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Reliability is one of the important issues of recent microprocessor design.  

Processors must provide correct behavior as users expect, and must not fail at any time.  

However, unreliable operation can be caused by excessive supply voltage fluctuations 

due to an inductive part in a microprocessor power distribution network. This voltage 

fluctuation issue is referred to as inductive or di/dt noise, and requires thorough analysis 

and sophisticated design solutions. This dissertation proposes an automated stressmark 

generation framework to characterize di/dt noise effect, and suggests a practical solution 

for management of di/dt effects while achieving performance and energy goals. 

First, the di/dt noise issue is analyzed from theory to a practical view. Inductance 

is a parasitic part in power distribution network for microprocessor, and its characteristics 

such as resonant frequencies are reviewed. Then, it is shown that supply voltage 

fluctuation from resonant behavior is much harmful than single event voltage 

fluctuations.  Voltage fluctuations caused by standard benchmarks such as SPEC 

CPU2006, PARSEC, Linpack, etc. are studied.     

Next, an AUtomated DI/dT stressmark generation framework, referred to as 

AUDIT, is proposed to identify maximum voltage droop in a microprocessor power 

distribution network. The di/dt stressmark generated from AUDIT framework is an 
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instruction sequence, which draws periodic high and low current pulses that maximize 

voltage fluctuations including voltage droops.  AUDIT uses a Genetic Algorithm in 

scheduling and optimizing candidate instruction sequences to create a maximum voltage 

droop. In addition, AUDIT provides with both simulation and hardware measurement 

methods for finding maximum voltage droops in different design and verification stages 

of a processor. Failure points in hardware due to voltage droops are analyzed. 

Finally, a hardware technique, floating-point (FP) issue throttling, is examined, 

which provides a reduction in worst case voltage droop.  This dissertation shows the 

impact of floating point throttling on voltage droop, and translates this reduction in 

voltage droop to an increase in operating frequency because additional guardband is no 

longer required to guard against droops resulting from heavy floating point usage.  This 

dissertation presents two techniques to dynamically determine when to tradeoff FP 

throughput for reduced voltage margin and increased frequency.  These techniques can 

work in software level without any modification of existing hardware.  
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Chapter 1:  Introduction 

For decades, microprocessors have been vastly used in our everyday lives; from 

electronic devices for personal use to workstations for business purposes and to 

supercomputers for scientific calculations. To support such various purposes and user 

experiences, microprocessor design needs to set different performance, power, and 

reliability goals according to the applications.  

High performance is crucial for scientific calculations that need to be processed as 

fast as possible.  Boosting the clock speed of a processor is one of the simplest ways of 

achieving the high performance goal. However, because of the increasing gap between 

processor and memory speeds, referred to as memory wall, such frequency boost is 

inefficient for increasing performance. To fill in the performance gap between processor 

and memory, designers have integrated a larger cache into the processor to compensate 

for a long latency of off-chip memory accesses.  

Low power consumption is important for mobile hand-held devices to sustain a 

battery life as long as possible. Microprocessors also require low-power operations to 

reduce heat and resulting needs for expensive cooling method. As technology scales 

down, power density goes up and the increasing power density will cause more thermal 

hotspots on a microprocessor. A dynamic voltage and frequency scaling effectively 

reduces the total power consumption of a processor, and other techniques such as clock 

gating and power gating are useful to reduce dynamic power consumption. 

Reliability is a fundamental requirement of processor design. Processors must 

work correctly across a range of applications regardless of process variations, voltage 

variations, environmental noise, and the aging of the system. However, guaranteeing 
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reliability is one of the most complicated tasks in microprocessor design; it is difficult to 

analyze and resolve a reliability problem that usually lies across multiple design stages in 

a complex architecture. 

Recently microprocessor design entered this new era where power and reliability 

are prime design constraints. The traditional design goal, high performance, is hard to 

achieve by increasing CPU clock frequency only. Improving performance with frequency 

boost is not simple anymore because the frequency boost is limited by power and 

reliability constraints. Generally increasing frequency needs more power, and higher 

frequency makes a processor circuit more susceptible to voltage noise. As power 

increases, the processor’s temperature quickly rises and gives more variations on 

reliability.       

Using parallelism such as multiple cores and multiple threads can achieve high 

performance goal. However, multiple cores and multiple threads on the same processor 

not only require additional power consumption but also induce more switching noise, 

compared to a single core and a single thread.  Multiple critical paths would exist and it 

is difficult to identify and analyze all of them. 

Supply voltage noise issue caused by rapid current changes will be more critical 

to guarantee the reliability in future microprocessors. Cloud computing and big data 

require high performance and low power processors to serve many users simultaneously. 

The processor used in server systems will integrate multiple cores, even GPUs, into a 

single chip as many as possible to improve performance and power efficiency. Because 

of the power issues frequently referred to as the power wall problem, the maximum 

frequency and power will hardly go beyond 4GHz and 200W, respectively. Power supply 

voltages have been getting closer to the threshold voltages of underlying transistors, so 
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the magnitude of supply voltage fluctuations will not shrink much. However, due to the 

more complex architecture, analyzing critical paths will be more difficult. As technology 

scales, supply voltage noise will give more impact on cell delay [65]. In other words, 

process technology advance will increase the sensitivity of cell delay. In addition, the 

smaller feature size, the more susceptible to process and thermal variations 

microprocessor circuits are.  Therefore, it is important to be aware of supply voltage 

noise issues because both the complexity of microarchitecture and the variability of 

microprocessor circuit will increase in future microprocessor design. 

This dissertation focuses on reliability issues arising from supply voltage 

fluctuations. Supply voltage fluctuation, referred to as inductive or di/dt noise, is caused 

by sudden change of current draw in microprocessors and the power distribution network. 

Parasitic inductance on the die, package and the board often disturb the current flow from 

the voltage regulator on board to processor components on die. Such disturbance causes a 

temporary lack of electric charge that is needed for powering the processor components. 

Decoupling capacitance can be a solution for storing and providing electric charge to 

processor components when voltage emergency arises. However, capacitance can also 

induce voltage fluctuation because of the characteristics of RLC circuits. 

The rate of current change is determined by program behavior. When an 

instruction sequence flows through a microprocessor architecture, internal 

microprocessor components will be turned on and then be turned off, and it changes 

current draw. It is difficult to predict the amount of current draw cycle by cycle because 

many instructions are on the fly across different pipeline stages and different paths. There 

are many sensitive paths on cores that can lead to catastrophic failures when the system is 

stressed by reduced noise margins, and it is imperative that one have the tools necessary 
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to identify these paths [45]. 

Increasing CPU clock frequency for high performance has been limited because 

of power constraints. One of the most effective ways to decrease power is to scale down 

the supply voltage. However, circuits become more susceptible to supply voltage noise 

due to near threshold voltage operations, and even a small amount of supply voltage 

fluctuation may cause reliability problems at the lower power supply voltages. Now 

designers need to analyze the supply voltage noise and devise solutions for guaranteeing 

reliable processor behavior with very low supply voltages. Low power goals and 

techniques need to be managed in tandem with the reliability goals of the processor. 

Voltage margins (a.k.a. voltage guardband) are introduced to compensate for 

potential supply voltage fluctuations in the system.  Fluctuations caused during program 

execution must stay within allowed margins, as shown in Figure 1.1.  These margins 

need to be designed carefully to be power-efficient and prevent malfunctions from 

program-induced voltage fluctuations.  The voltage margins guard against process 

variations, system power supply variation, and workload induced voltage droops.  These 

margins are set conservatively, and are on the order of 15% to 20% of supply voltage 

[23].  However, as shown later in this dissertation, standard applications running under 

normal conditions do not exhibit voltage variations anywhere close to the worst case 

margins.  By guarding against the worst case scenarios, a lot of performance is lost. For 

instance, according to Reddi et al. [55], a 20% voltage margin translates into a 33% 

frequency loss. 
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Figure 1.1:  Voltage margins to manage fluctuations. 

 

1.1.  MOTIVATION 

This section describes the motivation and background of this research. 

1.1.1.  Automatic Stressmark Generation  

Specialized benchmarks, referred to as stressmarks, are used to study the 

susceptibility of processors to voltage fluctuations. Stressmarks may or may not be used 

to set the voltage margins; however, they are necessary to develop an understanding of 

the susceptibility of the system being analyzed. Stressmarks can be collected from 

existing benchmarks that have produced high di/dt stresses in the past. However, most 

existing benchmarks such as SPEC CPU2006 focus on high performance only, so they 

may not generate periodic, high and low current draw under normal condition [24]. 

Moreover, standard benchmarks require a long simulation time in an early design stage. 

On the other hand, stressmarks can be specially designed to induce voltage 
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fluctuations in microprocessors. In many cases, designers manually generate a di/dt 

stressmark to test their processor/system. However, the manual generation of a di/dt 

stressmark is tedious and time-consuming. Designers need to recreate stressmarks 

whenever an architectural change occurs. In addition, the search space is extremely large, 

so it is not feasible for designers to manually generate and test every possible 

combination of parameters, configurations, and instruction scheduling to fully utilize a 

processor/system. 

In this dissertation, an automatic di/dt stressmark generation framework is 

proposed to produce significant voltage droops. A Genetic Algorithm (GA) is utilized, 

and several techniques are developed to generate and optimize candidate di/dt 

stressmarks.  

 

1.1.2.  Dynamic Management of Voltage Margins  

Stressmarks are benchmarks designed to stress a processor in various ways, such 

as generating the worst case power or the worst case voltage droops.  Stressmarks 

designed to induce large di/dt voltage droops are used to determine the voltage guardband 

due to workload induced di/dt noise.  Di/dt stressmarks consist of a region of high 

power instructions followed by a region of low power instructions [19][24][26][27].  

Analysis presented in Chapter 5 of this dissertation has shown that on x86 processors the 

high power region typically contains a high number of floating point (FP) or Streaming 

SIMD Extensions (SSE) instructions, while the low power region generally contains 

NOPs.  The high power region can consist of other types of instructions, such as 

instructions from the integer pipeline, but the resulting voltage droop from these 
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instructions is significantly less than the droop from instructions that execute on the FP 

path because operations that use FP pipeline dissipate relatively large amounts of power 

and thus lead to large di/dt fluctuations.  Hence, the worst case guardband of the system 

is determined using operations that utilize the FP pipeline.  If the workload does not 

have high FP pipeline utilization, then the system can be run with a lower voltage 

guardband, which can be translated into a higher operating frequency.  

In this dissertation, two algorithms are presented to dynamically control FP 

throttling and adjust the operating frequency in order to trade off frequency for FP 

throughput to improve the performance of both FP-intensive and non-FP-intensive 

programs. 

 

1.2.  OBJECTIVES 

The objective of this dissertation is to characterize di/dt noise and to develop a 

method to manage voltage margins. The specific objectives are as follows:  

 Characterize di/dt noise in different microprocessors with various benchmarks 

 Develop a method for generating effective di/dt stressmarks automatically in both 

simulation and real hardware environments 

 Examine software optimization impact on di/dt noise  

 Develop a technique for managing trade-offs between performance and di/dt noise 

for multi-core processors 

 

1.3.  THESIS STATEMENT 

Automated stressmark generation framework to generate stressmarks to 
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characterize supply voltage noise in multi-core, multi-threaded processors can be 

constructed using genetic algorithms and a voltage fluctuation measurement/simulation 

framework. A dynamic voltage margin management scheme using functional unit 

throttling increases system performance while suppressing supply voltage noise.   

 

1.4.  CONTRIBUTIONS 

This dissertation makes the following contributions: 

 The existing di/dt stressmarks and their behavior in single and multi-core systems are 

discussed and analyzed. 

 An automated stressmark generation framework is proposed, which  

o generates an effective di/dt stressmark without comprehensive knowledge of a 

microprocessor system, 

o utilizes a Genetic Algorithm to generate a benchmark that creates a maximum 

voltage droop in a given microprocessor and PDN, 

o reduces designers’ time to generate a hand-coded di/dt stressmark and/or  to 

simulate typical benchmarks that are possibly irrelevant to inducing maximum 

voltage droop, 

o utilizes real multi-core hardware to generate di/dt stressmarks quickly and 

automatically,   

o applies a novel method referred to as dithering to align stressmarks in 

multicore systems, 

o compares the maximum voltage droop and catastrophic behavior of standard 

benchmarks, manually generated stressmarks, and automated stressmarks, and 
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o analyzes di/dt noise of a state-of-the-art x86 multi-core processor with multi-

threading and architectural throttling effects. 

 An FP throttling mechanism on a state-of-the-art x86 processor is analyzed, resulting 

in  

o a study of frequency boost, performance, and energy-delay product benefits 

made possible by FP throttling, 

o a study of the impact of FP throttling with multi-core execution, and  

o new algorithms to dynamically manage FP throttling and their analysis.  

 

1.5.  ORGANIZATION 

Chapter 2 reviews the background of di/dt noise analysis and related work on the 

di/dt issue. Current draw, voltage fluctuations, and voltage margins are described, and 

power distribution networks and resonant frequencies are discussed as they affect nature 

of di/dt noise. Related work is categorized into three folds; characterization of di/dt noise, 

compiler impact on di/dt noise, and management of di/dt noise. 

Chapter 3 presents the methodology of this dissertation. Simulation and hardware 

measurement environments are introduced.  Benchmarks used in this work are 

categorized in several ways. Metrics are defined to characterize performance, power, and 

voltage noise.   

Chapter 4 investigates voltage noise problems in microprocessors in more detail; 

the relationship of current waveform and voltage fluctuation and synchronization effect 

in multi-core, multi-threaded processors. Voltage noise under different compiler 

optimization levels is analyzed. Two different optimization levels are applied to various 
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benchmarks, and the variations in performance, power, voltage droop, and energy are 

compared.  

Chapter 5 describes the AUDIT framework that generates a di/dt stressmark to 

characterize voltage noise. The application of a Genetic Algorithm (GA) is also explained 

in detail. Simulation and hardware measurement paths for pre- and post-silicon processor 

models are introduced.     

Chapter 6 suggests a method to dynamically manage voltage margins.  The 

effect of the existing throttling of floating-point units is measured and the amount of the 

voltage margin reduction is analyzed.  An algorithm is introduced to find an optimal 

tradeoff between performance and voltage margin reduction.  Chapter 7 concludes the 

dissertation and suggests possible future research directions.  
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Chapter 2:  Background and Related Work 

In a microprocessor, the supply voltage is provided through a power distribution 

network (PDN), which can be represented as a distributed RLC circuit with resonance 

frequencies. Varying current (di/dt) can cause fluctuations of the supply voltage that are 

proportional to the inductance (L) of the circuit (ѵ = L∙di/dt). Voltage droop is maximized 

if the periodic, large current variation occurs at the resonance frequency of the PDN. A 

resonance frequency in the mid-frequency (50 to 200MHz) range is the most significant 

[44]. Significant supply voltage droop may cause reliability problems in a 

microprocessor. Reddi [50] discusses the voltage fluctuation problem, and presents 

experiments illustrating the gravity of the situation. Low voltage increases the delay of 

signals, which could affect the timing between two flip-flops in a microprocessor circuit. 

Also, insufficient voltage could fail to set bit-signals properly and lead to soft errors. In 

this chapter, background on inductive (di/dt) noise is presented. 

 

2.1.  POWER DISTRIBUTION NETWORK AND RESONANT FREQUENCY 

The power distribution network (PDN) of a typical microprocessor consists of 

inductive and resistance elements on the motherboard (MB) or Printed Circuit Board 

(PCB), package, and die (see Figure 2.1). The parasitic resistance of the network causes a 

droop (IR drop) in the power supply proportional to the current drawn from the network. 

In addition, the inductance in the network causes undershoots and overshoots in the 

power supply (referred to as the di/dt drop), which depend on the rate of change of the 

load-current. To mitigate the inductive noise in the power supply, decoupling 

capacitance, commonly referred to as decap, is added at different locations in the power 
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supply network as illustrated in Figure 2.1. The amount of added decap progressively 

increases away from the die to counter the effect of increasing inductance parasitics. The 

series combination of parasitic inductance (L) and decap (C) results in various resonance 

frequencies ( LC2/1 ) in the network, as shown in Figure 2.2 and 2.3 in the frequency 

and time domains. 

  

 
 

(a) Physical structure of power distribution network. Adopted from Popovich [22]. 

 

 
 

(b) Simplified RLC circuit model of power distribution network. 

 

Figure 2.1:  Power distribution network (PDN) 
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The prominent resonance frequencies shown in Figure 2.2 and 2.3 are the 1st 

droop resonance due to the interaction of package and on-die inductance (Lpkg2 + Ldie) 

with on-die decap (Cdie), the 2nd droop resonance due to the interaction of socket and 

package inductance (Lpkg1) with package decap (Cpkg), and the 3rd droop resonance due to 

the interaction of board inductance (LMB) with decap on the board (CMB). A periodically 

varying load can induce one or more of these resonances and cause excessive 

undershoots and overshoots.  Although 2nd and 3rd droop resonance can also impact the 

reliability of the system, they can be mitigated by techniques such as load line based 

voltage regulator modules [56] and are beyond the scope of this work.  Although   

AUDIT in Chapter 5 is discussed in the context of first droops, it can be tuned to excite 

any of the three types of droops. 

 

 

Figure 2.2:  1st, 2nd, and 3rd resonance droops in the frequency domain. 
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Figure 2.3:  1st, 2nd, and 3rd resonance droops in the time domain. 

 

The 1st droop resonance is a strong function of package inductance (Lpkg2) and on-

die decap (Cdie), and is typically in the range of 50MHz – 200MHz. Examples of events 

causing large first droop are power wakeup of one or more blocks present in the design or 

a sudden up or down surge in the processor activity. When such rapid events occur 

periodically at the 1st droop resonance frequency, they may cause 1st droop resonance 

resulting in large, sustained undershoots and overshoots in the power supply. 1st droop 

can be mitigated by explicitly adding decoupling capacitance on the die [44]. However, 

there are limits to the feasibility of this approach due to area constraints and the leakage 

of the decap.  Several architectural techniques that limit the rate of change of activity in 
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the processor are effective in suppressing the first droop [17][19][24][47], but they may 

have a negative impact on performance. 

 

2.2.  CURRENT DRAW, VOLTAGE FLUCTUATION, AND VOLTAGE MARGIN 

Figure 2.4 shows possible current changes and the corresponding voltage 

fluctuations in a multi-core processor. Each core runs a program and its current changes 

by time are in the top of Figure 2.4. When rapid current change occurs, processor supply 

voltage fluctuates and then it is quickly damped (bottom of Figure 2.4). Interestingly the 

magnitude of fluctuation is affected by two factors: the sum of two cores’ current (current 

intensity) and periodic behavior of current draw. When the changes from low to high 

current loads are aligned between two cores that share the same supply voltage, the total 

current is doubled and it causes larger voltage fluctuation. When the current changes are 

periodic and meet the resonant frequency of the PDN, the following voltage fluctuations 

are additive to the previous ones and then the magnitude of fluctuation increases. 
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Figure 2.4:  Sudden current changes in a multi-core processor cause supply voltage 

fluctuation. When [aligned + resonant], voltage margin violations occur. 

Figure 2.4 also shows voltage margins from nominal voltage (VDD). When the 

voltage fluctuations go down under the nominal voltage, it is called an undershoot 

(droop). When voltage fluctuations go over the nominal voltage, it is called an overshoot. 

Voltage margins are set to guarantee correct behavior even with the worst case 

fluctuation. If the voltage fluctuation goes beyond the voltage margin, it causes a voltage 

margin violation and operations become unreliable. Overshoot is more harmful than 

undershoot because overshoot may cause permanent damage to the internal circuits of a 

microprocessor.  
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2.3.  MANUAL DI/DT STRESSMARK 

To analyze the impact of supply voltage droop on performance and reliability, it is 

imperative to create instruction patterns (stressmarks) that stress the PDN of the 

processor to cause large undershoots and overshoots. Traditionally, stressmarks have 

been generated manually with the knowledge of power consumption of different patterns 

of instructions and details of the PDN. This subsection describes a methodology for 

manually generating stressmarks. 

The first step for manually designing stressmarks requires analysis of the power 

consumptions of different instruction patterns. To induce large di/dt droops, the processor 

cores should switch simultaneously from a low-power state to a high-power state as 

quickly as possible. For the low-power state, instructions such as a NOP that consume a 

low amount of power can be chosen. For the high-power state, floating point or SIMD 

instructions that consume lots of power and that can attain the highest IPC supported by 

the target machine are selected. If a single high-di/dt event occurs where the machine 

executes a pattern of low-power instructions followed by a pattern of high-power 

instructions, there will be a droop in supply voltage, but the droop will taper off quickly 

as shown on the left side of Figure 2.5. However, a pattern that repeats periodically at the 

resonant frequency of the PDN will build in amplitude and not only generate a larger 

droop than a single event but one that repeats regularly, thereby increasing the probability 

of system failure (right side of Figure 2.5). Both these conditions help to build an 

effective first droop stressmark. This dissertation covers 1st droop only excitation and 1st 

droop resonance in the analysis. Figure 2.6 is the screen shot of an oscilloscope that 

shows a production processor’s voltage levels. 
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Figure 2.5:  Current draws (top) and corresponding voltage fluctuations (bottom): 1st 

droop only excitation (left) and 1st droop resonance (right). 

 

 

 

Figure 2.6:  Scope shots of voltage fluctuation in production processor: 1st droop only 

excitation (left) and 1st droop resonance (right). 

Several challenges exist in manually designing the stressmarks.  First, resonant 

frequencies can change between different boards in the same product line and between 

different products (such as client versus server).  Therefore, multiple stressmarks need 

to be developed to target different resonance frequencies and different system 

configurations.  Second, because the periodicity of the low-power and high-power 
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instructions depends on the operating frequency, multiple stressmarks need to be written 

for the various operating frequencies of the system . Finally, it is very time consuming to 

explore different combinations of instructions manually for the high-power and low-

power portions of the loop.  This dissertation addresses all these issues by automating 

the process of generating di/dt stressmarks.  

 

2.4.  CHARACTERSISTICS OF CURRENT WAVEFORM AND VOLTAGE FLUCTUATION 

Voltage fluctuations by different shapes of current waveform are described in 

here. To induce a maximum voltage droop in a given environment, it is important to 

know the characteristics of di/dt voltage noise affected by current variations. Previous 

work [16][24] provide good analysis that this dissertation extends to add several factors 

to be considered when generating a di/dt stressmark. 

Shape of current waveform:  Maximum voltage droop is affected by the shape 

of the current waveform.  Three types of current waveforms are generated and 

simulated: saw-tooth, sine, and rectangular.  The corresponding voltage fluctuations 

show that rectangular-shaped current waveform is most effective to induce high voltage 

droop (Figure 2.7). It is difficult to make sudden current changes, but it is shown that the 

events like pipeline flush are able to generate huge interrupts of current draw in a 

program [52]. 

Ratio of high-to-low period:  The width of the high-current pulse in the resonant 

period is adjusted and tested. Both wider and narrower widths than a half of resonant 

period alleviate the voltage droop. According to this observation, high and low current 

draw periods should be evenly distributed to induce a large voltage droop. 
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Difference of current intensity:  Current intensity is very important to make a 

large voltage droop. However, even though a high current draw occurs, if the previous or 

the next current draw is also high enough, voltage hardly fluctuates. 

The three aforementioned factors are critical to generate a di/dt stressmark for a 

defined microarchitecture and PDN. This dissertation uses these factors to analyze 

maximum voltage droop induced in different combinations of microarchitectures and 

PDNs. 

 

 

 
(a) rectangular     (b) sine       (c) sawm        (d) sawl         (e) sawr              

 

Figure 2.7:  Different current pulse shapes (top) and corresponding voltage fluctuations 

(bottom). The current intensity is the same in HSPICE simulation. 

 

 

 

2.5.  RELATED WORK 

2.5.1.  Characterizing Inductive Noise 

There has been some previous work on hardware analysis of production systems. 

In [56], Reddi et al. measured and analyzed droops on a two-core Intel system and 

discussed constructive and destructive interference between processors and the difference 
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in droops between average and worst-case scenarios. This information was used to design 

a noise-aware thread scheduler to mitigate some of the di/dt stresses in the system. To 

date, the work by Reddi is the most detailed analysis of droops on hardware. 

This dissertation expands on that work by analyzing a more complex system with 

multi-threading and up to eight logical processors. In addition, it is shown that 

constructive interference occurs more often than expected due to OS effects, and this 

knowledge is used to design effective stressmarks. 

More recently, Miller et al. examined voltage emergencies in multi-core 

processors [34] with increasing numbers of cores, and showed how global 

synchronization points create large stresses in the system. This work used power 

variability as a proxy for di/dt stresses and examined the hardware at a coarse granularity 

of 1-ms intervals. This dissertation uses true voltage droop measurements and fine-

grained sampling to detect first-order droops and discuss droop values as well as voltage 

failure points in hardware. 

One of the major contributions of this dissertation is automatic stressmark 

generation using real hardware. Joseph, Brooks, and Martonosi presented a hand-coded 

di/dt stressmark [24]. Their basic idea was to create a sequence in which a high-current 

instruction follows a low-current instruction. The high-current component typically 

consisted of a memory load/store instruction and the low-current component consisted of 

a divide instruction followed by a dependent instruction, resulting in a long pipeline stall. 

However, their di/dt stressmark was manually crafted for a specific microarchitecture 

based on the knowledge of the current draw of various instructions. Furthermore, they 

focused only on memory-intensive behavior such as loads and stores and increased 

current draw by accessing L1 and L2 data caches. In contrast, the approach in this 
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dissertation does not require microarchitectural knowledge and relies on measured 

voltage droops in a closed-loop measurement infrastructure. 

Ketkar and Chiprout proposed a di/dt stressmark generation methodology using 

integer linear programming (ILP) [27]. They extracted current draw for certain 

instructions from a register transfer language (RTL) model for the hardware. Linear 

programming with constraints was used to maximize voltage droop. However, they 

focused only on the ALU. It is difficult to make ILP relationships of instructions for all 

the pipeline stages and the caches; hence, it is difficult to apply their technique to an 

entire processor, especially one with out-of-order processing, multiple cores, and 

complex shared resource structures. 

Joshi et al. [26] presented a methodology for generating maximum-power viruses 

and mentioned in passing that high-power and low-power instruction sequences from two 

different power optimizations can be interleaved to generate a di/dt stressmark. This was 

only a suggestion, without implementation details or results. Also, they did not talk about 

the importance of repeating the sequence at the PDN's resonant frequency. Neither di/dt 

effects nor voltage droops were the focus of Joshi's work. 

A significant number of other studies have focused on preventing, reducing, or 

recovering from di/dt effects or voltage droops [3][5][6][7][8][9][10][15][17][18][21][22] 

[23]. However, none of these focus on automatically generating di/dt stressmarks. 

2.5.2.  Impact of Compiler Optimization 

Valluri and John [67] studied compiler optimization effects on performance and 

power. The conclusions are that (1) performance improvement by reducing the number of 

instructions brings energy reduction and that (2) performance improvement by increasing 
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the overlap in program increases average power dissipation. However, in Valluri and 

John’s work, power is represented as the average power of overall execution. It is 

problematic because a voltage emergency occurs in a much shorter period than the 

program execution time, that is, from tens of nano-seconds to micro seconds compared to 

several minutes. 

Reddi et al. proposed a dynamic scheduling workflow based on a checkpoint-and-

recovery mechanism to suppress voltage emergencies [51]. Once a code part causes a 

voltage margin violation, it is registered as a hotspot, and NOP injection and/or code 

rescheduling is performed by the dynamic compiler. This flow is independent of the 

architecture or workload. However, users should be careful to set an initial voltage 

margin properly to avoid frequent voltage emergencies. 

 

2.5.3.  Managing Inductive Noise 

A number of previous papers have explored how to reduce the voltage guardband 

of the system in order to achieve better performance.  The work that comes closest in 

terms of a hardware implementation is the work by Lefurgy et al. [33] which addressed 

actively monitoring and managing the voltage guardband based on the use of a critical 

path monitor or CPM.  The CPM monitors the critical pathways in the chip and 

increases the voltage guardband if the CPM detects potential errors.  Although the CPM 

is a very effective mechanism, it requires additional hardware, monitoring mechanisms, 

and tuning of the CPM to detect and correct possible errors.  The technique in this 

dissertation on the other hand, is very simple to implement and manage, and only requires 

a characterization effort to determine the frequency boost possible with FP throttling.   
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A number of papers have dealt with mitigating voltage droops using software 

techniques [17][19][57]. These techniques recognize the existence of repetitive code with 

high di/dt transition activity and dampen or eliminate this activity through software 

techniques.  Software mitigation of noise does not guarantee that all errors will be 

eliminated.  In fact, the software techniques learn from errors detected by hardware 

(such as a CPM) and adjust the software only after errors are detected.  The FP 

throttling mechanism avoids errors altogether by suppressing the structures which 

generate the largest voltage droops.    

Other work has examined using hardware techniques to manage high droops 

[40][47][48][49]. Some of the work focuses on using hardware to detect that a resonant 

droop is about to build and suppresses the droop before it reaches its peak droop value, 

while others focus on mechanisms to dampen the difference between the high and low 

power regions by techniques such as throttling issue rates or staged activation and 

deactivation of clock gated units.  All these techniques address the issue of di/dt noise.  

However, this dissertation is the first to characterize the impact of FP throttling, translate 

that characterization to a frequency increase, and present results with static and dynamic 

schemes showing the benefits of the performance increase with FP throttling.     

Another body of work explores detecting and mitigating errors via circuit 

techniques [10][11].  The research using Razor systems assumes that errors will occur 

and inserts redundancy within latches.  Although effective, Razor requires significant 

new hardware and a completely different design methodology that fundamentally 

changes the way processors are designed.  The FP throttling technique on the other 

hand, works well with existing systems where the floating point unit is a large contributor 

to the voltage droop in the system.   
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There are a wide range of architectural techniques that utilize some type of 

detection and recovery mechanism to deal with errors [2][16][37] and use redundant 

structures or replay mechanisms to detect and correct errors.  All these techniques incur 

additional complexity or hardware overhead which FP throttling with frequency boost 

avoids.   

Finally, there are other methods in which the processor frequency can be boosted 

[38][58]. Frequency boosting techniques such as Turbo Core or Turbo Boost ™ are in use 

in state-of-the-art systems from both AMD and Intel.  Turbo Core allows the chip to run 

at a higher frequency than that visible to software.  The highest frequency software 

visible ACPI P-state (P0) is determined under the assumption that all cores on the system 

are running a high power benchmark under worst case operating conditions.  When 

those conditions are not met, either because not all cores are active or the threads are not 

high-power threads, the hardware allows the cores to enter a boosted frequency state 

based on the availability of power headroom.  Once the power headroom is depleted, the 

application returns to a lower power, lower performance DVFS state until power 

headroom is once again available.  

Turbo Core is available on the hardware this dissertation used for the 

experiments.  There is one major difference between the frequency boost possible with 

Turbo Core and that resulting from FP throttling.  With FP throttling, the processor can 

boost the frequency without an increase in voltage, resulting in a linear increase in power 

for a potentially linear increase in performance.  Turbo Core, on the other hand, requires 

an increase in both frequency and voltage, resulting in a cubic increase in power.  

Hence, it is not as efficient as a method for boosting performance.  However, it also 

does not incur any IPC loss due to FP throttling.  Turbo Core was disabled for the 
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analysis presented in this paper in order to study the impact of FP throttling; however, 

combining the two techniques offers interesting research opportunities in the future. 
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Chapter 3:  Methodology 

This chapter describes the overall experimental methodology used in this 

dissertation.  Either a simulation or a hardware measurement method can be used 

according to the availability of a post-silicon processor.  Especially the hardware 

measurement method in this dissertation enables designers to capture maximum voltage 

droops on a post-silicon processor.  But a simulator has advantages of reconfigurability 

and the technique in this dissertation can work with simulation models as well, To 

characterize di/dt behavior, various benchmarks and stressmarks are run from standard 

benchmarks, such as SPEC CPU2006, to automatically generated stressmarks. Runtime, 

power, and maximum voltage droop are useful metrics to characterize di/dt noise. 

 

3.1.  METHOD FOR CHARACTERIZING VOLTAGE DROOP 

To characterize voltage droop on a microprocessor, designers can take either a 

simulation-based estimation or a hardware-based measurement method according to the 

current design stage or to the availability of the processor model.     

 

3.1.1.  Simulation Method 

Simulation enables designers to estimate voltage fluctuations in early design stage 

even without silicon and to examine microprocessor events that cause voltage 

fluctuations in more detail, compared to hardware measurement.  Simulation is also 

repeatable; it should give the same results if all the simulation inputs and parameters are 

the same as that of a previous simulation.  However, the accuracy of simulation is the 

main issue, so the processor model should be well correlated to its current or expected 
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implementation on silicon. 

Figure 3.1 shows the current-voltage simulation method.  First, a program code 

is provided with C or assembly format.  Next, the program code is compiled and run on 

a system simulator to estimate current draw per cycle in a microprocessor. During the 

system simulation, all the activities are counted every cycle and converted as power 

consumption per cycle. To get instantaneous current values, the obtained cycle power 

numbers are divided by a DC supply voltage. Then, the current trace from the system 

simulator is fed to the circuit simulator to simulate voltage fluctuation. After collecting 

the voltage trace, it is analyzed to identify a maximum voltage droop.  

 

 

 

Figure 3.1:  Current-voltage simulation. 
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In this dissertation, for the power (current) simulator, the combination of 

SimpleScalar [60] and Wattch [7] is selected to estimate current load variations per cycle 

in a microprocessor.  The original simulator is modified to generate a current trace per 

cycle by dividing the power per cycle by the supply voltage.  The modified power 

simulator is based on the activity counter of each unit in a microprocessor, so it is good at 

showing how much each unit in the microprocessor is utilized by 

benchmarks/stressmarks during each cycle.  The modification for per-cycle power 

estimation can be applied to another system-level power simulator if such a simulator 

provides activity monitors for internal units.  For circuit simulation, HSPICE [21] is 

used to simulate the current trace and to measure voltage droop. The current value per 

cycle from the system-power simulator is converted to HSPICE format as a current 

source. During the HSPICE simulation, maximum, minimum, and peak-to-peak values of 

voltage are measured.  Instead of HSPICE simulation, the convolution of the processor’s 

current trace and the PDN’s impulse response can be used if the result shows enough 

accuracy compared to HSPICE circuit simulation. 

 

3.1.2.  Hardware Measurement Method 

Hardware measurement can show real voltage fluctuations on silicon.  Most 

benchmarks/stressmarks finish quickly, so the entire run of each benchmark is possible. 

However, it is not repeatable; it is difficult to get the same voltage fluctuation at the same 

time with the previous runs due to many sources of uncertainty in a real system such as 

OS scheduling for multiple threads.  Hardware measurement methods require system 

hardware such as processors, packages/sockets, and motherboards (MB), and 
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measurement equipment such as an oscilloscope, differential probe and cable, etc. 

 

3.1.2.1.  System hardware 

The multi-core processor mainly used in this dissertation is an AMD Orochi 

processor, which consists of four Bulldozer modules on the single processor chip. Each 

Bulldozer module (Figure 3.2) can execute two threads via a combination of shared and 

dedicated resources [8]. The front-end and floating-point logic is shared between two 

threads on the same module; however, the rest of the core components (integer and retire 

logic, load/store unit, first-level TLB, and first-level cache) are separate. Each thread can 

issue four integer instructions per cycle, however, the two threads together can only issue 

four floating point instructions per cycle due to the sharing of the floating point units. A 

thread can have a maximum IPC of four. One Bulldozer module has one 64 KB I-Cache, 

two 16 KB D-Caches for two hardware threads, and 2MB of L2 cache. Four Bulldozer 

modules share an 8MB L3 cache. A more detailed description of the Bulldozer module 

and architectural features is given in [8][12][68].  An AMD Phenom™ II X4 Model 925 

processor is also used for hardware measurement.  The package/socket used is an AM3 

and the motherboard is specially designed to provide many test points including supply 

voltage rails. 

 

 



 31 

 

Figure 3.2:  AMD Bulldozer module. Adopted from Butler et al. [8]. 

 

3.1.2.2.  Measurement equipment 

Voltage variations can be measured by probing power supply rails on the 

hardware system.  There are two possible methods to measure voltage variations on 

hardware: sampling and triggering. The pros and cons of each measurement method are 

summarized in Table 3.1.  This dissertation used sampling for power measurement and 

triggering for voltage droop measurement, because the sampling rate is not high enough 

to capture 1st droop and because triggering is good at capturing extreme values such as 

maximum voltage droop. 
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Sampling with DAQ Triggering with Oscilloscope 

Pros 

- Users can easily handle the 

measurement 

 

- Accurate (error < 5mV) 

 

- FFT analysis is possible 

Cons 

- Typically sampling rate is 

too low to capture di/dt 

events 

 

- DAQ cable is too far from 

on-die VDD rails  false 

noise 

- High-bandwidth 

oscilloscope is required 

 

- Probing test pins is difficult 

Application Good for power measurement Good for di/dt measurement 

Table 3.1:  Comparison of sampling and triggering methods for hardware measurement. 

   

The experimental set-up for hardware in this dissertation is shown in Figure 3.3. 

Voltage droops on the hardware are measured with a Tektronix TDS5104B oscilloscope 

(shown in Figure 3.4.(a)) and a 1.7-GHz Tektronix P6248 differential probe (shown in 

Figure 3.4.(b)) for triggering on large voltage droops. The probing points for the power 

supply voltage are attached to the package and on-die connections to enable accurate 

voltage droop measurements. The oscilloscope triggers and records the di/dt events at a 

sampling rate of 5 gigasamples/second (GS/s).  

Power is profiled using a National Instrument’s Data Acquisition (DAQ) card 

(NI-PCIe 6353), whose sampling rate is up to 1.2 megasamples/second (MS/s) (Figure 

3.3).  A differential cable transfers multiple signals from the power supply lines on the 

motherboard to the DAQ card in the PC.  
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(a) Lab environment 

 

 

  
 

(b) Hardware measurement  

 

Figure 3.3:  Hardware measurement set-up 
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.               

(a) Oscilloscope: 1GHz bandwidth Tektronix 

TDS5104B shows voltage response and 

frequency analysis 

(b) Differential Probe: 1.7-GHz 

Tektronix P6248 probes  

processor’s power rail 

Figure 3.4:  Oscilloscope and differential probe used in this dissertation. 

 

3.2.  BENCHMARKS 

To analyze a processor’s normal behavior, standard benchmark suites such as 

SPEC CPU2006 [62] and PARSEC [5] are mainly used because they represent various 

programs frequently running on the processor.  However, standard benchmarks may not 

fully exercise a given architecture. For example, a load/store-intensive standard 

benchmark cannot frequently activate execution units such as the ALU. For some of the 

studies, supercomputing benchmarks such as miniFE [35] and High-Performance 

Linpack [20] are used. 

In order to study the susceptibility of processors to voltage fluctuations, designers 

often resort to specialized benchmarks called di/dt stressmarks. The di/dt stressmarks are 

either collected from benchmarks that have produced high di/dt stresses in the past or 

manually designed to induce voltage fluctuations in microprocessors. Stressmarks based 

on excerpts from real programs may not expose many vulnerabilities of a system; hence 

often manual generation of stressmarks is done by engineers who are familiar with the 
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intricacies of the design. However the manual generation of stressmarks is tedious; 

several works addressed the complexities involved with stressmark generation and 

developed tools and methodologies to generate stressmarks automatically [1][2][3][4]. 

In this dissertation, both standard benchmarks and stressmarks are run to represent 

the usual and extreme user cases. SPEC CPU2006 and PARSEC are selected as standard 

benchmarks, the existing power and di/dt stressmarks are collected, and synthetic di/dt 

stressmarks are generated manually or automatically.  Table 3.2 lists the benchmarks 

used in this dissertation. 
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Name Benchmark Type Multi-Threading  Etc. 

SPEC CPU2006 Standard 

Benchmark Suite 

Multi-programmed 

(NO dithering) 

CINT(integer):  

    12 benchmarks 

CFP(floating-point):       

    19 benchmarks 

PARSEC Standard 

Benchmark Suite 

Multi-threaded 12 benchmarks 

SM1, SM2, 

SM-Res 

Manual di/dt 

Stressmark 

Multi-threaded / 

Multi-programmed 

(dithering) 

Industry-level [43] 

miniFE Supercomputing 

(HPC) Benchmark 

Multi-threaded  Highly scalable 

HP Linpack 

 

Supercomputing 

(HPC) Benchmark  

Multi-threaded High-performance,  

 

A-Ext, 

A-Res 

Automated di/dt  

Stressmark 

Multi-programmed 

(dithering) 

AUDIT in this 

dissertation 

Table 3.2:  Standard benchmarks and stressmarks used in this dissertation. 

 

Thread configuration for multi-threading in a multi-core system is set as in Figure 

3.5.  With up to 4T (4 threads) only one thread runs on each core.  When more than 4T 

one or more cores will run multiple threads. The number of threads will be evenly 
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distributed. Each program of multi-programmed runs needs to be fixed to a designated 

processor using process affinity, and both Windows and Linux OSes provide the 

functionality.  The configurations in Figure 3.5.(a) are for homogeneous threads, i.e., 

multiple copies of the same program, and those in Figure 3.5.(b) for heterogeneous 

threads.  

     

 

(a) Thread configurations for Homogeneous (HM) threads. 

 

(b) Thread configurations for Heterogeneous (HT) threads. 

Figure 3.5:  Thread configuration for multi-core system (T=thread). 

 

3.3.  METRICS 

Voltage droop is the main metric of this dissertation. Voltage droop is measured 

as the difference between the nominal voltage and the measured power supply voltage.  

Maximum voltage droop during the benchmark run is measured at the difference between 

the nominal voltage and the lowest power supply voltage during the entire run.  The unit 
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of voltage droop used is mili-volt, mV.  

In hardware measurement, checking power is necessary to verify that voltage 

droop is a reasonable range. Power can be represented as several ways. Average power, 

P, is supply voltage (V) times average current (I), P = V x I.  Instantaneous power 

reflects voltage and current variations at a specific time, p(t) = v(t) x i(t). The unit of 

power is wattage, W.  However, high power does not always mean high di/dt noise.  

Performance is defined as the reciprocal of runtime. Runtime is required to 

estimate energy or energy-delay.  Energy is computed as the product of runtime and 

average power, and represents trade-offs between performance and power. Energy is 

multiplied by runtime to obtain energy-delay product. 
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Chapter 4:  Analysis of Voltage Noise in Microprocessor 

This chapter analyzes voltage droops caused by various benchmarks under 

different conditions.  First, voltage droops caused by standard benchmarks such as 

SPEC CPU2006 and PARSEC are measured on the multi-core hardware and are analyzed 

to understand typical use case of programs.  Next, synchronization effect by multiple 

threads is discussed and examined to see whether the corresponding di/dt noise is critical 

on multi-core, multi-threaded systems.  The natural dithering effect caused by OS 

interference is observed and introduced.  Finally, this chapter studies the compiler 

optimization impact on voltage droops with various benchmarks by adding a new 

perspective to Valluri and John’s prior discussion [60].  

 

4.1.  VOLTAGE DROOP ANALYSIS FOR STANDARD BENCHMARKS 

4.1.1. Voltage Droop Analysis using Simulation 

The simulation method is used to analyze voltage droops on standard benchmarks 

in more detail. Simulation can identify the number of occurrences of voltage droops as 

well as the maximum voltage droop. Table 4.1 shows the architecture configuration used 

in the experiments in this section. The configuration targets a general 4-wide processor.  

In here, 22 benchmarks in the SPEC CPU2006 suite were run, and each benchmark runs 

100 million instruction cycles using SimPoint [59]. The simulator was warmed-up for 10 

million instruction cycles, and then traced di/dt for 90 million instruction cycles.  PDN 

[61] has 5 to 16A of current swing, and two RLC stages. The nominal voltage was set to 

1.0V. 
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Parameter Values 

CPU Clock 3 GHz 

Fetch/Decode/Issue 4- / 4- / 4-instruction per cycle 

EXU 2 alu, 2 mul/div, 2 falu, 2 fmul/fdiv, 2 mem-port 

RUU / LSQ 128 / 64 

Branch Predictor Combined, 64Kb 

BTB 1K entries 

L1 I/D-Cache 64KB / 16KB, 2-way 

L2 Cache 2MB, 16-way 

Table 4.1:  An architecture configuration for SimpleScalar. 

Figure 4.1 shows the maximum voltage droop of the SPEC CPU2006 

benchmarks. Y axis of Figure 4.1 is the maximum voltage droop in mV from the nominal 

voltage set to 1V.  Among 22 benchmarks, namd has the largest maximum voltage 

droop, and libquantum has the smallest maximum voltage droop. The overall maximum 

voltage droop in the SPEC CPU2006 varied from 3.4% to 8.5%. One can identify the 

maximum droop from Figure 4.1, but the graph does not tell whether the maximum droop 

comes from a single, rare event, in other words, whether how many similar droops occur 

or not. Figure 4.2 shows the distribution of voltage droop levels during the entire run of 

each SPEC CPU2006 benchmark. X axis is the percentage of droop from the nominal 

voltage of 1.0V. Y axis is the number of occurrences in logarithmic scale. The number of 

occurrences in Figure 4.2 is inclusive, that is, 0.0% includes all the number of 

occurrences of voltage droops. Even though GemsFDTD’s maximum voltage droop is 

less than namd, GemsFDTD has more frequent voltage droop at 7% from nominal 
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voltage. Benchmarks leslie3d and gromacs do not have an 8% or 7% of voltage droop, 

but the number of occurrences of two benchmarks is much higher than others. This result 

implies that a voltage droop analysis only with the maximum voltage droop could ignore 

the possibility of real failures resulting from highly frequent and comparably larger 

droops. Voltage at failure analysis is considered and explained in the following chapter. 

 

 

Figure 4.1:  Maximum voltage droop of SPEC CPU2006 in simulation. Vdd is 1.0V. 
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Figure 4.2:  Occurrence (inclusive) at each voltage droop at Vdd=1.0V. 

 

4.1.2. Voltage Droop Analysis using Hardware Measurement 

Figure 4.3 shows the maximum droop measured from running the SPEC 
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CPU2006 benchmarks and PARSEC multi-threaded benchmarks in configurations of 

one-, two-, four-, and eight-thread runs (1T, 2T, 4T, and 8T). For SPEC CPU2006, the 

program is replicated and executed on multiple cores, similar to SPECrate. Given the 

shared nature of the cores in the Bulldozer module, higher voltage droops occur for a 

given number of threads when threads are spatially distributed across modules. The 

evaluation processor has four Bulldozer modules, each with two cores. Hence, for the 1T, 

2T, and 4T runs, each thread is assigned to a different module. For the 8T runs, there are 

two threads assigned to each module. All droop results are shown relative to the 4T SM1, 

an industry-level manual stressmark, and higher numbers indicate larger droops. The 

values are measured with the load line of the voltage regulator module (VRM) disabled 

to remove any load-line droop effects [33]. Hence, the results show the droop due to di/dt 

stresses only. 

Figure 4.3 shows that, in general, the magnitudes of the voltage droops increase 

with the number of threads for 1T, 2T, and 4T configurations. The 8T configurations do 

not always follow this trend due to multi-threading in the Bulldozer module (explained 

later in this section). Figure 4.3 also shows that most of the SPEC CPU2006 and 

PARSEC benchmarks except zeusmp and tonto have 20% less droop than SM1, the 

manual stressmark. It can be concluded that one needs di/dt stressmarks for worst case 

analysis of di/dt events. In the SPEC CPU2006 benchmarks, the averaged maximum 

droop of all the floating point benchmarks is larger than that of all the integer 

benchmarks. This could mean that floating point execution path in the processor is more 

susceptible to voltage noise. However, because voltage droop of SPEC CPU2006 is not 

significant compared to that of SM1, further analysis is required even though it is known 

that floating point execution units in Bulldozer consume significantly more power than 
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any other units in the module.    

 
(a) Relative maximum voltage droop for SPEC CPU2006 benchamrks.  

(relative to SM1 manual stressmark) 

 

 
(b) Relative maximum voltage droop for PARSEC benchamrks.  

(relative to SM1 manual stressmark) 

 

Figure 4.3:  Hardware measurements of droop (relative to 4T SM1) for SPEC CPU2006.  
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As noted in Chapter 2, one way to generate a significant droop is to have a large 

change in activity from idle to full execution. For high-performance pipelines, such a 

change in activity occurs naturally with certain pipeline events, such as pipeline recovery 

after a branch misprediction stall or high execution activity after a load miss resolves 

[53]. These events are commonplace in complicated pipelines, and how they interact with 

each other in a multi-threaded scenario dictates how large a droop they produce. 

Destructive interference may occur between threads in a multi-core system such that 

when one thread is in a high-power state others are in a low-power state. Reddi et al. 

describe the issue of thread misalignment for the SPEC CPU2006 benchmarks, examine 

constructive and destructive interference in a dual-core system, and discuss co-scheduling 

threads to reduce voltage droops [56][56][23]. 

The PARSEC multi-threaded benchmark suite could have alignment between 

threads through its use of synchronization primitives. The expectation was that higher 

droops would be seen due to the natural alignment resulting from barrier operations in 

benchmarks such as fluidanimate and streamcluster as discussed in [34]. However, the 

results show no significant difference in droops between the PARSEC and the SPEC 

CPU2006 suites. 

To further evaluate this, a barrier stressmark was designed that repeatedly 

synchronizes on a barrier operation and then runs the high-power virus in a 4T 

configuration. This was expected to result in a large voltage droop due to all cores being 

aligned and idle at the barrier operation followed by high activity on the cores. The 

resulting droop, however, was not significant. On further examination, it is noticed that a 

natural misalignment occurs between the cores when released from a barrier. On the 

Bulldozer module, there is no explicit mechanism to synchronize the barrier release 
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signal, and the signal naturally reaches each core at different times based on from where 

in the memory hierarchy the core receives its data. This perturbs the start of activity 

across the cores by enough cycles to dampen the first droop excitation resulting from the 

synchronization operation. 

Miller et al. claimed that, in a many-core system, the synchronization effect by 

multi-threading is the main cause of supply voltage fluctuation rather than high activity 

from each individual core [34]. However, the authors in [34] examined a different x86 

processor that may have different characteristics. In addition, they use fluctuations in 

average power estimated at intervals of 1 ms on hardware as a proxy for expected di/dt 

variations. This may capture third droop excitations, but not first droop excitations that 

occur over the course of nanoseconds. The measurement technique in this dissertation is 

capable of identifying the high-frequency first droop variations in voltage. Hence, the 

worst-case droops in PARSEC are most likely the result of the same microarchitectural 

events that align across multiple threads in the SPEC CPU2006 suite. The authors in [34] 

also note that barriers are not the only cause of high power swings and point to 

microarchitectural events such as long-latency cache misses followed by bursts of 

activity as other potential inducers of high droop. Furthermore, the effect in [34] is 

pronounced for cases with 32 threads, whereas the experiments in this dissertation did not 

include such configurations. 

 

4.2.  SYNCHRONIZATION (ALIGNMENT) EFFECT OF MULTIPLE THREADS  

As noted in other papers [9][15][34][56], multiple threads running simultaneously 

can have a constructive or destructive impact on droops (Figure 4.4). If the threads align 



 47 

correctly, they produce significantly larger droops than without alignment. At first 

glance, thread alignment would seem to be a low-probability event in multi-core 

machines with complex, out-of-order cores and shared and non-shared resources. 

However, the analysis in this dissertation shows that alignment occurs relatively often 

when the stressmark consists of short loops due to natural perturbations in the threads 

caused by OS thread scheduling. This phenomenon is referred to as natural dithering. 

 

I(t) processor 1

I(t) processor 2

I(t) processor 3

I(t) processor 4

I(t) total system

Imin
Imax

Imin
Imax

Imin
Imax

Imin
Imax

4 Imin

4 Imax

Completely aligned system: large amplified current swing

Imin

Imax

Imin

Imax

Imin
Imax

Imax

I(t) processor 1

I(t) processor 2

I(t) processor 3

I(t) processor 4

I(t) total system= 2 Imax + 2 Imin

Completely misaligned system: no swings in total current

Imin

 

Figure 4.4:  Alignment: misaligned-destructive (top) and aligned-constructive (bottom). 
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Figure 4.5 shows an example of natural dithering over the course of 100 ms when 

running a four-threaded resonant stressmark in which the threads are the same and consist 

of short loops. Each major grid point represents 10 ms and the y axis shows measured 

processor voltage (Vdd) values using a 100 megasamples/second (MS/s) sampling rate. 

Approximately every 16 ms, which corresponds to the OS timer tick on Windows 

systems, Vdd variability changes. When the threads align constructively, as is the case 

near the center point of the scope shot, the droop is maximized. 

This data shows that small, repetitive loops occurring across multiple threads at 

the same time can result in significant di/dt stresses in the system due to natural dithering 

resulting from OS interaction. This phenomenon would have been difficult, if not 

impossible, to observe in a simulation environment. This type of behavior is more likely 

to occur in certain high-performance computing applications that consist of short, 

repeated loops. Relying on OS behavior to align threads is not a reliable method to 

determine the worst-case droop. Hence, a dithering algorithm is required, which 

guarantees a worst-case droop within a fixed amount of time once OS interrupts are 

disabled. 
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Figure 4.5:  Scope shot of natural dithering due to OS interactions for resonant 

stressmark over a period of 100 ms. 

 

4.3.  IMPACT OF COMPILER OPTIMIZATION ON VOLTAGE DROOP 

Voltage droops due to di/dt effects have been studied in the past. However, no 

prior work studies the effect of compiler optimizations on voltage droops. Past work has 

studied the impact of compiler optimizations on performance and power, but not 

reliability. In this section, voltage droops are analyzed with different compiler 

optimization levels. Also corresponding performance, power and energy results are 

reported to put the results into perspective. No clear trends could be observed regarding 

the effect of compiler optimizations on voltage droops. Therefore, it can be concluded 

that dynamic voltage noise mitigation is necessary because voltage noise reduction with 

static compiler optimization cannot be guaranteed. 

 

Droop amplitude changes due to OS alignment 
shifts

Max 
droop16ms 

ms
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4.3.1.  Compiler Impact on Performance, Power, and Reliability 

The order of an instruction sequence, instruction scheduling, is important in 

performance and power. Compilers usually optimize scheduling for high performance, 

but not for low power because it is difficult to provide power details to compilers. 

Compilers also affect the choice of instructions used to accomplish the task. 

The work in this chapter is highly motivated by Valluri and John [67], where the 

authors studied compiler impact on performance and power. Valluri and John studied the 

impact of compiler optimizations on performance and power, and concluded that (1) 

performance improvement by reducing the number of instructions induces energy 

reduction and (2) performance improvement by increasing the overlap in programs 

induces power increase.  In here, Valluri and John’s discussion is extended by adding a 

new perspective and by studying reliability with voltage droops while running various 

programs on a real multi-core, multi-threaded processor hardware. 

This chapter is based on measurement on actual hardware. In contrast to Valluri 

and John’s methodology [67], the differences made are described in Table 4.2. 

Performance, power, and reliability are measured with two different compiler 

optimization levels, –O0 and –O3. Then, energy is calculated with the measured 

performance and power numbers.  The performance between the cases with no 

optimization versus full optimization is compared, because there were only slight 

differences among -O1 to -O3.   
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 Valluri and John [67] This Dissertation 

Power/Reliability Average power Average power  

Voltage droop 

Run Method Simulation study based on 

SimpleScalar/Wattch 

Hardware Measurement based 

on Post-Silicon Processor 

Run Thread Single-core/single-thread Multi-core/multi-threaded 

Runtime Partial run Entire run 

Benchmark SPEC95 SPEC CPU2006 (multi-

programmed)  

miniFE (multi-threaded) 

HPC Linpack (multi-threaded) 

Table 4.2:  Comparison of experimental methodology between  

Valluri and John [67] and this dissertation. 

 

4.3.2.  Experimental Results 

To analyze performance, power, and voltage droops with different compiler 

optimization levels, various benchmarks run from a small but highly scalable program to 

a high performance program and a standard benchmark suite. Also a real hardware 

system is used rather than a simulator. Through the measurements on silicon, it is 

expected that the study significantly reduces possible errors and uncertainty in the 



 52 

abstraction and modeling steps of a processor for simulation method.  

 

4.3.2.1.  Experimental Setup 

To analyze the impact of software optimization on power and voltage droop,   

an AMD Orochi processor is used for hardware measurement. For benchmarks, miniFE 

[35], a scalable, multi-threaded program, which adjusts the problem size according to the 

number of multiple cores is used. Another program used is High-Performance Linpack 

(HP Linpack) [20], which is well known for benchmarking Top 500 supercomputers [66]. 

Both miniFE and HP Linpack use OpenMPI [39] library for scalable, multi-threading 

technique to maximize the parallelism of multi-core processor. As a standard benchmark, 

SPEC CPU2006 [62] can show various, normal program behavior by compiler 

optimization effect. Each benchmark is compiled by gcc/gfortran 4.6.2 with –O0 and –

O3 levels separately on RedHat Enterprise Linux 6 OS. 

Several metrics are used to analyze the impact of the compiler optimization levels 

on the programs. Performance is measured in runtime or in the inverse of runtime, and is 

reported by the benchmark program itself. Power is measured in wattage, and is 

calculated from supply voltage and current variations measured as voltage drop on a unit 

resistor. Voltage droop is measured with an oscilloscope and differential probes, which 

are attached to main supply voltage pins on the processor package. 

 

4.3.2.2.  Result of miniFE  

miniFE [35] is a mini-application that mimics finite element generation, assembly 

and solution for an unstructured grid problem. Table 4.3 shows runtime, power, voltage 
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droop values according to the number of multiple threads. Each value is normalized to 1 

thread (1T) case.  

 

 

Metric 
#of Threads 

1T 2T 4T 8T 16T 

Runtime 1.00 0.51 0.28 0.20 0.20 

Power 1.00 1.38 2.16 2.86 2.81 

Vdroop 1.00 1.00 1.04 0.96 0.96 

Energy 1.00 0.71 0.61 0.58 0.57 

Table 4.3:  Runtime, power, maximum voltage droop, and energy of miniFE with 

increase of the number of threads. 

Figure 4.6 shows the relative values of runtime, power, droop and energy for 

different numbers of threads, compared to those of one thread case. The values are 

saturated starting at 8T because of the processor’s architectural limitation (2 threads per 

Bulldozer module; hence 8 threads from 4 modules).  

 

The following trends are observed: 

• At 8T or 16T, the runtime is reduced to one fifth of 1T.   

• At 8T, power increases up to three times compared to 1T. 

• Voltage droop slightly changes according to #of Ts.  

• Average power variation does not significantly affect voltage fluctuation. 

 

Voltage scaling will be needed for 8T and 16T if a system exceeds its TDP, i.e., 
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power constraint. However, if the voltage margin is not enough, voltage scaling is not 

applicable due to margin violation and frequency scaling is required despite performance 

degradation. Another conclusion is that energy starts to saturate from 4T. Therefore, if 

thermal constraint should be considered, 4T is optimal not only for sustaining the same 

battery life but also for keeping good performance. 

 

 

Figure 4.6:  Runtime, power, droop, and energy of miniFE (relative to 1T case) 

 

Voltage droops in miniFE are not seriously changed by compiler optimization 

levels because it highly depends on the OpenMPI library, which is already optimized 

with -O3. For Table 4.3 and Figure 4.6, its dimension was set to nx=150, ny=150, and 

nz=150. The high level of compiler optimization used in the library makes the difference 

between unoptimized and optimized code fairly small. 
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4.3.2.3.  Result of High-Performance Linpack 

The High-Performance Linpack (HPL) benchmark is a very popular way to 

measure performance of supercomputers (Top 500 [66]).  First, the benchmark was 

compiled and run with two different optimization levels, -O0 and -O3, but there is no 

difference in performance, power, and droop between -O0 and -O3.  It is found out that 

the benchmark highly depends on Basic Linear Algebra Subprogram (BLAS) library such 

as daxpy and dgemm. The library is necessary for multi-threading and is usually provided 

by a processor vendor for a specific architecture. For the processor vendor’s pre-

compiled BLAS library on its developer’s site [6], source codes of the library that are 

required to recompile the library with different compiler optimization levels could not be 

obtained. 

Finally, the original BLAS library on the national lab’s web page [10] was 

obtained and used for the compiler optimization experiments. The performance of the 

original BLAS library is much worse than that of the processor vendor’s BLAS, but the 

clear changes could be seen in performance, power, and voltage droop according to 

compiler optimization levels. 

In Table 4.4, HP Linpack’s performance is highly affected by optimization 

methods. The compiler optimization gives five times performance improvement than no 

optimization, and the library optimization by the processor vendor increases performance 

more than five times beyond the compiler optimized case. The performance results also 

show the importance of the library optimization for a multi-threaded application. 

The increases in performance usually are accompanied by increases in power 

consumption, but it is reduced by 35% from -O0 to -O3. Even with AMD BLAS, power 

remains the same compared to -O0 of original BLAS. It is interesting that 29X 
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performance improvement can be obtained at the same power, by compiler optimizations. 

The tradeoffs between performance and power are not uniform between various 

benchmarks or between various optimizations. Maximum voltage droop of HP Linpack 

changes by 7% with compiler optimization and by 5% with library optimization, 

compared to maximum voltage droop with no optimization. If very tight voltage margins 

are used to save power and energy, these voltage fluctuations can cause unreliable 

operation. Energy is calculated using the execution time and power values. It is 

interesting that 89% and 97% of energy can be dramatically reduced by compiler and 

library optimizations, in the original BLAS and vendor-BLAS respectively. For HP 

Linpack, the processor vendor’s recommended configuration was used for the problem 

dimension parameters [1]. 

 

 

Metric 
Original BLAS AMD BLAS 

O0 O3 O3 

Performance 1.00 5.83 29.17 

Power  1.00 0.65 1.00 

Vdroop 1.00 1.07 1.05 

Energy 1.00 0.11 0.03 

Table 4.4:  Runtime, power, maximum voltage droop, and energy of High-Performance 

Linpack (8T) with different libraries and optimization levels. The values are 

normalized to the Original BLAS and O0 case. 
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4.3.2.4.  Result of SPEC CPU2006 

All the CINT2006 and CFP2006 benchmarks in the SPEC CPU2006 suite were 

run to see performance, power, and voltage variation in a multi-programmed manner. 

Each SPEC benchmark is a single-threaded program, so multiple copies of the same 

program are running on each Bulldozer module to calculate the SPECrate. First, each 

benchmark with a single thread was run on one of four Bulldozer modules with an 

affinity in order not to cause thread migration effect that could distort voltage droop 

measurement results.  Then, 4 copies of the same program were run on each Bulldozer 

module (there are 4 Bulldozer modules in the current processor) and 4T cases were 

compared to 1T cases. 

The single thread performance is discussed first. Table 4.5 presents the relative 

values of -O3 normalized to -O0 values. Every SPECrate value in Table 4.5 is greater 

than 1.00 meaning that performance is always improved with compiler optimization.  

However, power does not show any uniform trend with compiler optimization. Voltage 

drdroop changes from -15% to +15% according to benchmark, but it has no trend, either. 

 

 

 

 

 

 

 

  

  



 58 

Benchmark SPECrate Poweravg Vdroop Energy 

perlbench 1.41 0.98 1.09 0.70 

bzip2 2.41 1.00 0.85 0.41 

gcc 1.91 1.00 1.00 0.52 

mcf 1.88 1.05 1.00 0.56 

gobmk 1.78 1.00 1.00 0.56 

hmmer 3.54 1.01 1.00 0.29 

sjeng 1.72 0.99 0.89 0.57 

libquantum 2.05 0.98 0.89 0.48 

h264ref 2.79 1.01 0.96 0.36 

omnetpp 2.14 0.96 1.00 0.45 

astar 2.21 0.97 0.96 0.44 

xalancbmk 5.17 0.97 1.09 0.19 

bwaves 3.38 1.04 1.15 0.31 

gamess 2.82 1.02 1.09 0.36 

milc 3.45 0.97 0.89 0.28 

zeusmp 3.43 1.01 1.04 0.29 

gromacs 2.39 1.01 0.92 0.42 

cactusADM 4.05 0.99 1.00 0.25 

leslie3d 5.48 1.02 1.00 0.19 

namd 3.70 1.00 1.00 0.27 

dealII 8.12 0.95 0.96 0.12 

soplex 2.59 0.93 1.00 0.36 

povray 2.73 0.96 1.00 0.35 

calculix 9.39 0.97 1.00 0.10 

GemsFDTD 4.85 1.00 0.96 0.21 

tonto 1.88 0.99 0.96 0.53 

lbm 1.94 0.94 1.08 0.48 

wrf 4.85 0.96 1.00 0.20 

sphinx3 3.38 1.00 1.04 0.30 

Table 4.5:  SPEC CPU2006 1T Results with –O3 (normalized to –O0) 
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Next, this dissertation studies the impact of compiler optimization on 4T cases 

(Table 4.5), and compares the effects to 1T cases. Performance improvement (SPECrate), 

due to optimization, is less in 4T case compared to single thread case. It is because of the 

contention of multiple threads for shared resources such as L3. Even though none of four 

threads run on the same Bulldozer module, contentions are unavoidable for L3 and 

memory accesses.  

Most benchmarks in SPEC CPU2006 take less power in -O3 compared to -O0 

indicated by the ratios in column 2 except gamess, gromacs and tonto. This could be 

because idle time out of total runtime increases due to resource contentions. The voltage 

droop ranges from -15% to +15% in various benchmarks, but it has no clear trend with 

optimizations. In some benchmarks such as h264ref, voltage droop increases when 

compiler optimization for 4T cases, but voltage droop decreases with compiler 

optimization for 1T case. With compiler optimization, energy is reduced by 30% to 90% 

in 1T (perlbench and calculix, respectively in Table 4.5), and by 8% to 89% in 4T (lbm 

and calculix, respectively in Table 4.6). Due to the degradation of performance in 4T, 

4T’s energy reduction ratio with compiler optimization decreases, compared to 1T. 
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Benchmark SPECrate Power Vdroop Energy 

perlbench 1.43 0.94 1.20 0.65 

bzip2 2.39 0.96 1.00 0.40 

gcc 1.72 0.93 0.93 0.54 

mcf 1.24 0.96 0.86 0.77 

gobmk 1.77 0.96 1.16 0.54 

hmmer 3.54 0.98 1.04 0.28 

sjeng 1.71 0.94 1.00 0.55 

libquantum 1.04 0.92 0.89 0.89 

h264ref 2.79 1.00 1.08 0.36 

omnetpp 1.53 0.85 1.04 0.55 

astar 1.97 0.91 0.93 0.46 

xalancbmk 3.99 0.84 0.92 0.21 

bwaves 2.35 0.96 1.14 0.41 

gamess 2.82 1.05 1.03 0.37 

milc 1.46 0.79 1.00 0.54 

zeusmp 2.86 0.96 1.03 0.34 

gromacs 2.41 1.01 0.87 0.42 

cactusADM 3.17 0.92 1.14 0.29 

leslie3d 2.07 0.85 1.00 0.41 

namd 3.69 1.06 0.91 0.29 

dealII 7.59 0.94 1.04 0.12 

soplex 1.35 0.82 0.90 0.61 

povray 2.72 0.98 1.04 0.36 

calculix 9.34 1.00 0.96 0.11 

GemsFDTD 1.76 0.83 1.03 0.47 

tonto 1.82 1.01 1.00 0.55 

lbm 0.99 0.92 0.91 0.92 

wrf 3.76 0.91 1.03 0.24 

sphinx3 2.28 0.84 1.00 0.37 

Table 4.6:  SPEC CPU2006 4T Results with –O3 (normalized to –O0) 
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The following observations are noted from these experiments: 

• Regarding compiler optimization and its effect on performance:  programs 

compiled with -O3 are faster than those with -O0 in most cases. However, lbm did 

not follow this trend with 4T.  

• Regarding compiler optimization and power:  codes compiled with -O0 

optimization level (i.e. unoptimized code) need more power than codes compiled 

with -O3. This observation is consistent with the observation in Vallu and John 

[67]. 

• Regarding compiler optimization and supply voltage droop: nothing can be 

concluded because of mixed trend in the results. About one third of the 

benchmarks show more droops in the optimized case and about a third of  the 

benchmarks show less droop in the optimized case. About a third of the 

benchmarks show no difference in the droop between optimized and unoptimized 

code. 

• Regarding compiler optimization and energy: energy reduction is always 

observed with higher optimization, but the amount of savings can vary largely 

from one benchmark to another.  

 

Another perspective is the impact of multithreading on voltage fluctuations and 

hence reliability. When SPEC programs are run in the SPECrate mode, the droops 

increase as they go from 1T to 4T cases. 

 



 62 

4.3.3.  Summary of Compiler Optimization Impact 

The experiments were conducted to study the impact on compiler optimizations 

on the voltage fluctuations during program execution. Several programs were run with 

optimized and unoptimized versions of code from the same program, and performance, 

power, energy and voltage fluctuations studied.    

Energy can be dramatically reduced by increasing the number of threads and 

performing compiler optimization. Performance can be significantly improved by 

compiler optimizations. Trends in average or maximum power during execution cannot 

be correlated in a systematic manner with performance. The intricacies of the code 

sequences and the functional units bring unpredictable trends between performance and 

power trade-offs.  

Generally one cannot predict how voltage droop would change with optimization 

levels. In some cases, performance, power, and voltage droop can be improved with 

compiler optimization (mcf, lbm, etc.).  Short-runtimes could give different results in 

voltage droop. Therefore, designers utilizing simulations for such studies should be 

careful interpreting simulation results, which are run with very short time compared to 

real hardware.   

Voltage droop does not change much with compiler and library optimizations in 

miniFE and HP Linpack. Therefore, with compiler optimization only, supply voltage 

reliability is mainly affected by the load-line effect [33], i.e., the resistive part rather than 

the inductive part of the processor and power distribution network circuits.  If one 

cannot predict voltage droop change with static compiler optimization, a dynamic 

mitigation method can be useful. 
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4.4.  SUMMARY 

Voltage droop in SPEC CPU2006 and PARSEC was analyzed in the first section 

of this chapter.  The voltage droop of standard benchmarks is not significant compared 

to that of the manual stressmark, and multi-threading effect is not significant, either. 

From these results one can conclude that di/dt stressmarks are required for worst case 

analysis of di/dt problem. 

Synchronization of multiple threads was thought to make a large single droop in a 

processor. However, this work showed that the 1st droop excitation does not occur 

because the launching time differences among multiple threads are much larger than the 

1st droop resonant period. 2nd and 3rd droop excitation is possible because the start and 

end time can be managed within sub-micro-second time period. 

There is no clear trend in compiler optimization impact on di/dt noise. Significant 

performance improvement by compiler optimization does not necessarily result in power 

tradeoffs, so energy can be reduced dramatically in many cases.  
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Chapter 5:  AUDIT Framework to Generate di/dt Stressmarks 

Rapid current changes (large di/dt) can lead to significant power supply voltage 

droops and timing errors in modern microprocessors. To test a processor’s resilience to 

such errors and to determine appropriate operating conditions, engineers manually create 

di/dt stressmarks that have large current variations at close to the resonance frequency of 

the power distribution network (PDN) to induce large voltage droops. Although this 

process can uncover potential timing errors and be used to determine processor design 

margins for voltage and frequency, it is time-consuming and may need to be repeated 

several times to generate appropriate stressmarks for different system conditions (e.g., 

different frequencies or di/dt throttling mechanisms). Furthermore, generating efficient 

di/dt stressmarks for multi-core processors is difficult due to their complexity and 

synchronization issues.  It will be valuable if a di/dt stressmark can be generated without 

tedium and without detailed knowledge of the microarchitecture. 

In this chapter, an AUtomated DI/dT stressmark generation framework, refered as 

AUDIT, is proposed to test maximum voltage droop in a microprocessor power 

distribution network. The di/dt stressmark from the framework is an instruction sequence 

which draws periodic high and low current pulses that maximize voltage fluctuations 

including voltage droops. In order to automate di/dt stressmark generation, a code 

generator is devised with the ability to control instruction sequencing, register 

assignments, and dependencies. AUDIT uses a Genetic Algorithm in scheduling and 

optimizing candidate instruction sequences to create a maximum voltage droop. In 

addition, AUDIT provides with both simulation and hardware measurement methods for 

finding maximum voltage droops in different design and verification stages of a 
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processor.   

Using the simulation path, the results show that the automatically generated di/dt 

stressmarks achieved more than 40% average increase in voltage droop compared to 

hand-coded di/dt stressmarks and typical benchmarks in experiments covering three 

microprocessor architectures and five power delivery network (PDN) models.  

Using the hardware measurement path, measurement and analysis of di/dt issues 

are conducted on state-of-the-art multi-core x86 systems using real hardware. It is shown 

that AUDIT has capabilities to adjust to microarchitectural and architectural changes. A 

dithering algorithm is adapted to address thread alignment issues on multi-core 

processors. 

 

5.1.  AUDIT FRAMEWORK 

Figure 5.1 shows the basic framework for AUDIT. AUDIT takes as input the 

instructions used to generate the stressmark and some control parameters such as the cost 

function and exit conditions. This information is fed to a code generator to produce a 

population of potential stressmarks. The initial population of stressmarks either can be 

generated randomly or seeded with existing benchmarks or stressmarks to improve the 

convergence rate.  

Figure 5.1 includes two possible paths for stressmark generation, simulation and 

hardware. With the simulation path (top of Figure 5.2), the voltage droops of generated 

instruction sequences are evaluated using a cycle-accurate simulator that produces current 

draw information followed by SPICE simulation. This path is most appropriate when 

hardware for performing di/dt stressmark generation is not available. With this approach, 

the assembly code instruction sequence is compiled into a simulator-friendly format (e.g., 
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x86 binaries). The compiled code is executed on the cycle-accurate simulator and every 

cycle the simulator calculates the current draw of the processor based on the activity of 

internal modules of the processor.  This methodology is similar to that used in other 

work [14][24][48].   AUDIT converts the per-cycle current profile into a current sink in 

HSPICE simulation using a lumped RLC model of the PDN.  The HSPICE simulation 

produces a series of voltage droops over time from which the maximum voltage droop 

can be obtained. 

 

 

Figure 5.1:  AUDIT framework for di/dt stressmark generation using simulators and 

hardware. 

With the hardware path (bottom of Figure 5.2), the stressmarks are run on a 

processor board and measurement tools capture voltage droops, power dissipation, and 

any other information necessary to evaluate the cost function of the stressmark. The 

stressmarks and their associated cost values are fed to the GA for further refinement until 
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the exit conditions are met (e.g., the maximum voltage droop produced by AUDIT does 

not increase for several generations ). 

 

 

Figure 5.2:  Simulation and hardware measurement paths to get max voltage droops. 

 

5.1.1.  Instruction Scheduling using the Genetic Algorithm 

Genetic Algorithms (GAs) are known to be very efficient in solving optimization 

problems by finding a best fitness value for the problem by killing inferior candidates and 

promoting superior ones.  In the AUDIT framework, di/dt stressmark generation is 

considered as an instruction scheduling problem, and the objective function is set to 
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maximize the supply voltage droop. Then, GA optimizes the instruction scheduling.  

Figure 5.3 shows a conceptual instruction scheduling using GA.  The AUDIT 

framework initially generates random instruction sequences, and they are forced to 

reproduce, mutate, and compete for maximizing the voltage droop as the algorithm 

proceeds.  

 

 

Figure 5.3:  Conceptual instruction scheduling in the Genetic Algorithm. 

 

5.1.2.  Framework Control using the Genetic Algorithm 

The Genetic Algorithm guides the AUDIT stressmark generation framework as 

shown in Figure 5.4, and generates a di/dt stressmark as an output. With a control 

parameter setting, initial instruction sequences are generated and consist of a population 

in the first generation. All the individuals in the population are evaluated for the objective 
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function – maximum voltage droop - with multiple simulations. Then, two of the highly 

ranked individuals in the population are selected for reproduction, and they exchange a 

certain number of instructions with each other. The rate of reproduction is called 

crossover rate and it affects the overall optimization results because the crossover rate 

determines the speed of convergence of the algorithm. After crossover, the characteristic 

of each individual can be changed by mutation that converts one or multiple bits of an 

individual instruction. Such GA operations repeat for a given number of generations, and 

a maximum voltage droop is determined at the end of the last generation. 

 

 

Figure 5.4:  Control of stressmark generation framework using Genetic Algorithm. 
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5.1.3.  Instruction Sequence Generation for the Genetic Algorithm 

Figure 5.5 depicts instructions, stressmark size, and candidates for the di/dt 

stressmark in the Genetic Algorithm. An instruction consists of an opcode (OPCODE), 

operands (OR), and dependencies and is represented as a bit-string for the chromosome. 

A certain number of chromosomes are placed in an individual (stressmark size) that 

becomes an instruction sequence and a possible di/dt stressmark. Population is a 

collection of individuals and corresponds to one generation. 

 

 

 

Figure 5.5:  Instruction sequence generation for Genetic Algorithm. 

 

5.1.4.  Dependency Control and Register Assignment 

One of the knobs in the automatic framework is the dependency between 
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instructions. Data dependencies cause a pipeline stall in a processor until it is resolved. In 

Joseph et al. [24], dependencies are used to cause low current draw during part of a 

resonant period, and the same register is assigned to a target register of an instruction and 

a source register of a following instruction.  Prior research [24] chose a floating-point 

divider instruction, divt, as the only stalling instruction, but this dissertation does not 

impose this limitation. Any instruction is able to have a dependency with the previous 

instructions, and its operand registers are assigned according to the dependency 

 

5.1.5.  Stressmark Size and Resonant Frequency 

The stressmark size can be selected based on a given resonant frequency 

(1/resonant period). Figure 5.6 shows the relationship between stressmark size and 

resonant period. 

Stressmark size ≈ resonant period (Figure 5.6.(a)): A short instruction 

sequence that matches the resonant frequency is repeated to produce a maximum voltage 

droop. 

Stressmark size > resonant period (bottom of Figure 5.6.(b)): A long 

instruction sequence, which is three to five times longer than a resonant period, can be 

used to find a maximum voltage droop. It eliminates interferences from the neighbor 

sequences when instructions have a long latency or a high dependency to each other. 

However, the possibility to find a maximum voltage droop is reduced because the search 

space increases exponentially according to the stressmark size. 
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(a) when stressmark size ≈ resonant period, resonance. 

 

 
(b) when stressmark size > resonant period, no resonance but single large droop. 

Figure 5.6:  Stressmark size and resonant period.  

 

5.1.6.  Management of Search Space 

The stressmark solution space for AUDIT is a function of the number of cycles in 

the repeated loop (the loop length), the issue width of the processor, and the number of 

instructions being evaluated for code generation.  The combination of loop length, issue 

width, and the number of instructions can result in a large solution space.  The loop 

length for first droop resonance is determined by the resonance frequency, which can 

result in a large solution space.  For example, a 3GHz processor with a resonance 

frequency of 50MHz has a loop length of 60 cycles.  Assuming a four-wide processor, 

this results in 240 instruction slots for AUDIT to schedule. 

 

5.1.6.1.  Reduction of the number of instruction types  

In order to explore the instruction scheduling space efficiently, reduction of the 

number of instructions can be considered.  The search space is almost impossible to be 
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enumerated with all the different types of opcodes and register combinations.  

Therefore, this step is necessary before searching the instruction scheduling space to 

eliminate redundant combinations of instructions and to reduce search time significantly.  

Each instruction can be categorized into one of a few groups: data type, arithmetic, logic, 

load/store, bit-level, conditional move, and branch/jump. 

Example of Alpha ISA: For data type, both integer and floating-point types are 

used to utilize the execution units maximally, but only the quad-word (64-bit) type for 

integer and the double precision type for floating-point are selected to draw large current 

due to multiple-bit changes.  For example, instructions such as add-bytes, add-words, 

and add-double-words are not used in an instruction sequence.  The arithmetic and 

load/store instructions use different execution units with different latencies, so they are 

considered individually.  For logic, bit-level, conditional move, and branch/jump 

groups, one instruction can represent other instructions if they use the same execution 

unit with the same latency such as cmple (compare less than or equal) and cmpeq 

(compare equal). 

 

5.1.6.2.  Reduction of code length scheduled using sub-blocking  

To converge in a reasonable time (this dissertation defines reasonable time as a 

few hours), AUDIT uses a hierarchical generation policy.  First, AUDIT separates each 

member of the population into a high-power (HP) and a low-power (LP) region. Initially, 

the LP region consists of NOPs. Second, AUDIT breaks the HP region into S replicated 

sub-blocks of length K. For example, a 24-cycle HP loop can be composed of four (S = 4) 

sub-blocks of length six cycles (K = 6).  The GA algorithm in AUDIT generates the 
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instructions for each subsection, and the full stressmark composed of an HP region of S 

sub-blocks of length K and an LP region of NOPs is evaluated in hardware using the 

dithering algorithm. 

At the end of the AUDIT run for the HP region, a stressmark is generated, which 

has been synthesized to produce high power for the HP region of the stressmark. This 

dissertation also evaluated using AUDIT to generate the LP region of the stressmark 

using long-latency operations with dependencies as proposed in [24]. However, for the 

system evaluated, a sequence of NOPs produced comparable power values to a sequence 

of long-latency, dependent operations. NOPs are designed to be very low-power 

instructions in the experimental processor in this dissertation, so the rest of the evaluation 

uses NOPs for the LP portion of the stressmark. 

The hierarchical implementation was compared to the basic implementation and 

the results showed that sub-blocking provided faster convergence as well as better results 

- 19% higher droop in less than five hours compared to a 30-hour run without 

hierarchical generation. 

 

5.1.7.  Adoption of Dithering Algorithm for Guaranteed Alignment 

A dithering technique [43] for multiple threads is adopted and implemented for 

the AUDIT framework.  In Chapter 4, it is shown that misalignment among multiple 

threads may result in a destructive effect in current draw, and that there is natural 

dithering by OS scheduling.  However, to guarantee the alignment of multiple threads in 

an AUDIT generated di/dt stressmark, a dithering method [43] can be used in the AUDIT 

framework.  The following explains the detail of the dithering method [43]. 
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Figure 5.7 shows a periodic stress pattern with high- and low-power portions of 

duration H and L cycles, respectively. This waveform meets the requirements of an ideal 

di/dt-inducing resonant pattern described in Chapter 4. This periodic pattern is repeated 

for M cycles to produce a large resonant droop. The goal of the dithering algorithm is to 

guarantee that for C cores, the stressmarks running on each core align across all C cores 

for at least M cycles. Note that a first droop excitation is different in that it requires a low 

region followed by a high region where the sum of the regions is not necessarily periodic 

at the resonance frequency.   

 

H

L

M

H

L

M

 

Figure 5.7:  Periodic activity waveform for inducing power supply resonance and large 

voltage droops. 

For a high-low sequence of length H+L cycles running on C cores, the 

misalignment in cores 1 through C-1 can be represented as a C-1 dimensional variable x 

= (x1, x2, …, xC-1), where xi ϵ {0, 1, …, L+H-1}. Core 0 is considered the reference core. 

The search space for perfect alignment of all cores is therefore (L+H)
(C-1)

 possible 

alignments. This search space can be fully traversed in M× (L+H)
(C-1)

 cycles, where M is 

the number of cycles required to cause and sustain supply droop resonance. 

The dithering algorithm uses the following NOP padding procedure to align the 

threads and achieve resonance in a processor with C cores: 
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 Core 0: Apply no dithering and no extra padding of NOPs.  Core 0 simply 

executes the periodic low-high activity sequence shown in Figure 5.7 repetitively. 

 Core c, where 1 ≤ c ≤ C-1: Apply one cycle worth of NOP padding every 

M× (L+H)
(c-1)

 cycles. 

 The maximum number of cycles to guarantee alignment is M× (L+H)
(C-1)

. 

 

As long as the number of processors is reasonably small, the alignment algorithm 

works well. However, the time required for alignment becomes prohibitively large for 

more than four cores. For example, on a 4-GHz system with L+H=24 and M=24×40=960, 

the time required to align four cores is 3.3 ms, but eight cores require 18.35 minutes. The 

alignment must be done for each candidate stressmark in each generation of the GA. 

To expand dithering to many-core systems, this dissertation uses an approximate 

algorithm that sets a bound on the maximum misalignment between threads. Assume that 

the maximum mismatch allowed among the activities of different cores is δ cycles. Then, 

L+H is chosen such that it is a multiple of (δ + 1) and (L+H)× f is close to the resonance 

frequency of the PDN, where f is the operating frequency of the system. 

The search space for alignment of all cores within the maximum allowed 

mismatch of δ cycles then becomes [(L+H)/(](C-1)
, which can be fully traversed in 

M× [(L+H)/()]
(C-1)

 cycles. The dithering algorithm proceeds as before; however, for 

core c, where 1 ≤ c ≤ C-1, ( +1) cycles worth of NOP padding is applied every M× k
(c-1)

 

cycles, where k = (L+H)/(.  If a  of 3 is used in the previous example of eight 

cores, the maximum time required to reach alignment with the approximate algorithm 

shrinks from 18.35 minutes to 67 ms per candidate stressmark. 
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5.1.8.  Code Generation for Multiple Threads 

Figure 5.8 shows the code generation steps for multiple threads.  Once a high-

low power pattern is generated, it is repeated to make a resonance. Then an initialization 

part and a dithering part are attached to the beginning and the end of the core pattern, 

respectively.  

 

 

 

Figure 5.8:  Code generation steps for multiple threads. 

 

5.1.9.  Sweep for Finding a Resonant Frequency 

There are some additional complexities when x86 multi-core systems are used. 

First, it is observed that data values used for the stressmark have a measureable impact on 

the final droop values, on the order of 10%. To take data values into account, an 
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alternating set of values is used, which guarantees maximum toggling between 

consecutive instructions executing on the same functional unit. Second, the resonance 

frequencies of the system can vary across different boards or even within the same board 

if the components of the board change (e.g., using a different processor on the same 

board, as is done later in this dissertation). Therefore, AUDIT does a sweep for the 

resonance frequency before attempting to generate a first-order resonant droop. 

To determine the resonance frequency, AUDIT constructs a trivial stressmark 

consisting of a loop of high-power instructions and NOP instructions (Figure 5.9). It 

varies the number of cycles in the loop to determine the loop length that produces the 

worst-case droop. The number of cycles in the loop that produces the worst-case droop 

exercises the resonant frequency of the processor. For example, the number of cycles in 

the loop is increased by 8 cycles from 8 to 56 cycles.  The plot in Figure 5.9 shows that 

when the total loop length is 32 the largest maximum voltage droop is reached. To make 

a resonant droop stressmark, the total loop length of 32 is selected. 
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Figure 5.9:  Frequency sweep to find resonance frequency. A loop length of 32 hits the 

resonant frequency and causes the largest voltage droop 

 

5.2.  EXPERIMENTAL RESULTS USING AUDIT FRAMEWORK 

5.2.1.  Results of AUDIT Simulation Path 

This section shows the results when using the simulation path. The simulators and 

their configurations and power distribution networks are carefully selected from the 

previous studies. As a cycle-accurate power simulator, Wattch [7] that includes 

SimpleScalar is modified and used.  The current traces extracted from Wattch are fed to 

HSPICE as a current sink in a PDN circuit. The nominal supply voltage is set to 1.0V.    

To apply the Genetic Algorithm to the simulation environments in this 

dissertation, GAUL [13] is used, which provides an open source utility library for 
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Genetic Algorithms including population creation, evolution, and evaluation. Population, 

crossover rate, and mutation rate are set to 200, 0.8, and 0.2, respectively, using the 

library default values. The number of chromosomes, i.e., the stressmark size, is set to 30 

for PDN1, PDN2, and PDN4 and to 50 for PDN3, considering the ratio of CPU clock 

frequency and resonant frequency.  

Three different architectures are configured to see the effectiveness and the 

architecture dependency of the di/dt stressmark generation method in this dissertation 

(Table 5.1). The base architecture configuration, Arch1 shown in Table 5.1, is an 8-wide 

microprocessor with 3 GHz clock speed, based on the Pentium 4, similar to the 

configuration in Joseph et al. [24]. For the second architecture, Arch2, the number of 

memory ports is decreased from 4 to 2 in order to reduce memory accesses, and other 

parameters were also adjusted to a 4-wide microprocessor. The last configuration, Arch3, 

is nearly the same as Arch1, but the latency of a key component, fdiv unit, is increased 

from 12 to 18 cycles to see the architecture dependency of the di/dt generation method in 

this dissertation. 

Then, the five different power delivery network (PDN) circuits are taken from the 

previous studies [9][15][47][61].  PDN1 [47] is simple, but shows mid-frequency 

behavior which dominates the PDN’s characteristic. PDN2 [15] is an implementation of 

the Pentium 4’s PDN.  PDN3 [9] is also for Pentium 4, but has different resonant 

frequency, current swing, and number of RLC stages from PDN2.  PDN4-A and PDN4-

B [61] are the same circuits with different decoupling capacitance values. 
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Parameter Arch1 Arch2 Arch3 

CPU Clock 3 GHz 3 GHz 

(1) Latency of fdiv 

is changed from 12 

to 18. 

(2) Other 

parameters are the 

same as Arch1  

Fetch/Decode/Issue 8 / 8 / 8 instr. 4 / 4 / 4 instr. 

EXU 

8 alu,  

2 mul/div, 

4 falu, 

2 fmul/fdiv, 

4 mem-port 

4 alu,  

2 mul/div, 

2 falu, 

2 fmul/fdiv, 

2 mem-port 

RUU / LSQ 128 / 64 128 / 64 

Branch Predictor Combined, 64Kb Combined, 32Kb 

BTB 1K entries 512K entries 

L1 I/D-Cache 64KB, 2-way 32KB, 2-way 

L2 Cache 2MB, 8-way 1MB, 8-way 

Table 5.1:  Base architecture configuration for SimpleScalar 

 

 PDN1 [47]  PDN2 [15] PDN3 [9] 
PDN4-A 

[61] 

PDN4-B 

[61]  

Resonant 

Frequency 
100MHz 100MHz 68MHz 150MHz 200MHz 

Current Swing 6-50A 3-20A 2-12A 5-16A 5-16A 

#of RLC Stages 1 4 5 2 2 

Table 5.2:  Five different PDNs for circuit simulation 

 

To compare the effectiveness of the di/dt stressmark in this dissertation to that of 

other methods, this dissertation runs the SPEC CPU2006 suite with 100 million 
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instructions, and programs the hand-coded assembly code in [24]. The hand-coded di/dt 

stressmark consists of two parts; one is for low current draw, and the other is for high 

current draw. The low current draw part is implemented with the divider instruction, divt, 

which has a fixed, long latency. The high current draw part uses a store instruction, stq, 

which store data to main memory through L1 and L2 caches. This dissertation finds the 

best maximum voltage droop by increasing the number of the stq instruction from 0 to 

200 under the given architecture and PDN configurations. Effort is made to create the 

best possible hand-coded baseline stressmark for comparison. 

Table 5.3 compares the maximum voltage droop in milli-Volts for SPEC 

CPU2006, the hand-coded stressmarks, and the AUDIT di/dt stressmarks. A larger 

number means a larger maximum voltage droop, and only the worst voltage droop is 

shown among the 22 SPEC benchmarks. Overall, the AUDIT di/dt stressmarks always 

invokes larger maximum voltage droops than the other two methods. For Arch1, 

compared to SPEC CPU2006 and the hand-coded stressmark, 35.7% and 15.7% average 

increases in voltage droop are achieved by AUDIT di/dt stressmark for the different 

PDNs, respectively. In Arch2, architecture difference between Arch1 and Arch2 affects 

the performance of the di/dt stressmark, but AUDIT di/dt stressmark is less architecture-

dependent because the hand-coded di/dt stressmark depends heavily on the number of 

memory ports due to the store instruction. Considering Arch1 and Arch3, it is shown that 

the hand-coded di/dt stressmark significantly depended on the specific instruction, divt, 

executed in the fdiv unit whose latency is changed from 12 to 18 cycles. In contrast, the 

automated di/dt stressmark and SPEC benchmarks for Arch3 make a similar range of 

voltage droops as Arch1 regardless of the execution cycle change of the divider unit. 

This can also reveal that the automated di/dt stressmark generation technique in this 
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dissertation is architecture-independent. 

 

Config. PDN 

SPEC 

CPU2006 

(worst case) 

(mV) 

Hand-Coded 

Droop 

 

(mV) 

Automated 

Stressmark 

Droop 

(mV) 

Improvement 

(Auto. vs. SPEC/ 

Auto. vs. Hand.) 

Arch1 

PDN1 65.3 75.8 78.8 20.7% / 4.0% 

PDN2 111.9 112.9 121.5  8.6% / 7.6% 

PDN3 69.2 123.9 134.8 94.8% / 8.8% 

PDN4-A 101.1 107.6 137.5 36.0% / 27.8% 

PDN4-B 140.4 151.2 189.6 35.0% / 25.4% 

Arch2 

PDN1 26.4 29.0 34.9 32.2% / 20.3% 

PDN2 53.8 55.8 82.2 52.8% / 47.3% 

PDN3 41.8 45.8 60.5 44.7% / 32.1% 

PDN4-A 44.0 39.1 56.8 29.1% / 45.3% 

PDN4-B 53.7 46.5 82.4 53.4% / 77.2%  

Arch3 

PDN1 65.3 39.3 73.9 13% / 88% 

PDN2 110.9 62.8 130.2 17% / 107% 

PDN3 69.2 113.9 143.5 107% / 26% 

PDN4-A 101.7 80.5 153.0 50% / 90% 

PDN4-B 139.8 75.4 191.6 37% / 154% 

Average (Overall) 79.6 77.3 111.4 40% / 44% 

Table 5.3:  Maximum voltage droops of SPEC CPU2006, hand-coded [24], and 

automatic di/dt stressmarks. Supply voltage is 1V (Vnom=1V). 
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Figure 5.10 depicts the current waveform in different generations of the Genetic 

Algorithm. Figure 5.10 (top) is one of the best in the first generation, G1. It seems to be 

periodic, but its shape is irregular and similar to sawm of Figure 2.7. At the tenth 

generation, G10, the current waveform (Figure 5.10 (middle)) looks a mix between sawm 

and rectangular in Figure 2.7. The last generation, G20, has the current waveform 

(Figure 5.10 (bottom)) which caused the maximum voltage droop in Arch2-PDN2. Its 

current shape is now similar to rectangular, which induces the largest voltage droop for 

the given current swing. 

 

 

Figure 5.10:  Current waveform according to generation number. 

Figure 5.11 shows the current and the corresponding voltage waveform of the 

hand-coded and the automated di/dt stressmarks. In Arch2-PDN2, the maximum voltage 

droops are 55.8 mV and 88.2 mV for the hand-coded and the automated di/dt 

stressmarks, respectively. The difference in maximum voltage droop comes from the 

shape of the current waveform. The current waveform of the hand-coded stressmark is 
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similar to sawr of Figure 2.7, which is the worst among the waveform types. In contrast, 

the automated di/dt stressmark in this dissertation is successful in generating the 

rectangular shape of current draw, which is the most effective to induce the di/dt effect. 

 

 
(a) hand-coded di/dt stressmark 

 

 
(b) automated di/dt stressmark 

Figure 5.11:  Current and voltage waveform of hand-coded and automated di/dt 

stressmark in Arch2-PDN2. 

 

Regarding the runtime for each PDN, the di/dt stressmark generation is 10 times 

faster than the typical benchmark suite is. A di/dt stressmark is generated within 3 hours 

with the parameters described above, and the SPEC CPU2006 runs take more than 32 

hours on the same machine. Since HSPICE simulation dominates the whole runtime, the 
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same runtime relationship is expected between SPEC runs and the di/dt stressmark 

generation, even if the complexity of HSPICE netlist of a PDN increases. 

 

5.2.2.  Results of AUDIT Hardware Measurement Path  

This section covers the results obtained for multi-core stressmark generation. This 

dissertation compares and analyzes standard benchmarks, existing stressmarks, and 

AUDIT-generated stressmarks. For each benchmark (stressmark), this dissertation 

presents its maximum voltage droop and analyze the processor's ability to operate under 

degraded voltage conditions. This dissertation also presents results showing AUDIT's 

ability to adapt to microarchitectural and architectural changes. 

 

5.2.2.1.  Experimental setup 

To evaluate AUDIT, recent multi-core x86-64 processors are targeted due to their 

widespread use. The primary processor for the evaluation of AUDIT is the AMD Orochi 

processor, and, in later experiments, it is replaced with an older-generation 45-nm AMD 

Phenom™ II X4 Model 925 processor to showcase AUDIT's ability to adapt to different 

systems and requirements. 

AUDIT's code generation methodology is able to utilize all x86 instruction types, 

including integer, floating-point, and SIMD. General-purpose registers and 64-bit and 

128-bit media registers are used for source and destination operands. Assembly code 

instructions are generated in NASM format and are compiled with NASM 2.09.08 [63].  

SPEC CPU2006 benchmarks and stressmarks run on Windows®  7 OS, and PARSEC [5] 

benchmarks run on Red Hat Enterprise 6 Linux OS. 
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5.2.2.2.  Voltage droop analysis 

Figure 5.12 shows the maximum droop measured from running SPEC CPU2006 

benchmarks, PARSEC multi-threaded benchmarks, and a set of existing and AUDIT-

generated stressmarks in configurations of one-, two-, four-, and eight-thread runs (1T, 

2T, 4T, and 8T).  Benchmarks zeusmp and swaptions are selected as the worst case in 

each standard benchmark suite.  Unfortunately, the dithering methodology (Section 

5.1.7) is not easily applicable to SPEC CPU2006 benchmarks or the PARSEC suite 

because they do not consist of a regular, repeatable loop that can be shifted to produce 

alignment between the threads. Although the lack of dithering for SPEC CPU2006 results 

in a smaller droop than is theoretically possible with ideal alignment [56], it also reflects 

the reality of multi-processor execution in which the natural misalignment between 

threads may counteract some worst-case stress generating behavior. The multi-threaded 

AUDIT stressmarks (A-Ex and A-Res) and the hand-generated resonant stressmark SM-

Res use the dithering methodology described in Section 5.1.7 to align the threads for a 

worst-case voltage droop. The 2T and 4T configurations use the exact algorithm, and the 

8T configuration uses the approximate algorithm with a δ of 3. 
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Figure 5.12:  Hardware measurements of droop (relative to 4T SM1) for SPEC 

CPU2006, PARSEC, and stressmarks. 

Figure 5.12  shows the results for various stressmarks, either manually collected 

or hand-generated (SM1, SM2, and SM-Res) or automatically generated by AUDIT (A-Ex 

and A-Res). A-Ex is a first-droop excitation stressmark, and A-Res is a first-droop 

resonant stressmark. SM1 and SM2 contain both single-droop and resonant excitations, 

and SM-Res is a hand-generated resonant stressmark. The manual stressmarks are the 

result either of past di/dt issues or a non-trivial design effort (on the order of a week per 

stressmark) from a highly skilled engineer with detailed knowledge of the pipeline 

architecture. The goal of AUDIT is to generate similar or better stressmarks without 

detailed knowledge of the pipeline in question. 

To produce the A-Ex and A-Res stressmarks in Figure 5.12, AUDIT was 

instructed to generate a homogeneous stressmark with four identical threads, one 

assigned to each module. For the resonant stressmark, a high-power sub-block of length 

six cycles is used and repeated as many times as necessary to produce the high-power 
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region. The low-power region of the stressmark, for the reasons noted in Section 5.1.6.2, 

consists of NOPs. The stressmark generation takes less than five hours to complete 

without human intervention. 

  With the exception of SM2, all stressmarks produce significantly greater droops 

than the standard benchmarks. As will be shown in Section 5.2.2.4, SM2 is still a viable 

stressmark because it exercises the sensitive paths on the processor. The two resonant 

stressmarks (SM-Res and A-Res) produce significantly larger droops than all other 

stressmarks for the reasons described in Section 2.3. Both AUDIT-generated stressmarks 

(A-Ex and A-Res) produce droops that are either comparable or greater than that of the 

existing stressmarks. This highlights AUDIT's ability to produce results that are 

comparable to well-engineered stressmarks that require significantly more effort and 

knowledge to generate. 

The stressmarks produce larger droops for the 4T case than for the 8T case. All 

stressmarks contain some amount of floating-point instructions, and the floating point 

unit (FPU) is shared between the two threads in each Bulldozer module in the 8T runs. 

This results in interference between the threads; this shifts the loop lengths, making it 

difficult to align the first droop excitation across the threads or to oscillate at the resonant 

frequency. The same interference may not exist in the standard benchmarks depending on 

the density of floating-point operations and how the threads align. 

The A-Ex and A-Res stressmarks are generated using four homogeneous threads 

assigned one per module. Hence, the GA in AUDIT is not trained to deal with the shared 

FPU in the 8T run. To test the hypothesis, AUDIT was run again to use eight 

homogeneous threads, with two threads per module, to generate a new stressmark (A-Res-

8T). The resulting data is shown in Figure 5.12. The 8T results for A-Res-8T are 



 90 

significantly better than the 8T results for A-Res or SM-Res. However, the 1T, 2T, and 4T 

results suffer for the same reason that the 8T run suffers for the other stressmarks -- 

because the characteristics assumed for the stressmark generation are not valid in some of 

the multi-threaded configurations. These results show that (1) system characteristics 

(such as shared resources) must be considered when generating stressmarks, (2) one type 

of stressmark may not apply to all configurations of a multi-core system, and (3) AUDIT 

is robust and flexible enough to find patterns that can exercise the characteristics of the 

system being evaluated with minimal manual intervention. 

 

5.2.2.3.  Voltage droop probability 

Figure 5.12 shows the worst-case droop for the benchmarks and stressmarks. 

However, it does not show how often the droop occurs. The more frequently a large 

voltage droop occurs, the more likely it is to result in a catastrophic failure. Not only does 

first droop resonance produce larger droops than first droop excitation (see Figure 2.5), it 

also produces more such events. 

In Figure 5.13, the hardware measurement tools in this dissertation are used to 

produce a histogram of voltage droops for zeusmp, SM1, and A-Res. Each plot contains 8 

million samples. The x axis shows the measured Vdd and the x axis range is the same for 

all figures. The y axis shows the number of samples for the given Vdd. Values to the left 

(right) of center indicate voltage droops (overshoots). 
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Figure 5.13:  Frequency of droop events. 

 

The zeusmp benchmark has the least variation in voltage, as expected from the 

results in Figure 5.12.  Stressmark SM1 has a larger range of measured Vdd, yet the 

largest number of samples is centered at the nominal Vdd with a sharp reduction for 

lower voltages. There are spikes along the way, most likely due to code regions with 

resonant behavior, but the application has a long tail for both droops and overshoots. The 

resonance stressmark has the opposite characteristic with the highest number of events 

occurring near the worst-case droop values. Both stressmarks have a tail of low-

probability droop events, but what dictates the failure point of these benchmarks is the 

higher-probability droop events near the tail. With hardware measurement, these 

characteristics can be evaluated across the entire run of the program, which is not 

possible in simulation. The next section evaluates how these droop characteristics 

translate into failure points for each application. 

 

5.2.2.4.  Voltage droop vs. voltage at failure 

The size of the maximum voltage droop is an indirect indicator of the voltage 
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operating margin of the program. The ultimate test is to determine the point at which 

failure occurs for each configuration. In the next experiment, running 4T configurations 

for two standard benchmarks with the largest droop (swaptions and zeusmp) and the 

stressmarks, the operating voltage is reduced in steps of 12.5 mV until failure occurs. The 

higher the voltage at failure, the better the program is at stressing the system. 

Table 5.4 shows the results relative to A-Res, which fails at the highest voltage 

(VF). The other resonant stressmark, SM-Res, fails at a value 12 mV lower. The next to 

fail are the other stressmarks, with zeusmp and swaptions failing last as Vdd is reduced. 

As discussed earlier, the largest droops in the standard benchmarks are the result 

of a first droop excitation that tapers off quickly, as shown in the left side of Figure 4.6. 

Hence, they may or may not cause system failure depending on whether the droop occurs 

when critical paths are being exercised. A-Ex also generates a first droop excitation, but it 

is large enough to cause a failure at higher voltages. SM1 and SM2 have both first droop 

excitation and first droop resonance, and they fail at a higher voltage than the standard 

benchmarks. This is expected for SM1 due to its large droop. SM2, however, has a droop 

that is comparable to the standard benchmarks yet is more sensitive to the voltage levels. 

This is because SM2, unlike the benchmarks, is designed to exercise sensitive paths in the 

architecture. 

What these results show is that the voltage droop is one indicator of potential 

failure, but not the only one. This insight would be difficult to gather from a cycle-

accurate simulator that does not detect droop-induced system failures, and benchmarks 

such as SM2 would be discarded as potential stressmarks. 

As currently implemented, AUDIT's cost function for selecting successful 

populations is based on the measured droop in the system. However, it is trivial to adjust 
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the cost function to reward the use of certain types of instructions that exercise critical 

paths if they are known. The key is that AUDIT is agile enough to manage these changes 

with little effort. 

 

 

A-Res SM-Res SM1 A-Ex SM2 zeusmp swaptions 

VF 
VF – 12 

mV 

VF – 62 

mV 

VF – 75 

mV 

VF – 87 

mV 

VF – 125 

mV 

VF – 125 

mV 

Table 5.4:  Voltage at failure relative to A-Res 4T failure point. 

 

5.2.2.5.  AUDIT loop analysis 

To determine how AUDIT is able to produce large droops, the main loop of the 

resonant stressmarks, SM-Res and A-Res, was analyzed. SM-Res is hand-designed and 

regular in using floating-point and SIMD instructions during the high-power phase of the 

loop. A-Res uses a combination of integer and floating-point operations and high- and 

low-power instructions, including some NOPs in the high-power phase. 

By mixing integer and floating-point operations, it is able to exercise multiple 

schedulers and execution clusters in the pipeline. What is more difficult to assess is why 

sprinkling NOPs in the code increases the droop.  

To further understand the effect of the NOPs, the NOPs in the high-power region 

were replaced with independent, integer ADD operations and the resulting droop was 

measured. If the pipeline flow remains the same, the ADDs should produce a higher 

droop than the NOPs since they are a higher power operation than NOPs. The modified 
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A-Res stressmark generated a smaller droop (by 40 mV) than the original stressmark. In 

addition, the frequency of the di/dt pattern shifted lower than the ideal resonant 

frequency, indicating that the duration of the loop increased due to the inclusion of the 

ADD operations. Unlike ADDs, NOPs consume fetch and decode resources but do not 

affect other structures in the pipeline such as the schedulers, physical registers, or result 

busses. The use of the NOPs enabled the stressmark to attain resonance. Although the 

pipeline and the modified A-Res stressmark are constructed to attain a throughput of four 

instructions per cycle, resource hazards such as physical register availability, decode 

width capabilities, token-based scheduling restrictions, and result bus utilization impact 

the final outcome. AUDIT with its GA-based algorithm was able to construct a 

stressmark that worked around the pipeline hazards to produce a large droop. AUDIT's 

ability to accommodate pipeline restrictions is examined further in Section 5.2.2.6. 

One valid concern is that AUDIT stressmarks are unrealistic because the droops 

generated by them are much worse than normal benchmarks or other stressmarks. As 

noted earlier, instead of using the stressmarks to set voltage margins, they can be used to 

understand the bounds of the problem and sensitivities of the pipeline. For example, the 

A-Res stressmark shows that it is possible to generate large droops by selecting both the 

floating-point and integer execution clusters in the pipeline rather than just focusing on 

the floating-point pipeline. Additionally, as will be shown in Section 5.2.2.6, when one 

di/dt stress path is blocked through droop mitigation mechanisms, AUDIT can find other 

high-stress paths in the pipeline. As noted by Patel [45], there are many sensitive paths on 

cores that can lead to catastrophic failures when the system is stressed by reduced noise 

margins, and it is imperative that one have the tools necessary to identify these paths. 
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5.2.2.6.  Impact of FP throttling 

Floating-point and SIMD instructions are generally the highest-power instructions 

available in the execution pipeline and they are used extensively in the high-power 

portion of the stressmark. A number of papers have noted that hardware and software 

architectural throttling schemes reduce di/dt stresses by limiting the rate of change in the 

execution of high-power instructions [9][14][16][19][24][40][47][53][56]. This 

dissertation utilizes a FP throttling scheme that statically limits the maximum number of 

FP instructions executed in a cycle. 

This dissertation measured the droop on some of the stressmarks with FP 

throttling enabled to determine the maximum droop and maximum voltage at failure. The 

results are shown in Table 5.5. As before, all droop data are relative to the 4T SM1 

stressmark with FP throttling disabled. FP throttling is highly effective for A-Res and SM-

Res, but less so for SM1. SM1 is composed of multiple high-stress code sequences, and 

FP throttling does not affect all stress paths in SM1. Although the results vary, the droop 

and voltage at failure improve with FP throttling. These results show that FP throttling 

functions as expected by limiting di/dt stresses; however, the results so far do not show 

whether AUDIT can find another stressmark that can produce a significant droop with FP 

throttling enabled. 
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 Stressmark Relative Droop Failure Point 

No Throttling 

SM1 1 VF – 62 mV 

A-Res 1.39 VF 

SM-Res 1.25 VF– 12 mV 

FP Throttling 

SM1 0.93 VF– 75 mV 

A-Res 0.86 VF– 100 mV 

SM-Res 0.78 VF– 113 mV 

A-Res-Th 0.98 VF– 75 mV 

Table 5.5:  Impact of FP throttling on relative droop (relative to 4T SM1) and failure 

point (relative to 4T A-Res). 

 

AUDIT was used to generate a new stressmark (A-Res-Th) to determine if there 

are other opportunities to generate a large droop in conjunction with FP throttling. The 

AUDIT stressmark generation was repeated using four threads, but with FP throttling 

enabled. Table 5.5 shows the droop and failure levels for the new stressmark A-Res-Th. 

AUDIT was able to generate a stressmark that works around the FP throttling restrictions 

to increase the size of the droop. However, it is not able to match the droops seen without 

FP throttling because it is now limited to using fewer high-power floating-point and 

SIMD operations. With FP throttling enabled, A-Res-Th exceeds the SM1 stressmark for 

droop and matches it for sensitivity to voltage. It also highlights another stress path 

through the processor for engineers to evaluate. 

The results show the experimental FP throttling scheme works well for reducing 

voltage droops in the system, and AUDIT, in a relatively short time (~5 hours) has 

identified another path that can still produce significant voltage droops with FP throttling 
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enabled. 

 

5.2.2.7.  AUDIT on a different processor 

To present AUDIT's ability to adjust to microarchitecture and system changes, the 

Bulldozer-based processor in the experimental system was replaced with an older-

generation 45-nm AMD Phenom II X4 Model 925. The rest of the board remained 

unchanged. Each core in the AMD Phenom processor has local L1 and L2 caches, no 

multi-threading, and less variation between high- and low-power regions because it does 

not manage power as aggressively as the Bulldozer-based system. New resonant 

stressmarks for the AMD Phenom processor were generated using AUDIT and the results 

are shown in Table 5.6.  Running SM1 on the older processor was not possible due to 

incompatible instructions. As with the Bulldozer-based system, AUDIT was able to 

generate stressmarks that were comparable to or better than hand-tuned stressmarks, 

highlighting the capabilities of automatic stressmark generation tools such as AUDIT. 

 

 zeusmp SM2 A-Res 

Relative Droop 0.82 1 1.10 

Failure Point VF – 50 mV VF VF 

Table 5.6:  Droop and failure results for a 45-nm AMD Phenom II processor. Droop and 

failure point are shown relative to SM2. 

 

5.3.  SUMMARY 

This chapter presented a framework to automatically generate voltage droop 
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stressmarks. Standard benchmarks do not produce the same levels of first-order droop as 

the stressmarks. On the experimented processor, this is true even for benchmarks that 

have global synchronization resulting from barriers. 

There are many different ways to construct a stressmark in a multi-core system 

depending on what structures and types of configurations one is trying to exercise. 

Therefore, a stressmark that works well for one configuration (such as A-Res for 4T runs) 

may not produce the best results for other configurations. AUDIT's flexibility and ease of 

use can be leveraged to develop a suite of stressmarks that can effectively exercise all 

significant usage scenarios in the system. 

The measured droop is not the only indicator of sensitivity to failure. The paths 

exercised by the stressmark and the number of times the droop event occurs also have an 

impact on overall program susceptibility. AUDIT is able to match or exceed the droops 

produced by benchmarks and other stressmarks by exercising a richer set of paths in the 

pipeline.  
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Chapter 6:  Dynamic Management of Supply Voltage Margin 

Voltage guardbands are used to minimize errors due to inductive noise; however, 

this leads to lower performance operation because the voltage and frequency points are 

set to deal with voltage droops from a worst case benchmark or stressmark.  Even 

though most applications do not approach the voltage droop caused by the stressmark 

(see Section 4.1), there is no mechanism to guarantee correct operation outside of the 

tested range.   

In this chapter, a hardware technique, floating point (FP) unit issue throttling, is 

examined, which provides a reduction in worst case voltage droop.  Voltage droop 

stressmarks utilize the floating point path to generate the worst case voltage droop. By 

dampening the issue rate in the floating point scheduler, the processor can significantly 

reduce the maximum voltage droop in the system.  This chapter shows the impact of 

floating point throttling on voltage droop, and translates this reduction in voltage droop to 

an increase in operating frequency because an additional guardband is no longer required 

to guard against droops resulting from heavy floating point usage.  This chapter then 

examines the impact of floating point (FP) unit throttling and guardband reduction on the 

SPEC CPU2006 benchmarks and shows that some benchmarks benefit from the 

frequency improvements with FP throttling while others suffer due to reduced FP 

throughput.  Finally, this chapter presents two techniques to dynamically determine 

when to tradeoff FP throughput for reduced voltage margin and increased frequency, and 

shows performance improvements of up to 15% for CINT2006 benchmarks and up to 8% 

for CFP2006 benchmarks. 
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6.1.  MANAGEMENT OF VOLTAGE GUARDBAND 

Processor designers use a voltage guardband (a.k.a. voltage margins) to guarantee 

correct operation under worst case conditions.  The voltage margins guard against 

process variations, system power supply variation, and workload induced voltage droops.  

These margins are set conservatively, and are on the order of 15% to 20% of supply 

voltage [23].  By guarding against the worst case scenarios, a lot of performance is lost. 

For instance, according to [56], a 20% voltage margin translates into a 33% frequency 

loss.   

Stressmarks are benchmarks designed to stress a processor in various ways, such 

as generating the worst case power or the worst case voltage droops.  Stressmarks 

designed to induce large di/dt voltage droops are used to determine the voltage guardband 

due to workload induced di/dt noise.  Analysis presented in Chapter 5 has shown that on 

x86 processors the high power region typically contains a high number of floating point 

(FP) or SSE instructions, while the low power region generally contains NOPs.  The 

high power region can consist of other types of instructions, such as instructions from the 

integer pipeline, but the resulting voltage droop from these instructions is significantly 

less than the droop from instructions that execute on the FP path of the experimented 

processor because operations that use FP pipeline dissipate relatively large amounts of 

power and thus lead to large di/dt fluctuations.  Hence, the worst case guardband of the 

specific x86 system is determined using operations that utilize the FP pipeline.  If the 

workload does not have high FP pipeline utilization, then the system can be run with a 

lower voltage guardband, which can be translated into a higher operating frequency. 

This chapter investigates the use of a hardware-based FP throttling mechanism 

that limits the maximum issue rate of the FP pipeline.  By enabling FP throttling, lower 
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workload induced voltage droops are guaranteed, which enables the processor to operate 

with a smaller voltage guardband.  The reduced voltage guardband is translated into an 

increase in operating frequency.  The results show a significant performance 

improvement for non-FP-intensive programs, but some performance loss for FP-intensive 

programs due to restrictions on FP issue rate.  Finally, this chapter presents algorithms 

to dynamically enable and disable FP throttling and adjust the operating frequency in 

order to trade off frequency for FP throughput to improve the performance of both FP-

intensive and non-FP-intensive programs.   

The contributions of this chapter are:  

 analysis of an FP throttling mechanism on a state-of-the-art x86 processor,  

 quantification of frequency boost, performance, and energy-delay product benefits  

made possible by FP throttling,  

 analysis of the impact of FP throttling with multi-core execution, and  

 new algorithms to dynamically manage FP throttling and an analysis of their 

benefits.  

 

Figure 6.1 shows the general workflow of dynamic voltage guardband 

management introduced in this paper. Frequency sweeps using various di/dt stressmarks 

identify voltage margins and critical paths to determine the amount of frequency boost 

and microarchitecture units throttled. An algorithm, which dynamically controls 

throttling and boost mechanism, can improve both performance and energy. 
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Figure 6.1:  Workflow for dynamic voltage guardband management. 

 

6.2.  WORKLOAD INDUCED VOLTAGE MARGINS 

This section covers the details of di/dt noise, stressmarks and how stressmarks are 

used to determine the worst case voltage margin for a processor.  This section also 

discusses the FP throttling mechanism and examines the impact of FP throttling on the 

worst case voltage droop. 

   

6.2.1.  Di/dt Stressmarks 

Specialized micro benchmarks known as di/dt stressmarks are used to generate 

worst case workload induced voltage droops [24][26][27]. The general framework for the 

di/dt stressmark consists of a high power region followed by a low power region as 
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shown in Figure 4.2.  One high to low transition event is required for 1st droop 

excitation, while a waveform repeating at the periodicity of the resonance frequency of 

the system is required to generate a 1st droop resonance stressmark.  Figure 2.6 shows 

scope shots of first droop excitation and first droop resonance, respectively, as seen on 

the experimental system described in Chapter 3.  In general, resonant droops are more 

likely to induce failures than excitations droops, because they are larger and repeat 

periodically.  

A subset of the stressmarks described in Chapter 5 is used to determine the 

voltage guardband necessary during normal operation and when FP throttling is enabled.  

In particular, the SM1 and SM-Res stressmarks are used. SM1 is a stressmark that 

contains both 1st droop excitation and 1st droop resonance.  Because it is not physically 

constructed to operate at a particular frequency, it is less sensitive to FP throttling.  

Stressmark SM-Res is a stressmark specifically developed to induce 1st droop resonance, 

and it is tuned for the baseline operating frequency of 3GHz.  As discussed in Chapter 5, 

1st droop resonance is highly sensitive to the operating frequency, and SM-Res needs to 

be re-tuned every time operating frequencies change, while SM1 is more tolerant of 

frequency changes.  SM1 and SM-Res are used to analyze workload induced voltage 

droops with and without FP throttling enabled. In addition, the AUDIT tool in Chapter 5 

is used with FP throttling enabled to generate a new stressmark (A-FPTh) that utilizes 

other processor pipelines to generate a high voltage droop. 

    

6.2.2.  Floating-Point Activity 

The Bulldozer modules used in the analysis in this dissertation contain separate 
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integer and floating-point scheduler units [12].  The floating point (FP) unit has a 

maximum issue rate of four instructions per cycle, and is shared between the module’s 

two cores.  Hence, the instructions to the FP unit can come from one or both cores. The 

floating point scheduler handles all floating point operations (with the exception of 

floating point loads, which go through the integer scheduler) and all SSE operations.  FP 

and SSE operations are high power operations and are part of the high power region of 

the stressmark code (Chapter 5).   

As noted in Section 6.2.1, a 1st droop stressmark consists of a sequence of high 

power operations followed by a sequence of low power operations.  Given that the FP 

and SSE operations are among the highest power operations, the high power region of the 

stressmark contains a large percentage of these operations.  If the processor can reduce 

the rate at which operations go through the FP pipeline, it can also reduce the amount of 

power consumed in the high power region and the size of the resulting workload induced 

voltage droop.   

Figure 6.2 shows the voltage droop and average power resulting from 1st droop 

resonant stressmarks that execute and commit four instructions per cycle during the high 

power region of the stressmark.  Each stressmark executes one (SM-1FP), two (SM-

2FP), three (SM-3FP), or four (SM-4FP) FP pipeline operations per cycle with the 

remaining operations coming from the integer pipeline. SM-Res was modified to generate 

the stressmarks: SM-4FP is the same as the SM-Res stressmark.   

Both power and voltage droop values are shown relative to the SM-4FP case.  

For this particular experiment, the second core in the module is inactive and the active 

core has full use of the FP scheduler unit.  Figure 6.2 shows that the droop increases 

with the issue rate of FP operations, indicating that the FP pipeline issue rate is critical 
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for inducing the largest workload dependent voltage droop.  This is because the power 

in the high power region is correlated to the number of high power FP ops executed per 

cycle. The larger the power in the high power region of the stressmark, the larger the 

difference between the high and low power regions, and the larger the resulting voltage 

droop. 

 

 

 

Figure 6.2:  Relative voltage droop and power with varying issue rate of FP ops. 

 

6.2.3.  Floating-Point (FP) Unit Throttling 

As shown in Figure 6.2, the number of floating-point operations executed each 

cycle has a large impact on the voltage droop.  If the maximum number of operations 

can be limited using the FP pipeline each cycle, the maximum workload induced voltage 

droop can also be limited.  The Bulldozer module has a hardware mechanism, known as 
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configured to restrict the maximum issue width from four to two, meaning that at most 

two FP pipeline operations can execute per cycle.  Furthermore, for some FP operations 

that are restricted to certain execution pipes, at most one operation can take place on 

these pipes every four cycles.  The FP throttling mechanism only limits the FP issue 

rate, and not the fetch or decode rate.  By enabling this mechanism, one can effectively 

throttle the maximum voltage droop seen on the system and reduce the voltage guardband 

for the processor.   

With FP throttling enabled, the worst case droop for the stressmarks is reduced by 

15% to 35% (Figure 6.2).  SM1 shows the least reduction in droop.  SM1 contains a 

variety of events that generate 1st droop excitation and 1st droop resonance.  Although 

FP throttling impacts some of these events, there are obviously other events that do not 

require the full use of the FP pipeline.  SM-Res shows the largest decrease from FP 

throttling.  This is because SM-Res uses the FP pipeline exclusively for the high power 

region of the stressmark and FP throttling effectively cuts its issue rate by at least one-

half or more.  Not only does this limit the power during the high power region, but it 

also changes the execution time of the high power region so that the stressmark no longer 

hits the resonance frequency of the system.  Hence, the large voltage droops resulting 

from 1st droop resonance are not seen after FP throttling.   

As noted in Chapter 5, there may be other paths in the processor pipeline that 

could be used to generate large voltage droops.  In order to test this principle, AUDIT 

was used to generate a new stressmark (A-FpTh) with FP throttling enabled.  A-FpTh 

utilizes the integer (INT) pipeline to compensate for the FP pipeline throughput 

restrictions.  This stressmark produces large voltage droops even when FP throttling is 

enabled.  The next section shows how these three stressmarks, SM1, SM-Res, and A-
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FPTh, are used to determine the additional frequency boost possible with FP throttling. 

   

6.3.  DETERMINING VOLTAGE MARGINS 

FP throttling reduces the maximum workload induced voltage droop.  This 

reduced droop can be translated into a performance improvement. In other words, one 

can run the processor at a higher frequency for the same voltage.  However, the 

translation is not straightforward because the voltage guardband is set based on a number 

of metrics, and workload induced voltage droop is only one of them.  Therefore, it needs 

to be ensured that one retains the guardband necessary for process and power supply 

variations for instance, but reduces the guardband necessary for workload induced 

voltage droops.  

To determine the potential frequency boost resulting from FP throttling, the 

voltage at failure is used as described in Chapter 5.  The voltage at failure determines 

the headroom available between the guaranteed safe point of operation and the point of 

failure.  The voltage at failure is determined by keeping the frequency constant and 

reducing the supply voltage by steps of 12.5 mV.  For example, if a processor at 1.25V 

and 3.0GHz is guaranteed to run correctly but fails at 1.20V and 3.0GHz, then the voltage 

headroom between correct execution and failure is 50mV.   

To determine the maximum safe frequency of operation when workload induced 

voltage droop is reduced via FP throttling, one must match the voltage headroom seen 

when FP throttling is disabled. To do this, the part with FP throttling enabled at higher 

frequencies is run in 100 MHz increments until the voltage headroom seen with FP 

throttling enabled and the higher frequency equals the voltage headroom seen with FP 
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throttling disabled and the guaranteed safe frequency. Using the example above, if a 

voltage headroom value of 50mV is seen when running at 3.3GHz, then the frequency 

boost possible with FP throttling enabled is 300MHz.   

The methodology described was implemented using the stressmarks SM1, SM-

Res, and A-FpTh with four threads and FP throttling enabled. As noted in Chapter 5, 

although the evaluation board used for the experiments in this chapter can run a total of 

eight threads, running one thread per module (four threads) generates the worst case 

voltage droop due to the shared resources on a Bulldozer module.   An additional 

complication occurs for resonant stressmarks as the frequency is increased.  The 

resonant stressmarks (SM-Res) are tuned to the operating frequency of the part.  Hence, 

retuning the stressmark is needed for every new frequency tested.  SM-Res was retuned 

by removing instructions from the high power and low power regions as the frequency 

increased.  With A-FpTh, a new AUDIT stressmark was generated for each new 

frequency.   

Table 6.1 shows the frequency boost that can be achieved with each stressmark.  

As noted earlier, because it is optimized for a throttled FP unit, A-FpTh achieves the 

largest voltage droop with FP throttling and also determines the maximum safe frequency 

boost available with FP throttling: 400MHz.  These results show two insights.  First, 

the resonant stressmark must be tuned to the new frequencies, and second, one cannot 

blindly rely on existing stressmarks if notable changes to the FP issue rate are made as is 

done with FP throttling.  New stressmarks are needed to deal with the new FP issue rate.  

The boosted frequency resulting from A-FpTh (400MHz) is used to run the benchmarks 

with FP throttling enabled.   

 



 109 

 

Stressmark Frequency Boost 

SM1 > 600MHz 

SM-Res 600MHz 

A-FpTh 400MHz 

Table 6.1:  Frequency boost possible with FP Throttling. 

 

6.4.  DYNAMIC FP THROTTLING  

The frequency boost possible with FP throttling is beneficial for programs that do 

not contain a large number of operations that go through the FP pipeline.  For FP or SSE 

intensive programs, however, the IPC loss resulting from reducing the FP pipeline issue 

rate from four to one or two instructions per cycle (depending on which pipeline they 

execute on) may offset any performance benefits from increased frequency.  As shown 

in Section 6.5, there is a significant performance loss for some benchmarks with FP 

throttling.  Therefore, one also needs a mechanism to dynamically enable and disable FP 

throttling. This mechanism enables FP throttling and provides a frequency boost for 

programs with low FP pipeline usage, and disables FP throttling for programs with high 

FP pipeline usage.  

Ideally, one would like the dynamic FP throttling mechanism to be implemented 

in hardware so that the decisions can be rapidly made without interrupting the rest of the 

system.  Unfortunately, such a mechanism is not available in current hardware, so this 

dissertation relied on performance counters and OS control to analyze the algorithms in 

this chapter. However, the algorithms developed in this chapter can be easily 
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implemented in future hardware.  

The dynamic FP throttling mechanism using performance counters was 

implemented to determine the rate of operations being issued from the FP pipeline (Table 

6.2).  The counter is sampled every 10 ms.  If the average FP pipeline issue rate 

exceeds a given threshold, then FP throttling is disabled.  Otherwise, FP throttling is 

enabled and the frequency is boosted.  This simple mechanism makes a number of 

assumptions.  First, it assumes that past behavior is indicative of future behavior.  

Second, it tracks FP issue rate at a fairly coarse level, assuming that FP activity does not 

change rapidly.  Third, it does not take into consideration that average values do not 

show the distribution of events and can hide large variances in the FP issue rate.   

This algorithm is chosen because it is simple to implement and is not too intrusive 

at a sampling rate of 10ms. There is an overhead with sampling performance counters too 

frequently and with enabling and disabling throttling.  Therefore, although programs 

might show fine-grained regions of high and low FP pipeline usage, the mechanism in 

this work may not take advantage of them because of the overhead required to detect and 

manage these events.  In general, it is being tried to find reasonably large regions or 

phases of the program, and the algorithm chosen works well given the requirements in 

this work.  The algorithm could be expanded by collecting more details such as 

determining the rate of change in the number of FP pipeline instructions issued, or 

collecting data based on architectural events such as instruction stream misses or ITLB 

misses which indicate changes in program behavior.  
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Algorithm 1:  Dynamic scheme (Dyn) using FP_IPC 

Given: FP_IPC_THRESHOLD, CONSECUTIVE,          

            DECISION_INTERVAL, P0, and PB 

  1:  while TRUE  do  

  2:      for each core, Ci  do  

  3:          get fp_ipc;  /* FP-IPC */ 

  4:          if (fp_ipc > FP_ IPC_THRESHOLD)  then 

  5:              if  FP_throttling.enabled   then 

  6:                  Frequency.adjust(P0); 

  7:                  FP_throttling.Off() 

  8:              end if 

  9:              fp_ipc_consecutive = 0; 

10:          else /* fp_ipc <= FP_ IPC_THRESHOLD */ 

11:              if  !FP_throttling.enabled   then 

12:                  if (fp_ipc_consecutive > CONSECUTIVE)  then 

13:                      FP_throttling.On(); 

14:                      Frequency.adjust(PB); 

15:                  end if 

16:              end if 

17:              fp_ipc_consecutive = fp_ipc_consecutive + 1; 

18:          end if 

19:      end for  

20:      Sleep.time(DECISION_INTERVAL); 

21:  end while 

Table 6.2:  Algorithm for dynamic voltage guardband manegement using FP-IPC 

   

6.5.  EXPERIMENTAL RESULTS 

6.5.1.  Experimental Setup 

The AMD Orochi [12] processor with four Bulldozer modules is used for 

evaluating the dynamic management of supply voltage margins.  SPEC CPU2006 

benchmarks are used for this analysis.  These benchmarks vary substantially in their use 

of FP and SSE instructions. SPEC CPU2006 benchmarks are compiled and highly 
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optimized with gcc-4.6.2 and gfortran-4.6.2, which support the latest SSE instructions in 

Bulldozer.  All the benchmarks and the stressmarks run on RedHat Enterprise Linux 6 

OS.  All SPEC CPU2006 benchmarks were run with and without FP throttling.  The 

baseline case disables FP throttling and uses a default 3GHz frequency.  With FP 

throttling enabled, a frequency boost of 400MHz is assumed, based on the analysis in 

Section 6.3.  

As noted earlier, boosting frequency with FP throttling can help some benchmarks 

but hurt others.  For benchmarks that do not utilize the FP pipe, a maximum 

performance benefit of approximately 13.3% (3.4GHz versus 3.0GHz) is expected if the 

application is highly CPU-bound, i.e., highly sensitive to core performance.  On the 

other hand, if the application is memory bound, then it is expected to see less 

improvement from a frequency boost.  For FP and/or SSE intensive applications, FP 

throttling with frequency boosting may help or hurt performance. Overall performance 

will degrade if the IPC loss resulting from reduced FP bandwidth is greater than the 

performance benefit due to the increased frequency. 

   

6.5.2.  Performance with FP Throttling 

Figure 6.3 shows the performance results with FP throttling enabled.  All results 

were gathered while running one thread.  Performance is measured using runtime and is 

shown relative to the baseline case (Base-3G) with no FP throttling and no frequency 

boost (frequency of 3.0GHz).   For St-FpThr-3G, FP throttling is enabled but the 

processor is still operating at 3GHz to show the impact of FP throttling on IPC. St-

FPThr-3.4G represents results with FP throttling enabled and a 400MHz frequency boost.  
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Both St-FPThr-3G and St-FpThr-3.4G use a static scheme where FP throttling is always 

enabled.  Dyn-FpThr-3.4G is a dynamic scheme that decides on the fly whether or not to 

enable FP throttling and frequency boosting.  The dynamic scheme recognizes which 

applications benefit from FP throttling in addition to adjusting for phase behavior within 

an application.  The dynamic scheme is analyzed in more detail in Section 6.5.4. 

FP throttling does not impact CINT2006 benchmarks with the exception of a 

slight performance loss for omnetpp and xalancbmk. However, the performance loss on 

CFP2006 benchmarks is significant, up to 38% for calculix.  This data is not surprising 

given the nature of the benchmarks.  With the frequency boost possible with FP 

throttling, a performance increase of up to 15% is seen in the CINT2006 benchmarks.  

The FP benchmarks also improve relative to the case of FP throttling with no frequency 

boosting (St-FpThr-3G) but many of them suffer relative to the baseline case. 

There are some interesting points to note about the results.  First, the 

performance improvement on some CINT2006 benchmarks (perl, bzip2, sjeng) is greater 

than the expected maximum of ~13.3% given the frequency boost.  The Bulldozer 

module contains complex, out-of-order cores, and the increase in core frequency changes 

pipeline behavior.  The boosted frequency is for the Bulldozer cores, only, but the 

NorthBridge and memory continue to operate at the same frequency.  Hence not only is 

one increasing the operating frequency, but also creating small changes in application 

IPC.  It is difficult to predict whether IPC will increase or decrease with a frequency 

boost, but for some benchmarks, there are small improvements in IPC.  IPC was 

measured when running the CINT2006 benchmarks, and small improvements in IPC 

were noticed for the cases where the performance improvement exceeds 13.3%.   
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Figure 6.3:  Relative performance impact of FP throttling with and without frequency 

boost relative to Base-3G. 

 

The second interesting aspect of the results is that some CFP2006 benchmarks 

improve with FP throttling and frequency boosting by up to 8% (soplex).  St-FPThr-

3.4G generally increases performance relative to the baseline when the performance loss 

resulting from FP throttling is not significant.  As noted earlier, if the performance 

improvement resulting from a higher frequency  is greater than the IPC loss from FP 

throttling, performance will improve.  Figure 6.4 shows the relative IPC and 

performance for CFP2006 benchmarks.  The data is for St-FpThr-3.4G relative to the 

Base-3G case.  When the application is not significantly impacted by FP throttling 

(relative IPC close to 1), then the resulting performance improves with FP throttling. 
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Figure 6.4:  IPC and performance for St-FpThr-3.4G relative to Base-3G. 

 

6.5.3.  Energy Efficiency 

One of the benefits of FP throttling is that frequency can be boosted without a 

subsequent increase in voltage. Both the 3GHz and 3.4GHz frequencies use the same 

voltage.  Hence, power increases linearly with frequency.   

Figure 6.5 shows the energy-delay product (E*D) for all applications.  The 

results are shown relative to the baseline case (Base-3G), and values lower than 1.0 

means better efficiency.  Dynamic power dissipation in the core is expected to scale 

linearly with frequency.  However, the leakage power should not vary significantly 
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since voltage remains constant between the baseline case and the boosted case with FP 

throttling enabled.  The only reason leakage power may increase is due to the increase in 

temperature resulting from higher dynamic power dissipation.  

 

 

 

Figure 6.5:  Energy-delay product (E*D) with static and dynamic schemes. The values 

are relative to Base-3G. 

 

The results show that energy-delay product (E*D) improves for all CINT2006 

benchmarks.  This is expected given that the performance improvements for these 

benchmarks more than compensate for the linear increase in power.  The results for 

CFP2006 benchmarks are more mixed.  There is a significant increase in the energy-

delay product (E*D) for benchmarks with large performance losses (namd, calculix, 
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sphinx3). However, benchmarks that improved in performance with FP throttling and a 

400MHz boost also show a small decrease in the E*D product.  The results for Dyn-

FpThr-3.4G will be discussed further in Section 6.5.4. 

  

6.5.4.  Dynamic Scheme 

The data in Figure 6.3 clearly shows the need for a dynamic scheme for 

determining when to tradeoff FP throughput for a frequency increase. In this section, the 

methodology and metrics used are discussed to implement a dynamic FP throttling 

scheme.   

Figure 6.3 and Figure 6.5 also show results for the dynamic scheme (Dyn-FpThr-

3.4G) implemented using performance counters to measure the FP IPC over a sampling 

period.  The scheme is simple – if FP throttling is currently enabled and FP IPC is 

greater than a pre-determined threshold, disable FP throttling and run at 3GHz; if FP 

throttling is disabled and the FP IPC is less than the predetermined threshold for three 

sampling periods in a row, then enable FP throttling and boost the frequency to 3.4GHz.   

To determine the optimal threshold at which to disable FP throttling, the average 

number of instructions per cycle executed in the FP pipeline (FP-IPC) for the base case 

(Base-3G) was measured.  FP-IPC represents any operations issued to the execution 

units in the FP pipeline which includes not just traditional FP operations but also, among 

others, SSE operations.  The FP-IPC results for all SPEC CPU2006 benchmarks are 

shown in Figure 6.6. As expected, the FP-IPC rate in the CFP2006 benchmarks is 

significantly higher than that of CINT2006 benchmarks. 
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Figure 6.6:  Average FP-IPC for benchmarks. 

    

The FP pipeline can sustain four operations per cycle with optimized code, but 

FP-IPC values in Figure 6.6 are all significantly less than the maximum. There are many 

reasons for the large discrepancy between maximum and measured FP-IPC.  First, each 

core has a commit width of 4 IPC, which means that there are other ops, most likely loads 

and stores that are required to support a high issue rate in the FP pipe.  Second, although 

the FP unit can execute 4 instructions per cycle, not every execution unit can execute 

every operation.  Hence, there is a limitation on the combinations of operations that can 

execute per cycle.  Finally, there are data dependencies that restrict the ILP of the 

application. Hence, it is unlikely that the average issue rate will reach anywhere near the 

max sustainable issue rate.  However, as seen by the results with FP throttling enabled, 

reducing the issue rate detrimentally impacts performance by reducing the FP throughput 
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during the critical stages of the application.   A very conservative FP-IPC threshold of 

0.1 was used in order to aggressively disable FP throttling when necessary.  The goal is 

to improve all the CINT2006 cases without incurring a performance loss in the CFP2006 

benchmarks.   

Figure 6.3 shows that the dynamic scheme eliminates the performance losses in 

CFP2006 benchmarks while retaining most of the performance gains of the CINT2006 

benchmarks.  Performance losses are no longer seen for namd, calculix, and sphinx3.  

However, the dynamic scheme also reduced the benefits in some benchmarks such as 

h264ref, povray, and leslie3d.  Subsequently, the dynamic scheme also had slightly 

worse E*D numbers (Figure 6.5) for the same benchmarks although it improves the 

average E*D numbers across all benchmarks. 

  

6.5.5.  Multi-core Execution 

The results so far have focused on single threaded runs where one thread is 

running on one core within a Bulldozer module.  The AMD Orochi processor, however, 

is capable of running eight threads.  Multi-core execution adds additional complexity to 

the problem.  First, the L2 cache, the fetch unit, and the floating point pipeline are 

shared between two cores in a Bulldozer module.  This sharing can result in contention 

between threads, making them less capable of benefiting from a frequency boost. Second, 

depending on the homogeneity of the threads and how they execute, the two threads 

within a Bulldozer module may have differing requirements. Although each Bulldozer 

module can run at different frequencies, the two cores within a module must run at the 

same frequency.    
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Eight threaded SPECrate runs were performed and relative performance 

information was collected as shown in Figure 6.7.  Once again, the numbers for the 

static and dynamic schemes are shown relative to Base-3G case.  As before, CINT2006 

benchmarks benefit the most from FP throttling while CFP2006 benchmarks suffer the 

most.  However, the dynamic scheme is able to detect the applications that benefit from 

FP throttling and eliminate the performance loss on CFP2006 benchmarks. 

 

 

Figure 6.7:  Performance with 8T execution relative to Base-3G case. 

 

There are some differences in the results from the 1T runs.  The number of 

CFP2006 benchmarks that benefit from FP throttling is not as great as the 1T case.  The 
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increases when multiple threads run in the same module. 

   

6.5.6.  Improved Dynamic Scheme 

The dynamic scheme using FP-IPC improved overall results, but there were some 

cases where the static scheme outperformed the dynamic scheme.  There are a couple of 

reasons for the performance loss.  The first is that the dynamic scheme is very simple 

and only examines one metric: FP-IPC.  Thrashing between FP throttling enabled and 

disabled states will occur if the FP-IPC of the application hovers around the 

predetermined threshold value.  This is the case for h264ref.  In addition, an FP-IPC 

higher than the threshold does not always indicate that the application performance is 

dependent on FP throughput.  For instance, a high overall IPC may indicate a large 

amount of ILP in the program, and FP-IPC is not as critical to performance.  Both dealII 

and povray show this characteristic.   

The dynamic scheme was modified, based on the above observations by 

examining not just the FP-IPC but also the ratio of FP-IPC to overall IPC (Table 6.3).  

The new scheme (Dyn2-FpThr-3.4G) is shown in Figure 6.8 for a subset of interesting 

benchmarks from SPEC CPU2006.  The static and both dynamic schemes are shown 

relative to the Base-3G case.  The new dynamic scheme (Dyn2-FpThr-3.4G) improves 

the performance of most of the benchmarks and brings them back up to the static levels 

(St-FpThr-3.4G) in many cases. 
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Algorithm 2:  Improved dynamic scheme (Dyn2) using FP_IPC and FP_RATIO 

Given: FP_IPC_THRESHOLD, FP_RATIO_THRESHOLD,  

            CONSECUTIVE, DECISION_INTERVAL, P0, and PB 

  1:  while TRUE  do  

  2:      for each core, Ci  do  

  3:          get fp_ipc;     /* FP-IPC */ 

  4:          get fp_ratio;  /* ratio: FP-IPC to IPC  */ 

  5:          if  fp_ipc  > FP_IPC_THRESHOLD  then 

  6:              if  fp_ratio > FP_RATIO_THRESHOLD  then 

  7:                  if  FP_throttling.enabled   then 

  8:                      Frequency.adjust(P0); 

  9:                      FP_throttling.Off() 

10:                  end if 

11:                  fp_mac_consecutive = 0; 

12:              else /* fp_ratio <= FP_RATIO_THRESHOLD   */ 

13:                  if  fp_ratio_consecutive > CONSECUTIVE  then 

14:                      if  !FP_throttling.enabled   then 

15:                          FP_throttling.On(); 

16:                          Frequency.adjust(PB); 

17:                      end if 

18:                  end if 

19:                  fp_ratio_consecutive = fp_ratio_consecutive + 1; 

20:              end if 

21:              fp_ipc_consecutive = 0; 

22:          else /* fp_ipc  <= FP_IPC_THRESHOLD  */ 

23:              if  fp_ipc_consecutive > CONSECUTIVE  then 

24:                  if  !FP_throttling.enabled   then 

25:                      FP_throttling.On(); 

26:                      Frequency.adjust(PB); 

27:                  end if 

28:              end if 

29:              fp_ipc_consecutive = fp_ipc_consecutive + 1; 

30:          end if 

31:      end for  

32:      Sleep.time(DECISION_INTERVAL); 

33:  end while 

Table 6.3:  Improved algorithm for dynamic voltage guardband management. 
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Figure 6.8:  Results with improved dynamic scheme (Dyn2-FpThr-3.4G). 

   

Figure 6.9 shows the percent of time FP throttling was enabled with the two 

different dynamic schemes.  In many cases, the dynamic scheme is alternating between 

throttled and non-throttled states.  In dealII for instance, by spending a small portion of 

the total run time with throttling disabled, the Dyn2-FpThr-3.4G scheme is able to 

improve on the static scheme.  In h264ref and povray, the Dyn2-FpThr-3.4G scheme is 

able to enable FP throttling for nearly the entire run and improve performance when 

compared to the Dyn-FpThr-3.4G scheme.  These results show that the dynamic scheme 

is not only able to detect which applications require FP throttling and which do not, but is 

also able to determine phases within an application that can take advantage of throttling. 
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Figure 6.9:  Percent time spent with FP throttling enabled. 

 

6.6.  SUMMARY 

In this chapter, the issue of the voltage guardband was addressed and how one can 

reduce the guardband to increase performance in existing processors was discussed.  A 

hardware technique is used to limit the issue rate in the floating point scheduler which 

resulted in a reduction in the worst case voltage droop.  A number of existing and newly 

generated stressmarks were used to translate the reduction in voltage guardband into a 
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frequency boost, and the impact this has on the SPEC CPU2006 benchmarks was shown.  

Based on the evaluation in this chapter, a dynamic scheme was developed to detect when 

to trade off floating point throughput for a frequency increase.  Two dynamic schemes 

were implemented in software and it is shown that these schemes can improve the 

performance of several benchmarks without sacrificing the performance of others.
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Chapter 7:  Conclusion and Future Research 

7.1.  SUMMARY AND CONCLUSION 

This dissertation focused on di/dt issues in microprocessors.  The 

characterization methodology in this dissertation helps designers analyze large current 

draws and the following voltage fluctuations that may lead to system failure. Also, one 

technique that dynamically manages voltage margins is suggested to enable users to 

select optimum points in performance and power tradeoffs of a processor. 

To characterize di/dt noise in a processor, automating the generation of di/dt 

stressmarks frees designers from the tedious task of writing manual stressmarks.  The 

complexities involved with designing a di/dt stressmark, especially for multi-core 

systems, are enormous.  A dithering algorithm is implemented to aid in multi-core 

stressmark generation and an automatic stressmark generation tool, AUDIT, that uses 

sub-blocking and dithering to produce stressmarks is presented.  It is shown how 

AUDIT stressmarks compare to existing stressmarks and standard benchmarks, and  

results showing AUDIT's ability to adjust to different processor characteristics such as 

shared resources, FP throttling, and different processors are presented. The ability to 

generate various stressmarks automatically will likely enable the designer to thoroughly 

study the susceptibility of processors to voltage fluctuations and to design appropriate 

mechanisms for reliable processor operation. 

It is interesting and important to study the impact on compiler optimizations on 

the voltage fluctuations during program execution. Several programs were run with 

optimized and unoptimized versions of code from the same program, and performance, 

power, energy and voltage fluctuations studied.      
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Energy can be dramatically reduced by increasing the number of threads and 

performing compiler optimization. Unfortunately, trends in average or maximum power 

during execution cannot be correlated in a systematic manner with performance. The 

intricacies of the code sequences and the functional units bring unpredictable trends 

between performance and power trade-offs.  Generally one cannot predict how voltage 

droop would change with optimization levels.  In some cases, performance, power, and 

voltage droop can be improved with compiler optimization.  Short-runtime could give 

different results in voltage droop. Therefore, designers utilizing simulations for such 

studies should be careful interpreting simulation results, which are run with very short 

time compared to real hardware.  Voltage droop is not much changed with compiler and 

library optimizations in miniFE and HP Linpack. Therefore, only with compiler 

optimization, supply voltage reliability is mainly affected by load-line effect [33], i.e., 

resistive part rather than inductive part of the processor and the power distribution 

network circuit. If one cannot predict voltage droop change with static compiler 

optimization, a dynamic mitigation method can be useful. 

The issue of a voltage guardband is addressed, and a discussion on how to reduce 

the guardband to increase performance in existing processors is presented.  A hardware 

technique to limit the throughput in the floating point scheduler was used, which resulted 

in a reduction in the worst case voltage droop.  A number of existing and newly 

generated stressmarks were used to translate the reduction in voltage guardband into a 

frequency boost and the impact this has on the SPEC CPU2006 benchmarks is presented.  

Based on the evaluation, a dynamic scheme is developed to detect when to trade off 

floating point throughput for a frequency increase.  Finally, two dynamic schemes were 

implemented in software and it is shown that performance for some benchmarks can be 
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improved without deteriorating the performance for others. 

Recent supercomputers are built with Intel’s Xeon, AMD’s Opteron, and IBM’s 

Power processors [66].  In those processors, FP-units consume the maximum dynamic 

power by running SIMD-style, fused, and/or combined FP operations such as 

(V)FPMADD (Mult+Add), (V)FP+LD/ST, etc. [3][33].  A sequence consisting of no 

activity followed by a large number of FP operations is the biggest culprit in causing 

voltage droops on many processors. Such voltage droops can cause failures. Fault-free 

execution of HPC workloads is going to be increasingly difficult without a large voltage 

margin, but higher margins mean consuming higher power than needed or sacrificing 

performance by reducing maximum supported frequency. Therefore, this dissertation will 

provide a practical guide to characterize and manage voltage droops in HPC processors 

and workloads.    

 

7.2.  FUTURE RESEARCH 

This research can be extended in the following directions: 

7.2.1.  Extension to AUDIT 

AUDIT can be extended to different ISAs and processor architectures. Besides 

Alpha and x86, ARM’s or IBM’s processor is also popular and would be excellent 

targets.  In addition to the extension to a different ISA/processor, the simulation path in 

AUDIT can be modified to include a Register-Transfer-Level (RTL) simulation flow.  

The processor model described in RTL is more cycle-accurate than that in a C-level 

simulator.  RTL synthesis can give reliable power numbers for the system, so a post-

silicon measurement is not necessary.  The simulation technique of using a computing 
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farm can dramatically compensate for RTL’s long runtime so that the runtime would not 

be a problem.  Lastly, using heterogeneous threads in AUDIT will be an interesting 

challenge; it requires more ideas to synchronize different threads, which have different 

code sizes and contents. Also, to generate heterogeneous threads, the search space for the 

best instruction scheduling exponentially increases.  

 

7.2.2.  Improvement of Dynamic Scheme for Managing Voltage Margins 

The research presented here on guardband management was constrained by the 

specific features of the AMD processor used in the experiments. In an unconstrained 

environment, there might be other types of events that can be monitored to decide what to 

throttle and when to throttle. One obvious possibility is to continuously monitor the 

occupancy of integer and floating point reservation stations. This information, more than 

the average FP-IPC, may be a better indicator of the application’s need for a wide FP 

pipe. But detailed studies would be needed before concluding that fined-grain monitoring 

of processor events can help. There is the overhead of switching modes and frequent 

switching of modes may result in an unstable system.  

 

7.2.3.  Charaterization and Management of Voltage Noise in GPU 

Recently GPUs have been studied with various points of views. Combining a 

CPU with GPUs on a single chip is one of the viable research problems.  In a CPU-GPU 

chip, the GPUs take a large area and consume significant power, comparable to a multi-

core CPU. To characterize power and voltage noise is important, and more effective 

management techniques for power and voltage noise will be required.  Di/dt stressmark 
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generation for GPUs is an interesting extension to AUDIT.  Also a smart, dynamic 

throttling on execution units in GPU will increase performance while suppressing voltage 

noise.    
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