
 i 

 

 

 

 

 

 

 

 

 

Copyright 

by 

Xing-Xiang Liu 

2013 

 

 

  



 ii 

The Dissertation Committee for Xing-Xiang Liu certifies that this is the 

approved version of the following dissertation: 

 

 

GENERALIZED HOMOGENIZATION THEORY AND  

INVERSE DESIGN OF  

PERIODIC ELECTROMAGNETIC METAMATERIALS 

 

 

 

 

 

Committee: 

 

Andrea Alù, Supervisor 

Hao Ling 

Gennady Shvets 

Carlos Torres-Verdin 

Zheng Wang 

Ali Yilmaz 



 iii 

GENERALIZED HOMOGENIZATION THEORY AND  

INVERSE DESIGN OF  

PERIODIC ELECTROMAGNETIC METAMATERIALS 

 

by 

 

XING-XIANG LIU, B.S.; M.S. 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

DOCTOR OF PHILOSOPHY 

 

 

The University of Texas at Austin 

MAY 2013 



 iv 

GENERALIZED HOMOGENIZATION THEORY AND  

INVERSE DESIGN OF  

PERIODIC ELECTROMAGNETIC METAMATERIALS 

 

Xing-Xiang Liu, Ph.D. 

The University of Texas at Austin, 2013 

 

Supervisor: Andrea Alù 

 

Artificial metamaterials composed of specifically designed subwavelength unit cells can 

support an exotic material response and present a promising future for various 

microwave, terahertz and optical applications. Metamaterials essentially provide the 

concept to microscopically manipulate light through their subwavelength inclusions, and 

the overall structure can be macroscopically treated as homogeneous bulk material 

characterized by a simple set of constitutive parameters, such as permittivity and 

permeability. In this dissertation, we present a complete homogenization theory 

applicable to one-, two- and three-dimensional metamaterials composed of nonconnected 

subwavelength elements. The homogenization theory provides not only deep insights of 

electromagnetic wave propagation among metamaterials, but also gives useful analysis 

method for engineering metamaterials. We begin the work by proposing a general 

retrieval procedure to characterize arbitrary subwavelength elements in terms of a 

polarizability tensor. Based on this system, we may start the macroscopic analysis of 

metamaterials by analyzing the scattering properties of their microscopic building blocks. 

For one-dimensional linear arrays, we present the dispersion relations for single and 



 v 

parallel linear chains and study their potential use as sub-diffractive waveguides and 

leaky-wave antennas. For two-dimensional arrays, we interpret the metasurfaces as 

homogeneous surfaces and characterize their properties by a complete six-by-six tensorial 

effective surface susceptibility. This model also offers the possibility to derive analytical 

transmission and reflection coefficients for metasurfaces composed of arbitrary 

nonconnected inclusions with TE and TM mutual coupling. For three-dimensional 

metamaterials, we present a generalized theory to homogenize arrays by effective 

tensorial permittivity, permeability and magneto-electric coupling coefficients. This 

model captures comprehensive anisotropic and bianisotropic properties of metamaterials. 

Based on this theory, we also modify the conventional retrieval method to extract 

physically meaningful effective parameters of given metamaterials and fundamentally 

explain the non-causal issue of parameter retrieval. Finally, we conceptually propose an 

inverse design procedure for three-dimensional metamaterials that can efficiently 

determine the geometry of the inclusions required to achieve the anomalus properties, 

such as double-negative response, in the desired frequency regime. 
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Chapter 1 Introduction 

Metamaterials are artificially structured media realized as periodic or aperiodic arrays 

with unit cells sufficiently smaller than wavelength of operation. These unit cells contain 

designed inclusions with specific geometry made of certain constituent materials. 

Conceptually, metamaterials may be macroscopically treated as homogeneous bulk media 

characterized by a set of effective parameters which are unavailable in natural materials. 

These bulk properties of homogenized metamaterials are directly related to the 

characteristics of each unit cells, such as polarization and resonance. Therefore, by 

engineering the unit cell and inclusions, the integrated complex structures may be built to 

present exotic material properties. Based on this concept, metamaterials have been 

extensively explored in the fields of electromagnetics [1-4], acoustics [6-9], seismic [10, 

11] and matter waves [12, 13] to perform unconventional physics in the past decade. 

Particularly, in the field of electrodynamics, many interesting phenomena such as 

negative refractive index [14], artificial magnetism [15] and epsilon-near-zero materials 

[16], have been reported and these novel material properties have brought promising 

potentials for enhancing the performance of conventional optical or microwave devices. 

1.1 HISTORY OF ELECTROMAGNETIC METAMATERIALS 

The prehistory of artificial materials can be dated back to the stained glasses developed 

several centuries ago. Since the Middle Ages, artisans have managed to fabricate colorful 

stained glasses by adding a small amount of impurity into melted silica [17, 18]. By 

properly selecting the material of the particles and controlling the size of the impurities, 

they were able to manufacture glasses with a wide range of colors and transparency, as 

shown in Fig 1.1a. In the early twentieth century, scientists have started to be interested 

in even more anomalous response, such as strong optical activity or bianisotropic 
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properties, which may manipulate propagating waves and modify the polarization state. 

They found that the bianisotropic properties can be artificially enhanced by distributing 

small chiral objects, such as helix copper wires, in the substrate media [4] as shown in 

Fig 1.1b. When these composite materials are illuminated by a linearly polarized 

electromagnetic wave, rotation of the plane of polarization can be easily observed. As 

expected, the direction of rotation is consistent with the handedness of the embedded 

helices [19, 20].  

Later, during World War II, the applications of microwave devices have received 

a great amount of attention and lens antennas became a topic of interest. In order to 

control the dielectric constant of lenses and manipulate wave propagation inside 

dielectric media, researchers proposed the design of convex lenses containing 

periodically arranged small metallic strips or baffle plates, as shown in Fig 1.1c. These 

artificial lenses present a high dielectric constant and enhanced bandwidth [21]. These 

classical artificial materials and manufacturing processes, proposed long time ago, have 

mostly focused on enhancing conventional material properties and they do not 

necessarily exhibit exotic features substantially different from their constituents or from 

other materials already available in nature. 

The concept of modern artificial composite materials, or metamaterials, originated 

from the discussion of negative index of refraction to enhance optical image resolution. 

In 2000, a seminal work presented by John B. Pendry [24] claimed that a superlens made 

of materials with simultaneously negative values of permittivity and permeability may 

overcome the diffraction limit in optics and achieve perfect imaging. Although negative 

values of permeability are not readily available in nature (except for some special 

ferromagnetic alloys [25]), we are now able to engineer artificial subwavelength 

inclusions that can generate anti-magnetic effects at the microscopic level and achieve an 
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effective bulk negative permeability. Soon after, negative index of refraction was verified 

by experimental measurements at microwave frequencies based on split-ring resonator 

inclusions (SRRs) [26]. These pioneering works have injected a large amount of 

momentum to the research field of metamaterials and, more recently, several types of 

metamaterials have been presented to achieve promising applications at optical, terahertz 

and microwave frequencies. The interesting applications behind these works include 

high-resolution imaging [27-29], hyperlens [30-32], wave cloaking [33-35], high-

impedance surfaces [36, 37] and novel antennas [38-40].  

 

 

Figure 1.1 Examples of classic artificial materials (a) The colorful stained-glasses and 

SEM image of embedded nanoparticles [17], (b) artificial bianisotropic medium with 

helix wires [19, 22], (c) the convex lens containing small metallic strips [21]. 

1.2 CATEGORIES OF METAMATERIALS 

Since the properties of metamaterials are dominated by the inclusion geometry and unit 

cell arrangements, different types of metamaterials may produce different bulk effects 

and the supported wave phenomena strongly depend on their microstructure features. In 

addition, different kinds of metamaterials may usually require different modeling 

techniques and fabrication technology in their design and manufacturing processes. 

Therefore, it is useful to properly categorize modern metamaterials and discuss their 

(a) (b) (c)
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electromagnetic properties and functions accordingly. Based on their structure features, 

metamaterials can be generally categorized by type of unit cells and dimension of arrays. 

Although some literature [41] suggests grouping metamaterials by the frequency regimes 

of operation, the modeling and analysis methods for characterizing these artificial media 

are usually not dependent of the frequency of interest. Therefore, in this section, we focus 

on the metamaterial categories in terms of inclusion geometry and array structures. 

Generally, metamaterial inclusions can be divided into nonconnected and 

connected groups, based on their geometrical features. The former type is made of 

elements which are not in direct contact with each other across the unit cell. In other 

words, each unit cell is separate and the subwavelength inclusions can be treated as 

discrete elements, usually dominated by their dipolar response in the long-wavelength 

limit. As a consequence, the overall metamaterial structures can be simplified into 

electric/magnetic dipole arrays with same dimensions. Most common inclusions for this 

group of metamaterials include SRRs [26, 42-47], homogeneous and composite particles 

[48-54], rings [55-57] and rods [33, 58, 59]. 

The other type of metamaterials is composed of unit cells which connect across 

their boundaries, including structures like long-wire arrays [60, 61], metal-dielectric-

metal (MDM) multilayered structures [30-32, 62] and fishnet structures [14, 63-66].  

The unit cells and inclusions in this case are usually simpler than the nonconnected type, 

and they are also easier for fabrication at microwaves and optical regimes. Typically, 

these inclusions only meet the subwavelength condition in certain dimensions, and they 

extend in other directions over multiple wavelengths, creating more complications in 

their homogenization. For example, layers of MDM structures are much thinner than the 

operation wavelength in the longitudinal plane but they extend in the transverse direction 

over several wavelengths. Unlike the first group, the inclusions in these metamaterials 



 5 

cannot to be described as discrete dipoles, and the characterization of this type of 

metamaterials highly depends on the nature of the continuous features in these structures. 

As a result, different theories should be carefully considered to correctly capture the 

special phenomena in these above metamaterials. For instance, although both wire arrays 

and fishnet metamaterials are characterized by strong spatial dispersion for oblique 

propagation, they require different theoretical approaches [67, 68] to accurately capture 

these phenomena. 

It is also important to categorize metamaterials by their lattice dimension, and by 

the average distance among inclusions. This aspect may dominate the bulk response of 

metamaterials, and different array configurations may require different concepts for 

modeling and characterization. For example, two-dimensional (2-D) metamaterials are 

usually known as metasurfaces, and they are modeled using homogeneous surface 

susceptibility [69] in practical applications. It would make little sense to try to describe a 

2-D surface in terms of permittivity and permeability (even if often times this was 

attempted, especially at optical frequencies) [70]. 

1.3 HOMOGENIZATION OF METAMATERIALS AND ITS CHALLENGES 

From an engineering point of view, it is highly desirable to describe the complex 

metamaterials by a simple set of effective parameters, such as permittivity and 

permeability. In this way, we are able to describe metamaterials as conventional bulk 

materials in integrated devices and take advantage of their exotic properties in various 

applications. In general, there are two methods to describe and characterize 

electromagnetic metamaterials. The first approach is describing the metamaterial a 

posteriori, after the sample is designed and/or realized, usually based on the Nicolson-

Ross-Weir (NRW) retrieval method [71, 72]. This approach assumes that the given 
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metamaterial may be treated as a uniform bulk (or surface) model which has certain 

effective constitutive parameters, such as permittivity and permeability. By sending 

certain excitation and probing the response of the sample, such as reflection and/or 

transmission coefficients, we are able to retrieve the effective constitutive parameters that 

match our measurements or simulations. The main advantage of this method is that the 

formulation is simple and it can be directly applied to conventional microwave and 

optical measurements. The drawbacks include the ambiguity in choosing the correct 

propagation constant [73, 74], which has a natural period of 2  in phase, and the 

incompleted set of constitutive parameters, which may erroneously interpret the given 

metamaterials [69]. In other words, before using this method to characterize 

metamaterials, we have to roughly understand the behaviors or properties of the given 

samples to assume the correct set of constitutive parameters.  

On the other hand, we can take and analyze the given metamaterial geometry 

from the microscopic point of view, at the inclusion and lattice level, being able to relate 

the microscopic details to effective constitutive parameters. This approach is generally 

known as homogenization method. Many homogenization theories and medium mixing 

rules [67, 75-94] have been developed since the synthesis of compound materials became 

mature in modern material technology. Most of the theories developed before the advent 

of metamaterials are only applicable to composite media containing inclusions with 

feature sizes much smaller than the wavelength of interest, and with a density of 

inclusions dilute enough that the strong coupling and interaction between them can be 

ignored. Under these assumptions, homogenized parameters of the composite materials 

may be easily predicted by simply considering the volume fraction of a dopant in a 

background medium. 
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In metamaterials, however, these theories and mixing rules usually fail to extract 

reasonable effective bulk parameters, because the inclusion sizes are not sufficiently 

smaller than wavelength and the underlying exotic phenomena are inherently based on 

the anomalous responses of the inclusions and the strong coupling between them. As a 

consequence, in order to properly describe complex metamaterials, it is necessary to take 

into account the complex electromagnetic response at the unit cell level and the mutual 

coupling among inclusions in a much more careful way. 

1.4 ROADMAP OF THIS DISSERTATION 

In this dissertation, we present a rigorous homogenization theory for periodic 

metamaterials. In particular, we focus our analysis on nonconnected metamaterials and 

discuss proper homogenization models applied to one-, two- and three-dimensional 

metamaterials. The theory is analytically derived based on the fundamental assumption 

that the dipolar approximation is valid. Therefore, we focus on metamaterial structures 

that satisfy 0 1.5k d  , with 0k  being the free-space wavelength and d  being the unit 

cell size. In order to validate the derived homogenization theory, we employ numerical 

simulation tools, including Ansoft HFSS and CST Microwave Studio. For some simple 

cases, we also apply fundamental theories, such as Mie scattering theory, to examine the 

results for canonical shapes and structures.  

The dissertation is organized as follows. Chapter 2 discusses a retrieval procedure 

for metamaterial inclusions to extract the complete polarizability tensor (with dimension 

of six-by-six) of arbitrary subwavelength nonconnected inclusions composed of arbitrary 

constituent materials. This method is based on a 2-D array configuration, which can be 

easily implemented in most commercial simulation software and be applied in realistic 

microwave or optical measurement systems. Furthermore, the proposed technique is 
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universally applicable for various frequency regimes as long as the subwavelength 

condition is satisfied. To verify the calculated polarizability, we report several examples 

including magnetodielectric particles, helix wires, conducting SRR pairs and plasmonic 

SRR U-shape inclusions. In each case, we extract the six-by-six polarizability tensor for 

subwavelength elements and validate the results with full-wave simulations. 

Chapter 3 presents the analysis of 1-D linear particle arrays as metamaterial 

waveguides and antennas. In particular, we focus our interest on the optical regime in this 

chapter, so we can take advantage of the strong, localized resonances in plasmonic 

nanoparticles. Linear arrays composed of single or parallel chains with subwavelength 

elements are assumed to be infinitely extended in free-space. Analytical dispersion 

relations are derived and solved in the complex domain for both real and complex 

eigenvalues in lossy or lossless configuration. We focus in particular on leaky-wave 

propagation and radiation. We explain the phenomena of leaky (or so called improper) 

waves traveling along subwavelength particle arrays and employ numerical software to 

demonstrate this operation. We also discuss potential antenna applications. 

Chapter 4 develops a homogenization model for 2-D metasurfaces composed of a 

single-layer of planar arrays with nonconnected subwavelength inclusions. We derive the 

tensorial surface susceptibility to describe the homogenized behavior of these 

metasurfaces. We rigorously formulate the surface susceptibility in terms of the 

polarizability tensor, Green’s dyads and plane wave incident and polarization angles. We 

derive transmission and reflection coefficients for metasurfaces composed of arbitrary 

inclusions and constituent materials, taking into account coupling between TE and TM 

modes on a 2-D planar array. We also compare our analytical results to those obtained 

with numerical simulation tools and verify that the derived tensorial surface susceptibility 
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may comprehensively capture the scattering phenomena and homogenized properties of 

the considered metasurfaces. 

Chapter 5 discusses a general homogenization theory and novel retrieval method 

for 3-D metamaterials composed of infinitely extended 3-D arrays with nonconnected 

elements. We derive the effective parameters of metamaterials based on the Tellegen 

form of constitutive relations, which consider the general interaction between electric and 

magnetic fields in the array. We apply this method to derive the set of effective 

parameters for symmetric and anti-symmetric SRR pairs. Based on this homogenization 

theory, we also modify the conventional NRW retrieval to develop a new method to 

extract local effective parameters of a given arbitrary metamaterial sample. This approach 

not only returns physically meaningful constitutive parameters, but also provides the 

polarizability of constituent subwavelength inclusions without knowing their detailed 

geometry and material parameters. Also in this case, in order to validate our theory and 

method, we apply numerical simulation tools to compare analytical and numerical results. 

Based on our full-wave simulations, we also provide several examples of metamaterials 

operating in double-positive and double-negative regimes that support interesting wave 

phenomena, such as backward-wave propagation, negative refraction and super-

resolution. Due to our analytical efforts in the homogenization theory, this model can 

efficiently reduce the computational costs of full-wave simulations in 2-D and 3-D 

metamaterials. Finally, we discuss an inverse design technique to synthesize 

metamaterials with the desired properties, based on our homogenization theory. This 

design process relies on the analytical formulation and numerical optimization procedures 

to return detailed geometrical parameters of nonconnected inclusions that can provide 

certain effective parameters at the assigned frequency.   
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Finally, in Chapter 6, we conclude and summarize the main achievements of this 

dissertation and suggest future work and the potential associated challenges. 
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Chapter 2  Characterization of Metamaterial Inclusions 

2.1 INTRODUCTION 

Metamaterials are built by arrays of subwavelength inclusions engineered to support 

specific polarization properties. In order to achieve interesting phenomena, complicated 

inclusions, such as split-ring resonators (SRRs) [1-3], omega-shaped wires [4, 5] and 

helix wires [6], are usually considered, designed and fabricated as elements in 

metamaterial arrays, to support the required magneto-electric coupling effects at the 

inclusion and lattice levels. In the designer’s point of view, a comprehensive 

understanding of the scattering properties of the complex inclusions is crucial to realize 

metamaterials with desired effective bulk material parameters. A classical and widely 

used approach to compactly describe the scattering of a given subwavelength inclusion is 

to model it as a point scatterer with induced dipole moments. Generally, the dipole 

moment supported by a simple scatterer is expressed as 
ee

locp E , proportional to the 

local electric field locE  at its phase center. The factor ee , or the electric polarizability, 

plays a crucial role to describe the polarization under external excitation. This model has 

been widely used to express the induced dipole moment of isotropic and electrically 

small scatterers in the quasi-static regime. In some circumstances, we also have to take 

into account the magnetic dipole moment 
mm

locm H  to consider the magnetic 

polarization. Usually, for simple scatterers with some forms of symmetry with respect to 

the excitation, we can consider polarizabilities ee  and mm  in a scalar form. 

This concept may be also extended to analyze the scattering of the complex 

inclusions typically used in metamaterials [3,7]. In this situation, and in the most general 

case, the polarizability coefficients have a tensorial form that allows to completely take 

into account the bianisotropic features of a complex subwavelength inclusion [7, 9-10]. 

These features are produced by the strong induced electric and magnetic effects in 
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complex-shaped structures, with current patterns that are directly influenced by the 

propagation direction and polarization of the impinging wave. It is in general a 

challenging task to accurately quantify all the entries of the polarizability tensor for 

arbitrary subwavelength inclusions. 

In order to rigorously quantify them, measurements have been performed to 

observe the extinction cross sections of a single SRR and arrays of them for different 

incident polarizations [11, 14]. By probing the scattering quantities in the far-field, one 

can directly measure the bianisotropic effects or chirality generated by the building 

blocks. Regarding the issue of quantifying the dipolar response of complex inclusions, 

two approaches have been considered to determine the polarizabilities in previous 

relevant works. The first approach [3, 15-22] models the inclusions as effective circuit 

elements composed of inductive (L) and capacitive (C) lumped elements stemming from 

the flowing of conducting or displacement currents in and around the structures. For 

example, by using this model SRR inclusions can be effectively treated as parallel L-C 

circuit, when the applied electric and magnetic fields lay along the gap and normal to the 

ring, respectively [20, 22]. Generally, a correct layout of the equivalent circuit depends 

on the specific incident wave and polarization direction, because the metamaterial 

inclusions are usually strongly anisotropic. Moreover, determining the values of L and C 

can be very tricky. One should estimate the currents flowing around the structure [18, 19] 

or calculate the L and C components inspecting the resonance frequency and Q factor of 

an isolated inclusion [3]. Importantly, these approaches are theoretically valid only in the 

deeply subwavelength or quasi-static condition, because circuit theory based on lumped 

elements assumes no retardation effects. 

The second approach uses electro- or magneto-static polarizabilities [16] as the 

basis and considers energy conservation to determine the effects of radiation damping 
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and retardation to correctly determine the dynamic polarizabilities [16, 23-28]. This 

approach is convenient but may be incorrect for some metamaterial inclusions, because 

the exotic wave phenomena usually happen at the border of the quasi-static limits. As a 

consequence, it may fail to predict the correct dynamic response of the inclusions, 

especially when the geometry is complicated and structures are made of dense dielectric 

or plasmonic materials. Moreover, the task of quantifying the static polarizabilities for 

arbitrary subwavelength elements is quite challenging, especially when anisotropic 

effects are to be considered.  

Recently, some works based on retrieving the polarizability of inclusion arrays or 

rectangular waveguides filled with inclusions have been reported [9, 30, 31]. These 

methods use the known coupling effects in periodic structures or in waveguides to 

calculate the electromagnetic field coupling or dipole interaction at the inclusion level. In 

Ref. 9, the authors define a measurement procedure to evaluate the polarizabilities of 

artificial Tellegen particles based on the analytical derivation of the fundamental TE 

mode in a WR-90 waveguide. This method is however limited to simple inclusions, and 

was not extended to artificial complex inclusions with bianisotropic effects. Ref. 30 and 

31 suggest a physically equivalent method to determine the polarizabilities of 

subwavelength inclusions based on 2-D arrays and PEC/PMC rectangular waveguides, 

respectively. Ref. 30 analytically considers the coupling coefficients to describe the 

interactions between electric and magnetic dipoles on the array. Ref. 31 takes into 

account the dipole scattering and coupling inside the waveguide and relates these field 

interactions to the scattering matrix. Both of them, however, still only deal with simple 

inclusions, and do not address the issue of anisotropic or bianisotropic effects in a general 

inclusion. 
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In this chapter, we propose and derive a general approach to extract the complete 

electrodynamic polarizability tensor for arbitrary subwavelength inclusions. We aim at 

precisely quantifying all the entries of the polarizability tensor, including anisotropic and 

bianisotropic terms, and validate the results by full-wave simulations. Instead of 

employing the parameters of the isolated element in the quasi-static regime, we take into 

account the full electrodynamic coupling within the inclusion and the array.  

In our method, we use a similar approach as in [30, 31], placing the complex 

inclusion under analysis in a 2D array and considering the effects of magneto-electric 

dipole scattering in the periodic configuration to inversely retrieve the induced dipoles 

and polarizations on each element. This method requires a simple numerical solver to 

calculate the reflection and transmission coefficients from the planar array and we do not 

need to compute the detailed field distributions or current patterns on the inclusion, as in 

other procedures. Effectively, the computational cost is considerably less than the 

conventional numerical methods. Moreover, the accuracy of the results can be nicely 

preserved, even in the case of slightly larger inclusions, for which the dynamic effects are 

more important, as we discuss in the next sections.  

In order to validate our proposed retrieval method, we present five examples of 

simple and complex inclusions, including spheres, spheroids, helices, conducting and 

plasmonic SRRs. In each example, we discuss the calculated tensors and the inherent 

physical properties of the geometry to validate the obtained polarizabilities. We 

demonstrate that this general approach provides the complete dyadic polarizability for 

subwavelength complex inclusions and these dyadic quantities accurately obey physical 

principles such as passivity, reciprocity and Onsager relations for dynamic dipole 

interaction. 
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2.2 ANALYTICAL FORMULATION 

To determine the polarizability of subwavelength inclusions with arbitrary shape, we 

assume that their scattering response can be expressed by effective dipole moments. 

Generally, this assumption is well-accepted when 
0 1k a  , where 

0k  is the background 

wavenumber of the impinging wave and a  is the feature size of the inclusion. Here, we 

analytically ignore the higher-order scattering of inclusions, because their effects are 

usually much less important than dipole terms. Under this assumption, the electric and 

magnetic dipole moments of the subwavelength inclusion in free space can be related to 

the local fields at the phase center by 

 

 
loc ee em loc

loc me mm loc

      
       

       

p E α α E
α

m H α α H
, (2.1) 

in which the sub-tensors 
ee

α  and 
mm

α  (three-by-three matrices) govern the co-

polarization of the inclusion and the off-diagonal terms 
me

α  and 
me

α  (three-by-three 

matrices) are responsible for magneto-electric cross-coupling effects of the polarized 

inclusions. To completely describe the effective dipole moments of an arbitrary 

subwavelength inclusion, we need an integrated six-by-six polarizability tensor α . In 

case of certain symmetries, this tensor may be simplified. For example, for a 

subwavelength homogeneous conducting sphere, the induced electric and magnetic 

dipole moments can be simply described by scalar ee  and mm , and the cross-

coupling terms em  and me  vanish.  

In general it is challenging to determine the full tensor α
 
for complex scatterers 

in far-field measurements or simulations, because the radiated electromagnetic fields 

carry information on both co- and cross-coupling effects. As a consequence, it is not 

possible to probe and decompose these results and quantify all entries of the sub-tensors 
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in Eq. (2.1) with a single measurement. To overcome this challenge, we consider a 2-D 

array of identical subwavelength structures with period d  satisfying the criterion 

0 1k d  . In this configuration, the reflection and transmission coefficients are the 

superposition of the incident fields and the scattered fields generated in the array, and we 

can capture how the induced current is distributed on the array plane by properly exciting 

the structure and monitoring the scattered fields. 

In Fig. 2.1a, we schematically show the configuration of a 2-D array of complex 

subwavelength elements used in our proposed polarizability retrieval procedure. In this 

example, we use SRRs to illustrate the configuration, because this structure is one of the 

most popular inclusion geometry and supports strong magneto-electric coupling effects. 

In the examples presented in the following sections, we show that any subwavelength 

nonconnected inclusions can be considered in this configuration to extract the full 

polarizability tensor, after multiple measurements with proper rotations of the inclusions 

in the array. 

We assume an excitation by plane wave with propagation direction normal to the 

array plane (xy-plane) and with polarization lying along the array axes. This arrangement 

can be also effectively seen as a squared waveguide with unit cell periodic boundaries 

(PBC1 and PBC2 in Fig. 2.1a) operated with its first TEM mode [31]. The pairs of 

periodic boundaries dominate the polarization direction excited in the array. For instance, 

the schematic plot in Fig. 2.1a illustrates that the waveguide is operated with a y-

polarized plane wave. 

It is important to notice that in Fig. 2.1a–d we define two different coordinate 

systems, i.e., the global waveguide coordinate (xyz-system) and the local inclusion 

coordinate (XYZ-system). These two systems are required to identify the coordinates of 

the impinging plane wave and the preferred reference axes of the inclusions. It is obvious 
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that the definition of local coordinates on the inclusion may directly affect the resulting 

polarizability tensor. Generally, we prefer to align the coordinates with the symmetry 

axes of the inclusions in order to effectively reduce the complexity of the polarizability 

tensor. 

In this array-based configuration operating with the fundamental TEM mode, we 

can easily see that the induced dipole moment perpendicular to the array plane does not 

contribute to the reflection (
11S  or 

22S ) and transmission (
21S  or 

12S ) spectra measured 

at the ends of the waveguide. For example, in the configuration shown in Fig. 2.1a, the Z- 

and z-directions are parallel, and therefore we do not consider the entries in the 

polarizability tensor containing the Z-element. Based on the schematic plot in Fig. 2.1a 

and 2.1b, we can simplify Eq. (2.1) as 
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, (2.2) 

where we ignore the dipole moments and cross-coupling in the z-direction, or the 

longitudinal direction of the waveguide. As expected, for this configuration we are not 

able to obtain the polarizability information of the inclusion along the Z-axis. However, 

we may rotate the inclusions in the array (see Fig. 2.1b-d) and perform additional 

measurements to find all the polarizability components and integrate them as a complete 

six-by-six tensor. 

To determine the polarizability components, we need to introduce more relations 

between the plane wave incident fields and the induced dipole moments. Since we are 

treating the inclusions as effective dipole moments, we can easily define how these 
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induced dipole moments contribute to the incoming and outgoing waves at the waveguide 

ports, based on the relation 
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. (2.3) 

Here, we have introduced the matrix K
 
(the second term in the right-hand side of this 

equation), composed of radiation coefficients pK and mK , which are responsible for 

the fields on the ports produced by the induced dipolar radiation from the inclusion (see 

Fig. 2.1e). Importantly, we are using the waveguide coordinates in this equation, because 

we are discussing how the effective dipoles influence wave transmission in the 

waveguide. It is interesting to notice that there are a few zero terms in the radiation 

tensor. This is due the nature of orthogonal dipole radiations. For instance, an electric 

dipole moment xp
 
does not contribute to the y-component of the electric fields at the 

ports. Similarly, xm
 
does not depend on the x-component of the electric fields. 

On the other hand, from the planar array point of view (see Fig. 2.1f), we can 

relate the incident fields and dipole coupling to the local fields at the phase center of the 

inclusion, yielding 
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. (2.4) 

In the above equation, the parameter 0Y  is the background admittance, and the 

two groups of coupling coefficients eeC  and mmC  in the coupling matrix C
 
govern 
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the electric and magnetic coupling produced by all the neighboring unit cells. These 

coupling coefficients are physically equivalent to the dyadic Green’s functions for a 2-D 

dipole array [32]. Again, we are using the waveguide coordinates in this relation because 

we are focusing on the behavior of ideal dipole moments in the array regardless of how 

the effective dipoles are generated from the inclusions. In this equation, we show that the 

magnetic dipole moments xm  and ym  are independent of the local electric fields, and 

vice versa for xp
 
and yp  for magnetic fields. This can be easily verified by looking 

into the radiation patterns of electric and magnetic dipoles. The in-plane components of 

the local electric field are only affected by the in-plane electric dipole moments and out-

of-plane magnetic dipole, and dual considerations apply for the in-plane local magnetic 

fields. Since we are not considering the out-of-plane dipoles in the 2-D array excited by 

normal plane wave incidence or the longitudinal dipoles in the waveguide operating in 

the fundamental TEM, we can ignore their contributions in this configuration.  

Moreover, we have another fundamental relationship provided by the scattering 

matrix, relating the fields of the incoming and outgoing ports for any waveguide, which is 

written as 
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, (2.5) 

where we generally consider the relation between the two in-plane components in the 

waveguide and take into account their cross-coupling effects. These S-parameters are 

influenced by the scattering and coupling fields on the inclusions and in the array, and 

one may easily monitor the change of variation in the induced dipole moments by 

measuring these parameters. 
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Figure 2.1 (a) The 2-D array configuration and the effective waveguide considered in the 

proposed polarizability retrieval method. (b)-(d) The local coordinate system defined on a 

complex inclusion. (e) Schematic plot for Eq. (2.3), to illustrate the relation between port 

fields and induced dipole moments. (f) Schematic plot for Eq. (2.4), to illustrate the 

relation between port fields and dipolar coupling within the array.  
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By considering the configuration in which the array and inclusion coordinates are 

consistent (see Fig. 2.1a and b) and combining Eqs. (2.2)-(2.5), we can obtain the 

equation 
1
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  (2.6) 

These equations contain 48 unknowns, including all the polarizability components 

and coefficients. Among these variables, the most interesting terms to us are the entries in 

the polarizability tensor. Ideally, only these quantities depend on the inclusions, and the 

other coupling coefficients are dominated by the waveguide configurations and 

excitation. In order to obtain these parameters, we have to collect enough equations to 

solve for the unknowns. 

If we consider a fixed 2-D array (or a waveguide with periodic boundaries), we 

can see that the coefficients eeC , mmC , pK  and mK  are all fixed since they depend 

on the array (or waveguide) geometry. Therefore, we can retrieve these coefficients by 

calibrating our measurement with inclusions with known polarizabilities. For example, 

we can use dielectric and perfect electric conducting (PEC) spheres embedded in the 

same array configuration, and independently measure or calculate the scattering matrix to 

solve for all the coefficients in K  and C . Based on the coupling coefficients of the 
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waveguide system tested with these simple samples, we can place an arbitrary 

subwavelength inclusion inside the waveguide to determine its polarizability tensor. 

In this work, we use two PEC spheres with different sizes to calibrate the 

radiation and coupling coefficients in Eq. (2.6) for the waveguide, and we use the 

fundamental mode of the ports to excite TEM waves. We take advantage of CST 

Microwave Studio to compute the complete scattering matrix in Eq. (2.5). We consider a 

square waveguide with 25mm in width and 120mm in length and place PEC spheres with 

10 mm and 8 mm in radius to compute the corresponding scattering matrices (four-by-

four) with a frequency-domain solver. Based on Mie theory, we are able to write the 

diagonal terms of the polarizability tensor for the conducting spheres, as 

 0
13

0

6ee TMi
c

k

 
   (2.7) 

 0
13

0

6mm TEi
c

k

 
   (2.8) 

where 1

TMc  and 1

TEc  are the first-order Mie coefficients [33]. Because of symmetric 

geometry and material, we may choose 0em me   . Here, we are interested in the 

frequency band from 0.1 to 3 GHz, or equivalently 0 0.052k d 
 
to 0 1.571k d  , which 

covers the subwavelength regime of interest in most metamaterial applications.  

In Figure 2.2, we show the relevant coefficients of K  and C  obtained from 

this calibration procedure based on PEC spheres. All the coefficient curves have the same 

decaying trend versus 0k d , but in different scales. As expected, we have the relations

p p

xx yyK K , 
m m

xx yyK K , 
EE EE

xx yyC C  and 
MM MM

xx yyC C , due to duality between 

electric and magnetic fields. It is important to notice that the accuracy of these coupling 

coefficients can be largely affected by the numerical accuracy of the computed scattering 

matrices. Therefore, scattering parameters with very small values should be avoided, in 
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order to get rid of potentially significant numerical noise from the solver. In this way, 

inclusions that provide moderately large values of scattering coefficients should be 

considered. We have found that PEC or dense dielectric and magnetic materials may be 

good candidates for this purpose, because they are able to largely interact with the 

incident wave, with both electric and magnetic effects. PEC is particularly useful in this 

context, for its wideband response and the limited computational costs. 

2.3 RETRIEVAL OF POLARIZABILITY TENSORS 

In this section, we apply the proposed retrieval method to determine polarizability tensors 

of various sample inclusions, including magnetodielectric spheres, magnetodielectric 

spheroids, PEC helices, PEC SRRs and Silver U-shape SRRs, as illustrated in Fig. 2.3. In 

order to validate the retrieved polarizabilities, we use the Mie coefficients and the free 

space point-dipole radiation to compare the results of sphere and spheroid scatterers. 

Since the scatterers considered here are moderately smaller than the wavelength, it is 

sufficient to take into account only the first-order Mie coefficients to describe the 

scattered fields. In addition, we also employ a straightforward method based on point-

dipole radiation in free space to extract the polarizabilities of inclusions with simple 

geometry. We organize the basic formulation and details of this method in Appendix A, 

and explain its limitations for calculating polarizabilities of arbitrary inclusions. For 

complex inclusions, we use some fundamental physical principles, such as passivity, 

coordinate symmetry and Onsager relations, to validate the calculated polarizability 

tensors. 

In the following examples, we use the identical waveguide system and coupling 

coefficients determined from the calibration setup in the previous section (Fig. 2.2). 

Although these examples are performed in the microwave regime, one can apply these 
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principles to terahertz or optical frequencies. To this end, we apply proper normalizations 

to all the presented polarizability values, in order to make them independent of the 

frequency. The normalization factors for the entries in 
ee

α , 
mm

α , 
em

α  and 
me

α  are 

3

0 06ik  , 
3

0 06ik  , 
1

0


 and 0 , respectively. 

 

 

Figure 2.2 Amplitudes of the coefficients of K  and C  obtained in the calibration 

procedure based on PEC spheres. 

2.3.1 Magnetodielectric sphere 

As a first case, we consider the simple scenario of a sphere composed of homogeneous 

magnetodielectric materials with 13.8r   and 11.0r  , and with 10 mm in radius. 

This is a good test case, since we know the polarizability in closed analytical form. Due 

to symmetry considerations, we can consider ee  and mm  in scalar forms and also let 

0em me   . Figure 2.4 shows the magnitude and phase of the normalized electric and 

magnetic polarizabilities obtained from our retrieval method (indicated with Ret in the 
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legend), the exact first-order Mie coefficients (Mie) according to Eqs. (2.7) and (2.8), 

and the polarizability extracted by comparing the scattering from an isolated inclusion 

with the free-space dipole radiations (FS, see Appendix A for a detailed formulation of 

this third approach). It is evident that all the results nicely match, especially when the 

frequency satisfies 0 1k d  . These results prove that our proposed retrieval method, with 

coupling coefficients calibrated by the PEC inclusions, may precisely return the 

polarizabilities for general magnetodielectric spheres. It is also worth noticing that the 

system correctly predicts the resonant nature of the magnetodielectric sphere around 

0 0.83k d 
 
even when the PEC spheres used in the calibration do not experience resonant 

phenomena in the frequency range of interest. This implies that this retrieval method can 

capture and is robust to resonances of the inclusions, regardless the objects we used for 

calibration procedures. 

In addition, we find that the retrieved results correctly obey the expected passivity 

relationships for lossless subwavelength scatterers. At resonance, the normalized peak 

magnitudes exactly hit 1 because the scatterer is experiencing strongest scattering and all 

the energy losses are attributed to dipolar radiation. On the other hand, it can be seen that 

the phase experiences rapid jumps from 0 to   around the peak frequencies, which are 

also typical features of a dipole resonance. For frequency 0 1k d  , we obtain some extra 

sharp peaks around 0 1.1k d   and 0 1.35k d  , which are not predicted by the first-order 

Mie coefficients. These minor discrepancies are associated with higher-order resonant 

harmonics that affect the scattering among the array. These additional features are 

actually quite useful as we consider the arrays of metamaterials. In this example, our 

model can capture the correct polarizabilities up to 0 1.5k d  , which corresponds to the 

range of interest for metamaterial inclusions. 
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Figure 2.3 Considered inclusions and their local coordinate system used in the 

polarizability retrieval 
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Figure 2.4 Magnitude and phase of the normalized electric and magnetic polarizabilities 

of a magnetodielectric sphere with parameters shown in Fig. 2.3a. We present three sets 

of results, obtained from our retrieval method (Ret), Mie scattering coefficients (Mie) and 

from the free-space dipole radiation (FS), respectively. 
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2.3.2 Magnetodielectric spheroids 

After having tested our method for the case of an isotropic magnetodielectric sphere, we 

apply it to determine the polarizabilities of an anisotropic inclusion. Here, we consider a 

magnetodielectric prolate spheroid with the same material parameters as in the previous 

case and with major radius 1 10a mm  and minor radii 2 3 7.5a a mm  , as shown in 

Fig. 2.3b. Due to anisotropy, the calculated electric and magnetic polarizabilities depend 

on the excitation, and we still consider em me α α 0  due to symmetries. 

In this example, we apply the polarizability retrieval method twice, to the normal 

and to tilted arrangement of this inclusion (see Fig. 2.3b). We consider in both cases the 

same waveguide and coupling coefficients used in the previous case. Generally, the 

induced dipole moments of an anisotropic inclusion depend on the configurations of 

impinging waves and arrangement of the inclusion. However, the polarizability, or the 

capability of being polarized, is an intrinsic property of a given object, and the results on 

an identical inclusion obtained from two different excitation configurations should be 

consistent after proper coordinate transformation. For instance, by knowing the 

polarizabilities of a spheroid along the major and minor axes, we should be able to 

predict the polarizability tensor when the same object is oriented in an arbitrary direction 

with respect to the impinging field. In other words, by properly transforming the 

polarizability tensor of the vertical spheroid, we should be able to match the results 

obtained in the tilted case. 

In the first part of this example, we compare the retrieved electric and magnetic 

polarizabilities of a vertical spheroid to the results obtained from the free-space point-

dipole radiation formulation introduced in Appendix A and the previous section. Figure 

2.5 shows the polarizabilities along the major and minor axes calculated with these two 

different methods. The results nicely match each other, and they clearly show that 
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different axis lengths support resonances at different frequencies. Generally, the longer 

axis gives a lower resonance frequency than the shorter one, as expected. 

After obtaining the polarizabilities along the major and minor axes, we are able to 

transform these results to the tilted case. The coordinate transformation are written as 

 

 

2 2

2 2

2 2

2 2

cos sin ,

sin cos ,

cos sin ,
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ee ee ee

xx xx yy

ee ee ee

yy xx yy

ee ee ee

xy xx yy

ee ee ee

yx xx yy

    

    

    

    

 

 

 

 

 (2.9) 

in which   is the tilted angle and the polarizability terms in left- and right-hand sides 

represent the tilted and normal cases, respectively. One can use similar relations to 

determine the magnetic terms. 

Figure 2.6 shows the polarizability results of the tilted magnetodielectric spheroid 

directly obtained from the retrieval procedures (solid lines) and indirectly transformed 

from the normal cases (dots).These direct and indirect results match nicely to each other 

and that implies the proposed retrieval method can accurately capture the co-coupling 

effects of polarizability on the inclusion.  

The amplitudes of the peaks in the tilted case do not reach unity because the 

energy is radiated in both diagonal and off-diagonal terms. It is worth noticing that the 

amplitudes of the two off-diagonal terms in the tilted case are exactly the same, due to 

reciprocity. We can observe that the results start to show some deviations as 0 1.4k d  , 

and the off-diagonal terms show more obvious differences than the diagonal ones. 

Compared to the case of an isotropic sphere, the spheroid appears more sensitive to larger 

0k d . 
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Figure 2.5 Normalized electric and magnetic polarizabilities of the vertical 

magnetodielectric spheroid obtained using the proposed polarizability retrieval method 

(Ret) and the free-space radiation method (FS). The major and minor labels in the legend 

denote the polarizabilities with respect to the major and minor axes, respectively.  
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Figure 2.6 Electric (a) and magnetic (b) polarizability tensors of the tilted spheroid shown 

in Fig 3(b). We compare the results directly retrieved from the proposed method (solid 

lines) and indirectly transformed from the vertical case (dots). 
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2.3.3 Conducting helices 

In this example, we consider helical inclusions to demonstrate that the 

bianisotropic terms in the polarizability tensor can also be accurately extracted by our 

retrieval method. We focus on a pair of single-round helices (see Fig. 2.3c for detailed 

dimensions) composed of PEC wires with left- and right-handed (LH and RH) winding. 

We arrange the inclusions in the same 2-D array such that the axis of spirals is aligned 

with the x-axis of the waveguide. In this way, the normal incident fields may experience 

different magneto-electric coupling for LH and RH helices. Here, we only present the 

interesting components of the polarizability tensor, i.e., the X- and Y-components. These 

extracted components are sufficient to reveal the symmetric and bianisotropic effects 

induced on the pair of helices. Instead of showing magnitudes and phases, we only 

present the real parts of the complex polarizabilities in this example to show the identical 

or inverse properties for the two objects. We find that some curves closely overlap, as 

expected due to symmetry.  

In Fig. 2.7, we show that the diagonal terms in 
ee

α  and 
mm

α  for LH and RH 

helices. Our results show that in the arrangements shown in Fig. 2.3c the diagonal co-

coupling effects on the two mirror-symmetric inclusions are the same. It is worth noticing 

that the helix structures are very anisotropic, since the values of 
ee

XX  and 
ee

YY  (or 

mm

XX and 
mm

YY ) are significantly different. Indeed, the terms 
ee

XX  and 
ee

YY
 
mainly 

depend on the diameter of the rings and the pitch size of the spiral, respectively. Since the 

magnetic properties on the helix is largely dominated by the direction of the spiral axis, 

the effects of 
mm

XX  are much stronger than 
mm

YY  when the magnetic field aligns with the 

axis.  
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Figure 2.7 Real parts of 
ee

α , 
em

α ,
me

α  and 
mm

α  in the X- and Y-directions for LH and 

RH helices. 

On the other hand, the results for the off-diagonal terms in 
ee

α  and 
mm

α (see Fig. 

2.7a and 2.7d) of the two mirrored helices have opposite signs. This is due to the 

symmetry and the definition of the local coordinates used in the inclusions. Interestingly, 

all the curves show Lorentzian or anti-Lorentzian shapes, which implies that the 

inclusions experience a natural resonance around 0 1.2k d  . 

Figure 2.7b and 2.7c show the cross-coupling or bianisotropic components 
em

α  

and 
me

α  of the retrieved polarizability tensor. These terms of the polarizability tensor 

for helix inclusions are the most interesting because the magneto-electric coupling is 

generally challenging to quantify in the electrodynamic regime. The PEC spheres used to 

determine the coupling coefficients in the testing procedures do not support any form of 
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magneto-electric interaction in the 2-D array. However, when we deal with the helix, the 

retrieval system still returns physically reasonable results. As shown in Fig. 2.7b and 

2.7c, the variations of all entries in the subtensors 
em

α  and 
me

α also follow a 

Lorentzian dispersion, as expected. The diagonal terms in 
em

α  and 
me

α  for two 

mirror-symmetric inclusions are opposite in sign. However, the off-diagonal elements in 

em
α  and 

me
α  have the same sign. All these findings, which come directly from our 

retrieval procedure, are perfectly consistent with the Onsager relations for the 

polarizability tensor, which require for any reciprocal inclusion [19]: 

 

 

,

,

.

T
ee ee

T
mm mm

T
em me

   

   

    

α α

α α

α α

 (2.10) 

It is important to note that the proposed retrieval method appears to correctly capture the 

physical response of magneto-electric polarization induced in chiral structures. We can 

precisely quantify the dynamic polarizability tensor without using approximated LC 

circuit models or considering static parameters based on the local current distribution in 

the inclusion. 

2.3.4 Conducting SRRs 

Next, we consider one of the most popular metamaterial inclusions, the SRRs, 

used to realize strong artificial magnetism. In order to analyze the bianisotropic nature of 

SRRs, we focus on two structures, which are built by pairing two SRRs in symmetric and 

anti-symmetric configurations. The building blocks are made of PEC and the detail 

geometry parameters are shown in Fig. 2.3d.  
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Figure 2.8 Full polarizability tensor of the symmetric SRR pair 

For this example, we show the full polarizability tensor for the symmetric and 

anti-symmetric SRR pairs, respectively. Each case corresponds to 36 elements. For each 

pair of SRRs, we need three independent measurements with different inclusion 

orientation to capture all the polarization properties. Again, we check that the tensor 

satisfies the Onsager relations (2.10) and we make sure that the extracted properties 

satisfy fundamental physical principles. In Fig. 2.8, we see that all the subtensors have 

resonance features between 0 1.0k d 
 
to 1.5 . The peak of 

ee

YY  mainly results from the 

strong electric interaction at the SRR gaps. The curves 
ee

XX  and 
ee

ZZ  do not 

experience peaks because the geometry in the X- and Z-direction does not excite strong 

scattering in the frequency regime of interest. Similarly, the most fundamental magnetic 

resonance can be excited in the Z-direction of the inclusions and, therefore, only 
mm

ZZ  
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shows a peak in the magnetic term. Overall, the SRR pair is highly symmetric and the 

anisotropy off-diagonal terms in 
ee

α  and 
mm

α
 
are very weak compared to the diagonal 

terms.  

On the other hand, the peaks in 
em

ZY  and 
me

ZY  reveal the level of magneto-

electric coupling induced on the symmetric SRR pair. These major terms in the cross-

coupling tensors also imply that a Y-polarized plane wave may generate strong magnetic 

dipole moments in the Z-direction or, by reciprocity, that a Z-polarized magnetic field 

can produce electric polarization in the Y-direction. The nonzero terms in 
em

α  and 

me
α  indeed reveal bianisotropic effects on the SRR structure. Based on these quantified 

retrieval results, designers may have more precise access to the full electromagnetic 

response of SRR inclusions, in order to engineer the desired metamaterial properties. To 

the best of our knowledge, this is the first reported retrieval of the full dynamic 

polarizability tensor for SRR inclusions. Because of the chosen configuration, the 

calculated polarizabilities may contain some minor effects arising from higher-order 

interactions in the lattice. These embedded higher-order effects, may turn out to be 

useful, since these same effects arise in dense metamaterial arrays. 

In Fig. 2.9, we apply the retrieval method to the anti-symmetric SRR pair and 

compare the bianisotropic effects to the previous symmetric structure. Interestingly, in 

the subtensor 
ee

α , we find no peak even if we have the same gaps in the Y-direction. 

This is because the electric polarization in this direction depends on the charge 

accumulation across the opening ends, and the types of accumulated charges are 

determined by the conductive currents circulating on the rings. For the fundamental 

mode, the currents are circulating in the same directions on the two rings, and this pattern 

may result in opposite charge distributions at the two gaps of the anti-symmetric pair. As 

a consequence, the dipole moments induced across the gaps are cancelled and the 
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resonance in the Y-direction cannot be radiating (also known as a dark mode [34]). On 

the contrary, we find that a magnetic resonance still exists, but shifts to lower frequency 

and becomes correspondingly narrower.  

 

Figure 2.9 Full polarizability tensor for the anti-symmetric SRR pair 

Most importantly, based on the retrieval results, we find that ,em me α α 0  and 

this anti-symmetric SRR pair does not show bianisotropic effects. This conclusion is 

consistent with the analysis in Ref. [3], in which the authors qualitatively predict that 

magneto-electric effects can be largely suppressed by considering anti-symmetric SRR 

pairs. 
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2.3.5 Plasmonic SRRs 

For metamaterial applications in the optical regime, noble metals such as silver 

and gold are popular materials for subwavelength inclusions [35-36]. These metals may 

sustain surface plasmon effects with strong field enhancement at the interface under 

proper excitation. Therefore, metamaterials composed of plasmonic-based inclusions may 

exhibit significant energy localization [37]. Inevitable material losses due to electron 

collision and retardation are the major drawbacks of plasmonic materials at optical 

frequencies. 

 

 

Figure 2.10 Full polarizability tensor retrieved for a silver SRR 

Generally, the strong material dispersion may result in higher numerical 

instabilities when determining the scattering quantities of the subwavelength inclusions. 
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do not support lossy and dispersive media. Here, we apply the retrieval system to extract 

the polarizability tensors of a thin SRR inclusion made of silver, as shown in Fig. 2.3a. In 

order to use the coefficients applied in the previous examples, the square waveguide is 

scaled to 125nm in width and 600nm in length, and the valid frequency regime ranges up 

to 600 THz ( 0 1.5k d 
 

or 500 nm in wavelength.) The permittivity of silver is formulated 

using a Drude model fitted from the empirical measurement data [38] (see Appendix B).  

Figure 2.10 shows the polarizability results, in which all the normalized peaks do 

not reach 1 due to material loss. Based on the same line of reasoning, the effect of 

magneto-electric terms are much weaker than in the PEC SRRs discussed in the previous 

example. The retrieval of this polarizability tensor is crucial for optical metamaterial 

design, because it provides comprehensive information on the dipolar scattering for such 

inclusion, which may induce some non-negligible magnetic response in the visible. For 

this geometry, as seen in Fig. 2.10, the induced artificial magnetism is quite limited, but 

improved geometries may be considered if larger effects are required. 

2.4 CONCLUSIONS 

In this chapter, we have proposed a general retrieval method to quantify the full 

polarizability tensor of arbitrary subwavelength inclusions. Instead of analyzing the 

scattering properties of an isolated inclusion, we employ a 2-D array configuration to take 

into account co- and cross-coupling effects induced on the inclusions. We have reported 

the detailed formulation for this method, which can be applied to optical, microwave and 

terahertz frequencies. We have examined and discussed the retrieval results for five 

different examples, from simple to complex inclusions. For simple particles, we have 

used Mie theory and point-dipole radiation to validate our results. The proposed method 

may precisely capture the resonance features of an electrically small sphere and the 
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anisotropic components of the full polarizability tensor of a tilted spheroid. For complex 

inclusions, we have verified that our retrieved tensors satisfy the dynamic Onsager 

relations, passivity and reciprocity conditions. We have also demonstrated that strong 

chirality can be obtained by considering two mirror-symmetric helices. Finally, we have 

presented the full polarizability tensor of symmetric and anti-symmetric SRR pairs, 

which are proving that the symmetric pair may sustain more versatile electric and 

magnetic resonances in the inclusions, while the anti-symmetric pair may suppress 

unwanted bianisotropic effects. 
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Chapter 3 Homogenization of One-Dimensional Metamaterials: 

Linear Particle Arrays as Sub-diffractive Waveguides and Leaky-

wave Antennas 

3.1 INTRODUCTION 

One-dimensional linear particle arrays are the simplest metamaterial structures composed 

of nonconnected elements. The recent applications based on this type of metamaterial 

have provided novel possibilities for subwavelength waveguide and leaky-wave antenna 

design and operation at microwave frequencies [1-4]. As one of the interesting 

applications of periodic arrays at radio frequencies for radiation applications, leaky-wave 

antennas are a well-studied technology that provides directive radiation and frequency 

beam scanning [1,6-7]. Translating these concepts to the optical regime may open new 

areas in optical communications, control of radiation and optical computing. In this 

regard, periodic arrays of nanoparticles have already been considered by various fields as 

optical waveguides with confined beams, overcoming the optical diffraction limit [8-17]. 

The coated-particle arrays may also be considered as optical reflector arrays on layered 

structures to achieve directive radiation [18-19]. The use of plasmonic materials and 

linear arrays of subwavelength plasmonic nanoparticles [8-17] may overcome the 

diffraction limit of waves and confine a guided optical beam over a transverse cross-

section significantly smaller than the wavelength of operation. Therefore, the 1-D linear 

array may support sub-diffractive propagation with relevant applications in optical 

computing and communications. 

In order to theoretically investigate wave propagation on the 1-D linear array, we 

derive in this chapter a closed-form dispersion relation for real and complex dipolar 

modes supported by such infinitely extended structures, with the only approximation 

being the neglect of higher-order multipoles beyond the dominant dipole terms for each 
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particle. In particular, this formulation makes it possible to deal with the presence of 

realistic losses and damping for the guided modes, extending previous analyses that were 

limited to real wave numbers to the complex domain by an analytic continuation 

technique [20]. Similarly, this technique may be applied to problems involving radiation 

losses, which are significant when the wave energy is not totally guided along the particle 

chain, but partially leaked out, as it happens in the leaky modes. 

As mentioned above, the idea of energy leakage is widely applied in microwave 

engineering to design directive radiators with beam scanning capabilities. Moreover, in 

optics, the applications of energy leakage on thin film associated with surface plasmon 

waves are also applied in near field microscopy [21, 22]. The leaky mode is a fast 

eigenmode of the structure with complex wave number, whose real part is smaller than 

the free-space wave number [23]. This ensures that the energy is not confined along the 

array, and the Poynting (power flux) vector points towards the lateral direction. Provided 

that the imaginary part of the leaky wave number is sufficiently small, the radiation from 

the chain may become very directive, producing a conical directive beam at a given angle 

from the array axis. At microwaves, leaky-wave antennas are usually obtained by 

perturbing a guided wave with periodic defects, as in a periodically loaded micro-strip 

line [24-26]. In optics, the studies of modal analysis for metallic thin film also report 

radiating property due to surface-polariton waves [27]. It is challenging, however, to 

produce precisely defects within a sub-wavelength transverse cross-section, since in such 

case they tend to weakly interact with the mode of interest, which is usually weakly 

confined. This is another clear symptom of the diffraction limit of guided beams in free-

space. For this reason, the leaky-wave antenna transverse cross section is usually 

comparable with the wavelength of operation.  
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In this Chapter, we investigate the potential of periodic linear arrays to support 

guided- and leaky-waves with energy confinement and directive radiation properties in 

the optical regime. Even in the limit in which the array has sub-wavelength (i.e., not 

limited by the diffraction limitations mentioned above) lateral cross section, the structure 

may be applied as a sub-diffractive optical waveguide and leaky-wave nanoantenna. Both 

applications may lead to the possibility to connect distant points of an optical nanocircuit 

board [28] and create point-to-point links at the nanoscale. In the following we derive 

relevant design parameters and underline the fundamental and general limitations and 

challenges to the practical realization of such devices. Our general analysis is particularly 

focused on plasmonic nanoparticles as the linear chain elements, which may ensure the 

application of these concepts at optical frequencies and may provide inherent advantages 

associated with their anomalous light interaction.  

This chapter is organized as follows. In section 3.2, we derive the dispersion 

equations of single and parallel linear periodic arrays and for both longitudinal and 

transverse leaky modes. We identify the typical properties of wave vector in leaky modes 

and discuss the associated radiation properties for linear arrays. In section 3.3, we solve 

the dispersion equations for the wave number of guided- and leaky-waves in real and 

complex domains, respectively. In particular, we give a detailed discussion on the 

transition of wave vector solutions between guided and leaky regime. The general guided 

and leaky-regime for linear array is analyzed in terms of dimensionless parameters. We 

also provide a figure of merit to evaluate the radiation and propagation performance of 

leaky waves. In section 3.4, spheres of various materials are considered as array 

inclusions. We determine the permittivity value that can support guided and leaky modes 

and discuss the effect of loss or absorption along the chain. Moreover, realistic plasmonic 

and dielectric materials are considered to draw the comparison of wave propagation and 
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radiation in various types of arrays. Finally, we provide full wave simulations in section 

3.5 to validate our results and graphically show how the electromagnetic fields behave in 

both guided and leaky scenarios.  

3.2. FORMULATION 

3.2.1 Single linear particle array 

Consider an infinite linear array of particles oriented along the z  axis, periodically 

located at z Nd , with d  being the center-to-center distance and N  being any 

positive or negative integer.  

 

 

Figure 3.1 Geometry under consideration: a single linear array of spherical particles 

supporting a longitudinal (a) or a transverse (b) eigenmode. 

Provided that the nanoparticle size is much smaller than the wavelength of operation, its 

wave interaction is dominated by the dipolar scattering and each element may be safely 

modeled as a polarizable dipole and fully characterized by its electric polarizability ee . 

As the formulation widely applied in Ref. 29, if 0 0eep E  is the dipole moment 

induced by a local electric field 0E  on the particle at 0z  , it is possible to derive a 

self-sustained eigensolution traveling along the array in the form 
0

i Nd

N e p p , under an 
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i te   time-harmonic convention. Here,   is the complex propagation factor, fully 

characterizing its propagation and radiation properties. As reported in several papers on 

the topic [9-20], the complete eigenmode spectrum may be split into longitudinal and 

transverse polarizations, consistent with Fig. 3.1a and b, respectively. The dispersion 

relations for these two polarizations may be respectively written [20]: 
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where we introduce the normalized parameters 
0d k d , 

0/ k  , 

 3

0 0/ 6ee eek   , 0 0 0k     , and 0 , 0  are the permittivity and permeability 

of background medium, respectively. In addition, we use a special function 

       1 1
, Li Li

i d i d

N N Nf d e e
 


  

                   (3.2) 

in which  LiN x  is the polylogarithm function, as defined in Ref. 31. Due to the 

inherent periodicity of the Floquet modes of the linear chain, we limit our analysis to the 

principal period Re d     . 

The form of dispersion relation in Eq. (3.1) is valid for any real or complex 

value of  , ensuring that it may be employed to study guided as well as leaky-wave 

propagation along the linear chains. For a lossless case, it is required the condition 

1Im 1ee       for the involved nanoparticles to support a real solution for   (guided 

modes without decay) [20]. This condition is identically met for passive dipolar particles 

only when absorption may be neglected [29, 32] as physically expected, and it implies 

that Re 1     
in Eq. (3.1). If the lossless condition is not satisfied (

1Im 1ee      ), 

then absorption takes place in the nanoparticle array and the eigenwave numbers are 
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necessarily complex, whose imaginary part is associated with the damping caused by 

Ohmic loss. 

Even in the lossless scenario, however, complex solutions are allowed when 

Re 1     (fast leaky modes), when 1 Re / d      (complex modes) or when 

Re / d      (stop-band). In the following, we are interested in the leaky modes with 

sufficiently small Im    , which may provide directive radiation and sustain 

propagation over a reasonable electrical length, analogous to the operation of microwave 

leaky-wave antennas []. For d   (sufficiently tight arrays, which is required for leaky 

radiation, as we note in the following), the first-order Bloch mode dominates the far-field 

pattern, which may be therefore evaluated by simply assuming an averaged current line 

distribution along the z  axis with amplitude 
0 /i zi e d p , consistent with Ref. 30. In 

this case, the magnetic potential A  may be written in the two polarizations as:  

 

   1 2 20 0
0 0

4

i zH k e
d


  

p
A  (3.3) 

where   is the radial coordinate in the suitable cylindrical reference system with axis 

along the cylinder. The electric and magnetic far-field distributions may be easily derived 

as 0/ H A ,  0/ i E H . 

This implies that a complex value of   necessarily requires a non-zero power 

flux and phase propagation along the radial direction. In particular, for sufficiently small
 

 Im  , Eq. (3.3) represents a standard guided-wave mode for   0Re k  , with 

exponential decay rate in the radial direction given by Ref. 20: 

 

 

  
  

2 2

1 0

2 2

2 0

: Re

: Re

L K k

T K k

 

 






 


 (3.4) 



 54 

and a leaky mode when   0Re k  , with conical beam radiation at an angle 

1cos Re         from the z  axis. In such case, the decay rate is comparable to a 

cylindrical wave 1/   and the corresponding intensity pattern is well approximated by 

[6]: 

  
   

2

2 2

sin

cos Re Im
I




  


       

. (3.5) 

The radiation beamwidth of the main conical lobe is calculated as: 

 

 
02Im / sinBW   , (3.6) 

which ensures that the directivity of radiation, a measure of how oriented and narrow the 

far-field radiation pattern is towards the desired direction, is inversely proportional to 

Im    . 

It should be emphasized that the leaky-wave solutions do not represent proper 

contributions to the radiated spectrum of the chain, but they indeed dominate the steepest-

descent approximation in specific angular regions of the visible spectrum, and therefore, 

they constitute an accurate and effective description of the far-field distribution of the 

chain in a variety of realistic applications [1]. In practice, their divergence does not lead 

to a numerical issue, since we are interested in solutions with small  Im   and finite 

chain lengths, for which the localized excitation (which practically may be represented by 

an emitting molecule or a quantum dot in this scenario at optical frequencies) is at a finite 

location along the array [33]. 

3.2.2 Parallel linear particle arrays 

Based on the formulation for the single linear particle array, we may extend the 

discussion to the dipole coupling among parallel arrays in this section. For this case, 
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consider two identical linear arrays of nanoparticles with radius a , periodic interparticle 

distance 2d a  and interchain distance l , as shown in Fig 3.2. Since we are interested 

in wave propagation along the chain, we limit the structure to the condition l d , which 

ensures the mutual coupling between particles along the axial direction is stronger than 

the interaction between the two chains. For the case of parallel arrays, we expect that the 

mutual coupling between particle chains may allow efficient energy confinement [34, 

35], and therefore, the propagation along parallel arrays may be longer than for a single 

chain.  

 

 

 

Figure 3.2 Geometry under consideration: a parallel linear array of nanoparticles 

supporting longitudinal (a) or a transverse (b) eigenmode. 

Similar to the previous scenario, we may express the total displacement current 

distribution on a single chain as the summation of the dipole moments in Bloch form: 

     ,i md

m

x i e x md 




  J p  (3.7) 

where   is the Dirac delta function. In order to simplify the computation, we can further 

define the averaged line current in Eq. (3.7) as  
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To determine the field coupling between parallel chains, we can expand the 

radiation field of the equivalent line current into cylindrical waves and evaluate the 

interaction with particles of dipole moment 
2

i mde 
p  

in another chain to obtain the 

coupling coefficients [35] 
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where 
2

2
1m

m
b

d



 

   
 

 and  .mK  are the modified Bessel functions of order m. 

The coupling coefficient 
ijC  stands for the polarization in i direction on one chain 

induced by the polarization in the j direction on the other chain. We omit some other null 

coefficient such as xzC  and 
yzC  in (3.9), because the transverse mode polarized in z 

direction is not coupled with the orthogonal polarizations. Due to the fast convergence 

behavior of the expansion in (3.9), it is sufficient to consider the leading term (m = 0) to 

analyze the coupling between chains [35].  

The dispersion relation can be organized as an eigensystem: 
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where L and T are the longitudinal and transverse dispersion relations for an isolated 

chain in Eq. (3.1). The first determinant in (3.10) gives the dispersion of the coupled 

modes polarized in xz-plane, while the second denotes the coupling of transverse modes 

which lay in yz-plane. We can further derive the dispersion relations by expanding the 

determinants, which can be organized as: 

    2 0xx zz xzL C T C C    ,  (3.11) 

    2 0xx zz xzL C T C C    , (3.12) 

providing the following constraints on the polarization eigenvectors: 
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for Eq. (3.11) and (3.12), respectively. 

3.3 GENERAL PROPERTIES OF THE EIGENSOLUTIONS 

In this section, we show our investigation on the general properties of the complex 

solutions of dispersion relations Eqs. (3.1) and (3.10), with special attention to the 

leaky-wave regime. In order to make the analysis very general, we focus in this section 

on the variation of complex   with the normalized quantity 
1Re ee    , which 

compactly describes the general properties of the individual subwavelength particles 

forming the array. It is noticed, in particular, that 
1Im ee     is simply associated with the 
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absorption properties of the particles, and it is forced to be 
1Im 1ee       when the 

particles are lossless. The available degrees of freedom to tailor the leaky-wave 

properties of the array are therefore elegantly represented by 
1Re ee    , which is a 

function of the geometrical and material properties of the particles. 

3.3.1 Single Particle Chains 

As a first example, in Fig. 3.3 we present the variation of complex   as a function of 

the normalized parameter 
3 1Re eed     , for an interparticle distance 0.2d  . We 

consider here lossless particles with 
1Im 1ee      . As seen in Fig. 3.2a, the 

longitudinally polarized eigenmodes have a smooth transition from the guided-wave to 

the leaky-wave region at Re 1    . The lossless nature of the particles ensures 

Im 0     in the guided region Re 1    . As the wave number enters the region 

Re 1    , the imaginary part starts increasing, due to the conical radiation of the leaky 

mode at an angle 
1

0 cos Re        . It is recognized that the guided modes in this 

longitudinal polarization are inherently forward in nature, since the slope 

1Re / Re ee          is negative. As explicitly proven in Ref. 20, in fact, the slope of 

the curves in Fig. 3.3 is directly related to whether the modes are forward (negative 

slope) or backward (positive), which directly determines the sign of  Re /    for 

passive particles in regions in which Im     is negligible.  
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Figure 3.3 Variation of complex   in (a) longitudinal and (b) transverse polarizations 

versus the normalized inverse polarizability of the nanoparticles composing the array. 

Here, a normalized center-to-center distance between particles 0.2d   is considered. 

Also in the leaky-wave regime, for low Im     negative slope is preserved, but, 

for the value 1 1

minee   , the real part of   reaches a minimum at 
min  and then 

returns to Re 1    . Similar arguments apply in the low-damping region 1 1

minee   , 
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ensuring that the supported longitudinal leaky-wave modes are forward, improper, in 

nature, as also verified by the fact that Re / Im 0         , (phase and group velocities 

are parallel with each other) in the region with small Im    . As it follows from the 

conventional properties of leaky modes [1,6], these forward modes are inherently 

improper, since they grow in the transverse direction away from the array axis. Although 

this would violate the radiation condition for infinite arrays, these eigenmodes indeed 

dominate the far-field pattern of finite arrays for small Im    . The fact that 

Re / Im 0          also ensures the phase propagation is in the same direction as the 

power flow and energy decay.  

The level of radiation damping monotonically increases with 
1Re ee    , implying 

that the range 
1 1

minRe ee       is preferable for more directive radiation. This is 

physically expected, since this region is closer to the resonance condition (
1Re 0ee     ) 

of the individual nanoparticles among the array.  Longitudinal leaky modes are 

inherently supported for positive values of 
1Re ee    , due to their forward nature, since 

causality requires 
1Re 0ee       [20]. 

It is worth noticing that the point of minimum minRe       arises close to the 

crossing Re Im         in Fig. 3.3a. This point may be considered the cut-off of the 

leaky-wave regime, since for condition 1 1

minee    the leaky-wave radiation is damped 

by rapid longitudinal decay, and its directivity becomes very limited. The occurrence of a 

cut-off for leaky modes close to where Re Im         is well-known in a variety of 

leaky-wave antennas [7], and it is verified in this geometry for different values of d  in 

Fig. 3.3. It is interesting to note that this cut-off arises here around the region of 

minimum  . 

In the transverse polarization (Fig. 3.3b), the guided branch (right in the figure) is 

inherently backward in nature, since 
1Re / Re 0ee           and they decay in the 
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transverse direction away from the array axis. These may be considered proper physical 

eigensolutions of the array even in the limit of infinite geometries. As outlined in Ref. 20, 

a second, less confined, forward branch is also present in the guided regime, of less 

interest from the practical point of view, since it is very similar to a plane wave traveling 

unperturbed in the background with very limited confinement. A complex branch stems 

from the contact point between these two guided modes, which enters the leaky-wave 

regime for sufficiently negative 
1Re ee    . The dispersion of Re     with frequency in 

this regime decreases monotonically from +1 to -1, for decreasing 
1Re ee    , crossing the 

axis Re 0    . For this specific value of inverse polarizability, the leaky mode passes 

from backward proper (for less negative 
1Re ee    ) to forward improper operation. It is 

evident that in this polarization we are mostly interested in the backward region, which 

ensures smaller damping factor Im    . As expected, in this polarization the most 

interesting region arises closer to the resonance of the individual nanoparticles, i.e., here 

for less negative values of 
1Re ee    . The leaky-wave branch is connected to the guided 

branches through a complex modal regime, which is typical of a transition between 

leaky-wave modes and a two-branch guided-wave regime [7]. In this transition region, 

the mode does not radiate and propagates with complex wave number, whose real part is 

very close to the one of free-space, and imaginary part is non-zero. 

It is interesting to stress that the inherent backward propagation of guided and 

leaky-wave modes with transverse polarization may be appealing in the framework of 

negative-index propagation, and this guided regime has been exploited to realize double-

negative metamaterials in the visible [36]. In terms of leaky-wave radiation, backward 

radiation may be of interest to increase the degrees of freedom in tailoring and directing 

the optical radiation, but, as we show in the following, it is intrinsically less efficient than 

the forward longitudinal mode. Farther from resonance, outside the leaky-wave regime, 
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both polarizations have a stop-band region with Re 1    , in which the imaginary part 

grows in magnitude, the propagation is evanescent in nature and the damping is 

significantly large. In the following, we analyze more in detail the dispersion of the 

leaky-wave modes as a function of the interparticle distance d  and of the nanoparticle 

polarizability, with the goal of optimizing the leaky-wave radiation in the two 

polarizations, and of analyzing the fundamental limitations and possibilities of leaky 

radiation at optical frequencies. 

3.3.1.1 Longitudinally polarized modes 

Being consistent with Fig 3.3a, Re 1     
constitutes the boundary between guided-

wave and leaky-wave operation for longitudinal polarization. Literally, the leaky-wave 

regime is bounded by the following conditions on the nanoparticle inverse polarizability: 
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where  ,Nf d  are defined in Eq. (3.2),  NCl   are the Clausen’s functions [31], 

which are real for real argument and  .  is the Riemann Zeta function. The left-hand 

side has been written in closed-form using the properties of the polylogarithm functions 

for real argument: 
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Figure 3.4 shows a map of the different ranges of guided-wave, leaky-wave 

radiation, or stop-band, as a function of d  and 
1Re ee    . The dashed red line in this 
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plot represents the locus 1  , which separates the guided-wave propagation (below) 

and leaky-wave radiation (above). The dotted green line represents the upper boundary of 

the leaky-wave regime, for which    and Re 1    . In this plot, we have also 

considered the locus minRe     (black dotted line), which may be considered the cut-off 

for leaky-wave propagation, as discussed above. The solid blue line corresponds to 

/ d  , which is the lower boundary of the guided regime. The regions above the 

leaky-wave region and below the guided-wave region are stop-band regions, where 

modes decay very fast along z-direction, and are not of interest for guidance or radiation 

purposes 

 

Figure 3.4 Guided- and leaky-wave regions for longitudinal polarization. The solid blue 

and dashed red curves are respectively the loci of real solutions d   and 1  , 

which define the guided-wave regime. The dotted green line defines the upper limit of the 

leaky-wave regime. The black dots denote the locus 
minRe     

, which may be 

considered the cut-off of the leaky-wave regime. 
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It is seen how all the boundary curves converge at d   which represents the 

maximum interparticle distance for supporting guided or leaky modes along arrays of 

sub-wavelength nanoparticles. Moreover, the leaky-wave region widens up around 

2d   and it is centered above the resonance condition for the individual nanoparticles 

1Re 0ee     . In the limit 0d  , the leaky-wave range Eq. (3.15) tends to a single 

point with value  3 1Re 6 3 7.21eed      , implying that too closely packed chains 

provide a very limited leaky-wave radiation bandwidth. 

One of the useful figures of merit for leaky modes is the ratio 

Re Im          . A lower Re     may be desirable for radiation closer to the 

normal to the array, but this is usually accompanied by a larger Im    , which implies 

shorter propagation distance, and inherently lower directivity. As mentioned above, the 

cut-off of the leaky mode may be defined by 1  . Overall, a larger value of   ensures 

larger directivity and radiation farther from the array axis, both desirable features of a 

leaky-wave antenna. 

Figure 3.5 shows the variation of log  versus Re     for different values of 

interparticle distance. The ratio   tends to infinity for Re 1   , since we are 

operating near the guided-wave regime and lossless particles are being considered here. 

This region is characterized by endfire radiation, consistent with the limit of a surface 

mode propagating along the chain. A wider range of Re     implies that energy may be 

coupled into a broader angular spectrum, which is more appealing for antenna 

applications.  Figure 3.4 confirms that better ratios   and wider variation along 

Re     may be obtained by choosing a smaller value of d . This is to be expected, 

since the nanoparticles in this regime are tightly coupled, ensuring more flexibility in 

terms of guidance and radiation. Consistent with Fig. 3.3, however, the available 
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bandwidth of leaky-wave operation shrinks down for smaller values of d . It should be 

stressed, in addition, that small interparticle distance necessarily requires nanoparticles 

with smaller diameters, which in turn implies higher individual Q factors and more 

sensitivity to losses.  

 

Figure 3.5 Variation of the ratio Re Im         
 for the supported leaky-wave modes 

of the nanoparticle chain of Fig. 3.1 for longitudinal polarization, varying the center-to-

center distance.  

3.3.1.2 Transversely polarized modes 

Transversely polarized leaky modes behave quite differently. As discussed above, 

guided-wave and leaky-wave regions are separated by a complex transition region, not 

existing in the longitudinal polarization. By setting Re 1      and solving for the 

corresponding Im     in Eq. (3.1), we can obtain the range of polarizability values that 

support leaky-wave propagation in this regime. This condition may be formally expressed 

as: 
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, (3.17) 

where  ,Nf d  are defined in Eq. (3.2).  

Figure 3.6 shows the different modal regions for transversely polarized modes as 

a function of d  and 1

ee  , analogous to Fig. 3.4. Like the longitudinal case, the leaky-

wave regime converges to a single point for 0d  , implying that also in this 

polarization the leaky-wave regime is of narrow bandwidth for very tight nanoparticle 

arrangement. On the other extreme, towards d  , the modal region widens, ensuring a 

relatively broad range of normalized polarizability values that support leaky modes. As 

we will point out in the following, however, the corresponding Im     is rather large 

for this range of interparticle distance.  

 

Figure 3.6 Analogous to Fig. 3.4, guided- and leaky-wave regions for transversely 

polarized modes. 
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Figure 3.7 presents the variations of   with the array properties in this 

polarization, analogous to Fig. 3.5. It is evident comparing these two figures that it is 

more challenging to obtain a reasonably large figure of merit in the transverse 

polarization. As anticipated earlier, the region of most interest is localized in the 

backward-wave region, for positive Re     (right portion of Fig. 3.7). Due to the 

presence of a complex transition region between guided-wave and leaky-wave modes, in 

this polarization the imaginary part Im     is not negligible even for values 

Re 1    , and the ratio   is never remarkably large. These results confirm the 

general dispersion properties of transverse modes highlighted in Fig. 3.3b.  

 

Figure 3.7 Analogous to Fig. 3.5, variation of   vs. Re   
 for transversely polarized 

leaky modes, varying the center-to-center distance.  

3.3.1.3 Realistic models for nanoparticles 

In the previous sections, we have analyzed the general conditions and limitations for 

leaky-wave propagation along sub-wavelength nanoparticle chains, considering a general 
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model for the nanoparticle polarizability. In particular, we have shown that longitudinal 

forward leaky-wave modes may provide better directivity properties than transverse 

modes, due to their significantly larger value of   for the same interparticle distance. 

Moreover, we have outlined the range of 
1Re ee     required to sustain leaky-wave 

radiation. In the following, we consider realistic nanoparticle geometries and materials to 

apply the previous general results to several practical designs for optical leaky-wave 

arrays. 

In practice, 
1Re ee     is determined by the specific design and shape of the 

nanoparticles forming the array. In the case of spherical nanoparticles of radius a and 

permittivity  , for instance, we obtain [38]: 
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in the quasi-static limit of interest here. It is evident that there is a wide range of 

flexibility in the shape and material properties of the nanoparticles to tailor the value of 

1Re ee     at the frequencies of interest. In the following, we focus on homogeneous 

nanospheres in Eq. (3.18) and analyze how their design parameters affect the leaky-

wave dispersion.  

Before analyzing in detail the nanosphere problem, it is relevant to highlight a 

common trend in the previous Eq. (3.18): the value of 
1Re ee     tends to diverge for 

small nanoparticles  0 0k a  . On the other hand, leaky-wave radiation requires finite 

values of 
1Re ee    , as shown in the previous section. This implies that the operation of 

these leaky-wave nanoantennas with sub-diffractive lateral cross section will arise in the 

frequency range for which the numerator in the right-hand side of Eqs. (3.18) is closed 

to zero, i.e., near a plasmonic resonance for the specific shape of interest. For larger d  
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this condition becomes more and more stringent, since 
1Re ee     is required to be closer 

to zero. This is reflected in a general trade-off between size of these leaky-wave antennas 

and their bandwidth and robustness to the presence of loss and disorder. 

3.3.1.4 Leaky-wave modal dispersion with the nanosphere permittivity 

For spherical nanoparticles, we may use Eq. (3.18) to determine the range of 

permittivities   that may allow leaky-wave propagation along the nanoparticle chain. 

Figure 3.8a shows the longitudinal guided and leaky modal regions in the diagram of 

0/   versus d , for different values of the nanosphere radius a . The different curves 

refer to different ratios /d a   and we have used shadowing to highlight the guided-

wave and leaky-wave regions in the case 3  . As it may be seen, the leaky-wave 

region requires more negative permittivity values than the guided-wave region, which is 

centered at the resonance condition of the individual nanospheres 02   . Denser 

chains support a wider range of permittivities to achieve leaky-wave propagation, since 

the permittivity range gets wider for smaller values of   (of course there is a 

geometrical limit of 2   to consider in the design). This is reflected in wider 

bandwidths, as negative permittivity is necessarily dispersive with frequency [38]. 

Consistent with the previous section, in the mathematical limit 0d   leaky waves are 

not supported, but the permittivity region rapidly widens up for slightly larger values of 

d . Figure 3.8b shows the loci of constant Re Im           for 2.2  , as an 

example. Consistent with the results of the previous section, it is seen that low attenuation 

rate is achieved close to the boundary of the guided-wave mode region, corresponding to 

end-fire radiation. However, relatively large values of   may be achieved even farther 

away from the guided-wave regime, which may provide conical off-axis radiation. 
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Moreover, the natural permittivity dispersion of metals may provide frequency scanning 

for the conical beams radiated by the chain. 

 

Figure 3.8 (a) Guided-wave and leaky-wave regions for longitudinal polarization, as a 

function of nanosphere permittivity and interparticle distance. The guided-wave regime is 

supported between the bold lines, while the leaky-wave region is bounded by thinner 

lines. (b) Loci of constant Re Im         
 in the leaky-wave region for 2.2  . Blue 

solid lines delimit the guided-wave and leaky-wave regions. 
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Figure 3.9 shows analogous plots for the transverse polarization mode. Due to the 

backward nature of guided and leaky modes in this polarization, less negative values of 

permittivity are required as compared to the guided regime. Also in this case, by  

 

Figure 3.9 Analogous to Fig. 3.8, but for transverse polarization. 
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decreasing the value of   the leaky-wave operation broadens in bandwidth. Comparing 

Figs. 3.8 and 3.9, it is seen that longitudinal leaky modes have a broader leaky-wave 

region and obviously larger values of  , implying that they may outperform the 

transverse backward-wave leaky modes in terms of directivity and bandwidth of 

operation. These results are consistent with the discussion in the previous section, but 

applied here specifically to the nanosphere geometry. 

3.3.1.5 Realistic plasmonic materials 

The previous results suggest that chains of metamaterial or plasmonic nanoparticles with 

negative permittivity and moderate losses may provide a promising mean to realize a 

leaky-wave nanoantenna with subwavelength transverse cross-section. For this purpose, 

noble metals, or combinations of noble metals and dielectrics, may be chosen to realize 

such nanochains, following the design guidelines represented by Eqs. (3.18). Metallic 

nanoparticles made of silver or gold, for instance, have shown moderate guidance 

properties in the optical regime [12]. In this subsection, we consider the realistic 

properties of noble metals in the realization of these nanoantennas. For simplicity, we 

focus on nanospheres and on longitudinally polarized modes, which ensure better 

radiation performance and more robustness to the effect of absorption in the materials 

under consideration. 

Figure 3.10 shows the complex dispersion relations d - 0k d  for linear arrays 

composed of silver nanospheres, considering experimental values of permittivity [42], 

frequency dispersion and loss. In this case, we have chosen 2.1   and nanosphere 

radii of 25 (blue solid line) and 50 nm (red dashed). Figure 3.10a and b report the real and 

imaginary parts of d , respectively. It is seen that larger particles may provide wider 

bandwidth of leaky-wave radiation, due to the inherently larger period, and they are  
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Figure 3.10 d  vs. 0k d  diagrams and   for longitudinal modes supported by silver 

arrays with 2.1  . 
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inherently more robust to the presence of loss, consistent with analogous results in the 

guided region [20]. The shadowed regions in the figure indicate these guidance regions. 

Figure 3.10c reports the calculated values of   for the leaky-wave operation. 

Significantly large values may be achieved near the endfire radiation, despite the 

presence of loss and the overall sub-diffractive lateral cross-section of these 

nanoantennas. These results are particularly encouraging for the realization of these 

concepts using arrays of subwavelength silver nanoparticles.  

3.3.1.6 Comparison with dielectric nanosphere arrays 

The previous results imply that plasmonic nanoparticles may represent a promising 

means for the realization of sub-diffractive leaky-wave nanoantennas. In this subsection 

we compare their performance with the one of dielectric nanoparticles, focusing in the 

range d  . Figure 3.11 shows the dispersion of complex modes along a dense array (

2.1  ) of dielectric spheres with 05   and with 045  . For consistency with the 

previous results, we show only guided modes supported by the induced electric dipoles 

along the array for longitudinal polarization, although for large dielectric constants 

magnetic modes are also available. Fig. 3.11a and 3.11b report the dispersion diagrams 

for Re     and the corresponding Im    , respectively. For the low permittivity 

spheres (blue line), guided modes are not available in this low-frequency regime, as 

expected, and a small complex branch is visible near the light line. Since we are far from 

resonance, however, the value of   is always less than unity, implying poor radiation 

properties, as expected. Drastically increasing the nanosphere permittivity it is possible to 

induce electric dipole resonances, despite the deep subwavelength size of the particles. In 

this situation, both guided-wave and leaky-wave regimes are available, and the dispersion 
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diagrams are characterized by narrow guided-wave regions (highlighted by the shadowed 

regions) connected by leaky-wave branches.  

 

 

Figure 3.11 Dispersion diagrams d  vs. 0k d  for longitudinal modes supported by 

dielectric particle arrays with 2.1  . 

In some frequency ranges, significant directivity may be achieved, although the 

radiation is limited to grazing angles, close to the light line in the diagrams of Fig. 3.11. It 



 76 

is evident that large permittivity spheres may be also effective in supporting sub-

diffractive leaky radiation, although the efficiency and directivity values achieved in this 

example are lower than for plasmonic particles and it may be challenging to realize such 

large values of permittivity at visible wavelengths. Plasmonic materials with the required 

values of permittivity, on the contrary, are naturally available at these frequencies, and 

their dispersion may naturally provide a larger degree of frequency scanning compared to 

large permittivity materials.  

3.3.2 Parallel Particle Chains 

Based on the physical and numerical analyses presented in the previous section, we 

extend our discussion to the parallel particle arrays analyzed in the previous section. 

Again, we focus our study on the leaky-wave regime and draw comparison with the 

results of isolated particle chains. In this part, we directly apply realistic material silver 

with experimental values of permittivity (see Appendix B and Ref. 43). The mutual 

coupling between the parallel arrays affects the propagation and radiation properties by 

splitting and coupling the modes of an isolated chain into symmetric and anti-symmetric 

types on the parallel structures. 

3.3.2.1 Longitudinally polarized modes 

Figure 3.12 shows the dispersion of the complex wave number versus optical frequencies 

from 350 to 600 THz (or from 857 to 500 nm in wavelength) for the single and parallel 

chains composed of silver nanoparticles with radius 10 nm and interparticle distance 

2.1  . Various interchain distances are considered to reveal how the field coupling 

between particle chains induces mode splitting in the dispersion relations. As discussed 

previously for a single array, when the wave number enters the region Re 1    , the 

imaginary part monotonically increases, due to the conical radiation of the leaky-mode at 



 77 

an angle 1cos Re       
. Two different loci corresponding to symmetric and anti-

symmetric modes are shown in the parallel array case. For the symmetric mode, the 

induced dipole moments on two individual chain point at the same direction, while the 

anti-symmetric mode has opposite dipole moment pairs in the arrays. Although these two 

modes have different field characteristics, they are both forward propagating along the 

parallel chains for longitudinal polarization.  

By comparing Fig. 3.12a, b and c, we can see obvious mode splitting when we 

pull the arrays closer, because smaller interchain distance may result in stronger coupling 

between parallel chains. In general, the symmetric mode has larger leaky-wave efficiency 

Re Im          , which provides better performance in terms of leaky-wave 

radiation. Therefore, this mode is more promising than the single array for directive 

radiation application, especially in the region around 550 THz with slow variation of 

Im    , as shown in Fig. 3.12a and b. On the other hand, the anti-symmetric mode 

corresponds to a smaller ratio Re Im        , which limits the efficiency of leaky-

wave radiation and propagation. In general, for larger interchain distance, it is easier to 

excite the symmetric mode. In the single-chain system, we may see that the minimum 

point minRe       arises around the crossing Re Im         
of solution loci. This 

condition is considered as the “cut-off” for the leaky-wave antennas, as noticed above. 

However, this condition is not shown in the parallel-chain system with mode splitting, 

especially for larger interchain distance.  

3.3.2.2 Transversely polarized modes 

The transverse case also experiences mode splitting for parallel linear chains, as shown in 

Fig 3.13a and b. Like the longitudinal modes, the level of mode splitting for the 

transverse polarization depends on the interchain distance. It is worth noting that the loci 
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of the real part of wave number are more sensitive than those for the imaginary part to the 

array coupling. 

 

Figure 3.12 Dispersions of complex   versus frequency for single- and parallel-chains 

and longitudinal polarization. Here, we consider silver particles with radius 10 nm, 

normalized interparticle distance 2.1  , and interchain distance (a) =3l , (b) =5l  

and (b) =20l , respectively.  
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Figure 3.13 Dispersions of complex   in transverse versus frequency of single- and 

parallel-chain systems. Here, we consider silver particles with radius 10 nm, normalized 

interparticle distance 2.1  , and interchain distance (a) =3l  and (b) =5l , 

respectively.  

Generally, the real part, which determines wave propagation or radiation, is largely 

affected by the array coupling, while the imaginary part is mainly decided by intrinsic 

material losses in this case. Both the symmetric and anti-symmetric modes are backward 
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propagating due to Im 0    , as we discussed in the single chain system. In this 

transverse mode, complex wave numbers have much larger imaginary parts, which limits 

long-distance wave propagation. This feature makes the leaky-wave phenomena in 

transverse polarization less promising for communication purposes. Therefore, we 

concentrate our analysis on longitudinal mode in the following discussion. 

3.3.2.3 Modal analysis in longitudinal polarization 

As shown in Fig 3.4, guided and leaky wave regions share the same border line and the 

condition Re 1     
constitutes the boundary of leaky-mode operation. For the parallel 

chains, however, the additional mutual coupling between linear arrays makes the linear 

eigensystem rather complicated, such that an elegant form similar to Eq. (3.15) in the 

single chain system for defining mode regime is not available. Therefore, we employ the 

numerical process to find the roots in the leaky-wave regime boundary Re 1    .  

Figure 3.14 presents the regime for leaky-wave modes under longitudinal 

polarization. It is obvious that the regions of symmetric and anti-symmetric modes 

saturate for large interchain distances (around 7l  ). This is because when the parallel 

chains are pulled apart to a certain distance, the coupling becomes less important than the 

neighboring particle interactions along a single chain. Therefore, the mutual polarization 

does not influence the leaky-wave region for large l . However, this interchain weak 

coupling still provides the mechanism for mode-splitting. If we further increase l , for 

instance 20l  , the symmetry and anti-symmetric modes would degenerate to the 

simple longitudinal mode of a single chain due to the negligible coupling effect. This 

degeneration can be easily understood in analytical way by applying very large l  in Eq. 

(3.9), where all the generic coupling coefficients reduce to zero due to the nature of 

modified Bessel function of the second kind,  
0

lim 0n
x

K x


 . Moreover, all the off-
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diagonal terms in the first determinant of Eq. (3.10) become zero, and the polarizations 

1p  and 2p  on two individual chains become independent.  

On the other hand, for smaller values of l , the window of anti-symmetric mode 

shrink down, but the region for symmetric mode is widened. The induced magnetic fields 

(red arrows in Fig 3.14c and d) around 1p  and 2p  for symmetric and anti-symmetric 

modes help to explain this phenomenon: in the symmetric case, the induced magnetic 

fields point in opposite directions in the gap and they cancel each other in the chain gaps, 

provided that the magnitude of 1p  and 2p  are identical. As the chains are placed 

closer, the magnetic field distribution may reduce to the single chain scenario and the 

closed arrangement may allow us to treat the parallel chains as a dimer array. The dimer 

elements may show larger frequency window for leaky mode. On the other hand, the anti-

symmetric configuration can confine much stronger field between the parallel chains, 

instead of leaking the wave out. The field concentration therefore leads to a smaller 

window in Fig. 3.14a. 

Although we can have a spectrum of leaky-wave modes as wide as 100 THz for 

parallel chains, it is worth noticing that the leaky-wave efficiency Re Im           

is rather important when we consider its radiation applications. In Fig. 3.15, we show the 

efficiency for parallel chains and demonstrate how the ratio of real and imaginary part of 

wave number varies in the leaky-wave window. In this figure, we also show the 

efficiency for a single chain (black line) as a reference. It is obvious that the curves of 

symmetric and anti-symmetric modes are split toward opposite directions compared to 

the single-chain reference line. The curves corresponding to large l  are just slightly 

separated apart from the solid line. This is can be understood by the strength of coupling 

between chains, as mentioned above. The weaker interaction does not significantly 

change the results of a single isolated chain. For the closely arranged pair, we see the 
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curves move to extreme regions. The anti-symmetric mode, with 2.5l   and 5  , 

may lose its leaky-wave features because the wave cannot propagate very long and the 

energy is rapidly dissipated within one wavelength. 

 

  

Figure 3.14 (a) Valid frequency regions of leaky-wave modes for longitudinal 

polarization. The red and blue regions are the valid frequencies for symmetric and anti-

symmetric modes with various interchain distances l . We assumed a normalized 

interparticle distance 2.1  . The leaky-wave boundary for single chain with the same 

geometry parameters is also shown by black solid lines. (b), (c) and (d) schematically 

show the induced polarizations on single and parallel chains and their associated 

magnetic field circulation.  
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Figure 3.15 Leaky-wave efficiency Re Im           
on single and parallel chains. 

Here, we used the silver particle of radius 10 nm and normalized interparticle distance 

2.1   with various interchain distances.  

Compared with the anti-symmetric mode, the symmetric configuration is more 

promising for leaky-wave radiation applications. The curves may extend to the region 

with large Re     and  , or the top-right region in Fig 3.15. By checking the 

efficiency curves of leaky-wave modes, we realize that only a portion of the valid leaky-

wave region in Fig 3.13 provides a useful condition for radiation. Generally, when 

designing leaky-wave nanoantennas based on this particle arrays, we may prefer wave 

numbers with smaller imaginary parts closer to the guidance region.  

3.4 EFFECTS OF ABSORPTION AND MATERIAL LOSS 

In this section, we focus on the effects of material absorption and loss and discuss how 

this physical limitation affects wave propagation and radiation on a single particle chain. 

This is a crucial aspect to consider, since negative permittivity, required to support 
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subdiffractive leaky-wave operation, is usually combined with finite absorption [38]. 

Material losses are known to play an important role in plasmonic devices with 

subwavelength cross sections, such as nanoparticle waveguides [20, 40-41]. In the case of 

lossy materials, the quasi-static inverse polarizability is related to the complex 

permittivity r ii     as: 
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. (5.19) 

For low-loss particles, of interest here, i  is small and the associated additional 

contribution to 
1Im ee     provides a first-order perturbation of the lossless results 

derived above. 

Figure 3.16 reports the dispersion of Re     and Im     versus r  for 

longitudinally polarized modes, for 0.1d  , / 2.1d a    and different levels of 

material absorption i . It is interesting to see how in the guided-wave region a moderate 

increase of i  principally affects Im    , but leaves unaltered Re     and 

correspondingly the phase velocity. Since the transition towards the leaky-wave regime is 

continuous for longitudinal polarization, the presence of material loss implies a reduction 

of the achievable values of  , even near the guided-wave region. In the leaky-wave 

region, however, the trend is opposite: Im     is not sensibly altered, being mainly 

dominated by radiation losses (the mode is less confined to the particles), and the 

additional small loss mainly affects the angle of radiation and Re    . It is worth 

noticing that a complex-valued transition region may arise for relatively larger values of 

i , for which Re 1    . A zoom of this transition region for 0.1i   is reported in 
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the inset of Fig. 3.16. The figure confirms that realistic levels of absorption in optical 

materials may provide the possibility to realize nanoantennas with sub-diffractive lateral 

cross section able to sustain such longitudinal leaky modes with directive radiation 

properties. 

 

Figure 3.16 Variations of Re   
 and Im   

 for 0.1d   and / 2.1d a    in the 

longitudinal polarization regime, varying the imaginary part of permittivity. The inset 

plot shows a zoom-in view in the transition region for the case 0.1i  . 

3.5 FULL-WAVE NUMERICAL SIMULATIONS  

In the previous sections, we have used the analytical formulation (3.1) to derive the 

fundamental properties of leaky-wave propagation and radiation along infinite arrays of 

subwavelength plasmonic nanoparticles to within a dipolar approximation. In this section, 

we validate the previous analytical model by simulating realistic finite arrays of silver 

nanoparticles with finite-integration technique in CST Microwave Studio, in order to 
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determine the radiation patterns of such leaky modes in a practical realization, 

considering also the complete multipolar coupling among closely spaced nanoparticles. 

In our numerical simulations, we have fixed the particle size to 50a nm , 

center-to-center distance 110d nm , and we have used a Drude permittivity model (See 

Appendix B), which describes with good approximation the silver dispersion in the range 

of frequencies of interest [43]. The overall length of the chain is L=7µm, sufficiently long 

to ensure that significant part of the power coupled to the leaky mode has been radiated. 

The array is excited by an optical source (i.e. an emitting molecule or a quantum dot) 

longitudinally polarized along the array axis, to ensure proper coupling with the 

longitudinal leaky modes supported by the array. 

We have verified in our simulations that the dispersion of leaky and guided modes 

along the array is qualitatively consistent with our analytical predictions. Clearly, the 

nature of our analytical technique neglects higher-order multipolar coupling between the 

closely spaced nanoparticles, which is reflected in a quantitative difference in the 

prediction of the frequency range for leaky-wave radiation, but qualitatively the results 

are in good agreement with the previous sections. As an example, Figure 3.17a reports 

the normal magnetic field (absolute value of real part) distribution at the operating 

wavelength 0 690  nm, which is in the leaky-wave regime for this array. Similarly, Fig. 

3.17b reports the corresponding distribution at 0 600  nm, for which the chain is in its 

guided regime. It is evident that the permittivity dispersion of silver allows tuning the 

guidance properties of the supported mode from a slow mode with short guided 

wavelength, as in Fig. 3.17b, confined along the structure, to a much faster mode, which 

produces leaky-wave radiation in free-space with conical directive properties. The 

difference in phase velocity between the two simulations is striking, considering that the 

free-space wavelength difference between the two cases is only 15% , and it is 
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consistent with our analytical theory. Away from the chain, the leaky-wave (Fig 3.17a) 

couples to free-space radiation, drastically different from the guided propagation in Fig. 

3.17b, which decays exponentially far away from the chain axis. The leaky-wave far-field 

extends laterally and propagates with oblique wave fronts, consistent with the previous 

analytical results. Figs. 3.17c and 3.17d show a zoom in the dashed regions of the two 

panels of Figs. 3.17a and 3.17b, reporting the power flow (Poynting vector) distribution. 

The power flow shows significant lateral energy leakage in the leaky-wave scenario of 

Fig. 3.17c. In contrast, at the wavelength 0 600nm   (Fig. 3.17d), the power flow is 

confined and bounded parallel to the chain, rapidly decaying away from its axis. It is 

remarkable that these full-wave results qualitatively confirm with very good precision the 

analytical results in the previous sections, and in particular the possibility to create a 

leaky-wave nanoantenna composed of subwavelength nanoparticles composed of realistic 

plasmonic materials. The fact that our full-wave results take into account the full 

coupling among the neighboring particles, and not just their dipolar (dominant) 

contribution, slightly shifts the guidance and leaky-wave frequency ranges from our 

analytical predictions in Fig. 3.4, but qualitatively these results confirm the possibilities 

noted in the previous sections. 
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Figure 3.17 Magnetic field (absolute value of real part) and power flow distribution for a 

nanoparticle chain operating in the leaky-wave regime [(a) and (c), at 690nm wavelength] 

and in the guided propagation regime [(b) and (d), at 600nm].  

Figure 3.18a shows the corresponding far-field radiation patterns in the E plane at 

various wavelengths. It is seen that, in the leaky-wave regime, the conical beam may scan 

the angle with frequency, as predicted in the previous sections. The patterns show a 

significant directivity that may be tuned by changing the frequency of operation (i.e., the 
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material permittivity). It is seen that, consistent with the previous analytical results, better 

directivity is achieved for radiation closer to the chain axis, for which   is larger. The 

scan of the main lobe direction with frequency confirms the forward nature of these 

longitudinal leaky-wave modes, as predicted by the previous analysis. For comparison, 

the radiation at 0 600nm   is very poor, due to the guided-wave properties of the 

chain at this wavelength. The sub-diffractive nature and subwavelength period of the 

chain ensure absence of significant side lobes. These results confirm the realistic 

possibility of using a silver nanoparticle chain as a leaky-wave nanoantenna. Different 

nanoparticle size and geometry may be used to tune and shift the leaky-wave operation at 

different wavelengths. 

Figure 3.18b reports the three-dimensional far-field radiation pattern at 714 nm, 

together with the geometry of the chain, to highlight the directive conical radiation at 18 

degrees from the chain axis, consistent with Fig. 3.18a. Smaller side lobes are visible, 

associated to the finite length of the chain. As reported in Fig. 3.18c, the nanoparticle 

chain supports a smooth linear scanning region between the wavelengths of 680 to 740 

nm (highlighted in the figure), which delimit the leaky-wave operation of this 

nanoantenna.  
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Figure 3.18 (a) Far-field radiation patterns vs. wavelength of operation. At 722 nm (solid 

blue line), 714 nm (dashed red line) and 690nm (dotted green line), directional far-field 

radiation patterns are obtained, pointing at 20°, 18°, and 13° respectively. At 600nm, the 

guided-wave mode does not significantly contribute to the far-field radiation. (b) 

Calculated three-dimensional leaky-wave radiation pattern at the wavelength of 690nm. 

(c) Scanning of the main lobe radiation pattern (magnitude and main direction) versus 

wavelength. The highlighted region corresponds to leaky-wave operation. 

(a)

(b)

(c)
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3.6 CONCLUSIONS 

In this Chapter, we have analyzed the leaky-wave radiation properties of single and 

parallel linear arrays of subwavelength plasmonic nanoparticles. Starting from closed-

form analytical dispersion relations for real and complex modes supported by the linear 

chains, we have analyzed the leaky-mode properties in the complex domain and the 

conditions for supporting this leaky wave regime. To evaluate the radiation and 

propagation capability of leaky wave, the figure of merit has been provided, which is 

based on the ratio of real and imaginary parts of wave number. The general conditions for 

guided and leaky modes for longitudinal and transverse conditions have also been 

determined in terms of dimensionless parameters. Based on the plots of leaky-wave 

region and figure of merit, we have verified that the longitudinal polarization is the best 

candidate for achieving significantly directive conical radiation with scanning 

capabilities. We also considered the effects of varying the center-to-center distance, and 

studied the array characteristic of realistic plasmonic and dielectric materials. Our 

analysis showed that plasmonic materials may provide a wide frequency range for leaky-

wave mode. On the contrary, dielectric arrays do not sustain leaky-wave propagation 

unless the permittivity value is drastically large. Finally, we have simulated the leaky-

wave propagation of silver nanoparticle chains to verify that these effects may be 

achieved in realistic geometries. Our full-wave simulations confirm and validate that 

plasmonic leaky-wave nanoantennas with sub-diffractive lateral cross section are indeed 

possible in the realm of current nanotechnology and may be applied to novel devices for 

optical communications and computing. 
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Chapter 4 Homogenization of Two-Dimensional Metamaterials and 

Metasurfaces 

4.1 INTRODUCTION 

Two-dimensional metamaterials, also known as metasurfaces, are the most popular 

category of metamaterials, due to their simplicity of realization, and have attracted a great 

deal of attention for microwave, terahertz and optical applications [1-12]. Typically, 

metasurfaces are planar periodic structures composed of subwavelength unit cells with 

in-plane or out-of-plane inclusions. Compared to fully 3-D metamaterials, metasurfaces 

offer the advantages of simpler fabrication processes, smaller physical space and less 

influence on material loss. 

It is worth mentioning the relations between metasurfaces and more conventional 

frequency-selective surface (FSS), which are both artificial planar structures that can be 

designed to achieve specific transmission, reflection, and polarization under proper 

excitations. Generally, metasurfaces are extending applications of FSS, and they are 

particularly composed of stereo-inclusion and applied at optical frequencies. In addition, 

FSS usually has unit cell size comparable to the wavelength ( d  ), and metasurfaces 

have much smaller elements, operating in the regime 0 1k d   or 2d    (with 0k  

being the free-space wave number) [13]. This implies that the metasurface inclusions 

may be more often treated as electric and magnetic dipole moments, whose values are 

determined by the particle geometry, constituent materials, lattice structure and external 

excitation. We can therefore use the tools derived in the previous sections to analyze 

metasurfaces and describe them with some macroscopic physical quantities, such as the 

average surface impedance and susceptibility [14].  

The situation is rather different for FSS, for which the size of the unit cell is often 

comparable to the working wavelength, such that the induced currents on the inclusions 
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are more complicated than simply electric or magnetic dipoles. In any case, also FSS are 

in many instances described using homogenized surface impedance or susceptibility, and 

with lumped circuit elements like inductors (L) and capacitors (C) [15, 16]. We can use 

some of these tools in the case of metasurfaces. 

The characterization of metasurfaces is crucial not only for understanding their 

macroscopic properties and but also for their efficient design and applications. There are 

two main approaches to determine the surface average properties of metasurfaces, similar 

to the ones described for bulk metamaterials in Chapter 1: the retrieval method and 

homogenization theory, respectively. The former technique is usually considered as a 

counterpart of the Nicolson-Ross-Weir (NRW) method used in 3-D metamaterials. The 

main difference in 2-D and 3-D retrieval methods is the assumption of a certain thickness 

for the equivalent homogeneous structures. In a 3-D array, the effective thickness of the 

sample is directly chosen to match the total number of unit cells along the direction of 

wave propagation. For the 2-D array, however, we assume the thickness of the structure 

to be zero (i.e., the array is homogenized as a uniform sheet), and we may interpret the 

transmission and reflection in terms of induced surface currents [17].  

The homogenization of metasurfaces determines the surface constitutive 

parameters analyzing their microscopic structure. It considers the induced microscopic 

currents and takes into account the field interaction in the planar array. Based on these 

average quantities, such as electric and magnetic sheet currents, we can then define 

homogenized parameters, such as surface susceptibilities, to relate the fields and induced 

currents on the plane. Based on the proper definition of susceptibility, we may be able to 

predict the transmission and reflection coefficients under various oblique incident angles 

and polarizations.  
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Many previous works have reported the homogenization of metasurfaces 

composed of simple inclusions [1,13,18-25], such as spheres or planar inclusions. In 

general, the surface susceptibility of an arbitrary metasurface is a six-by-six tensor which 

is governed by co- and cross-polarization coupling between electric and magnetic 

induced currents. All the available models only formulate this quantity in either scalar [1] 

or a three-by-three tensor [19] form, due to specific assumptions on the symmetry of the 

inclusions and illumination. So far, a complete model for arbitrary metasurfaces is not 

available. This generalized model should take into account all possible coupling effects 

between electric and magnetic fields on the metasurface, including anisotropic and 

bianisotropic effects produced in the 2-D array.  

In this chapter, we develop such homogenization theory for 2-D metasurfaces and 

extend the existing models to more general conditions. We consider a periodic 

metasurface with subwavelength rectangular unit cells composed of arbitrary 

nonconnected inclusions excited by plane waves with arbitrary incident and polarization 

angles. We extend the concepts introduced in previous works [1, 13, 18, 19] to derive a 

general definition of surface susceptibility to describe the array, and we further generalize 

this parameter to a six-by-six tensor to model the complete wave phenomena in 

metasurfaces. 

This chapter is organized as follows. In section 4.2, we give the definition and 

detail formulations of homogenized surface susceptibility of a general metasurface. The 

inclusions in a metasurface are described by a set of electric and magnetic dipole 

moments based on the six-by-six polarizability derived in chapter 2, and the complete 

interaction among these dipole moments are expressed by dyadic Green’s functions. In 

section 4.3, the transmission and reflection of a metasurface is studied based on the 

surface susceptibility derived earlier. By using this formulation we are able to 
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analytically predict the transmission and reflection coefficients of a metasurface with 

arbitrary inclusion polarizability.  

4.2 FORMULATION 

In this section, we present the definition and derivation of surface susceptibility of a 

planar metasurface, composed of a 2-D array of nonconnected arbitrary subwavelength 

scatterers. Similar to the previous section, the metasurface inclusions are described by a 

set of electric and magnetic dipoles. After defining the surface susceptibility, we are able 

to determine the transmission and reflection for arbitrary incident TE/TM plane wave 

impinging on the metasurfaces. Since the size of the unit cell is considered smaller than 

the wavelength of operation, we do not need to consider the higher-order scattering 

modes. In other words, we assume the transmitted and incident waves to be propagating 

in the same direction (with the same transverse momentum compared to the metasurface 

normal), even though their magnitudes and polarizations may be in general different.  

4.2.1 Surface Susceptibility 

Consider a periodic infinite 2-D array (see Fig. 4.1) composed of subwavelength unit 

cells with period d filled by arbitrary nonconnected inclusions. The array plane is normal 

to the z-axis and the unit cell dimensions are a and b in x- and y-directions, respectively. 

As in the previous sections, we are interested in the wave interaction of this metasurface 

within the subwavelength regime 0 1.5k d  . Since the unit cell and the inclusions are 

smaller than the wavelength of operation, the scattering behavior of the inclusions under 

electromagnetic excitation can be treated as induced electric and magnetic dipoles. For an 

isolated unit cell, these induced dipoles, 0p  and 0m , can be expressed by  
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where α  is a six-by-six polarizability tensor of array element and loc
E  and loc

H  are 

the local fields at the phase (or geometry) center of inclusions. The polarizability tensor is 

composed of sub-tensors responsible for co- and cross-polarization between electric and 

magnetic fields, and these quantities can be determined by either analytical approaches 

(e.g., Mie theory for spherical particles) or numerical methods (e.g. generalized 

polarizability retrieval reported in Chapter 2.) 

 

Figure 4.1 A 2-D periodic infinite metasurface with rectangular unit cell and 

nonconnected inclusions. The plane of array is normal to z-axis, and the dimensions of 

unit cell are a and b in x- and y-directions, respectively. 

As we consider the induced dipoles among a 2-D array, the local fields for a 

certain unit cell are contributed by the incident fields and the coupling with all the other 

elements in the array, and they can be written as  
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is the scattering from neighboring unit cells that can be determined by the Green’s dyads 

2D
C  based on Bloch theorem [19-27]. The closed-form expression of each elements in 

2D
C  are reported in Appendix C. We stress that many of these analytical expressions are 

new, and have never been derived before. We may combine Eqs. (4.1), (4.2) and (4.3) 

to obtain the relations between dipole moments and incident fields, which yields  

  
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1
1 2
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D
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
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   
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   

p E
α C

m H
. (4.4) 

Since the unit cells and inclusions on the 2-D metasurface are smaller than the 

wavelength, we are able to macroscopically treat the unit cell as a uniform surface with 

averaged surface susceptibility [14], which relates the surface average polarization and 

the fields on the surface by  

 2 2

surf inc scat

D D

surf inc scat

       
           

        

P E E E
χ χ

M H H H
, (4.5) 

where the average polarizations are 0 abP p  and 0 abM m , and the fields surf
E  

and surf
H  are contributed by incident waves ( inc

E  and inc
H ) and scattering fields 

( scat
E  and scat

H ) generated by all the induced dipoles among the array. 

 In principle, the scattering fields on a metasurface can be treated as the radiation 

fields generated by the surface currents induced by external excitations. Therefore, in 

order to formulate the scattering fields, we should consider all the possible components of 

induced electric and magnetic surface currents on a plane. In Fig. 4.2a, we illustrate the 

fields on both sides of the array plane generated by the electric current component sxJ . 
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sxJ  generates opposite transverse magnetic fields ( 0 0  H H ) across the plane, and 

also produces propagating electric fields ( 0 0 E E ) along the x-direction on both sides 

of surface. The surface electric currents can be related by the discontinuity of the 

tangential magnetic fields across the plane 
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 (4.6) 

and we may obtain 0 2sxH J    and 0 2sxH J  , respectively. Moreover, we can 

relate the electric and magnetic fields through the wave impedances [28] 
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In this case, we choose 
0

TEZ  for the current component sxJ  and 
syK , and 

0

TMZ  

for 
syJ  and sxK . Therefore, as illustrated in Fig 4.2a, the average scattered fields 

stemming from sxJ  on the plane are  
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Figure 4.2 Induced surface currents and the associated radiation fields on a metasurface.  

Similarly, the average scattered fields contributed by the other surface current 

components are: 
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and 
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By considering Eqs. (4.8)-(4.11) as well as the relations between induced dipole 

moments and currents [29] 
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we may express the scattered fields in terms of average surface polarizations, which yield 
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where 
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Therefore, we can rewrite Eq. (4.5) as 
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and the homogenized surface susceptibility is 
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   
1

2 1 2D Dab


  χ α C Q . (4.16) 

A similar result was derived for the more simplified cases of uniaxially mono-

anisotropic inclusions under TE-wave incidence in Ref. 19. In this uniaxial case, the 

effective surface susceptibility is formulated as a three-by-three matrix and the applicable 

inclusions are only allowed to lie on the plane of the metasurfaces.  In this generalized 

model we may model arbitrary nonconnected subwavelength inclusions and describe the 

complete field coupling in an arbitrary array, as we discuss in the following sections.  

4.2.2 Transmission and Reflection Coefficients 

From a macroscopic point of view, we may also express the average field on the surface 

in Eq. (4.5) in terms of incident, reflection and transmission waves across the plane: 
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Here, we may separate the incident fields into TE and TM modes, which have 

transverse electric and magnetic fields in the plane of the metasurface, respectively. 

These transverse fields are not necessarily in the x- or y-directions. For the general TE 

mode, the incident, reflection and transmission fields are  
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where 0TEE  is the amplitude of fields, the subscripts TE,TE and TM,TE stand for TE and 

TM fields produced by TE incident waves, respectively. Importantly, we use a vwz 

coordinate system which is defined along the transverse electric component in the TE 

mode as illustrated in Fig. 4.3. The reason for employing this new coordinate system is to 

simplify the expression for the electromagnetic fields in the above equations. We can to 

transform field components from the xyz coordinate system to the vwz system using the 

transformation matrix 
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Figure 4.3 General TE and TM modes and their coordinate system considered in 

calculating the transmitted and reflected fields for a 2-D metasurface. In both cases, the 

waves are propagating in the same direction. For the general TE mode shown in (a) and 

(b), the transverse field component E
TE  is lying in the xy-plane and pointing in the 

assigned v-axis. Similarly, in (c) and (d) the component TM
H  of the general TM mode is 

lying in the xy-plane and pointing in the v-axis. 

Similarly, the incident, reflected and transmitted fields for TM polarization are 
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where 0TMH  is the amplitude of the impinging magnetic field, the subscripts TE,TM and 

TM,TM stand for the TE and TM fields produced by TM excitation, respectively.  

Applying the boundary conditions for tangential electric and magnetic fields, we 

are able to define surface currents by comparing the fields across the surface 
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On the other hand, we can also obtain another set of surface currents  2 2,s sJ K  

in terms of average fields on the plane by using Eqs. (4.12) and (4.17). It is important to 

note that the surface susceptibility in Eq. (4.16) are derived in the xyz coordinate system 

due to the definition of α  and 2D
C , which are defined with respect to the rectangular 

grid in the metasurface. Therefore, as we consider general TE and TM polarization 

(whose polarization direction are rotated by   with respect to the x-axis, as shown in 

Fig. 4.3b and 4.3d) on the structures, a new form of susceptibility  

   
1

2 1 2 1D Dab


   χ α C T QT  (4.30) 
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with proper coordinate transformation for Q  (which is originally defined along the 

transverse fields and surface currents) should be considered. 

For TE excitation, we can consider the surface currents as a set of simultaneous 

equations 
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s s
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J J
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 (4.31) 

in which there are four unknowns for the transmission and reflection coefficients 

,TE TER  , 
,TE TET ,

,TM TER   and 
,TM TET  for TE and TM waves in terms of surface 

susceptibility defined in Eq. (4.16). We can solve for these simultaneous equations to 

derive the transmission and reflection coefficients of a given metasurface. Because this 

generalized solution involves a complete surface susceptibility tensor, these coefficients 

may not be analytically solved in closed-form. In the practical implementation as shown 

in the following section, we numerically solve for these unknowns. Similarly, we can also 

solve for 
,TE TMR , 

,TE TMT , 
,TM TMR  and 

,TM TMT  for TM excitation by collecting surface 

current components in terms of fields in Eqs (4.24)-(4.28).  

To summarize, given a metasurface composed of arbitrary inclusions with a 

polarizability tensor α  and incident and polarization angles defining the Q  matrix, 

this analytical method allows to analytically determine the transmission and reflection 

coefficients of the scattered TE and TM waves across the metasurface. 

4.3 EXAMPLES OF 2-D METASURFACE HOMOGENIZATION 

In this section, instead of showing effective surface susceptibilities, we directly validate 

that the homogenization model of 2-D metasurfaces by comparing the analytical 

transmission and reflection coefficients to the results obtained from numerical 
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simulations. In particular, we use CST Microwave Studio and Ansoft HFSS to verify our 

analytical results. In order to simulate infinitely periodic  

 

Figure 4.4 The investigated 2-D infinitely periodic metasurfaces composed of (a) PEC 

spheres, (b) symmetric conducting SRRs, (c) anti-symmetric conducting SRRs, and (d-e) 

silver U-shape SRRs arranged out-of-plane and in-plane, respectively. The detailed 

geometrical parameters are identical to the inclusions presented in Fig. 2.3. 
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metasurfaces in both tools, we use the unit-cell moduli with Floquet boundaries in 

frequency domain. In this type of moduli, we may directly obtain the reflection and 

transmission coefficients for arbitrary TE and TM incidence, respectively, as we assign 

the plane wave incident direction. Here, we investigate the transmission and reflection 

coefficients of metasurfaces composed by various inclusions, including PEC spheres, 

conducting SRRs pairs and silver U-shape SRRs, as shown in Fig. 4.4. For the SRR-like 

elements, their polarizability tensors are obtained from the retrieval procedure developed 

in Chapter 2. 

4.3.1 Metasurfaces composed of PEC spheres 

In this example, we consider a metasurface with array period 25d mm  and inclusions 

consisting of conducting spheres with radius 10a mm , as shown in Fig. 4.4a. For this 

structure, the polarizability tensor α  is diagonal, and only contains non-zero elements in 

the subtensors ee
α  and mm

α . In other words, there are no bianisotropic effects in this 

structure. Figure 4.5 shows reflection and transmission coefficients when the metasurface 

is illuminated by plane waves with frequency varying from 0.1 to 2.0 GHz (or 

0 0.05k d  ~ 1.05 ) coming from directions  0 , 0     ,  30 , 0      and 

 45 , 0     .  
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Figure 4.5 Reflection and transmission coefficients for metasurfaces made of 2-D PEC 

spheres, as illustrated in Fig 4.4a. The gray curves behind each color line are the 

corresponding results obtained from numerical simulations in CST Microwave Studio.  

(c) (d)

(e) (f)

(a) (b)
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In these figures, we also present the numerical results calculated with CST 

Microwave Studio, corresponding to the gray curves in each panel. They show nice 

agreement with our analytical data in both magnitude and phase, validating our numerical 

approach. Except for the normal incidence case (Fig. 4.5a and b), oblique illumination 

produces different results for TE and TM illumination. As expected, larger oblique angles 

lead to more different transmission and reflection coefficients for TE and TM excitation. 

These results imply that our proposed model of generalized surface susceptibility in Eq. 

(4.30) correctly captures the wave propagation along these 2-D arrays.  

4.3.2 Metasurfaces composed of conducting SRR pairs 

To test more complicated metasurfaces, we use conducting SRR pairs in symmetric and 

anti-symmetric configurations (see Fig. 2.3d), and apply their tensorial polarizability α  

(with dimension six-by-six) in Eq. (4.30) based on the retrieved results obtained in 

Chapter 2. The frequency range considered in this example is identical to the previous 

PEC sphere examples. Unlike previous studies [4, 19, 20], we consider here SRRs 

arranged out-of-plane, which allows out-of-plane electric dipoles in the metasurface and 

in-plane magnetic excitation, which is interesting for a variety of applications. 

Due to bianisotropic effects on the isolated symmetric SRR pairs, our results 

show that even for normal incidence we may couple TE into TM modes and vice versa, 

as presented in Fig. 4.6a and b. In Fig. 4.6c-f, we further evaluate the transmission and 

reflection coefficients for symmetric SRR pairs and oblique incidence with 30    and 

30   . In all cases, the analytical and numerical results nicely match each other, 

validating our theory also in this more challenging scenario (and also further validating 

our polarizability retrieval method).  
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Figure 4.6 Reflection and transmission coefficients for metasurfaces composed of 

symmetric SRRs, as illustrated in Fig 4.4c. The gray curves in each panel show the 

corresponding results obtained from numerical simulations in CST Microwave Studio. 
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Figure 4.7 Reflection and transmission coefficients of metasurfaces composed of anti-

symmetric SRRs, as illustrated in Fig 4.4b. The gray curves in each panel show the 

corresponding results obtained from numerical simulations in CST Microwave Studio. 

The metasurfaces composed of anti-symmetric SRR pairs show interesting 

resonant features in the calculated transmission and reflection coefficients around 

0 0.7k d  , as shown in Fig. 4.7. The resonances in Fig. 4.7a and b are related to the 

magnetic resonance of an isolated inclusion characterized by the peaks of polarizability 

zz , as shown in Fig. 2.9. At oblique incidence, the resonances are still located around the 

same frequency, but the peak magnitudes become much weaker due to energy being split 

between TE and TM waves. 
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0 , 0    
0 , 0    
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The good matching in Fig. 4.6 and 4.7 between analytical and numerical results 

suggests two important considerations: first, the polarizability tensors of SRR pairs 

retrieved by the system reported in Chapter 2 are physically and numerically accurate. 

These full-size tensors can successfully capture the induced dipole behavior of arbitrary 

subwavelength complex inclusions. Second, the homogenization model for 2-D 

metasurfaces is also correct, and the definition of generalized surface susceptibility can 

physically capture the average properties of complex artificial surfaces. Only provided 

that both models are accurate, we may obtain the degree of accuracy and consistent 

results shown in these figures.  

4.3.3 Metasurfaces composed of plasmonic U-shape SRR  

In this example, we verify and apply our model to plasmonic inclusions, considering 

material losses and frequency dispersion in the optical regime. Figure 4.8a and b shows 

the transmission and reflection coefficients for metasurfaces composed of out-of-plane 

silver U-shape SRRs excited by x-polarized plane waves (see Fig. 4.4d). It can be seen 

that, for normal incidence, the electromagnetic wave is hardly affected by the structure, 

even if the inclusions themselves are lossy. As we tilt the incident direction to 30    

and 30    , we can see strong resonant reflection peaks at 0 0.55k d   and 0 1.2k d  , 

due to the resonances in yy  in Fig. 2.10 (here, we are using different coordinate 

systems for inclusions and 2-D arrays). Moreover, wave coupling between TE and TM 

modes is evident for oblique excitation. It is interesting to mention that even if the 

magnitudes of ,TE TMR  and ,TE TMT  are near zero for normal incidence, the arguments of 

these coefficients shown in Fig. 4.8b are still numerically accurate, and denote some 

weak coupling with resonant modes. 
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Figure 4.8 Reflection and transmission coefficients for metasurfaces composed of out-of-

plane silver U-shape SRRs, as illustrated in Fig 4.4d. The gray curves in each panel show 

the corresponding results obtained from numerical simulations in CST Microwave 

Studio. 

In Fig. 4.9, we analyze similar plasmonic metasurfaces, but here the inclusions are 

lying in the plane of the array, as more common for structures fabricated with e-beam 

lithography [30, 31]. In this case, we only present the results for TE excitation, as a 

comparison to the previous out-of-plane configuration. For normal incidence, the two 

reflection peaks are directly related to yy  in Fig. 2.10. However, as we choose oblique 

incidence at 30    and 30   , we see that broad peaks appear at 0 1.0k d  , caused 

by the coupling between electric dipoles, consistent with the response of xx  and yy  
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in Fig. 2.10. Also, in this case, we obtain significant dispersion in ,TM TER  and ,TM TET  

due to the bianisotropic effects in the inclusions.  

 
 

Figure 4.9 Reflection and transmission coefficients of metasurfaces composed of in-plane 

silver U-shape SRRs, as illustrated in Fig 4.4e. The gray curves in each panel show the 

corresponding results obtained from numerical simulations in CST Microwave Studio. 

It appears that the developed homogenization model for planar metasurfaces is 

also reliable for the lossy inclusions. The numerical and analytical results not only agree 

very well in magnitude, but also in the arguments of the coefficients. In some frequency 

regimes for which the phase of the coefficients varies rapidly with frequency, the 

homogenization model can still offer quite accurate results. 
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4.4 CONCLUSIONS 

In this chapter, we have presented a generalized homogenization model for metasurfaces 

to define and determine the complete effective surface susceptibility of 2-D arrays with 

arbitrary inclusion polarizability tensors. In this model, we consider all the possible 

interaction between induced electric and magnetic dipoles on the metasurfaces, and take 

into account the coupling of general TE and TM impinging waves for arbitrary oblique 

incidence. We have derived analytical expressions for the reflection and transmission 

coefficients of several metasurfaces and validated the results with CST Microwave 

Studio. We have shown that our model can accurately capture the effective surface 

susceptibility and precisely predict the transmission and reflection spectra in the 

subwavelength regime.  
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Chapter 5 Homogenization of Three-Dimensional Metamaterials 

5.1 INTRODUCTION 

Homogenization models for 3-D artificial composite materials have been developed and 

applied for several decades. Many classical mixing rules, including Clausius-Mossotti [1] 

, Maxwell-Garnett [2, 3], and Bruggeman formulations [4] have been widely used to 

predict material properties of composite dielectric media embedded or mixed with small 

impurities. These classical theories, usually applied at low frequencies or under quasi-

static conditions [2], are based on the average of isomorphic dipolar scattering response 

generated by the embedded small dielectric or metal particles. Due to the assumptions of 

simple scattering patterns, these approaches have provided elegant analytical 

formulations and have become valuable tools to characterize the electromagnetic 

properties of conventional composite dielectric materials [5, 6].  

However, there are many physical limitations for these models to be applicable to 

artificial media. For instance, in order to ensure isomorphic scattering, the geometry of 

the inclusions are required to be simple and sufficiently smaller than the wavelength of 

operation [2, 7], and the particle distribution density should be dilute enough such that 

field coupling or interaction between the particles are weak. Moreover, these mixing 

formulas and classical models only describe average material properties in the regimes of 

conventional dielectric and magnetic responses (i.e., positive permittivity and 

permeability). They are not able to describe the exotic electromagnetic mechanism, such 

as negative refraction and artificial bianisotropic effects, arising in modern composite 

media with novel phenomena or electromagnetic characteristics unavailable in nature. 

Recently, the concept of metamaterials has received a great amount of attention 

and brought promising applications to optical, terahertz and microwave technologies. 

Metamaterials are artificial structures composed of specifically designed subwavelength 
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inclusions with certain polarization characteristics and they have shown several 

interesting phenomena, including negative refraction [8, 9], artificial magnetism [10], 

artificial chirality [11-13]. These novel material properties are mainly caused by the 

special scattering and polarization properties of complex inclusions, such as SRRs [10, 

11], omega-shaped wires [4, 5] and helix wires [16]. Unlike the simple particles in 

conventional mixtures, these metamaterial inclusions are specifically engineered to 

produce certain polarizations or patterns of induced current circulation, and therefore, 

they usually generate interesting electric or magnetic response within the unit cells. Since 

their unit cell structures are still moderately smaller than the wavelength [7], 

metamaterials can be treated as macroscopically homogenized bulk materials which are 

characterized by some set of effective constitutive parameters.  

From an engineering point of view, it is highly desirable to use physically 

meaningful parameters to describe the whole metamaterials and inversely design the 

geometry of inclusions to achieve certain values of parameters at the interesting 

frequency. However, the classical homogenization theories or mixing rules based on 

quasi-static conditions and simple small particles fail to predict the properties and 

incorrectly characterize the physical bulk parameters for the metamaterials. Since the 

conventional approaches cannot capture the sophisticated mechanism of field interactions 

within these complex arrays, more rigorous models are required. 

In the past decade, many modern homogenization theories [17-40] have been put 

forward from analytical and numerical aspects to describe metamaterials with complex 

inclusions that support strong electric and/or magnetic resonances in electrodynamic 

regime. From these previous works, we can generally conclude that a few challenging 

issues appear in the modern metamaterial homogenization procedures that lead to 

dubious results or a nonphysical description of these novel structures. 
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Among these challenging issues, the first and most relevant one is the nonphysical 

nature of homogenized parameters. Many works applied conventional retrieval 

procedures [17, 18] (i.e., the NRW retrieval method [41, 42]) to extract effective 

parameters by treating the metamaterial as homogeneous bulk media with the same 

dimensions. However, these studies reported some retrieved parameters which violate the 

fundamental physical principles and assumptions, such as Kramers-Kronig relations and 

passivity [43]. This is because the exotic properties of metamaterials are usually 

supported by electric and magnetic resonances or strong interactions in the inclusion and 

lattice levels. In these resonant circumstances, however, the effective wavelengths are 

usually comparable to the feature size of the inclusions ( 2d   , d  is the period size 

of unit cell), and therefore, the phase variation across the unit cell is not negligible [43]. 

As a consequence, the quasi-static assumption may lead to erroneous results and fully 

dynamic wave propagation has to be considered. These finite phase oscillations may 

affect the field homogenization within the unit cells and the induced dipoles or their 

couplings would become wavenumber-dependent. These phenomena are known as spatial 

dispersion, or non-local effects [44]. Without analytically capturing these detailed 

mechanisms, the homogenization procedure may not provide physically correct effective 

parameters, and the retrieved parameters are only valid under certain excitation 

conditions. Various recent studies have reported detailed discussions of these issues of 

non-locality and spatial dispersion [7, 24, 26, 29, 45]. Recently, a rigorous theory based 

on the dipolar approximation and first-principle-level derivations of dipole scattering and 

interactions has been reported [39]. This model derives both local and non-local 

parameters for metamaterials composed of isotropic inclusions, and it qualitatively 

elucidates the role of magneto-electric coupling at the unit cell and lattice levels, 

respectively. Based on this theory, we are able to restore the physically meaning of 
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effective parameters of metamaterials with cubic lattice for normal incidence. Generally 

this theory provides insightful viewpoints to approach the homogenization issues of 

general metamaterials. 

Secondly, it is challenging to precisely quantify the microscopic scattering 

characteristics, or the polarizabilities, of the complex inclusions used in metamaterials. 

Unlike the simple particles in conventional mixing media, which are usually treated as 

small spherical scatterers, the inclusions of metamaterials may contain special magneto-

electric effects and their polarizabilities and couplings are more complicated. Generally, 

in order to comprehensively describe the scattering characteristics, we need a six-by-six 

polarizability tensor to relate the local electromagnetic fields and co- and cross-

polarizations, as described in Chapter 2. Many works have been presented to determine 

these quantities based on the concept of the circuit lumps with the LC-components [11, 

25, 46-49] or the quasi-static approximation with conservation of radiation energy [49-

51]. However, most of the procedures are still tricky due to the nature of complicated 

geometry, and it usually fails to accurately specify the polarizability in dynamic regime. 

In Chapter 2 of this dissertation, we have derived a retrieval method to determine the full 

polarizability dyads for arbitrary subwavelength inclusions based on a 2-D array 

configuration [30, 53]. This model can be applied to realistic metamaterials in any 

frequency regimes and it only requires the scattering parameters of a 2-D array composed 

of the complex inclusions to calculate the dyadic polarizability. Therefore, it is very 

efficient in numeric and is also providing physical insights of the inclusion couplings. We 

will apply this method to a fully general 3-D homogenization of metamaterials in this 

chapter. 

The third challenging and interesting issue is the anisotropic and bianisotropic 

nature of metamaterials. Since metamaterials are composed of complex inclusions, it is 
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expected that the homogenized response may be highly anisotropic and the effective 

parameters should be expressed in dyadic forms [25-26,34-35]. Moreover, the 

constitutive relations for artificial materials should take into account the bianisotropic 

effect and be written in the Tellegen form [54]. Overall, the tensorial bianisotropic 

parameters that govern cross-coupling among electric and magnetic fields are generally 

required. Under some circumstances, the inclusion resonances or the array resonances 

may become very sensitive to the wave propagation directions, and therefore, different 

incident waves may see different homogenized results. Some previous approaches and 

theories [33-38] have been reported to determine dyadic constitutive parameters by 

purely numerical methods or quasi-static approximations. However, these works are 

designed for specific geometries and rely on numerical methods that are computationally 

inefficient. Some other difficult and practical issues, such as granular boundaries [55, 56] 

and disorder in the lattices and unit cells may also be discussed in metamaterial 

homogenization. However, these are secondary problems compared to the above three 

main issues, and their influence is of second-order in the homogenization problem.   

In this chapter, we develop a general homogenization theory to overcome these 

challenging issues and explicitly derive the four dyadic effective parameters of 

metamaterials in the general bianisotropic constitutive relations. We take advantage of 

the results of dyadic polarizabilities from our retrieval method in Chapter 2 to model the 

inclusions as a combination of six orthogonal electric and magnetic dipoles. We 

explicitly present the analytical formulation for the effective parameters based on 

polarizabilities and dyadic interaction coefficients. We apply fast-convergent algorithms 

for dyadic Green’s functions [20] and extend the scalar first-principle homogenization 

theory [39] to formulate dyadic effective parameters for generalized constitutive 

relations. The proposed theory comprehensively takes into account arbitrary propagation 
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directions and subwavelength inclusions that can induce any possible forms of 

anisotropic and bianisotropic effects in the unit cell and lattices. This method may deal 

with realistic lossy and dispersive materials and it is valid for complex dispersion 

relations due to the nature of the proposed algorithm. In order to validate the proposed 

theory, we apply it to two examples of metamaterials, which are composed of 

magnetodielectric spheres and conducting SRR pairs, respectively. We also compare the 

results of our analytical model to those from CST Microwave Studio, in order to 

demonstrate the accuracy of the proposed homogenization model and of the retrieved 

polarizability dyads. Moreover, we employ fundamental physical principles, such as 

reciprocal relations [43] to further validate the dyadic effective parameters. 

After rigorously formulating the homogenization theory for general 3-D 

metamaterials, we revisit the conventional NRW retrieval method to discuss the issue of 

nonphysical effective parameters. As many previous works mentioned [7, 24, 26, 29, 43, 

45], the nonphysical parameters of a homogenized metamaterial mainly results from the 

over-simplified consideration of magneto-electric coupling in the structure. Based on the 

presented generalized homogenization theory, we are able to take into account these 

complicated effects and modify the classical retrieval method to extract physically 

meaningful effective parameters of a given metamaterial. This new method not only 

provides the constitutive parameters, but also retrieves the polarizability of the inclusions 

even without their geometry and material information. Finally, we present an inverse 

design procedure for 3-D metamaterials based on our homogenization theory. This design 

method may seek for the geometry of inclusions and lattice dimensions that provide the 

desired exotic material properties, such as negative refraction index, at a specific 

frequency.  
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This chapter is organized as follows. In section 5.2, we present the generalized 

homogenization theory for 3-D periodic metamaterials composed of nonconnected 

elements. The effective parameters are explicitly expressed in terms of polarizability and 

Green’s dyads. In section 5.3, two examples of metamaterials, composed of 

magnetodielectric spheres and conducting SRRs, are provided to demonstrate the 

dispersion relations and parameters predicted by the homogenization theory. In section 

5.4, we present a modified retrieval method for metamaterials by simplifying the 

homogenization theory into a scalar form and re-arranging the formulation to be 

combined with the NRW retrieval method. This method can simultaneously provide 

retrieved parameters and polarizability of the embedded inclusions. In section 5.5, we 

report examples of full-wave simulation to demonstrate that we can use the exotic 

properties to design microwave lenses to achieve beam focusing and super-resolution. 

Finally, in the section 5.6, we present our inverse design method for metamaterials based 

on a simplified version of the proposed homogenization theory. The examples of core-

shell particles are used to demonstrate that designers can use this concept to efficiently 

design metamaterials structures with exotic wave properties at the frequency of interest.  

5.2 FORMULATION  

Consider an orthorhombic crystal in free space, where the subwavelength unit cells are 

filled with arbitrary nonconnected inclusions, which are not touching the periodic 

boundaries, so that the elements within each unit cell can be treated as discrete scatterers. 

Generally, we can describe the macroscopic Maxwell equations in terms of average field 

quantities within inside the unit cell as [39] 

  0 _av av av ext avi    β E H M K  (5.1) 

  0 _av av av ext avi     β H E P J  (5.2) 
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where the spatially average fields quantities are defined as 1 i

av cell

cell

V e dv   
β rE E  [23], 

and avP , avM , _ext avJ , and _ext avK  denote the averaged polarization and 

magnetization of the dipole moments and averaged currents inside the unit cells, 

respectively. Here, it is important to note that there are impressed (external) fields with 

the same plane wave dependence 
 i t

e
 β r

, sustained by the impressed source 

distributions. These fields satisfy 
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 (5.3) 

By taking the curl on both sides of the above equations and use the vector identity 

 
2

av av av    β β E β β E β E , we may derive the decoupled relations for electric and 

magnetic fields in terms of the averaged dipole moments, which are  

    
22 2
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av extk k k 

 
       
 

P M
β I ββ E E β , (5.4) 
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where  
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Moreover, we use the inverse relation 

   
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to re-write the Eqs. (5.4) and (5.5) as 
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From the above equations, it is obvious that electric and magnetic fields are 

influenced by both polarization and magnetization as well as by the imposed electric and 

magnetic currents. It is also important to note that, from a general macroscopic point of 

view, we must consider both induced electric and magnetic effects regardless of the type 

of inclusion materials and geometry. For simplicity, Eqs. (5.6) and (5.7) can be 

expressed by using the normalized wave vector 
0kβ β  which yield 
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On the other hand, from the array point of view, we may express the local fields at 

the center of any unit cell in terms of the dyadic Green’s function and the coupling with 

all the other cells as 
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, (5.10) 

in which the electric and magnetic dipole moments can be related to the averaged 

polarization and magnetization in the unit cell by av cellVP p  and av cellVM m , 

respectively. 
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The coefficient matrix C  is composed of the dyadic Green’s functions governing 

the co- and cross-couplings among the electric and magnetic dipoles, and they can be 

analytically written as [57] 
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where a, b and c are the dimensions of unit cell, and      
2 2 2

mnl la mb nc  r . In 

their practical numerical implementation, we must employ alternative algorithms for 

these interaction coefficients due to slow convergence. Some useful fast-convergent 

algorithms [20, 29, 58] based on various numerical procedures have been reported to 

overcome this issue. 

Importantly, the co- and cross-coupling dyads in Eqs. (5.11) and (5.12) have 

even and odd symmetric properties with respect to the wave vector β , which are written 

as  
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The odd symmetry in emC  and meC  implies an opposite magneto-electric 

coupling for opposite propagating waves. In other words, this property is responsible for 

the nature of non-reciprocity in metamaterial arrays [26]. The local fields can also be 

related to the polarizability tensor of the isolated inclusion: by combining Eqs. (5.8), 

(5.9), and (5.10) together with the definition of polarizability, we obtain 



 131 

 
ee em

loc

me mm
loc

    
    

    

Ep α α

Hm α α
 (5.14) 

and the local electric and magnetic fields yield 
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We can also express the new relations for the averaged fields as 

 av ee av em av
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where the generalized interaction dyads are 
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and  
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It is interesting to note that the coefficients em
C  and me

C  lose their symmetric 

properties with respect to β  when the inclusion is bianisotropic or with non-vanishing 

emα  and meα . This fact is important for metamaterials composed of complex 

inclusions, such as SRRs, and it may redefine the usual reciprocity relations for complex 

artificial media. 

The expressions in Eqs. (5.17) and (5.18) relate the external fields in Eqs. (5.8) 

and (5.9) to the polarizability and interaction coefficients. Based on Eq. (5.3), the 

external fields are determined by the impressed sources 
_ext avJ  and 

_ext avK  in 

Maxwell’s equations. Therefore, we are able to apply any set of plane-wave-dependent 

sources in Eqs. (5.8) and (5.9) to change the proportions of avP  and avM  with 

respect to avE  and avH  (see Eqs. (5.17) and (5.18)). In other words, for a given 0k  

(with 0 1k d  ), there are an infinite number of β  such that the Eqs. (5.17) and (5.18) 

can be satisfied, as a function of the impressed sources and external fields. 

On the other hand, in the case without external sources (eigen-modal scenario), 

we may combine Eqs. (5.10) and (5.14) to obtain a dispersion relation for general 3-D 

metamaterial which yields 

 1  α C 0 . (5.24) 

This equation restricts the relation between wave number in free space ( 0k ) and in 

the array ( β ) for each mode. Without the degree of freedom brought by external fields to 

independently manipulate electric and magnetic fields in the metamaterials, the problem 

becomes an eigenmodal analysis and the ratio of avP  and avM  is fixed. The valid 
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0k β
 
relation in the source-free condition is essentially the dispersion relation for the 

propagating eigenwaves in the metamaterial.  

After some simple algebraic manipulations on Eqs. (5.17) and (5.18), we derive 

the averaged dipole moments in terms of electric and magnetic fields: 
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By considering the definition of displacement fields and general bianisotropic 

(also known as Tellegen form) constitutive relations  
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we may finally write the effective dyadic parameters of the given array composed of 

subwavelength unit cells as  
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Equations (5.29)-(5.32) show the bianisotropic effective parameters used to 

describe the macroscopic electromagnetic fields and bianisotropic constitutive relations 

of the general 3-D metamaterials composed of arbitrary subwavelength inclusions.  
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By rearranging the wave equations of electric and magnetic fields, one can 

simplify the bianisotropic expressions into anisotropic forms without explicitly showing 

the magneto-electric dyads effξ  and effζ  [40]. In the previous work [39], the author has 

combined the magneto-electric coupling (bi-isotropic) terms in the constitutive relations 

into the alternative permittivity and permeability terms and defined the non-local 

equivalent parameters in scalar form for isotropic inclusions and propagation along the 

lattice axis. Similarly, we are able to arrange here Maxwell’s equations to combine the 

magneto-electric dyads effξ  and effζ  into the anisotropic permittivity and permeability 

dyads. In this way, we may write the curl equations of electric and magnetic fields in 

bianisotropic media as 
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where the vector cross operations on field quantities avβ E  are replaced by matrix 

multiplication m avβ E  with a singular matrix 
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To rearrange the bianisotropic wave equations into anisotropic form, we could 

solve for avE  and avH  in Eqs. (5.33) and (5.34), and substitute them into Eqs. 

(5.33) and (5.34), respectively. With some straightforward manipulations, we can obtain 

 
0av eq av β E μ H , (5.36) 

 
0av eq av  β H ε E , (5.37) 
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with the equivalent parameters being 

  1 1 1

0 0eq eff eff eff m effc c    ε ε ξ μ β ζ , (5.38) 

  1 1 1

0 0eq eff eff eff m effc c    μ μ ζ ε β ξ . (5.39) 

These equivalent parameters explicitly contain the factor mβ  and become 

spatially dispersive or non-local. Interestingly, we can see that both 
effε  and 

effμ  play 

roles in 
eqε  and 

eqμ , respectively, and these expressions become more complicated 

than the results in the isotropic cases [39]. To elucidate this issue, we can use either Eqs. 

(5.34) or (5.33) to determine the parameters by applying the cross operation β  twice 

on the left side, and reorganize the leading coefficients of avE  and avH  as  
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0eq m m m eff m m effc
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  ε β β β ξ β β ε , (5.40) 

  
1

1

0eq m m m eff m m effc


  μ β β β ζ β β μ . (5.41) 

The two different expressions of equivalent parameters in Eqs. (5.38)-(5.39) and 

Eqs. (5.40)-(5.41) eventually return the same results of equivalent parameters for 

propagation along the axis, and we may also prove that these parameters are qualitatively 

coincident with the NRW retrieval for normal incidence [60]. However, the expressions 

(5.40) and (5.41) may encounter singularity in the inverse operations for certain 

specific values of 
mβ . 

The definition of these equivalent parameters suggests that we can always 

simplify the bianisotropic constitutive relations into the anisotropic form, but this 

inevitably returns β -dependent homogenized parameters in these simplified expressions. 

In most of the traditional homogenization models, only the isotropic or anisotropic 

constitutive relations are considered. These models return nonphysical results that violate 
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Kramers-Kronig relations due to non-locality, and this issue has stirred many debates 

regarding the validity of homogenized parameters [43]. Here, our theory provides a 

complete interpretation of electromagnetic homogenization for general metamaterials and 

proves that we need to consider a general bianisotropic constitutive model to truly 

capture the magneto-electric coupling in the array and correctly characterize the bulk 

response of 3-D metamaterials. 

5.3 MODAL ANALYSIS AND EFFECTIVE PARAMETERS OF THREE-DIMENSIONAL 

METAMATERIALS 

In this section, we apply the proposed homogenization theory to 3-D metamaterials to 

determine their dispersion relation and homogenized effective parameters. We focus our 

interest on the frequency range 0 1.5k d  , which satisfies the subwavelength condition 

defined throughout this work. In order to demonstrate the validity of our homogenization 

procedure and the associated effective parameters, we consider two types of 

metamaterials, which are composed of cubic lattices filled with spheres and SRR 

inclusions, respectively. In both structures, we take into account normal and oblique 

wave propagation and present the sustained propagating eigenmodes. We also determine 

the complete effective dyadic parameters in the bianisotropic constitutive relations, 

including permittivity, permeability and the magneto-electric parameters. We take 

advantage of the numerical eigen-solver in CST Microwave Studio to verify the 

dispersion relations for 3-D metamaterials. Although this eigen-solver is convenient to 

use, it has many constraints on the materials that can be considered. For instance, 

dispersive, lossy or gainy media are not allowed in this solver. In addition, we verify that 

our derived effective parameters satisfy fundamental physical principles, such as 

reciprocity.  
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Fig. 5.1 Dispersion diagram obtained from homogenization theory and numerical 

simulations for propagation direction along the z-axis, as indicated in the legend. In the 

inset, we show electric (red lines) and magnetic (blue) polarization currents inside the 

sphere at sample frequency points A, B, C, D on the dispersion diagram. These schematic 

current plots are extracted from numerical simulations, in which the impinging 

polarization direction is along the x-axis. 

5.3.1 Metamaterials composed of magnetodielectric spheres 

Consider a 3-D metamaterial array composed of magnetodielectric spheres with relative 

permittivity 13.8r   and permeability 11.0r  , with a ratio of radius over period 

0.45a d  , as shown in the inset of Fig. 5.1. This array have been proposed to operate as 

a double-positive (DPS) and a double-negative (DNG) metamaterial at different 

frequencies in the range 0 1k d 
 
[29]. In general, it was shown that magneto-electric 

coupling should be considered to determine physically meaningful homogenized 

parameters for this metamaterial [39], even if the inclusion geometry is simple and 

centrosymmetric and the propagation direction is along the principle axes of lattice. 
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In this example, we concentrate our discussion on the general dyadic case, 

considering the complete interaction coefficients in tensor form as in Eqs. (5.11)-(5.12), 

and we use the diagonal polarizability tensor obtained from Mie theory. For propagation 

along the lattice axes, this general case simplifies into the scalar form considered in Ref. 

39. In order to find the dispersion curves in the general case, we numerically solve Eq. 

(5.24) in the complex domain and calculate the corresponding frequency 0k  for given 

mβ  in the transcendental dispersion relation. 

In Fig. 5.1, we show the calculated eigen-modal dispersion diagram for the 

magnetodielectric sphere array and propagation along one of the axes, calculated using 

the previous homogenization theory and full-wave simulations. It is seen how the 

dispersion curves agree very well for moderate values of d  within the frequency 

range 0 0.8k d  .  In the figure, we also schematically sketch the distributions of induced 

electric and magnetic currents, J  (red arrows) and K  (blue arrows), as observed in 

full-wave simulations, at the specific frequencies of interest which are indicated by the A, 

B, C, D points on the curves. At point A, the dispersion curve has positive slope, which 

corresponds to both positive effective permittivity and permeability, and the metamaterial 

in this regime can be well described by quasi-static models, such as Clausius-Mossotti 

formula [2]. At this frequency 0d   and each sphere indeed supports quasi-static 

distributions for both J  and K . The currents are almost uniformly polarized in 

orthogonal directions. At the other extreme of the first dispersion branch (point B) 

d   and we hit the magnetic resonance of the array. In this case, J  is circulating 

around the magnetic field, which is forcing 0av P
 
and contributing only to avM . In 

the second dispersion branch, point C corresponds to a region in which both electric and 

magnetic effects are strong, causing a near-zero permittivity and permeability. In such 

case, both electric and magnetic currents circulate resonantly around the spheres, 
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contributing to both avP  and avM . Finally, point D refers to a dual configuration with 

respect to B, in which the array electric resonance arises near the bandgap edge. In this 

case, we have 0avM , which causes a bend in the dispersion diagram. 

  

Figure 5.2 Dyadic effective parameters: (a) permittivity, (b) permeability and (c) 

bianisotropic terms for a metamaterial composed of magnetodielectric spheres for 

propagation along the axis. In this figure, only the non-zero terms in the dyads are shown.  
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5.3.1.1 Homogenized parameters for wave propagation along the lattice axes 

In Fig. 5.2, we show the diagonal terms of dyadic permittivity, permeability and 

bianisotropic parameters calculated for wave propagation in the z-direction polarized in 

the x- or y-direction. Generally, xx  and 
yy  ( xx  and 

yy ) terms are exactly 

consistent with the results determined in the scalar system [39, 60], but we can find the 

additional curves zz  and zz  when taking into account the dyadic formulation.  

For the bianisotropic dyads, the diagonal terms are all zero and only the off-

diagonal terms orthogonal to the propagation direction are nonvanishing. In addition, we 

observe that the reciprocity relations 

 

†

†

,

,

eff eff

eff eff

 

 

ζ ξ

ξ ζ
 (5.42) 

(the superscript †  denotes a transpose and complex conjugate operator) valid for natural 

bianisotropy in continuum media [61, 62] do not hold in this case. This is consistent with 

the findings in Ref. [39] in the scalar case, and it indicates that the bianisotropic effect 

arising here is of odd nature with respect to β , exclusively hidden in lattice effects. 

Indeed, the magneto-electric interaction produced by the cross-coupling coefficients 

emC  and meC , as shown in Eq. (5.13), has odd symmetry with respect to β . In this 

case without chirality at the inclusion level ( em me α α 0 ), we have the relations: 

 

   

   

   

   

,

,

,

.

eff eff

eff eff

eff eff

eff eff

 

 

  

  

ε β ε β

μ β μ β

ξ β ξ β

ζ β ζ β

 (5.43) 

It is also possible to convert the effective parameters into equivalent by using Eqs. 

(5.38) and (5.39) without explicitly taking into account the magneto-electric coupling 

terms in the constitutive relations. Figure 5.3 presents the equivalent parameters for the 



 141 

same metamaterial and, in the same figure, we compare the results obtained by using the 

NRW retrieval method (based on a finite thickness sample composed of six unit cells in 

the propagating direction). The curves nicely match, but they both show evident 

nonphysical features. From Kramers-Kronig relations, we may expect the following 

general relations for lossless (or low loss) and passive media [43, 44] to hold: 

 
   Re Re

, 0
 

 

 


 
, 

which means that the material dispersion curves, or the variation of   and   versus 

frequency, should always have positive slopes in regions with low loss. In Fig. 5.3, the 

curves experience nonphysical negative slopes near the bandgap region (marked by the 

yellow shade), and they considerably deviate from the effective parameters. 

 In a conventional retrieval, we only consider conventional constitutive relations 

eqD E  and eqB H , implicitly assuming that these equivalent parameters are 

sufficient to describe all the electromagnetic response of the array. This is usually true for 

natural dielectric materials and mixtures, because their lattice structures much smaller 

than the wavelength of interest and the coupling among inclusions is not strong. For 

metamaterials, however, the rigorous theory presented above shows that most exotic 

phenomena arise around the resonant frequencies of the metamaterial, at which the 

wavelength is not sufficiently larger than the unit cell, and weak spatial dispersion effects 

are induced creating this anomalous magneto-electric coupling. 
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Figure 5.3 Equivalent parameters (solid lines) derived from the effective parameters in 

Fig. 5.2, and retrieved parameters (dotted-lines) based on NRW retrieval method for a 

metamaterial slab, which is composed of six layers in the propagating direction. 

For example, in Fig. 5.1, we show that the pattern of eigen-modal induced electric 

currents may circulate in magnetodielectric spheres at higher frequencies (Point B and 

C). The circulating current may support strong artificial magnetic effects, causing the 

interaction between electric and magnetic fields. Therefore, in order to characterize 

metamaterials with exotic properties, we need to consider possible magneto-electric 

coupling in the structure. In other words, the nonphysical features in the equivalent 
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parameters and NRW retrieval results are associated with neglecting these aspects in 

modeling the arrays. 

5.3.1.2 Homogenized parameters for wave propagation in oblique directions 

After discussing the propagation along the lattice axes, we study two cases of eigenmodal 

oblique propagation , along    , 45 ,90      and    , 30 ,30      for the same 

metamaterial array. Figure 5.4 shows the dispersion of the first three eigen-modes for 

these two cases in the region of 0 1.0k d  . Quite surprisingly, we obtain here split 

dispersion curves in each branch, despite the strong isotropy of the array. By checking the 

eigenvectors corresponding to each dispersion curve, we are able to categorize them as 

TE and TM modes, respectively. In the insets of Fig. 5.4, we show the calculated 

eigenmodal patterns of magnetic and electric fields in the symmetry plane obtained from 

the CST numerical eigensolver at 1.25d   for each TE and TM modes. In the 

presented figures, it is obvious that the dispersion curves determined from our 

homogenization model and full-wave simulations nicely match, and the minor 

discrepancies are mainly due to the fundamental assumption of dipole approximation in 

our theory. Like the previous example, we only consider first-order Mie coefficients in 

the electric and magnetic polarizabilities, and ignore all other higher-order scattering 

terms in each unit cell. 
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Figure 5.4 Calculated dispersion curves for the magnetodielectric sphere array considered 

in the previous figures for oblique propagation along (a)-(c)    , 45 ,90      and (d)-

(f)    , 30 ,30     . The field contours represent the patterns of TE and TM 

eigenmodes at 1.25d   in each panel, and the bold arrows denote the direction of 

phase velocity. 



 145 

By observing the eigenmode patterns, it is evident that the first two modes (Fig. 

5.4b and c) are operating in the long-wavelength limit, dominated by dipolar oscillations, 

but correspond to opposite propagation directions, which are indicated by the bold arrows 

in the panel. The third group (Fig. 5.4a) is associated with a higher mode and also 

supports negative phase velocity, as predicted by the negative slope in the dispersion 

curves. It is also interesting to note that in the second modes (panel b), both TM and TE 

dispersion curves do not experience monotonic variation versus dβ , showing a 

minimum at 2.2d β  and 2.5d β , respectively. This implies the presence of 

spatial dispersion, allowing multiple eigenvectors with same polarization at the same 

eigen-frequency 0k d , a situation that is not admissible in a conventional local 

continuum. This also implies that simplistic homogenization techniques assuming local 

parameters are not truly applicable to describe this metamaterial for oblique propagation, 

as for larger dβ . We may obtain two different sets of parameters for the same 

frequency [29].  

In Fig. 5.4d-f we show the dispersion curves for propagation direction 

   , 30 ,30     . The results are similar to the previous case, confirming the quasi-

isotropic properties of this array. Interestingly, the non-monotonic behavior here arises 

only for the second TM mode, implying that the level of non-locality becomes weaker for 

this direction of propagation. Based on these results, we can confirm that our 

homogenization model can accurately predict eigenmodes and dispersion relations of 

metamaterial arrays, and it can be efficiently applied also to complex values of dβ  

arising when materials have losses, gain and frequency dispersion, which are common in 

realistic metamaterials. This is not true, however, for conventional commercial eigen-

solvers. It is interesting to realize how such simple metamaterial array, with quasi-



 146 

isotropic properties, may support quite complex wave propagation, not at all captured by 

conventional homogenization schemes. 

To complete the study of homogenization for oblique propagation, we substitute 

the dispersion results of Fig. 5.4a-c into the generalized interaction dyads in Eqs. (5.19)-

(5.22) to determine the effective parameters in Eqs. (5.29)-(5.32). Figure 5.5 presents 

the four effective parameters in tensor form for the metamaterials under TE propagation 

towards    , 45 ,90     . Also in this case, we only show the nonzero entries. As 

expected, in this oblique case we can obtain also off-diagonal terms in the xy- and yx-

plane of the permittivity and permeability tensors. These two terms are identical to each 

other due to symmetry and reciprocity. Interestingly, we also find that all the diagonal 

terms in 
effε  and 

effμ  obey Kramers-Kronig relations and their slope is positive for the 

first mode. At very low frequencies, the lattice is highly isotropic and the off-diagonal or 

anisotropic terms are very small. Unlike the diagonal entries, these off-diagonal terms 

may experience negative slopes near the resonances for oblique propagation, indicating 

that the level of spatial dispersion in this scenario is stronger and cannot be fully taken 

into account by simply the magnetoelectric coefficient. It is worth noting that in this 

oblique configuration only the zz  and zz  components are truly transverse 

constitutive parameters, since the fields establish a longitudinal component in the x- and 

y-direction. Generally, the permittivity and permeability tensors nicely follow the 

reciprocity conditions 
†

eff effε ε  and 
†

eff effμ μ  [61], as expected.  
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Figure 5.5 Dyadic effective parameters for TE eigen-modes in the same metamaterials as 

in the previous figures for oblique propagation    , 45 ,90     . 

The results for higher-order TE modes are more complex and spatial dispersion 

becomes important. For the second mode, the dispersion curves are two-valued around 

2.5d β , and this implies that these homogenized parameters lose much of their 

conventional meaning, since there are two different values of effective parameters 

corresponding to the same frequency. Additional boundary conditions are required in this 

regime to properly solve a scattering problem involving these homogenized parameters, 

as multiple modes with the same polarization may be supported by the array [68]. 
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Importantly, we find that the regime with dispersion with negative slopes presents double 

negative values of zz  and zz , which corresponds to a negative phase velocity as 

predicted in full-wave simulations.  

The results for the bianisotropic dyads effξ  and effζ  governing the magneto-

electric interactions are also very interesting. Similar to propagation along the axis, the 

diagonal terms are all zeros, and the tensors are again not satisfying the reciprocity 

relations (5.42). It is interesting to note that these bianisotropic dyads are significant at 

frequencies near the lattice resonance, and can be neglected for small dβ . These 

effective parameters still follow the relations in Eq. (5.43).  

Overall our results show that the proposed homogenization model may efficiently 

characterize the bulk behavior of metamaterials and capture the complex physics hidden 

in simple metamaterial arrays. It is apparent that the homogenized parameters obtained 

for normal and oblique propagation are not identical, even after applying appropriate 

linear transformations of the tensors. This implies that there is an inherent form of 

anisotropy even in very regular arrays, and spatial dispersion effects may become 

important even for long wavelengths. These exotic effects are mainly contributed by the 

inclusion or lattice resonances, and near these frequencies a careful analysis should be 

conducted to understand up to what degree the metamaterial can be described with quasi-

local parameters. It is important to notice that these resonances can be quite sensitive to 

the wave propagation direction, because slight changes in the field polarization can 

change the coupling between neighboring, almost touching spheres. This explains why 

the homogenized parameters for normal and oblique incident cases can be different to 

some extent, and we predict that less dense arrays would be less problematic. 

We can also calculate the equivalent parameters of the array by considering the 

expressions (5.38) and (5.39). Figure 5.6 shows the dispersion of equivalent 
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permittivity and permeability for the first and third TE modes (second modes are not 

considered here, due to the strong spatial dispersion highlighted in the previous figure). 

For long wavelengths, when the inclusions and arrays operate far away from their 

resonance, the bianisotropic dyads effξ  and effζ  can be neglected, and the parameters 

effε  and eqε   ( effμ  and eqμ ) are consistent to each other. Also anisotropic effects are 

very weak in this regime, as expected. For larger frequencies, the curves of permittivity 

zz  and permeability xx  (
yy ) experience negative slopes versus 0k d  due to the 

non-local effects stemming from the inherent magneto-electric interactions.  

 

Figure 5.6 Dyadic equivalent parameters for TE modes in a metamaterial composed of 

magnetodielectric spheres for oblique propagation    , 45 ,90     .   

This is consistent with the previous case for propagation along the axis, in which 

we were able to compare the equivalent curves with NRW retrieval results and draw a 
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comparison to highlight the issues associated with weak spatial dispersion captured by 

the effective magneto-electric dyads. 

5.3.2 Homogenization of metamaterials composed of SRR pairs 

In this section, we extend our discussion to 3-D metamaterials composed of complex 

inclusions with strong anisotropic and bianisotropic effects at the unit cell level. Here, we 

consider SRR inclusions arranged in anti-symmetric and symmetric pairs. We use the 

same geometry discussed in Chapter 2, and therefore we can directly apply the 

determined polarizability tensors in Figs. 2.8 and 2.9 in the following results. Based on 

the retrieved polarizability tensors, we can apply the eigenmodal analysis and 

homogenization theory described in this chapter to determine the dispersion curves and 

dyadic effective parameters. It is important to note that, when substituting the 

polarizability tensors into the eigenmodal analysis, we should carefully identify the 

arrangement of inclusions and correctly assign proper coordinate systems to the inclusion 

and array, respectively. In Fig. 5.7, we present the dispersion curves for 3-D arrays of 

anti-symmetric and symmetric SRR pairs, and we also compare them to the results 

obtained from CST eigensolver. The inset coordinates shown in Fig 5.7 are the 

coordinate systems for these arrays, which are different from the coordinates used for 

isolated inclusions in Chapter 2. In Fig 5.7a and b, the wave propagating direction is set 

along the z-axis and in the oblique direction  30 , 30     , respectively. It is evident 

that the calculated dispersion curves nicely match our numerical simulations and these 

results again validate our polarizability retrieval method and generalized eigenmodal 

analysis. 
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Figure 5.7 Dispersion curves for (a) anti-symmetric and (c) symmetric SRR pairs for 

propagation along the axis, and (b) anti-symmetric SRR pairs for oblique propagation. 

We compare our analytical results (solid lines) with full-wave simulation obtained from 

the CST eigensolver (dots). 

(a)

(b)

(c)
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For the anti-symmetric pair, only positive slopes are obtained because the 

bianisotropic effects are cancelled out by the anti-symmetric arrangement [11]. The 

dispersion behavior is similar to the one of a pair of small conducting rings without 

chirality. At the resonance, only a simple magnetic response is obtained, producing a 

bandgap. On the other hand, the symmetric case appears more interesting. For the first 

mode in Fig. 5.7b, the dispersion curve performs a typical asymptotic variation, 

suggesting the presence of a slow-wave mode. The second branch shows a slightly 

negative slope, stemming from the induced magneto-electric coupling in the SRRs. 

Although the branch with negative slope is narrowband, our analytical model can 

precisely capture this behavior. Again, it is worth noting that the analytical eigenmodal 

analysis is much more efficient than the numerical approach, and it can be applied to 

lossy or active inclusions with strong frequency dispersion.  

From the calculated polarizability tensors and dispersion curves, we can further 

determine the dyadic effective parameters of these two 3-D metamaterials. As shown in 

Figs. 5.8 and 5.9, we present the non-zero terms in the effective parameters calculated 

using homogenization theory in Eqs. (5.29)-(5.32). Generally, both schemes of SRR 

array show bianisotropic effects. However, the effects sustained on two arrangements are 

very different. Notice that the permeability curves stop at zero and do not continue in the 

region where negative permeability is expected. This is because we are applying our 

homogenization technique to only real   , while in this configuration the negative-

permeability region falls in a bandgap in which   is purely imaginary. A conventional 

eigen-solver completely misses this range of frequencies, but our analytical formulas can 

easily calculate also the rest of this branch. 
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Figure 5.8 Effective parameters for anti-symmetric SRR pairs. Only the significant 

entries of the tensors are shown. 

In Fig. 5.8, the bianisotropic parameters are produced only by the coupling effects 

in the array because bianisotropic effects of the isolated inclusion are cancelled, 

consistent with the results in Chapter 2. Due to symmetry, both permittivity and 

permeability tensors are diagonal and yy  and zz  are much larger than xx  for the 

geometry of the ring. In contrast, xx  dominates the permeability tensor as expected, 

and xy and yx elements are the only non-zero terms in effξ  and effζ  tensors. As 

expected, the results for effξ  and effζ  tensors do not satisfy the reciprocity relations in 

Eq. (5.42), since they are dominated by the lattice effects. 

In contrast, the symmetric SRR pairs show more sophisticated results (Fig. 5.9) 

due to the existence of bianisotropic effects at the inclusion level. The overall 



 154 

bianisotropic tensors are affected by both magneto-electric interaction at the lattice level 

and intrinsic bianisotropic effects at the unit cell level, producing both odd and even 

contributions to the bianisotropic coefficients. Another striking difference with respect to 

anti-symmetric SRRs consists in the electric resonance at the gap of the ring, consistent 

with our results in Chapter 2, which results in a Lorentzian resonance in yy . Once again, 

we miss in these plots the negative branch of the Lorentzian curve because the negative 

permittivity region falls in a bandgap for eigen-modes. 

 

 

Figure 5.9 Effective parameters for metamaterials composed of symmetric SRR pairs. 

Only major entries in tensors are shown. 

To the best of our knowledge, these are the first complete set of homogenized 

results for 3-D metamaterials composed of SRR pairs, highlighting the challenges 
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involved in properly modeling their electromagnetic response. Based on our 

homogenization theory, we are able to determine the effective full-tensor for these 3-D 

metamaterials, and we can apply similar procedures to complex metamaterial arrays at 

microwaves and optical frequencies. 

5.4 GENERALIZED RETRIEVAL METHOD BASED ON HOMOGENIZATION THEORY 

In this section, we generalize the conventional Nicolson-Ross-Weir (NRW) retrieval 

method [17-18,66-67] to take into account the important results derived in the previous 

section, with the goal of deriving a generalized retrieval method that can provide 

physically meaningful metamaterial parameters. In conventional retrieval methods, we 

usually apply different excitations (i.e., plane waves) to examine the macroscopic 

properties of finite-sized metamaterials by calculating or measuring the transmission and 

reflection spectra. By manipulating these coefficients, we are able to retrieve the 

equivalent bulk parameters of the presumed homogeneous object that is macroscopically 

equal to the given metamaterials sample. This retrieval method is very popular in modern 

metamaterials because it is based on the scattering coefficients, which can be efficiently 

obtained from both experimental measurements and full-wave simulations.  

However, this approach contains several drawbacks due to its simple assumptions 

for the metamaterials. Many homogenized parameters obtained from the NRW retrieval 

method have been reported to violate causality or material passivity [43]. In addition, 

when the metamaterial samples are thicker than the wavelength of operation, it is 

ambiguous to determine the correct branches for propagation constant inside the 

homogeneous bulk [66]. Moreover, the noise in simulations and measurements also lead 

to unreliable results, especially when metamaterials are operating near the Fabry-Perot 

resonance frequencies [69]. In the vicinity of these frequencies, the retrieval model is 



 156 

very vulnerable to numerical or measurement errors. Even a small amount of noise may 

give rise to significant nonphysical artifacts and cause obviously incorrect retrieved 

parameters.  

In this section, we develop a generalized retrieval method (GRM) based on our 

homogenization theory to evaluate physically meaningful effective parameters given the 

scattering properties of a metamaterial sample. The proposed method is divided in two 

steps: we first employ an improved version of the conventional NRW retrieval to 

determine equivalent constitutive parameters, as defined in Eqs. (5.38) and (5.39), with 

the same limitations as described above. Secondly, we apply the FPHT results to restore 

the physical meaning of these parameters and derive the effective constitutive parameters 

of the metamaterial, properly taking into account weak forms of spatial dispersion 

neglected in conventional NRW retrieval approaches [66]. The proposed GRM not only 

determines physically meaningful bulk parameters for a broad class of metamaterial 

geometries, but also returns, as a byproduct, the polarizabilities of each unit cell, which 

capture the scattering characteristics of the elementary inclusions composing the array. 

After formulating the GRM, we apply it to a representative example, a 

metamaterial composed of subwavelength magnetodielectric spheres, and we compare 

the conventional NRW approach with this method to discuss physical insights and 

highlight its advantages. We demonstrate that the GRM returns effective constitutive 

parameters that satisfy the expected causality relations, in contrast with conventional 

retrieval approaches, and we also show its inherent robustness to measurement errors, 

associated with the physical foundations of its formulation. In addition to the physical 

insights presented in the following, from the engineering point of view this technique 

becomes a valuable tool to derive meaningful homogenized parameters with local 
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properties, which can therefore be applied to different metamaterial shapes and forms of 

excitation. 

5.4.1 Formulations of generalized retrieval method 

We formulate the GRM for a general periodic metamaterial array composed of 

subwavelength inclusions in an orthorhombic lattice. Extension to different lattice 

configurations would be straightforward, but it is not an objective of this paper. Provided 

that the subwavelength inclusions are not too closely packed, their scattering properties 

and collective interaction can be described by the dipolar polarizabilities 
ee  and 

mm  

(magnetic), which are assumed scalar here to keep the formulation simpler. For the sake 

of simplicity, and to better highlight the merits of the proposed retrieval method 

compared to conventional techniques, we also assume absence of magneto-electric 

coupling within the inclusions, i.e., 0em me   . We may simplify the bianisotropic 

Tellegen constitutive relations in Eqs. (5.27) and (5.28) into a bi-isotropic version 

homogenization theory, which are [39] 
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where the subscript av denotes the spatially averaged field within a unit cell [73], β̂  is 

the propagation unit vector in the metamaterial, and the local effective parameters are 

written as  
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Here we use the scalar interaction coefficients simplied from Eqs. (5.11) and 

(5.12) 
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describing the co- and cross-polarization coupling of electric and magnetic dipole 

moments in each unit cells based on Green’s functions eeG  and emG . In order to 

efficiently calculate the infinite summations involved in these interaction coefficients, 

fast algorithms are required [20, 70]. It is important to note that the constitutive relations 

(5.44) are written in the general Tellegen (or bianisotropic) form, which implies a form 

of magneto-electric coupling relating 
avD  to 

avH  and 
avB  to 

avE , even in the present 

case for which the inclusions in the lattice are center-symmetric. This is due to the 

presence of the bianisotropy parameter o

eff . As discussed in previous works [71,75], this 

inherent form of bianisotropy, especially relevant near the inclusion or lattice resonances, 

is produced by weak nonlocal effects arising even in the long wavelength limit when the 

granularity of the array is not negligible compared to 1/  . By properly taking into 

account these effects, it is possible to restore local and physically meaningful effective 

parameters [71] in the long-wavelength regime. 

It should be stressed that the homogenized description in Eq. (5.44) is valid for 

arbitrary excitation of the structure and not only in its eigen-modal operation, as proven 

in Ref. 71. This property is very appealing for practical applications, as it allows using 
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these parameters independent on the form and type of excitation of the metamaterial 

sample. In the general case, the constitutive parameters (5.45)-(5.47) are functions of the 

independent variables   and 
0k . However, in the special case in which no sources are 

impressed inside the metamaterial, the values of   and 
0k  are inherently related to 

each other through the eigen-modal dispersion relation, which also forces a relation 

between the averaged electric and magnetic fields and allows rewriting Eq. (5.44) in the 

more common form 

av eq av

av eq av









D E

B H
,     (5.50) 

with these vectors satisfying the usual macroscopic form of Maxwell’s equations. 

Similarly, there is a direct relationship between the effective parameters used in (5.44) 

and the equivalent parameters in Eq. (5.50), which are scalar version of Eqs. (5.40) and 

(5.41) [39]: 
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Both constitutive models are valid in the absence of embedded sources if the goal is 

simply to describe the array propagation and bulk scattering properties of the 

metamaterial, and this explains the success of the conventional NRW approach, which is 

essentially based on the equivalent description, to describe and tailor the scattering of 

metamaterials. However, we need to keep in mind that this equivalent description is 

inherently nonlocal even in the long-wavelength limit, and therefore should not be 
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expected to follow the usual requirements and properties on local permittivity and 

permeability, nor even share their commonly accepted meaning. In our previous works 

[71,75], we indeed proved that this is the reason behind the common violation of 

Kramers-Kronig and causality relations associated with the equivalent constitutive 

parameters, which implicitly hide the weak spatial dispersion effects captured in o

eff  

and are valid only for eigen-modal propagation. 

As mentioned, since the constitutive model (5.50) is the same as the one 

conventionally assumed in NRW retrieval procedures, the equivalent parameters in Eqs. 

(5.51)-(5.52) are consistent with the parameters 
NRW  and 

NRW  that we would extract 

by using this standard retrieval method [71,75], and they obviously share the same 

limitations. Small differences between the analytical formulas in (5.51)-(5.52) and the 

parameters retrieved from a scattering measurement may be expected, due to the dipolar 

assumptions used in Eqs (5.45)-(5.47). These differences will be more significant for 

dense arrays, for which higher-order multipolar scattering plays a more important role. 

In the following, we are interested in improving the retrieval procedure to take 

into account these concepts and propose a way to extract the more physically meaningful 

effective parameters in Eqs. (5.45)-(5.47). We concentrate on the eigen-modal scenario 

in which sources are not embedded in the metamaterial sample, which is the more 

common case and allows a direct comparison with conventional NRW retrieval. In this 

case, the metamaterial secondary parameters, i.e., the characteristic impedance   and 

the wave number  , fully characterize the metamaterial bulk response in the limit in 

which only one eigenmode is supported at the given frequency of excitation. These 

parameters are related to the three sets of constitutive parameters defined above through 

the following relations: 
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where the nearly-equal sign indicates the potential difference between NRW and 

equivalent parameters due to the influence of higher-order multipoles. A conventional 

retrieval procedure would first derive   and   from the scattering measurements 

(usually the reflection R  and transmission T  from a planar slab) and then obtain the 

NRW parameters by inverting Eqs. (5.53)-(5.54). It is not possible, however, to 

determine the effective parameters using just Eqs. (5.53)-(5.54), since   and   do not 

univocally determine them. This is related to the fact, discussed in more details in Ref. 

39, that o

eff  is essentially a measure of the spatial dispersion stemming from the fact 

that d  is not infinitesimally small, and therefore the wave feels the lattice granularity 

as it propagates across each unit cell. For this reason, different combinations of effective 

parameters can produce the same values of   and  , as a function of d . In order to 

accurately capture these weak spatial dispersion effects, it is not sufficient to just measure 

R  and T , but we also need to know the average array period d of the array under 

analysis. With the knowledge of this geometry parameter, which is easily obtainable for a 

given metamaterial, we may invert the system formed by the combination of Eqs. (5.45)-

(5.47) and (5.53)-(5.54) to retrieve the effective constitutive parameters of the 

metamaterial under analysis. 

In practice, we have a set of five independent relations that may be solved for the 

five complex unknowns eff , eff , o

eff , 
e  and 

m . This implies that the proposed 

GRM does not only provide the effective parameters, but it also returns the averaged 
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polarizability of each unit cell as a byproduct. Although it is not possible to analytically 

invert the system due to the complex dependence of the coupling parameters intC  and 

emC  on  , we may use an optimized numerical procedure or root-finding method to 

solve for the unknowns. In the following section, we apply this method to a specific 

metamaterial sample and outline its advantages compared to the conventional retrieval 

approach. 

5.4.2 Effective parameters extracted from generalized retrieval method 

Here, we apply the developed GRM to extract the effective local parameters and draw 

comparison to the NRW retrieval results to address the inherent spatial dispersion effect 

in metamaterials. We consider a three-dimensional simple cubic array (with period d) 

composed of magnetodielectric spheres (with radius a) in free space. In order to achieve 

strong induced currents on the inclusions and field couplings in the lattice for weak 

spatial dispersive, we use the dense permittivity and permeability values 013.8r   and 

011.0r 
 
for the inclusions and tight arrangement for the sphere arrays with 

0.45a d  .  

As discussed in the previous section, we can first apply a conventional NRW 

retrieval procedure to determine the secondary parameters of the array and the associated 

equivalent constitutive model -(5.52). We use CST Microwave Studio to numerically 

compute the reflection and transmission coefficients of a finite-thickness slab composed 

of 6 layers of unit cells in the propagation direction. The impedance and wave numbers 

may be easily retrieved from R  and T  using the following equations, as a function of 

the transverse-electric (TE) or transverse-magnetic (TM) polarization and incidence angle 

i   



 163 

 

 

 

22 2

2 2

0 2 2

2 2

1 cos

cos1TE :

1
cos cos

2

t

i

t

R T

R T

R T
d

T


 



 

    
   
    

  




,      (5.55) 

 

 

 

 

22 2

2 2

0 2 2

2 2

1 cos

cos1TM :

1
cos cos

2

t

i

t

R T

R T

R T
d

T


 



 

    
   
    

  




. (5.56) 

In these formulas, the refraction angle 
t  depends on the incident angle as

0sin sint ik   .  

Figure 5.10 shows the conventionally retrieved parameters for normal incidence 

and for 45-degree TE incidence. In these calculations, we have used an improved 

procedure, as described in Ref. 69, to suppress numerical artifacts inherently arising near 

the Fabry-Perot resonances of the slab. It is evident that the retrieved parameters show 

quite remarkable differences for different incidence angles. These discrepancies become 

especially important near the bandgap region marked by a yellow shadow in the figure, 

and are an indication of spatial dispersion in the array. Right past this bandgap region, the 

metamaterial supports a double-negative operation, in which both equivalent permittivity 

and permeability are negative, and in this region the relevant differences between the 

retrieved parameters are also evident for different incidence angles. 
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Figure 5.10 Equivalent parameters obtained from an improved NRW retrieval consistent 

with Ref. 69 for normal incidence (solid lines) and 45-degree TE incidence (dashed 

lines). 

The retrieved parameters, as expected, are purely real within the propagation 

region due to the absence of losses, but they have a negative slope versus frequency 

around the bandgap region that violates the dispersion expected from Kramers-Kronig 

relations. This is consistent with the common violation of Kramers-Kronig relations of 

the retrieved metamaterial parameters, and it is also another indication of the spatial 

dispersion and nonlocality effects outlined in the previous section. When the 

metamaterial operates near the inclusion resonance, especially in the negative-index 

regime, the magneto-electric coupling associated with the finite granularity of the array 

and taken into account by o

eff  cannot be captured by the simple constitutive model 

assumed in this conventional NRW approach. The phase variation across each unit cell 

cannot be ignored, as implicitly assumed in a simple retrieval procedure, and this is the 

root of the reason why the extracted parameters do not retain the conventional meaning of 
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local permittivity and permeability. These retrieved parameters, not considering the finite 

phase velocity within each unit cell, can strongly vary for different incidence angles and 

violate basic causality conditions. 

 

Figure 5.11 Effective parameters calculated using the analytical homogenization theory 

(thin-black line) and the proposed GRM for different incidence angles and polarizations. 
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We then apply the inversion procedure discussed in the previous section, solving 

the set of equations (5.45)-(5.47) and (5.53)-(5.54), with input R , T  and the 

additional information on the array period d , which we assume to know. Figure 5.11 

shows the retrieved effective parameters eff , eff , o

eff , with blue, green and red lines, 

referring to the results for normal incidence, 45-degree TE and TM incidence, 

respectively. The thin-black lines, reported for comparison, are the analytical results 

calculated using (5.45)-(5.47) and the Mie polarizability expressions for the isolated 

spheres, as reported in Ref. 75. 

Interestingly, all the curves in Figs. 5.11a and b possess Lorentzian frequency 

dispersion, and they do not show negative slopes within the propagation region. The 

differences between retrieved results for different excitation angles become much 

smaller, and the residual discrepancy is simply associated with the large array density, 

which makes the coupling between neighboring spheres dependent on the field 

polarization, introducing some small form of anisotropy. 

The retrieved curves of permittivity and permeability, consistent with the 

analytical ones, are remarkably different from the NRW retrieval. Each of them shows 

two distinct Lorentzian resonances, associated with the electric and magnetic resonance 

of the spheres, which affect both the electric and magnetic bulk response of the array, due 

to the properly captured magneto-electric coupling in the lattice. These effects are 

completely overlooked in the conventional retrieval results shown in Fig. 5.10. 

It is possible to see a small frequency shift between retrieved curves and the 

analytical results. The obvious reason behind this shift lies in the dipolar approximations 

used in the direct homogenization model, in which we only take into account the dipolar 

coupling among neighboring inclusions. It is obvious that a full retrieval approach is able 

to capture the correct coupling among inclusions with much better accuracy, including 
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higher-order multipolar interactions, and essentially provides a corrected polarizability 

response that includes near-field effects. These differences would be less important for 

arrays with smaller filling ratios and with weaker near-field coupling among neighboring 

inclusions, for which the retrieved parameters would converge more closely to the 

analytical curves. It is quite remarkable how the proposed GRM may essentially provide 

even more accurate results than our analytical derivation, going beyond the dipolar 

approximation used in Ref. 39. 

Figure 5.11c shows the retrieved o

eff , which highlights the relevance of the 

magneto-electric coupling near the bandgap and in the negative-index region. This 

quantity is completely neglected in conventional retrieval procedures, but is evidently 

responsible for the deviations from a Lorentzian, causal dispersion of the equivalent 

permittivity and permeability in Fig. 5.10. Away from the inclusion resonance frequency 

where the array performs more as a mixture, these effects are negligible, i.e. 0o

eff , 

and the results converge to a conventional retrieval. 

As outlined above, the GRM also returns, as a byproduct of the inversion 

procedure, the electric and magnetic polarizabilities of the inclusions. Figure 5.12 shows 

the retrieved values, compared with the analytically calculated Mie polarizability 

coefficients for the spheres considered in this example. It is seen how all the retrieved 

curves are perfectly Lorentzian in shape, satisfy causality, passivity and the radiation 

condition [76]. Consistent with the previous results, the resonance frequency of our 

retrieved polarizabilities is slightly red shifted compared to the analytical Mie 

polarizability, due to the near-field coupling between neighboring spheres. It is 

interesting that even in the retrieved curves different field polarizations predict slightly 

shifted inclusion resonances, due to the modification of near-field coupling. These effects 

disappear for less close spheres. 
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Figure 5.12 Electric and magnetic polarizability obtained from analytical Mie coefficient, 

generalized retrieval method, and Clausius-Mossotti model. 

It is striking to compare these retrieved polarizability curves not only with the 

expected analytical results for the sphere polarizability as in Fig. 5.12, but also with the 

values we would get using a more conventional Clausius-Mossotti model [76] that 

neglects the magneto-electric coupling. We obtain these equivalent polarizabilities of the 

array by assuming again to know d  and inverting the equations 
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obtained from Eqs. (5.45)-(5.46) after neglecting the magneto-electric interaction emC . 

These are shown in the insets of Fig. 5.12, highlighting the nonphysical, non-Lorentzian 

frequency dispersion that is implicitly assumed in the inclusions when we adopt a more 

conventional retrieval approach. As we get closer to the metamaterial resonance, and over 

a quite broad range of frequencies, it is obvious that a simplistic constitutive model that 

neglects the magneto-electric coupling stemming from the lattice granularity would 

completely fail to describe the inclusions as causal and passive particles and cannot be 

considered a physically meaningful description of the array. Our retrieval procedure, on 

the contrary, returns physically meaningful bulk material parameters and the 

polarizability of the inclusions composing the array under analysis, correctly capturing 

these hidden magneto-electric effects. 

Finally, it is important to test how sensitive our method is to the knowledge of the 

array period. In practical configurations, in fact, the array may not be ideally periodic, 

and/or the information on the average distance among the inclusions may not be known 

in precise terms. For this reason, in Fig. 5.13, we show the retrieved parameters obtained 

after running our retrieval algorithm for different period values 
rd  within a 5%  

variation from the correct value. We stress that in calculating these results we are keeping 

the scattering parameters R  and T  fixed, based on the numerical results used in the 

previous calculations, and we assume the same total thickness of the sample to extract the 

secondary parameters. As evident in the figure, our results are very stable after changing 

this input parameter. The Lorentzian nature of the curves is nicely preserved, as it is 

fundamentally at the basis of the physical mechanisms considered in the homogenization 

theory. Slight differences are noticed, as expected, only near the bandgap, where o

eff  is 

more relevant. For larger values of 
rd  the effective parameters get slightly smaller in 

this region and the Lorentzian resonance shifts to slightly larger frequencies. 
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Figure 5.13 Effective parameters obtained by the GRM with different values of lattice 

period based on the same set of scattering coefficients.  

5.5 APPLICATIONS OF 3-D METAMATERIAL HOMOGENIZATION TO REALISTIC DEVICES 

5.5.1 Double-negative metamaterial prisms and slabs 

Based on the effective and equivalent parameters determined in the previous section, we 

focus on two specific frequencies of interest: 0 0.524k d   and 0 0.733k d  . From the 

results in Fig. 5.3, the first frequency corresponds to a region with a positive index of 

refraction and equivalent permittivity and permeability 03.202   and 03.184  , 

respectively. At the second frequency, negative index of refraction is expected and the 

equivalent parameters are simultaneously negative: 02.366    and 01.471   .  

We show in Fig. 5.14 the full-wave simulations of two large 2-D metamaterial 

prisms (infinite numbers of period in y-direction), with total width 0 41.050k W  , 

maximum thickness 0 11k T   and angle at the basis of 15 , realized using the 

metamaterial geometry of Fig. 5.1, at the two frequencies of interest here. We excite the 

prism with a TEz
 polarized Gaussian beam with large waist (exciting most part of the 

prism) and we verify that indeed the beam refraction is oppositely oriented in the two 
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cases (Fig. 5.14a and c). In the figure, we compare the full-wave simulations of the 

nanosphere array with its homogenized model (Fig. 5.14b and d), using the equivalent 

parameters specified above, extracted from Fig. 5.3. It is seen that the near-field 

distributions and the refraction angles are accurately reproduced by the homogenized 

model in both circumstances, despite some minor truncation differences due to the 

granularity of the metamaterial array. The negative-index simulations show a slightly less 

accurate prediction of the refraction angle, as expected due to the higher frequency (or 

shorter wavelength) of operation, which makes these truncation effects slightly more 

relevant. The overall homogenization results are remarkably close to the full-wave 

simulations of the complex array, despite the complexity of its wave interaction. In 

particular, the homogenized model not only correctly predicts a negative refraction angle, 

but also the backward propagation inside the finite metamaterial prism at this higher-

frequency band, despite the fact that multiple reflections between the prism interfaces 

induce a spectrum of propagation directions in the metamaterial.  

 

Figures 5.15 show the simulations of a planar metamaterial slab with width 

0 30.055k W   and thickness 0 11.729k T   and its homogenized model, excited at the 

negative-index frequency 0 0.733k d   by a Gaussian beam with small waist. This 

excitation is effectively composed by a wide angular spectrum, hitting the slab at an 

oblique angle, as shown in the figures. Indeed, both simulations agree in predicting a 

negative shift of the impinging beam and a backward propagation inside the slab. The 

same geometry and form of excitation are used in Fig. 5.15c and d for the frequency 

0 0.796k d  , which corresponds to the equivalent parameters 00.0014   and 

00.187  . In this scenario, the metamaterial operates in another exotic frequency 

region, at its zero-index operation, of interest in a variety of radiation applications [76, 
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77]. At this frequency, the effective metamaterial impedance 011.55eff   is very 

large, and most of the impinging energy is reflected at the first slab interface, as expected. 

Nevertheless, the portion of wave that gets transmitted propagates, as expected, with 

near-infinite phase velocity within the slab, producing uniform radiated beams at the slab 

output.  

5.5.2 Superlens metamaterials 

In Fig. 5.16a, we show the electric field distribution (snapshot in time) of a finite 

superlens planar slab based on metamaterial structures studied in Fig. 5.1 with thickness 

0 00.834h   and transverse width 0 03.1w   at the normalized frequency 0 0.749k d  . 

We excite the array with an electric line source (which is denoted by • in the figure), 

orthogonal to the plane of the figure and placed at distance 0 2h  underneath the slab.  

Our numerical simulations clearly confirm the focusing properties of the array, 

also in this finite configuration. The electric field distribution, snapshot in time, is nicely 

symmetric below and above the metamaterial array, as expected from the focusing 

properties of a planar metamaterial with 1eqn  . In Fig. 5.16b we compare these results 

with the electric field distribution obtained with an ideal homogeneous metamaterial slab 

with equivalent permittivity 01.116    and permeability 00.902   , as obtained 

in Fig. 5.3 by our homogenization model, confirming a similar field distribution, not only 

around the slab, but even inside the array with a localized focus in the center of the lens. 

Small differences arise due to the granularity and slight anisotropy of the metamaterial, in 

particular at the lens edges.  
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Figure 5.14 Near-field electric field distribution (time snapshot) for a 2-D metamaterial 

prism excited by a Gaussian beam at the two frequencies 0 0.524k d   (a, b), with 

positive index of refraction, and 0 0.733k d   (c, d), with negative index. Comparison 

between: (a, c) the nanosphere array, consistent with the design of Fig. 5.1, and (b, d) its 

homogenized model, using the equivalent parameters shown in Fig. 5.3. 

Figure 5.16c shows the normalized distribution of 
2

E  on the image plane, 

placed at distance / 2h  above the lens, for both scenarios, compared with the one at the 

source plane and with the one obtained if the lens is removed. There is no doubt that the 

metamaterial array produces significant focusing in the image plane, but the resolution is 

only slightly below the diffraction limit. Even in the homogeneous model the focus is not 

perfect due to the finite size of the lens, but the array granularity in metamaterials 

additionally affects the final resolution properties. Wider lenses would in both scenarios 

improve the resolution, but an inherent limit in the ultimate achievable resolution is 

dictated by the metamaterial granularity and its isotropy properties. 
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Figure 5.15 A planar slab with (a, b) negative-index and (c, d) near-zero-index properties, 

excited at oblique incidence by a small-waist Gaussian beam. The simulations refer to the 

electric field distribution (snapshot in time), and panels (a, c) compare the finite 

metamaterial array with its homogenized model (b, d). 

5.5.2 Metamaterials as concave lens metamaterials 

In Fig. 5.17 we show the field distribution generated by a line source placed at the focus 

of a parabolic plano-concave lens, which has focal length 175 mm or 5d [79]. In Fig. 

5.17a the lens is made of a positive index of refraction 2.250n   and, as expected, the 

radiated beam diffracts in the outward direction. If we choose a negative index of 

refraction 2.522n    for the metamaterial lens, however, we can reverse the diffraction 
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and produce a highly directive beam in the far field, as shown in Fig. 5.15b, consistent 

with simple ray optics. In Fig. 5.17c we have moved the excitation line source by a 

distance 00.3  and, as expected from the inverted Snell’s law, the radiated beam is 

considerably tilted in the far-field. This implies that small distances around the focal 

point of the parabolic inner surface of the lens may be magnified in its far field, which 

may possibly represent a viable way to far-field sub-resolution imaging using negative-

index metamaterials. 

 

Figure 5.16 (a) Electric field distribution (snapshot in time) for a finite planar lens made 

of the metamaterial array, excited by a line source at 0 0.749k d  , (b) Analogous 

distribution for the homogenized model, as from Fig. 1, using 01.116    ,  

00.902   . The source and image are indicated by • and × in figures, respectively, (c) 

Normalized distribution of 
2

E  at the source and image planes with and without the 

metamaterial lens. 
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Figure 5.17 Electric field distribution (snapshot in time) produced by a line source in the 

focus of a homogeneous plano-concave lens with: (a) positive and (b) negative index of 

refraction. In (c) we have moved the source by 
00.3  in the negative index scenario. 

In Figure 5.18, we apply this concept to the metamaterial array designed in the 

previous example, realizing a plano-concave metamaterial lens analogous to Fig. 5.17, 

but with 0 0.723k d   and  2.522n   . Fig. 5.18a considers the excitation with a single 

source at the focal plane, confirming the result in Fig. 5.17b for the case of a realistic 

metamaterial array. Indeed, directive far-field radiation towards the normal is obtained, 

due to the negative-index properties of the array, consistent with the homogenized model 

in Fig. 5.17 and the inverted Snell’s law. In Fig. 5.18d (green dashed line), we show the 

normalized amplitude of 
2

E  at distance 03.2  from the lens exit, which is indeed 

concentrated around the region 0x  . In Fig. 5.18b, we horizontally shift the line source 

by a distance 00.334   away from the focal point and obtain beam tilting in the far-

field. The new field distribution at distance 03.2  from the lens exit has shifted by 

about one wavelength (red dot-dashed line in Fig. 5.18d), which may be clearly resolved 

in the far field. Finally, by placing two sources near the focal point at distance 

02 0.668  , as in Fig. 5.18c, we obtain split beams which are resolving these details in 
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the far field, as indicated by the blue dotted line in Fig. 5.18d. Figure 5.18e for 

comparison shows the original distribution of fields at the source plane and the far-field 

distribution at the plane of Fig. 5.18d in the absence of the plano-concave lens. This 

result shows that, by combining negative-index of refraction with an optimized lens 

shape, it may be possible to transfer sub-wavelength details of an image to the far field. 

Moreover, by comparing Figs. 5.17 and 5.18, it is noticed how the homogenization model 

proposed here may accurately describe the bulk response of the metamaterial array, 

despite its large density, for arbitrary metamaterial shape and excitation form. 

5.6 INVERSE DESIGN PROCEDURE FOR PERIODIC METAMATERIALS 

In the final section of this chapter, we propose an inverse design procedure for 3-D 

metamaterials based on the previous findings, which may be applied to search for the 

required inclusion geometry and constituent material parameters to achieve exotic 

phenomena, such as double-negative parameters, in the assigned frequency regime. The 

concepts of this procedure and homogenization theory are schematically shown in Fig. 

5.19. 

For a given metamaterial sample, we are able to apply the NRW retrieval to 

extract the homogenized (or equivalent) parameters (procedure A) based on the 

computed or measured transmission and reflection coefficients under plane wave 

excitations. We can also decompose the metamaterials into isolated elements (procedure 

B), and determine their polarizability tensors by the system presented in Chapter 2 

(procedure C) to model the metamaterials as dipole arrays (procedure D). The wave 

propagation and field interaction among these dipole arrays can be related to the 

analytical effective and equivalent parameters based on our homogenization theory 
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(procedures F and G). This route allows us to characterize metamaterials by considering 

the wave propagation and scattering from a microscopic point of view.  

 

 

Figure 5.18 Plano-concave planar metamaterial lenses, with similar parameters as in Fig. 

5.15, but based on the metamaterial design of array (A) operating at 0 0.723k d  . (a) 

Electric field distribution (snapshot in time) generated by a single line source at the focal 

point of the lens; (b) The source location is shifted by 
00.3 ; (c) The lens is excited by 

two line sources with relative distance 
02 0.668  . (d) Normalized 2

E  for the 

different panels at a distance 03.2  from the lens exit; (e) Distribution of normalized 
2

E  at the source plane and distribution on the plane at 
03.2  from the lens exit in 

absence of the lens for the excitation in (c).  
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Figure 5.19 - The concept of homogenization theory and inverse design procedure 

On the other hand, given a certain set of effective (or equivalent) parameters at 

some frequencies, we are able to inversely find the required dipole moments in a 3-D 

array to support the corresponding phase variations within the periodic structure (inverse 

procedures of F and G). Then, we can look for the geometry and materials of 

subwavelength inclusions (procedure E), which effectively achieve the required dipole 

moments among the array under assigned propagation and polarization directions. We 

call this process an inverse metamaterial design procedure.  

In the past, the most common method for researchers to look for specific 

metamaterial designs with desired exotic properties has been to build a sample of finite 

thickness slab with candidate inclusions in simulation and/or measurement setups, and 

compute and/or measure the transmission and reflection coefficients to determine the 

retrieval parameters by NRW methods. Although this method is straightforward and 
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simple, it usually requires a large computational or experimental cost to simulate or 

fabricate arrays for each trial and it also fails to characterize physically meaningful 

parameters. In our inverse design procedure, we are able to relate the desired effective 

parameters to the polarizability of the inclusions, which can be efficiently determined as 

described in Chapter 2. In other words, by using this novel concept, we may reduce the 

computational complexity of metamaterial design from 3-D to 2-D or 0-D (a single 

inclusion). 

Ideally, we can begin the inverse design procedure by using any inclusion shape 

and use some numerical techniques, such as genetic algorithms, to look for geometry and 

material properties that can match our desired properties. In reality, it is always helpful to 

start with some well-studied inclusions, like core-shell or SRR elements, and search for 

the optimal design within a smaller design space. 

In this section, we give a simple example to show that we may use this inverse 

design procedure to look for metamaterial inclusions that support double-positive (DPS) 

and double-negative (DNG) parameters at the frequency of interest. We consider a core-

shell subwavelength particle composed of a metallic core and a dielectric shell (as shown 

in Fig. 5.20), whose materials are described by the free electron Drude model 

2 2

1 1 p     and a non-dispersive dielectric constant 2 , respectively. The goal of 

this example is to find the geometry parameter 1 2a a  and the required p  and 2  to 

achieve DPS and DNG parameters at frequencies 0 0.8k dx  and 0 1.3k dx . 
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Figure 5.20 Core-shell inclusion used in the example of inverse design procedure 

By manipulating the core-shell structures and their constituent materials, we are 

able to obtain different induced electric and magnetic dipoles. In other words, we can 

play with these parameters to find the required polarizabilities ee  and mm  to achieve 

DPS and DNG operation at assigned frequency. Based on the results in the previous 

sections, we know that the arrangement of isotropic inclusions must be quite dense in 

order to obtain strong magneto-electric coupling for supporting exotic properties. 

Therefore, in this example, we begin by considering a dense array with 1 2.1dx a   and 

focus on the frequency 0 1.3k dx   to find out the required polarizability ee  and mm  

to support a pair of negative parameters 1.5eq    and 1.5eq    in Eqs. (5.51) and 

(5.52). Here, we use the built-in FindRoot function in Mathematica to search for the 

value of p  and 2 , and we found as 7.59pk dx   ( d pk c ), 2 29.23   and 

2 1 0.24a a  , we can achieve the desired DNG parameters. In the meanwhile, these 

material and geometry parameters also support DPS at the smaller values of 0k dx . We 

show in Fig. 5.21 full-wave simulation results for the metamaterial prisms composed of 

the above inclusions. In this Figure, we can see that a 25° prism composed of the core-

shell particles can perform homogenized DPS and DNG parameters at 0 0.81k dx   and  

0 1.29k dx  , respectively. This same concept may be extended to the geometry 

parameters of an SRR pair or any other inclusion considered in this dissertation. The 
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power of this method is to efficiently connect the geometry parameters to the 

polarizability retrieval, and include the lattice information at a later stage in the inverse 

design process, allowing for an efficient search in the complete parameter space to 

achieve optimal performance in terms of the desired figure of merit (which may be loss 

robustness, bandwidth or reduced sensitivity to disorder). 

 

 

Figure 5.21 - Metamaterial prism with DPS and DNG parameters realized using 

optimized core-shell inclusions as shown in Fig. 5.20. Notice that in this design we do not 

use magnetic materials to realize a DNG response. 

 

5.7 Conclusions 

In this chapter we have proposed an analytical homogenization model for calculating the 

complete dyadic effective parameters of 3-D periodic metamaterials composed of discrete 

subwavelength inclusions and unit cells with arbitrary geometry. The model is based on 

the long-wavelength approximation assuming that the scattering response of 

nonconnected inclusions can be treated as electric/magnetic dipole radiation. Taking into 

account the interaction of these dipoles in the array and applying the dyadic Green’s 

k0dx = 1.29k0dx = 0.81
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functions, we are able to derive the dyadic dispersion relations for these arrays. We 

demonstrated and verified that the homogenization theory can correctly capture the 

physics in complex 3D metamaterials by presenting the complete dyadic effective 

parameters for metamaterials composed of magnetodielectric spheres and conducting 

SRR pairs. Based on this homogenization theory, we also revisited the NRW retrieval 

method and proposed a modified approach to extract physically meaningful effective 

parameters of given metamaterial samples. This novel method not only provides 

homogenized bulk properties, but also returns the polarizabilities of constituent 

inclusions without knowing their geometry and material parameters. In order to show that 

our homogenization theory indeed correctly predicts the macroscopic behavior of 

metamaterials, we reported full-wave simulations of metamaterials applied to practical 

devices, including metamaterial prisms, slabs and superlens. Finally, we presented the 

vision for an inverse design procedure to efficiently determine the required inclusion 

geometry and materials to achieve effective DPS and DNG parameters in the desired 

frequency regime. 
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Chapter 6 Conclusions and Future Work 

6.1 CONCLUSIONS 

In this dissertation, we have presented a complete analytical homogenization theory for 

1-D, 2-D and 3-D periodic metamaterials composed of nonconnected inclusions to 

conceptually treat these metamaterials as waveguides, leaky-wave antennas, uniform 

surfaces and homogeneous bulk materials and to determine their corresponding effective 

parameters, including wavenumber, surface susceptibility, permittivity and permeability. 

Due to the subwavelength scale of inclusions and unit cells, the derived theory is based 

on the dipole approximation and it can generally be divided into two parts. First, we 

characterize the elementary inclusions as dipole moments at the unit cell level. In chapter 

2, we proposed a retrieval procedure to extract the general polarizability tensor for 

subwavelength scatterers with arbitrary geometry and made of arbitrary constituent 

materials. By applying this technique, the inclusions can be described as a combination of 

electric and magnetic induced dipole moments. In other words, the complex metamaterial 

structures are simplified as arrays of dipoles. This retrieval method may capture complete 

scattering properties of complex inclusions, including magneto-electric coupling and 

higher-order interaction among the array, and it provides an important advance for 

characterizing elements of metamaterials.  

The second part of homogenization theory consists in capturing the complicated 

coupling in the array in analytical form. From Chapter 3 to 5, we discussed metamaterials 

composed of 1-D, 2-D and 3-D arrays and homogenize them to form uniform 

waveguides, metasurfaces and bulk materials characterized by physically meaningful, yet 

exotic, effective parameters.  

In Chapter 3, we studied 1-D linear chains made of dielectric and plasmonic 

nanoparticles as waveguides and leaky-wave antennas in the optical regime. By analyzing 
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their dispersion relations, we are able to define possible regimes for guided- and leaky-

wave operation of single and parallel linear chains. We generally mapped all the possible 

modes in terms of dimensionless parameters to predict the functions of particle chains 

with various elements, interparticle distances and operation frequecies. We also 

considered the performance of leaky-wave longitudinal and transverse eigenmodes on the 

1-D arrays, and confirmed that the longitudinal polarization always provides more 

promising performance for wave propagation and radiation than transverse polarization 

on particle chains. We showed that the leaky-waves traveling along a single chain can 

perform frequency scanning, and therefore they may be applied as an optical leaky-wave 

antenna for nano-scale optical communications. 

In Chapter 4, we discussed the homogenization theory for 2-D metasurfaces 

formed by arbitrary subwavelength inclusions. We defined and derived a generalized 

effective surface susceptibility to characterize the wave interaction with the metasurfaces. 

Based on this effective quantity, we can analytically formulate transmission and 

reflection coefficients of a 2-D array under plane wave excitations with arbitrary 

incidence and polarization angles. We have also compared our analytical results with 

numerical simulations to verify accuracy of the analytical model. We considered general 

metasurfaces composed of PEC spheres, conducting SRRs and plasmonic U-shaped 

SRRs as examples and showed that the proposed homogenization theory successfully 

determines the correct transmission and reflection coefficients for these 2-D arrays. Our 

model generalizes the studies of single-layer metasurfaces in the past decade, and 

provides promising potential to enhance the applications of optical metamaterials.  

In Chapter 5, we presented a generalized homogenization model for 

metamaterials composed of 3-D arrays. We considered the complete field interaction in 

the array and formulated Tellegen constitutive relations for general metamaterials to 
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determine the effective parameters, including permittivity, permeability and magneto-

electric coefficients, in tensorial form. Based on the proposed model, we also revisited 

and modified the conventional NRW retrieval method to calculate physically meaningful 

effective parameters with local properties in the long-wavelength limit. This novel 

retrieval method not only provides homogenized parameters for given periodic 

metamaterials, but it also returns the polarizabilities of the inclusions without knowing 

their geometry and constituent materials. Moreover, we reported several full-wave 

simulations to demonstrate exotic electromagnetic properties for metamaterial devices, 

including super-resolution and negative refraction, as predicted by our homogenization 

model. Finally, we proposed the vision of an inverse design procedure for metamaterials 

based on the formulation presented in our homogenization theory. This systematic design 

procedure may seek for the required geometry and materials of the inclusions to achieve 

double-negative parameters for 3-D array metamaterials based on 2-D array complexity.  

6.2 FUTURE WORK 

While this dissertation work has presented several advances in the modeling and 

homogenization of metamaterials, it has also highlighted many new challenging 

questions and interesting applications that require further work. Here, we envision some 

important issues that may be important to explore in the context of the theory and 

modeling of modern metamaterials.  

Issue 1. Edge-effects due to finite arrays 

In the modeling portion of our work, we only considered infinite arrays and 

neglected the end-effects always present in practical metamaterial devices. This end-

effect issue can be further divided into two important questions: 

Q1.1: How many periods in an array are sufficient to use our results based on the 

assumption of an infinite array? 
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Q1.2: How the finite boundaries of a metamaterial array influence the predicted 

homogenization properties? 

Some fundamental works [1-3] have been initially discussing these questions by 

considering Drude transition layers and equivalent surface currents at the array 

boundaries. However, a general model to estimate the required period number and to 

formulate the end-effects for finite arrays is still absent. 

Issue 2.  Imperfect periodicity and disorder in metamaterials 

In this work, we have assumed the array and unit cells to be perfectly periodic, 

but in practical manufacturing processes, there is always a degree of imperfection and 

disorder. From an engineering point of view, a useful model to estimate deviations of 

homogenized parameters due to structure or metamaterial defects is required. Some 

relevant works [4-5] using perturbation methods and numerical simulations to analyze 

disordered and misaligned arrays have been reported. These results, however, are not 

general enough to be applied to 2-D and 3-D metamaterials. 

Issue 3. Full-wave numerical solvers for anisotropic, bianisotropic and dispersive 

media 

As presented in the 2-D and 3-D metamaterial works, we showed that 

metamaterials may generally have anisotropic and bianisotropic effects due to magneto-

electric coupling at the unit-cell and lattice levels. Therefore, in order to efficiently verify 

our homogenization theory, a numerical solver that supports wave propagation in 

bianisotropic or chiral media is required. However, most commercial software does not 

provide such material model for users. Therefore, an available module or tool for this 

purpose becomes very important for metamaterial design and applications. Eigen-solvers 

in commercial modules are also limited to lossless and dispersion-less materials. 

Issue 4. Optimization tools for inverse design of metamaterials 
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 The inverse design model proposed in this dissertation heavily relies on 

optimization tools to efficiently search for the required geometry and constituent 

materials of subwavelength inclusions. Some optimization moduli combined with 

available commercial software may be able to automate the design process. An ideal 

optimization tool for this purpose should be able to efficiently compute the scattering 

parameters of a periodic 2-D array and to relate it to the design parameters of interest.  
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Appendix A 

In this appendix, we present the point-dipole radiation method in free-space (FS), used in 

Fig. 2.4 and 2.5 to find the polarizabilities of simple spherical scatterers. For a given 

subwavelength object placed in free-space, we may express the induced electric dipole 

moments by 

 ee

locp E ,  (A.1) 

where we assume the subwavelength scatterer to be highly symmetric and linearly 

excited, such that the scalar electric polarizability ee  is sufficient to describe the 

dipolar radiation. This equation shows that the scattering of the subwavelength scatterer 

can be interpreted as an infinitesimal dipole which has magnitude proportional to the 

local fields. On the other hand, the radiation field of an ideal point dipole can be written 

as 
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in which the three-dimensional free space Green’s function   0 4
ik r

G r e r
   is used. 

Based on Eqs. (A.1) and (A.2), the electric polarizability is related to the field extracted 

at one point around the scatterer through the formula 
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where we simplify the vector electric fields into scalar form by assuming we probe 

 E r  in the E-plane of the dipole radiation pattern. Similarly, the magnetic 

polarizability can be expressed as 
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According to the above derivation, we may easily calculate the electric and 

magnetic polarizabilities by probing the local and radiation fields of a given 

subwavelength scatterer. The polarizability curves shown in Fig. 2.4 and 2.5 are 

normalized by 3

0 06k   and 3

0 06k   for ee and mm , respectively.  

In this portion of the polarizability retrieval, we apply the time-domain solver and 

plane-wave sources in CST Microwave Studio to determine local and far-field quantities. 

In order to reach high numerical accuracy and avoid higher-order scattering in the near-

fields, we choose the built-in far-field probes in the software to determine  E r  and 

 H r .  

This simple method to retrieve the polarizability may have several drawbacks that 

make it challenging to find accurate polarizability values for complex inclusions. The 

first issue is the numerical convergence of the solver. We find that the numerical solver 

used in Fig. 2.4 and 2.5 shows poor numerical convergence efficiency for complex 

inclusions, and this computational issue causes less precise retrieved polarizability, 

especially in terms of phase. Second, it is not possible to determine the completed 

polarizability tensor of the complex inclusion with sophisticated magneto-electric 

coupling. For some complicated inclusions, such as the SRRs, the far-field quantities may 

be simultaneously produced by co- and cross-polarization contributions of the induced 

currents. Therefore, we are not able to identify every entry of the full polarizability tensor 

for inclusions with arbitrary geometry. In other words, this method is only useful for 

simple inclusions for which the induced electric and magnetic dipole moments are 

independent of each other. Nevertheless, this approach can nicely predict the resonance 

frequencies of the scatterers due to the strong variation of induced currents on the 
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inclusion around the resonance frequency. Based on these considerations, we only use 

this method to draw comparisons with the retrieval results for simple objects, such as the 

spherical sphere considered in the first examples of Chapter 2.  
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Appendix B 

In this dissertation, we use plasmonic inclusion in some of the examples as metamaterial 

inclusions to apply our results to the optical regime. For this purpose, the most popular 

plasmonic material, silver (Ag), is selected in our analyses, and we use the complex 

values of permittivity obtained from experimental results [B1] and the corresponding 

fitting Drude model  
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to describe the material. In the fitting model, the asymptotic dielectric constant is 5 

, the plasma frequency is 2175.12p THz   and the collision frequency is 

4.35v THz , respectively. The material dispersion curves retrieved from the 

experimental measurements and fitting model are shown below in Fig. B.1. 

 

Figure B.1 Dispersion curves of silver permittivity obtained from experimental 

measurement and the corresponding fitted Drude model 
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Appendix C 

In Chapter 4, we define the interaction matrix 2D
C  (see Eq. (4.3)) to describe electric 

and magnetic dipole interactions on a 2-D metasurface based on the free-space Green’s 

function [C1, C2] 
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where    
2 2 2

mnR x ma nb z     with m  and n  being the indices of unit cells.  

The simplified coefficients have been studied in Refs. [C1, C2], and they can be given in 

the generalized form [C3]:  
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The closed-form and fast-convergent formulation (derived based on Poisson’s summation 

[C4]) for the elements in the above matrix is given as follows [C1-C3]: 
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The expressions of mp , ml , mt ,
 n

yk , 
 n

yk


, t , t , t  , t  , 
,m n

zk  and
,m n

zk 
 in the 

above formulations can be found in Ref. C1 and C2. 
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