
Copyright

by

Mahesh Prabhu

2014

The Dissertation Committee for Mahesh Prabhu
certifies that this is the approved version of the following dissertation:

Scalable Algorithms for Software Based Self Test using

Formal Methods

Committee:

Jacob A. Abraham, Supervisor

Jayanta Bhadra

Andreas Gerstlauer

David Z. Pan

Nur A. Touba

Scalable Algorithms for Software Based Self Test using

Formal Methods

by

Mahesh Prabhu, B.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

Dedicated to my parents and my wife.

Acknowledgments

I would like to thank my advisor Dr. Jacob Abraham for his valuable

guidance and support. His novel ideas, intellectual discussions and expert

comments at every stage have been the catalysts for this work.

I thank all my PhD committee members for giving me valuable inputs

on my research and on this dissertation.

Sincere thanks to the students at CERC who were generously available

to answer my questions and to direct me to right resources whenever needed. I

would especially like to thank Gaurav, Sriram, Ameya, Shahrzad, EJ, Whitney

and Junyoung.

Thanks to the CERC and ECE department staff members for their

quick response in all the matters that needed their support. I thank Melanie,

Debi and Andrew for answering all my questions patiently.

I thank my brother and my sister-in-law for their love and support

throughout my PhD. Thanks to my parents for their selfless love and faith in

me. Without their support and understanding this PhD would not have been

possible. Last but not the least, I thank my loving wife, Shwetha, for standing

by me through the most difficult of times.

v

Scalable Algorithms for Software Based Self Test using

Formal Methods

Mahesh Prabhu, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Jacob A. Abraham

Transistor scaling has kept up with Moore’s law with a doubling of the

number of transistors on a chip. More logic on a chip means more opportu-

nities for manufacturing defects to slip in. This, in turn, has made processor

testing after manufacturing a significant challenge. At-speed functional test-

ing, being completely non-intrusive, has been seen as the ideal way of testing

chips. However for processor testing, generating instruction level tests for cov-

ering all faults is a challenge given the issue of scalability. Data-path faults

are relatively easier to control and observe compared to control-path faults. In

this research we present a novel method to generate instruction level tests for

hard to detect control-path faults in a processor. We initially map the gate

level stuck-at fault to the Register Transfer Level (RTL) and build an equiva-

lent faulty RTL model. The fault activation and propagation constraints are

captured using Control and Data Flow Graphs of the RTL as a Liner Tempo-

ral Logic (LTL) property. This LTL property is then negated and given to a

vi

Bounded Model Checker based on a Bit-Vector Satisfiability Module Theories

(SMT) solver. From the counter-example to the property we can extract a

sequence of instructions that activates the gate level fault and propagates the

fault effect to one of the observable points in the design. Other than the user

supplying instruction constraints, this approach is completely automatic and

does not require any manual intervention.

Not all the design behaviors are required to generate a test for a

fault. We use this insight to scale our previous methodology further. Under-

approximations are design abstractions that only capture a subset of the orig-

inal design behaviors. The use of RTL for test generation affords us two types

of under-approximations: bit-width reduction and operator approximation.

These are abstractions that perform reductions based on semantics of the RTL

design. We also explore structural reductions of the RTL, called path based

search, where we search through error propagation paths incrementally. This

approach increases the size of the test generation problem step by step. In this

way the SMT solver searches through the state space piecewise rather than

doing the entire search at once. Experimental results show that our methods

are robust and scalable for generating functional tests for hard to detect faults.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

Chapter 1. Testing: An introduction 1

1.1 Fault models . 2

1.2 Fault observability and controllability 3

1.3 Conventional testing techniques 5

1.3.1 Automatic test pattern generation (ATPG) . . . 5

1.3.2 Scan based design for testing (DFT) 6

1.3.3 Built-in self test (BIST) 7

1.3.4 Functional testing . 8

1.4 Software based self test (SBST) 11

1.5 Test generation using formal methods 12

1.6 Contributions . 15

1.7 Outline . 17

Chapter 2. Software based self test: approaches and issues 18

2.1 Functionality based test generation 18

2.2 Constraint extraction based approach 20

2.3 Pre-computed test mapping approach 22

viii

Chapter 3. Formal Methods 25

3.1 Introduction . 25

3.2 Model checking . 26

3.2.1 Unbounded vs bounded model checking 26

3.2.2 Properties . 28

Chapter 4. Functional Test Generation for Hard to Detect Stuck-
At Faults using RTL Model Checking 29

4.1 Introduction . 29

4.2 Preliminaries . 31

4.2.1 Boolean difference 31

4.2.2 Model Checking . 32

4.3 Approach . 34

4.3.1 Capturing Gate level faults in RTL 34

4.3.2 Test Generation Using Model Checking 38

4.4 Observability Property using CDFG 41

4.4.1 Structural Dependency Graph 41

4.4.2 Observability Property 43

4.4.3 Structural Reduction 46

4.4.3.1 Reducing Duplicated Signals 46

4.4.3.2 Bounded Cone of Influence Reduction . . 47

4.5 Experimental Results . 48

4.5.1 OR1200 Processor 48

4.5.2 Identifying Hard-to-detect Faults 49

4.5.3 Fault Conditions . 52

4.5.4 SAT-based ATPG . 53

4.5.5 The Naive Observability Method 55

4.5.6 The Structural Observability Method 56

4.6 Summary . 61

ix

Chapter 5. Application of Under-approximation Techniques to
Test Generation 64

5.1 Introduction . 65

5.2 Under-approximation Techniques 67

5.2.1 Bit-width Reduction 67

5.2.1.1 Bit-width Encoding 68

5.2.1.2 Motivating Example 69

5.2.1.3 Refinement Strategies 71

5.2.2 Data-path Operator Approximation 74

5.2.2.1 Motivating Example 74

5.3 Experimental Results . 75

5.4 Summary . 85

Chapter 6. Path Based Search for Test Generation 87

6.1 Introduction . 88

6.1.1 Background: Incremental Satisfiability 88

6.2 Path Search Heuristics . 89

6.2.1 Path Selection . 92

6.3 Experimental Results . 95

6.4 Summary . 97

Chapter 7. Conclusion and Future Work 100

7.1 RTL Based Test Generation 100

7.2 Design Abstractions . 101

7.3 Other Applications of RTL Fault Injection 102

Bibliography 104

Vita 114

x

List of Tables

4.1 Commercial ATPG Coverage Results for OR1200 processor . . 52

4.2 Example of SOP for fault condition in OR1200 processor fetch
module . 53

4.3 Running Time and Coverage Results for SAT-based ATPG . . 54

4.4 Running Time and Coverage Results for the naive observability
method . 56

4.5 Running Time and Coverage Results for structural observability
method . 58

4.6 Sample tests generated by structural observability method . . 61

5.1 Running Time for Bit-width reduction 77

5.2 Fault coverage results from structural observability method (no
abstraction) for OR1200 processor 80

5.3 Fault coverage results from dependency graph based refinement
for OR1200 processor . 81

5.4 Running Time for Operator Approximation 82

5.5 Fault coverage results for data-path operator approximation . 85

6.1 Experimental results for structural observability method . . . 96

6.2 Experimental results for path based search method 97

6.3 Fault coverage results due to structural observability method
(no abstraction) for OR1200 processor 99

6.4 Fault coverage results from path based search for OR1200 pro-
cessor . 99

xi

List of Figures

1.1 Testing infrastructure . 2

1.2 Controllability and observability 4

1.3 Traditional functional testing technique requiring at-speed ATE 8

1.4 Software based self test methodology, which can use slower ATE
equipment . 12

2.1 Mapping based approach for software based self test 22

3.1 Unrolling a DUT for a bound of n cycles 27

4.1 RTL test generation methodology for gate level faults 30

4.2 Transitive Fan-in Illustration 33

4.3 Stuck-at Fault Example . 36

4.4 Fault Injection Mux Example 37

4.5 Example of a control and data dependency graph 42

4.6 Control and data dependency graph of verilog example 46

4.7 Commercial ATPG tool results on OR1200 processor 50

4.8 SAT-based ATPG vs. the naive observability method run times
for OR1200 ctrl module . 57

4.9 SAT-based ATPG vs. the structural observability method run
times for OR1200 ctrl module 59

4.10 The naive observability method vs. the structural observability
method run times for OR1200 ctrl module 60

4.11 Improvement in fault coverage due to different methods for
OR1200 processor . 62

4.12 Average run time of different methods for OR1200 processor . 62

5.1 Bit-width Refinement loop . 68

5.2 Variable dependency graph . 70

5.3 The structural observability method (no abstraction) vs. local
refinement strategy run times for OR1200 ctrl module 78

xii

5.4 The structural observability method (no abstraction) vs. depen-
dency graph based refinement strategy run times for OR1200
ctrl module . 79

5.5 The structural observability method (no abstraction) vs. data-
path operator approximation run times for OR1200 ctrl module 84

6.1 Example of path search . 91

6.2 The structural observability method (no abstraction) vs. path
based search run times for OR1200 ctrl module 98

7.1 Flowchart for generating functional tests for speed paths . . . 103

xiii

Chapter 1

Testing: An introduction

Advances in VLSI fabrication technology has maintained the trend of

doubling the number of transistors on a chip every 18 months (Moore’s law

[51]). This is mainly due to the decrease in the sizes of transistors and wires

from the micron scale to the nanometer scale. Smaller transistors enables

designers to cram in more logic into a single chip, while at the same time

affording increased operating frequencies. However, the downside to having

more logic on a chip is the increased probability that the chip might have a

defect. Avoiding defects in the manufacturing process is an impossible task

and some percentage of the chips will be faulty (resulting in yield loss). VLSI

testing targets this important stage, in the process of going from an abstract

design to silicon, to where we need to identify faulty chips. Furthermore, VLSI

testing might also involve identifying the cause of the defect since it will help

to improve the yield at various stages of chip manufacture [71].

In the VLSI development process, a design is transformed from the

highest level of abstraction into silicon through a series of steps. Bugs or errors

can be introduced during the transformation due to various reasons. Hence, at

each step we verify if design matches the abstraction used in the previous step.

1

Figure 1.1: Testing infrastructure

Verification ensures that the design in its current form of abstraction meets the

specification. The design can be the gate level netlist and the specification can

be the register transfer level (RTL) design. Testing is similar to verification,

in both the steps we compare two different abstractions of the design. In

testing, the fabricated silicon is “verified” with the gate level netlist as the

specification. The focus of this research is VLSI manufacturing test.

Manufacturing test typically involves the application of stimuli at the

inputs of the design under test (DUT) and the analysis of the corresponding

response at the output as shown in Figure 1.1. The response at the output is

compared against the golden output from a fault free circuit and an unexpected

mismatch would suggest a faulty DUT. The question of how to generate the

test, apply the test, and even analyze the test response is answered by different

test techniques in different ways. Each technique has its pros and cons, which

we will discuss later in this chapter.

1.1 Fault models

In order to model physical defects due to manufacturing processes a

fault model is used. A variety of fault models have been proposed over the years

2

to model the different manifestations of defects. Tests are created depending

on the fault model. A test would try to excite the fault and propagate the

fault effect to one of the outputs. The response analysis is then used to see if

the effect of the fault is observed. An example of a fault model is the stuck-at

fault model [27]. In the stuck-at model, a wire is assumed to be stuck at either

0 (sa-0 fault) or 1 (sa-1 fault). The total number of single stuck at faults in a

DUT with n nodes is 2n since each node can be stuck at 0 or 1 and only one

node can be stuck at a time. A given testing technique tries to maximize the

number of faults that it can detect. The effectiveness of a test technique is

measured by fault coverage which is the percentage of the total faults that can

be detected by the method. In this research we focus primarily on the gate

level single stuck-at fault model and describe, at the end of the dissertation,

how our approach can be extended to detect other faults such as path delay

faults.

1.2 Fault observability and controllability

One of the biggest problems in testing is the lack of visibility of internal

signals. In the case of verification, all the signals in the design are visible. This

makes it possible to either check the value of an internal signal or to force a

value on it to verify the functionality of the circuit. In the case of testing,

the internal signals are not readily available. The only signals that are readily

available are the inputs and outputs. This makes it difficult to excite some

faults and also observe their effects. Hence, it is a significant challenge to

3

Figure 1.2: Controllability and observability

create a test for a fault that can only be applied at DUT inputs and can only

be observed at DUT outputs. Controllability [21] is a measure of the ease with

which a fault at a node can be excited from the DUT inputs. For example,

if a node is stuck at 0 then we have to generate a 1 at the node to excite

the fault. The higher the controllability for a fault at a node the more easily

can the fault be excited. Observability is a measure of the ease with which a

fault that has been excited at a node can be observed at the DUT outputs.

Nodes that are closer to the DUT inputs are more easily controllable but are

not very observable. Similarly, nodes close to the DUT outputs are more

easily observable but are not easily controllable. Today complex system-on-

chip (SoC) designs inherently introduce many nodes with low controllability

and observability. This makes it necessary to apply a variety of approaches to

achieve high fault coverage.

4

1.3 Conventional testing techniques

1.3.1 Automatic test pattern generation (ATPG)

The purpose of ATPG algorithms is to produce test vectors that will

achieve high fault coverage for a given fault model. The test generation prob-

lem is a search problem where the objective is to find test for a given fault. Such

a test when applied at the inputs of the faulty and fault-free DUT will produce

a different result at the observable nodes. Thus the test, when applied in ac-

tual silicon, will uncover the presence of the fault. The observable nodes could

be primary outputs, architecturally visible registers or even scanable internal

registers. Many different flavors of ATPG algorithms have been proposed, the

traditional algorithms being D-algorithm [58], PODEM [31] and FAN [28].

Satisfiability based algorithms have also been proposed [42]. The ATPG prob-

lem is an NP-complete problem (by reduction from the Boolean satisfiability

problem which is NP-complete) and all of the algorithms rely on heuristics to

give vastly improved efficiency over brute force approach. ATPG algorithms

work well on combinational circuits of reasonable size and on relatively small

sequential circuits. However, the ATPG problem being NP-complete implies

that the algorithms suffer from the state explosion problem. A linear increase

in the number of nodes results in an exponential increase in the size of the

search space.

5

1.3.2 Scan based design for testing (DFT)

To solve the problems of observability and controllability, several mod-

ifications are done to the design just for test purposes. One such approach

was first introduced by Eichelberger et al. [26], which suggested the use of

scan chains in the design. Scan chains involve the use of modified flip-flops

or latches connected together in a specific order like a chain. In functional

mode, these sequential elements operate as normal elements. In test mode,

the modified sequential elements in the chain can transfer their value to the

next element in the chain. The very first element in the chain can take in value

from an external input and the last element can transfer its value to a primary

output. Values can be loaded (shift and launch) into internal sequential ele-

ments in the scan chain and also their values can be read out (test response).

This enhances the controllability and observability of the sequential elements

in the scan chain. Scan chains also alleviate the problem of state explosion in

ATPG algorithms by reducing sequential ATPG problem to a combinational

ATPG problem. When scan chains are used, the ATPG algorithms have to

generate tests only for the combinational parts of the DUT. The test pat-

tern can then be applied through the scan chain and the response can also be

recorded using automated test equipments (ATE). During the scan-in process,

since the values are shifted in one by one, there is additional overhead in terms

of test application time. Compression techniques have been proposed [36] in

order to compress the tests and in turn reduce test application time. Despite

the use of test compression techniques, the test application time, scan test

6

power and the need for high speed ATEs are big drawbacks of scan based test

methodologies.

1.3.3 Built-in self test (BIST)

BIST techniques solves the testing time drawback of scan chains by

using special hardware for test application and response capture [35]. Addi-

tional circuitry is used on chip to generate test patterns which are applied to

a sub-circuit within the chip (circuit under test, CUT). The output of CUT

is then captured in a linear feedback shift register (LFSR) or a multiple input

shift register (MISR) as a signature. The signature is then compared against

a golden signature to check for a fault. BIST architectures comes in different

flavours, BIST can be logic BIST [13] or memory BIST [67]. In logic BIST, the

test vector can be applied every cycle and its response compressed simultane-

ously, this is called test-per-clock BIST [37] . Another approach, to capture

the response into the scan chains after every test is scanned in is called test-

per-scan BIST [13]. The biggest advantage of BIST is that it can be done at

speed resulting in reduced test application time. Also, it does not depend on

external testers, reducing equipment costs. But the overhead and additional

cost appears in the form of additional on chip area and test power dissipation.

The test patterns from BIST might not always give you high fault coverage.

These drawbacks makes it prohibitive to use BIST on every single part of the

chip.

7

Figure 1.3: Traditional functional testing technique requiring at-speed ATE

1.3.4 Functional testing

Functional testing refers to the running of instructions as test vectors

at-speed on the processor. These test vectors are typically derived manu-

ally and are targeted towards exercising specific functionality of the processor

rather than specific faults. The failure of such a test would indicate the possi-

bility of a fault. The processor under test is hooked up to an ATE which acts

as the external environment as shown in Figure 1.3. The processor reads the

test program through the ATE and runs it at-speed. The ATE simultaneously

records the test responses which is then compared against expected values.

Functional testing was used well before the rise of DFT based ap-

proaches. Since it was not possible to get high or predictable coverage from

8

functional testing, DFT techniques emerged to partly address these issues.

However, DFT techniques still have their drawbacks. Scan based DFT has the

following shortcomings.

1. The test vectors for scan based tests are generated for a combinational

circuit (DUT) without any constraints. Some of these test vectors might

be non-functional and might test the circuit in states that will never be

encountered. This will result in over-testing.

2. During the scan-in and scan-out process a large number of nodes are

toggled and this causes high power dissipation [25].

3. Since the test patterns are shifted in through the scan chain, the test

process is time consuming. Moreover the patterns are applied at a speed

slower than functional mode speed. Defects that have an impact on the

timing and performance of the circuit cannot be detected with vectors

that run in test mode.

4. Scan sequential elements (flops and latches) are larger and slower com-

pared to regular sequential elements. Hence an area and performance

cost is involved whenever scan flops or latches are used.

BIST based DFT has the following shortcomings.

1. Even though BIST tests are applied at-speed the vectors can be non-

functional resulting in over-testing as in the case of scan based DFT.

9

2. There is a significant area overhead for the on chip test generator and

response capture logic.

3. Since the test vectors are not targeted to specific faults, a large number

of vectors are required to get high fault coverage. This increases the

testing time.

4. The switching activity is very high when the test patterns are being

applied. This causes high power dissipation [30].

At-speed functional testing does not have any of the drawbacks of DFT

techniques. All the vectors applied are functional vectors hence the issues of

excessive power consumption or over-testing do not arise since the DUT will

never go into illegal states [57]. Tests run at-speed so the test time is less

compared to scan based DFT. On-chip area overhead isn’t an issue since the

only additional equipment required is the ATE. There are additional advan-

tages to at-speed functional testing. Not all defects are captured by the fault

model, some defects might change the functionality of the DUT. These defects

will be caught only by at-speed functional tests. Shrinking feature sizes might

cause unmodeled defects that impact the performance of the DUT. Such de-

fects too are ideal candidates to be detected by at-speed functional vectors.

These advantages make at-speed functional testing very attractive.

10

1.4 Software based self test (SBST)

The biggest drawback of at-speed functional testing is the need for high

speed ATE, which is expensive [5]. Also it is not always possible to easily find

the right set of functional tests to activate specific circuit areas. In industry,

both DFT and functional testing are used actively to address coverage holes

in testing.

Software based self-test also known as native-mode self test [65] [60],

addresses the shortcomings of at-speed functional testing while keeping the

advantages. As shown in Figure 1.4, the objective of SBST is to use the ATE

only to load a program into the processor cache that will generate instruction

level tests. The program will also capture the test response through the ar-

chitectural registers and the data cache. The functional test might be directly

loaded into the instruction cache also. SBST was inspired by BIST like ap-

proach where the test generator and response analyzer was implemented in

software. This has the advantage that is no hardware overhead compared to

BIST. Also we can have a low cost tester to load the test program into the in-

struction cache. Hence, SBST enables low cost testing with all the advantages

of at-speed functional testing.

The problem of how to create instruction tests that will give high fault

coverage has been the objective of SBST research. Use of random instructions

as test programs is one way of creating functional tests for SBST. But random

instructions give limited coverage and it is very difficult to target the uncovered

faults. Manually creating tests that target these undetected faults is time

11

Figure 1.4: Software based self test methodology, which can use slower ATE
equipment

consuming and laborious since it takes great knowledge of the architecture and

gate level implementation of the DUT. Having automated tools to target these

coverage holes is a necessity. Our research focuses on this issue of improving

the fault coverage from functional tests. We generate instruction level tests

that target faults that were left undetected by existing functional tests.

1.5 Test generation using formal methods

The problem of generating gate level tests has already been addressed

by ATPG algorithms. Theoretically, these algorithms can be engineered to

12

generate system level functional tests by using the entire sequential DUT with

the right input constraints. The input constraints for a processor constrain the

generated test to be valid instructions. Most of the ATPG algorithms try to

excite a fault by backward justification and then propagating the fault effect

to the primary output by forward search. Since the justification and propa-

gation steps depend on the specific fault rather than the input constraint, the

search takes longer. State explosion renders ATPG based SBST impractical

for designs beyond a few thousand sequential elements. ATPG algorithms that

work on gate level designs are not practical for generating system level tests.

The primary problem with using ATPG to generate instruction-level tests is

that it is currently not easy to specify constraints on the input vectors (for

example, corresponding to legal instructions).

In search of a scalable SBST method, we turn to formal methods also

known as formal verification. Formal verification typically refers to the auto-

mated or semi-automated methods of checking if a design meets specification.

Both the specifications and the design are captured using formal languages

that may be the same or different. Then an automated or semi-automated

engine checks if the design matches the specifications. Several advances have

been made in the area of high level formal verification which have shown to

be more scalable than previous Boolean level techniques [39]. These high level

formal methods work at the RT level.

Instead of working with gate level algorithms directly, we shift the test

generation problem to the RT level. This gives us several advantages. Firstly,

13

we can use model checking tools and the advances that are made in improving

their efficiency and scalability. Our methodology can be used with the state

of the art model checking tools without having to make any modifications to

the flow. Secondly, working at the RTL gives us access to different types of

design semantics and structures that can be used to reduce the complexity of

the design and speed up test generation. These kinds of reductions would not

be possible if we were working with gate level models. Finally, faster solvers

are available at the RTL than at the gate level.

In our approach we first show how a gate level stuck at model can be

mapped to the RTL level. This is key step since the rest of our algorithms de-

pend on working with RTL models. Then we capture the controllability and

observability as a verification property. This property is then negated and

then given to a bounded model checker (BMC). The BMC takes a property

and bound as the inputs and checks if the property holds on the design within

the given bound. We also constrain the inputs of the design to valid instruc-

tions. A typical ATPG tool would not be able to seamlessly take in input

constraints since it starts from a fault and works backwards. So a ATPG tool

would generate a vector and then check it against the constraints. Verification

tools seamlessly take in input constraints and perform the search based on the

constraints unlike ATPG tools. The BMC tool generates a counter-example

if a property does not hold. In our case with the ISA based input constraints

and way we synthesize the property, the counter-example would correspond to

a functionally valid test.

14

We further achieve scalability of our basic approach by performing re-

ductions based on RTL semantics. These are called under-approximations,

which are of two types: bit width reduction and data-path operator approxi-

mation. We analyze the RTL and remove design behaviors that are not nec-

essary for generating a test on a given fault. Such reductions improve the

efficiency of the test generation process and hence help in scaling the test gen-

eration methodology. Reductions can be made on the design also by analyzing

the RTL structure. Instead of searching through all the fault propagation

paths, we search through select paths at any given time. We take advantage

of the ability of constraint solvers to incrementally take in the problem to be

solved. At each increment we only include a subset of possible propagation

paths, which reduces the state space through which the solver has to search.

The choice of paths is made on the basis of RTL structure.

1.6 Contributions

The contributions of this thesis are as follows.

• We present a novel fault modeling technique where gate level faults can

be captured at the RT-level. This makes it possible to use a variety

of abstraction techniques at the RT-level which are not possible at the

gate level. Hence, this modeling approach indirectly enables us to apply

scalable test generation techniques.

• Our test generation methodology performs targeted test generation for

15

hard-to-detect faults. As we will see in Chapter 2, most of the existing

approaches do not target specific faults. They typically use a high-level

model independent of gate-level faults or they perform unconstrained

gate-level ATPG. These approaches will take a long time to generate

tests for hard-to-detect faults (The reason for this will be discussed in

Chapter 2).

• We show that RT-level generation is highly scalable. We compare results

from our methodology to the only other approach that can generate

targeted functional tests for gate-level faults, viz. SAT-based ATPG.

• Our methodology can produce high functional fault coverage. The only

other research work that showed high fault coverage, for a DUT similar

to ours, was by Lu et al. [46]. However, a lot of micro-architectural

knowledge was required from the user as inputs into the test genera-

tion tool. Our method, is completely automatic (some inputs regarding

the valid instructions is necessary) and no additional insight about the

microarchitecure or gate-level implementation of the DUT is required.

• We apply abstraction techniques used for RTL verification to functional

test generation. We show that, with some manual inputs, these ap-

proaches can be highly scalable. Our application of these abstraction

techniques is novel to test generation and from our results we see that

they are very efficient for functional test generation.

16

1.7 Outline

In the following chapters we explain each of our techniques in detail and

also present our experimental results. We survey previous work in the field

of software based self test in Chapter 2. In the same chapter we discuss the

issues plaguing some of previous approaches. Chapter 3 discusses some of the

background ideas and some of the literature in formal methods. The ideas and

terminology presented in this chapter will be used throughout this work. In

Chapter 4 we discuss our RTL model checking based test generation method-

ology. We go into details of how a gate level fault can be mapped to the RTL

model of the design under test. Synthesis of controllability and observability

property by using RTL analysis is also explained. For our demonstration of

our methods we used OR1200 processor as the DUT in the same chapter. We

explain the under-approximation techniques for DUT abstraction in Chapter

5 and also present the experimental results. Our last technique of DUT re-

duction is presented in Chapter 6 along with experimental results. Finally, in

Chapter 7 we discuss the advantages and disadvantages of our techniques and

we also lay the ground work for future research.

17

Chapter 2

Software based self test: approaches and issues

Several different approaches have been taken to attack the problem of

software based self test. We have classified them into three broad categories.

Below we discuss each category and survey the corresponding literature.

2.1 Functionality based test generation

This category of techniques generate tests based on a high level DUT

and fault model. The high level fault model is independent of gate level struc-

tural faults. Thatte et al. [65] use a graph-theoretic model of the microproces-

sor. The ISA of the microprocessor is used to extract the graph model and it

captures the behavior of the processor in terms of register transfer functions.

A functional level fault model is defined for register decoding function, instruc-

tion decoding, data storage, data transfer and data manipulation. Tests are

generated based on this simple behavioral microprocessor description and fault

model. Brahme et al. [17] account for more complex microprocessor execution

sequences and describe a more sophisticated functional model. Goor et al. [69]

extend this functional model based test generation approach to microprocessor

caches. Shen et al. [61] propose a control fault model which covers register de-

18

coding faults, instruction decoding faults and instruction execution sequence

faults. This control fault model is defined for a “kernel” microprocessor with

read/write instructions. The kernel is then verified separately using checking

experiments.

A different approach was proposed by Shen et al. [60] where they use

random instruction sequences as functional tests. They classify the instruc-

tions in the ISA into observation sequences and control sequences. Observation

sequences are instructions that propagate register values. Control sequences

are instructions that manipulate register values. Random instruction based

tests are then generated by systematically choosing a combination of control

sequences and observation sequences. This methodology, which is akin to a

software BIST, was used on an industrial design by Parvathala et al. [53].

They compared the fault coverage from these tests against DFT based tech-

niques. They found that faults that escaped normal test flow were detected

by this methodology.

These methods have fault models that are independent of the imple-

mentation and they do not have a good correlation with manufacturing defects.

Hence it is not possible to achieve high structural fault coverage with these

methods. To address this issue, techniques have been proposed where the high

level test generation targets the gate level faults. Kranitis et al. [38] use the

RT level description of the processor. Their methodology generates determin-

istic test patters to excite the gate level faults in RT level components such as

ALUs, registers, multiplexers etc. The relationship between the instructions

19

and processor components is manually extracted. A high level test generation

approach based on Satisfiability Module Theories (SMT) solvers is proposed

by Alizadeh et al. [12]. Their tests are again based on a high level behav-

ioral fault model and not specifically targeted at gate level faults. Corno et

al. [24] generate tests using evolutionary algorithms. The fitness criteria used

during the test generation process is the fault coverage attained. Lu et al. [46]

present a methodology based on random program generation to create soft-

ware tests that give high fault coverage. However, the test program generator

depends on additional information about the instruction set architecture and

micro-architecture.

2.2 Constraint extraction based approach

In constraint based approach, test generation is performed by constrain-

ing the module which has the specific gate level fault. The constraints are

extracted by analyzing the logic surrounding the module. The constraints

should be generic enough to justify the fault and then propagate the mod-

ule responses, and at the same time should not allow non-functional patterns.

Such approaches are highly scalable and provide high coverage.

Tupuri et al. [66] extract functional constraints for a module under test.

They refer to these functional constraints as “virtual” circuit constraints. An

ATPG algorithm is then used to generate tests for faults in the module with

the virtual circuit constraints as the input-output environment of the module.

A similar approach of extracting the environment constraints was proposed by

20

Vedula et al. [68]. They use program slicing to remove the RT-level statements

that are irrelevant to the module under test. The sliced HDL code is used as

the virtual circuit constraint and an ATPG tool is used for test generation.

In both approaches the ATPG tool works on a significantly reduced

design and hence is able to generate efficient tests. However, extracting such

functional constraints for any given module in modern microprocessors is a

challenging problem. Chen et al. [22] circumvent this issue by extracting

functional constraints defined by specific instruction templates. Instruction

templates are program templates created on the basis of the ISA. Templates

are initially ranked on the basis of a simulation, templates that give high

controllability and observability for the module under test are ranked higher.

Then a simulation is performed by assigning random values to the settable

fields of the instruction template. Based on a regression analysis of the sim-

ulation values seen at the input and outputs of the module under test, input

and output mapping functions are extracted. Virtual circuit constraints are

extracted from these mapping functions and finally ATPG based test gener-

ation is performed. The tests generated are mapped back to the instruction

templates. The quality of test coverage depends on the instruction templates,

and writing extensive instruction templates requires knowledge of the instruc-

tion set architecture.

21

Figure 2.1: Mapping based approach for software based self test

2.3 Pre-computed test mapping approach

The most popular approach is the pre-computed test based approach,

in which gate level ATPG is used to generate module level tests, and then an

RTL based approach is used to justify the module level tests and propagate the

responses to the primary outputs. This divide and conquer approach makes it

possible to generate tests for complex designs. Special knowledge of module

implementation or the architecture isn’t necessary. Specialized solvers can be

used at the module level and at the DUT level. Figure 2.1 shows a flowchart

for the mapping based approach.

Murray et al. [52] present a mapping approach for acyclic designs.

Module level tests are contained in test packages. System level tests are then

generated by symbolically manipulating the test packages. The module level

responses are propagated along circuit paths. They then extract the tests

from the symbolic responses. Roy et al. [59] use a data flow descriptions

22

for generating tests. ATPG is used to generate tests for stuck-at faults for

combinational circuit components. Then, the data-path (from the data flow

descriptions of the circuit) is used to propagate the fault effect from combina-

tional component output to the DUT output. A similar algorithm is used to

justify the module level tests to the component input. Sequential propagation

and justification of signal values is carried out recursively. An automatic test

knowledge extraction tool (ATKET) is presented by Vishakantaiah et al. [70].

The tool builds a data structure from the RT-level description for each module

that they refer to as module operation tree. Using the information stored in

the operation the search space is pruned for test justification and error propa-

gation. Bhatia et al. [14] incorporate test generation into behavioral synthesis.

Their methodology works for designs that have separate controller and data

path logic. The system level tests generated are based on precomputed mod-

ule level tests. Since design synthesis is a necessary part of the process, their

work can be considered as design for testability. Assignment decision diagrams

(ADDs) are used by Lingappan et al. [45]. Input/output propagation rules

are used to abstract out the components of the ADD. The justification/prop-

agation requirements of the module level tests are then captures as Boolean

implications. Satisfiability (SAT) solvers are then used to solve the implica-

tion to get the system level test. Zhang et al. [73] use a similar approach with

ADDs but apply ATPG based techniques to solve Boolean implications.

Gurumurthy et al. [32] [33] use ATPG to generate module level tests.

These module level tests are then mapped to the system level using a bounded

23

model checker. The controllability and observability constraints of the module

level test is captured using linear temporal logic (LTL). The LTL properties for

a module level test are synthesized such that a witness to the property would

constitute a system level test which justifies and propagates the module level

test. This approach makes use of existing tools for ATPG and for verification,

so off the shelf state of the art tools can be used.

The mapping methodology has the following disadvantages.

1. The ATPG performed is unconstrained, hence a module level test may

not always be mapped to the system level.

2. Convergence might be slow if high coverage is required since the hard

to detect faults are not targeted. There is no guarantee that a specific

fault that can have a gate level test will have a system level mapping.

3. For scalability manual abstractions such as removing multiplier would

be necessary to do the system level mapping.

We address these shortcomings in our research. The main objective of

our research is “the holy grail of testing”, viz., functional vectors with high

structural coverage.

24

Chapter 3

Formal Methods

3.1 Introduction

Formal methods are primarily concerned with checking if a logic formula

is valid. An example of a logic formula is a Boolean formula. In formal

verification the problem of checking a specification against a design is cast as

a formula validity problem. There are two fundamental approaches to check

the validity of a formula [40].

• Deduction based approach, where deductive reasoning using axioms and

inference rules check the validity of a formula. Theorem provers like

ACL2 [2] use this kind of reasoning.

• Enumeration based approach, where all the possible candidate solutions

of the formula are enumerated and checked. Model checking [23] uses

this kind of reasoning.

The enumeration based proof has the advantage that in the case the

formula is not valid, it has the capability to generate candidate instances for

which the formula is not satisifiable. We can use this mechanism to generate

tests. Deduction based approach typically is able to give a yes or no answer

25

without producing candidate instances of invalidity. User insight is required to

analyze the results of a failed deduction. Hence in our research we use model

checking tools and their capability to generate counter-examples.

3.2 Model checking

As mentioned earlier, model checking [23] is a technique that can be

used to check if the design meets specification. Specifications are captured

using temporal logic which is capable of expressing time based relationship

between states in a finite state machine. The very first temporal logic proposed

for model checking was computational tree logic (CTL) [23], and then linear

temporal logic (LTL) [54] also gained in popularity (even though LTL was

proposed before CTL). Today in the industry, system verilog assertions (SVA)

[11] is very popular method of specifying assertions on verilog designs.

3.2.1 Unbounded vs bounded model checking

Unbounded model checking means checking properties against the de-

sign without any time bounds. If the unbounded model checking returns true

then the property always holds true on the design. Usually model checking

almost always refers to unbounded model checking. These types of checkers

start from the initial state and recursively checks the reachable states for a

failure.

Bounded model checking (BMC) [15] checks properties only within a

user specified time bound. If the BMC returns true then it means that the

26

Figure 3.1: Unrolling a DUT for a bound of n cycles

property only holds within the bound time. It is possible that the property

fails outside the time bound. Hence bounded model checking is not a complete

check. As shown in Figure 3.1, BMC for a sequential design involves unrolling

the circuit n times (for a bound of n), each unrolled instantiation corresponds

to one time frame. The property to be verified is also translated for the bound

of n.

Unbounded model checking is not as scalable as BMC since the search

space can be quite large for the entire system. On industrial designs an un-

bounded check can run for days without returning an answer. In the case of

27

BMC the user has control over how deep the search needs to be performed,

hence is much more scalable than unbounded model checking. BMC is typ-

ically used to find bugs in a design since it cannot be used as a complete

verification method. If a property does not hold true then the BMC returns a

counter-example that caused the property to fail. We use this feature of BMC

in our research to generate tests.

3.2.2 Properties

Three types of properties are used in design verification [63].

1. Safety: these properties are used to specify the good reachable states

in the design. If a state in which the safety property does not hold is

reachable, then the verification fails.

2. Fairness: these properties are of the form, a state that can be infinitely

often enabled should be reachable infinitely often.

3. Liveness: these properties specify that a state should be eventually reach-

able.

We use safety properties for test generation. Our choice of safety prop-

erties is explained in the next chapter. The property that an error from a

fault should reach one of the observable points in the DUT is the observabil-

ity property. This property is negated and given to the BMC. If the fault

is observable then we have a counter-example to the negated property. This

counter-example will be our test.

28

Chapter 4

Functional Test Generation for Hard to Detect

Stuck-At Faults using RTL Model Checking

4.1 Introduction

In this research we present a generic approach for generating functional

tests for gate level stuck-at faults. Our approach is similar to gate level ATPG

in that we target specific faults but is more scalable since we generate tests

based on the RTL. Our technique does not supplant existing functional test

generation methods but complements them since it generates tests for the

remaining hard to detect faults that were not detected using an existing tech-

nique. We model the gate level stuck-at fault in RTL using Boolean difference.

The fault controllability and observability conditions are then captured as an

LTL property [47]. A RTL Bounded Model Checker (BMC) is then used to

find a counter-example to the negation of this property. The counter-example

would contain the instruction level test for the gate level stuck-at fault. If a

counter-example is not produced then the fault is termed untestable. Scal-

ability is achieved by converting the RTL design and LTL property into a

bit-vector BMC problem, which is then solved using an SMT solver. We fur-

ther achieve scaling by extracting a structural observability property for the

stuck-at fault using the Control Data Flow Graph (CDFG) of the RTL. This

29

Figure 4.1: RTL test generation methodology for gate level faults

affords us scaling by constraining the state space of the search and structurally

reducing the size of the BMC problem.

A flow chart of the methedology is shown in Figure 4.1. The contribu-

tions of this research are as follows.

1. We introduce a test generation technique for gate level faults using RTL

Bounded Model Checking.

30

2. Our technique is generic enough so that it can be applied to any RTL

based design.

3. We provide a theoretical framework to check the observability and con-

trollability of a stuck-at fault as an RTL Model Checking problem.

4. We leverage advances in RTL level Formal Methods like SMT solvers

to solve the test generation problem. We also present a technique to

further leverage the use of RTL by optimizing the BMC formulation for

test generation.

4.2 Preliminaries

4.2.1 Boolean difference

Boolean difference is used to express the observability of a fault at a

given observable point. Applying Boolean difference to generate tests for stuck-

at faults using Satisfiability (SAT) solvers was first introduced by Larrabee

[43]. Given two Boolean functions O and O′ which have the same inputs

x1, x2..., xn, the Boolean difference between the two functions is expressed as

Obd = O(x1, x2..., xn)⊕O′(x1, x2..., xn)

If O represents the output of the fault-free combinational circuit and O′

represents the output of the corresponding faulty circuit then Obd represents

all possible input combination under which F and F ′ differ. If Obd = 0 then

the fault is not detectable under any input values. Hence Boolean difference

31

can be used to capture the effect of a fault at the output of a circuit. The

output of the faulty circuit can also be expressed as

O′ = O(x1, x2..., xn)⊕Obd(x1, x2..., xn)

4.2.2 Model Checking

Given a Finite State Machine M and temporal property P , a Model

Checker verifies if the property P is true of the model M or it false. We use

temporal properties expressed in LTL [47]. The LTL operator X represents

the next state operator and X(P) means that the property P should be true

in the state after the current state. F represents the future operator and F (P)

means that the property P should hold in some future state after the current

state. G represents the global operator and G(P) means that the property P

should be true in all states, i.e, the current state and the ones that appear in

the future.

Model checkers come in different flavors. Some approaches are tuned to

prove a property and some are designed to falsify a property. Bounded Model

Checking [15] is one such approach that is more suitable to falsify a property.

A Bounded Model Checker checks if a property P holds for the model M

within a given time bound n. A BMC based on SMT (or SAT) solvers works

as follows.

Let M = (S0, I, PO,R,RF, T), where S0 is the initial state constraint,

I is the set of primary inputs, PO is the set of primary outputs, R is the set

of internal registers, RF is the register file and T is the set of transition rela-

32

Figure 4.2: Transitive Fan-in Illustration

tionships between one register state to another. A BMC creates the following

formulation of M and P

B = S0 ∧M0 ∧M1 ∧M2 ∧ ... ∧Mn ∧ (¬P)

where Mi = Ri ∧ Ii ∧ POi ∧ Ti is the SMT-lib (or CNF) formulation of the

model M at time frame i, and ¬P is the SMT-lib (or CNF) formulation of the

negation of the property to be falsified. If the SMT (or SAT) solver finds that

the SMT-lib (or CNF) formula B is satisfiable then the formula P does not hold

true. Moreover the counter-example can be extracted from the assignments to

I0, I1, ..., In.

If the SMT (or SAT) solver finds that the formula B is not satisfiable

then we would have to rerun the BMC with a larger bound. Hence BMC

is an incomplete method suited to falsification. We use the counter-example

generation feature of BMC to generate tests.

33

4.3 Approach

4.3.1 Capturing Gate level faults in RTL

In our approach we assume that there is a one to one match between the

registers in the synthesized gate level netlist and the RTL of the Design Under

Test (DUT). This means that a combinational equivalence check between the

netlist and RTL should be satisfied. In most designs this is true except when

parts of the circuits are retimed [44]. Our method in its current form cannot

be applied to those retimed parts of the circuit.

For any given stuck-at fault in the netlist we extract registers and pri-

mary outputs in its combinational output cone. For each of these registers/pri-

mary outputs we then extract the combinational circuit up to the registers and

primary inputs in their input cone, i.e., the combinational circuit driving them.

This is illustrated in Figure 4.2, where the area shaded in gray is the fan-out

of the fault and the circuit enclosed by the dashed line is the transitive fan-in.

In essence we are extracting the outputs affected by the given stuck-at fault

and the transitive fan-in of the combinational circuit in which the stuck-at

fault exists.

Let o1, o2, ..., om be the registers/primary outputs in the combinational

output cone of the stuck-at fault. Let the combinational circuit driving these

outputs be represented by the Boolean function

oj = fj(ij,1, ij,2, ..., ij,l)

where ij,1, ij,2, ..., ij,l are the registers/primary inputs of the DUT that drive

34

the combinational input cone of oj.

We compute the corresponding Boolean function for oj with the fault

inserted in the combinational input cone. Let this Boolean function for the

faulty circuit be represented as

ofj = f f
j (ifj,1, i

f
j,2, ...i

f
j,l)

The fault is propagated to the output ofj when its value differs from the

corresponding value in the fault-free circuit, i.e., oj. This can be expressed as

the following Boolean difference.

faultofj
= fj(i

f
j,1, i

f
j,2, ...i

f
j,l)⊕ f f

j (ifj,1, i
f
j,2, ...i

f
j,l)

Whenever the fault condition faultofj
is satisfied the fault is acti-

vated at ofj and its value differs from the fault-free value. of1 , o
f
2 , ..., o

f
m are

referred to as fault activation points, since the fault effect is seen at these

points. Note that all the signals ofj , i
f
j,1, i

f
j,2, ...i

f
j,l exist in the RTL because of

the combinational equivalence assumption.

The faulty RTL model M f is constructed from the fault-free RTL model

M by inserting muxes at the fault activation points (see example later in this

section). All occurrences of oj in the LHS of assignments (continuous/always

block assignments) in M are replaced with o′fj . o′fj contains the fault-free

value in M f . Occurrences of oj in the RHS of assignments in M are replaced

with ofj in M f . When fault condition faultofj
is false ofj = o′fj , and when

the fault condition is true the fault is activated and ofj = ¬o′fj . Hence the

35

Figure 4.3: Stuck-at Fault Example

fault condition determines when to inject the fault into the RTL. The faulty

machine M f = (S0, I, POf , Rf , RF f , T f) is a copy of the fault-free machine

with the fault injection logic added to T f .

As an example consider the Verilog RTL code below.

always @(posedge clk)

if (rst) out <= 1′b0;

else out <= in⊕ out;

The corresponding gate level netlist and the stuck-at fault is shown in

Figure 4.3. The fault condition is faultout = (¬rst ∧ ¬in ∧ out).

The faulty RTL is as shown below. The signals with the superscript f

indicate that these are signals in the faulty RTL.

always @(posedge clk)

36

Figure 4.4: Fault Injection Mux Example

if (rst) out′f <= 1′b0;

else out′f <= inf ⊕ outf ;

assign faultout = (¬rst ∧ ¬in ∧ out′f);

assign outf = (faultout?¬out′f : out′f);

The circuit representation of the Faulty RTL with the fault injection

mux is shown in Figure 4.4.

Algorithm 4.1 gives the general outline for injecting faults into the RTL.

Given the RTL (DUTRTL), a gate level module (Mnetlist) and a fault (Fg, Fp, Ft)

in the gate level module, it creates a faulty RTL (DUTFaultyRTL) corresponding

to the fault. At step 1 of the algorithm, we extract the faulty version of the gate

level netlist (MFaulyNetlist) using the gate (Fg), pin (Fp) and stuck-at fault type

(Ft). Then we identify all the primary outputs and flops in the combinational

fan-out cone of the fault, this is represented as SPO,flops. For each of the signals

37

(OuputSig) in SPO,flops, we extract the ROBDD (Reduced Ordered Binary

Decision Diagram [20]) corresponding to the combinational fan-in cone, which

is represented as BDDOutputSig. We also extract the corresponding faulty

ROBDD from MFaultyNetlist, which is represented as FAULTY BDDOutputSig.

We then extract the ROBDD for the fault condition (BDDFaultCond) by xor-

ing BDDOutputSig and FAULTY BDDOutputSig. The SOP (Sum of Products) is

extracted from BDDFaultCond, represented as SOPFaultCond. Finally, we insert

a mux at OuputSig in DUTFaultyRTL using SOPFaultCond to get the faulty RTL.

Algorithm 4.1 Fault injection

Input: DUTRTL, Mnetlist, (Fg, Fp, Ft)
Output: DUTFaultyRTL

1: MFaulyNetlist = inject fault(Mnetlist, (Fg, Fp, Ft));
2: DUTFaultyRTL = DUTRTL;
3: SPO,flops = extract combo primary outputs flops(Mnetlist,Fg);
4: for all SPO,flops do
5: BDDOutputSig = extract combo fan in(Mnetlist,OuputSig);
6: FAULTY BDDOutputSig = extract combo fan in(MFaultyNetlist,OuputSig);
7: BDDFaultCond = BDD XOR(BDDOutputSig,FAULTY BDDOutputSig);
8: SOPFaultCond = extract SOP(BDDfaultCond);
9: DUTFaultyRTL = insert mux(DUTFaultyRTL, SOPFaultCond);
10: end for
11: return DUTFaultyRTL

4.3.2 Test Generation Using Model Checking

For identifying the conditions for observability of the fault we construct

a product machine M ×M f , where

M ×M f = (S0, I, PO ∪ POf , R ∪Rf , RF ∪RF f , T ∪ T f)

38

In the product machine the primary inputs are shared between M and

M f , but every other signal has two copies, one in M and another in M f .

The fault controllability LTL property is given by

Cfault = F (faultof1
∨ faultof2

∨ ... ∨ faultofm)

which means for the fault to be activated, any one of the fault conditions should

be true in the future. If the model checker proves that the property Cfault does

not hold on M ×M f then the fault is not controllable. Hence model checking

to prove ¬Cfault can serve as a quick check to prune out uncontrollable faults.

The fault observability LTL property is given by

Ofault = (F (
∨
∀i

BDPOi
) ∨ F (

∨
∀k

G(BDRFk
))))

where BDPOi
= (POi⊕POf

i), which represents a difference in values at the ith

primary output of the good and faulty machine. And BDRFk
= (RFk⊕RF f

k),

which represents a difference in values at the kth register file of the good and

faulty machine. The first part of Ofault captures the condition that the fault

effect should be propagated to any one of the primary outputs in the future.

The second part captures the condition that once a fault effect is propagated

to a register file it remains there, which is specified by the global LTL operator.

This is done from a test generation perspective. If the model checker generates

a counter-example for the property ¬Ofault and it shows that a fault effect can

be propagated to a register file then we would like the fault effect to be stored

there till the end of the counter-example. The next instruction we append to

39

the counter-example would be a read from the register file to which the fault

effect was propagated. This would ensure that the fault effect is propagated

to a primary output from the register file.

If the model checker can prove that Ofault does not hold on M ×M f

then we can conclude that the fault is not observable. Proving that Ofault

does not hold is harder to do that to prove that Cfault does not hold. This

is because the search space of the Observability property is much larger than

the search space of the controllability property.

We ask a Bounded Model Checker(BMC) to falsify the property ¬Ofault.

The initial state S0 of M ×M f is chosen to be some valid functional state for

the internal registers and the register file is left unconstrained. The inputs are

restricted to be valid instructions so that we get functionally valid counter-

examples. For a given fault the minimum bound that should be given to the

BMC is (Imin+Omin) where Imin is the smallest number of cycles for a value at

a primary input to reach any one of the fault activation points and Omin is the

smallest number of cycles required for a value at the activation point to reach

any one of the primary outputs. If the BMC generates a counter-example to

¬Ofault, then that counter-example is a functional test to activate and detect

the stuck-at fault. If the BMC is not able to generate a counter-example then

we try with a larger bound.

40

4.4 Observability Property using CDFG

The functional test generation approach mentioned in the previous sec-

tion has two main disadvantages. Firstly, for a given bound there are two

unrolled copies of the RTL, one is the fault-free version and the other is the

faulty version. If we can reduce the size of unrolled product machine M ×M f

we can reduce the search time for finding a test. Secondly, since there are no

additional constraints other than the instruction constraints at the input, the

solver underlying the BMC should do all the work of finding a valid propaga-

tion path for the fault effect. This increases the search space for the solver.

The search space can be reduced if we add additional path propagation con-

straints for a given fault. Yang et al. [72] show that supplying intermediate

conditions to a BMC engine helps falsify a property faster. In this section we

solve the above two problems by extracting a structural observability property

based on the CDFG of the RTL. This property helps reduce the size of un-

rolled M ×M f given to BMC and also provides intermediate constraints for

the propagation path of the fault.

4.4.1 Structural Dependency Graph

To create the observability property for a fault we extract a Dependency

Graph for the fault from the CDFG of the DUT. Let the dependency graph

be Dg = (V,E), where V is the set of vertices and E is the set of edges (vi, vj)

where vi, vj ∈ V . Each of the vertices in Dg corresponds to signals(wires,

registers) in the RTL. A signal b is said to be data dependent on signal a if a

41

Figure 4.5: Example of a control and data dependency graph

appears on the RHS of an assignment to b. b is said to be control dependent on

a if a appears in a conditional statement (examples are if and case statements)

that makes an assignment to b. An edge (vi, vj) exists in Dg if the signal

corresponding to vj is data or control dependent on the signal corresponding

to vi.

Consider the verilog code shown below, the dependency graph for this

code is given in Figure 4.5. The edge labeled ’c’ captures the control depen-

dency and the edge labled ’d’ captures the data dependency.

always @(posedge c l k)
case (opcode)

2 ’ b0 : out <= in1 + in2 ;
2 ’ b1 : out <= in1 − in2 ;
2 ’ b2 : out <= in1 ∗ in2 ;
2 ’ b3 : out <= in1 << in2 ;

endcase

Dg for a given fault is created by performing a breadth first search

42

starting at the fault activation points. Any signal that is control or data

dependent on any of the fault activation points is added to Dg. The graph

grows by continuing the breadth first search on the newly added vertices. We

stop the breadth first search when we reach a signal that is a primary output

or a register file. Hence the dependency graph Dg represents all the possible

paths for the fault effect to propagate from the fault activation points to the

observable points (primary outputs and register file).

4.4.2 Observability Property

The structural observability property is now constructed from the De-

pendency Graph Dg. Every vertex v in Dg will have an LTL property Pv

associated with it. Pv will depend on the type of vertex v.

1. If v corresponds to some primary output signal POi, then Pv = BDPOi
,

where BDPOi
= (POi ⊕ POf

i)

2. If v corresponds to some register file RFi, then Pv = G(BDRFi
)

3. If v corresponds to some internal wire IWi, with w0, w1, ..., wn as the suc-

cessors of v in Dg, then Pv = (BDIWi
∧ (LTL Op(Pw0)∨LTL Op(Pw2)∨

... ∨ LTL Op(Pwn))), where LTL Op(Pwk
) = X(Pwk

) if successor wk

corresponds to a register, else LTL Op(Pwk
) = Pwk

4. If v corresponds to some internal register Ri, with w0, w1, ..., wn as the

successors of v in Dg, then Pv = (BDRi
∧(LTL Op(Pw0)∨LTL Op(Pw2)∨

... ∨ LTL Op(Pwn) ∨X(Pv))), where LTL Op(Pwk
) is as defined in (3).

43

Property (1) above ensures that the fault effect is observed at the primary

output in the state in which it is evaluated. Property (2) ensures that the

fault effect remains in the register file till the end of the counter-example as

discussed in Section 4.3.2. Property (3) captures the case when a fault effect is

seen at in internal wire, then the fault effect should be propagated to any one

of its successors. If the successor is a register then the fault effect is propagated

in the next time frame. If the successor is not a register then the fault effect is

propagated in the current time frame. Property (4) is similar to property (3)

in that it ensures the fault effect is propagated to successors. But since this

property is specific to vertices corresponding to internal registers, it has the

choice of propagating the fault effect in the next time frame as well. Hence

this property is recursive.

For any given vertex v, if Pv is true then it implies that the fault effect

was seen at the signal corresponding to v and it was propagated to one of

the observable points. If v1, v2, ..., vn are vertices in Dg corresponding to fault

activation points then the final observability property is given by

Ofault =

F ((Pv1 ∨ Pv2 ∨ ... ∨ Pvn) ∧ ((
∨
∀i

BDPOi
) ∨ (

∨
∀k

G(BDRFk
))))

Ofault specifies that in some future time the fault will be activated at

any one of the fault activation points and will be propagated to one of the

observable points. Hence a counter-example to the property ¬Ofault will serve

44

as functional test for fault activation and detection. This property restricts

the search space to only the possible propagation paths for the backend solver

of the BMC.

Consider the verilog code below.

always @(posedge c l k)
sum <= PI | sum ;

assign O1 = sum & t1 ;

always @(posedge c l k)
t3 <= sum & t2 ;

always @(posedge c l k)
i f (t3)

O2 <= a | | b ;

The dependency graph corresponding to this code is given in Figure 4.6.

Let us assume that D/D is in the signal sum and we need to propagate it to

one of the observable outputs O1 or O2. We create the following intermediate

and final observability properties.

BDs = s⊕ sf

PO1 = BDO1

PO2 = BDO2

Pt3 = (BDt3 ∧ (X(PO2 ∨ Pt3)))

Psum = (BDsum ∧ (PO1 ∨X(Pt3 ∨ Psum)))

Final observability Property :

F (Psum ∧ (PO1 ∨ PO2))

45

Figure 4.6: Control and data dependency graph of verilog example

4.4.3 Structural Reduction

The Dependency Graph Dg and the structural observability property

Ofault affords us further reduction in the size of the unrolled product machine

M ×M f .

4.4.3.1 Reducing Duplicated Signals

In Section 4.3.2 we saw that while constructing M ×M f every signal

in the design other than primary inputs is duplicated, i.e., there is a fault-free

and a faulty copy. Since Dg exactly keeps track of those signals that see the

fault effect, a signal that does not appear in Dg need not be duplicated since

the fault effect will not be propagated to that signal. Hence we maintain a

46

single fault-free version of such signals. This reduces the number of duplicated

signals in M ×M f .

Let smin be the minimum number of cycles required to propagate a fault

effect from any of the fault activation points to the signal s, where s is in Dg.

smin can be computed as the minimum of the number of registers encountered

on any path from any of the fault activation points to s. Since signal s does

not see the fault effect till time frame smin, we can maintain a single fault-free

copy of s for each time frame less than smin. This further reduces the number

of duplicated signals in the unrolled product machine M×M f for the bounded

model check.

4.4.3.2 Bounded Cone of Influence Reduction

Bounded Cone of Influence Reduction [16] removes irrelevant signals

and behaviors from the unrolled product machine M ×M f . This is achieved

by identifying those signals that do not have direct or indirect impact on the

structural observability property Ofault. Both the irrelevant signal and the

assignment to those signals are removed from the unrolled product machine.

This reduction is possible because the observability property is structural and

would not have been possible with observability property given in Section 4.3.2.

Both reductions discussed reduce the size of formula given to the backend

solver and hence help in further reducing the running time of the BMC.

47

4.5 Experimental Results

4.5.1 OR1200 Processor

We carried out experiments on an Intel quad-core 2.5 GHz server with

32 GB of RAM. We used OR1200 processor [8] as the DUT. OR1200 processor

is an open source RISC processor with a 5 stage pipeline. The verilog source

code and the instruction set manual is available at [8]. The processor has a 5

stage pipeline with separate data and instruction caches. It has all the basic

pipeline units like instruction fetch, instruction decode, execute, write-back

and memory access. In addition it has an exception handling unit. It has 32,

32-bit general purpose registers. The synthesized netlist of the processor has

approximately 3.4K state elements and roughly 37K gates.

In order to get valid instructions in the test generation process, we had

to constrain some of the inputs of the OR1200 processor. This is discussed in

[32]. We used the below verilog constraint, similar to that introduced in [32].

always
begin
// r s t and s t a l l d e a c t i v a t i o n
i c p u e r r i = 0 ; // f o r d e a c t i v a t i n g f e t c h s t a l l s
d u s t a l l = 0 ;
d c p u r t y i = 0 ;
r s t = 0 ; // d i s a b l e r e s e t

. . .

i f (! VALID INSTR)
a s s e r t VALID INSTR PR : (1 ’ b0) ;

end

48

always (∗)
begin

i f ({ i c p u d a t i [3 1] , i c p u d a t i [3 0] , i c p u d a t i [2 9] ,
i c p u d a t i [2 8] , i c p u d a t i [2 7] , i c p u d a t i [2 6] } ==
‘OR1200 OR32 ADDI) { // i n t e g e r a d d i t i o n

VALID INSTR = 1 ’ b0 ;
} else i f {

. . . // Cons t ra in t s f o r o ther uops here
} else { // None o f the i n s t r u c t i o n s match

VALID INSTR = 1 ’ b0 ;
}

end

The first part of the constraints corresponds to disabling reset and other

conditions such as a fetch stall due to cache miss. The second part captures

the constraint that the generated instructions should be valid. VALID INSTR

is true only if the value in the signal that fetches the instruction from the

instruction cache, icpu dat i, is a valid opcode. We add a condition that the

assertion VALID INSTR PR should never be fired when generating a test.

We had to manually look up the OR1200 processor ISA and create the valid

instructions constraint.

4.5.2 Identifying Hard-to-detect Faults

We considered faults only in the control part of the circuit since data-

path elements like adders and multipliers are easily controllable and observable

and can be effectively tested by random instructions. Stuck-at faults were

injected in all modules of OR1200 processor netlist except the ALU and then

49

Figure 4.7: Commercial ATPG tool results on OR1200 processor

a commercial ATPG tool was used to generate tests (using sequential ATPG)

for faults. Though the ALU was not part of the fault coverage numbers, it was

part of the design involved in the test generation process. The results of the

commercial ATPG run is shown in Figure 4.7. The graph plots the coverage

achieved by the commercial ATPG tool over time.

From the graph we can see that the commercial ATPG tool quickly

detects a lot of faults early in the process, but the rate at which faults are de-

tected decreases with time. This suggests that the remaining undetected faults

50

at any given time are harder to detect. The coverage due to the ATPG tool

slowed down considerably at approximately 78%. We stopped the commercial

ATPG run at this point and the remaining faults (collapsed undetected faults)

were considered as hard to detect faults, and were the focus of our test gen-

eration method. If the commercial ATPG tool is given sufficient time it will

be able to detect all the faults that we detect using our approach. However,

the objective of this commercial ATPG tool run was to extract hard to detect

faults.

The ATPG tool results cannot be compared to results from our method

for two reasons:

1. ATPG tools do not allow users to specify constraints, so the run had

all its inputs unconstrained. Therefore, the tests generated were non-

functional and the ATPG technique is not comparable to our approach.

2. ATPG tools perform a fault simulation to drop faults that are detected

by existing tests. We did not do a fault simulation, since our focus was

on test generation.

Table 4.1 shows the results of commercial ATPG for every module of

OR1200 processor. The last column gives the number of collapsed undetected

faults which was handled by our test generator.

51

Table 4.1: Commercial ATPG Coverage Results for OR1200 processor
Module Total

Faults
Undetected

Faults
Fault

coverage
(%)

of
Collapsed

Undetected
Faults

if 3160 621 80.35 328
ctrl 5510 2027 63.21 832

oprmuxes 4226 1113 73.66 378
sprs 9232 961 89.59 393

freeze 170 29 82.94 17
rf 77110 16508 78.59 7444

except 10368 2831 72.69 1263

Overall 109776 24090 78.05 10655

4.5.3 Fault Conditions

The fault conditions presented in Section 4.3.1 were computed using

Binary Decision Diagrams (BDDs) and then converted into Sum Of Products

(SOPs). To get a compressed SOP representation Espresso (a Boolean min-

imizer) was applied. Both the BDD package and Espresso were available in

the tool ABC [1]. The advantage of the SOP representation is that it does not

introduce new variables, i.e., the Boolean function can simply be represented

in terms of its input values. However, for some faults, the SOP representation

of the fault condition was very large with more than 300 terms. This led to

implementation issues because of large files representing the fault injection

conditions. So we considered only those faults which had less than 75 SOP

terms in their fault condition. In hindsight, a more compact representation like

And Inverter Graphs (AIGs) would be more efficient for capturing the fault

52

conditions. The faults that were dropped due to large SOPs are accounted for

in the final coverage numbers of our method.

There was some pre-processing time involved for each fault to compute

the fault activation condition, generate the faulty RTL, structurally reduce

the faulty RTL based on methods presented in Section 4.4.3 and generate the

final SMT BMC formulation. However, since this pre-processing time is low

and the test generation time is dominated by the time required to solve the

BMC formulation, we only consider the solver run time in our comparisons.

Table 4.2 shows the SOP of the fault condition corresponding to a s-a-1

fault at pin or1200 if/U44/B in the OR1200 instruction fetch module. The

fault had a single flop, or1200 cpu.or1200 if.addr saved[0] in its combinational

fan-out cone. The label of the columns give the names of the inputs in the

combinational fan-in cone. The “-” in the table corresponds to a “don’t care”.

Table 4.2: Example of SOP for fault condition in OR1200 processor fetch
module

icpu ack i saved addr saved[0] flushpipe if freeze

- 1 0 0 1
0 - 0 0 1

4.5.4 SAT-based ATPG

We compared our method against SAT-based ATPG since it is the

only other method that is similar to our method in that it targets specific

faults. We implemented a version of TEGUS [64] for sequential test generation

by unrolling the design across time frames. MiniSAT [7] was used as the

53

backend solver. We also include run times for the BMC formulation presented

in Section 4.3.2 (henceforth referred to as Naive Observability Method)

to get a relative measure of improvement in test generation time due to the

structural observability property presented in Section 4.4 (henceforth referred

to as Structural Observability Method).

Table 4.3: Running Time and Coverage Results for SAT-based ATPG
Module Fault

coverage by
Commercial
ATPG(%)

of
Collapsed

Undetected
Faults

SAT-based ATPG

FC(%) # TO Avg.
Time(s)

if 80.35 328 84.11 310 96.18
ctrl 63.21 832 65.97 817 83.12

oprmuxes 73.66 378 76.09 354 95.49
sprs 89.59 393 90.85 381 93.71

freeze 82.94 17 99.14 2 64.41
rf 78.59 7444 80.50 7268 97.57

except 72.69 1263 73.48 1209 98.63

Overall 78.05 10655 79.17 10343 96.23

For the BMC runs we used a bound of 6, which is the number of pipeline

stages plus one additional time frame. With this bound there are enough cycles

for an instruction to take effect even in the presence of pipeline forwarding.

A time out period of 100 seconds was chosen and any fault for which a test

was not produced within the time out period was classified as undetected. We

used EBMC [4] as the RT-level model checker to create the SMT formulation

and Boolector [3] as the backend SMT solver.

54

Table 4.3 shows the fault coverage and run times for OR1200 processor

by SAT-based ATPG. The module names are given in the first column followed

by the fault coverage by commercial ATPG in the second column. The third

column gives the collapsed list of undetected faults. The last row gives the

consolidated numbers for the entire design. Column labeled FC% is the fault

coverage percentage. Column labeled # TO is the number of faults that timed

out. Column labeled Time(sec) gives the average time taken to generate a

test for a fault in seconds. This statistic accounts for time due to timed out

faults as well. From Table 4.3 we can see that SAT-based sequential ATPG

timed out on most faults. Hence it did very little to improve the fault coverage.

This high number of time outs was mainly due to the multiplier being included

in the fan-out cone of influence of the fault and hence the SAT formula having

an instance of the multiplier. SAT solvers choke on solving multiplier instances.

4.5.5 The Naive Observability Method

From Table 4.4 the naive observability method performs better than

SAT-based ATPG; however, the test generation times are still very high. The

fault coverage percentage is significantly better than SAT-based sequential

ATPG. Clearly SMT outperforms SAT in solving these instances.

The graph in Figure 4.8 plots the running times of 832 faults in the

control module of OR1200 processor for SAT-based ATPG vs. the naive ob-

servability method. This gives an idea of the distribution of the run times.

SAT-based ATPG times out on most of the faults; however, the naive ob-

55

Table 4.4: Running Time and Coverage Results for the naive observability
method

Module Fault
coverage
by Com-
mercial

ATPG(%)

of
Collapsed

Undetected
Faults

Naive Observability
Method

FC(%) # TO Avg.
Time(s)

if 80.35 328 88.49 161 95.13
ctrl 63.21 832 97.15 59 69.72

oprmuxes 73.66 378 98.26 6 57.46
sprs 89.59 393 93.78 57 90.27

freeze 82.94 17 100 0 43.51
rf 78.59 7444 90.21 463 69.83

except 72.69 1263 92.79 128 96.19

Overall 78.05 10655 93.86 874 76.11

servability approach is able to generate tests for most of these faults. This

can be attributed to the better handling of bit-vector data-path operators like

multipliers and adders by the SMT solver.

4.5.6 The Structural Observability Method

The Structural Observability Method has by far the best numbers, as

seen in Table 4.5. It has almost a 3x improvement over the naive method in

addition to improving upon the test coverage numbers. This shows that solvers

based on RTL will provide the highest scalability compared to Boolean level

solvers. Furthermore, use of structural design constraints can substantially

reduce the search space.

56

Figure 4.8: SAT-based ATPG vs. the naive observability method run times
for OR1200 ctrl module

From a manual study of the OR1200 processor RTL and gate-level

netlist, it was not clear if the 286 undetected faults were untestable. We

randomly picked out some of the undetected faults and tried to generate tests

using structural observability method with unbounded time and memory. Even

after running for about 24 hours and consuming significant run time memory,

the solver did not return with a result. So these faults are good candidates to

be functionally untestable faults.

A reduction in overall running time could have been achieved by per-

57

Table 4.5: Running Time and Coverage Results for structural observability
method

Module Fault
coverage
by Com-
mercial

ATPG(%)

of
Collapsed

Undetected
Faults

Structural Observability
Method

FC(%) # TO Avg.
Time(s)

if 80.35 328 98.17 25 23.14
ctrl 63.21 832 99.21 8 21.16

oprmuxes 73.66 378 100 0 19.33
sprs 89.59 393 97.53 12 18.39

freeze 82.94 17 100 0 10.48
rf 78.59 7444 98.37 172 22.85

except 72.69 1263 97.63 69 38.14

Overall 78.05 10655 98.87 286 24.23

forming fault simulation after a test is generated for a given fault. This is

because a single test would be capable of detecting multiple faults and those

detected faults could have been dropped from the fault list. However, since we

were interested in identifying the average run times and making a comparative

study we did not filter out the faults detected by each test.

The graph in Figure 4.9 plots the running times of 832 faults in the

control module of OR1200 processor for SAT-based ATPG vs. the structural

observability method. SAT-based ATPG times out on most of the faults, but

the structural observability method is able to generate tests for most of these

faults in reasonably time. This can be attributed to three improvements: (1)

better handling of bit-vector data-path operators by the SMT solver, (2) struc-

58

Figure 4.9: SAT-based ATPG vs. the structural observability method run
times for OR1200 ctrl module

tural reduction and (3) constraining of the search space by the observability

property.

The graph in Figure 4.10 plots the running times of the same 832 faults

in the control module of OR1200 processor as earlier for the naive observability

method vs. the structural observability method. The structural observability

method is able to generate tests for most of these faults in much less time.

Some of the faults that timed out for the naive observability approach are also

detected. The improvements are mainly due to structural reduction and the

59

Figure 4.10: The naive observability method vs. the structural observability
method run times for OR1200 ctrl module

observability constraints. In the graph we can see that some of the faults that

were quickly detected by the naive observability method need more test gen-

eration time for structural observability method. This is due to the overhead

introduced by the observability property itself. The observability property

adds additional variables and logic which stands out for some of the faults

that were quickly detected by the naive observability method.

Table 4.6 gives us a few sample tests that were generated by the struc-

tural observability method. The first column gives the module in which the

60

fault exists. The second column gives the gate level pin of the fault. The

third column gives the type of stuck-at fault and the last column gives the

instruction level test. The length of the instruction sequence varies from 2 to

6, (6 being the BMC bound is the maximum size of the tes)t. The size of

the test varies depending on the cone of influence of the fault. Faults deep in

the pipeline typically have larger cones of influence and hence required longer

tests.

Table 4.6: Sample tests generated by structural observability method
Module Pin Fault type Test

or1200 wbmux /U10/Y s-a-0 l.movhi r2, r20, 0x321
l.sb 0x02(r0),r2

l.addi r7, r2, 0x453
l.nop

l.ror r8,r21,r7
or1200 if /U51/B s-a-1 l.andi r1, r0, 0x83fa

l.or r12, r0, r1

4.6 Summary

In this research we have shown a new methodology for generating func-

tional tests for gate level faults using RTL. The improvement in fault coverage

and a comparison of the run times of the different methods is summarized in

Figure 4.11 and Figure 4.12 respectively. Our methodology is general enough

to be applied to any design and can be used as an alternative to sequential

ATPG. Though our method is expensive in that it generates a single test for

a given stuck-at fault, it is ideal for plugging coverage holes in existing func-

61

Figure 4.11: Improvement in fault coverage due to different methods for
OR1200 processor

Figure 4.12: Average run time of different methods for OR1200 processor

62

tional tests by targeting the hard to detect faults and improving the overall

coverage. Our experimental results show that solvers that work at higher levels

of abstraction perform better than Boolean level solvers and hence scalability

can be achieved only by exploiting abstractions at the RT level.

In this work we exploit the advancements made in SMT solver technol-

ogy. We formulate the BMC problem as a bit-vector formula and rely on a

fast bit-vector solver. Further scaling of our method can be achieved by using

other abstraction techniques like Array abstractions and under approximation

techniques like bit-width abstractions and data-path operator abstractions.

SMT solvers also have incremental and unsatisfiable core extraction capabil-

ities which can further be applied for scaling. Our formulation of the test

generation problem as a RTL Model Checking problem also makes it possible

to exploit advances in High Level Model Checking such as predicate abstrac-

tion, which can be applied only to the RT level of abstraction.

63

Chapter 5

Application of Under-approximation

Techniques to Test Generation

In this chapter we present our work which improves the scaling of our

test generation methodology introduced in the previous chapter. In order to

generate a test for a fault all the behaviors of the DUT are not required. We

use this observation to remove some of the behaviors that are irrelevant to the

fault under test. This reduces the search space for the model checker, making

it possible to scale our original methodology to larger designs. So given a DUT

and a stuck-at fault we create an abstraction, called under-approximation, that

has fewer behaviors compared to the un-abstracted DUT. A test generated by

the model checker on the under-approximate abstraction is also valid on the

un-abstracted DUT. We explore two kinds of under-approximations: bit-width

reduction and data-path operator approximation.

In bit-width reduction we restrict the domain of bit-vector variables in

the RTL. Such a restriction would constrain the search space for the solver,

improving running time. If the abstraction is unsatisfiable we use the unsat

core to determine if a refinement of the abstraction is necessary i.e., if we

need to increase the width of the bit-vector. Such a restriction is an under-

64

approximation because the variable size is restricted which in turn reduces the

number of possible behavors of that variable.

In data-path operator approximation technique all the data-path opera-

tors are partially interpreted. Specific operators are chosen to be approximated

and a fixed set of rewrite rules are used to replace the original operators with

their approximations. Both the range and the domain of these functions are

reduced. Such an approximation is an under-approximation because only a

subset of the true functionality of those operators is captured.

The contributions of this chapter are as follows.

1. We introduce a highly scalable test generation technique for gate level

faults using RTL bounded model checking.

2. We show the effectiveness of under-approximation as an abstraction tech-

nique for test generation.

3. We leverage structural insights from the DUT and the fault under test

to make under-approximation more effective for test generation.

5.1 Introduction

Given the faulty product state machine M ×M f we create a structural

under-approximate abstraction

M ×M f = (S0, P I, PO ∪ POf , R ∪Rf , RF ∪RF f , T ∪ T f)

65

where, M ×M f represents the under-approximation of the faulty prod-

uct state machine, S0 is the initial state constraint, PI is the set of primary

inputs, PO is the set of primary outputs in the good machine, POf is the set

of primary outputs in the faulty machine, R is the set of internal registers in

the good machine, Rf is the set of internal registers in the faulty machine, RF

is the register file in the good machine, RF f is the register file in the faulty

machine, T is the set of transition relationships between one register state to

another in the good machine, T f is the set of transition relationships between

one register state to another in the faulty machine and T ∪ T f ⊂ T ∪ T f i.e.,

only a subset of the possible transitions is available in M ×M f .

Theorem 1. A witness to the observability property Ofault in the state machine

M ×M f is also a witness to Ofault in the state machine M ×M f .

Proof. For simplicity and without loss of generality let us represent the product

machine M×M f by the Kripke structure K = (S, I, R, L), where S represents

the set of states, I ⊂ S is the set of initial states, R ⊂ (S, S) is the set of

transitions, and L : S → 2AP is a labeling of state properties where AP is

a set of atomic propositions. Similarly let the under-approximate abstraction

M ×M f be represented by the Kripke structure K = (S, I, R, L), where S ⊂ S

is the set of states, I ⊂ I is the set of initial states, R ⊂ R is the set of

transitions.

A witness to Ofault in M ×M f can be represented by a path w =

(s0, ..., sn) through K that satisfies Ofault, where {s0, ..., sn} ∈ S and (si, si+1) ∈

66

R where i = 0, ..., n − 1. Now since S ⊂ S, {s0, ..., sn} also ∈ S and since

R ⊂ R, (si, si+1) also ∈ R. Hence path w also exists in M ×M f and since w

satisfies Ofault, w is also a witness to Ofault in M ×M f .

By Theorem 1, every test created for a fault on the under-approximation

is also a test for the same fault in the DUT. The added advantage is that

the under-approximation has fewer states and transitions and hence the SMT

solver has to search through a smaller search space. Hence we focus on creating

under-approximate abstractions that can be solved easily by the SMT solver

but at the same time has enough behaviors to activate the fault and propagate

the fault to the output. If a test is not created on the under-approximation,

i.e., the solver returns an unsat result, then more analysis is required to check

if the fault is untestable or if under-approximation needs to be refined. An

under-approximation that needs to be refined has too few behaviors to detect

the fault.

5.2 Under-approximation Techniques

5.2.1 Bit-width Reduction

In this abstraction we restrict the domain of bit-vector variables in the

RTL. These restrictions would imply that each of the bit-vectors would take a

smaller subset of the possible values. This reduction in the domain of possible

values of the bit-vector may speed up the search. If the abstraction is unsat-

isfiable we use the unsat core to determine if a refinement of the abstraction

67

Figure 5.1: Bit-width Refinement loop

is necessary. This loop of abstraction and refinement is shown in Figure 5.1.

In bit-width reduction the most significant bits of the bit-vector are

constrained and the rest of the least significant bits are left unconstrained

[18]. If w is the size of the bit-vector and the lower n bits are unconstrained

then n becomes the effective bit-width. The upper (w − n) bits can be sign-

extended, zero-extended or one-extended [18]. Such a restriction is an under-

approximation because the variable size is restricted which in turn reduces the

number of possible behavors of that variable.

5.2.1.1 Bit-width Encoding

We enforce bit-width reduction by adding additional constraints on the

bits of a bit-vector. Let us assume we want to constraint a w size bit-vector

68

variable v to an effective bit-width of n and sign-extend the higher bits.

∧
i∈{n,...,w−1}

((vn−1 ∨ vi ∨ ev) ∧ ((vn−1 ∨ vi ∨ ev))

Assuming variable ev to be true enables the constraint and it is disabled

otherwise. This is used during refinement if we want to disable a constraint.

The above constraints ensures that bit vi is equal to bit vi−1 i.e., the sign bit

is extended to the higher bits.

5.2.1.2 Motivating Example

Consider the verilog code shown below, where in1, in2 and out are

32-bit variables.

always @(posedge c l k)
case (opcode)

2 ’ b0 : out <= in1 + in2 ;
2 ’ b1 : out <= in1 − in2 ;
2 ’ b2 : out <= in1 ∗ in2 ;
2 ’ b3 : out <= in1 << in2 ;

endcase

Let us assume that we have to propagate the D/D, which originates

at opcode, to out. In this case we do not need in1, in2 and out to be 32-bit

wide. We can reduce them to 1-bit each, and even under these restrictions it

is evident that the D/D can be propagated to out. The dependency graph for

the above code is shown in Figure 5.2. From the dependency graph we can

infer that if the D/D is propagating to a control dependent variable then we

69

do not need the full bit-width of the control dependent variable. However if

the D/D is propagating to a data dependent variable then we may need the

full bit-width of the data dependent variable.

Figure 5.2: Variable dependency graph

It might initially appear that constraining bit-vectors this way might

lead to spurious tests. Take the example of a 32 bit counter that computes

the next address for the program counter. If we reduce the size of the counter

from 32 bits down to say 2 bits then one might think that the counter would

count 0, 1, 2, 3, 0 and so on, which would be invalid. But the restrictions only

constrains the width of the variable and does not modify the functionality of

the counter itself. Hence, the counter would only be allowed to add up to 3

and not beyond that.

70

5.2.1.3 Refinement Strategies

As shown in Figure 5.1, we initially add restriction clauses to reduce

some of the bit-vector variables to get a reduced SMT formula. If the solver

returns an unsat result we analyze the unsat core to check if SMT formula was

truly unsatisfiable. The unsat core gives the variables that were involved in

the unsatisfiability. If none of the under-approximated variables appear in the

unsat core then no test is possible. If any of the under-approximated variables

appear in the unsat core then we refine relax the constraints on those variables.

A relaxation of a variable means that we increase the effective bit-width of

the variable. This refinement loop allows the solver to maintain the learned

clauses across refinements. The width of the good and faulty versions of a

signal should always be the same. Hence when we relax the width constraint

on a variable, we increase the width of both the faulty and non-faulty version

of the signal. This is required from a correctness perspective, otherwise the

solver will generate false results. Since the objective is to propagate a Boolean

difference to one of the observable points in the design, a spurious Boolean

difference might be generated if the width of good and faulty versions of the

signal are not maintained to be equal.

A variety of refinement strategies are discussed in [18]. The bit-vector

variables to be refined can be identified through the unsat core. A local re-

finement involves refining only those variables identified in the unsat core. A

global refinement involves refining all the variables in the SMT formula. We

also have the option of increasing the effective bit-width of the variables by

71

one at each refinement or double it.

The local strategy is too fine grained and a lot of time is spent in the

refinement loop for some faults. The global strategy is too coarse grained and

the complexity of the SMT formula increases exponentially at each refinement.

Our refinement strategy lies somewhere between local and global refinement.

Also we start with the effective bit-width of one for the bit-vector variables

and whenever we need to refine some variables we remove all the constraints

on those variables. Our initial abstraction is guided slightly by the user. Only

the variables affected by the data-path bus and address-bus are reduced. This

is because most of the control variables take a specific subset of values. If these

variables are reduced then the solver has to refine these variables irrespective

of the fault under test. Also the advantages of bit-width reduction comes from

reducing the complexity of arithmetic operators which lie in the data-path and

address logic.

Our refinement algorithm is discussed in Algorithm 5.1. dep graph

is the dependency graph which indicates the dependencies and their types

between variables. unsat C is the set of unsat clauses and the function call

refinement variables (unsat C) returns the set of variables that need to be

refined. In this algorithm we start at the variables that need to be refined and

then refine all the variables that are directly or indirectly data dependent on

them. This is because the D/D is possible propagated through these variables.

Consider the verilog example below.

72

Algorithm 5.1 Forward Refinement of Variable Bit-width

Input: dep graph, unsat C
Output: Refined variables
1: RV ← refinement variables(unsat C);
2: push(queue, RV);
3: while (is empty(queue)) do
4: cur vertex = front(queue);
5: refine(cur vertex);
6: SV = successors(dep graph, cur vertex);
7: for all succ vertex ∈ SV do
8: if (dep type(cur vertex, succ vertex) == datapath) then
9: push(queue, succ vertex);
10: end if
11: end for
12: end while

reg a , b ;

reg [1 : 0] c , d ;

always @(posedge c l k)
c <= {a , b } ;

always @(posedge c l k)
d <= c ;

In this example assume that the D/D is in variable a and has to be

propagated through c to d. Let us also assume that initially the variables c

and d are reduced to 1-bit variables. Since c is reduced the D/D cannot be

propagated, because a drives the upper bit of c. In the case of local refinement,

only bit c will be refined and increased to a 2-bit variable. The variable d

will be refined in the next iteration. In the case of graph based refinement,

variable d will be refined in the same iteration as variable c, since there is

73

a data dependency between c and d. In this way, dependency graph based

refinement reduces the number of refinement loops.

5.2.2 Data-path Operator Approximation

In this technique all the data-path operators are partially interpreted.

This means that hard operators are replaced by an approximation that cap-

tures only a subset of the defined functionality. We use fixed rewrite rules

to approximate the operators. Both the range and the domain of these func-

tions are reduced. Such an approximation is an under-approximation because

only a subset of the true functionality of those operators is captured. The

multiplication operator can be rewritten as follows.

• out = x ∗ y is replaced by (x = 0 =⇒ out = 0) ∧ (x = 1 =⇒ out =

y) ∧ (y = 0 =⇒ out = 0) ∧ (y = 1 =⇒ out = x)

Similarly, addition can be rewritten as:

• out = x + y is replaced by (x = 0 =⇒ out = y) ∧ (y = 0 =⇒ out = x)

These rewrite rules completely remove the complexity of addition and

multiplication and leave behind functions that are very easy to solve. As long

as the D/D does not originate at the operator we can rewrite the operator.

5.2.2.1 Motivating Example

Consider the RTL code show below

74

always @(posedge c l k)
case (opcode)

2 ’ b0 : out <= in1 + in2 ;
2 ’ b1 : out <= in1 − in2 ;
2 ’ b2 : out <= in1 ∗ in2 ;
2 ’ b3 : out <= in1 << in2 ;

endcase

Let us assume that we have to propagate the D/D, which propagates

into in, and then to out. In this case we do not need the full functionality of

any of the operators. The operators can be reduced to propagation functions

that simply pass the value at the input to the output and the fault will be

detectable under this reduction.

The approximated operators need not always be reduced to propagation

functions but any sort of “look up table” can serve as a approximation. The

objective is to remove the complexity of performing the computations by the

solver. The use of propagation functions, like the ones in the example above,

increase the likelihood of propagating the D/D towards the observable points.

5.3 Experimental Results

We carried out experiments on an Intel quad-core 2.5 GHz server with

32 GB of RAM. We again used OR1200 processor [8] as the DUT. We again

considered faults only in the control part of the circuit since data-path elements

like adders and multipliers are easily observable and can be effectively tested.

Stuck-at faults were injected in all modules of OR1200 processor netlist except

the ALU and then a commercial ATPG tool was used to generate tests (using

75

sequential ATPG) for faults. Though the ALU was not part of the fault

coverage numbers, it was part of the design involved in the test generation

process. The coverage due to the ATPG tool saturated at approximately 78%.

The remaining faults (collapsed undetected faults) were considered as hard

to detect faults and were the focus of our test generation method. Table 4.1

shows the results of commercial ATPG for every module of OR1200 processor.

The last column gives the number of collapsed undetected faults which was

handled by our test generator.

For the bounded model checker (BMC) [16] runs we used a bound of 6,

which is the number of pipeline stages plus one additional time frame. With

this bound there are enough cycles for an instruction to take effect even in the

presence of pipeline forwarding. A time out period of 100 seconds was chosen

and any fault for which a test was not produced within the time out period

was classified as undetected. We used EBMC [4] as the RT-level model checker

to create the SMT formulation and Boolector [3] as the backend SMT solver.

We implemented the under-approximation techniques as a layer over

Boolector.

First we compared the bit-width reduction technique with dependency

graph based refinement against local refinement strategy and the results are

shown in Table 5.1.

The first column gives the different modules in OR1200 processor. The

second column labeled “No abstraction” gives the run time for our original

76

Table 5.1: Running Time for Bit-width reduction
Module Average time(s)

No abstraction Local refinement Graph based refinement
if 23.41 53.03 16.27

ctrl 21.16 38.74 12.49
oprmuxes 19.33 42.61 10.18

sprs 18.39 26.31 8.72
freeze 10.48 32.10 7.15

rf 22.85 34.06 9.17
except 38.14 35.38 17.24

Overall 24.23 35.18 10.62

methodology. The third column and the fourth column give the run times

for local refinement strategy and dependency graph based refinement strategy.

We can see that dependency graph based refinement is about 2x faster than

running the solver without any abstraction. Even though the average runtime

of local refinement is higher than running the solver without abstraction, there

were cases which were solved in 4x the time taken to solve those instances with-

out abstraction. The reason for this worst case behavior is that a lot of time

was spent refining variables along a propagation path. This is where the de-

pendency graph based refinement excels as it avoids the additional refinement

iterations by making the refinements more eagerly. Some manual input was

involved to decide the initial abstraction. For example, the signal icpu dat i

fetches the next signal from the instruction cache. If this 32-bit signal is re-

duced then we will not be able to create tests since the opcode is typically

determined by the most significant bits. Another bad candidate for reduction

is the 5-bit signal or1200 ctrl.alu op which determines the type of ALU op-

77

eration. Example of a good candidates for abstraction are data-path signals

such as or1200 alu.a, or1200 alu.b and or1200 alu.result. Similarly data-path

variables in OR1200 register file and write-back muxes are good candidates

for reduction. We analyzed the verilog code and determined bit-vectors that

should not reduced, i.e., bit-vectors that were going to refined if reduced. The

rest of the bit-vector variables were allowed to be reduced.

Figure 5.3: The structural observability method (no abstraction) vs. local
refinement strategy run times for OR1200 ctrl module

The graph in Figure 5.3 plots the running times for the 832 faults in

the control module of OR1200 processor for no abstraction (the structural

78

Figure 5.4: The structural observability method (no abstraction) vs. depen-
dency graph based refinement strategy run times for OR1200 ctrl module

observability method) vs. local refinement strategy. The overall run time of

local refinement is higher than not using abstraction. As explained earlier, this

is because of the overhead of the refinement loop. There are also more faults

that time out than when we use no abstraction. However, we can see that

there are many instances where local refinement performs much better than

when no abstraction is used. This motivated us to develop a better strategy

than the local refinement strategy.

79

The graph in Figure 5.4 plots the running times for the 832 faults in the

control module of OR1200 processor for no abstraction vs. the dependency

graph based refinement. The overall run time of dependency graph based

refinement is lower than when no abstraction is used. There are some faults

for which the refinement loop takes more time than when no abstraction is

used. The faults that are undetected by dependency graph based refinement

but are detected when abstraction is used, are also faults that need more time

for refinement. They are detected if the time out period is increased.

Table 5.2: Fault coverage results from structural observability method (no
abstraction) for OR1200 processor

Module FC(%) # TO

if 98.17 25
ctrl 99.21 8

oprmuxes 100 0
sprs 97.53 12

freeze 100 0
rf 98.37 172

except 97.63 69

Overall 98.87 286

Table 5.2 gives the fault coverage when using the structural observabil-

ity method (no abstraction) for the modules of OR1200 processor. Table 5.3

gives the fault coverage with the dependency graph based refinement for the

modules of OR1200 processor. Compared to the coverage with no abstraction,

the dependency graph based refinement results in a few time outs, resulting

in a slight drop in coverage. However, the faults that are undetected by de-

pendency graph based refinement but are detected by no abstraction, can be

80

Table 5.3: Fault coverage results from dependency graph based refinement for
OR1200 processor

Module Fault
cov-
er-
age
(%)

TO

if 98.05 35
ctrl 99.21 8

oprmuxes 100 0
sprs 97.53 12

freeze 100 0
rf 98.32 190

except 97.62 72

Overall 98.79 317

detected by dependency graph based refinement if the time out period is in-

creased. The faults that are undetected by no abstraction remain undetected

in the dependency graph based refinement. This is because those faults are

possibly functionally untestable and having a bit-width reduction based under-

approximation will not help in proving the faults untestable. Each refinement

of the model takes us closer to the original model that was not abstracted. As

mentioned earlier, under-approximations are not suited to proofs.

We carried out similar experiments for operator approximation. We re-

duced bvmul, bvadd, bvsub, bvshl, bvshr, bvxor and bvor operators in OR1200.

Only the operators in the OR1200 alu were reduced. The approximations for

each of the operators had to be worked out manually. Most of the approxima-

tions were chosen such that one of the inputs was passed on to the output as

81

is, without any transformation. We used the following rewrite rules:

• out = x ∗ y is replaced by (x = 0 =⇒ out = 0) ∧ (x = 1 =⇒ out =

y) ∧ (y = 0 =⇒ out = 0) ∧ (y = 1 =⇒ out = x)

• out = x + y is replaced by (x = 0 =⇒ out = y) ∧ (y = 0 =⇒ out = x)

• out = x−y is replaced by (x = 0 =⇒ out = −y)∧(y = 0 =⇒ out = x)

• out = x� y is replaced by (x = 0 =⇒ out = 0)∧ (y = 0 =⇒ out = x)

• out = x� y is replaced by (x = 0 =⇒ out = 0)∧ (y = 0 =⇒ out = x)

• out = x⊕ y is replaced by (x = 0 =⇒ out = y) ∧ (y = 0 =⇒ out = x)

• out = x|y is replaced by (x = 0 =⇒ out = y) ∧ (y = 0 =⇒ out = x)

The run time results are shown in Table 5.4.

Table 5.4: Running Time for Operator Approximation
Module Average time(s)

No abstraction Operator Approximation
if 23.41 6.79

ctrl 21.16 8.42
oprmuxes 19.33 7.84

sprs 18.39 8.19
freeze 10.48 5.91

rf 22.85 10.72
except 38.14 12.29

Overall 24.23 8.86

82

The second column labeled “No abstraction” gives the run time for

our original methodology and the third column gives the run time for opera-

tor approximation. The run times show that there is a 3x improvement over

abstraction-less runs. Operator approximation was applied only to operators

on the data-path bus, and operators that are used for address computation

like counters were not reduced. This was done mainly because reduction of op-

erators in control logic hampers functionality greatly. Such reductions become

counterproductive by producing more unsat results. Other than the data-path

logic there are no candidates for operator approximation.

The graph in Figure 5.5 plots the running times for the 832 faults in the

control module of OR1200 processor for no abstraction vs. data-path operator

approximation. We can see that operator approximation improves the run

time for all the faults. As explained earlier, the improvement is because all the

complexity of the data-path operators is taken out of the SMT formula. Since

there is no refinement involved, there is no worsening of run time for some

faults as it was in the case of bit-width refinement. The reduction in logic

complexity also results in 3 of the faults being proven unsat. We will discuss

why this cannot be considered as untestable faults when we next discuss fault

coverage.

Table 5.5 gives the fault coverage due to data-path operator approxima-

tion for the modules of OR1200 processor. We can see that the fault coverage

is the same as that of no abstraction. The faults that timed out turned out to

be the same faults that timed out with no abstraction. In addition, data-path

83

Figure 5.5: The structural observability method (no abstraction) vs. data-
path operator approximation run times for OR1200 ctrl module

operator approximation approach was able to return unsat result for some

faults. These faults timed out and were undetected with no abstraction. We

cannot, however, conclude that these faults are functionally untestable since

these were unsatisfiable with an under-approximation.

84

Table 5.5: Fault coverage results for data-path operator approximation
Module FC(%) # TO unsat

if 98.17 20 5
ctrl 99.21 5 3

oprmuxes 100 0 0
sprs 97.53 8 4

freeze 100 0 0
rf 98.37 139 33

except 97.63 48 21

Overall 98.87 220 36

5.4 Summary

Our experimental results show the scalability of the under-approximation

technique. We get a 2x-3x improvement in run time over the pure SMT based

approach. Bit-vector reduction and operator approximation techniques are

very powerful abstractions that are highly suitable to test generation. We

leverage the advancements in SMT solvers and we exploit reductions that

can be made at higher levels of abstraction to generate tests for gate level

faults. Though some manual insights are required for guiding the under-

approximations, our method is nonetheless effective for targeting coverage

holes in the control logic of large designs. Further scaling of this approach

can be achieved by combining bit-width abstraction and data-path operator

approximation. Path based search can also be implemented as a layer above

these abstractions to achieve even higher scalability. The use of operator ap-

proximation suggests that the logic of counter arithmetic with uninterpreted

functions [19] can also be used to generate tests for faults in the control logic.

85

We will explore these approaches in the future.

86

Chapter 6

Path Based Search for Test Generation

As seen in the previous chapter, creating under-approximations of de-

signs is very useful for speeding up our test generation algorithm. The under-

approximations in the previous chapter focused more on behavioral reduction

by looking at the semantics of RTL. We also introduced some reductions,

namely removing duplicated signals and cone of influence reduction, which

were structural in nature. These reductions did not look at semantics but re-

duced the design by analyzing the RTL structure. We explore another struc-

tural reduction, path based search, in this chapter. Instead of solving the

entire SMT formula in one run, we solve it piecewise. We try to identify error

propagation paths for the fault that are easily solvable for the solver. The

paths are chosen using the dependency graph and then we run a bounded

model check for the observability property for the chosen paths. Since it will

be a smaller SMT formula than the complete SMT formula, the idea is that

solver will return an answer faster. If the solver returns unsat, then we search

through a different set of paths. If the solver returns a counterexample (i.e.,

a test), then this test will be valid on the original DUT since this kind of

reduction is also an under-approximation.

87

6.1 Introduction

Path based search depends on the SMT solver’s ability to solve the

SMT formula incrementally. Therefore, the solver needs to able to take in

SMT assumptions on the fly. For the search to be efficient the solver should

maintain lemmas (learned clauses in the case of SAT) between successive solver

calls.

6.1.1 Background: Incremental Satisfiability

We will look at an example of learned clause in the case of SAT. Con-

sider the following CNF clauses that need to be satisfied by a SAT solver.

• c1 = (x̄1 ∨ x2)

• c2 = (x̄1 ∨ x3 ∨ x5)

• c3 = (x̄2 ∨ x4)

• c4 = (x̄3 ∨ x̄4)

• c5, ..., cn

Assume that the clauses c1, c2, c3, c4 are as above and there are addi-

tional unspecified clauses. Let us assume that in the midst of solving clauses

c1, c2, c3, c4 the solver picked up the conflict clause:

c1, c2, c3, c4 =⇒ (x5 ∨ x̄1)

88

What this means is that (x5 ∨ x̄1) should always be true when clauses

c1, c2, c3, c4 are included in the search. We can see that if (x5 ∨ x̄1) is false,

at least one of c1, c2, c3, c4 will be left unsatisfiable. Such learned clauses will

help the search through Boolean constraint propagation in the SAT solver.

Discarding these learned clauses will often slow down the search, hence, it is

beneficial to keep them. These learned clauses will be added on the fly to the

list of CNF clauses that need to be satisfied. A SMT solver also operates in a

manner similar to a SAT solver and keeps such a list of learned clauses.

6.2 Path Search Heuristics

Incremental SAT solving was first applied to bounded model checking

by Shtrichman [62]. The intuition behind this was that smaller SAT formula,

typically have less complexity and are much easily solved. If a counter-example

is obtained on a partial SAT formula then it will be valid on the complete

formula. We apply this approach to test generation using SMT solvers. The

idea that smaller formulae are more easily solved than larger formulae also

applies to SMT, but, in addition the complexity is determined by the operators

in the SMT formula also.

In our approach, instead of searching through all possible error propa-

gation paths of a fault, we choose specific subset of paths. We use the variable

dependency graph to identify which paths need to be explored first. When

such propagation paths are chosen the entire fan in cone of the paths have to

be included in the SMT formula. This is to ensure that we have sound results.

89

So this means that when we choose a path to an observable signal in the design

(registers primary outputs) we have to include the entire fan in cone of the

chosen observable signal. The observability property for this observable signal

is synthesized within the chosen fan in cone. This SMT sub-formula will be

much smaller than the original formula. If the SMT solver finds a solution

to this sub-formula then we have a test. Since the formula was smaller, the

solution would be found much faster.

If the SMT solver finds that the sub-formula is unsatisfiable then the

error cannot be propagated to the chosen observable signal. It is still possible

that fault can be observed at a different observable signal, hence, the search

is not complete. We choose a different observable signal and search through

all possible paths from the fault to the chosen signal. We do this by adding

the additional logic of fan in cone of the newly chosen observable signal to the

previous sub-formula. There might be overlap in logic cones, in which case

the learned clauses for that part of the logic will already be maintained. The

solver will not have to start the search from scratch, hence, a solution might

be reached faster. If the learned clauses were not maintained the search would

be much more inefficient. We need to search through every observable signal

till we find a test.

As an example let us assume that the variable dependency graph shown

in Figure 6.1 corresponds to some design. PO1, PO2 and PO3 are the only

observable signals. If we search through path (v1, v2, v3, PO1) and find that

it is unsatisfiable then we search through path (v1, v2, v4, PO2). If we still

90

Figure 6.1: Example of path search

do not find a test we search through path (v1, v5, PO3) to end the search.

It might initially appear that we could use the unsat core to prune

observable signals that might not be reachable. Since the unsat core is the

subset of assumptions that are unsatisfiable, any observable signals in the out-

put cone of these assumptions will not be observable. However, most SMT

solvers return an approximation of the minimal unsatisfiable core and often

the approximations are not very tight. For the search to be sound, the mini-

mal unsatisfiable core should be used. If we use approximations then we might

prune out signals that were observable resulting in an incomplete search. Gen-

erating the minimal unsatisfiable core is also a NP problem, hence, there are

91

no fast solutions.

6.2.1 Path Selection

In this section we will look at our path search heuristics in detail. Since

there are a lot of observable signals, searching through them one at a time

will be inefficient. The number of calls to the solver becomes significant and

increases the search time. Hence, we search through sets of observable signals

at a time. At each step, the fan in cone logic corresponding to the entire

set of observable signal is considered. We also add the observability property

corresponding to this reduced cone. Algorithm 6.1 gives the outline of path

based search loop.

Algorithm 6.1 Path based search

Input: dep graph, Fsmt

Output: sat or unsat
1: obs sig = select obs sig(dep graph);
2: F ′smt = prune paths coi(dep graph, Fsmt, obs sig)
3: result = sat(F ′smt)
4: while ((result == unsat) & exists obs sigs(dep graph)) do
5: next obs sig = select next obs sig(dep graph)
6: F ′smt = F ′smt ∪ prune paths coi(dep graph, Fsmt, next obs sig)
7: result = sat(F ′smt)
8: end while
9: return result

The order in which an observable signal is chosen depends on its dis-

tance to the location of the fault. Signals that are at a nearer to the fault

are chosen first. There can be a number of paths from the fault location to

the observable signal in the variable dependency graph. The length of a given

92

path is the number of nodes (corresponding to variables) in that path. The

depth of a observable signal is the length of the shortest path from the fault

location to the observable signal in the dependency graph. We choose this,

since shorter paths are more likely to be searched faster, and a fault might be

more easily propagated along a shorter path. The second ordering metric we

use is the number of data-path dependencies along the shortest path. Observ-

able signals that have more data-path dependencies along the shortest path

are chosen first. This is done because error along data-path dependencies are

more easily propagated than along control dependencies.

As an example, assume that the verilog code below corresponds to the

dependency graph in Figure 6.1.

always @(posedge c l k)
v5 <= v1 ;

always @(posedge c l k)
PO3 <= v5 ;

always @(posedge c l k)
v2 <= v1 ;

always @(posedge c l k)
i f (a)

v4 <= v2 ;
else

v3 <= v2 ;

always @(posedge c l k)
PO2 <= v4 ;

always @(posedge c l k)

93

PO1 <= v3 ;

Now let us assume we need to propagate the D/D in v1 to one of the

observable outputs PO1, PO2, PO3. We create the following SMT-lib [10]

formula for the fault free DUT.

: assumption (or C 1 (iff v5’1 v1’0))

: assumption (or C 2 (iff PO3’2 v5’1))

: assumption (or C 3 (iff v2’1 v1’0))

: assumption (or C 4 (ite a’1 (iff v4’2 v2’1) (iff v3’2 v2’1)))

: assumption (or C 5 (iff PO2’3 v4’2))

: assumption (or C 6 (iff PO1’3 v3’2))

For the SMT variables above the time frame of the unrolled variable is

specified after the tick. We have only shown the SMT formula for the fault

free machine, the SMT formula for the faulty machine and the observability

property is created as described in Chapter 4. The variables starting with C

are the control variables used to determine if we want to include the SMT

assumption in the current search or not. We start the search along the path

(v1, v5, PO3) since it is the path with the least number of variables involved.

We set the variables C 1 and C 2 to true and the rest of the control variables to

false. Let us assume, for the sake of argument, that the path (v1, v5, PO3) is

unsatisfiable. Then to search along (v1, v2, v4, PO2) we set C 3, C 4 and C 5

to true and the rest of the variables to false. In this way, the control variables

help us to determine which SMT assumptions to include in the current search.

94

6.3 Experimental Results

We carried out experiments on an Intel octa-core 2.9 GHz server with

384 GB of RAM. We again used OR1200 processor [8] as the DUT. Data-

path elements were excluded and only faults in control logic were considered.

The ALU was part of the DUT model, but no faults were injected into it.

Commercial ATPG was used to weed out the more easily detectable faults.

The collapsed list of undetected faults from ATPG were classified as hard to

detect faults and was the base list of faults for our test generation. Table 4.1

gives the result of the commercial ATPG run on OR1200.

We used a bound of 6 (pipeline depth + 1) for the bounded model

checker. A bound of 6 gives sufficient cycles for the error to propagate to one

of the outputs. When a bound of 5 was used, most of the faults timed out or

were unsatisfiable. For test generation, we used a time out of 100 seconds based

on experiments from the previous chapters. Timed out faults were classified

as undetected.

Microsoft Z3 [6] was used as the SMT solver. The path based search

algorithm was built as a plug-in module using the Z3 API interface. Table 6.1

gives the experimental results for structural observability method. The number

of faults that timed out and the average running time for each OR1200 module

is listed. Z3 was used as the backend solver.

The experimental results for path based search are given in Table 6.2

We see that the number of time outs have gone up marginally. However, the

95

Table 6.1: Experimental results for structural observability method
Module # of

Collapsed
Undetected

Faults

TO Avg.
Time(s)

if 328 20 18.65
ctrl 832 12 20.72

oprmuxes 378 0 15.49
sprs 393 15 16.57

freeze 17 0 9.68
rf 7444 196 23.21

except 1263 52 36.81

Overall 10655 295 23.94

run time for test generation has given a speedup of 1.45 over a full search.

Thus, we get a run time improvement at the expense of fault coverage. The

path based search works well for faults whose effects can be propagated through

the shorter paths. For faults that are observable at signals that have longer

paths, the overhead of incremental satisfiability starts to take over.

The graph in Figure 6.2 plots the running times of the 832 faults in the

control module of OR1200 processor for the structural observability method

vs. path based search. The average run time of path based search is better

than structural observability method. The faults which take more time for

path based search than structural observability correspond to faults that need

deeper paths. For the faults that time out with path based search but are

detectable with path based search, increasing the time out period will detect

these faults.

96

Table 6.2: Experimental results for path based search method
Module # of

Collapsed
Undetected

Faults

TO Avg.
Time(s)

if 328 31 12.61
ctrl 832 25 14.39

oprmuxes 378 3 9.87
sprs 393 18 13.68

freeze 17 0 6.24
rf 7444 247 15.94

except 1263 78 24.41

Overall 10655 402 16.40

Table 6.3 gives the fault coverage due to structural observability method

(no abstraction) for the modules of OR1200 processor. Table 6.4 gives the fault

coverage due to path based search for the modules of OR1200 processor. The

increased number of time outs results in a slight drop in fault coverage.

6.4 Summary

Our experimental results show that path based search is a much more

scalable approach than a full search. We get a 1.45x improvement in run time

over a direct full search. The trade-off with the approach is increased time-outs

which results in slightly reduced fault coverage. Nonetheless it is a powerful

approach which can be used as a complimentary approach to existing solving

techniques. We take advantage of incremental solving abilities of SMT solvers

to direct the search piecewise. This approach is similar to choosing the variable

97

Figure 6.2: The structural observability method (no abstraction) vs. path
based search run times for OR1200 ctrl module

ordering in SAT solvers but the granularity in much higher. We choose groups

of RTL variables instead of SAT variables. We can further look at combining

under-approximation techniques introduced in the previous chapter, since this

might give us even higher scalability; we will explore these in the future.

98

Table 6.3: Fault coverage results due to structural observability method (no
abstraction) for OR1200 processor

Module FC(%) # TO

if 98.17 25
ctrl 99.21 8

oprmuxes 100 0
sprs 97.51 15

freeze 100 0
rf 98.28 196

except 96.14 52

Overall 98.87 295

Table 6.4: Fault coverage results from path based search for OR1200 processor
Module FC(%) # TO

if 98.13 31
ctrl 99.03 25

oprmuxes 99.81 3
sprs 97.50 18

freeze 100 0
rf 98.14 247

except 95.59 78

Overall 98.64 402

99

Chapter 7

Conclusion and Future Work

As we have seen in Chapter 1, the problem of generating at-speed

functional tests is very important. With advancements in device fabrication

the need for a promising solution is even more pressing. We have presented

various scalable techniques for this test generation problem. Our focus was on

targeting the stuck-at faults in the a processor.

7.1 RTL Based Test Generation

Our test generation methodology works at the RT-level, making it pos-

sible to use RT-level tools. The fault and its corresponding propagation prop-

erties are all captured at the RT-level. This in turn makes it possible to use

any constraint solver tool in our methodology. Any advancements is high

level solvers, such as SMT solvers, can be made use of, as and when they are

available.

The drawback of our approach is that the sizes of the propagation

properties can get very large quickly. For industrial size processors, the prop-

agation property might be so large that it will incur a significant overhead on

its own. Moreover, the cone of influence reduction is useful for only shallow

100

BMC bounds. As the BMC bound get larger, the shared logic of signals in-

creases and after a point the saving due to this reduction becomes negligible.

Hence this approach without any abstractions might not be very suitable for

processor with deep pipelines.

7.2 Design Abstractions

We have presented several design abstraction techniques to scale our ba-

sic test generation algorithm. Our experimental result shows that a significant

speed up is achievable using these techniques. Techniques such as bit-width

reduction and data-path operator approximation might involve some manual

insight for guiding the abstractions. The sort of information required does

not need expert architectural knowledge, but still the methods are not com-

pletely automatic. The success of our approach demonstrates the effectiveness

of higher levels of abstraction. Use of more abstract logic such as counter

arithmetic with uninterpreted functions [19] might provide even higher scal-

ability. These are over-approximation techniques but which have shown to

be applicable to out-of-order pipeline verification [41]. Use of uninterpreted

functions would be useful especially in generating tests for control path faults.

The other approach of path based search also provides significant speedup.

The downside is that the overhead of incremental solving might be too much

for some of the faults which might result in more timeouts. This technique

can be implemented in combination with the under-approximation techniques

which might give us even higher scalability. This needs a very good refine-

101

ment strategy since the refinement can be structural or on the bit-vector. The

refinement overhead for some faults might be very high.

Another interesting direction for future work would be explore use of

Craig interpolants [50] for slicing. Craig interpolants can be used to extract

fast over-approximate images. From these images we can perform a time based

slicing on the unrolled DUT, thereby reducing the size of the model which will

be passed on to a solver.

7.3 Other Applications of RTL Fault Injection

For all the presented test generation techniques we used the stuck-

at fault model. Our method of mapping stuck-at faults to the RTL model

can easily be extend to other applications. For example in the case of delay

faults, we can capture fault conditions required to activate the given path using

Boolean functions. Once we are able to map the fault to the RTL model the

rest of the test generation methodology remains the same. Gurumurthy et. al

[34] have used a bounded model checker to target delay defects. However, in

their approach all the fault conditions are not captured and hence suffers from

the problem of unconstrained gate-level test generation. Since we capture all

the fault conditions, this is not an issue in our approach.

We can also apply our approach to generate at-speed functional tests

for other problems, such as speed paths. A gate-level timing analysis can be

done to identify the paths that need to be sensitized. Then, we can capture

all the path sensitization conditions in the same manner as all fault conditions

102

are captured in this research. Finally, we can use the rest of our methodology

for generating functional tests as shown in Figure 7.1.

Figure 7.1: Flowchart for generating functional tests for speed paths

103

Bibliography

[1] ABC. http://www.eecs.berkeley.edu/ alanmi/abc/.

[2] ACL2. http://www.cs.utexas.edu/users/moore/acl2/.

[3] Boolector. http://fmv.jku.at/boolector/.

[4] EBMC. http://www.cprover.org/ebmc/.

[5] ITRS report - 2001. http://www.itrs.net/Links/2001ITRS/Home.htm.

[6] Microsoft Z3 SMT solver. http://z3.codeplex.com/.

[7] MiniSAT. http://minisat.se/.

[8] OR1200. http://www.opencores.org/openrisc,or1200.

[9] ORPSoC. http://www.opencores.org/openrisc,orpsocv2.

[10] SMT-lib. http://www.smtlib.org/.

[11] System Verilog Assertions. www.eda.org/.

[12] B. Alizadeh and M. Fujita. Guided gate-level ATPG for sequential cir-

cuits using a high-level test generation approach. In Proceedings of the

Asia and South Pacific Design Automation Conference, pages 425–430.

IEEE, 2010.

104

[13] P. H. Bardell, J. Savir, and W. H. McAnney. Built-in Test for VLSI.

Wiley, 1987.

[14] S. Bhatia and N. K. Jha. Integration of hierarchical test generation

with behavioral synthesis of controller and data path circuits. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 6(4):608–

619, 1998.

[15] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model check-

ing without BDDs. In Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 1999.

[16] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying Safety Properties

of a PowerPC- Microprocessor Using Symbolic Model Checking without

BDDs. In Proceedings of the Computer Aided Verification, pages 60–71.

Springer, 1999.

[17] D. Brahme and J. A. Abraham. Functional testing of microprocessors.

IEEE Transactions on Computers, 100(6):475–485, 1984.

[18] R. Brummayer and A. Biere. Effective Bit-Width and Under-Approximation.

In Proceedings of the International Conference on Computer Aided Sys-

tems Theory, pages 304–311. Springer, 2009.

[19] R. Bryant, S. Lahari, and S. Seshia. Modeling and verifying systems using

a logic of counter arithmetic with lambda expressions and uninterpreted

105

functions. In Proceedings of the Computer Aided Verification Conference,

pages 78–92. Springer, 2002.

[20] R. E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Transactions on Computers, 100(8):677–691, 1986.

[21] H.Y. Chang and G.W. Heimbigner. Lamp: Controllability, observability,

and maintenance engineering technique (comet). Bell System Technical

Journal, 53(8):1505–1534, 1974.

[22] L. Chen, S. Ravi, A. Raghunathan, and S. Dey. A scalable software-based

self-test methodology for programmable processors. In Proceedings of the

Design Automation Conference, pages 548–553. ACM, 2003.

[23] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization

skeletons using branching time temporal logic. In Logics of programs.

[24] F. Corno, G. Cumani, M. S. Reorda, and G. Squillero. Fully automatic

test program generation for microprocessor cores. In Proceedings of De-

sign, Automation and Test in Europe Conference and Exhibition, pages

1006–1011. IEEE, 2003.

[25] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. Reddy. Techniques

for minimizing power dissipation in scan and combinational circuits dur-

ing test application. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 17(12):1325–1333, 1998.

106

[26] E.B. Eichelberger and TW Williams. A logic design structure for LSI

testability. In Proceedings of the Design Automation Conference, pages

462–468. IEEE, 1977.

[27] R. D. Eldred. Test routines based on symbolic logical statements. Jour-

nal of the ACM, 6(1):33–37, 1959.

[28] H. Fujiwara and T. Shimono. On the acceleration of test generation

algorithms. IEEE Transactions on Computers, 100(12):1137–1144, 1983.

[29] I. Ghosh and M. Fujita. Automatic test pattern generation for func-

tional register-transfer level circuits using assignment decision diagrams.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 20(3):402–415, 2001.

[30] P. Girard. Survey of low-power testing of vlsi circuits. IEEE Design &

test of computers, 19(3):82–92, 2002.

[31] P. Goel. An Implicit Enumeration Algorithm to Generate Tests for Com-

binational Logic Circuits. IEEE Transactions on Computers, 100(3):215–

222, 1981.

[32] S. Gurumurthy, S. Vasudevan, and J.A. Abraham. Automated mapping

of pre-computed module-level test sequences to processor instructions.

In Proceedings of the International Test Conference, pages 10–20. IEEE,

2005.

107

[33] S. Gurumurthy, S. Vasudevan, and J.A. Abraham. Automatic generation

of instruction sequences targeting hard-to-detect structural faults in a

processor. In Proceedings of the International Test Conference, pages

1–9. IEEE, 2006.

[34] S. Gurumurthy, R. Vemu, J.A. Abraham, and D.G. Saab. Automatic

generation of instructions to robustly test delay defects in processors. In

Proceedings of the European Test Symposium, pages 173–178. IEEE, 2007.

[35] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and

J. Rajski. Logic BIST for large industrial designs: real issues and case

studies. In Proceedings of the International Test Conference, pages 358–

367. IEEE, 1999.

[36] A. Jas, J. Ghosh-Dastidar, and N. A. Touba. Scan vector compres-

sion/decompression using statistical coding. In Proceedings of VLSI Test

Symposium, pages 114–120. IEEE, 1999.

[37] B. Könemann. Built-in logic block observation techniques. In Proceed-

ings of International Test Conference, pages 37–41, 1979.

[38] N. Kranitis, A. Paschalis, D. Gizopoulos, and Y. Zorian. Effective soft-

ware self-test methodology for processor cores. In Proceedings of Design,

Automation and Test in Europe Conference and Exhibition.

[39] D. Kroening and S. A. Seshia. Formal verification at higher levels of

108

abstraction. In Proceedings of the international conference on Computer-

aided design, pages 572–578. IEEE, 2007.

[40] Daniel Kroening and Ofer Strichman. Decision procedures, volume 5.

Springer, 2008.

[41] S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of

out-of-order microprocessors in uclid. In Formal Methods in Computer-

Aided Design, pages 142–159. Springer, 2002.

[42] T. Larrabee. Effecient generation of test patterns using Boolean satisfia-

bility. Ph.D thesis, Stanford University, 1990.

[43] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 11(1):4–15, 1992.

[44] Charles E Leiserson and James B Saxe. Retiming synchronous circuitry.

Algorithmica, 6(1-6):5–35, 1991.

[45] L. Lingappan, S. Ravi, and N.K. Jha. Test generation for non-separable

RTL controller-datapath circuits using a satisfiability based approach. In

Proceedings of International Conference on Computer Design, pages 187–

193. IEEE, 2003.

[46] T.H. Lu, C.H. Chen, and K.J. Lee. Effective hybrid test program devel-

opment for software-based self-testing of pipeline processor cores. IEEE

109

Transactions on Very Large Scale Integration (VLSI) Systems, 19(3):516–

520, 2011.

[47] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent

systems: Specification, volume 1. springer, 1992.

[48] P. C. Maxwell, R. C. Aitken, V. Johansen, and I. Chiang. The effect of

different test sets on quality level prediction: When is 80% better than

90%? In Proceeding of International Test Conference, page 358. IEEE,

1991.

[49] E.J. McCluskey and C-W. Tseng. Stuck-fault tests vs. actual defects. In

Proceedings of the International Test Conference, pages 336–342. IEEE,

2000.

[50] K. L. McMillan. Applications of craig interpolants in model checking.

In Tools and Algorithms for the Construction and Analysis of Systems,

pages 1–12. Springer, 2005.

[51] G. Moore. Cramming more components onto integrated circuits. Elec-

tronics Magazine, 1965.

[52] B. T. Murray and John P. Hayes. Hierarchical test generation using

precomputed tests for modules. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 9(6):594–603, 1990.

110

[53] P. Parvathala, K. Maneparambil, and W. Lindsay. FRITS - A micropro-

cessor functional BIST method. pages 590–598. IEEE, Proceedings of

the International Test Conference, 2002.

[54] A. Pnueli. The temporal logic of programs. In Annual Symposium on

Foundations of Computer Science, pages 46–57. IEEE, 1977.

[55] M. Prabhu and J. A. Abraham. Functional Test Generation for Hard to

Detect Stuck-At Faults using RTL Model Checking. In Proceedings of

the European Test Conference, pages 1–6. IEEE, 2012.

[56] M. Prabhu and J. A. Abraham. Application of Under-approximation

Techniques to Functional Test Generation Targeting Hard to Detect Stuck-

at Faults. In Proceedings of the International Test Conference, pages 1–7.

IEEE, 2013.

[57] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda. Micropro-

cessor software-based self-testing. IEEE Design & Test of Computers,

27(3):4–19, 2010.

[58] J.P. Roth. Diagnosis of Automata Failures: a Calculus and a Method.

IBM journal of Research and Development volume 10, 10(4):278–291,

1966.

[59] K. Roy and J. A. Abraham. High level test generation using data flow

descriptions. In Proceedings of the conference on European design au-

tomation, pages 480–484. IEEE, 1990.

111

[60] J. Shen and J. A. Abraham. Native mode functional test generation

for processors with applications to self test and design validation. In

Proceedings of the International Test Conference, pages 990–999. IEEE,

1998.

[61] L. Shen and S. Y. H. Su. A functional testing method for microprocessors.

IEEE Transactions on Computers, 37(10):1288–1293, 1988.

[62] O. Shtrichman. Pruning techniques for the sat-based bounded model

checking problem. In Correct Hardware Design and Verification Methods,

pages 58–70. Springer, 2001.

[63] A. P. Sistla. Safety, liveness and fairness in temporal logic. Formal

Aspects of Computing, 6(5):495–511, 1994.

[64] P. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Com-

binational test generation using satisfiability. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 15(9):1167–

1176, 1996.

[65] S. M. Thatte and J. A. Abraham. Test generation for microprocessors.

IEEE Transactions on Computers, 100(6):429–441, 1980.

[66] R.S. Tupuri, A. Krishnamachary, and J.A. Abraham. Test generation

for gigahertz processors using an automatic functional constraint extrac-

tor. In Proceedings of the Design Automation Conference, pages 647–652.

ACM, 1999.

112

[67] A. J. Van De Goor. Using march tests to test srams. IEEE Design &

Test of Computers, 10(1):8–14, 1993.

[68] V. M. Vedula, J. A. Abraham, J. Bhadra, and R. Tupuri. A hierar-

chical test generation approach using program slicing techniques on hard-

ware description languages. Journal of Electronic Testing, 19(2):149–160,

2003.

[69] T. J. Verhallen and A.J. Van de Goor. Functional testing of modern

microprocessors. In Proceedings of European Conference on Design Au-

tomation, pages 350–354. IEEE, 1992.

[70] P. Vishakantaiah, J. Abraham, and M. Abadir. Automatic test knowl-

edge extraction from vhdl (atket). In Proceedings of the Design Automa-

tion Conference, pages 273–278. IEEE, 1992.

[71] L-T. Wang, C-W. Wu, and X. Wen. VLSI test principles and architec-

tures: design for testability. Academic Press, 2006.

[72] C.H. Yang and D.L. Dill. Validation with Guided Search of the State

Space. In Proceedings of the Design Automation Conference, pages 599–

604. ACM, 1998.

[73] L. Zhang, I. Ghosh, and M. Hsiao. Efficient sequential ATPG for func-

tional RTL circuits. In Proceedings of the International Test Conference,

pages 290–290. IEEE, 2003.

113

Vita

Mahesh Prabhu received his Bachelor’s in Computer Engineering from

National Institute of Technology Karnataka, India in 2005. He worked for

Archpro Design Automation between 2005-2007 as an R&D engineer. He

joined the graduate program at University of Texas at Austin in August 2007.

He completed got his Masters degree in Computer Engineering in 2009. He

has interned at Calypto Design Systems, Obsidian Software, Apple and Intel.

Currently he is working as a formal verification engineer at Intel, Austin. His

research interests include hardware test generation, formal verification and

post-silicon debug.

email: mprabhu@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

114

