observed:

S(T ∪ v+) = max
k=1,...,K

VALUE
(

D(T ∪ v̂+

k )
)

. (3.2)

Since the unlabeled video may very well contain no positive intervals, we must also consider

it as a negative instance. This yields a single modified detector in which v is introduced as

a negative instance (denoted v−), with the following confidence score:

S(T ∪ v−) = VALUE
(

D(T ∪ v−)
)

. (3.3)

Recall that positive intervals modify the detector in two ways: 1) by updating the Hough

tables with votes for the new action centers, and 2) by updating the top N most discrimi-

native words in Whog and Whof . Negative videos modify the detector only in terms of the

latter.

Note that this stage of selection is well-served by voting: whereas a naive approach

would evaluate all possible spatio-temporal intervals, with voting we can efficiently hypoth-

esize a small subset of candidates per video. Furthermore, the large number of temporary

detector updates are efficiently handled by our method, since incrementally adding and re-

moving displacement vectors from Hough tables are lightweight operations.

The final important piece is how to compute the VALUE function in Eqns. 3.2

and 3.3, which ought to reflect how well the detector can localize actions in every unla-

beled video. To this end, we propose a entropy-based metric computed in the vote space.

We use each candidate detector (modified as described above) to cast votes in each unla-
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X
Time −>

Entropy = 0.66

Y
 −

>

(a) High confidence

X
Time −>

Entropy = 0.88

Y
 −

>

(b) Low confidence

Figure 3.5: Example vote spaces for unlabeled videos. In 3.5(a), the entropy value is low

because of good clusters around centers of the action. In 3.5(b), it is high, as there is no

well-defined cluster in the vote space. Accordingly, we would predict high confidence for

the video in 3.5(a) and low confidence for 3.5(b).

beled video v ∈ U , using the procedure in Sec. 3.3. Each video v yields a set of continuous

3D votes Vv, where each vote is a (x, y, t) coordinate. Intuitively, a vote space with good

cluster(s) indicates there is consensus on the location(s) of the action center, whereas spread

out votes suggest confusion among the features about the action center placement.

To capture this, we quantize the vote space into uniformly sized 3D bins1 and com-

pute entropy. See Figure 3.5. Let cb denote the count of votes in bin b. We define the

probability that an action center occurs in bin b as p(b) =
cb

∑

b cb

. Then the normalized

entropy over the entire vote space Vv when using detector D(T ) is:

H
(

Vv, D(T )
)

=
−∑

b p(b) log(p(b))

log B
, (3.4)

where B denotes the total number of 3D bins.

Using this entropy-based uncertainty metric, we define the confidence of a detector

1In our implementation, we fix the size of the bins to be fairly coarse, at about one third of the spatial

dimensions and about one second in the temporal dimension. We err on the side of large bins in order to catch

candidates that might be useful.

15



in localizing actions on the entire unlabeled set:

VALUE
(

D(T )
)

=
1

|U|
∑

v∈U

(1 − H
(

Vv, D(T ))
)

. (3.5)

We stress that our method does not choose the individual video that has the lowest

entropy. Rather, it selects the video which is most expected to reduce entropy among all

unlabeled videos. The distinction is important. The former would be susceptible to selecting

uninformative false positive videos, where even a small number of words agreeing strongly

on an action center could yield a low entropy score. In contrast, our method is unlikely to

choose such cases, as they are unlikely to reduce entropy across all the videos. (We will

see this expected advantage play out in the results, in our comparison to an Active Entropy

baseline.) Due to the nature of voting, spurious votes from bad examples are unlikely to

agree. Essentially, our method helps discover true positive intervals, since once added to

the detector they most help “explain” the remainder of the unlabeled data.

Our objective uses a max in Eqns. 3.1 and 3.2, as opposed to an expectation over all

possible labels, making ours an “optimistic” [8] estimate of risk. In early experiments, we

found this to be better in practice, likely because it avoids clouding the scoring function with

noisy posteriors. Intuitively, our method predicts the “best case” impact of any unlabeled

video. This means, for example, that a false positive interval in an unlabeled video will not

overshadow the positive impact of a true positive interval in the same video.

To recap, the selection stage consists of optimizing Eqn. 3.1: we consider each

unlabeled video in turn, and score its predicted influence on the uncertainty of all unlabeled

videos. Each time a candidate video is used to introduce changes for the modified detectors

(Eqn. 3.2 and 3.3), those changes are rolled back after the scoring function is computed.

Finally, we request annotations for the most promising video, and use them to update the

detector permanently. Then the process repeats. Figure 3.6 depicts the data flow.

On UT-Interaction dataset with an unlabeled pool of 34 videos, our algorithm takes

roughly 40 minutes for selecting one candidate video for annotation. The run-time of our
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Action Detector 
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Temporary detectors 
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Entropy in vote space of unlabeled videos 
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Annotator 

… 

Entropy = 0.66 Entropy = 0.66 

Entropy = 0.88 Entropy = 0.88 

Hough  

Action Detector 

… 

… 

…
 

…
 

Initial labeled set 

Figure 3.6: Overview of our active learning algorithm. We initialize our voting-based action

detector with a small set of labeled videos (top center). Then we use the detector to predict

intervals of the class of interest in the unlabeled videos (top right). We update the current

detector temporarily with each interval predicted (bottom right), and use it to compute the

entropy in the vote space of every unlabeled video. The total entropy in the unlabeled videos

is then used to gauge the uncertainty reduced by the temporary detector (left bottom). For

the next round of annotation, we select the video that produces the highest reduction in

uncertainty, and update the current detector with the obtained annotation (top center). The

cycle repeats with the new detector.

algorithm depends on the length of unlabeled videos, the number of features extracted from

them and the clustering algorithm used for finding clusters in vote space. More significantly,

it depends on the size of the unlabeled set since we evaluate the value of a temporary

detector by examining the vote space of all unlabeled videos. Splitting up the untrimmed

videos into smaller segments (using shot detection or at uniform intervals) such that they

have at most 200-300 frames could be done to make it faster. Shorter videos have fewer

features that vote for an action center, and less number of votes helps find clusters quickly.
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Chapter 4

Experiments

We validate our approach on three datasets, and compare to several alternative selection

strategies.

4.1 Datasets and Implementation Details

We use three public datasets: Hollywood [14], UT-Interaction [26], and MSR Actions

1 [43] (See Figure 4.1 for examples). These datasets have the spatio-temporal annotations

needed for our experiments. Hollywood contains 8 action classes (AnswerPhone, GetOut-

Car, HandShake, HugPerson, Kiss, SitDown, SitUp, StandUp) and 430 total videos. We

use the spatial annotations provided by [22] and improve the ground truth temporal trim-

ming with our interface (Sec. 3.1). UT-Interaction contains 6 actions (HandShake, Hug,

Kick, Point, Punch, Push) and 20 total videos. MSR Actions contains 3 actions (Clapping,

Waving, Boxing) and 16 total videos. Since the latter two datasets have relatively few se-

quences, we split them into smaller segments with shot detection [1]. If an action is split

between two shots, the shot with the major portion is assigned that action’s label. This step

yields 80 total videos for UT and 45 for MSR.

We set the vocabulary size k = 1500 for Hollywood and k = 1000 for UT and

MSR. We set the Mean-Shift bandwidth as 1.2 ×
√

F , where F denotes the number of
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AnswerPhone GetOutCar HandShake HugPerson Kiss SitDown SitUp StandUp

(a) Hollywood

(b) UT-Interaction

(c) MSR Action 1

Figure 4.1: Example frames from the three datasets used for our experiments.
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frames in a video. We fix the bin size for entropy computation to (40, 40, 30) pixels in

the (x, y, t) dimensions. While Mean-Shift can return a variable number of modes, for

efficiency during active selection we limit the number of candidates per video to K = 2.

We initialize all models with the same L random positive and negative labeled ex-

amples, and average results over 15 random sets. We setL as a function of the total positives

available per action, yielding L = 4 for UT, L = 3 for MSR, and L = 8 for Hollywood.

The exception is GetOutCar and SitUp in Hollywood, for which the dataset contains only

13 and 11 positive exemplars; for these classes we have only enough data to initialize with

L = 4. For Hollywood we use the standard test split of 211 videos; for UT-Interaction and

MSR Actions we take 38 and 18 test videos, respectively. The test set is constant for all

iterations and runs.

4.2 Evaluation Metric

We quantify performance with learning curves: after each iteration, we score action local-

ization accuracy on an unseen test set. Steeper and higher learning curves are better. We

consolidate overlapping detections with the greedy algorithm in [38]. We score the top

three detections per video, which is the maximum to appear in a test video. As is standard,

we use overlap accuracy
A ∩ B

A ∪ B
between a detection A and ground truth interval B. To be

a true positive, a detection must overlap by at least 1/8, following [43]. Below we report

both raw overlap scores as well as the percentage of accuracy achieved when compared to

a detector trained on the entire training set. The latter makes it easy to interpret how far a

detector is from the maximum accuracy possible were all data labeled.

We run for 10-20 rounds, depending on the dataset size, at which point our method

has typically discovered all positive instances.
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4.3 Methods Compared

We test two variants of our approach: one that uses the true action intervals when evalu-

ating a video for active selection (Active GT-Ints), and one that uses the (noisier) Hough-

predicted intervals (Active Pred-Ints). Active-GT-Ints essentially shows the full potential

of our method. It is valuable because it isolates the impact of the proposed active learning

strategy from that of the specific detector we use.

Since no prior work does active learning for action classification (let alone detec-

tion), we designate four informative baselines that reveal the impact of our method design:

• Passive selects randomly from the unlabeled set.

• Active Classifier uses margin-based uncertainty sampling, a common active selec-

tion strategy [31]. We build an SVM action classifier using a χ2 kernel and bag-of-

words histograms computed for every bounding volume in the initial labeled videos.

The classifier predicts the probability each unlabeled video is positive, and we request

a label for the one whose confidence is nearest 0.5.

• Active Entropy is a detector-based method. This method selects the most uncertain

video for labeling, where detector uncertainty is computed with the same vote space

entropy in Eqn. 3.4.

• Active MS-Ints follows the approach of Active Pred-Ints, but uses high-density

STIP volumes in a video, obtained by clustering the 3D locations of STIPs using

Mean-Shift. The top 2 intervals (1 in case of Hollywood) with high STIP density are

used in active selection.

All methods use the same features and Hough detector; thus, any differences in accuracy

are attributable to the quality of their annotation requests.
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Figure 4.2: Results on the Hollywood dataset.

4.4 Results

Figure 4.2 shows results for the Hollywood actions.1 In 7 of the 8 action classes, Active-

GT-Ints clearly outperforms all the baseline methods. On SitUp, however, it is a toss-up,

likely because parts of this action are very similar to the beginning and ending sequences

of StandUp and SitDown, respectively, and hence the detector votes for action centers of

other classes. When we use the predicted intervals, our accuracy decreases as expected,

but is still strongest in more than half the cases. Looking more closely, we see that our

1In all results, the method’s starting points can vary slightly due to the randomized Mean-Shift clustering

step of the detector.
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advantage is best for those classes where more videos are available in the dataset; this allows

us to initialize the detectors with more positive samples (L = 8), and the stronger initial

detectors make uncertainty reduction estimates more reliable. Notably, however, even with

those same stronger detectors, the simpler active baselines underperform ours.

Figure 4.3 shows the results on the UT-Interaction dataset. Results are fairly con-

sistent. Active GT-Ints is always strongest, showing the full potential of our active selection

strategy. On the class Hug we see the biggest advantage for both variants of our method,

likely because, unlike classes Kick and Push, there are just a few distinct variations between

different executions of Hug. Our active detector quickly explores the distinct useful types

for annotation. It is also the reason for the highest recognition accuracy for Hug when com-

pared to other classes. However, our predicted intervals are weak on the class Point. In

this action, the actor stands still and points at something, which leads to fewer STIPs in the

action bounding volume, and thus an insufficient set of discriminative words for voting.

We find the Hough detector occasionally generates large clusters around action cen-

ters of a different action class. This can mislead the entropy computation and result in low

entropy values for negative videos. While negative videos can still be informative to re-

fine the words’ F -measures, typically positive instances yield faster payoff by expanding

the Hough tables. This suggests that there is scope for improvement in the discriminative

aspect of our detector.

Figure 4.4 shows the MSR Actions results. We see the advantage of our approach

early in the learning curves for Clapping and Boxing, getting the biggest boost with the

least annotator input. The periodic nature of the MSR Actions poses a challenge for all

methods. Periodicity is problematic for voting because the features specific to the action

re-occur at multiple places in the bounding volume. At test time, this causes confusion in

the vote space, since the same word casts many diverging votes.

Throughout our experiments, none of the baselines perform consistently well for

all actions. The Active Entropy baseline is often the weakest. It selects mostly negative
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Figure 4.3: Results on the UT-Interaction dataset.

examples for labeling, and does not work as well as uncertainty-based techniques do in

traditional settings. This supports our claim that simply estimating individual video uncer-

tainty is insufficient for our setting; our use of total entropy reduction over all unlabeled

data is more reliable. Interestingly, the Active Classifier baseline often underperforms the

Passive approach, again due to its failure to find positive samples for labeling. This under-

scores the importance of reasoning about the untrimmed nature of video when performing

active learning.

The Active MS-Ints baseline uses intervals with a high volume of STIPs as interval

predictions. The presence of STIPs is usually an indication of motion in a video. So the

volumes enclosing these STIPs provide good estimates of action intervals. Using these in-

tervals in our active selection algorithm provides us with a reasonable baseline approach to

gauge the impact of the interval predictions (made by our detector) used in Active Pred-Ints.

The Active MS-Ints baseline performs poorly in most of the cases when compared to Active

Pred-Ints (especially on Hollywood). Since the only difference between these two methods
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Figure 4.4: Results on the MSR Actions dataset.

is the interval predictions used in active selection, we can conclude that the stronger learn-

ing curves for Active Pred-Ints are a direct result of the better interval predictions made by

our voting-based detector.

The difference between Active GT-Ints and Active Pred-Ints reveals that improved

interval prediction will have the most impact on our results, and so future work should focus

on this aspect. Nonetheless, it is clear that the voting-based intervals we predict are better

than simpler alternatives.

Figure 4.5 shows Active Pred-Int’s mean overlap accuracy per dataset at three dif-

ferent points: 1) at the onset, using the small initial labeled set, 2) after 10-20 rounds of

active learning, and 3) after adding all the videos with their annotations. Typically the ac-

tive approach produces a detector nearly as accurate as the one trained with all data, yet it

costs substantially less annotator time, e.g., using as little as 12% of the total annotations

for the largest dataset, Hollywood.

In some cases, the actively chosen annotations yield a detector that actually gener-

alizes better at test time than the one trained with all possible examples. Hence our overlap

plots in Figures 4.3, 4.4 can have overlap accuracy greater than 100%. This suggests that

the role of intelligent selection may go beyond simply saving annotator time; rather, it has

potential to eliminate data that even if labeled is not useful. Again, this is an upshot of for-

mulating the selection criterion in terms of total uncertainty reduction on all unlabeled data.
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Train set SitDown HandShake StandUp AnswerPhone GetOutCar HugPerson Kiss SitUp Mean

Initial L ex only 0.0918 0.0556 0.0988 0.0778 0.0446 0.1295 0.0411 0.0560 0.0744

After 20 rounds active 0.1271 0.0702 0.1508 0.0947 0.0677 0.1635 0.0696 0.0733 0.1021

Full train set (219 ex) 0.1758 0.1008 0.2431 0.1119 0.1375 0.2624 0.1475 0.0941 0.1591

(a) Hollywood

Train set HandShake Hug Kick Point Punch Push Mean

Initial L ex only 0.1981 0.3029 0.1466 0.0107 0.1094 0.2022 0.1616

After 15 rounds active 0.2574 0.3804 0.2175 0.0164 0.1758 0.2689 0.2194

Full train set (42 ex) 0.2708 0.3324 0.3218 0.0478 0.1897 0.3058 0.2447

(b) UT-Interaction

Train set Clapping Waving Boxing Mean

Initial L ex only 0.2288 0.2318 0.1135 0.1914

After 10 rounds active 0.3379 0.3134 0.1043 0.2519

Full train set (27 ex) 0.3132 0.2582 0.0819 0.2178
(c) MSR Actions

Figure 4.5: For each dataset, we compare the detector’s initial accuracy (first row per table),

its accuracy after active learning with our method (middle row per table), and its accuracy

if all available training instances are used (last row per table). By focusing annotation effort

on only the most useful 10-20 videos, our method yields a detector nearly as accurate as the

one trained with all data.

Rather than request labels on individual videos that look uncertain, our method searches for

examples that help explain the plausible detections in all remaining unlabeled examples.

To give a concrete sense of the improvement our method offers, we analyze the

significance of points in overlap accuracy. Suppose a video has one ground truth interval

of time-length 50 and window size 300 × 300. Final spatio-temporal overlap gains of 2-

3 points indicate a detection that correctly identifies 10-18% more of the frames for the

action, or 5-10% more of correct pixels in the spatial dimension, or some combination

thereof. Thus, the differences between the baselines (shown in the learning curves) and

our raw gains relative to the initial models (shown in the tables) are noticeable in practical

terms. Figure 4.6 shows some example detections alongside ground truth.
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Figure 4.6: Detections for Clapping (top row), Waving (middle), and Boxing (bottom) from

MSR Actions. The bounding boxes of our detections (red) align closely with those of the

ground truth (green), after only 15 rounds of annotation.
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Chapter 5

Conclusion

Untrimmed video is what exists “in the wild” before any annotators touch it, yet it is ill-

suited for traditional active selection metrics. We introduced an approach to discover infor-

mative action instances among such videos. Our main idea is to use a voting-based action

detector to localize likely intervals of interest in an unlabeled clip, and use them to estimate

the value of annotating that unlabeled clip. The value of annotating a video is measured

by the total reduction in uncertainty of all unlabeled videos that it would produce if it were

labeled. We also introduced a novel technique to compute the uncertainty of an action

detector by finding entropy in the 3D vote space of the video. We show that a selection

method that accounts for the untrimmed nature of videos can help us make better decisions

in selecting clips for annotation, and hence produce detectors that are better when compared

to the ones built by selecting videos using simple active selection techniques. Our results

also demonstrate that active learning with a few training sample could sometimes produce

detectors that can generalize better at test time than the ones built using the entire training

set. Our results show the potential to reduce human annotation effort and produce more

reliable detectors with well-chosen examples.
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5.1 Future Work

Since the accuracy of the predicted intervals used in the active selection phase is paramount

to the success of our selection algorithm, we are interested in exploring alternate detec-

tion strategies that can produce more accurate interval predictions. Also, multi-class active

selection is another avenue for future work that can reduce a lot of computation time by

evaluating the informativeness of an unlabeled video for multiple classes in a single shot.

The videos we use in this work are from challenging state-of-the-art action recogni-

tion/detection datasets. While for some of the datasets we automatically break the original

videos down into shorter ones, those shorter videos also contain multiple actions, and we do

parse the sub-parts of each video for evaluation. In general, an interesting future direction is

to explore alternative ways to pre-process long videos to ”undersegment” them in an action

class-independent manner, prior to running the detector. This is due to the fewer number

of actions one has to evaluate in a video, shorter processing time for each video and better

usability with the annotation tools. As mentioned previously, making the detector better

and more discriminative also helps in this regard. These are some possible interesting and

challenging directions for future work in this domain.
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