
Copyright

by

Lingming Zhang

2014

The Dissertation Committee for Lingming Zhang
certifies that this is the approved version of the following dissertation:

Unifying Regression Testing with Mutation Testing

Committee:

Sarfraz Khurshid, Supervisor

Dewayne E. Perry

Darko Marinov

Miryung Kim

Adnan Aziz

Unifying Regression Testing with Mutation Testing

by

Lingming Zhang, B.S.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

Dedicated to my family.

Acknowledgments

I would like to thank all the people who helped me, accompanied me,

and encouraged me during my wonderful stay in Austin.

I want to give my deepest thanks to my Ph.D. advisor Sarfraz Khurshid.

I am very fortunate to work under his supervision. He is not only a great

researcher, teacher, advisor, but also a true friend. He spent tremendous

amount of time and energy to help me with various problems that I faced in

my research as well as daily life. When I get stuck in research, he is the person

to help me out; even when I locked my key in the car, he is the person to

pick me up. At the same time, he also tried his best to train me to be an

independent researcher. Simply, I cannot imagine a better advisor.

I want to thank Darko Marinov and Milos Gligoric from University of

Illinois at Urbana-Champaign. I really enjoyed working with them, and really

appreciate all their kindly help during my Ph.D. study. I will never forget that

Darko worked all night to help me revising my research drafts. While officially

Darko is not my co-advisor, in my mind, he is always my co-advisor. I will

also miss the old days that Milos and I spent weeks together working on some

interesting joint projects.

I want to thank Dewayne E. Perry, Miryung Kim, and Adnan Aziz

from our software engineering track. Dewayne is a great researcher as well

v

as a great director. His cheerful personality and focus on research inspire

me a lot. Miryung is a great teacher and collaborator. I learnt a lot from her

software evolution course, and really appreciate all her kind supervision during

the course and later in our joint projects. I also thank Adnan for his valuable

comments, suggestions, and questions when preparing this dissertation.

I want to thank my previous advisor Lu Zhang and Hong Mei from

Peking University, as well as Gregg Rothermel from University of Nebraska

at Lincoln and Tao Xie from University of Illinois at Urbana-Champaign. I

really appreciate their insightful supervision and helpful comments during the

early stage of my graduate study. Without them, I can hardly imagine that I

can eventually become a Ph.D. in the software engineering area.

I want to thank all my other collaborators during my Ph.D.’s study –

Xiaoyin Wang (University of Texas at San Antonio), Dan Hao (Peking Uni-

versity), Guowei Yang (Texas State University), Neha Rungta (NASA Ames),

Suzette Person (NASA Langley), Cristiano Pereira and Gilles Pokam (Intel

Labs). I really enjoyed working with them, and have learnt a lot from them.

I am proud to be a member of the Software Verification Validation and

Testing group. It is my great pleasure to work with the very brilliant fellow

students – Shadi Abdul Khalek, Junaid Haroon Siddiqui, Muhammad Zubair

Malik, Razieh Nokhbeh Zaeem, Divya Gopinath, Chang Hwan Peter Kim,

Guowei Yang, Sam Harwell, Diego Funes, Shounak Roychowdhury, Rui Qiu,

Shiyu Dong, Allison Sullivan, and Raghavendra Srinivasan. In addition, I will

miss my friends in the software engineering track – Yuqun Zhang, Ripon Saha,

vi

Yen-Jung Chang, James (Xi) Zheng, Meiru Che, Lisa (Jinru) Hua, Wei-Lun

Hung, and Tianyi Zhang.

I thank the helpful staff at the Electrical and Computer Engineering

Department, especially Melanie Gulick and RoseAnna Goewey.

This work would not have been possible without the support from my

family and my friends. I especially thank my parents, my younger brother,

and my girl friend for their love, encouragement, and trust. I dedicate this

dissertation to them.

The work presented in this dissertation is partially supported by NSF

awards under Grant Nos. CCF-0845628, CNS-0958231, CNS-0958199, CCF-

0746856, and IIS-0438967, AFOSR grant FA9550-09-1-0351, Chiang Chen

Oversea PHD Fellowship, and Google Summer of Code 2013. Any opinions,

findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of any of these

organizations.

vii

Unifying Regression Testing with Mutation Testing

Publication No.

Lingming Zhang, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Sarfraz Khurshid

Software testing is the most commonly used methodology for vali-

dating quality of software systems. Conceptually, testing is simple, but in

practice, given the huge (practically infinite) space of inputs to test against,

it requires solving a number of challenging problems, including evaluating and

reusing tests efficiently and effectively as software evolves. While software

testing research has seen much progress in recent years, many crucial bugs

still evade state-of-the-art approaches and cause significant monetary losses

and sometimes are responsible for loss of life.

My thesis is that a unified, bi-dimensional, change-driven methodol-

ogy can form the basis of novel techniques and tools that can make testing

significantly more effective and efficient, and allow us to find more bugs at a

reduced cost. We propose a novel unification of the following two dimensions

of change: (1) real manual changes made by programmers, e.g., as commonly

used to support more effective and efficient regression testing techniques; and

viii

(2) mechanically introduced changes to code or specifications, e.g., as origi-

nally conceived in mutation testing for evaluating quality of test suites. We

believe such unification can lay the foundation of a scalable and highly effective

methodology for testing and maintaining real software systems.

The primary contribution of my thesis is two-fold. One, it introduces

new techniques to address central problems in both regression testing (e.g., test

prioritization) and mutation testing (e.g., selective mutation testing). Two, it

introduces a new methodology that uses the foundations of regression testing

to speed up mutation testing, and also uses the foundations of mutation testing

to help with the fault localization problem raised in regression testing. The

central ideas are embodied in a suite of prototype tools. Rigorous experimental

evaluation is used to validate the efficacy of the proposed techniques using a

variety of real-world Java programs.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvii

Chapter 1. Introduction 1
1.1 Problem Context . 1
1.2 This Thesis . 2

1.2.1 Regression Test Prioritization (ICSE’13) 4
1.2.2 Selective Mutation Testing (ASE’13) 5
1.2.3 Test Selection for Mutation Testing (ISSTA’12) 6
1.2.4 Test Prioritization and Reduction for Mutation Testing

(ISSTA’13) . 6
1.2.5 Mutation Testing for Regression Fault Localization (OOP-

SLA’13) . 7
1.3 Contributions . 8
1.4 Organization . 10

Chapter 2. Regression Test Prioritization 12
2.1 Background . 12
2.2 Example . 14
2.3 Approach . 15

2.3.1 Basic Model . 16
2.3.2 Extended Model . 19
2.3.3 Differentiating p Values 21

2.4 Implementation . 23

x

2.5 Experimental Study . 23
2.5.1 Independent Variables 24
2.5.2 Dependent Variable . 25
2.5.3 Subject Programs, Test Suites, and Faults 26
2.5.4 Experiment Procedure 27
2.5.5 Threats to Validity . 28
2.5.6 Results and Analysis . 29

2.5.6.1 RQ1: Existence of Better Strategies Between the
Total and Additional Strategies 31

2.5.6.2 RQ2: Impact of Coverage and Test-Case Granu-
larities . 34

2.5.6.3 RQ3: Using Differentiated p Values 38
2.5.7 Implications . 40

2.6 Summary . 41

Chapter 3. Selective Mutation Testing 43
3.1 Background . 43
3.2 Study Approach . 45

3.2.1 Problem Definition . 45
3.2.2 Measurement . 46
3.2.3 Combining Operator-Based and Random Mutant Selection 49

3.3 Empirical Study . 51
3.3.1 Subject Programs . 51
3.3.2 Experimental Design . 53

3.3.2.1 Independent Variables 53
3.3.2.2 Dependent Variables 53
3.3.2.3 Experimental Setup 54

3.3.3 Results and Analysis . 57
3.3.3.1 Effectiveness for Adequate Test Suites 57
3.3.3.2 Predictive Power for Non-Adequate Test Suites 60
3.3.3.3 Savings Obtained by Mutation Sampling 66

3.3.4 Below 5% . 68
3.3.5 Threats to Validity . 69

3.4 Summary . 70

xi

Chapter 4. Test Selection for Mutation Testing 73
4.1 Background . 73
4.2 Definitions . 75

4.2.1 Mutation Testing . 75
4.2.2 Regression Testing . 77
4.2.3 Regression Mutation Testing 79

4.3 Example . 81
4.4 Approach . 86

4.4.1 Overview . 86
4.4.2 Preprocessing . 87

4.4.2.1 Mutant Mapping 88
4.4.2.2 Dangerous-Edge Reachability Analysis 88

4.4.3 ReMT Algorithm . 91
4.4.3.1 Basic Algorithm 91
4.4.3.2 Dangerous-Edge Reachability Checking 93

4.4.4 Mutation-Specific Test Prioritization 94
4.4.5 Discussion and Correctness 95

4.5 Implementation . 98
4.6 Experimental Study . 99

4.6.1 Research Questions . 100
4.6.2 Independent Variables 100
4.6.3 Dependent Variables . 101
4.6.4 Subjects and Experimental Setup 101
4.6.5 Results and Analysis . 102

4.6.5.1 RQ1: Full Mutation Testing Scenario 102
4.6.5.2 RQ2: Partial Mutation Testing Scenario 104
4.6.5.3 RQ3: Mutation-Specific Test Prioritization . . . 107

4.7 Summary . 108

xii

Chapter 5. Test Prioritization and Reduction for Mutation Test-
ing 110

5.1 Background . 110
5.2 Example . 113
5.3 Approach . 116

5.3.1 Coverage-Based Initial Test Ordering 117
5.3.2 Power-Based Adaptive Test Ordering 118
5.3.3 Test prioritization . 121
5.3.4 Test reduction . 123

5.4 Experimental Study . 124
5.4.1 Research Questions . 124
5.4.2 Independent Variables 125
5.4.3 Dependent Variables . 126
5.4.4 Subjects and Experimental Setup 127
5.4.5 Result Analysis . 128

5.4.5.1 RQ1: FaMT Test Prioritization 128
5.4.5.2 RQ2: FaMT Test Reduction 137
5.4.5.3 RQ3: Comparison with Regression Techniques . 141
5.4.5.4 RQ4: FaMT Efficiency 143
5.4.5.5 Threats to Validity 144

5.5 Summary . 145

Chapter 6. Mutation Testing for Fault Localization in Regres-
sion Testing 146

6.1 Introduction . 146
6.2 Example . 153
6.3 Approach . 157

6.3.1 Change Mapping Inference 159
6.3.1.1 Inference for Changed/Deleted Elements 160
6.3.1.2 Inference for Added Elements Overridding/Hid-

ing Existing Elements 161
6.3.1.3 Inference for Added Elements Sharing Overrid-

ing/Hiding Hierarchy with Deleted Elements . . 163
6.3.1.4 Inference for Other Added Elements 166

xiii

6.3.2 Mutant Suspiciousness Calculation 168
6.3.3 Suspiciousness Combination 171
6.3.4 Tackling the Cost of FIFL: Edit-Oriented Mutation Testing174

6.4 Implementation . 175
6.5 Experimental Study . 176

6.5.1 Independent Variables 176
6.5.2 Dependent Variables . 177
6.5.3 Subjects and Experimental Setup 178
6.5.4 Results and Analysis . 181

6.5.4.1 Overall comparison between FaultTracer and var-
ious strategies of FIFL 181

6.5.4.2 Detailed comparison between FaultTracer and FIFL
with the default settings 187

6.5.4.3 Discussions . 193
6.5.5 Threats to Validity . 197

6.6 Summary . 198

Chapter 7. Related Work 200
7.1 Regression Testing . 200

7.1.1 Test Selection . 200
7.1.2 Test Prioritization . 201
7.1.3 Test Reduction . 202

7.2 Mutation Testing . 204
7.2.1 Reducing Cost of Mutation Testing 204
7.2.2 Detecting Equivalent Mutants 206
7.2.3 Applications of Mutation Testing 207

Chapter 8. Conclusion 209

Bibliography 211

xiv

List of Tables

2.1 Statistics on Objects of Study 27
2.2 Fisher’s LSD test for comparing strategies in the basic model

to the additional strategy . 30
2.3 Fisher’s LSD test for comparing strategies in the extended model

to the additional strategy . 30
2.4 Fisher’s LSD test for comparing p-differentiated techniques with

p-uniform techniques at the test-method level 38
2.5 Fisher’s LSD test for comparing p-differentiated techniques with

p-uniform techniques at the test-class level 38

3.1 Subject programs used in the evaluation 51
3.2 Selected mutation scores (%) achieved by the test suites that

achieve 100% sampled mutation scores 58
3.3 R2 and τ correlation values between mutation scores on sampled

5% mutants and on mutants before sampling 63
3.4 Selective and sampling mutation testing time 67
3.5 Results of sampling below 5% of selected mutants 69

4.1 Mutants for illustration. 83
4.2 Incrementally collecting full matrix. 83
4.3 Incrementally collecting partial matrix. 83
4.4 Subjects overview. 102
4.5 Experimental results of Javalanche and ReMT under the full

mutation testing scenario. 105

5.1 Traditional mutation testing 114
5.2 FaMT test prioritization . 114
5.3 FaMT test reduction . 114
5.4 Subjects . 124
5.5 Execution reduction (%) for FaMT prioritization with Threshold=0.3

and history of all neighbor mutants (P1) 130

xv

5.6 Execution reduction (%) for FaMT prioritization with Threshold=0.3
and history of only killed neighbor mutants (P2) 130

5.7 Execution reduction (%) for killed/all mutants by theoretical
techniques and an FaMT prioritization technique. 133

5.8 Reduction results (%) for FaMT reduction with Threshold,
MinRatio=0.3, and history of all neighbor mutants (P1) 136

5.9 Reduction results (%) for FaMT reduction with Threshold,
MinRatio=0.3, and history of killed neighbor mutants (P2) . . 136

5.10 Reduction error rates (%) for example FaMT reduction tech-
niques and corresponding random techniques 136

5.11 Comparison between FaMT and regression test prioritization
and reduction . 141

5.12 Runtime overhead by FaMT techniques 143

6.1 Suspiciousness Calculation for Developer Edits and Mutation
Changes. 155

6.2 Subjects overview. 176
6.3 Version pairs with test failures. 179
6.4 Wilcoxon tests for comparing FIFL techniques with FaultTracer 187
6.5 Comparison between FaultTracer and default settings of FIFL. 190
6.6 Summary results when using the default R50 strategy to rank

all edits and rank edits for each failed test 195

7.1 Regression testing areas and their applications for mutation
testing . 200

xvi

List of Figures

1.1 My main PhD research work 3

2.1 Results for test suites at the test-method level with method
coverage . 29

2.2 Results for test suites at the test-method level with statement
coverage . 29

2.3 Results for test suites at the test-class level with method coverage 29
2.4 Results for test suites at the test-class level with statement cov-

erage . 31
2.5 Prioritization results for models embodied with differentiated p

values for each method . 34

3.1 Sampling mutation score vs. Selected mutation score, with best
fit line (black color) and smoothing spline line (red color), for
CommonsLang subject, Meth strategy, and three different sam-
pling ratios . 61

3.2 Correlation values for CommonsLang subject, all strategies, and
all rates . 64

4.1 Example code evolution and test suite. 82
4.2 Inter-procedural CFG for the example. 84
4.3 General approach of ReMT. 86
4.4 Reduction of executions achieved by ReMT and MTP under the

partial mutation testing scenario. 106

5.1 Reduction trends on various Threshold values by FaMT prior-
itization using four levels of history and P1 formula 132

5.2 Reduction trends on various Threshold values by FaMT prior-
itization using four levels of history and P2 formula 132

5.3 Reduction and error rate trends on different Threshold and
MinRatio values by FaMT reduction 135

xvii

6.1 (a) Example in evolution. Note that methods/fields in box are
added, methods/fields with line-through are deleted, and meth-
ods/fields with underlines are changed. The statements with
underlines inside changed methods are added. (b) Tests for the
example. 152

6.2 FIFL architecture. 158
6.3 Rules for inferring change mapping. 159
6.4 Code snippet of Com-Lang V3.03 to illustrate change mapping

for CM edits . 160
6.5 Code snippet of Joda-Time V1.20 to illustrate change mapping

for AM edits with overridden methods 163
6.6 Illustration for mutant mapping. 164
6.7 Code snippets of Joda-Time V1.10 and V1.20 to illustrate change

mapping of AM edits with deleted methods sharing the same
overriding hierarchy . 165

6.8 Code snippet of XStream V1.21 to illustrate change mapping for
AM edits without methods sharing the same method overriding
hierarchy . 167

6.9 Ranking failure-inducing edits using various techniques with
various formulae. 181

xviii

Chapter 1

Introduction

Software testing continues to be the dominant methodology for validat-

ing quality of software. Despite its increasingly important role in reducing the

cost of software failures, testing itself remains expensive – not just in terms

of the human effort but also in terms of the computational resources. For

example, an industrial collaborator of Rothermel et al. reported that running

the full regression test suites for one of their products cost seven weeks [117].

1.1 Problem Context

The focus of our work is on two specific areas in software testing: re-

gression testing [39, 47, 50, 51, 67, 88, 102, 114, 117, 148, 150, 154, 159] – where

the key problem is how to effectively and efficiently test a new version of a

progam that evolved (i.e., underwent some changes or edits that are made by

the developer) – and mutation testing [6, 32, 42, 46, 83, 122, 149, 156] – where

the key problem is how to accurately determine the quality of a test suite (i.e.,

in terms of its ability to find bugs).

Regression testing contains three main research areas: (1) test prior-

itization, (2) test reduction, and (3) test selection. Test prioritization [39,

1

88, 117, 148, 159] reorders tests to reveal regression faults faster. Test reduc-

tion [47,50,67] aims to reduce redundant tests to make regression testing more

efficient. Test selection [51,102,114,150] only executes the subset of tests that

are influenced by program edits.

Mutation testing has two basic steps. One, generate desired variants

(known as mutants) of the original program under test through small syntactic

transformations (known as mutation operators). Two, execute the generated

mutants against a test suite to check whether the test suite can distinguish

the behavior of the mutants from the original program (known as killing the

mutants). The more mutants the test suite can kill, the more effective the test

suite is considered to be. Mutation testing has been viewed as the strongest

test criterion in terms of characterizing high-quality test suites [11, 41]. Re-

searchers have used mutation testing in numerous studies on software testing;

see a recent survey by Jia and Harman [60]. Some studies have even shown that

mutation testing can be more suitable than manual fault seeding in simulating

real program faults for software testing experimentation [13,14,36].

1.2 This Thesis

My thesis is that a unified, bi-dimensional, change-driven methodol-

ogy can form the basis of novel techniques and tools that can make testing

significantly more effective and efficient, and allow us to find more bugs at a

reduced cost. We propose a novel unification of the following two dimensions

of change: (1) real code changes made by programmers, e.g., as commonly

2

Test Selection

Test Prioritization
[Chapter 2]

Test Reduction

Selective Mutation Testing
[Chapter 3]

ReMT [Chapter 4]

FaMT [Chapter 5]

Regression Testing Mutation TestingFIFL [Chapter 6]

1

Figure 1.1: My main PhD research work

analyzed to support more effective and efficient regression testing techniques,

and (2) mechanically introduced code changes, e.g, as originally conceived in

mutation testing for evaluating quality of test suites; and We believe such uni-

fication can lay the foundation of a scalable and highly effective methodology

for testing and maintaining real software systems.

The primary contribution of my thesis research is two-fold. One, it

introduces new techniques to address central problems in regression testing

(e.g., test prioritization) and mutation testing (e.g., selective mutation testing).

Two, it introduces a new methodology that uses the foundations of regression

testing to speed up mutation testing, and also uses the foundations of mutation

testing to help with the fault localization in regression testing.

Figure 1.1 gives an overview of this dissertation and how the five main

chapters, which present the key technical ideas, relate to the areas of regres-

sion testing and mutation testing. Chapter 2 presents a technique for test

prioritization within the traditional area of regression testing [148]. Chap-

3

ter 3 presents a technique for selective mutation testing within the traditional

area of mutation testing [147]. Chapter 4 presents a technique inspired by

regression test selection for mutation testing [155]. Chapter 5 presents a tech-

nique inspired by test prioritization and reduction for mutation testing [153].

Chapter 6 presents an application of mutation testing for more precise fault

localization in regression testing [158]. The subsections that follow give a brief

overview of these five chapters.

1.2.1 Regression Test Prioritization (ICSE’13)

In recent years, researchers have intensively investigated various top-

ics in test-case prioritization, which aims to reorder test cases to increase the

rate of fault detection during regression testing. The total and the additional

prioritization strategies, which prioritize based on total numbers of elements

covered per test, and numbers of additional (not-yet-covered) elements, are

two widely-adopted generic strategies used for such prioritization. Chapter 2

presents a basic model and an extended model [148] that unify the total strat-

egy and the additional strategy. Both models yield a spectrum of generic

strategies ranging between the total and additional strategies, depending on a

parameter referred to as the p value. Chapter 2 also introduces four heuristics

to obtain differentiated p values for different methods under test. The empiri-

cal study on 19 versions of four real-world Java programs demonstrates that a

wide ranges of strategies in both the basic and extended models with uniform

p values can significantly outperform both the total and additional strategies.

4

In addition, the empirical results also demonstrate that using differentiated p

values for both the basic and extended models with method coverage can even

outperform the additional strategy using statement coverage.

1.2.2 Selective Mutation Testing (ASE’13)

Mutation testing is a powerful methodology for evaluating the quality

of a test suite. However, the methodology is also very costly, as the test suite

may have to be executed for each mutant. Selective mutation testing is a

well-studied technique to reduce this cost by selecting a subset of all mutants,

which would otherwise have to be considered in their entirety. Two common

approaches are operator-based mutant selection, which only generates mutants

using a subset of mutation operators, and random mutant selection, which

selects a subset of mutants generated using all mutation operators. While

each of the two approaches provides some reduction in the number of mutants

to execute, applying either of the two to medium-sized, real-world programs

can still generate a huge number of mutants, which makes their execution too

expensive. Chapter 3 presents eight random sampling strategies defined on top

of operator-based mutant selection, and empirically validates that operator-

based selection and random selection can be applied in tandem to further

reduce the cost of mutation testing [147]1. The experimental results show

that even sampling only 5% of mutants generated by operator-based selection

1Note that this is a joint work [147] with another PhD student, Milos Gligoric, from
University of Illinois at Urbana-Champaign.

5

can still provide precise mutation testing results, while reducing the average

mutation testing time to 6.54% (i.e., on average less than 5 minutes for this

study).

1.2.3 Test Selection for Mutation Testing (ISSTA’12)

Chapter 4 presents Regression Mutation Testing (ReMT) [155], a new

technique to speed up mutation testing for evolving systems. The key novelty

of ReMT is to incrementally calculate mutation testing results for the new

program version based on the results from the old program version; ReMT

uses a static analysis to check which results can be safely reused. ReMT also

employs a mutation-specific test prioritization to further speed up mutation

testing. The chapter also presents an empirical study on six evolving systems,

whose sizes range from 3.9KLoC to 88.8KLoC. The empirical results show that

ReMT can substantially reduce mutation testing costs, indicating a promising

future for applying mutation testing on evolving software systems.

1.2.4 Test Prioritization and Reduction for Mutation Testing (IS-
STA’13)

The central idea behind the mutation testing approach is to generate

mutants, which are small syntactic transformations of the program under test,

and then to measure for a given test suite how many mutants it kills. A

test t is said to kill a mutant m of program p if the output of t on m is

different from the output of t on p. The effectiveness of mutation testing

in determining the quality of a test suite relies on the ability to apply it

6

using a large number of mutants. However, running many tests against many

mutants is time consuming. Chapter 5 presents a family of techniques to

reduce the cost of mutation testing by prioritizing and reducing tests to more

quickly determine the sets of killed and non-killed mutants [153]. The chapter

also includes an extensive experimental study to show the effectiveness and

efficiency of the proposed techniques.

1.2.5 Mutation Testing for Regression Fault Localization (OOP-
SLA’13)

Chapter 6 presents a novel methodology for localizing regression faults

in code as it evolves [158]. The insight is that the essence of failure-inducing

edits made by the developer can be captured using mechanical program trans-

formations (e.g., mutation changes). Based on the insight, the chapter presents

the FIFL framework, which uses both the spectrum information of edits (ob-

tained using the existing FaultTracer approach [150–152]) as well as the po-

tential impacts of edits (simulated by mutation changes) to achieve more ac-

curate fault localization. The effectiveness of FIFL was evaluated on real-

world repositories of nine Java projects ranging from 5.7KLoC to 88.8KLoC.

The experimental results show that FIFL is able to outperform the state-

of-the-art FaultTracer technique for localizing failure-inducing program edits

significantly. For example, all 19 FIFL strategies that use both the spectrum

information and simulated impact information for each edit outperform the

existing FaultTracer approach statistically at the significance level of 0.01. In

addition, FIFL with its default settings outperforms FaultTracer by 2.33% to

7

86.26% on 16 of the 26 studied version pairs, and is only inferior than Fault-

Tracer on one version pair.

1.3 Contributions

This dissertation makes the following contributions [147, 148, 153, 155,

158]:

• Unifying mutation testing and regression testing. This disser-

tation introduces the idea of unifying regression testing with mutation

testing – two well researched methodologies that previous work has ex-

plored independently – to make each of the methodologies more effective

or efficient (Figure 1.1). We believe such a unified view will spur more

research work in each of the two areas as well as their further unification.

• Unified models for test prioritization. This dissertation proposes a

new approach that creates better prioritization techniques by controlling

the uncertainty of fault detection capability in test-case prioritization,

and presents two models that unify the total and additional strategies

and can also yield a spectrum of more effective strategies having flavors

of both the total and additional strategies.

• Advanced selective mutation testing. This dissertation proposes

sampling mutation testing, which further reduces mutation testing cost

by applying operator-based mutant selection and random mutant selec-

tion in tandem, and presents eight sampling strategies that can further

8

reduce the mutation testing cost by 20 times without losing much accu-

racy.

• Test selection for mutation testing. This dissertation introduces of

idea of using test selection to make mutation testing of evolving systems

more efficient, and presents a core technique for regression mutation

testing (ReMT) using dangerous-edge reachability analysis inspired by

regression test selection.

• Test prioritization for mutation testing. This dissertation intro-

duces the general idea of optimizing mutation testing using test pri-

oritization, and presents a family of test prioritization techniques for

mutation testing based on coverage information as well as history of test

executions on other mutants (e.g., the accumulating number of mutants

that the test killed or did not kill before executing the current mutant).

• Test reduction for mutation testing. The cost of mutation test-

ing has two key elements – executing some tests for killed mutants and

executing every test for non-killed mutants. As test prioritization only

addresses the first element, this dissertation also presents a family of

test reduction techniques for mutation testing, which can effectively re-

duce the number of test executions for all mutants without losing much

accuracy.

• Mutation testing for regression fault localization. This disserta-

tion introduces the mutation testing methodology to the realm of localiz-

9

ing failure-inducing program edits in regression testing. This dissertation

combines two dimensions of changes to calculate the coverage spectra as

well as impacts of program edits to improve fault localization for evolving

software. In other words, this dissertation initializes the idea of localizing

faulty edits based on fault injection.

• Experimental studies. We evaluated our completed work on various

real-world Java programs from open-source as well as the well-known

Software-artifact Infrastructure Repository (SIR) [35]. The experimental

results demonstrate the effectiveness and efficiency of the proposed work.

1.4 Organization

The rest of this document is organized as follows.

Chapter 2 describes our work on regression test prioritization, which

unifies the traditional total and additional strategies and provides a spectrum

of (more effective) techniques between the total and additional strategies for

test prioritization.

Chapter 3 describes our work on selective mutation testing, which ap-

plies operator-based and random mutant selection in tandem to further speed

up mutation testing.

Chapter 4 presents our regression mutation testing approach (ReMT),

which incrementally collects mutation testing results based on the differences

between two program versions.

10

Chapter 5 presents our FaMT approach, which further applies test pri-

oritization and reduction techniques to the area of mutation testing.

Chapter 6 presents our FIFL approach, which uses mechanical changes

to simulate the impact of real programer changes, and utilizes the simulated

impact information to help with the diagnois of failure-inducing changes.

Chapter 7 discusses the related work in both the regression testing and

mutation testing areas.

Finally, Chapter 8 concludes this disseration.

11

Chapter 2

Regression Test Prioritization

Before stepping into the unification of regression testing and mutation

testing, this dissertation first presents my research work in each of the tradi-

tional regression testing and mutation testing areas. This chapter presents my

approach for test prioritization in the traditional regression testing area, which

was presented at the 35th IEEE/ACM International Conference on Software

Engineering (ICSE 2013) [148].

2.1 Background

Software engineers usually maintain a large number of test cases, which

can be reused in regression testing to test software changes. Due to the large

number of test cases, regression testing can be very time consuming. Test-case

prioritization [37–39, 108, 117, 135], which attempts to re-order regression test

cases to detect faults as early as possible, has been intensively investigated as

a way to deal with lengthy regression testing cycles.

In test-case prioritization, a fundamental topic involves prioritization

strategies. In previous work, researchers have studied two greedy strategies

(the total and additional strategies), which are generic for different coverage

12

criteria. Given a coverage criterion, the total strategy sorts test cases in de-

scending order of coverage, whereas the additional strategy always picks a

next test case having the maximal coverage of items not yet covered by pre-

viously prioritized test cases. In addition to these two strategies, researchers

have also investigated other generic strategies. Li et al. [76] investigated the

2-optimal greedy strategy [78], a hill-climbing strategy, and a genetic program-

ming strategy. Jiang et al. [61] investigated adaptive random prioritization.

Their empirical results show that the additional strategy remains the most

effective generic strategy on average in terms of rate of fault detection.

There is also, however, a weakness in the additional strategy. Consider

statement coverage for instance. In the additional strategy, after a test case

t is chosen, no statement covered by t is explicitly considered again until all

coverable statements are covered at least one time. As a result, when there is

a fault f in one statement covered by t but not covered by any test case chosen

before t, if t cannot detect f , the detection of f may be greatly postponed. In

contrast, the total strategy does not have this weakness, because when choosing

a next test case, the total strategy always considers all statements no matter

whether or not previously chosen test cases have covered the statements. This

said, as the total strategy counts only the numbers of statements covered by

each test case, it may be more inclined to choose test cases to cover statements

previously covered many times than to choose test cases to cover previously

not (intensively) covered statements. Thus, the total strategy may postpone

the detection of faults in rarely covered statements. As a result, our insight

13

is that some strategy that has the flavor of both the additional strategy and

the total strategy may be more advantageous.

In this chapter, we propose a unified view (including a basic model

and an extended model) for generic strategies in test-case prioritization. In

our models, the total and additional strategies are extreme instances, and

the models also define various generic strategies that lie between the total

strategy and the additional strategy depending on the value of fault detection

probability (referred to as the p value). In addition, we further extend

the models by using differentiated p values. We view our models as an

initial framework to control the uncertainty of fault detection during test-

case prioritization, and believe more techniques can be derived based on our

models. We performed an empirical study to compare our strategies with the

total strategy and the additional strategy. Our results demonstrate that many

of our strategies can outperform both the total and additional strategies.

2.2 Example

Shown in Section 2.1, in the state-of-the-art additional strategy, after

a test case t is chosen, no statement covered by t is explicitly considered again

until all coverable statements are covered at least one time. As a result, when

there is a fault f in one statement covered by t but not covered by any test

case chosen before t, if t cannot detect f , the detection of f may be greatly

postponed. To understand the situation in which a test case covers a statement

but does not reveal a fault in the statement, consider the following piece of

14

code with a fault in line 5. The code is a method returning the larger of x

and y. A test case in which the value of x is smaller than that of y covers

the faulty statement and detects the fault. However, a test case in which the

value of x is equal to that of y also covers the faulty statement but does not

detect the fault.
1 int max(int x, int y) {
2 if (x>y)
3 return x;
4 else
5 return x;//should be "return y".
6 }

In fact, research on test-suite reduction [57, 58, 115, 143] has demon-

strated that re-covering already covered statements may enhance fault-detection

capability. Furthermore, when we consider test-case prioritization based on

coverage information at a coarser level (e.g., the method level), it may be more

common for a test case to miss a fault in a method covered by the test case,

because that test case may fail to cover the faulty statement in the method.

This motivates our unified models of explicitly considering the probability of

fault detection in test prioritization.

2.3 Approach

With the additional strategy, the primary concern is to cover units

not yet covered by previous test cases. This strategy should be well suited for

circumstances in which the probability of a test case detecting faults in units it

covers is high. On the other hand, the primary concern for the total strategy is

to cover the most units with each test case. This strategy should be well suited

15

for circumstances in which the probability of a test case detecting faults in units

it covers is low. Thus, if we explicitly consider the probability for a test case to

detect faults in units it covers, we may devise strategies to take advantage of

the strengths of both the total and additional strategies. More specifically,

our models initially assign probability values for each program unit1. Then,

each time a unit is covered by a test case (that could potentially detect some

fault(s) in the unit), the probability that the unit contains undetected faults

is reduced by some ratio between 0% (as in the total strategy) and 100%

(as in the additional strategy). In this way, we build a spectrum of generic

prioritization strategies between the total and additional strategies.

2.3.1 Basic Model

In our basic model, when a test case t covers a unit u, we refer to

the probability that t can detect faults in u as p. Consider a test suite

T = {t1, t2, ..., tn} containing n test cases and a program U = {u1, u2, ..., um}

containing m units. Algorithm 1 depicts test-case prioritization in our basic

model, in which we use a Boolean array Cover[i, j] (1 ≤ i ≤ n, 1 ≤ j ≤ m) to

denote whether test case ti covers unit uj.

In Algorithm 1, we use an array Prob[j] (1 ≤ j ≤ m) to store the

probability that unit uj contains undetected faults. Initially, we set the value

1As our approach is intended to work with different coverage criteria, we use unit as a
generic term to denote different structural elements used in different coverage criteria. For
example, a unit represents a statement for statement coverage but a method for method
coverage.

16

Algorithm 1: Prioritization in the basic model with p
1: for each j (1 ≤ j ≤ m) do
2: Prob[j]← 1
3: end for
4: for each i (1 ≤ i ≤ n) do
5: Selected[i]← false
6: end for
7: for each i (1 ≤ i ≤ n) do
8: k ← 1
9: while Selected[k] do
10: k ← k + 1
11: end while
12: sum← 0
13: for each j (1 ≤ j ≤ m) do
14: if Cover[k, j] then
15: sum← sum+ Prob[j]
16: end if
17: end for
18: for each l (k + 1 ≤ l ≤ n) do
19: if not Selected[l] then
20: s← 0
21: for each j (1 ≤ j ≤ m) do
22: if Cover[l, j] then
23: s← s+ Prob[j]
24: end if
25: end for
26: if s > sum then
27: sum← s
28: k ← l
29: end if
30: end if
31: end for
32: Priority[i]← k
33: Selected[k]← true
34: for each j (1 ≤ j ≤ m) do
35: if Cover[k, j] then
36: Prob[j]← Prob[j] ∗ (1− p)
37: end if
38: end for
39: end for

of Prob[j] (1 ≤ j ≤ m) to be 1. We use a Boolean array Selected[i] (1 ≤ i ≤ n)

to store whether test case ti has been selected for prioritization. Initially, we

set the value of Selected[i] (1 ≤ i ≤ n) to be false. Furthermore, we use an

array Priority[i] (1 ≤ i ≤ n) to store the prioritized test cases. If Priority[i]

is equal to k (1 ≤ i, k ≤ n), test case tk is ordered in the ith position.

17

In Algorithm 1, lines 1-6 perform initialization. In the main loop from

lines 7 to 39, each iteration determines which test case to place in the prior-

itized test suite. Lines 8-31 find a test case tk such that tk is previously not

chosen and the sum of probabilities that units covered by tk contain unde-

tected faults is the highest among test cases not yet chosen. Note that, as

the basic model utilizes a uniform probability p for fault detection in covered

units, lines 8-31 actually find a test case with the highest probability of de-

tecting previously undetected faults. In particular, lines 8-17 find the first

test case tk not previously chosen for prioritization and calculate the sum of

the probabilities that units covered by tk contain undetected faults, and lines

18-31 check whether there is another unchosen test case tl for which the sum

of the probabilities that the covered units contain undetected faults is higher

than that for tk. Line 32 sets the ith position in the prioritized test suite to tk,

and line 33 marks tk as already chosen for prioritization. Lines 34-38 update

the probability that units contain undetected faults for each unit covered by

tk.

Algorithm 1 is in fact a variant of the algorithm for the additional

strategy. The main difference is that this algorithm tries to find the test case

covering units with the maximal sum of probabilities of containing undetected

faults. Due to the similarity between this algorithm and the additional strat-

egy, its worst case time cost is the same as that of the additional strategy

(i.e., O(mn2), where n is the number of test cases and m is the number of

units [117]).

18

With Algorithm 1, an optimistic tester who believes that a test case is

likely to detect faults in covered units may set the value of p to 1. In such

a circumstance, this algorithm is equivalent to the additional strategy. The

reason for this is that lines 34-38 set the probability for any previously covered

unit to contain undetected faults to 0. In contrast, a pessimistic tester who

is concerned with the situation in which a test case may not detect faults

in units covered by the test case may set the value of p to 0. In such a

circumstance, this algorithm is equivalent to the total strategy. The reason

is that lines 34-38 do not change the probability that any previously covered

unit contains undetected faults. Note that setting p to 0 does not render the

algorithm as efficient as the original total strategy, whose worst case time cost

is O(mn) [117]. Finally, if a tester sets the value of p to a number between 0

and 1, this algorithm is a strategy between the total strategy and the additional

strategy. The closer p is to 0, the closer this algorithm is to the total strategy;

and the closer p is to 1, the closer this algorithm is to the additional strategy.

2.3.2 Extended Model

In our basic model and previously proposed strategies for test-case pri-

oritization, when a test case t covers a unit u, the number of times t covers u

is not further considered. That is, no matter how many times t covers u, the

algorithm treats u as having been covered once. Intuitively, the more times t

covers u, the more probable it may be for t to detect faults in u. Therefore,

considering the ability of a test case to cover a unit multiple times may result

19

in higher effectiveness.

We now extend our basic model to consider multiple coverage of units

by given test cases. In our extended model, the main body of the algorithm

is the same as the algorithm in our basic model, but the extended algorithm

uses a different method for calculating the probability for a test case to detect

previously undetected faults. We extend Cover[i, j] (1 ≤ i ≤ n, 1 ≤ j ≤ m)

to denote the number of times test case ti covers unit uj. We now present the

main differences between the two algorithms.

First, as the number of times test case tk covers unit uj is Cover[k, j],

the probability for unit uj to contain undetected faults changes from Prob[j]

to Prob[j] ∗ (1 − p)Cover[k,j] after executing tk if we consider each instance of

coverage to have an equal probability p of detecting faults. That is to say,

for unit uj alone, execution of tk decreases the probability that uj contains

undetected faults by Prob[j] ∗ (1 − (1 − p)Cover[k,j]). Thus, in the extended

algorithm, we change lines 15 and 23 of Algorithm 1 to sum← sum+Prob[j]∗

(1− (1− p)Cover[k,j]) and s← s+ Prob[j] ∗ (1− (1− p)Cover[l,j]), respectively.

Second, after we select test case tk for prioritization at the ith place,

the probability for unit uj to contain undetected faults changes from Prob[j]

to Prob[j]∗(1−p)Cover[k,j]. Thus, in the extended algorithm, we change line 36

of Algorithm 1 to Prob[j]← Prob[j]∗(1−p)Cover[k,j]. The worst case time cost

of the extended algorithm is also O(mn2), the same as that of Algorithm 1.

In the extended algorithm, if we set p to 1, the algorithm is the same

20

as the additional strategy, because (1−p)Cover[k,j] is equal to 0 when p is equal

to 1. However, if we set p to 0, the extended algorithm cannot distinguish

any test cases from each other,2 because 1 − (1 − p)Cover[k,j] is always equal

to 0 when p is equal to 0. If we set p to a number between 0 and 1, the

extended algorithm also represents a strategy between the total and additional

strategies, considering multiple coverage for each test case.

2.3.3 Differentiating p Values

In Section 2.3.1, in our basic model, whenever a test case t covers a

unit u, we consider the probability for t to detect faults in u to be uniformly

p. In Section 2.3.2, using our extended model, we reason that when t covers u

multiple times, the probability for t to detect faults in u may not be uniform,

but each instance of coverage also implies a uniform probability of fault de-

tection. In reality, however, faults in some units may be easier to detect than

faults in other units.

In this section, we further extend our models to account for the situa-

tion in which the probability of fault detection is differentiated. To deal with

this situation, we need to assign different probability values for test cases to

detect faults in different units. The challenge in performing such an assign-

ment, however, lies in obtaining effective estimates of the probability of fault

detection. In this chapter, we further estimate differentiated p values at the

2This limitation is due to the specific algorithm, but conceptually our extended model
implementation yields the total strategy when p = 0.

21

method level based on two widely used static metrics: MLoC, which stands

for Method Line of Code, and McCabe, which stands for the well-known Mc-

Cabe Cyclomatic Complexity [87]. Our approach is based on the intuition that

methods with larger volume (e.g., higher MLoC values) or greater complex-

ity (e.g., higher McCabe values) need to be covered more times to reveal the

faults within them, i.e., they should have lower p values. We believe that test

cases should be good at detecting faults, and thus we calculate the p value for

each method in the range [0.5, 1.0]. Formally, we use both linear normalization

(Formula (2.1)) and log normalization (Formula (2.2)) to calculate the p value

for the jth method (i.e., p[j]) as follows:

1− 0.5 ∗ Metric[j]−Metricmin
Metricmax −Metricmin

(2.1)

1− 0.5 ∗ log10(Metric[j] + 1)− log10(Metricmin + 1)

log10(Metricmax + 1)− log10(Metricmin + 1)
(2.2)

where Metric[j] denotes the MLoC or McCabe metric values for the jth

method, and Metricmin/Metricmax denotes the minimum/maximum metric

value among all methods of the program under test.3

Based on the two metrics and the two p calculation formulas, we thus

have four heuristics for generating a differentiated p value for each method. For

both models, we change all references to the uniform p into the differentiated

p[j] generated for the specific jth method. For the basic model, we change

line 36 of Algorithm 1 into Prob[j] ← Prob[j] ∗ (1 − p[j]). Similarly, for

3Note that all metric values are increased by 1 in the log normalization to avoid the
log100 exception.

22

the extended model, we change lines 15, 23, and 36 of Algorithm 1 to sum←

sum+Prob[j]∗(1−(1−p[j])Cover[k,j]), s← s+Prob[j]∗(1−(1−p[j])Cover[l,j]),

and Prob[j] ← Prob[j] ∗ (1 − p[j])Cover[k,j], respectively. Note that the worst

case time costs of the basic and extended models with differentiated p values

are still O(mn2).

2.4 Implementation

To collect coverage information, we used on-the-fly byte-code instru-

mentation which dynamically instruments classes loaded into the JVM through

a Java agent without any modification of the target program. We implemented

code instrumentation based on the ASM byte-code manipulation and analysis

framework [1]. In particular, we inherited the visitor classes defined in the

ASM framework, and added in our code for recording coverage information.

To compute Java metrics for each method, we implemented our tool based on

the abstract syntax tree (AST) analysis provided by the Eclipse JDT toolkit [2].

We extended the Eclipse AST parsing tool to calculate method lines of code

(MLoC) and McCabe Cyclomatic complexity (McCabe) metrics.

2.5 Experimental Study

To evaluate our strategies with uniform and differentiated p values in

the basic and extended models, we performed an empirical study to investigate

the following research questions:

23

• RQ1: How do prioritization strategies generated by the basic and ex-

tended models with uniform p values compare with the total and addi-

tional strategies?

• RQ2: How do the granularity of coverage and the granularity of test

cases impact the comparative effectiveness of strategies generated by

our models?

• RQ3: How does the use of differentiated p values compare, in terms of

effectiveness, with the total and additional strategies?

2.5.1 Independent Variables

We consider three independent variables:

Prioritization Strategy. We use the following 48 strategies for test-

case prioritization. First, as control strategies, we use the total and additional

strategies. Second, for our basic model we use values of p ranging from 0.05 to

0.95 with increments of 0.05, i.e., 19 p values. Third, for our extended model

we use the same 19 values of p as those used for our basic model. Fourth, for

differentiated p values we use the four p value generation heuristics for both

the basic and extended models.

Coverage Granularity. In prior research on test-case prioritization,

researchers treated coverage granularity as a constituent part of prioritization

techniques. As our aim is to investigate various generic prioritization strate-

gies, we separate coverage granularity from prioritization techniques. As in

24

prior research, we use structural coverage criteria at both the method level

and the statement level. Note that we used differentiated p values only at the

method level.

Test-Case Granularity. We consider test-case granularity as an ad-

ditional factor, at two levels: the test-class level and the test-method level.

For the test-class level we treat each JUnit TestCase class as a test case. For

the test-method level we treat each test method in a JUnit TestCase class as

a test case. That is to say, a test case at the test-class level typically consists

of a number of test cases at the test-method level. Section 2.5.3 provides a

detailed description.

2.5.2 Dependent Variable

Our dependent variable tracks technique effectiveness. We adopt the

well-known APFD (Average Percentage Faults Detected) metric [117]. Let T

be a test suite and T ′ be a permutation of T , the APFD for T ′ is defined as

follows.

APFD =

∑n−1
i=1 Fi
n ∗ l

+
1

2n
(2.3)

Here, n is the number of test cases in T , l is the number of faults, and Fi is

the number of faults detected by at least one test case among the first i test

cases in T ′.

25

2.5.3 Subject Programs, Test Suites, and Faults

As objects of study we consider 19 versions of four programs written

in Java, including three versions of jtopas, three versions of xml-security, five

versions of jmeter, and eight versions of ant. We obtained the programs from

the Software-artifact Infrastructure Repository (SIR) [7, 35], which provides

Java and C programs for controlled experimentation on program analysis and

testing. The sizes of the programs range from 1.8 to 80 KLoC. Table 2.1 de-

picts statistics on the objects. In Table 2.1, for each object program, Columns

3 and 4 present the number of classes (including interfaces) and the number

of methods, respectively.

In SIR, each version of each program has a JUnit test suite that was

developed during program evolution. Due to the features of JUnit, there are

two levels of test-case granularity in these test suites: the test-class level and

the test-method level. Column 5 of Table 2.1 depicts the number of all

test cases and the number of test cases that detect at least one studied fault

for each program at the test-class level. Similarly, Column 6 depicts the test

case statistics at the test-method level. As previous research [13, 14, 36] has

confirmed that it is suitable to use faults produced via mutation for experimen-

tation in test-case prioritization, we followed a similar procedure to produce

faulty versions for each of the 19 object programs. In particular, we used Mu-

Java [4,82] to generate faults and followed the procedure used by Do et al. [36]

to select specific mutants to use (as detailed below).

26

Table 2.1: Statistics on Objects of Study
Object KLoC #Class #Meth #TClass #TMeth
jtopas-v1 1.89 19 284 10 (8) 126 (24)
jtopas-v2 2.03 21 302 11 (10) 128 (27)
jtopas-v3 5.36 50 748 18 (8) 209 (25)
xmlsec-v1 18.3 179 1627 15 (3) 92 (10)
xmlsec-v2 19.0 180 1629 15 (1) 94 (7)
xmlsec-v3 16.9 145 1398 13 (8) 84 (41)
jmeter-v1 33.7 334 2919 26 (7) 78 (18)
jmeter-v2 33.1 319 2838 29 (8) 80 (31)
jmeter-v3 37.3 373 3445 33 (16) 78 (43)
jmeter-v4 38.4 380 3536 33 (16) 78 (55)
jmeter-v5 41.1 389 3613 37 (20) 97 (57)
ant-v1 25.8 228 2511 34 (17) 137 (45)
ant-v2 39.7 342 3836 51 (42) 219 (118)
ant-v3 39.8 342 3845 51 (44) 219 (148)
ant-v4 61.9 532 5684 102 (47) 521 (135)
ant-v5 63.5 536 5802 105 (53) 557 (133)
ant-v6 63.6 536 5808 105 (52) 559 (230)
ant-v7 80.4 649 7520 149 (122) 877 (599)
ant-v8 80.4 650 7524 149 (51) 878 (197)

2.5.4 Experiment Procedure

In actual testing scenarios, a specific program version usually does not

contain a large number of faults [36]. Therefore, similar to Do et al. [36], we

used the mutant pool for each object program to create a set of small mutant

groups. To form a mutant group, we randomly selected five mutants that can

be killed by one or more test cases in the test suite for the program. For each

program, we randomly produced up to 20 mutant groups for each program

ensuring that no mutant is used in more than one mutant group. In fact, as

there are only 35 mutants of jmeter-v1 that can be killed by one or more test

cases in its test suite, we produced only seven mutant groups for this program.

In all other circumstances we produced 20 mutant groups for each program.

Next, we used each of the mutant groups produced for each of the

19 program versions as possible subsequent versions. That is to say, given a

27

program version V and a generic prioritization strategy S with a coverage-

granularity level Cl and a test-case-granularity level Tl, we obtained the effec-

tiveness of strategy S on V for Cl and Tl as follows. First, we used S to obtain

a prioritized sequence of test cases for V at Cl and Tl. Then, we calculated the

APFD values of the prioritized sequence of test cases for each mutant group

of V . These values serve as our data sets for analysis.

2.5.5 Threats to Validity

Our object programs, test cases, and seeded faults may all pose threats

to external validity. First, although we used 19 Java program versions of var-

ious sizes, the differences seen in our study may be difficult to generalize to

other Java programs. Furthermore, our results may not generalize to pro-

grams written in languages other than Java. Second, our results based on

programs with seeded faults may not be generalizable to programs with real

faults. Third, the results may not be generalizable to other test cases. Fur-

ther reduction of these threats requires additional studies involving additional

object programs, test suites, and faults.

The main threat to internal validity for our study is that there may be

faults in our implementation of the strategies and the calculation of APFD

values. To reduce this threat, we reviewed all the code that we produced for

our experiments before conducting the experiments.

To assess technique effectiveness, we used the APFD metric [117] that

is widely used for test-case prioritization. However, the APFD metric does

28

T o t . B 0 5 B 1 0 B 1 5 B 2 0 B 2 5 B 3 0 B 3 5 B 4 0 B 4 5 B 5 0 B 5 5 B 6 0 B 6 5 B 7 0 B 7 5 B 8 0 B 8 5 B 9 0 B 9 5 A d d .
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

AP
FD

T o t . E 0 5 E 1 0 E 1 5 E 2 0 E 2 5 E 3 0 E 3 5 E 4 0 E 4 5 E 5 0 E 5 5 E 6 0 E 6 5 E 7 0 E 7 5 E 8 0 E 8 5 E 9 0 E 9 5 A d d .
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

AP
FD

Figure 2.1: Results for test suites at the test-method level with method cov-
erage

T o t . B 0 5 B 1 0 B 1 5 B 2 0 B 2 5 B 3 0 B 3 5 B 4 0 B 4 5 B 5 0 B 5 5 B 6 0 B 6 5 B 7 0 B 7 5 B 8 0 B 8 5 B 9 0 B 9 5 A d d .
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

AP
FD

T o t . E 0 5 E 1 0 E 1 5 E 2 0 E 2 5 E 3 0 E 3 5 E 4 0 E 4 5 E 5 0 E 5 5 E 6 0 E 6 5 E 7 0 E 7 5 E 8 0 E 8 5 E 9 0 E 9 5 A d d .
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

AP
FD

Figure 2.2: Results for test suites at the test-method level with statement
coverage

have limitations [36,117], and we did not consider efficiency or other cost and

savings factors. Reducing this threat requires additional studies using more

sophisticated cost-benefit models [38].

2.5.6 Results and Analysis

Due to the large number of strategies, various test-case granularities,

coverage granularities, objects, and mutant groups studied, box-plots across

T o t . B 0 5 B 1 0 B 1 5 B 2 0 B 2 5 B 3 0 B 3 5 B 4 0 B 4 5 B 5 0 B 5 5 B 6 0 B 6 5 B 7 0 B 7 5 B 8 0 B 8 5 B 9 0 B 9 5 A d d .
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

AP
FD

T o t . E 0 5 E 1 0 E 1 5 E 2 0 E 2 5 E 3 0 E 3 5 E 4 0 E 4 5 E 5 0 E 5 5 E 6 0 E 6 5 E 7 0 E 7 5 E 8 0 E 8 5 E 9 0 E 9 5 A d d .
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

AP
FD

Figure 2.3: Results for test suites at the test-class level with method coverage

29

Ta
bl
e
2.
2:

F
is
he
r’
s
LS

D
te
st

fo
r
co
m
pa

ri
ng

st
ra
te
gi
es

in
th
e
ba

si
c
m
od

el
to

th
e
ad
di
tio

na
ls
tr
at
eg
y

T
C

G
C

G
B

95
B

90
B

85
B

80
B

75
B

70
B

65
B

60
B

55
B

50
B

45
B

40
B

35
B

30
B

25
B

20
B

15
B

10
B

05
T
es

t-
M

et
h

1
1

1
1

1
1

1
0

0
0

0
0

0
0

-1
-1

-1
-1

-1
M

et
h

S
ta

t
0

0
0

0
0

0
0

0
0

0
0

-1
-1

-1
-1

-1
-1

-1
-1

T
es

t-
M

et
h

0
0

0
0

0
0

0
0

0
0

0
0

0
-1

-1
-1

-1
-1

-1
C

la
ss

S
ta

t
0

0
0

0
0

0
0

0
0

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

Ta
bl
e
2.
3:

F
is
he
r’
s
LS

D
te
st

fo
r
co
m
pa

ri
ng

st
ra
te
gi
es

in
th
e
ex
te
nd

ed
m
od

el
to

th
e
ad
di
tio

na
ls
tr
at
eg
y

T
C

G
C

G
E

95
E

90
E

85
E

80
E

75
E

70
E

65
E

60
E

55
E

50
E

45
E

40
E

35
E

30
E

25
E

20
E

15
E

10
E

05
T
es

t-
M

et
h

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

-1
M

et
h

S
ta

t
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
-1

T
es

t-
M

et
h

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
C

la
ss

S
ta

t
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

30

T o t . B 0 5 B 1 0 B 1 5 B 2 0 B 2 5 B 3 0 B 3 5 B 4 0 B 4 5 B 5 0 B 5 5 B 6 0 B 6 5 B 7 0 B 7 5 B 8 0 B 8 5 B 9 0 B 9 5 A d d .
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

AP
FD

T o t . E 0 5 E 1 0 E 1 5 E 2 0 E 2 5 E 3 0 E 3 5 E 4 0 E 4 5 E 5 0 E 5 5 E 6 0 E 6 5 E 7 0 E 7 5 E 8 0 E 8 5 E 9 0 E 9 5 A d d .
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

AP
FD

Figure 2.4: Results for test suites at the test-class level with statement coverage

all objects are the most suitable way to show our results.

2.5.6.1 RQ1: Existence of Better Strategies Between the Total and
Additional Strategies

Figures 2.1 to 2.4 depict the results of the comparision of the 19 strate-

gies in our basic model and the 19 strategies in our extended model with the

total and additional strategies using test suites at the test-method/test-class

level and coverage information at the method/statement level. We denote the

total strategy as Tot. and the additional strategy as Add.. For a strategy in our

basic model, we use Barbecue and the value of p to denote the strategy. For

example, we use Barbecue05 to denote the strategy in our basic model with

the p value 0.05. Similarly, for a strategy in our extended model, we use E

and the value of p to denote the strategy. Thus, the strategy in our extended

model with the value of p set to 0.05 is denoted as E05. In each plot, the

X-axis shows various strategies compared, and the Y-axis shows the APFD

values measured. Each box plot shows the average (dot in the box), median

(line in the box), upper/lower quartile, and 90th/10th percentile APFD values

31

achieved by a strategy over all mutant groups of all 19 versions. For ease of

understanding, we mark the strategies with higher average APFD values over

the corresponding additional strategies as shadowed box plots. Based on the

results, we make the following observations.

First, when comparing strategies in our approach with the additional

strategy, strategies with p values between 0.95 and 0.50 in both our basic

and extended models typically achieve higher average APFD values. The only

exceptions to this are the strategies in our basic model based on statement

coverage for test suites at the test-class level with p values between 0.90 and

0.50, and for test suites at the test-method level with p values between 0.65

and 0.50. This observation indicates that there is a wide range of p values that

can be used for our models. It should also be noted that the average increases

in APFD of our strategies over the additional strategy are usually not large.

However, considering that the additional strategy is widely accepted as the

most effective prioritization strategy and is as expensive as our strategies, the

increases in APFD are valuable and are actually achieved with almost no extra

cost.

Second, when comparing strategies in our approach with the total strat-

egy (denoted as Tot. in the figures), our strategies with all p values in both our

basic and extended models achieve higher average APFD values. One inter-

esting point is that, even when the p value is 0.05 (which results in strategies

similar to the total strategy), strategies in both our basic and extended mod-

els are substantially more effective than the total strategy. This observation

32

indicates that adding a little flavor of the additional strategy into the total

strategy could improve the total strategy substantially.

Third, when comparing strategies in our basic model and strategies in

our extended model, the strategies perform similarly with p values close to

1 and differently with p values close to 0. When p is close to 1, strategies

in both models achieve comparable and even higher APFD values than the

additional strategy. However, when p is close to 0, strategies in our extended

model remain competitive but strategies in our basic model become much

less competitive. In other words, strategies with a small p value in our basic

model perform more like the total strategy, but strategies in our extended

model always perform like the additional strategy with any p values. In fact,

almost all strategies of our extended model with p ≥ 0.15 outperform the

additional strategies, except those prioritizing tests at the test-method level

using statement coverage with p ∈ [0.15, 0.30].

As strategies in our models and the additional strategy typically achieve

similar APFD values, for each coverage-granularity level and each test-case-

granularity level, we used Origin [5] to perform a one-way ANOVA analysis

of the strategies. The results indicate that there are significant differences

among the strategies at the 0.05 significance level. We then used Origin to

perform Fisher’s LSD test [134] of the strategies. Tables 2.2 and 2.3 (in which

TCG stands for test-case granularity, CG stands for coverage granularity, 1

indicates statistically significantly better, 0 indicates no significant difference,

and -1 indicates statistically significantly worse) list the results of Fisher’s LSD

33

B P 1 B P 2 B P 3 B P 4 A d d .
6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

1 0 5
AP

FD

(a) Test-method,
basic model

E P 1 E P 2 E P 3 E P 4 A d d .
6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

1 0 5

AP
FD

(b) Test-method,
extended model

B P 1 B P 2 B P 3 B P 4 A d d .
6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

1 0 5

AP
FD

(c) Test-class, basic
model

E P 1 E P 2 E P 3 E P 4 A d d .
6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

1 0 5

AP
FD

(d) Test-class, ex-
tended model

Figure 2.5: Prioritization results for models embodied with differentiated p
values for each method

test for comparing strategies in our models to the additional strategy.

According to Tables 2.2 and 2.3, when prioritizing test cases at the

test-method level using method coverage, strategies with p values between

0.65 and 0.95 in our basic model and with any p values between 0.30 and

0.95 in our extended model achieve significantly better APFD values than

the additional strategy. When prioritizing test cases at the test-class level

using method coverage, strategies with p values between 0.20 and 0.75 in our

extended model significantly outperform the additional strategy. Furthermore,

the additional strategy cannot significantly outperform any strategies in our

basic model with p values between 0.50 and 0.95 and any strategies in our

extended model with p values between 0.15 and 0.95 in any circumstance.

This observation further confirms that our models can achieve clear benefits.

2.5.6.2 RQ2: Impact of Coverage and Test-Case Granularities

Based on Figures 2.1 to 2.4, we make the following observations.

34

Impact of coverage granularity. Our models seem to be more beneficial

when using coverage information at the method level than at the statement

level. According to comparisons between Figure 2.1 and Figure 2.2, and be-

tween Figure 2.3 and Figure 2.4, in both our basic and extended models, the

ranges in which our strategies outperform the additional strategy on average

are much broader using coverage information at the method level than at the

statement level. We suspect the reason for this to be that, when a test case

covers a statement, the probability for the test case to detect faults in the

statement is very high. Thus, the additional strategy is already a good enough

strategy for this situation. However, when a test case covers a method, the

probability for the test case to detect faults in the covered method is not very

high. Thus, we should typically consider that the method may still contain

some undetected faults after being covered by some test cases.

Our extended model seems to be applicable for both method coverage

and statement coverage. In fact, for all combinations of coverage granularity

and test-case granularity, the ranges of strategies in our extended model that

outperform the additional strategy on average are all very wide (i.e., for any

p > 0.30).

As our empirical results indicate that our models are more beneficial

with method coverage, we further compare our strategies using method cover-

age with the additional strategy using statement coverage. When prioritizing

test cases at the test-method level, the average APFD values of wide ranges

of strategies in our models (i.e., strategies in the basic model with p values

35

between 0.75 and 0.90, and strategies in the extended model with p values

between 0.45 and 0.75) using method coverage are very close to the average

APFD values of the additional strategy using statement coverage. When pri-

oritizing test cases at the test-class level, the average APFD values of wide

ranges of strategies in our models (i.e., strategies in the basic model with p

values between 0.70 and 0.80, and strategies in the extended model with p

values between 0.20 and 0.80) using method coverage are as competitive as

or even better than the average APFD values of the additional strategy using

statement coverage. We also performed an ANOVA analysis (at the 0.05 level)

and Fisher’s LSD test to compare our strategies and the additional strategy

using method coverage to the additional strategy using statement coverage.

The ANOVA analysis and Fisher’s LSD test demonstrate that there is no sta-

tistically significant difference between the additional strategy using statement

coverage and any strategy in our basic model with any p value between 0.50

and 0.95 or any strategy in our extended model with any p value between 0.20

and 0.95 using method coverage. However, the additional strategy using state-

ment coverage is significantly better than the additional strategy using method

coverage. As coverage information at the method level is usually much less ex-

pensive to acquire than coverage information at the statement level, this result

indicates that wide ranges of strategies in our models using method coverage

can serve as cheap alternatives for the additional strategy using statement

coverage.

Impact of test-case granularity. Our extended model seems to be more

36

beneficial than our basic model for prioritizing test cases at the test-class

level. First, when using the extended model instead of the basic model, the

number of strategies that outperform the additional strategies increases more

dramatically at the test-class level than at the test-method level (shown in

Figures 2.1 to 2.4). Second, when prioritizing test cases at the test-method

level, the largest average APFD values achieved by our extended model are

larger than those achieved by our basic model by 0.15 (statement coverage)

and 0.25 (method coverage), respectively. However, when prioritizing test

cases at the test-class level, the differences are 0.69 (statement coverage) and

1.03 (method coverage), respectively. Third, results of our statistical analysis

shown in Tables 2.2 and 2.3 also confirm this observation. We suspect the

reason for this to be that it is more common for a test case at the test-class level

than a test case at the test-method level to cover a method or a statement more

than once. In such a circumstance, it is more beneficial to consider multiple

coverage information.

All the strategies that we considered achieve significantly higher aver-

age APFD values for prioritizing test cases at the test-method level than for

prioritizing test cases at the test-class level. In fact, for any object and strat-

egy, using either statement coverage or method coverage, the average APFD

value for prioritizing test cases at the test-method level is uniformly higher

than that for prioritizing test cases at the test-class level. We suspect the

reason for this to be that, as a test case at the test-class level consists of a

number of test cases at the test-method level, it is more flexible to prioritize

37

test cases at the test-method level.

Table 2.4: Fisher’s LSD test for comparing p-differentiated techniques with
p-uniform techniques at the test-method level

Tech. BP1 BP2 BP3 BP4 EP1 EP2 EP3 EP4
M-B75 0 0 0 0 0 0 0 0
M-E60 0 0 0 0 0 0 0 0
M-Add. 1 1 1 1 1 1 1 1
S-B85 0 0 0 0 0 0 0 0
S-E65 0 0 0 0 0 0 0 0
S-Add. 0 0 0 0 0 0 0 0

Table 2.5: Fisher’s LSD test for comparing p-differentiated techniques with
p-uniform techniques at the test-class level

Tech. BP1 BP2 BP3 BP4 EP1 EP2 EP3 EP4
M-B70 1 0 1 0 1 1 1 1
M-E55 0 0 0 0 0 0 0 1
M-Add. 1 1 1 1 1 1 1 1
S-B95 1 0 1 0 1 1 1 1
S-E70 0 0 0 0 0 1 0 1
S-Add. 1 0 1 0 1 1 1 1

2.5.6.3 RQ3: Using Differentiated p Values

Figure 2.5 depicts results obtained by comparing the p-differentiated

strategies with the corresponding additional strategies. We use BP to denote

the four strategies in the basic model, and EP to denote the four strategies

in the extended model. For the basic model, BP1 denotes the use of the

MLoC metric and linear normalization, BP2 denotes the use of the MLoC

metric and log normalization, BP3 denotes the use of the McCabe metric and

linear normalization, and BP4 denotes the use of the McCabe metric and log

normalization. The naming of strategies in the extended model follows the

same manner. In the box plots, the X-axis denotes the studied strategies,

the Y-axis denotes the APFD values achieved by compared strategies, and

38

each box denotes the results of a strategy on all mutant groups of all objects.

We also performed an ANOVA analysis (at the 0.05 level) and Fisher’s LSD

test to compare the eight strategies with differentiated p values to the best

strategies in our basic/extended models and additional strategies using method

and statement coverage. Tables 2.4 and 2.5 show the Fisher’s LSD test result,

where “M-” denotes the strategies using method coverage, and “S-” denotes the

strategies using statement coverage. For example, “M- Barbecue70” denote

the Barbecue70 strategy using method coverage. We make the following

observations.

First, all strategies with differentiated p values outperform the corre-

sponding additional strategies based on method coverage substantially. Fig-

ure 2.5 shows that all the strategies with differentiated p values achieve higher

APFD values over corresponding addtional strategies on average. For example,

when prioritizing test-class-level tests using method coverage, the additional

strategy achieves an APFD value of 76.88 on average, while the four strategies

from the extended model achieve APFD values from 81.10 to 81.92. In addi-

tion, Table 2.4 shows that all eight strategies are statistically significantly bet-

ter than the additional strategy based on method coverage under test-method

granularity, and Table 2.5 shows that all eight strategies are statistically sig-

nificantly better than the additional strategy based on method coverage under

test-class granularity.

Second, all strategies with differentiated p values using method cover-

age are comparable to the best strategies in our basic and extended models

39

(including strategies using method and statement coverage) and the additional

strategies using statement coverage, and even outperform some of those tech-

niques. At both test-class and test-method granularities, the eight strategies

are not statistically inferior to any best strategies within our basic/extended

models or additional strategies using statement coverage. At the test-class

granularity, six of the eight strategies are statistically significantly better than

the additional strategy using statement coverage and the best strategies of the

basic model using method coverage and statement coverage. This indicates

that strategies with differentiated p values using method coverage can even

be a cheaper but better alternative choice for prioritization techniques using

statement coverage.

2.5.7 Implications

Here are the main findings of our experimental study:

• For a wide range of p values (i.e., between 0.95 and 0.50), strategies in

both our basic and extended models (on average) outperform or are at

least competitive with the additional strategy using any combination of

test-case and coverage granularities.

• Strategies in the extended model are generally more effective than strate-

gies in the basic model, especially when the values of p are close to 0.

• Strategies in the basic and extended models are more beneficial for

method coverage than statement coverage.

40

• Our extended model is more beneficial for test suites at the test-class

level, while our basic model is more suitable for test suites at the test-

method level.

• All our strategies using differentiated p values statistically significantly

outperform the additional strategies using method coverage. Some of our

strategies using differentiated p values with method coverage even statis-

tically significantly outperform the additional strategies using statement

coverage.

The experimental findings provide implications for practitioners. The

need for more and better blended approaches provides implications for re-

searchers.

2.6 Summary

The main contributions of this chapter are as follows.

• A new approach that creates better prioritization techniques by control-

ling the uncertainty of fault detection capability in test-case prioritiza-

tion.

• Two models that unify the total and additional strategies and can also

yield a spectrum of generic strategies having flavors of both the total and

additional strategies.

41

• Empirical evidence that many strategies between the total and additional

strategies are more effective than either of those strategies.

• Empirical evidence that our strategies using differentiated p values with

method coverage can significantly outperform the additional strategy

with statement coverage.

42

Chapter 3

Selective Mutation Testing

The previous chapter presented an approach that I introduced in the

regression testing area. This chapter presents my approach for more efficient

selective mutation testing in the mutation testing area, which was presented at

the 28th IEEE/ACM Conference on Automated Software Engineering (ASE

2013) [147].1

3.1 Background

While mutation testing [16,32,43,46,92,96,121,149,155] could be useful

in many domains, it is extremely expensive. For example, a mutation testing

tool for C, Proteum [30], implements 108 mutation operators that generate

4,937 mutants for a small C program with only 137 non-blank, non-comment

lines of code [149]. Therefore, generating and (especially) executing the large

number of mutants against the test suite under evaluation is costly. Various

methodologies for reducing the cost of mutation testing have been proposed.

One widely used methodology is selective mutation testing [12,16,43,92,96,101,

1Note that this is a joint work [147] with another PhD student, Milos Gligoric, from
University of Illinois at Urbana-Champaign.

43

121,149], which only generates and executes a subset of mutants for mutation

testing. Ideally, the selected subset of mutants should be representative of the

entire set of mutants.

The most widely studied approach for selective mutation testing is

operator-based mutant selection [16, 43, 92, 96, 101, 149], which only generates

mutants using a subset of mutation operators; the selected subset of muta-

tion operators is required to be effective, i.e., if a test suite kills all the non-

equivalent mutants generated by the selected set of operators (i.e., the test

suite is adequate for selected mutants), then the test suite should kill (almost)

all the non-equivalent mutants generated by all mutation operators. Further,

selected operators should lead to high savings; the savings is usually calcu-

lated as the ratio of non-selected mutants over all the mutants. Researchers

also evaluated a simple approach of random mutant selection [43,136,149], and

a recent study [149] reported that random selection is as effective as operator-

based mutant selection when random selection selects the same number of

mutants from all mutants as the operator-based selection selects.

Although the existing approaches are effective, mutation testing re-

mains one of the most expensive methodologies in software testing. No previ-

ous study has explored how to further reduce the number of mutants generated

by operator-based mutant selection, and whether operator-based selection and

random selection can be combined. Also, previous work has not explored how

random mutant selection and operator-based selection relate for test suites

that do not kill all non-equivalent mutants (i.e., non-adequate test suites). In

44

addition, all the studies for sequential mutants [16, 92, 96, 101, 136, 149] evalu-

ated mutant selection on small C and Fortran programs—the largest program

used for selective mutation testing was only 513 lines of code. Empirical stud-

ies on larger, real-world programs are lacking.

In this chapter, we investigate a simple idea, called sampling mutation,

that applies random selection on the set of mutants generated by operator-

based selection (rather than on the set of mutants generated by all opera-

tors [43, 136, 149]); we call the process of obtaining the mutants sampling,

the percentage of randomly selected mutants the sampling ratio, and the re-

sulting set of mutants a sample. We introduce new sampling strategies that

select mutants based on the program elements not only based on the muta-

tion operators. Additionally, we report an extensive empirical evaluation on

11 real-world Java projects of various sizes to show that sampling mutation

remains effective and has a high predictive power, even with high savings. In-

terestingly, for all the subjects, we find that sampling only 5% of the mutants

generated by operator-based mutant selection is effective and has a high cor-

relation with results on mutants selected by operators while having 20x fewer

mutants to execute.

3.2 Study Approach
3.2.1 Problem Definition

Given a program under test, P , and a test suite, T , we denote the

set of all selected mutants generated by operator-based mutant selection as

45

M , and the set of non-equivalent mutants in M as NEM . Following existing

studies [16, 92, 96, 149], we randomly construct n test suites of various sizes

{T1, T2, ..., Tn}; the set of mutants that can be killed by Ti (1 ≤ i ≤ n) is

denoted K(Ti,M). Then the (actual) selected mutation score achieved by Ti

over the selected mutants M is defined as:

MS(Ti,M) =
|K(Ti,M)|
|NEM |

(3.1)

In this study, we apply a set of sampling strategies on top of the selected

mutants. Let S be a sampling strategy; the set of mutants sampled by S from

M is denoted MS. We apply each strategy m times (with different random

seeds) to generate a set of mutant samples: {MS1 ,MS2 , ...,MSm}. The set of

mutants in MSj (1 ≤ j ≤ m) that are killed by test suite Ti (1 ≤ i ≤ n) is

denoted K(Ti,MSj). Then, the sampling mutation score achieved by Ti over

MSj can be represented as:

MS(Ti,MSj) =
|K(Ti,MSj)|
|MSj ∩NEM |

(3.2)

Intuitively, if MS(Ti,MSj) is close to MS(Ti,M) for all 1 ≤ i ≤ n and

1 ≤ j ≤ m, we say that the sampling strategy S applied on top of selected

mutants is effective at predicting the result that would be obtained on all

selected mutants. (Section 3.3 precisely defines the predictive power.)

3.2.2 Measurement

In the literature, there are two main approaches for evaluating the

effectiveness of how a subset of mutants represents a larger set of mutants.

46

(Traditionally, the sets are generated by all operators, and the subsets are

selected mutants; in our study, the sets are selected mutants, and the subsets

are sampled mutants.) First, researchers [16, 96, 101, 149] construct test suite

Ti (1 ≤ i ≤ n) that can kill all non-equivalent mutants from the subset (called

adequate test suites), and calculate the mutation score of Ti on the original

set of mutants. Second, Namin et al. [92] also examined how, for test suites

Ti (1 ≤ i ≤ n) that cannot kill all the non-equivalent mutants from the subset

(called non-adequate test suites), the mutation score of Ti on the subset of

mutants compares with the mutation score of Ti on the original set of mutants.

In this study, we use both approaches to evaluate the sampling strate-

gies applied on top of operator-based mutant selection. For the first approach,

since our sampling strategy may select different subsets of mutants at different

runs, we randomly construct n adequate test suites that can kill all sampled

non-equivalent mutants for each of the m sampling runs. We denote the ith

(1 ≤ i ≤ n) test suite that kills all sampled non-equivalent mutants in the

jth (1 ≤ j ≤ m) run of sampling (i.e., the selected mutants are MSj) as Tij.

Following previous work [149], we use the following formula to measure the

effectiveness of a sampling technique S:

EF (S) =
Σm
j=1Σn

i=1|MS(Tij,M)|
n ∗m

× 100% (3.3)

The only difference between our formula and the original formula [149] is that

we also average over m sampling runs; the previous work did not average over

different runs because each run of their operator-based selection gives a fixed

47

subset of mutants. Also note that in the evaluation, we present the standard

deviation (SD) values across m sampling runs to show the stability of the

sampling strategies.

For the second approach, we randomly construct k non-adequate test

suites ({T1, T2, ..., Tk}) for each subject and check how m runs of sampling

influence the mutation scores of the constructed test suites. We use the corre-

lation between sampling mutation score of Ti and selected mutation score of

Ti to measure the predictive power of a random sampling strategy S over the

mutants generated by operator-based mutant selection:

PP (S) = Corr({〈MS(Ti,MSj),MS(Ti,M)〉

|1 ≤ i ≤ k ∧ 1 ≤ j ≤ m}) (3.4)

The correlation analysis is between the mutation scores on the sampled mutant

setMSj and the mutation scores on the selected mutantsM for all constructed

test suites for all sampling runs (1 ≤ j ≤ m). Section 3.3 presents, both

visually and statistically, the Corr functions we use. To illustrate, for all the

m sampling runs of a strategy S, if we use the mutation scores of the k tests

suites on sampled mutants MSj (1 ≤ j ≤ m), i.e., MS(Ti,MSj) (1 ≤ i ≤ k)

as the x-axis values, for each x value we will have a corresponding y value to

predict, which is MS(Ti,M) (1 ≤ i ≤ k). For a perfect strategy, the graph

will be the straight line function y = x, which means all the k test suites have

exactly the same mutation score on sampled mutants and all original mutants

before sampling.

48

3.2.3 Combining Operator-Based and Random Mutant Selection

Given selected mutants,M , we define eight random sampling strategies

that specify which mutants to select from M .

• Baseline Strategy, which samples x% mutants from the selected set of

mutants M . Formally, the set of mutants sampled by strategy Sbase can

be defined as:

MSbase = Sample(M,x%)

where Sample(M,x%) denotes random sampling of x% mutants from

M .2

• MOp-Based Strategy, which samples x% mutants from each set of

mutants generated by the same mutation operator. Assume the sets

of mutants generated by the set of selective mutation operators, say

op1, op2, ..., opk, are Mop1 , Mop2 , ..., Mopk , i.e., M = ∪ki=1Mopi . Then, the

set of mutants sampled by strategy Smop can be formally defined as:

MSmop = ∪ki=1Sample(Mopi , x%)

• PElem-Based Strategies, which sample x% mutants from each set of

mutants generated inside the same program element (e.g., class, method,

or statement). Assume the sets of mutants generated for the set of

2If the sample size is a float f , we first sample bfc mutants at random, and then with
probability f − bfc pick one more mutant at random.

49

elements in the project under test are Me1 , Me2 , ..., Mek , i.e., M =

∪ki=1Mei . Then, the set of sampled mutants can be defined as:

MSpelem = ∪ki=1Sample(Mei , x%)

In this way, Sclass, Smeth, and Sstmt can be defined when using the pro-

gram element granularities of class, method, and statement, respectively.

• PElem-MOp-Based Strategies, which sample x% mutants from each

set of mutants generated by the same mutation operator inside the same

program element. Assume the sets of mutants generated for the set

of program elements in the project under test are Me1 , Me2 , ..., Mek ,

then M = ∪ki=1Mei . Also assume the sets of mutants generated by

the set of selective mutation operator are Mop1 , Mop2 , ..., Moph , then

M = ∪hj=1Mopj . Finally, the set of sampled mutants can be defined as:

MSpelem−mop = ∪ki=1 ∪hj=1 Sample(Mei ∩Mopj , x%)

In this way, Sclass−mop, Smeth−mop, and Sstmt−mop can be defined when

using the program element granularities of class, method, and statement,

respectively.

Note that the first two strategies, Sbase and Smop, have been used by pre-

vious studies [136,149] to evaluate random mutant selection from all mutants.

We believe that using all mutants as the candidate set may be unnecessary.

Therefore, we use these two strategies to evaluate random mutant sampling

50

Table 3.1: Subject programs used in the evaluation

#Mutants
Subject LOC #Tests All Killed
TimeMoneyr207 [130] 2681 236 2304 1667
JDependv2.9 [56] 2721 55 1173 798
JTopasv2.0 [68] 2901 128 1921 1103
Barbecuer87 [15] 5391 154 36418 1002
Mime4Jv0.50 [90] 6954 120 19111 4414
Jaxenr1346 [55] 13946 690 9880 4616
XStreamv1.41 [139] 18369 1200 18046 10022
XmlSecurityv3.0 [138] 19796 83 9693 2560
CommonsLangr1040879 [25] 23355 1691 19746 12970
JodaTimer1604 [65] 32892 3818 24174 16063
JMeterv1.0 [63] 36910 60 21896 2024

from operator-based selected mutants. In addition, our three Spelem strategies,

which aim to sample mutants across all program locations evenly, are the first

to randomly sample mutants at the program element dimension. Further-

more, our three Spelem−mop strategies are the first to sample mutants across

two dimensions: mutation operators and program elements.

3.3 Empirical Study

We performed an extensive empirical evaluation to demonstrate the ef-

fectiveness, predictive power, and savings of the proposed sampling strategies.

3.3.1 Subject Programs

The evaluation includes a broad set of Java programs from various

sources. We chose programs of different sizes (from 2681 to 36910 LOC) to

explore the benefits of our sampling strategies for various cases.

51

Table 3.1 shows 11 subject programs used in the evaluation: TimeM-

oney, a set of classes for manipulating time and money; JDepend, a tool for

measuring the quality of code design; JTopas, a library for parsing arbitrary

text data; Barbecue, a library for creating barcodes; Mime4J, a parser for

e-mail message streams in MIME format; Jaxen, an implementation of XPath

engine; XStream, a library for fast serialization/deserialization to/from XML;

XmlSecurity, an Apache project that implements security standards for XML;

CommonsLang, an Apache project that extends standard Java library; Joda-

Time, a replacement for standard Java date and time classes; and JMeter, an

Apache project for performance testing. All the 11 subjects have been widely

used in software testing research [121,122,148,153,155,161].

Table 3.1 includes some characteristics of the programs. Column “Sub-

ject” shows the name of each subject program, the version/revision number

(as applicable) and the reference to the webpage with sources; “LOC” shows

the number of non-blank lines of code measured by JavaSourceMetric [64];

“#Tests” shows the number of available tests for the program (it is important

to note that we have not created any special test for the purpose of this study:

all the tests for 11 subjects come from their code repositories, and to the best

of our knowledge, all these tests are manually written); “#MutantsAll” and

“#MutantsKilled” show the total number of mutants that Javalanche [121,122]

generated using operator-based selection and the number of killed mutants,

respectively. We used Javalanche because it is a state-of-the-art mutation

testing tool for Java programs. It generates mutants using the operator-based

52

mutant selection approach proposed by Offutt et al. [96, 101]. Specifically,

Javalanche uses the following four mutation operators: Negate Jump Condi-

tion, Omit Method Call, Replace Arithmetic Operator, and Replace Numerical

Constant. Note that the subjects used in our study are orders of magnitude

larger than the subjects used in previous studies on selective mutation test-

ing [92,96,101,136,149].

3.3.2 Experimental Design

We next describe our experimental setup and the data we collected.

3.3.2.1 Independent Variables

We used the following independent variables in the study:

IV1: Different Random Sampling Strategies. We apply each of our eight

sampling strategies on top of the mutants generated by operator-based mutant

selection, to investigate their effectiveness, predictive power, and savings.

IV2: Different Sampling Ratios. For each sampling strategy S, we use 19

sampling ratios r ∈ {5%, 10%, ..., 95%}.

IV3: Different Subject Sizes. For each strategy S with each ratio r, we

apply S on all the subjects with various sizes, and investigate the differences.

3.3.2.2 Dependent Variables

We used the following dependent variables to investigate the output of

the experiments:

53

DV1: Effectiveness. For the mutants sampled by each strategy S among

all selected mutants, we construct test suites that can kill all sampled non-

equivalent mutants, and record the selected mutation score of those test suites.

The higher the selected mutation score is, the more effective the selected mu-

tants are for evaluating test suites (Equation 3.3). (The same experimental

procedure was used previously to measure the effectiveness of operator-base

selection and random selection [16,43,92,96,101,149].)

DV2: Predictive Power. For each sampling strategy S, we also construct

test suites that do not kill all sampled non-equivalent mutants, and use statis-

tical analysis to measure the predictive power of the sampled mutants (equa-

tion 3.4). If the constructed test suites have similar values for sampling muta-

tion score and selected mutation score, then the sampled mutants are a good

predictor of the selected mutants. More precisely, we instantiate the Corr func-

tion to measure: R2 coefficient of determination for linear regression, Kendall’s

τ rank correlation coefficient, and Spearman’s ρ rank correlation coefficient.

DV3: Time Savings. For each triple (P , S, r) of subject program P ,

sampling strategy S, and sampling ratio r, we compare the mutation testing

time for the sampled mutants and the mutation testing time for the selected

mutants.

3.3.2.3 Experimental Setup

Following previous studies on selective mutation testing [92, 149], we

deemed all mutants that cannot be killed by any test from the original test

54

suite as equivalent mutants in our study. We evaluate all the sampling strate-

gies with all sampling ratios on all subjects. Given a subject program and

selected mutants for that program, we first run sampling 20 times for each of

8 sampling strategies with each of the 19 sampling ratios. As a result, we get

20*8*19=3,040 samples of mutants for each subject program.

Then, for each sample of mutants, we randomly construct 20 adequate

test suites that each kill all the non-equivalent mutants in sampled mutants,

i.e., we construct 20*3,040=60,800 test suites for each subject. Next, we mea-

sure the selected mutation score for each test suite. Each test suite is randomly

constructed by including one test at a time until all sampled non-equivalent

mutants are killed. We deviate from the previous work [96,101,149] that con-

structed test suites by including multiple tests at a time (using increment of

50 or 200), as such decision can lead to large test suites and high selected

mutation scores that do not correspond to practice. By including one test at

a time, we simulate a more realistic use of mutation testing in practice, where

a user could include one test at a time until all the mutants are killed.

Next, for each subject, we randomly construct 100 (non-adequate) test

suites of various sizes that do not necessary kill all the sampled mutants. We

randomly construct each test suite by uniformly selecting the size of the test

suite to be between 1 and the number of tests available for the subject. Note

that our experiments differ in this step from previous work [92], where 100 test

suites were generated by taking two test suites for each size between 1 and 50.

The reason to deviate from previous work is that our programs greatly differ

55

in size and number of tests, which was not the case in previous studies. For

example, taking sizes between 1 and 50 does not seem appropriate for both

Barbecue and JodaTime (with 154 and 3818 tests, respectively). Therefore,

we uniformly select the sizes of the test suites up to the total number of tests

for each subject program. Then we measure the sampling mutation score

(i.e., the mutation score on the sampled mutants) and selected mutation score

(i.e., the mutation score on the selected mutants) achieved by each of the

constructed test suites. We further perform correlation analysis between the

sampling mutation score and the selected mutation score for all test suites on

each strategy and ratio combination on each subject. (Section 3.3.3.2 shows

the details.)

Finally, for each sample of mutants, we also trace the time for gen-

erating and executing the mutants. Although it is common in the literature

to report the savings in terms of the number of mutants not generated, this

information is implicitly given in our study through the sampling ratio (e.g.,

if a sampling ratio is 5%, we have 20x fewer mutants). Therefore, our study

also reports the mutation execution time in order to confirm that savings in

terms of the number of mutants correspond to the savings in terms of muta-

tion execution time for mutation sampling. We performed all experiments on

a Dell desktop with Intel i7 8-Core 2.8GHz processor, 8G RAM, and Windows

7 Enterprise 64-bit version.

56

3.3.3 Results and Analysis

We report the most interesting findings of our study in this section,

while some additional results and detailed experimental data are publicly avail-

able online [119].

3.3.3.1 Effectiveness for Adequate Test Suites

Table 3.2 shows the selected mutation scores achieved by randomly con-

structed adequate test suites that achieve 100% sampled mutation score, i.e.,

kill all the sampled non-equivalent mutants. According to our experimental

setup, for each triple of subject program, strategy, and sampling ratio, (P , S,

r), we obtain 20 samples of mutants and construct 20 adequate test suites for

each sample. Thus, for each (P , S, r), we show the average selected mutation

score and standard deviation achieved by the 20*20=400 test suites. Specifi-

cally, column “Ra.” shows sampling ratio, column “Subject” shows the subject

name, and columns 3-18 show the average values and standard deviations

achieved by 8 sampling strategies. The results for all the 19 sampling ratios

can be found on the project webpage [119]. Based on the obtained values, we

make several observations as follows.

First, for all subjects and all sampling strategies, one can see that

the sampled mutants are extremely effective, i.e., the sampled mutants are

representative of the selected mutants. For example, even when sampling 5%

of the selected mutants, the test suites that kill all the sampled mutants can

kill almost all selected mutants. To illustrate, when sampling 5% of selected

57

Ta
bl
e
3.
2:

Se
le
ct
ed

m
ut
at
io
n
sc
or
es

(%
)
ac
hi
ev
ed

by
th
e
te
st

su
it
es

th
at

ac
hi
ev
e
10

0%
sa
m
pl
ed

m
ut
at
io
n

sc
or
es

B
as

e
M

O
p

C
la

ss
M

et
h

S
tm

t
C

la
ss

-M
O

p
M

et
h
-M

O
p

S
tm

t-
M

O
p

R
a.

S
u
b
je

ct
s

M
S
.

D
ev

.
M

S
.

D
ev

.
M

S
.

D
ev

.
M

S
.

D
ev

.
M

S
.

D
ev

.
M

S
.

D
ev

.
M

S
.

D
ev

.
M

S
.

D
ev

.

T
im

eM
on

ey
99

.1
4

1.
12

99
.3

0
0.

98
99

.1
5

1.
20

99
.3

2
0.

90
99

.3
5

0.
94

99
.1

0
1.

23
99

.2
6

1.
00

99
.0

9
1.

17
JD

ep
en

d
98

.2
3

1.
85

98
.1

0
2.

09
97

.8
1

2.
34

98
.3

1
1.

91
98

.3
1

1.
71

97
.9

9
2.

31
98

.5
4

1.
84

98
.6

7
1.

54
JT

op
as

99
.3

7
1.

09
99

.2
4

1.
23

99
.3

2
1.

18
99

.2
5

1.
18

99
.3

0
1.

22
99

.1
9

1.
35

99
.2

5
1.

31
99

.1
6

1.
30

B
ar

b
ec

u
e

98
.6

3
1.

66
98

.6
4

1.
82

98
.9

2
1.

56
98

.9
9

1.
26

99
.0

3
1.

37
98

.6
4

1.
76

99
.0

4
1.

41
98

.6
9

1.
73

M
im

e4
J

99
.7

7
0.

34
99

.7
8

0.
34

99
.7

7
0.

32
99

.8
1

0.
29

99
.7

6
0.

32
99

.8
2

0.
26

99
.8

0
0.

28
99

.7
8

0.
39

5%
Ja

x
en

99
.7

2
0.

33
99

.6
9

0.
36

99
.6

7
0.

37
99

.6
9

0.
33

99
.6

7
0.

42
99

.7
0

0.
36

99
.6

4
0.

39
99

.7
0

0.
36

X
S
tr

ea
m

99
.8

5
0.

21
99

.8
6

0.
17

99
.8

7
0.

18
99

.9
0

0.
14

99
.8

8
0.

15
99

.8
7

0.
18

99
.8

8
0.

15
99

.8
5

0.
19

X
m

lS
ec

u
ri

ty
99

.6
2

0.
61

99
.5

3
0.

74
99

.6
8

0.
56

99
.6

9
0.

50
99

.6
4

0.
70

99
.7

3
0.

46
99

.7
3

0.
45

99
.6

8
0.

56
C

om
m

on
sL

an
g

99
.9

0
0.

13
99

.8
9

0.
15

99
.8

9
0.

14
99

.9
2

0.
10

99
.9

0
0.

14
99

.8
9

0.
14

99
.9

0
0.

12
99

.8
9

0.
13

Jo
d
aT

im
e

99
.9

1
0.

12
99

.9
1

0.
11

99
.9

1
0.

11
99

.9
2

0.
09

99
.9

2
0.

11
99

.9
1

0.
11

99
.9

1
0.

10
99

.9
1

0.
12

JM
et

er
99

.7
1

0.
53

99
.7

3
0.

52
99

.7
6

0.
43

99
.7

6
0.

37
99

.7
2

0.
48

99
.7

2
0.

51
99

.7
7

0.
44

99
.6

7
0.

59

A
v
g
.

9
9
.4

4
-

9
9
.4

2
-

9
9
.4

3
-

9
9
.5

1
-

9
9
.5

0
-

9
9
.4

1
-

9
9
.5

2
-

9
9
.4

6
-

T
im

eM
on

ey
99

.6
1

0.
61

99
.6

6
0.

47
99

.7
1

0.
43

99
.7

5
0.

37
99

.6
7

0.
48

99
.6

7
0.

48
99

.6
9

0.
45

99
.7

2
0.

43
JD

ep
en

d
99

.2
1

1.
17

99
.2

7
1.

03
99

.3
5

0.
90

99
.4

0
0.

89
99

.4
3

0.
84

99
.3

2
0.

92
99

.3
8

0.
91

99
.3

2
0.

87
JT

op
as

99
.6

7
0.

61
99

.6
2

0.
65

99
.7

4
0.

44
99

.6
6

0.
54

99
.6

5
0.

65
99

.6
4

0.
61

99
.7

6
0.

46
99

.7
5

0.
43

B
ar

b
ec

u
e

99
.4

5
0.

79
99

.3
6

0.
95

99
.4

2
0.

82
99

.6
0

0.
64

99
.5

6
0.

62
99

.5
4

0.
72

99
.4

7
0.

88
99

.4
9

0.
74

M
im

e4
J

99
.9

1
0.

17
99

.9
0

0.
16

99
.9

3
0.

13
99

.9
1

0.
15

99
.9

1
0.

15
99

.9
2

0.
13

99
.9

2
0.

13
99

.9
2

0.
14

10
%

Ja
x
en

99
.8

5
0.

19
99

.8
5

0.
20

99
.8

7
0.

17
99

.8
7

0.
17

99
.8

7
0.

17
99

.8
5

0.
19

99
.8

6
0.

18
99

.8
7

0.
16

X
S
tr

ea
m

99
.9

5
0.

08
99

.9
4

0.
08

99
.9

4
0.

08
99

.9
6

0.
06

99
.9

6
0.

07
99

.9
5

0.
09

99
.9

5
0.

07
99

.9
5

0.
09

X
m

lS
ec

u
ri

ty
99

.8
8

0.
23

99
.8

6
0.

27
99

.8
8

0.
22

99
.8

6
0.

23
99

.8
8

0.
20

99
.8

6
0.

26
99

.8
6

0.
25

99
.8

8
0.

25
C

om
m

on
sL

an
g

99
.9

6
0.

06
99

.9
6

0.
06

99
.9

6
0.

06
99

.9
7

0.
04

99
.9

6
0.

07
99

.9
5

0.
06

99
.9

6
0.

06
99

.9
6

0.
06

Jo
d
aT

im
e

99
.9

6
0.

05
99

.9
6

0.
05

99
.9

6
0.

06
99

.9
7

0.
04

99
.9

7
0.

04
99

.9
6

0.
06

99
.9

7
0.

05
99

.9
7

0.
05

JM
et

er
99

.8
6

0.
27

99
.8

7
0.

25
99

.9
0

0.
21

99
.9

2
0.

17
99

.8
8

0.
23

99
.8

8
0.

27
99

.8
9

0.
24

99
.8

8
0.

25

A
v
g
.

9
9
.7

6
-

9
9
.7

5
-

9
9
.7

9
-

9
9
.8

1
-

9
9
.7

9
-

9
9
.7

8
-

9
9
.7

9
-

9
9
.7

9
-

T
im

eM
on

ey
99

.8
1

0.
30

99
.8

1
0.

30
99

.8
2

0.
29

99
.8

8
0.

19
99

.8
6

0.
23

99
.8

4
0.

27
99

.8
6

0.
24

99
.8

1
0.

30
JD

ep
en

d
99

.4
2

0.
84

99
.5

0
0.

82
99

.6
9

0.
55

99
.6

3
0.

53
99

.7
4

0.
48

99
.6

3
0.

57
99

.5
9

0.
59

99
.6

2
0.

60
JT

op
as

99
.8

2
0.

32
99

.8
2

0.
35

99
.8

0
0.

32
99

.8
4

0.
28

99
.8

7
0.

24
99

.8
5

0.
26

99
.8

3
0.

32
99

.7
9

0.
37

B
ar

b
ec

u
e

99
.6

8
0.

50
99

.7
3

0.
40

99
.7

0
0.

47
99

.7
4

0.
36

99
.7

0
0.

46
99

.7
2

0.
47

99
.7

4
0.

41
99

.6
9

0.
52

M
im

e4
J

99
.9

5
0.

10
99

.9
5

0.
10

99
.9

6
0.

08
99

.9
6

0.
09

99
.9

6
0.

08
99

.9
4

0.
10

99
.9

7
0.

08
99

.9
5

0.
10

15
%

Ja
x
en

99
.9

0
0.

15
99

.9
1

0.
12

99
.9

2
0.

11
99

.9
2

0.
10

99
.9

2
0.

12
99

.9
2

0.
10

99
.9

2
0.

12
99

.9
2

0.
11

X
S
tr

ea
m

99
.9

7
0.

05
99

.9
7

0.
05

99
.9

7
0.

06
99

.9
8

0.
04

99
.9

8
0.

04
99

.9
7

0.
05

99
.9

7
0.

04
99

.9
7

0.
06

X
m

lS
ec

u
ri

ty
99

.9
1

0.
19

99
.9

4
0.

12
99

.9
3

0.
16

99
.9

2
0.

15
99

.9
4

0.
11

99
.9

2
0.

14
99

.9
5

0.
11

99
.9

3
0.

15
C

om
m

on
sL

an
g

99
.9

7
0.

05
99

.9
8

0.
04

99
.9

7
0.

04
99

.9
9

0.
02

99
.9

8
0.

03
99

.9
8

0.
03

99
.9

8
0.

03
99

.9
8

0.
04

Jo
d
aT

im
e

99
.9

8
0.

03
99

.9
8

0.
03

99
.9

8
0.

03
99

.9
9

0.
02

99
.9

8
0.

02
99

.9
8

0.
03

99
.9

8
0.

03
99

.9
8

0.
03

JM
et

er
99

.9
3

0.
16

99
.9

3
0.

17
99

.9
3

0.
18

99
.9

6
0.

12
99

.9
4

0.
15

99
.9

4
0.

17
99

.9
6

0.
14

99
.9

4
0.

15

A
v
g
.

9
9
.8

5
-

9
9
.8

7
-

9
9
.8

8
-

9
9
.8

9
-

9
9
.9

0
-

9
9
.8

8
-

9
9
.8

9
-

9
9
.8

7
-

T
im

eM
on

ey
99

.8
9

0.
19

99
.8

8
0.

21
99

.8
8

0.
20

99
.9

1
0.

15
99

.9
1

0.
16

99
.8

8
0.

20
99

.9
0

0.
21

99
.8

9
0.

18
JD

ep
en

d
99

.7
3

0.
45

99
.7

4
0.

45
99

.7
1

0.
52

99
.7

8
0.

38
99

.8
3

0.
33

99
.8

0
0.

34
99

.7
8

0.
41

99
.7

3
0.

48
JT

op
as

99
.8

9
0.

20
99

.8
9

0.
20

99
.8

6
0.

26
99

.9
0

0.
20

99
.8

9
0.

20
99

.8
9

0.
22

99
.8

5
0.

31
99

.8
7

0.
27

B
ar

b
ec

u
e

99
.8

0
0.

38
99

.7
2

0.
44

99
.8

1
0.

31
99

.8
4

0.
28

99
.8

2
0.

31
99

.8
0

0.
33

99
.8

1
0.

33
99

.7
8

0.
39

M
im

e4
J

99
.9

7
0.

07
99

.9
7

0.
07

99
.9

8
0.

05
99

.9
7

0.
05

99
.9

8
0.

04
99

.9
7

0.
06

99
.9

7
0.

06
99

.9
7

0.
07

20
%

Ja
x
en

99
.9

5
0.

07
99

.9
4

0.
09

99
.9

4
0.

09
99

.9
5

0.
08

99
.9

4
0.

08
99

.9
5

0.
07

99
.9

4
0.

08
99

.9
4

0.
09

X
S
tr

ea
m

99
.9

8
0.

03
99

.9
8

0.
04

99
.9

8
0.

03
99

.9
9

0.
02

99
.9

8
0.

03
99

.9
8

0.
03

99
.9

9
0.

03
99

.9
8

0.
03

X
m

lS
ec

u
ri

ty
99

.9
5

0.
09

99
.9

4
0.

13
99

.9
5

0.
10

99
.9

6
0.

08
99

.9
7

0.
07

99
.9

4
0.

15
99

.9
5

0.
10

99
.9

5
0.

10
C

om
m

on
sL

an
g

99
.9

9
0.

02
99

.9
8

0.
03

99
.9

9
0.

02
99

.9
9

0.
02

99
.9

9
0.

02
99

.9
8

0.
03

99
.9

9
0.

02
99

.9
9

0.
03

Jo
d
aT

im
e

99
.9

9
0.

02
99

.9
9

0.
02

99
.9

8
0.

02
99

.9
9

0.
01

99
.9

9
0.

01
99

.9
9

0.
02

99
.9

9
0.

02
99

.9
9

0.
02

JM
et

er
99

.9
5

0.
15

99
.9

5
0.

13
99

.9
5

0.
14

99
.9

8
0.

09
99

.9
6

0.
12

99
.9

7
0.

10
99

.9
8

0.
07

99
.9

4
0.

16

A
v
g
.

9
9
.9

2
-

9
9
.9

1
-

9
9
.9

1
-

9
9
.9

3
-

9
9
.9

3
-

9
9
.9

2
-

9
9
.9

2
-

9
9
.9

1
-

58

mutants, the selected mutation score for Sbase strategy ranges from 98.23% (on

JDepend) to 99.91% (on JodaTime) with the average value of 99.44%. As the

sampling ratio increases, all the strategies have higher selected mutation score

and lower standard deviation for all subjects. This demonstrate that a user

can use the sampling strategies to control the cost-effectiveness of mutation

testing: the more mutants sampled, the more precise and stable the results

would be.

Second, the studied strategies perform better on larger subjects than

on the smaller subjects. For example, when sampling 5% of mutants, Smeth

achieves the average selected mutation scores ranging from 98.31% to 99.32%

for the first four subjects that have fewer than 6000 LOC, while it achieves

the average selected mutation scores ranging from 99.69% to 99.92% for all

the other seven larger subjects. This demonstrates that using small sampling

ratios (e.g., r=5%) of mutants is more beneficial for evaluating test suites for

larger subjects. Section 3.3.4 further investigates the effectiveness of sampling

mutation for ratios even below 5%.

Third, all the strategies perform similarly, but Smeth and Smeth−mop

tend to perform the best of all the strategies for the majority of the subjects.

Moreover, the additional use of mutation operator information in Smeth−mop

does not make it outperform Smeth. This demonstrates that sampling mu-

tants across different program elements can be a better choice than sampling

mutants globally (Sbase) or across different mutation operators (Smop). Smeth

performs better than Sclass and Sstmt likely because sampling at the class level

59

is too coarse (bringing it closer to Sbase), while sampling at the statement

level is too fine making it select no mutant from some statements (because the

number of mutants for each statement is relatively small).

3.3.3.2 Predictive Power for Non-Adequate Test Suites

While the above results showed that adequate sampling mutation score

implies high selected mutation score, it is uncommon in practice to have ad-

equate test suites. Thus, we further investigate the predictive power of the

sampling strategies for non-adequate test suites that do not kill all sampled

non-equivalent mutants. More precisely, we analyze whether the sampling mu-

tation score is a good predictor of the selected mutation score across a range of

test suites, which are almost all non-adequate. Ideally, for all (non-adequate)

test suites sampling and selected mutation score would have the same value.

In practice, if a test suite achieves selected mutation score MS, the same

test suite may achieve sampling mutation score MS ′ such that MS < MS ′,

MS = MS ′, or MS > MS ′. We use three statistical measures to evaluate the

predictive power of sampling mutation score for all strategies.

Evaluating Single Test Suite. Originally, mutation testing was proposed as

a method for evaluating the quality of test suites by measuring mutation score;

the higher mutation score means higher quality. To evaluate a test suite using

one of the sampling strategies, we have to ensure that the result obtained on the

sampled mutants predicts the result that would be obtained on all the selected

mutants. Following previous work [92], we determine how well the independent

60

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

CommonsLang

Sampling Mutation Score (%)

S
e

le
c
te

d
 M

u
ta

ti
o

n
 S

c
o

re
 (

%
)

(a) 5% ratio
0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

CommonsLang

Sampling Mutation Score (%)

S
e

le
c
te

d
 M

u
ta

ti
o

n
 S

c
o

re
 (

%
)

(b) 10% ratio
0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

CommonsLang

Sampling Mutation Score (%)

S
e

le
c
te

d
 M

u
ta

ti
o

n
 S

c
o

re
 (

%
)

(c) 15% ratio

Figure 3.1: Sampling mutation score vs. Selected mutation score, with best
fit line (black color) and smoothing spline line (red color), for CommonsLang
subject, Meth strategy, and three different sampling ratios

variable (sampling mutation score) predicts the dependent variable (selected

mutation score) using a linear regression model. We measure the quality of fit

of a model by calculating the adjusted coefficient of determination R2, which

is a statistical measure of how well the regression line approximates the real

data points. The value of R2 is between 0 and 1, where a higher value indicates

a better goodness of fit.

We calculateR2 for each triple (P , S, r) consisting of a subject program,

strategy, and ratio. For each sample strategy S, we sample mutants at each

ratio r and measure sampling mutation score for the same set of randomly

constructed test suites (Section 3.3.2.3). We repeat sampling 20 times to

obtain sampling and selected mutation scores for a variety of samples. We

then calculate how well the sampling mutation scores from all the 20 sampling

runs predict the selected mutation scores by calculating R2 values3. Note that

we calculate R2 for all 20 sampling runs at once (which gives a more robust

3We use R language for statistical computing.

61

result than calculating R2 for individual runs and averaging the result over 20

sampling runs). To illustrate, Figure 3.1 shows scatter plots of the sampling

mutation score and the selected mutation score for CommonsLang. In each of

the three subfigures, the x-axis shows the sampling mutation scores achieved

by the test suites on various sampling runs, while the y-axis shows the selected

mutation score for the same test suites. There are 20*100=2,000 points on each

plot. From the three subfigures, we can see that a higher sampling ratio (r)

leads to more stable data points, which can also be seen by smoother splines.

However, note that the sampling mutation scores on all sampling runs are close

to their selected mutation scores even when r = 5%.

The left part of Table 3.3 shows R2 values for all strategies with the

sampling ratio of 5% on all subjects. (Due to the space limit, the detailed

results for the other ratios are not shown but can be found on the project

webpage [119].) Column “Subjects” lists the name of the subjects, and columns

2-9 include R2 values for all 8 sampling strategies. The higher the R2 value

is, the better predictor the sampling strategy is. We find that the R2 results

at the 5% ratio level are already extremely high, e.g., ranging from 0.945

(on JTopas) to 0.998 (on CommonsLang) for the Smeth strategy. This further

confirms our findings for adequate test suites—the sampling ratio of 5% can be

effective for mutation testing in practice. In addition, similar to our findings

for adequate test suites, the sampling strategies are less effective for smaller

subjects, e.g., the R2 for the Smeth strategy ranges from 0.945 to 0.977 for

the first four subjects below 6,000 LOC, while it is over 0.98 for the other

62

Ta
bl
e
3.
3:

R
2
an

d
τ
co
rr
el
at
io
n
va
lu
es

be
tw

ee
n
m
ut
at
io
n
sc
or
es

on
sa
m
pl
ed

5%
m
ut
an

ts
an

d
on

m
ut
an

ts
be

fo
re

sa
m
pl
in
g

R
2

co
rr

el
at

io
n

K
en

d
al

l’
s
τ

co
rr

el
at

io
n

S
u
b
je

ct
s

B
as

e
M

O
p

C
la

ss
M

et
h

S
tm

t
C

la
ss

M
et

h
S
tm

t
B

as
e

M
O

p
C

la
ss

M
et

h
S
tm

t
C

la
ss

M
et

h
S
tm

t
-M

O
p

-M
O

p
-M

O
p

-M
O

p
-M

O
p

-M
O

p

T
im

eM
on

ey
0.

97
1

0.
97

2
0.

97
5

0.
97

7
0.

97
6

0.
97

5
0.

97
5

0.
97

2
0.

87
4

0.
87

2
0.

88
1

0.
88

8
0.

88
2

0.
87

7
0.

88
0

0.
87

2
JD

ep
en

d
0.

93
6

0.
92

8
0.

92
7

0.
94

6
0.

94
8

0.
93

3
0.

93
4

0.
92

0
0.

78
4

0.
78

2
0.

77
4

0.
79

1
0.

79
6

0.
76

6
0.

78
9

0.
79

0
JT

op
as

0.
93

2
0.

92
3

0.
90

9
0.

94
5

0.
94

4
0.

94
3

0.
92

2
0.

92
2

0.
84

5
0.

83
4

0.
82

6
0.

85
6

0.
85

1
0.

85
0

0.
83

6
0.

83
1

B
ar

b
ec

u
e

0.
95

6
0.

95
1

0.
95

8
0.

97
0

0.
96

4
0.

96
1

0.
96

2
0.

94
6

0.
84

4
0.

83
3

0.
84

9
0.

86
7

0.
86

1
0.

85
4

0.
85

7
0.

83
2

M
im

e4
J

0.
99

1
0.

99
2

0.
99

3
0.

99
4

0.
99

2
0.

99
2

0.
99

3
0.

99
1

0.
93

6
0.

93
7

0.
93

8
0.

94
3

0.
93

6
0.

93
8

0.
93

9
0.

93
3

Ja
x
en

0.
98

5
0.

98
7

0.
98

3
0.

99
0

0.
98

4
0.

98
6

0.
98

6
0.

98
2

0.
89

4
0.

89
6

0.
88

6
0.

91
0

0.
89

8
0.

90
2

0.
90

1
0.

89
0

X
S
tr

ea
m

0.
99

3
0.

99
4

0.
99

6
0.

99
6

0.
99

5
0.

99
6

0.
99

6
0.

99
5

0.
94

2
0.

94
6

0.
95

4
0.

95
6

0.
94

9
0.

95
3

0.
95

4
0.

94
8

X
m

lS
ec

u
ri

ty
0.

98
2

0.
98

4
0.

98
6

0.
98

6
0.

98
3

0.
98

7
0.

98
4

0.
98

2
0.

88
8

0.
89

2
0.

90
4

0.
90

0
0.

89
4

0.
90

6
0.

89
9

0.
89

6
C

om
m

on
sL

an
g

0.
99

6
0.

99
6

0.
99

7
0.

99
8

0.
99

7
0.

99
7

0.
99

7
0.

99
7

0.
95

3
0.

95
5

0.
95

5
0.

96
4

0.
95

7
0.

95
6

0.
95

8
0.

95
6

Jo
d
aT

im
e

0.
99

6
0.

99
6

0.
99

7
0.

99
8

0.
99

6
0.

99
6

0.
99

7
0.

99
6

0.
95

0
0.

95
0

0.
95

4
0.

95
7

0.
95

2
0.

95
0

0.
95

3
0.

94
9

JM
et

er
0.

98
2

0.
98

2
0.

98
8

0.
98

9
0.

98
5

0.
98

5
0.

98
8

0.
98

0
0.

91
5

0.
91

7
0.

93
1

0.
93

5
0.

92
5

0.
92

4
0.

93
1

0.
91

3

A
v
g
.

0
.9

7
5

0
.9

7
3

0
.9

7
4

0
.9

8
1

0
.9

7
9

0
.9

7
7

0
.9

7
6

0
.9

7
1

0
.8

9
3

0
.8

9
2

0
.8

9
6

0
.9

0
6

0
.9

0
0

0
.8

9
8

0
.9

0
0

0
.8

9
2

63

20 40 60 80

0.
99

7
0.

99
8

0.
99

9
1.

00
0 CommonsLang

Sampling Ratio (%)

R
^2

base

mop

class

method

stat

class−mop

method−mop

stat−mop

(a) R2

20 40 60 80

0.
96

0.
97

0.
98

0.
99

1.
00

CommonsLang

Sampling Ratio (%)

K
en

da
ll

base

mop

class

method

stat

class−mop

method−mop

stat−mop

(b) τ

Figure 3.2: Correlation values for CommonsLang subject, all strategies, and
all rates

seven larger subjects. Furthermore, although all the strategies perform well,

the Smeth strategy slightly outperforms Sbase and Smop for all the 11 subjects,

indicating again that sampling across different program elements can be a

better choice than sampling purely randomly from all mutants or sampling

across different mutation operators.

To show how the correlation varies when the sampling ratio changes,

Figure 3.2(a) shows the R2 values for all 8 strategies when the sampling ratio

increases from 5% to 95% for the subject CommonsLang. The plots for the

other subjects look similar and are available on the project webpage [119]. We

can draw the following conclusions. First, Smeth is slightly better than the

other strategies across all sampling ratios, further demonstrating the benefits

of sampling mutants across program elements. Second, more importantly, all

sampling strategies predict the selected mutation score very well. Across all

the programs, strategies, and ratios, the minimum R2 was 0.909 (for JTopas).

Extremely high R2 gives evidence that sampling mutation is valuable and can

64

be used for evaluation of test suites. We believe that the results of our study

can greatly impact the use of mutation testing in research practice; using

sampling mutation testing makes it feasible to evaluate the quality of test

suites for large-scale programs.

Comparing Testing Techniques and Test Suites. Mutation testing has

also been extensively used in studies that compare testing techniques [19,125,

126]. Commonly, a testing technique or a test suite that has a relatively higher

mutation score than another testing technique or test suite is claimed to be

better (regardless of the absolute mutation score that it achieves). We thus

want to evaluate whether sampling mutation can be used for comparison of

testing techniques and test suites, i.e., if a test suite T has a higher sampling

mutation score than another test suite T ′, does T have a higher selected mu-

tation score than T ′? Similar to a previous study [92], we calculate Kendall’s

τ and Spearman’s ρ rank correlation coefficients, which measure the strength

of the agreement between two rankings. Both τ and ρ can take values be-

tween -1 and 1, where 1 indicates perfect agreement, and -1 indicates perfect

disagreement.

To illustrate how τ is computed, consider all the pairs of sampling and

selected mutation scores; two pairs (MS1, MS ′1) and (MS2, MS ′2) are said to

be concordant if (MS1 > MS2∧MS ′1 > MS ′2)∨ (MS1 < MS2∧MS ′1 < MS ′2)

and discordant if (MS1 < MS2 ∧ MS ′1 > MS ′2) ∨ (MS1 > MS2 ∧ MS ′1 <

MS ′2); otherwise, the pair is neither concordant nor discordant. Kendall’s τ

is calculated as the ratio of difference between the number of concordant and

65

discordant pairs over total number of pairs. In this work we use τb, which has

a more complex computation because it takes ties into consideration.

We calculate Kendall’s τb for each triple (P , S, r), following the same

procedure as for R2. Similar with the R2 measure, we show the τb measure for

all the strategies on all subjects with the sampling ratio of 5% in the right part

of Table 3.3. We also show Kendall’s τb values for CommonsLang subject, all

sampling strategies, and all sampling ratios in Figure 3.2(b). The plots for the

other examples look similar and are available on the project webpage [119].

Across all the subjects, all strategies, and all ratios, the minimal value for τb

in our study was 0.766 (for JDepend).

Considering Table 3.3 and Figure 3.2(b), we can draw similar con-

clusions as from the R2 correlation measures. First, all sampling strategies

provide very similar result for Kendall’s τ . In addition, Smeth slightly out-

performs Sbase and Smop for all 11 subjects. Second, all the values are very

high, which indicates very strong agreement between rankings. The results

for Spearman’s ρ show even stronger agreement (details can be found on the

project webpage [119]). Based on our study, we believe that the comparison

of test suites or testing techniques can be done using sampling mutation.

3.3.3.3 Savings Obtained by Mutation Sampling

Table 3.4 shows the selected mutation testing time for all the mutants

generated by Javalanche (recall that Javalanche uses operator-based selection),

and the sampling mutation testing time for the sampling ratio of 5% and our

66

Table 3.4: Selective and sampling mutation testing time
All Mutants 5% Sampled Mutants (mm:ss)

Subject (mmm:ss) Min. Max. Avg. (Pct.)
TimeMoney 7:13 0:54 0:57 0:55 (12.89%)
JDepend 3:02 0:31 0:33 0:32 (17.66%)
JTopas 34:59 1:01 1:12 1:03 (3.02%)
Barbecue 7:35 2:42 2:56 2:46 (36.62%)
Mime4J 181:20 6:44 9:24 8:09 (4.50%)
Jaxen 48:21 2:49 4:03 3:15 (6.75%)
XStream 132:02 4:37 9:49 6:07 (4.64%)
XmlSecurity 53:04 3:17 4:03 3:46 (7.10%)
CommonsLang 74:35 5:12 6:51 6:01 (8.08%)
JodaTime 196:28 12:28 19:03 14:57 (7.61%)
JMeter 57:32 3:42 5:26 4:28 (7.77%)
Avg. 72:22 - - 4:43 (6.54%)

Smeth strategy. Column “Subject” lists the subjects, column “All Mutants”

shows the mutant generation and execution times for all the mutants gen-

erated by Javalanche, and columns 3-5 list the minimum/maximum/average

mutant generation and execution times for the sampling mutation with the

sampling ratio of 5% across 20 sampling runs. In column 6 (“Pct.”), we also

show the ratio of the sampling mutation testing time over the selected mu-

tation testing time. Note that we include the mutant generation time of all

selected mutants for both selected mutation and sampling mutation, because

our current implementation requires Javalanche to generate all the mutants

before sampling. The results show that the sampling mutation testing time,

with sampling ratio of 5%, is close to 5% of the selected mutation testing time.

We further noticed that the sampling mutation testing time on small subjects

tends to be longer than expected 5% of selected mutation time, because for

small subjects the tool setup time and the mutant generation time (rather than

the mutation execution time) can dominate the total mutation testing time.

67

However, for the seven larger subjects, the tool setup time and the mutant

generation time take insignificant time compared to the total mutation testing

time, leading to sampling mutation time from 4.50% to 8.08% of the selected

mutation time. On average across all the 11 subjects, the sampling mutation

testing time is less than 5 minutes; in contrast, the original Javalanche time

is much more and exceeds 70 minutes.

3.3.4 Below 5%

Our experimental results show that it is possible to greatly reduce the

number of mutants (e.g., sampling only 5% mutants) while still preserving

the mutation score. However, it was not clear whether we can use sampling

ratio below 5%. Thus, we additionally collected the experimental results for

sampling fewer than 5% mutants. Table 3.5 shows the results for the Sbase

and Smeth strategies. The detailed results for all the 8 strategies can be found

online [119]. In the table, Column 1 lists all the studied sampling ratios,

columns 2-4 list the average selected mutation scores for adequate test suites

as well as the average R2 and the τ correlation values for inadequate test

suites by the Sbase strategy across all subjects. Similarly, columns 5-7 list the

corresponding results for the Smeth strategy.

The results show that it is possible to have a fairly reliable mutation

score even when sampling fewer than 5% mutants. However, by the “rule of

99%” [96], which would require the sampling mutation score to be 99% or

higher, the ratio of 3-3.5% is on the borderline for our set of programs and

68

Table 3.5: Results of sampling below 5% of selected mutants
Ra. Base Meth

MS. R2 τ MS. R2 τ

0.5% 92.24 0.806 0.716 92.02 0.803 0.722
1.0% 96.55 0.896 0.792 96.32 0.905 0.799
1.5% 97.27 0.926 0.819 97.71 0.939 0.837
2.0% 98.21 0.944 0.843 98.48 0.952 0.858
2.5% 98.68 0.955 0.859 98.82 0.964 0.872
3.0% 98.94 0.964 0.874 99.00 0.973 0.885
3.5% 99.07 0.968 0.877 99.22 0.977 0.895
4.0% 99.22 0.974 0.888 99.34 0.978 0.899
4.5% 99.38 0.974 0.893 99.46 0.982 0.907

tests and may not generalize to other programs and tests. In the future,

we plan to evaluate whether advanced techniques (e.g., search-based mutant

selection [59,74]) could achieve even smaller sampling ratios. In addition, the

results show that Smeth outperforms Sbase in terms of all the three metrics with

sampling ratio of greater than 1%, further demonstrating the benefits of our

proposed sampling based on program elements.

3.3.5 Threats to Validity

Threats to construct validity. The main threat to construct validity for our

study is the set of metrics used to evaluate the mutant sampling strategies.

To reduce this threat, we use two widely used metrics, the mutation score

metric for adequate test suites [16,96,101,136,149] and the correlation analysis

for non-adequate test suites [92]. Our study still inherits a major threat to

construct validity: as in those previous studies, we considered all mutants

not killed by the original test pool to be equivalent due to the lack of precise

techniques for detecting equivalent mutants.

69

Threats to internal validity. The main threat to internal validity is the

potential faults in the implementation of our sampling strategies or in our data

analysis. To reduce this threat, the first two authors carefully reviewed all the

code for mutant sampling and data analysis during the study.

Threats to external validity. The main threat to external validity is that

our results from this study may not generalize to other contexts, including

programs, tests, and mutants. To reduce this threat, we select 11 real-world

Java programs with various sizes (from 2681 to 36910 lines of code) from

various application domains. Note that our study includes more programs

than any previous study on selective mutation testing for sequential code [16,

92,96,101,136,149]. In addition, the 11 programs used in our study are one to

two orders of magnitude larger than programs used in similar previous studies.

3.4 Summary

This chapter makes the following contributions:

• Sampling mutation: We investigate a simple idea, which we call sam-

pling mutation, to reduce the number of mutants generated by operator-

based mutant selection: sampling mutation randomly selects from the set

of mutants generated by operator-based mutant selection (rather than

from the set of mutants generated by all operators [43, 136, 149]); we

call the process of obtaining the mutants sampling, the percentage of

randomly selected mutants the sampling ratio, and the resulting set of

70

mutants a sample.

• Various sampling mutation strategies: We evaluate 8 sampling

strategies; our study is the first to consider random selection based on

the program elements (rather than on the mutation operators). Our em-

pirical study shows that although all sampling strategies are effective for

mutation testing, sampling based on program elements can provide the

most effective results.

• Extensive study: We evaluate mutation sampling on 11 real-world

Java projects of various sizes (from 2681 to 36910 lines of code) to in-

vestigate the effectiveness, predictive power, and savings of sampling

mutation. Our study evaluates effectiveness in case of adequate test

suites, predictive power in case of non-adequate test suites, and savings

in terms of time to generate and execute mutants.

• Empirical evidence: The study shows that sampling mutation remains

effective and has a high predictive power even while providing high sav-

ings. The study shows the cost-effectiveness of applying sampling muta-

tion with various strategies and ratios. Surprisingly, for all our subjects,

the experimental results show that sampling only 5% of operator-based

selected mutants can still provide a precise mutation score, with almost

no loss in precision, while reducing the mutation time to 6.54% on av-

erage. Moreover, the study shows that the sampling strategies are more

beneficial for larger subjects; as more and more researchers are using

71

mutants to compare testing techniques, our sampling strategies can help

researchers to scale mutation to larger programs by choosing a represen-

tative subset of mutants for efficient but effective evaluation.

72

Chapter 4

Test Selection for Mutation Testing

The previous two chapters (Chapters 2 and 3) introduced two ap-

proaches, one each in the areas of regression testing and mutation testing.

This chapter introduces our first unification of regression testing with mutation

testing: using the test selection technique to incrementally collect mutation

testing results. Note that different from regression test selection techniques

that only deal with manual changes, our test selection technique needs to

deal with two dimensions of changes: both manual and mechanical mutation

changes. This chapter is based on our paper presented at the International

Symposium on Software Testing and Analysis (ISSTA 2012) [155].

4.1 Background

Despite the potential mutation testing holds for software testing, it pri-

marily remains confined to research settings. One of the main reasons is the

costly analysis that underlies the methodology: the requirement to execute

many tests against many mutants. A number of techniques aim to scale muta-

tion testing, for example, by selecting a subset of mutants to generate instead

of generating all of them [92, 96, 136, 149], by partially executing mutants to

73

determine whether a test (weakly) kills a mutant [53, 137], and by executing

some mutants in parallel [73,85,100]. While these techniques are able to reduce

some cost of mutation testing, it still remains one of the most costly software

testing methodologies.

Our key insight is that we can amortize this high cost of mutation test-

ing in the context of software systems that undergo evolution by incrementally

updating the results for successive applications of mutation testing. Real soft-

ware systems undergo a number of revisions to implement bug fixes, add new

features, or refactor existing code. An application of existing mutation testing

techniques to an evolving system would require repeated, independent appli-

cations of the technique to each software version, inducing expensive costs for

every version. Our approach utilizes the mutation testing results on a previ-

ous version to speed up the mutation testing for a subsequent version. Our

approach opens a new direction for reducing the cost of mutation testing; it is

orthogonal to the previous techniques for optimizing mutation testing, and it

is applicable together with these previous techniques.

This chapter presents Regression Mutation Testing (ReMT), a novel

technique that embodies our insight. ReMT identifies mutant-test pairs whose

execution results (i.e., whether the test killed the mutant or not) on the current

software version can be reused from the previous version without re-executing

the test on the mutant. ReMT builds on the ideas from regression test selection

techniques that traverse control flow graphs of two program versions to identify

the set of dangerous edges which may lead to different test behaviors in the

74

new program version [51,102,114]. More precisely, ReMT reuses a mutant-test

result if (1) the execution of the test does not cover a dangerous edge before it

reaches the mutated statement for the first time and (2) the execution of the

test cannot reach a dangerous edge after executing the mutated statement.

ReMT determines (1) with dynamic coverage and determines (2) with a novel

static analysis for dangerous-edge reachability based on Context-Free-Language

(CFL) reachability.

As an additional optimization to our core ReMT technique, we intro-

duce Mutation-specific Test Prioritization (MTP). For each mutant, MTP re-

orders the tests that need to be executed based on their effectiveness in killing

that mutant on previous versions and their coverage of the mutated statement.

Combining ReMT with MTP can further reduce the time to kill the mutants.

4.2 Definitions

This section describes some core concepts in mutation testing (Sec-

tion 4.2.1) and regression testing (Section 4.2.2) that are used in this chapter.

It also provides some basic definitions that we use to present our Regression

Mutation Testing (Section 4.2.3).

4.2.1 Mutation Testing

Mutation testing, first proposed by DeMillo et al. [32] and Hamlet [46],

is a fault-based testing methodology that is effective for evaluating and im-

proving the quality of test suites. Given a program under test, P , mutation

75

testing uses a set of mutation operators to generate a set of mutants M for

P . Each mutation operator defines a rule to transform program statements,

and each mutant m ∈ M is the same as P except for a statement that is

transformed. Given a test suite T , a mutant m is said to be killed by a test

t ∈ T if and only if the execution of t on m produces a different result from the

execution of t on P . Conceptually, mutation testing builds a mutant execution

matrix:

Definition 4.2.1. A mutant execution matrix is a function M × T →

{U, E, N, K} that maps a mutant m ∈M and a test t ∈ T to: (1) U if t has not

been executed on m and thus the result is unknown, (2) E if the execution of t

cannot reach the mutated statement in m (and thus m cannot be killed by test

t), (3) N if t executes the mutated statement but does not kill m, and (4) K if

t kills m.

The aim of our ReMT technique is to speed up the computation of

the mutant execution matrix for a new program version based on the mutant

execution matrix for an old program version. Note that for the very first

version the old matrix has all cells as U because there is no previous version.

For future versions, the old matrix may in the limit be full, having no cell as

U. However, our ReMT technique does not require such full matrices. Indeed,

to compute the mutation score for a given program, for each mutant m, it

suffices that the matrix has (1) at least one cell as K (while others can be E,

N, or even U), or (2) all cells as E or N (indicating that the test suite T does

not kill m).

76

Some existing mutation testing tools, such as Javalanche [122] and Pro-

teum [29], support two mutation testing scenarios: (1) partial mutation testing

– where a mutant is only run until it is killed and thus the matrix may have

some U cells; and (2) full mutation testing – where a mutant is run against

each test and thus the mutant execution matrix has no U cells. Our ReMT

technique is applicable for both scenarios.

4.2.2 Regression Testing

A key problem studied in regression testing is Regression Test Selec-

tion (RTS): determine how changes between program versions influence re-

gression tests and select to run only tests that are related to changes. RTS

techniques [51, 102, 114] commonly use the control-flow graph (CFG) and its

extended forms, e.g., the Java Interclass Graph [51], to represent program ver-

sions and analyze them. A typical RTS technique first traverses CFGs of two

program versions using depth-first search (DFS) to identify the set of danger-

ous edges, E∆, i.e., the edges which may cause the program behavior to change

in the new program version. Then, for each test t in the regression test suite,

the technique matches its coverage information on the old version with the

set of dangerous edges E∆ to determine whether t could be influenced by the

dangerous edges.

Following previous work [51,102], we consider RTS techniques that use

inter-procedural CFGs:

Definition 4.2.2. An inter-procedural CFG of a program is a directed

77

graph, 〈N,E〉, where N is the set of CFG nodes, and E : N × N is the

set of CFG edges.

Each inter-procedural CFG has several intra-procedural CFGs:

Definition 4.2.3. An intra-procedural CFG within an inter-procedural CFG

〈N,E〉 is a subgraph 〈Ni, Ei〉, where Ni ⊆ N and Ei ⊆ E denote edges that

start from nodes in Ni. Each intra-procedural CFG has a unique entry node

and a unique exit node.

Note that Ei includes edges that are method invocation edges connect-

ing invocation nodes in Ni with entry nodes of other intra-procedural CFGs,

as well as edges that are return edges connecting the exit node with return

nodes of other intra-procedural CFGs. Thus, Ei ⊆ Ni×N . Moreover, each in-

vocation node can be linked to different target methods based on the possible

receiver object types, and thus each invocation edge is labeled with a run-time

receiver object type to identify dangerous edges caused by dynamic dispatch

changes.

Traditional RTS techniques [51, 102, 114] explore CFG nodes of two

programs versions using DFS search to determine the equivalence of node

pairs by examining the syntactic equivalence of the associated statements.

They determine the set of dangerous edges:

Definition 4.2.4. The set of dangerous edges between two inter-procedural

CFGs 〈N,E〉 and 〈N ′, E ′〉 is the set of edges E∆ ⊆ E whose target nodes have

been changed to non-equivalent nodes or whose edge labels have been changed.

78

4.2.3 Regression Mutation Testing

To reuse mutation testing results from an old program version for the

new program version, ReMT maintains a mapping between the mutants of

the two program versions. This mutant mapping is based on the CFG node

mapping:

Definition 4.2.5. For two inter-procedural CFGs 〈N,E〉 and 〈N ′, E ′〉, the

CFG node mapping is defined as function mapN: N ′ → N ∪ {⊥} that maps

each node in N ′ to its equivalent node in N or to ⊥ if there is no such equivalent

node.

Note that the node mapping is constructed during the DFS search by

RTS for identifying dangerous edges.

The mapping between mutants of two program versions is defined as

follows:

Definition 4.2.6. For two program versions P and P ′ and their corresponding

sets of mutants M and M ′, mutant mapping between P and P ′ is defined as

function mapM: M ′ →M ∪ {⊥}, that returns mutant m ∈M of P for mutant

m′ ∈ M ′ of P ′, if (1) the mutated CFG node nm′ of m′ maps to the mutated

CFG node nm of m (i.e., nm = mapN(nm′)) and (2) m′ and m are mutated by

the same mutation operator at the same location; otherwise, mapM returns ⊥.

The traditional RTS techniques [51, 114] compute influenced tests by

intersecting edges executed by the tests on the old program version with the

79

dangerous edges. However, such computation of intersection for original, un-

mutated programs does not work for regression mutation testing, because the

test execution path for each mutant may differ from the path for the original

program. Therefore, for ReMT, we introduce a static analysis for checking the

reachability of dangerous edges for each mutant when it is executed by each

test. Our ReMT technique computes the set of dangerous edges reachable

from each node n along the execution of each test t in the test suite T based

on inter-procedural CFG traversal:

Definition 4.2.7. For an inter-procedural CFG 〈N,E〉 with a set of dangerous

edges E∆, the dangerous-edge reachability for node n ∈ N with respect to

test t ∈ T is a predicate reach ⊆ N × T ; reach(n, t) holds iff an execution

path of t could potentially go through node n and reach a dangerous edge after

n.

Note that a node n can have different reachability results with respect

to different tests, i.e., reach(n, t) for a test t may differ from reach(n, t′) for

another test t′.

Our ReMT technique also utilizes the test coverage of CFG nodes and

edges. Specifically, we utilize partial test coverage on CFG nodes and edges

before a given CFG node is executed:

Definition 4.2.8. For a program with CFG 〈N,E〉, test coverage is a func-

tion trace: T ×(N ∪{⊥})→ 2N∪E that returns a set of CFG nodes Nsub ⊆ N

80

and a set of CFG edges Esub ⊆ E covered by test t before the first execution of

node n ∈ N ; trace(t,⊥) is the set of all nodes and edges covered by test t.

Note that this notation allows simply using trace(t, mapN(nm)) to eval-

uate to (1) the set of nodes and edges covered before nm if there is a corre-

sponding mapped node for nm, and (2) the set of all nodes and edges covered

by t if there is no mapped node.

4.3 Example

Figure 4.1 shows two versions of a small program, Account, which pro-

vides basic bank account functionality. Lines 20 and 25 in the old version are

changed into lines 21 and 26 in the new version, respectively. As the change

on line 25 would cause the regression test suite (TestSuite) to fail on test3,

the developer also modifies test3 to make the suite pass.

Figure 4.2 shows the inter-procedural CFG. We depict the changed

nodes in gray; dangerous edges are the edges incident to the gray nodes (e.g.,

〈19, 20〉, 〈11, 25〉, and 〈return, 40〉). The CFG consists of six intra-procedural

sub-CFGs, which are connected using inter-procedural invocation and return

edges. Each invocation site is represented by an invocation node and a return

node, which are connected by a virtual path edge.

To illustrate ReMT, consider the mutants in Table 4.1. Assuming we

already have some mutant execution results from the old version, we collect

mutant execution results for the new version incrementally. We demonstrate

81

1 public class Account {
2 double balance; double credit;
3 public Account(double b,double c){
4 this.balance=b; // deposit balance
5 this.credit=c; // consumed credit
6 }
7 public double getBalance(){
8 return balance;
9 }

10 public String withdraw(double value){
11 if(value>0){
12 if(balance>value){//deposit enough?
13 balance=balance-value;
14 return "Success code: 1";
15 }
16 double diff=value-balance;
17 if(credit+diff<=1000){//credit enough?
18 balance=0;
19 credit=credit+diff;
20 - return "Success code: 1";
21 + return "Success code: 2";
22 }
23 else return "Error code: 1";
24 }
25 - return "Error code: 1";
26 + return "Error code: 2";
27 }
28 }
29 public class TestSuite {
30 public void test1(){
31 Account a=new Account(20.0,0.0);
32 assertEquals(20.0,a.getBalance());}
33 public void test2(){
34 Account a=new Account(20.0,0.0);
35 String result=a.withdraw(10.0);
36 assertEquals("Success code: 1",result);}
37 public void test3(){
38 Account a=new Account(20.0,0.0);
39 String result=a.withdraw(10.0);
40 - assertEquals("Error code: 1",result);
41 + assertEquals("Error code: 2",result);}
42 }

Figure 4.1: Example code evolution and test suite.

both full mutation testing and partial mutation testing scenarios. Following

Definition 4.2.1, the example input matrices of the old version in both scenarios

are shown in the top parts of tables 4.2 and 4.3. In both scenarios, we initialize

the mutation results of the new program version as a new mutant execution

matrix with all U elements to denote that the mutant execution results are

82

Table 4.1: Mutants for illustration.
Mutant Mutated Location Mutant Statement
m1 n4 this.balance=0
m2 n5 this.credit=0
m3 n8 return 1
m4 n11 if(value<=0)
m5 n12 if(balance<value)
m6 n13 balance=balance+value
m7 n13 balance=balance*value
m8 n13 balance=balance/value
m9 n14 return ""

Table 4.2: Incrementally collecting full matrix.
m1 m2 m3 m4 m5 m6 m7 m8 m9

t1 K N K N N N N N N
t2 N N N K N N N N K
t3 N N N K N N N N N

t1 K N K E E E E E E
t2 U U E U U N N N K
t3 U U E U E E E E E

Table 4.3: Incrementally collecting partial matrix.
m1 m2 m3 m4 m5 m6 m7 m8 m9

t1 K N K N N N N N N
t2 U N U K N N N N K
t3 U N U U N N N N U

t1 K N K E E E E E E
t2 (U) U E U U N N N K
t3 (U) U E U E E E E E

initially unknown. In total, at most 27 mutant-test executions are needed for

computing each mutant execution matrix for the new version.

To reduce the number of mutant-test executions, several mutation test-

ing tools [6,70,122] utilize the following fact: when a test executed on the orig-

inal, unmutated program does not cover the mutated statement of a mutant,

then that test cannot kill that mutant. One can thus filter out a set of tests

for each mutant (or dually a set of mutants for each test). Figure 4.2 high-

lights the execution traces of test1, test2, and test3 after evolution with

bold solid (red) lines, bold dashed (blue) lines, and bold dotted (gray) lines,

respectively. Here, for example, any mutant that does not occur on the nodes

83

in bold solid (red) lines cannot be killed by test1, and any mutant that does

not occur on the nodes in bold dashed (blue) lines cannot be killed by test2.

The matrices for the new version can then be updated with E elements to de-

note a mutant that cannot be killed by a test because its mutated statement

is not reached by the test. The light-gray cells in tables 4.2 and 4.3 show the

cells updated with E’s. Now, 14 mutant-test executions (i.e., cells not marked

as E’s) are required for computing the full matrix, and at most 14 executions

are required for computing the partial matrix.

entry TestSuite.test3
Account.Account

TestSuite.test1
TestSuite test2

entry

38

y

4

5

entry

31

entry

TestSuite.test2

entry

return

39

exit

Account.withdraw
return

32
entry

Account.getBalance

34

return

35
Account

entry

11

12

return

40

return

exit

entry

exit

8

35

return

36

13

16

17

18

25

exit

36

exit

14

19

18
23

Virtual path edge
Normal CFG edge

exit

20Invocation edge
Return edge

Figure 4.2: Inter-procedural CFG for the example.

To further reduce the number of mutant-test executions, our ReMT

leverages program evolution information. For instance, mutants m6, m7, m8,

and m9 would need to be executed against test2 when not consider evolution;

however, we can compute that those mutants cannot modify the test2’s exe-

cution trace to reach any dangerous edge, because there is no CFG path from

84

the nodes where those mutants occur (i.e., n13 and n14) to the evolved code

(i.e., n20, n25, and n40). Therefore, the mutation testing results for mutants

on these two nodes cannot differ from their previous results for the program

before evolution, and these results can be directly reused from the old mutant

execution matrix.

We use a static analysis to determine which dangerous edges can be

reached by mutants. It is important to point out that this analysis is done

with respect to each test (Definition 4.2.7) because the results can differ for

different tests. For example, consider node n4 and mutant m1. Although n4

cannot reach any dangerous edge through inter-procedural CFG traversal with

respect to test1, n4 can potentially reach dangerous edges through traversal

from test2. When executingm1 on test2, the execution path takes a different

branch at n12 than the execution path takes when executing the unmutated

new version. Thus m1 executes the dangerous edge 〈19, 20〉, which actually

causes m1 to be killed for the new version although it is not killed for the old

version. Therefore, our dangerous-edge reachability analysis considers poten-

tial execution paths for each test. The matrices for the new version can now

be updated with history information from the old version (shown as dark-gray

cells in tables 4.2 and 4.3). Thus, only 7 mutant-test executions (i.e., cells

with U’s) are required for obtaining the full matrix, and at most 5 executions

are required for obtaining the partial matrix (the two Us within brackets of m1

do not need to be filled because m1 is already killed by test1). In sum, for

this example, compared with the state-of-the-art mutation testing techniques,

85

ReMT reduces the number of mutant-test executions 2X (7 vs. 14) for full

mutation testing and over 2X for partial mutation testing (depending on the

order in which tests are executed for a mutant as we discuss later).

4.4 Approach
4.4.1 Overview

Mutant Mapping

Dangerous-Edge
Reachability Analysis

1. Preprocessing

Dynamic Coverage
Collection

Dangerous-Edge
Reachability Checking

2. Core ReMT Algorithm

Mutant Coverage
Checking

3. Mutation-specific Test Prioritization

Figure 4.3: General approach of ReMT.

This section presents regression mutation testing (ReMT). Figure 4.3

shows the three key components. The Preprocessing component (Section 4.4.2)

builds a mapping between the mutants of the two versions and gathers initial

data for the checking performed by the core ReMT component (Section 4.4.3),

which consists of two steps: mutant-coverage checking and dangerous-edge

reachability checking. Mutant-coverage checking follows previous work [6, 70,

122] in using the coverage information of all tests on the new program ver-

86

sion to select the subset of tests that actually execute the mutated statement

and thus may kill the mutant for the new version. For the selected tests that

do not have execution history (i.e., are newly added tests), ReMT executes

them for gathering mutation testing results for the mutant. For the selected

tests that have execution history, ReMT’s dangerous-edge reachability check-

ing determines whether the mutation results can be reused. More precisely,

a mutant-test result can be reused if (1) no dangerous edge is executed from

the beginning of the test to the mutated statement and (2) no dangerous edge

can be executed from the mutated statement to the end of the test. For (1),

ReMT uses dynamic coverage, and for (2), ReMT uses a novel dangerous-edge

reachability analysis. When possible, ReMT directly reuses execution results

from their previous execution on the mapping mutant of the old version. Fi-

nally, as the order of test execution matters for killing mutants faster, ReMT’s

Mutation-specific Test Prioritization component (Section 4.4.4) reorders tests

to further optimize regression mutation testing.

4.4.2 Preprocessing

Preprocessing consists of mutant mapping, coverage collection, and

dangerous-edge reachability analysis. Coverage collection uses the common

code instrumentation, so we present details of the mutant mapping and dangerous-

edge reachability analysis. The construction of mutant mapping also identifies

dangerous edges that are used in dangerous-edge reachability analysis.

87

4.4.2.1 Mutant Mapping

Following existing regression test selection (RTS) techniques [51, 102,

114], ReMT uses control-flow graph (CFG) to represent program versions and

identifies program changes as dangerous edges. ReMT uses a standard depth-

first search (DFS) for detecting dangerous edges [51,114]. In addition, ReMT’s

CFG comparison algorithm builds mapN, which stores the CFG node mapping

between the two program versions (Definition 4.2.5) and is used to calculate

mutant mapping mapM (Definition 4.2.6). When visiting a node pair, the CFG

comparison algorithm first marks the node pair as visited and puts the matched

node pair into mapN. Then, the algorithm iterates over all the outgoing edges

of the node pair: (1) for the edges without matched labels or target nodes,

the algorithm puts the edges into the dangerous edge set E∆ and backtracks

the traversal along those edges; (2) for the matched edges (i.e., when both

labels and target nodes are matched) whose target nodes have been visited,

the algorithm backtracks; (3) for the matched edges whose target nodes have

not been visited, the algorithm recursively traverses the target node pairs.

Finally, the algorithm returns all dangerous edges E∆, node mapping mapN,

and mutant mapping mapM between the old and new program versions.

4.4.2.2 Dangerous-Edge Reachability Analysis

Given a test t, a node n in the CFG, and a set of dangerous edges E∆,

dangerous-edge reachability computes if n can reach a dangerous edge with

respect to t (Definition 4.2.7). We reduce the dangerous-edge reachability

88

problem to the Context-Free-Language (CFL) Reachability [89, 112] problem.

The use of CFL-reachabillity on the inter -procedural CFG allows us to obtain

more precise results than we would obtain by running a simple reachability

that would mix invocation and return edges. (For example, in Figure 4.1, a

naïve reachability could mix the invocation of the Account constructor from

test1 with the return from the Account constructor to test3 and could then

(imprecisely) find that test1 can reach a dangerous edge that ends in n40.)

In CFL-reachability, a path is considered to connect two nodes only if the

concatenation of the labels on the edges of the path is a word in a particular

context-free language:

Definition 4.4.1. Let L be a context-free language over alphabet Σ and G be

a graph whose edges are labeled with elements of Σ. Each path in G defines

a word over Σ formed by concatenating the labels of the edges on the path. A

path in G is an L-path if its word is a member of the language L.

We reduce our dangerous-edge reachability analysis to a CFL-reachability

problem as follows. For a CFG 〈N,E〉 with I invocation sites, the alphabet Σ

has symbols (i and)i for each i from 1 to I, as well as two unique symbols, e

and d. Following the existing inter-procedural program analysis [89, 112], our

analysis labels all the intra-procedural edges with e, and for each invocation

site i labels its invocation edge and return edge with (i and)i, respectively. In

contrast with the existing techniques, our analysis further labels all danger-

ous edges with d. A path in 〈N,E〉 is a matched path iff the path’s word is

89

in the language L(matched) of balanced-parenthesis strings according to the

following context-free grammar:

matched → matched matched

| (i matched)i ∀i : 1 ≤ i ≤ I

| e|d|ε (4.1)

The language L(dangerous) that accepts all possible valid execution

paths to dangerous edges is defined as:

dangerous → matched dangerous

| (i dangerous ∀i : 1 ≤ i ≤ I

| d (4.2)

The language L(dangerous) is a language of partially balanced parentheses,

which allows representing that the execution might go into some deeper stacks

and not return as long as it encounters a dangerous edge. A path is a dangerous

path iff the path’s word is in the language L(dangerous).

The problem of determining all possible nodes that can reach danger-

ous edges with respect to each test is transformed into the problem of find-

ing all the possible nodes reachable from the root node of each test in the

language L(dangerous). For a node n and a test t, reach(n, t) holds if n

is reachable from the root node of t in the language L(dangerous); otherwise

reach(n, t) does not hold (Definition 4.2.7). Our implementation uses the gen-

eral dynamic-programming algorithm to efficiently solve the CFL-reachability

90

problem [89] and record all the nodes that can appear on the dangerous paths

for each test. Note that the analysis for one test gives the dangerous-edge

reachability for all mutants that the test can execute, i.e., ReMT does not

repeat this static analysis for each mutant-test pair. Also note that we apply

dangerous-edge reachability analysis on the old (not new) program version.

4.4.3 ReMT Algorithm

Algorithm 2 shows our core ReMT algorithm, which supports both the

partial mutation testing and full mutation testing scenarios. The underlined

statements are specific to the partial mutation testing scenario. Note that

ReMT does not require a full input matrix on old version. The algorithm

expects that preprocessing (Section 4.4.2) has been performed, which enables

the use of mutant mapping mapM in line 12, mutant-coverage checking (de-

noted as MCoverageCheck) in line 5, and dangerous-edge reachability checking

(denoted as DReachabilityCheck) in line 10.

4.4.3.1 Basic Algorithm

Lines 2-19 iterate over the mutants of P ′ and the tests in T ′ to get

the mutation testing results. For each mutant m, lines 3 and 4 first initialize

all the test results as U. Line 5 applies mutant-coverage checking [6, 70, 122]

between P ′ and m to select the subset of tests within test suite T ′ that cover

the mutated node nm of m on P ′. Formally, the mutant-coverage checking is

91

Algorithm 2: Algorithm for ReMT
Input: P and P ′, old and current program versions; M and M ′, the mutants for P and P ′;

T and T ′, test suites for P and P ′; matrix, the mutant execution results for P .
Output: matrix’, the mutant execution results for P ′.
Require: Preprocessing (Mutant Mapping, Coverage Collection, and Dangerous-Edge

Reachability Results).
1 begin ReMT
2 foreach mutant m : M′ do
3 foreach test t : T′ do
4 matrix′(m, t)← U // initialization

5 Tc ← MCoverageCheck(T ′, P ′, m)
6 killed← false

7 foreach test t : T′ − Tc do
8 matrix′(m, t)← E // t cannot kill the mutant

9 T ′c ← Tc ∩ T // tests with execution history
10 Tr ← DReachabilityCheck(E∆, T ′c, m, P , P ′)
11 foreach test t : T′c − Tr do
12 matrix′(m, t)← matrix(mapM(m), t)
13 if matrix′(m, t) = K then
14 killed← true // m has been killed

15 if killed =true then continue
16 foreach test t : Tc do
17 if matrix′(m, t) = U then
18 matrix′(m, t)← Execution(t, m)
19 if matrix′(m, t) = K then continue

20 return matrix′// return mutation testing result

computed as:

MCoverageCheck(T ′, P ′,m) = {t ∈ T ′|nm ∈ trace′(t,⊥)}

where trace′(t,⊥) is the entire coverage of t on P ′ (Definition 4.2.8). The

tests that do not cover nm in P ′ cannot kill m, so lines 7-8 assign E to all

such tests. Line 9 stores in T ′c the tests in Tc that have execution history

(i.e., the tests that also exist in the old suite of P). Line 10 finds the tests

from T ′c that can potentially reach dangerous edges in E∆ when executing the

mutated statement nm (Section 4.4.3.2). For the tests in T ′c − Tr that cannot

reach any dangerous edge, ReMT directly copies the execution results from

92

the corresponding mapping mutant of P to the execution results on m of P ′

(lines 11-14). Note that when the input matrix is partial, ReMT may also copy

U values to the new matrix. When ReMT is applied in the partial mutation

testing scenario, it sets the flag killed to true if the mapping mutant has been

killed for P and proceeds to the next mutant (line 15). Lines 16-19 run all the

tests in Tc with value U on m (i.e., the newly added tests without execution

history in Tc, the potentially influenced tests that could reach a dangerous

edge, and the tests whose results are copied as Us from the input matrix).

When ReMT is applied in the partial mutation testing scenario, it terminates

the test execution for m as soon as m is killed by some test. Finally, line 20

returns the mutation testing results for P ′.

4.4.3.2 Dangerous-Edge Reachability Checking

Algorithm 2 invokes DReachabilityCheck at line 10 to perform dangerous-

edge reachability checking. After computing T ′c, the set of tests that execute

the mutated statement for m and have execution history, ReMT further com-

putes Tr, the tests from T ′c that can potentially reach dangerous edges E∆

between P and P ′. There are two types of tests from T ′c that can potentially

reach E∆: (1) the tests that directly execute edges in E∆ before the first ex-

ecution of the mutated CFG node nm; and (2) the tests that can potentially

reach edges in E∆ from the mutated CFG node. The first type of tests is

easily identified by intersecting E∆ with edge coverage before the mutated

node, while the second type of tests is identified by checking the reachability

93

to dangerous edges from the mutated node with respect to the corresponding

test. Formally, we define the reachability checking as follows:

DReachabilityCheck(E∆, T
′
c,m, P, P

′) =

{t ∈ T ′c|trace(t, mapN(nm)) ∩ E∆ 6= ∅ ∨ reach(mapN(nm), t)}

where trace denotes the test coverage for P , and reach denotes the reach-

ability for dangerous edges. Note that the checking is performed on the old

version P because E∆ are edges from P . Thus, we need to map nm back to its

mapped node in P . (If there is no mapped node, there must be a dangerous

edge before nm and thus trace(t, mapN(nm)) = trace(t,⊥) is overlapped with

E∆.)

4.4.4 Mutation-Specific Test Prioritization

We next present mutation-specific test prioritization (MTP) that aims

to prioritize remaining tests for each mutant to kill it as early as possible in

the partial mutation testing scenario. Given a mutantm of a program P ′ (that

evolved from P), MTP calculates the priority of each test based on its coverage

of the mutated statement as well as the mutation testing history. Formally,

the priority of test t for m is calculated as:

Pr(t,m) =

{
〈1, CovNum(t, nm)〉, if matrix(mapM(m), t) = K
〈0, CovNum(t, nm)〉, otherwise.

The priority is a pair whose first element represents the mutation testing

result for the test on the corresponding mutant of the old version P (1 if killed,

94

0 otherwise), and the second element, CovNum(t, nm), is the number of times

the test covers the statement (in the unmutated new version P ′) to be mutated

(to form the mutant). Note that if the test does not have an execution history

on the old version (e.g., the test is newly added or was not executed in the

partial scenario), or the mutant does not have a mapping mutant for the old

version, the first element is set to 0.

For each mutant, ReMT prioritizes tests lexicographically based on

their priority pairs. The tests with first elements set to 1 are executed earlier

based on the intuition that a test that kills a mutant in the old version might

also kill its mapping mutant in the new version. The tests with second elements

that indicate more execution are executed earlier based on the intuition that

a mutant is more likely to be killed if its mutated statement was covered more

times by a test. If two tests have the same priority values, ReMT executes

them according to their order in the original test suite.

4.4.5 Discussion and Correctness

While we presented ReMT for Java and JUnit tests, it is also applicable

for other languages and test paradigms. When the test code does not have

unit tests, our dangerous-edge reachability analysis can be directly applied

on the main method of the system under test. Note that ReMT only works

for traditional mutation operators that change statements in methods. In the

future, we plan to support class-level mutation operators [82] that can change

class hierarchy.

95

We need to show that for each mutant-test result reused from the old

version, the same result would be obtained if the corresponding mutant and

test were run on the new version. Intuitively, ReMT is correct as it works

similarly to regression test selection: for each mutant, any test that might

potentially reach dangerous edges is selected.

Theorem 4.4.1. For every mutant m of P ′, the influenced test set Tr that

ReMT (Line 10) selects from T ′c is such that every test t not selected (i.e.,

t ∈ T ′c−Tr) has an equivalent execution on the corresponding mutant mapM(m)

of P .

Proof. By contradiction. Assume some test t is not selected in Tr for some

m, but t has no equivalent execution on mutants of P . There are two cases

to consider: (1) mutant m does not have a corresponding mutant on P , i.e.,

mapM(m) = ⊥; or (2) mutant m has a corresponding mutant mapM(m) on P ,

but t can potentially diverge into different executions on m and mapM(m).

Case I: According to the definition of mutant mapping (Definition 4.2.6), if m

does not have a corresponding mutant on P , then the mutated node nm for m

does not have a mapping node on P , i.e., mapN(nm) =⊥. According to the DFS-

based node-mapping construction (Section 4.4.2.1), there is no corresponding

node for nm in P or no CFG path that leads to the corresponding node of nm

without executing a dangerous edge. Let the test execution trace for t on P be

n1〈n1, n2〉n2〈n2, n3〉, . . . , 〈nl−1, nl〉nl. If this trace covered no dangerous edge,

then t would have exactly the same execution trace on P and P ′, and thus

96

could not cover nm, which would be inconsistent with t being selected in T ′c.

Therefore, some covered edge 〈ni−1, ni〉 (2 ≤ i ≤ l) must be a dangerous edge,

i.e., 〈ni−1, ni〉 ∈ E∆. Thus, trace(t, mapN(nm)) ∩E∆ = trace(t,⊥) ∩E∆ 6= ∅,

and based on (the first disjunct of) DReachabilityCheck (Section 4.4.3.2), t

would be selected in Tr. Contradiction.

Case II: According to the definition of mutant mapping (Definition 4.2.6),

if m has a corresponding mutant on P , then the mutated node nm for m

has a mapping node on P , i.e., mapN(nm) 6=⊥. Hence, we can represent the

test execution trace for t on P as n1〈n1, n2〉n2 . . . 〈ni, mapN(nm)〉mapN(nm)

. . . 〈nl−1, nl〉nl. Since we assume that t leads to different executions on m

and its corresponding mutant mapM(m), t should cover some changed CFG

nodes or edges on m; otherwise, the execution of t would not differ between m

and mapM(m). There are three sub-cases: (i) t executes changed CFG nodes

or edges during the first execution of the mutated node nm; (ii) t executes

changed CFG nodes or edges before the first execution of the mutated node

nm; or (iii) t executes changed CFG nodes or edges after the first execution of

the mutated node nm.

Sub-case (i): If t executes changed CFG nodes or edges during the

first execution of nm, then nm itself is changed during evolution. Based on

Definition 4.2.5, there would not be a corresponding CFG node for nm on P .

Therefore, there also would not be a corresponding CFG mutant for m on P

(based on Definition 4.2.6). Contradiction.

Sub-case (ii): If t executes changed CFG nodes or edges before the

97

first execution of nm, then there exists an edge 〈nj−1, nj〉 (2 ≤ j ≤ i) before

the execution of mapN(nm) in the trace of t on P such that 〈nj−1, nj〉 ∈ E∆;

otherwise, the execution of t before nm would be exactly the same as its ex-

ecution on mapM(m) and could not cover any changed nodes or edges before

nm. Therefore, trace(t, mapN(nm)) ∩ E∆ 6= ∅, and based on (the first dis-

junct of) DReachabilityCheck (Section 4.4.3.2), t would be selected in Tr.

Contradiction.

Sub-case (iii): If t executes changed CFG nodes or edges after the

first execution of nm, then there exists a dangerous edge e ∈ E∆ such that e ∈

reach(mapN(nm), t); otherwise, the execution of t on m after nm would be ex-

actly the same as its execution on mapM(m) after mapN(nm) and could not cover

any changed CFG nodes or edges (because it does not even have a CFG path

leading to the changed nodes or edges). Therefore, reach(mapN(nm), t) holds,

and based on (the second disjunct of) DReachabilityCheck (Section 4.4.3.2),

t would be selected in Tr. Contradiction.

In summary, for any mutant m of P ′, every test t in T ′c that is not

selected in Tr has an equivalent execution on the corresponding mutant of P .

In other words, ReMT only reuses results that are exactly the same on both

versions, and is thus safe. 2

4.5 Implementation

We built ReMT on top of Javalanche [122], a state-of-the-art tool for

mutation testing of Java programs with JUnit tests. Javalanche allows efficient

98

mutant generation as well as efficient mutant execution. It uses a small set of

sufficient mutation operators [96], namely replace numerical constant, negate

jump condition, replace arithmetic operator, and omit method calls [122].

Javalanche manipulates Java bytecode directly using mutant schemata [131] to

enable efficient mutant generation. For efficient mutant execution, Javalanche

does not execute the tests that do not reach the mutated statement, and it exe-

cutes mutants in parallel. It provides the javalanche.stop.after.first.fail

configuration property to select partial or full mutation scenario.

Our ReMT implementation extends Javalanche with dangerous-edge

reachability checking and mutation-specific test prioritization. For static anal-

ysis, our implementation uses the intra-procedural CFG analysis of the Sofya

tool [71] to obtain basic intra-procedural CFG information and uses the Eclipse

JDT toolkit [2] to obtain the inter-procedural information (method-overriding

hierarchy, type-inheritance information, etc.) for inter-procedural CFG analy-

sis. As a way to test our implementation, our experimental study verified that

the incrementally collected mutation testing results by ReMT are the same as

(non-incrementally collected) mutation testing results by Javalanche.

4.6 Experimental Study

ReMT aims to reduce the cost of mutation testing by utilizing the

mutation testing results from a previous program version. To evaluate ReMT,

we compare it with Javalanche [122], the state-of-the-art tool for mutation

testing.

99

4.6.1 Research Questions

Our study addresses the following research questions:

• RQ1: How does ReMT compare with Javalanche, which does not use

history information, in the full mutation testing scenario in terms of both

efficiency and effectiveness?

• RQ2: How does ReMT compare with Javalanche in the partial mutation

testing scenario under different original test-suite orders?

• RQ3: How does the mutation-specific test prioritization (MTP) further

optimize ReMT in the partial mutation testing scenario?

4.6.2 Independent Variables

We used the following three independent variables (IVs):

IV1: Different Mutation Testing Techniques. We considered the follow-

ing choices of mutation testing techniques: (1) Javalanche, (2) ReMT, and (3)

ReMT+MTP.

IV2: Different Mutation Testing Scenarios. We considered two mutation

testing scenarios for applying mutation testing: (1) full mutation testing and

(2) partial mutation testing.

IV3: Different Test-Suite Orders. As the performance of all evaluated

techniques under the partial mutation testing scenario depends on the test-

suite orders, we used 20 randomized original test-suite orders for each studied

100

revision to evaluate the performance of each technique under that scenario.

4.6.3 Dependent Variables

Since we are concerned with the effectiveness as well as efficiency achieved

by our ReMT technique, we used the following two dependent variables (DVs):

DV1: Number of Mutant-Test Executions. This variable denotes the

total number of mutant-test pairs executed by the compared techniques.

DV2: Time Taken. This variable records the total time (including test

execution time and technique overhead) taken by the compared techniques.

4.6.4 Subjects and Experimental Setup

We used the source code repositories of six open-source projects in

various application domains. Table 4.4 summarizes the projects. The sizes

of the studied projects range from 3.9K lines of code (LoC) (JDepend, with

2.7KLoC source code and 1.2KLoC test code) to 88.8KLoC (Joda-Time, with

32.9KLoC source code and 55.9KLoC test code). We applied our ReMT on

five recent revisions of each project. We treated each commit involving source

code or test code changes as a revision; for commits conducted within the

same day, we merged them into one revision. Table 4.5 shows more details for

each revision in the context of mutation testing: Column 1 names the studied

revision; Column 2 shows the number of source/test files committed; Columns

3 and 4 show the number of tests and mutants; Column 5 shows the ratio

of killed mutants to all mutants and the ratio of killed mutants to reached

101

Table 4.4: Subjects overview.
Projects Description Source+Test(LoC)
JDepend Design quality metrics 2.7K+1.2K
TimeMoney Time and money library 2.7K+3.1K
Barbecue Bar-code creator 5.4K+3.3K

Jaxen Java XPath library 14.0K+8.8K
Com-Lang Java helper utilities 23.3K+32.5K
Joda-Time Time library 32.9K+55.9K

mutants.

In this experimental study, for the full mutation testing scenario, both

the input and output mutation matrices are full (no U), and for the partial

mutation testing scenario, both the input and the output mutation matrices

are partial (but with enough information to compute the mutation score).

The experimental study was performed on a Dell desktop with Intel i7 8-Core

2.8GHz processor, 8G RAM, and Windows 7 Enterprise 64-bit version.

4.6.5 Results and Analysis

4.6.5.1 RQ1: Full Mutation Testing Scenario

In Table 4.5, Column 6 shows the total possible number of mutant-test

executions without any reduction techniques, i.e., the product of the numbers

of tests and mutants. Columns 7-9 show the actual number of executions

performed by Javalanche and ReMT, and the reduction in the number of ex-

ecutions by ReMT over Javalanche. First, we observe that both Javalanche

and ReMT significantly reduce the number of executions from the total pos-

sible executions. For instance, for all five revisions of Barbecue, the total

possible number of executions are more than 5 million, while both Javalanche

and ReMT are able to reduce the number of executions to around or be-

102

low 0.02 million. Second, although the reductions of ReMT over Javalanche

vary greatly across subject revisions, ReMT is able to further achieve reduc-

tions of more than 50% on the majority of all the revisions. Furthermore,

ReMT is able to achieve reductions of more than 90% on 12 of the 30 stud-

ied revisions. For instance, on revision TimeMoney-4, ReMT is even able to

identify that no executions are required to get the new mutation testing re-

sults. Manually inspecting the code changes in this revision, we found that

the developers changed parts of two source files that cannot be reached by

any tests, and thus the mutation testing results cannot be influenced. How-

ever, there are also revisions for which ReMT cannot achieve much reduction.

For instance, on revision Jaxen-2, ReMT is able to achieve a reduction of

only 0.08% over Javalanche. We looked into the revision history and found

that the developers conducted an import patch across all methods of that

org.jaxen.saxpath.base.XPathLexer class that is a central class used by

nearly all the tests in the suite.

Columns 10-12 compare the actual tool time rather than the number

of executions. Column 10 of Table 4.5 shows the mutation testing time taken

by Javalanche. Column 11 shows the overall mutation testing time taken by

ReMT, including the time taken by the preprocessing steps of ReMT (specif-

ically by mutant mapping and dangerous-edge reachability analysis)1. Col-

umn 12 shows the reduction of costs by ReMT over Javalanche in terms of

1We do not explicitly measure the coverage preprocessing time because node coverage is
already traced by Javalanche, and edge coverage is available for any system using regression
test selection.

103

time. First, we observe that the reduction in terms of time does not directly

match the reduction in terms of the number of executions; sometimes the re-

duction for time is lower (e.g., JDepend -1), and sometimes it is higher (e.g.,

JDepend -2). The likely reasons for this include the following: (1) the times

for different executions vary significantly, (2) the reachability checking (lines

9-14 in Algorithm 2) needs extra time, and (3) Javalanche’s parallel thread

scheduling, database setup, and database access can influence the execution

time. Second, we observe that our preprocessing step scales quite well: it takes

at most 3 minutes and 33 seconds across all revisions (Joda-Time-1) and is

negligible compared to the mutant-test execution time.

4.6.5.2 RQ2: Partial Mutation Testing Scenario

As different test-suite orders influence the performance of techniques

under the partial mutation testing scenario, we evaluated the performance

of ReMT and Javalanche under 20 different original test-suite orders. Fig-

ure 4.4(a) shows the reduction that ReMT achieves over Javalanche in terms

of executions. In each plot, the horizontal axis shows different revisions of each

subject, and the vertical axis shows the ratios of executions reduced by ReMT

over Javalanche. Each box plot shows the mean (a dot in the box), median (a

line in the box), upper/lower quartile, and max/min values for the reduction

ratios achieved over 20 randomized original test-suite orders on each revision

of each studied subject. The corresponding data dots are also shown to the

left of each box plot. First, we observe that the reduction achieved by ReMT

104

Ta
bl
e
4.
5:

E
xp

er
im

en
ta
lr
es
ul
ts

of
Ja
va
la
nc
he

an
d
R
eM

T
un

de
r
th
e
fu
ll
m
ut
at
io
n
te
st
in
g
sc
en
ar
io
.

R
ev

is
io

n
C

s
T
s

M
s

M
u
ta

n
t

K
il
l

T
ot

al
N

u
m

b
er

of
E
x
ec

u
ti

on
s

T
im

e
T
ak

en
R

at
es

(%
)

E
x
ec

s
Ja

va
la

n
ch

e
R

eM
T

R
ed

.
Ja

va
la

n
ch

e
R

eM
T

(C
os

t)
R

ed
.

J
D

ep
en

d
-1

2
53

1,
06

7
65

.9
7/

84
.0

0
56

,5
51

10
,7

69
1,

19
6

88
.8

9%
00

:0
5:

45
00

:0
2:

04
(0

0:
05

)
64

.0
5%

J
D

ep
en

d
-2

8
53

1,
16

6
67

.4
0/

84
.2

4
61

,7
98

12
,0

00
10

,5
16

12
.3

7%
00

:0
6:

14
00

:0
2:

21
(0

0:
05

)
62

.2
9%

J
D

ep
en

d
-3

3
54

1,
17

4
67

.4
6/

83
.9

8
63

,3
96

12
,5

28
7,

49
2

40
.1

9%
00

:0
6:

00
00

:0
2:

11
(0

0:
06

)
63

.6
1%

J
D

ep
en

d
-4

2
55

1,
17

4
67

.9
7/

84
.6

2
64

,5
70

12
,9

56
7,

92
0

38
.8

7%
00

:0
6:

04
00

:0
2:

07
(0

0:
06

)
65

.1
0%

J
D

ep
en

d
-5

2
55

1,
17

4
67

.9
7/

84
.6

2
64

,5
70

12
,9

56
6,

82
6

47
.3

1%
00

:0
6:

06
00

:0
2:

40
(0

0:
05

)
56

.2
8%

T
im

eM
o
n
ey

-1
1

23
5

2,
29

3
72

.2
1/

87
.0

2
53

8,
85

5
15

,3
20

58
99

.6
2%

00
:0

9:
08

00
:0

2:
11

(0
0:

08
)

76
.0

9%
T
im

eM
o
n
ey

-2
2

23
6

2,
30

5
72

.2
7/

87
.0

8
54

3,
98

0
15

,6
63

3,
63

7
76

.7
7%

00
:0

9:
19

00
:0

2:
23

(0
0:

07
)

74
.4

1%
T
im

eM
o
n
ey

-3
4

23
6

2,
30

5
72

.2
7/

87
.0

8
54

3,
98

0
15

,6
63

0
10

0.
00

%
00

:0
9:

18
00

:0
2:

12
(0

0:
07

)
76

.3
4%

T
im

eM
o
n
ey

-4
2

23
6

2,
30

5
72

.2
7/

87
.0

8
54

3,
98

0
15

,6
63

0
10

0.
00

%
00

:0
9:

18
00

:0
2:

12
(0

0:
07

)
76

.3
4%

T
im

eM
o
n
ey

-5
7

23
7

2,
30

0
73

.8
2/

86
.6

7
54

5,
10

0
16

,8
05

12
,4

78
25

.7
5%

00
:0

9:
22

00
:0

7:
30

(0
0:

08
)

19
.9

2%

B
a
rb

ec
u
e
-1

3
15

4
36

,4
19

2.
75

/6
8.

39
5,

60
8,

52
6

21
,2

67
20

,8
52

1.
95

%
00

:0
9:

31
00

:0
7:

23
(0

0:
15

)
22

.4
1%

B
a
rb

ec
u
e
-2

1
15

4
36

,4
19

2.
75

/6
8.

39
5,

60
8,

52
6

21
,2

67
11

,3
52

46
.6

2%
00

:0
9:

32
00

:0
5:

57
(0

0:
21

)
37

.5
8%

B
a
rb

ec
u
e
-3

1
15

4
36

,4
19

2.
75

/6
8.

39
5,

60
8,

52
6

21
,2

67
8,

85
0

58
.3

9%
00

:0
9:

36
00

:0
6:

10
(0

0:
12

)
35

.7
6%

B
a
rb

ec
u
e
-4

3
15

4
36

,4
19

2.
75

/6
8.

39
5,

60
8,

52
6

21
,2

67
36

99
.8

3%
00

:0
9:

47
00

:0
4:

21
(0

0:
12

)
55

.5
3%

B
a
rb

ec
u
e
-5

1
15

4
36

,4
19

2.
75

/6
8.

39
5,

60
8,

52
6

21
,2

67
4,

71
5

77
.8

2%
00

:0
9:

11
00

:0
5:

27
(0

0:
12

)
40

.6
5%

J
a
xe

n
-1

3
68

8
9,

93
7

46
.4

9/
70

.0
0

6,
83

6,
65

6
1,

49
5,

82
2

25
,6

41
98

.2
8%

01
:0

6:
35

00
:1

6:
05

(0
0:

33
)

75
.8

4%
J
a
xe

n
-2

5
68

9
9,

87
6

46
.6

9/
70

.5
3

6,
80

4,
56

4
1,

48
9,

63
0

1,
48

8,
36

7
0.

08
%

01
:0

6:
10

01
:0

6:
52

(0
0:

42
)

-1
.0

5%
J
a
xe

n
-3

3
69

0
9,

88
1

46
.7

1/
70

.5
3

6,
81

7,
89

0
1,

49
3,

34
1

99
8,

04
5

33
.1

6%
01

:0
6:

21
00

:4
2:

25
(0

0:
23

)
36

.0
7%

J
a
xe

n
-4

3
69

4
9,

89
1

46
.7

9/
70

.5
9

6,
86

4,
35

4
1,

50
4,

58
7

98
,4

11
93

.4
5%

01
:0

6:
50

00
:2

1:
07

(0
0:

25
)

68
.4

0%
J
a
xe

n
-5

2
69

5
9,

90
1

46
.8

4/
70

.6
3

6,
88

1,
19

5
1,

50
8,

68
3

43
0,

52
1

71
.4

6%
01

:0
7:

35
00

:2
7:

40
(0

0:
25

)
59

.0
6%

C
o
m

-L
a
n
g
-1

5
1,

68
9

19
,7

47
65

.6
3/

86
.2

1
33

,3
52

,6
83

93
,4

23
46

99
.9

5%
01

:3
1:

57
00

:3
2:

11
(0

1:
42

)
64

.9
9%

C
o
m

-L
a
n
g
-2

8
1,

69
1

19
,7

47
65

.6
4/

86
.2

1
33

,3
92

,1
77

93
,4

25
19

99
.9

7%
01

:3
2:

07
00

:3
2:

08
(0

1:
32

)
65

.1
1%

C
o
m

-L
a
n
g
-3

2
1,

69
1

19
,7

47
65

.6
9/

86
.2

5
33

,3
92

,1
77

93
,4

30
1,

12
4

98
.7

9%
01

:3
2:

10
00

:3
1:

55
(0

1:
32

)
65

.3
7%

C
o
m

-L
a
n
g
-4

2
1,

69
1

19
,7

47
65

.6
8/

86
.2

3
33

,3
92

,1
77

93
,4

30
35

2
99

.6
2%

01
:3

2:
33

00
:3

2:
09

(0
1:

31
)

65
.2

6%
C
o
m

-L
a
n
g
-5

3
1,

69
2

19
,7

47
65

.6
8/

86
.2

4
33

,4
11

,9
24

93
,4

50
10

,9
15

88
.3

1%
01

:3
2:

15
00

:4
0:

31
(0

1:
31

)
56

.0
7%

J
od

a
-T

im
e
-1

2
3,

81
8

24
,1

75
65

.0
9/

85
.4

1
92

,3
00

,1
50

1,
06

4,
39

5
77

6,
29

9
27

.0
6%

04
:2

1:
58

03
:1

2:
21

(0
3:

33
)

26
.5

7%
J
od

a
-T

im
e
-2

2
3,

82
8

24
,1

90
66

.4
7/

87
.1

9
92

,5
99

,3
20

1,
07

6,
98

7
86

5,
92

2
19

.5
9%

04
:3

0:
47

03
:2

7:
05

(0
3:

23
)

23
.5

2%
J
od

a
-T

im
e
-3

3
3,

82
9

24
,2

19
66

.4
3/

87
.0

9
92

,7
34

,5
51

1,
07

7,
85

1
61

9
99

.9
4%

03
:5

8:
55

00
:5

4:
04

(0
1:

56
)

77
.3

7%
J
od

a
-T

im
e
-4

7
3,

83
2

24
,2

36
66

.7
1/

87
.4

4
92

,8
72

,3
52

1,
07

7,
75

7
79

5,
15

2
26

.2
2%

03
:5

9:
48

03
:1

4:
03

(0
3:

29
)

19
.0

7%
J
od

a
-T

im
e
-5

1
3,

83
4

24
,2

36
66

.4
1/

87
.0

5
92

,9
20

,8
24

1,
07

8,
57

3
1,

44
3

99
.8

6%
04

:1
5:

57
00

:5
4:

07
(0

1:
44

)
78

.8
5%

105

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

����	����

�������� �����
��

�����
��������������������

����	������������

����� ������������ �����
���

�����
��(a) Reduction of executions (%) achieved by ReMT over Javalanche with 20 random-
ization seeds for ordering original test suites.

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 50
1 02 0
3 0
4 0
5 06 0
7 0
8 09 0

1 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00

1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

r v 1 r v 2 r v 3 r v 4 r v 5- 1 00
1 02 03 04 05 06 07 08 09 01 0 0

����	����

�������� �����
��

�����
��������������������

����	������������

����� ������������ �����
���

�����
��

(b) Reduction of executions (%) achieved by ReMT+MTP over ReMT with 20 ran-
domization seeds for ordering original test suites.

Figure 4.4: Reduction of executions achieved by ReMT and MTP under the
partial mutation testing scenario.

in the partial mutation testing scenario follows a similar trend as the reduc-

tion achieved in the full mutation testing scenario. In addition, the reductions

achieved by ReMT over Javalanche under the partial mutation testing scenario

are even slightly greater than under the full mutation testing scenario for 23 of

the 30 revisions. Second, the reduction achieved by ReMT over Javalanche for

each revision is not greatly influenced by different test suite orders: the stan-

dard deviation values for the reduction only range from 0 to 5.33. While the

reduction ratios are not greatly influenced by test-suite orders, an interesting

106

finding is that the reduction ratios tend to be more stable when the reduction

grows higher. For example, for all revisions with reduction ratios of more than

90%, different test-suite orders tend to have almost no impact at all on the

reduction ratios.

4.6.5.3 RQ3: Mutation-Specific Test Prioritization

Figure 4.4(b) shows the further reduction of executions achieved by

mutation-specific test prioritization (MTP) over ReMT using 20 randomized

original test-suite orders for each revision. Each box plot has the same format

as in Figure 4.4(a) except that the vertical axis represents the ratios of execu-

tions reduced by ReMT+MTP over ReMT (and not overJavalanche). First, we

observe that technique ReMT+MTP further achieves a reduction over ReMT

on 26 of the 30 revisions. There are also four revisions where MTP does not

make any further reductions over ReMT: TimeMoney-3, TimeMoney-4, Bar-

becue-4, and Com-Lang-2. The reason is that ReMT has already reduced the

number of executions greatly, e.g., 0 executions for TimeMoney-3 and TimeM-

oney-4. Second, we observe that the reduction achieved by ReMT+MTP over

ReMT for each revision can be greatly influenced by different original test-suite

orders: the standard deviation values of the reduction range from 0 to 24.60,

which contrasts with the reduction of ReMT over Javalanche. For example,

the reductions achieved on Joda-Time-5 range from 0.00% to 72.97%. The

reason is that MTP is just a reordering of all the tests identified by ReMT and

can even execute more tests than the original test order executed by ReMT.

107

Although the prioritization is done for each mutant, the experimental study

shows MTP is quite lightweight: on average, its total prioritization time for

all mutants is less than 1sec. for the revisions of four projects (i.e., JDepend,

TimeMoney, Barbecue, and Com-Lang), and is 2.43sec. and 3.58sec. for the

revisions of Joda-Time and Jaxen, respectively.

4.7 Summary

This chapter makes the following contributions:

• Regression Mutation Testing. We introduce the idea of unifying re-

gression testing with mutation testing—two well-researched methodolo-

gies that previous work has explored independently—to make mutation

testing of evolving systems more efficient.

• Technique. We develop a core technique for regression mutation test-

ing (ReMT) using dangerous-edge reachability analysis based on CFL

reachability.

• Optimization. We introduce the idea of mutation-specific test prior-

itization (MTP) and present an MTP technique to optimize our core

ReMT technique.

• Implementation. We implement ReMT andMTP on top of Javalanche [122],

a recent mutation testing tool for Java programs with JUnit test suites.

108

• Evaluation. We present an empirical study on version repositories of six

open-source Java programs between 3.9KLoC and 88.8KLoC. The results

show that ReMT substantially reduce the costs of mutation testing on

evolving systems.

109

Chapter 5

Test Prioritization and Reduction for Mutation
Testing

The previous chapter presented our first unification of regression test-

ing and mutation testing: using test selection to speed up mutation testing.

In this chapter, we present our second approach for unification, which uses

test prioritization and reduction to speed up mutation testing. Note that in

contrast with regression test prioritization and reduction guided by test cover-

age, our approach mainly utilizes on-the-fly mutant killing history information

to guide test prioritization and reduction for mutation testing. This chapter

is based on our paper presented at the International Symposium on Software

Testing and Analysis (ISSTA 2013) [153].

5.1 Background

The key insight into the effectiveness of mutation testing is that a test

suite that kills a large number of mutants likely also finds a large number of

real faults [11,32,46,60]—even when the mutants are not the same as the real

faults. This effectiveness of mutation testing relies on the ability to apply it

on a large number of mutants. These mutants are generated systematically

110

using mutation operators, e.g., replace an integer constant with 0.

While mutation testing is very effective for evaluating test suite quality,

it is also very expensive because it requires running many tests against many

mutants. For each mutant that can be killed, we potentially run several tests

that do not kill the mutant until we run one test that does kill the mutant.

For each mutant that is not killed, we must run every test (that reaches the

mutated statement). The cost of mutation testing can be measured in terms

of the test-mutant pairs that are run. One way to reduce the cost is to reduce

the number of mutants by selective mutation testing [16, 92, 96, 136, 149]. In

contrast, this work reduces mutation testing cost in an orthogonal way: we

aim to reduce the cost of executing tests for each mutant.

This chapter presents Faster Mutation Testing (FaMT) to reduce the

cost of mutation testing. We build on the ideas of test prioritization [39,

116, 148] and test reduction [18, 22, 47, 50], which are central to regression

testing [142]. Test prioritization has been applied to mutation testing by our

previous work, ReMT [155], but ReMT is a specialized technique that (1)

only works for evolving code and (2) requires old mutation testing results on

previous versions to prioritize tests. In this chapter, we present the general

FaMT approach to test prioritization for mutation testing which (1) works even

for one code version and (2) does not require old mutation testing results. To

the best of our knowledge, test reduction has not been previously used for

mutation testing.

The goal of our test prioritization is to reorder the tests such that a

111

test that kills the mutant (when it can be killed) is run earlier. The goal of

our test reduction is to run only a subset of tests on a mutant to determine

that it is not killed if no test from this subset kills it. While test prioritization

is precise in that it computes exactly the same mutation score as traditional

mutation testing but does so faster, test reduction is approximate in that it

provides an underapproximation for the mutation score (because a test that

was not selected could kill a mutant even when no selected test kills it).

To compute the bounds of mutation testing cost, consider a program P

with a set of mutantsM and a test suite T. Let the number of mutants killed by

T be mK and the number of mutants not killed by T be mN ; |M| = mK +mN .

Let the total number of test executions for the killed mutants be tK (tK ≥ mK)

and the total number of test executions for the non-killed mutants be tN . The

total cost of mutation is tK + tN . Any precise (dynamic) technique that

reduces this cost can only reduce the number of test executions to kill the

mutants because for each mutant that is not killed, all tests (that reach the

mutant) must be run. An oracular technique could kill each mutant (that can

be killed) by running only one test per mutant, and therefore has costmK+tN .

An approximate technique could, in principle, have cost 0, by running none

test-mutant pair, but would not kill any mutant. Thus, a goal to optimize

mutation testing is to achieve higher precision with lower cost.

112

5.2 Example

This section illustrates our FaMT technique using a simple example

with 4 mutants and 4 tests. Consider the following sample code snippet and

its 4 mutants (m1, m2, m3, m4):

1 int abs(int x) {
2 int y = 0;
3 if (x < 0)
4 y = x;
5 if (x < 0) {//m1:"if(y < 0)" m2:"if(x <= 0)"
6 return y;
7 } else {
8 return x;//m3:"return 0;" m4:"return x;"
9 }

10 }

Note that each mutant is defined by exactly one change to the program,

e.g., m1 replaces the variable x with y at line 5. In the actual mutation testing,

there would be many more mutants even for this simple code, but we use only

4 mutants for ease of exposition. Consider further the following 4 tests for this

code:
1 assert abs(0) == 0; // reach: m1, m2, m3, m4
2 assert abs(1) == 1; // reach: m1, m2, m3, m4
3 assert abs(1) == 1; // reach: m1, m2
4 assert abs(4) == 4; // reach: m1, m2

The goal of mutation testing is to determine the mutation score for

these 4 tests on these 4 mutants. A naïve approach would run all 4 tests on

all 4 mutants to determine the mutation score. However, not all these 16 runs

are necessary. Traditional mutation testing employs two optimizations. First,

it is unnecessary to run tests on a mutant after it gets killed. Second, it is

unnecessary to run tests that do not even reach the mutated statement when

these tests are run on the original, unmutated program [6, 70, 122, 155]. For

113

Table 5.1: Traditional mutation testing
m1 m2 m3 m4 Total runs of

t1 N t1 N t1 N t1 N test-mutant pairs
t2 N t2 N t2 K t2 K

t3 K t3 N 11

t4 - t4 N

Table 5.2: FaMT test prioritization
m1 m2 m3 m4 Total runs of

t3 K t3 N t1 N t2 K test-mutant pairs
t4 - t4 N t2 K t1 -
t1 - t1 N 8

t2 - t2 N

Table 5.3: FaMT test reduction
m1 m2 m3 m4 Total runs of

t3 K t3 N t1 N t2 K test-mutant pairs
t4 - t4 N t2 - t1 -
t1 - t1 - 5

t2 - t2 -

our example tests, the comments show this reachability information.

Table 5.1 shows the 11 test-mutant pairs that the traditional mutation

runs with these two optimizations. The cells indicate the following: ’N’ that

the test was run but did not kill the mutant, ’K’ that the test was run and

did kill the mutant, and ’-’ that the test was not even run for that mutant.

Note that t3 and t4 are not listed for m3 and m4 because they cannot reach

the mutated statement, and t4 is not run for m1 because m1 has been killed

by t3 before t4.

FaMT improves on the optimized traditional mutation testing in two

ways. First, FaMT uses test prioritization to reorder the tests that reach each

mutant. (Section 5.3.3 presents the algorithm in detail.) Intuitively, our prior-

itization uses the dynamic information from test runs on the original program

(recall that the tests are already run to find the reachability information) and

on the history of test runs on other mutants which are tested before the current

114

mutant.

Table 5.2 shows the 8 test-mutant pairs that FaMT runs for our exam-

ple. For each mutant, the table also shows how FaMT orders the tests for that

mutant and the result of test runs. Note that FaMT can run the tests in differ-

ent orders for different mutants. For m1, FaMT orders t3 and t4 before t1 and

t2 because t3 and t4 execute more instructions before reaching the mutated

statement on the original program. (Section 5.3 describes the rationale for

this choice and the additional information that FaMT uses.) For m4, FaMT

orders t2 before t1 because the execution history before m4 (i.e., from m1 to

m3) shows that t2 is a “better killer”; t2 killed m3, whereas t1 did not kill any

mutant on which it was run before executing on m4. In sum, the reordering

that FaMT makes allows it to run only 8 test-mutant pairs (i.e., a reduction of

27.3%) and still produce the precise mutation score (3 of 4 mutants are killed).

Second, FaMT can further use test reduction to reduce the number of

test-mutant pairs run. Intuitively, the reduction runs only a subset of the tests

that reach a mutant; if none of these tests kills the mutant, FaMT considers

that the mutant cannot be killed by the given test suite. (Section 5.3.4 dis-

cusses reduction techniques that FaMT can use.) To illustrate, consider that

FaMT runs at most 50% of the tests that reach the mutant.

Table 5.3 shows the 5 test-mutant pairs that FaMT runs for our exam-

ple. Note that different from FaMT prioritization, after t3 and t4 are executed

on m2, FaMT directly predicts that m2 cannot be killed because 50% of the

tests that reach m2 have been executed. However, test reduction is approxi-

115

mate and provides an underapproximation for the mutation score because a

test that was not selected to be run could kill a mutant even when no selected

test kills it. For example, after t1 is executed on m3, t2 will not be executed on

m3. Therefore, FaMT reduction imprecisely predicts that m3 cannot be killed

while actually it can be killed by t1. In brief, using reduction allows FaMT

to run only 5 test-mutant pairs (i.e., a reduction of 54.5%) but produces an

imprecise mutation score (2/4 as opposed to the actual score of 3/4). Please

note that our experimental study demonstrates that the underapproximations

for real-world programs are much smaller than this example.

5.3 Approach

This section presents our FaMT approach for faster mutation testing.

We first describe the basics of our approach, including initial test ordering

(Section 5.3.1) and adaptive test ordering (Section 5.3.2). We then present

test prioritization that FaMT performs to more quickly compute the precise

mutation score (Section 5.3.3), and test reduction that FaMT performs to

more quickly compute an approximate mutation score (Section 5.3.4). Recall

that the cost of mutation testing has two key elements—running some tests

for killed mutants and running every test for non-killed mutants. While FaMT

prioritization addresses only the first element and calculates a precise mutation

score, FaMT reduction addresses both of these elements but calculates an

approximate mutation score.

116

5.3.1 Coverage-Based Initial Test Ordering

For each mutant m, FaMT first calculates the initial priority values

of the tests that execute the mutated statement using test coverage on the

unmutated program version. This calculation uses two basic heuristics: (1)

tests that execute the mutated statement more times have a higher probability

to kill the mutant [155], and (2) tests that execute the mutated statement more

closely to the test exit statement have a higher probability to propagate the

mutated state to the end and kill the mutant.1 We also use a third heuristic

that combines these two.

Let t be a test for mutant m. Our first heuristic calculates the initial

priority value of t for m as:

C1(t,m) = CovNum(t, stmtm) (5.1)

where CovNum(t, stmtm) denotes the number of times that t covers stmtm which

is the mutated statement of m.

Our second heuristic calculates the initial priority value of t for m using

the ratio of the number of statements executed by t before the first execution

of stmtm to the number of all statements executed by t:

C2(t,m) =
CovBefore(t, stmtm)

CovBefore(t, stmtm) + CovAfter(t, stmtm)
(5.2)

where CovBefore(t, stmtm) denotes the number of unique statements executed

by t before the first execution of the mutated statement stmtm, and CovAfter(t, stmtm)

1Note that a test can cover the mutated statement multiple times; we measure the
distance from the first execution of the mutated statement to the test exit statement.

117

denotes the number of unique statements executed by t after the first execu-

tion of stmtm. The higher the value is, the closer stmtm may be to the end of

t.

Our third heuristic combines the first two and calculates the initial

priority value of t for m:

C3(t,m) =
CovNum(t, stmtm)× CovBefore(t, stmtm)

CovBefore(t, stmtm) + CovAfter(t, stmtm)
(5.3)

5.3.2 Power-Based Adaptive Test Ordering

During the execution of the tests for a mutant, FaMT also collects on-

the-fly history information to adaptively update the test execution order. The

basic intuition is that a test which killed more mutants that are close to the

current mutant has a higher likelihood to kill the current mutant. We call this

likelihood of a test to kill the current mutant m as the power of a test with

respect to m. Formally, we denote the mutation testing results as a matrix

Matrix, where each cell Matrix(t,m) denotes the execution result of t on m: K

denotes that m is killed by t, and N denotes that m is executed but not killed

by t. Matrix is initially empty, and eventually filled with N and K. We define

the power of test t with respect to m as the ratio of the number of mutants

in m’s neighborhood (denoted as Nm, and defined below) which are killed by

t to the number of all those in the neighborhood that have been executed by

t (whether or not they are killed by t):

P1(t,m) =
|{m′ ∈ Nm|Matrix(t,m′) = K}|
|{m′ ∈ Nm|Matrix(t,m′) ∈ {K, N}}|

(5.4)

118

Intuitively, the higher the ratio, the higher the likelihood that t kills m. Note

that the history information used by FaMT is not the mutation testing infor-

mation from previous program versions. Instead, it is accumulating execution

history of tests on other mutants that have been executed before the current

mutants in the same mutation testing task.

Equation (5.4) calculates the power of a test by taking into account

all the mutants which are in Nm and executed by t. However, the mutants

that cannot be killed by any tests may unnecessarily lower the power of a

test. Therefore, we propose another formula to calculate the power of a test

by excluding the mutants that have not been killed by any test yet:

P2(t,m) =
|{m′ ∈ Nm|Matrix(t,m′) = K}|

|m′ ∈ Nm|{K(m′) ∧ Matrix(t,m′) ∈ {K, N}}|
(5.5)

where K(m′) denotes whether m′ has been killed by a test, i.e., K(m′) ⇔

∃t,Matrix(t,m′) = K.

While we believe there are various ways to define the neighborhood

among mutants, here we consider the mutants that share common program

locations as neighbors. In particular, we define four levels of neighborhood,

each of which can be used for calculating the power of a test with respect to

a mutant:

• Statement-level history: FaMT groups all the mutants that occur on

the same statement with m as Nm, i.e., Nm = {m′|stmtm′ = stmtm},

where stmtm denotes the statement on which m occurs.

119

• Method-level history: FaMT groups all the mutants within the same

method with m as Nm, i.e., Nm = {m′|methm′ = methm}, where methm

denotes the source method in which m occurs.

• Class-level history: FaMT groups all the mutants that occur in the

same class with m as Nm, i.e., Nm = {m′|clasm′ = clasm}, where clasm

denotes the source class in which m occurs.

• Global history: We group all the mutants as Nm, i.e., Nm = {m′|m′ ∈

M}, where M denotes all the mutants for the program under test.

Different levels of neighborhood enable FaMT to use different levels of history

information. For each history level, FaMT utilizes the history information of a

test t on the mutants that occur in the same neighborhood (e.g., in the same

class) with the current mutant m to calculate the likelihood that t kills m.

Statement-level history calculates the test power based on mutants that are

on the same statement because those mutants tend to perform similarly when

being tested. However, the number of mutants that are on the same statement

is usually too small for sampling. In contrast, global-level history records the

test power for the entire program and may be imprecise for specific mutants,

but the number of mutants is sufficiently large. Therefore, we use all four

levels of history information to investigate their impacts.

120

Algorithm 3: FaMT Prioritization Algorithm
Input: Program P, mutants M, test suite T

Output: Matrix
1 begin
2 Initialize Matrix as empty

// Collect coverage information when executing T on P

3 CovNum, CovBefore, CovAfter ← CovCollect(T,P)
4 for m ∈ M do

// Detect tests that execute the mutated statement on P

5 Tm ← {t ∈ T|CovNum(t, statm) > 0}
6 for t : Tm do

// Note that the initial priority calculation is not updated during
mutation testing

7 Calculate C(t,m) according to Section 5.3.1
// Note that the power calculation is continuously updated during

mutation testing
8 Calculate P(t,m) according to Section 5.3.2

// Reorder Tm based on the initial priority values, C
9 T′m ← ReOrder(Tm,C)

// Split T′m into two lists by comparing the power values, P, with
Threshold

10 T1, T2 ← Partition(T′m,P, Threshold)
// Iterate over the test list by concatenating T1 and T2

11 for t : T1 ⊕ T2 do
12 Matrix(t,m)← Execute(t,m) // N or K

// If mutant m is killed, continue to next mutant
13 if Matrix(t,m) = K then break

// Return the final mutation testing matrix
14 return Matrix

5.3.3 Test prioritization

The goal of our test prioritization technique is to reorder the tests such

that a test that kills the mutant (when it can be killed) is run earlier than by

simply following the default or random order of tests. Algorithm 3 gives the

pseudo-code for our technique. The algorithm employs a family of ordering

functions. These functions are based on coverage information of tests (Sec-

tion 5.3.1) and on the accumulating execution history of tests (Section 5.3.2).

The algorithm takes program P, its mutant set M, and test suite T

as inputs, and returns the mutation testing matrix Matrix as output. Line

121

2 initializes Matrix as empty. Line 3 collects coverage information which is

used during later steps. Lines 4-13 iterate over the mutant set to determine

whether each mutant is killed. During each iteration, Line 5 identifies the

set of tests Tm that reach the mutated statement of current mutant m on

the unmutated program, because the tests which do not reach the mutated

statement cannot kill the mutant [6, 70, 122, 155]. Lines 6-8 iterate over all

the tests in Tm and calculate the initial priority (Section 5.3.1) as well as

power (Section 5.3.2) for each test with respect to m. Note that the initial

test priorities are fixed during the process of mutation testing, because they

are based on the coverage information of the tests on the unmutated program.

However, the test powers are continuously updated during the mutation testing

process: the more mutants in the neighborhood of m executed, the higher the

accuracy of the power values.

Line 9 reorders Tm according to the initial priorities of tests. Line 10

then partitions the reordered list into two sublists, T1 and T2, based on the

power of a test: if the power is less than the Threshold, FaMT puts the test

into T2; otherwise, FaMT puts the test into T1. Note that each sublist is

still ordered by initial test priorities. Lines 11-13 concatenate T1 with T2 and

iterate over the concatenated list. Line 12 executes mutant m on test t and

puts its execution result into the resulting Matrix: if t kills m, the execution

result is K; otherwise, the result is N. Line 13 terminates the execution for

current mutant and continues to the next mutant if the current mutant is

killed. Finally, Line 14 returns the mutation testing matrix Matrix as output

122

and terminates the algorithm.

5.3.4 Test reduction

Our test prioritization can reduce the number of executions to kill mu-

tants, but for the mutants that cannot be killed, the test prioritization cannot

help. The goal of our test reduction is to run only a subset of tests on a mutant

to determine that it is not killed if no test from this subset kills it. In this

way, we can reduce the number of executions for all the mutants, regardless

of whether they are killed or not. Note that this reduction may cause the

mutation testing result to be approximate because some mutant may be mis-

takenly predicted as not killable due to some tests that kill it being omitted.

Therefore, this algorithm needs to be carefully evaluated through an empirical

study.

The basic intuition of our test reduction is that if those tests with higher

likelihood to kill a mutant cannot kill the mutant, the remaining tests will have

little chance to kill the mutant. Recall that our test prioritization also exe-

cutes first the tests that have higher likelihood to kill mutants. Therefore, we

build our test reduction algorithm directly on our test prioritization algorithm

(Algorithm 3). Our reduction modifies Line 11 of Algorithm 3. While our

prioritization algorithm always concatenates the entire T1 and T2, our reduc-

tion algorithm only concatenates T1 with a prefix of T2. More specifically, we

change Line 11 into the following line to form our reduction algorithm:

for t : T1 ⊕ PreFix(T2,Max(0, (|T1 ⊕ T2|)× MinRatio− |T1|))

123

Table 5.4: Subjects
Subject Version Size #Tests #Mutants(KillRates)

TimeMoney r207 2681 236 2304 (72.35/87.14)
Jaxen r1346 13946 690 9880 (46.72/70.54)

Xml-Sec v3.0 19796 84 9693 (26.41/70.93)
Com-Lang r1040879 23355 1691 19746 (65.68/86.24)

JDepend v2.9 2721 55 1173 (68.03/84.62)
Joda-Time r1604 32892 3818 24174 (66.45/87.16)

JMeter v1.0 36910 60 21896 (9.24/28.34)
Mime4J v0.50 6954 120 19111 (23.10/63.39)
Barbecue r87 5391 154 36418 (2.75/68.40)

where PreFix(T2, x) returns the sublist which contains the first x tests in T2, and

Max(x, y) returns the larger of x or y. The reduction algorithm concatenates

T1 with a prefix of T2 such that ratio of the concatenated list’s length to the

length of T1⊕ T2 is at least MinRatio. Note that if the length of T1 is already

larger than or equal to (|T1⊕T2|)×MinRatio, no tests from T2 will be executed.

5.4 Experimental Study

FaMT aims to reduce the cost of mutation testing by prioritizing and

reducing the tests that need to be executed for each mutant. To evaluate

FaMT, we implement FaMT on top of Javalanche [122], a state-of-the-art

mutation testing tool for Java.

5.4.1 Research Questions

Our experimental study addresses these research questions:

• RQ1: How does FaMT prioritization reduce the number of executions?

• RQ2: How does FaMT reduction reduce the number of executions and

how it approximates the mutant killing ratio?

124

• RQ3: How does FaMT compare with regression test prioritization and

reduction in the mutation testing scenario? (While regression test prior-

itization and reduction are not originally designed for mutation testing,

they have a straightforward application to it—to compare with FaMT,

we apply regression test prioritization and reduction to mutation testing

by using the coverage information of the original program to uniformly

prioritize and reduce tests across all the mutants.)

• RQ4: What are the runtime overheads for both the test prioritization

and test reduction of FaMT?

5.4.2 Independent Variables

We used the following independent variables (IVs):

IV1: Different Initial Orderings. We considered different test ordering

randomizations for each mutant (Org) and all our three coverage-based order-

ings (C1, C2, and C3; Section 5.3.1).

IV2: Different Test Power Formulas. We considered both choices of test

power formulas presented in Section 5.3.2: (1) using history of all neighbor

mutants and (2) using history of only killed neighbor mutants. We denote

them as P1 and P2, respectively.

IV3: Different History Information Levels. We considered all four lev-

els of history information presented in Section 5.3.2: (1) statement level, (2)

method level, (3) class level, and (4) global level. We denote them as Stat,

125

Meth, Clas, and Glob, respectively.

IV4: Different Thresholds. We considered 11 Threshold values for Algo-

rithm 3, ranging from 0.0 to 1.0 with increments of 0.1.

IV5: Different MinRatios. We considered 11 MinRatio values from Sec-

tion 5.3.4, ranging from 0.0 to 1.0 with increments of 0.1.

IV6: Different Regression Testing Techniques. We considered the

widely used total and additional regression test prioritization techniques using

statement coverage [39,116], and the widely used greedy regression test reduc-

tion technique using statement coverage [154], to evaluate their effectiveness

for RQ3.

5.4.3 Dependent Variables

To evaluate the effectiveness and the efficiency of FaMT, we used the

following three dependent variables (DVs):

DV1: Execution Reduction Ratio. This variable denotes the ratio of test-

mutant executions reduced by FaMT prioritization or reduction to the number

of all test-mutant executions that reach mutants.

DV2: Error Rate. This variable shows the ratio of mutants that are mis-

takenly predicted as unkillable by FaMT reduction, i.e., err = |Me|
|Mr| , where

Me denotes the set of mistakenly predicted mutants and Mr denotes all the

reached mutants.

DV3: Run Time Overhead. This variable records the runtime overheads

126

incurred by FaMT prioritization or reduction. Specifically, we recorded all

the extra setup costs for FaMT prioritization/reduction in comparison with

Javalanche, including calculating the coverage-based heuristic and test power

information, as well as prioritizing/reducing tests based on them.

5.4.4 Subjects and Experimental Setup

We evaluated FaMT using nine open-source projects which come from

various application domains and have been widely used for mutation testing

and regression testing research [121, 122, 148, 155]. Table 5.4 summarizes the

projects. The sizes of the studied projects range from 2.6K lines of code

(LoC) to 36.9KLoC (excluding blank lines and test code). Column 4 shows

the number of tests for each subject. In the last column of Table 5.4, we show

the number of all generated mutants, the ratio (%) of killed mutants to all the

mutants, and the ratio (%) of killed mutants to the reached mutants.

We evaluate all the FaMT techniques on all subjects:

For FaMT prioritization, we studied all the combinations of 4 initial or-

derings, 2 choices of power calculation, 4 levels of history information, and 11

Threshold values, i.e., 4*2*4*11=352 prioritization variant techniques.

For FaMT reduction, we studied all the combinations of 4 initial orderings, 2

choices of power calculation, 4 levels of history information, 11 Threshold val-

ues, and 11 MinRatio values, i.e., 4*2*4*11*11=3872 reduction variant tech-

niques.

As the accumulated history varies for different orders of mutant exe-

127

cution, we randomize the execution order for mutants and apply each FaMT

prioritization or reduction technique on each subject for 20 times to evaluate

its effectiveness as well as the stability. We also applied all other compared

techniques for 20 times on each subject. The experiments were performed on

a Dell desktop with Intel i7 8-Core 2.8GHz processor, 8G RAM, and Windows

7 Enterprise 64-bit version.

5.4.5 Result Analysis

All the detailed experimental data can be found online [40].

5.4.5.1 RQ1: FaMT Test Prioritization

Evaluation with default threshold. We applied FaMT prioritization tech-

niques with the default Threshold of 0.3 on all the subjects. Table 5.5 shows

the detailed experimental results for FaMT prioritization techniques using the

history of all neighbor mutants (P1). Column 1 (A.) and Column 2 (I.) show

the levels of adaptive history information and the initial test orderings used.

Columns 3-20 present the ratios of test executions for killed mutants reduced

by the studied techniques (both mean values and standard deviations over 20

runs) compared with different randomized test orders for each mutant (DR).

Column 21 presents the total execution reduction ratios (the ratio of the sum

of all reduced executions to the sum of all executions over all subjects) by

each technique. Similarly, Table 5.6 shows the experimental results of FaMT

prioritization using the history of only killed neighbor mutants (P2). We also

128

compare the baseline DR with a more basic random technique, UR, which

randomizes the entire original test suite and then reorders the tests for each

mutant according to their ordering in the randomized original suite (first row

in Table 5.5). The key difference between UR and DR is that UR uses

the same random ordering for all mutants whereas DR uses different random

orderings for different mutants. Our findings are as follows.

First, FaMT prioritization techniques that embody history information

perform better than techniques without history information. For example,

UR, C1, C2 and C3 without history information reduce the number of exe-

cutions by -4.6% to 12.8% in total (compared with DR). In contrast, all the

techniques with history information can effectively reduce the number of ex-

ecutions by 5.4% (C1 with global-level history and P1 formula) to 46.2% (C3

with class-level history and P2 formula) in total. Another interesting finding

is that history power information can even boost the Org test order to achieve

high reduction ratios. For example, when using the class level history and P2,

even Org can reduce the number of executions by 42.2% in total. We also per-

formed a statistical test to confirm the effectiveness of FaMT. Specifically, the

Fisher’s LSD test [134] shows that all FaMT techniques in Table 5.6, except

the first two, outperform the Org random technique at the significance level of

0.05.

Second, for all levels of history information, using P2 performs better

than using P1 in reducing executions. For example, for the method level history

information, techniques using P2 reduce the number of executions by 39.7%

129

Ta
bl
e
5.
5:

E
xe
cu
ti
on

re
du

ct
io
n

(%
)
fo
r
Fa

M
T

pr
io
ri
ti
za
ti
on

w
it
h
T
h
r
e
s
h
o
l
d
=
0.
3
an

d
hi
st
or
y

of
al
l

ne
ig
hb

or
m
ut
an

ts
(P

1
)

A
.

I.
T
im

eM
o
n
ey

J
a
xe

n
X
m

l-
S
ec

C
o
m

-L
a
n
g

J
D

ep
en

d
J
od

a
-T

im
e

J
M

et
er

M
im

e4
J

B
a
rb

ec
u
e

T
ot

al
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

-
U
R

0.
8

9.
39

-1
8.

4
61

.8
1

-2
.2

18
.2

4
-0

.6
3.

47
-2

.5
21

.7
5

-0
.2

7.
32

-0
.2

3.
75

3.
9

8.
26

2.
9

10
.1

5
-1

.7

-
O

rg
0.

0
0.

00
0.

0
0.

00
0.

0
0.

00
0.

0
0.

00
0.

0
0.

00
0.

0
0.

00
0.

0
0.

00
0.

0
0.

00
0.

0
0.

00
0.

0
-

C
1

4.
9

4.
71

-4
5.

8
60

.4
4

2.
0

5.
87

2.
7

1.
43

-3
.0

8.
12

16
.5

2.
98

0.
6

1.
61

6.
7

4.
50

9.
8

5.
67

-4
.6

-
C

2
0.

0
6.

19
26

.3
27

.9
7

-1
5.

2
11

.7
8

-7
.5

1.
75

-1
1.

5
10

.3
3

-0
.0

4.
24

-1
.8

2.
16

-1
1.

0
4.

98
-1

4.
7

7.
11

12
.2

-
C

3
1.

8
4.

82
2.

4
35

.5
8

3.
7

9.
61

-1
.1

1.
60

7.
0

8.
31

19
.5

3.
39

-0
.6

2.
14

7.
3

4.
07

4.
3

7.
29

12
.8

S
O

rg
14

.2
3.

28
15

.7
5.

85
19

.1
6.

40
8.

1
0.

79
17

.4
2.

32
14

.5
1.

39
4.

1
0.

82
16

.6
1.

81
25

.0
2.

72
13

.7
t

C
1

18
.4

5.
06

-2
7.

4
55

.4
8

21
.9

7.
54

10
.2

1.
33

14
.8

6.
60

25
.0

3.
35

4.
8

1.
68

20
.0

3.
67

28
.2

4.
77

7.
6

a
C

2
13

.3
5.

30
53

.5
17

.1
6

11
.5

10
.1

7
3.

2
1.

49
12

.5
7.

47
16

.9
3.

65
2.

6
2.

09
11

.1
4.

18
18

.0
5.

36
31

.6
t

C
3

16
.8

4.
94

20
.5

30
.0

4
22

.5
8.

99
8.

2
1.

42
21

.0
6.

77
29

.3
3.

42
3.

8
2.

12
20

.3
3.

55
26

.2
5.

59
25

.5

M
O

rg
18

.0
4.

19
20

.1
8.

49
26

.9
8.

22
9.

7
0.

91
22

.5
3.

17
23

.1
1.

65
6.

4
1.

55
18

.9
2.

86
32

.6
3.

69
18

.9
e

C
1

20
.7

5.
03

-2
2.

3
53

.6
4

28
.4

8.
61

11
.7

1.
23

22
.2

6.
52

29
.2

3.
06

7.
4

1.
92

20
.6

3.
76

35
.2

4.
30

11
.4

t
C

2
17

.5
5.

23
58

.9
15

.5
4

21
.7

9.
97

6.
2

1.
46

20
.2

6.
80

25
.0

3.
17

5.
1

2.
02

15
.2

4.
39

27
.0

4.
74

37
.4

h
C

3
19

.8
5.

15
24

.2
29

.3
0

28
.6

9.
10

9.
9

1.
22

27
.3

6.
57

33
.3

3.
11

6.
6

2.
12

20
.9

3.
49

33
.7

4.
50

28
.8

C
O

rg
17

.4
3.

57
14

.1
5.

33
27

.2
9.

42
8.

5
0.

97
22

.7
8.

36
28

.2
2.

51
6.

4
1.

47
17

.1
3.

23
25

.9
3.

51
18

.4
l

C
1

18
.3

4.
82

-2
8.

1
56

.3
0

28
.9

9.
06

10
.4

1.
28

19
.4

11
.5

4
34

.3
3.

28
7.

5
1.

94
16

.6
4.

70
32

.6
3.

76
10

.8
a

C
2

18
.5

5.
29

55
.3

18
.2

8
24

.6
9.

77
6.

5
1.

44
20

.4
8.

93
28

.0
3.

62
5.

4
2.

03
14

.3
4.

81
21

.2
6.

70
37

.3
s

C
3

18
.3

4.
84

19
.2

30
.7

6
29

.4
9.

45
8.

6
1.

27
16

.7
11

.2
9

36
.8

2.
86

6.
6

2.
10

17
.3

4.
13

31
.1

4.
78

27
.8

G
O

rg
14

.1
3.

04
2.

2
1.

49
23

.2
8.

32
7.

7
1.

17
23

.3
5.

99
29

.4
2.

67
4.

7
1.

61
15

.1
4.

07
18

.8
5.

76
14

.1
l

C
1

15
.2

4.
91

-4
2.

6
59

.7
5

24
.4

8.
92

10
.2

1.
30

21
.2

10
.0

8
34

.8
3.

31
6.

5
1.

95
12

.1
5.

76
24

.6
5.

20
5.

4
o

C
2

15
.5

5.
88

29
.2

27
.7

9
20

.1
10

.0
6

5.
8

1.
41

17
.9

10
.1

1
31

.0
3.

88
5.

3
2.

03
12

.6
6.

40
11

.6
8.

12
28

.9
b

C
3

13
.9

4.
84

4.
6

34
.9

8
26

.1
8.

43
8.

5
1.

36
19

.4
7.

78
35

.6
3.

38
6.

1
2.

56
13

.8
5.

62
21

.6
5.

79
22

.0

Ta
bl
e
5.
6:

E
xe
cu
ti
on

re
du

ct
io
n
(%

)
fo
r
Fa

M
T

pr
io
ri
ti
za
ti
on

w
it
h
T
h
r
e
s
h
o
l
d
=
0.
3
an

d
hi
st
or
y
of

on
ly

ki
lle
d
ne
ig
hb

or
m
ut
an

ts
(P

2
)

A
.

I.
T
im

eM
o
n
ey

J
a
xe

n
X
m

l-
S
ec

C
o
m

-L
a
n
g

J
D

ep
en

d
J
od

a
-T

im
e

J
M

et
er

M
im

e4
J

B
a
rb

ec
u
e

T
ot

al
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

D
ev

.
R

ed
.

S
O

rg
14

.5
3.

21
16

.0
6.

03
19

.4
6.

57
8.

3
0.

70
17

.4
2.

35
14

.7
1.

36
4.

2
0.

86
17

.0
1.

78
25

.2
2.

67
13

.9
t

C
1

18
.8

4.
89

-2
7.

3
55

.3
2

22
.4

7.
57

10
.4

1.
32

14
.8

6.
56

24
.9

3.
26

4.
9

1.
73

20
.0

3.
66

28
.3

4.
72

7.
6

a
C

2
13

.7
5.

38
53

.3
17

.3
0

11
.9

10
.1

2
3.

3
1.

49
12

.5
7.

41
17

.1
3.

64
2.

6
2.

11
11

.4
4.

21
18

.1
5.

34
31

.6
t

C
3

17
.2

4.
91

20
.5

30
.2

4
23

.0
9.

00
8.

4
1.

39
21

.0
6.

85
29

.3
3.

44
3.

8
2.

14
20

.4
3.

56
26

.2
5.

58
25

.5

M
O

rg
17

.9
3.

93
65

.3
12

.9
9

27
.8

8.
63

9.
9

0.
89

22
.6

3.
39

23
.4

2.
42

5.
9

1.
32

21
.5

2.
79

35
.7

3.
13

40
.1

e
C

1
21

.1
4.

71
68

.0
11

.5
3

29
.5

8.
92

12
.0

1.
31

22
.7

5.
92

29
.9

3.
08

7.
0

1.
87

23
.7

3.
54

37
.2

4.
31

43
.8

t
C

2
17

.4
5.

03
63

.7
13

.1
2

23
.7

9.
87

6.
3

1.
34

20
.1

6.
60

26
.1

3.
49

4.
3

2.
08

17
.7

3.
98

33
.7

4.
25

39
.7

h
C

3
20

.0
4.

87
69

.0
11

.4
5

29
.8

8.
78

9.
7

1.
33

28
.1

6.
10

34
.4

3.
23

5.
8

2.
07

23
.7

3.
67

38
.7

4.
70

45
.5

C
O

rg
15

.6
3.

63
68

.4
12

.8
4

27
.5

8.
92

8.
3

0.
89

23
.3

6.
04

26
.8

2.
21

6.
0

1.
45

20
.5

2.
89

36
.3

3.
41

42
.2

l
C

1
17

.1
4.

80
66

.3
13

.3
3

28
.4

9.
25

10
.7

1.
46

24
.7

7.
84

33
.3

2.
76

7.
0

1.
86

23
.9

4.
15

38
.9

4.
46

44
.3

a
C

2
16

.5
5.

35
68

.1
12

.6
2

26
.1

9.
47

5.
7

1.
45

23
.2

7.
89

30
.2

3.
51

4.
3

1.
95

15
.6

3.
87

33
.1

4.
74

42
.6

s
C

3
16

.9
4.

85
67

.4
13

.0
1

28
.8

9.
47

8.
8

1.
42

29
.4

5.
55

38
.3

2.
66

5.
4

2.
03

23
.9

3.
61

38
.6

4.
80

46
.2

G
O

rg
10

.8
2.

56
65

.5
12

.7
8

17
.1

6.
80

7.
3

0.
98

19
.5

5.
57

30
.1

2.
55

4.
2

1.
33

13
.1

2.
40

31
.5

2.
89

41
.1

l
C

1
13

.7
4.

53
59

.5
15

.6
4

19
.0

7.
99

10
.0

1.
50

19
.8

7.
50

36
.5

3.
36

5.
7

1.
94

19
.9

4.
11

34
.8

5.
01

42
.2

o
C

2
12

.6
5.

34
68

.8
12

.6
5

15
.7

10
.0

1
4.

2
1.

52
19

.5
8.

12
33

.3
3.

08
2.

7
2.

08
6.

5
5.

22
28

.0
5.

74
42

.7
b

C
3

12
.4

4.
43

62
.7

15
.0

7
21

.9
8.

30
7.

9
1.

47
27

.5
4.

76
39

.5
2.

54
4.

1
2.

24
19

.2
4.

25
33

.9
5.

09
44

.2

130

to 45.5%, while techniques using P1 only reduce the number of executions by

11.4% to 37.4%. The reason is that the non-killable mutants may unnecessarily

lower the power of tests and thus delay the execution of some good tests. The

only exceptions are the techniques using statement-level history.

Third, for both P1 and P2, the techniques using the method or class

level history information tend to perform the best. For example, FaMT tech-

niques using method level history and P1 formula reduce the number of ex-

ecutions by 11.4% to 37.4%, and FaMT techniques using class level history

and P2 formula reduce the number of executions by 42.2% to 46.2%. Interest-

ingly, for those techniques, the best initial ordering within the same level of

history information depends on using P1 or P2. For example, when using P1,

C2 performs the best. On the contrary, when using P2, C3 performs the best.

Effectiveness trends when using various thresholds. Figure 5.1 illus-

trates the trends for FaMT prioritization techniques with P1 formula using

different thresholds from 0.0 to 1.0. The four plots are for FaMT techniques

using statement, method, class, and global levels of history, respectively. In

each plot, each line represents using the initial ordering Org, C1, C2, or C3.

Similarly, Figure 5.2 illustrates the trends for FaMT prioritization techniques

with P2 formula using different thresholds.

First, when Threshold=0.1, almost all FaMT techniques achieve high-

est reduction ratios. For example, techniques using class-level history and P1

formula reduce executions by 42.86% to 47.52%, and techniques using class-

level history and P2 formula reduce executions by 42.17% to 46.63%. The only

131

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Red
ucti

on (
%)

T h r e s h o l d

 D R
 C 1
 C 2
 C 3

(a) Statement-level history
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Red
ucti

on (
%)

T h r e s h o l d

 D R
 C 1
 C 2
 C 3

(b) Method-level history

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Red
ucti

on (
%)

T h r e s h o l d

 D R
 C 1
 C 2
 C 3

(c) Class-level history
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Red
ucti

on (
%)

T h r e s h o l d

 D R
 C 1
 C 2
 C 3

(d) Global-level history
Figure 5.1: Reduction trends on various Threshold values by FaMT prioriti-
zation using four levels of history and P1 formula

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Red
ucti

on (
%)

T h r e s h o l d

 D R
 C 1
 C 2
 C 3

(a) Statement-level history
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Red
ucti

on (
%)

T h r e s h o l d

 D R
 C 1
 C 2
 C 3

(b) Method-level history

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Red
ucti

on (
%)

T h r e s h o l d

 D R
 C 1
 C 2
 C 3

(c) Class-level history
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

- 5
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Red
ucti

on (
%)

T h r e s h o l d

 D R
 C 1
 C 2
 C 3

(d) Global-level history
Figure 5.2: Reduction trends on various Threshold values by FaMT prioriti-
zation using four levels of history and P2 formula

132

Table 5.7: Execution reduction (%) for killed/all mutants by theoretical
techniques and an FaMT prioritization technique.

Subject Reduction for Killed Mutants Reduction for All Mutants
T-Worst T-Best FaMT T-Worst T-Best FaMT

TimeMoney -115.6 34.3 16.9 -66.3 19.8 9.8
Jaxen -505.7 90.4 67.4 -27.3 5.9 4.6

Xml-Sec -122.9 41.3 28.8 -28.2 9.8 6.9
Com-Lang -94.3 24.4 8.8 -56.4 14.6 5.3

JDepend -179.8 47.7 29.4 -75.6 20.3 12.5
Joda-Time -981.8 66.6 38.3 -459.3 31.2 18.0

JMeter -41.8 14.9 5.4 -11.2 4.0 1.5
Mime4J -131.1 41.4 23.9 -41.0 13.0 7.5
Barbecue -199.9 66.9 38.6 -72.8 24.5 14.2

Total -524.6 67.8 46.2 -70.5 9.1 6.2

exception is for the techniques using global-level history and P2 formula, which

tend to perform best when using Threshold values between 0.2 and 0.4.

Second, when Threshold increases from 0.1 to 1.0, FaMT techniques

using P1 drop more dramatically than techniques using P2 in terms of reduc-

tion. For example, when Threshold increases from 0.1 to 0.2, the technique

using C1, method-level history, and P1 formula drops from 43.3% to 12.52%,

while the technique using C1, method-level history, and P2 formula does not

drop at all. The reason is that using the history of all neighbor mutants un-

necessarily lowers the power values of tests and the majority of tests will not

have power values of greater than 0.2. The only exceptions are the techniques

using statement-level history, which remain stable when Threshold increases

for both P1 and P2. The reason is that if one mutant in a statement is killed,

there is a high likelihood that all other mutants in the same statement are also

killed, making prioritization using P1 and using P2 perform similarly.

Comparison of FaMT with two theoretical techniques. To further

investigate FaMT’s effectiveness, we further present the reduction of execu-

133

tions by the theoretically worst and best techniques, and compare them with

FaMT. The theoretically worst technique executes for each mutant all the tests

that cannot kill that mutant before it executes a test that can kill that mu-

tant, while the theoretically best technique executes a test that can kill the

mutant first. Table 5.7 presents the reductions achieved by the theoretically

worst/best techniques, and an example FaMT technique (i.e., C3 with the de-

fault Threshold of 0.3, class-level history, and P2 formula) over DR. Column

1 lists all the subjects, Columns 2-4 present the reduction of executions for

killed mutants, while Columns 5-7 present the reduction of executions for all

mutants.

First, the example FaMT technique is close to the theoretically best

technique. The theoretically best technique reduces the executions by 14.9%

to 90.4% with a total reduction of 67.8%. The example FaMT technique

reduces the executions by 5.4% to 67.4% with a total reduction of 46.2%,

indicating that FaMT performs closely to the theoretically best technique.

For all the subjects, the theoretically worst technique reduces the number of

test-mutant executions for killed mutants by -981.8% to -41.8% with a total

reduction of -524.6%, i.e., in other words, the theoretically worst technique

increases the number of executions by about six times.

Second, the executions for all mutants cannot be reduced greatly even

using the theoretically best prioritization technique. For all the subjects, the

theoretically best technique only reduces the number of executions for all mu-

tants by 4.0% to 31.2% with a total reduction of 9.1%. Therefore, FaMT also

134

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

0 . 0
0 . 1

0 . 2
0 . 3

0 . 4
0 . 5

0 . 6
0 . 7

0 . 8
0 . 9

1 . 0

Red
ucti

on
(%)

M i n R a t i oT h r e s h o l d

(a) Reduction by FaMT reduction us-
ing C3, statement-level history, and P1

formula

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0
1
2
3
4
5
6
7
8
9

1 0

0 . 0
0 . 1

0 . 2
0 . 3

0 . 4
0 . 5

0 . 6
0 . 7

0 . 8
0 . 9

1 . 0

Erro
r Ra

te (
%)

M i n R a t i oT h r e s h o l d

(b) Error rate by FaMT reduction us-
ing C3, statement-level history, and P1

formula

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

0 . 0
0 . 1

0 . 2
0 . 3

0 . 4
0 . 5

0 . 6
0 . 7

0 . 8
0 . 9

1 . 0

Red
ucti

on
(%)

M i n R a t i oT h r e s h o l d

(c) Reduction by FaMT reduction us-
ing C3, global-level history, and P2 for-
mula

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

0 . 0
0 . 1

0 . 2
0 . 3

0 . 4
0 . 5

0 . 6
0 . 7

0 . 8
0 . 9

1 . 0
Erro

r Ra
te (

%)

M i n R a t i oT h r e s h o l d

(d) Error rate by FaMT reduction using
C3, global-level history, and P2 formula

Figure 5.3: Reduction and error rate trends on different Threshold and
MinRatio values by FaMT reduction

cannot reduce the number of executions for all mutants greatly: it reduces the

number of executions for all mutants by 1.5% to 18.0% with a total reduction

of 6.2%. The reason for the low reduction on executions of all mutants is

that all prioritization techniques cannot reduce the executions for the mutants

that cannot be killed. This finding also further motivates our second study of

FaMT reduction.

135

Ta
bl
e
5.
8:

R
ed
uc
ti
on

re
su
lt
s
(%

)
fo
r
Fa

M
T

re
du

ct
io
n
w
it
h
T
h
r
e
s
h
o
l
d
,M

i
n
R
a
t
i
o
=
0.
3,

an
d
hi
st
or
y
of

al
l

ne
ig
hb

or
m
ut
an

ts
(P

1
)

A
.

I.
T
im

eM
o
n
ey

J
a
xe

n
X
m

l-
S
ec

C
o
m

-L
a
n
g

J
D

ep
en

d
J
od

a
-T

im
e

J
M

et
er

M
im

e4
J

B
a
rb

ec
u
e

T
ot

al
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.

S
O

rg
15

.7
0.

93
54

.5
1.

16
33

.1
0.

42
16

.6
0.

51
25

.4
0.

36
20

.7
0.

51
8.

0
0.

06
29

.9
1.

06
30

.7
1.

09
48

.5
0.

61
t

C
1

17
.8

0.
73

53
.4

1.
76

33
.8

0.
50

17
.8

0.
33

24
.6

0.
55

25
.6

0.
44

8.
2

0.
08

30
.6

0.
45

31
.6

0.
62

48
.1

0.
53

a
C

2
15

.2
0.

98
56

.4
0.

30
31

.6
0.

58
13

.9
0.

69
23

.7
0.

79
21

.2
0.

62
7.

6
0.

05
28

.4
1.

03
28

.1
1.

00
49

.9
0.

60
t

C
3

16
.7

0.
77

54
.9

0.
50

34
.0

0.
52

16
.7

0.
42

27
.3

0.
53

27
.1

0.
50

7.
9

0.
05

30
.7

0.
49

30
.8

0.
53

49
.5

0.
44

M
O

rg
22

.3
0.

93
65

.6
1.

99
48

.8
1.

68
23

.5
1.

29
37

.4
1.

09
34

.6
1.

12
11

.8
0.

22
44

.5
2.

47
47

.0
2.

55
59

.8
1.

36
e

C
1

23
.4

0.
84

64
.3

2.
76

49
.0

1.
99

24
.3

1.
02

38
.0

1.
57

37
.4

0.
96

12
.0

0.
21

44
.8

1.
76

47
.7

2.
32

59
.1

1.
27

t
C

2
21

.8
1.

02
68

.0
0.

96
47

.9
2.

36
22

.1
1.

49
36

.5
1.

71
35

.5
1.

48
11

.6
0.

24
43

.6
2.

51
46

.1
3.

12
61

.8
1.

48
h

C
3

22
.7

0.
89

65
.9

1.
24

49
.1

2.
10

23
.5

1.
17

40
.2

1.
41

39
.0

1.
08

11
.9

0.
18

44
.8

1.
74

48
.0

2.
28

60
.6

1.
17

C
O

rg
32

.0
1.

51
66

.9
2.

87
54

.0
2.

08
25

.4
1.

50
48

.4
1.

93
44

.1
1.

58
12

.7
0.

31
49

.4
2.

38
51

.8
5.

27
62

.2
1.

76
l

C
1

32
.5

1.
29

65
.6

3.
75

54
.4

1.
55

26
.5

1.
32

47
.7

3.
52

46
.6

1.
35

12
.9

0.
28

49
.4

2.
30

52
.9

4.
61

61
.4

1.
70

a
C

2
32

.5
1.

65
69

.4
1.

87
53

.5
2.

91
24

.8
1.

59
47

.1
2.

60
43

.9
1.

88
12

.5
0.

27
48

.2
2.

52
50

.3
5.

20
64

.2
1.

84
s

C
3

32
.2

1.
30

67
.2

2.
23

53
.9

2.
56

25
.8

1.
49

47
.3

3.
92

47
.1

1.
45

12
.8

0.
25

49
.4

2.
19

52
.9

4.
39

62
.8

1.
65

G
O

rg
29

.8
1.

99
67

.2
4.

26
56

.8
2.

94
25

.5
1.

65
50

.9
2.

34
52

.1
2.

65
12

.4
0.

52
50

.2
2.

29
54

.2
7.

47
63

.3
2.

40
l

C
1

32
.6

1.
94

65
.7

5.
60

57
.5

2.
05

26
.7

1.
45

51
.1

3.
65

54
.5

2.
40

12
.6

0.
41

50
.8

2.
33

55
.0

6.
85

62
.4

2.
36

o
C

2
30

.9
2.

37
69

.3
3.

24
56

.6
3.

35
24

.9
1.

78
50

.4
2.

60
53

.5
3.

04
12

.6
0.

49
49

.7
2.

03
53

.0
8.

19
65

.1
2.

46
b

C
3

31
.9

2.
10

67
.3

3.
92

57
.5

3.
18

26
.1

1.
61

51
.2

3.
75

54
.9

2.
59

12
.7

0.
36

50
.6

2.
24

55
.0

6.
57

63
.7

2.
33

Ta
bl
e
5.
9:

R
ed
uc
ti
on

re
su
lt
s
(%

)
fo
r
Fa

M
T

re
du

ct
io
n
w
it
h
T
h
r
e
s
h
o
l
d
,
M
i
n
R
a
t
i
o
=
0.
3,

an
d
hi
st
or
y
of

ki
lle
d
ne
ig
hb

or
m
ut
an

ts
(P

2
)

A
.

I.
T
im

eM
o
n
ey

J
a
xe

n
X
m

l-
S
ec

C
o
m

-L
a
n
g

J
D

ep
en

d
J
od

a
-T

im
e

J
M

et
er

M
im

e4
J

B
a
rb

ec
u
e

T
ot

al
R

ed
.

D
ev

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.
R

ed
.

E
rr

.

S
O

rg
10

.0
0.

21
10

.9
0.

05
5.

5
0.

02
6.

6
0.

08
9.

2
0.

06
9.

8
0.

10
1.

4
0.

00
7.

1
0.

05
11

.9
0.

26
10

.6
0.

07
t

C
1

12
.2

0.
19

14
.1

0.
06

6.
3

0.
02

7.
4

0.
07

8.
1

0.
34

14
.4

0.
13

1.
7

0.
00

7.
3

0.
04

11
.9

0.
23

13
.6

0.
08

a
C

2
9.

3
0.

22
4.

6
0.

10
4.

2
0.

02
4.

0
0.

08
8.

1
0.

29
10

.9
0.

12
1.

1
0.

00
5.

7
0.

04
9.

2
0.

23
5.

3
0.

09
t

C
3

11
.5

0.
20

9.
6

0.
06

6.
5

0.
02

6.
3

0.
08

10
.7

0.
36

16
.2

0.
14

1.
4

0.
00

7.
5

0.
04

11
.2

0.
16

10
.1

0.
09

M
O

rg
13

.2
0.

33
28

.8
0.

37
13

.4
0.

20
12

.2
0.

45
16

.6
0.

13
21

.8
0.

30
2.

8
0.

05
18

.9
0.

45
29

.8
1.

19
27

.2
0.

34
e

C
1

14
.5

0.
22

39
.2

0.
42

13
.7

0.
13

12
.0

0.
35

17
.6

0.
48

24
.4

0.
35

3.
1

0.
05

18
.1

0.
37

26
.1

1.
14

35
.6

0.
33

t
C

2
12

.7
0.

25
19

.9
0.

51
14

.1
0.

19
11

.2
0.

46
16

.7
0.

44
21

.9
0.

43
2.

7
0.

06
19

.3
0.

46
29

.7
1.

31
19

.7
0.

41
h

C
3

14
.0

0.
20

28
.5

0.
36

14
.3

0.
09

11
.0

0.
40

19
.1

0.
47

25
.8

0.
36

3.
1

0.
05

18
.5

0.
36

29
.5

0.
96

27
.0

0.
33

C
O

rg
18

.5
0.

76
46

.3
0.

91
17

.5
0.

33
14

.9
0.

52
37

.6
0.

72
30

.5
0.

66
4.

0
0.

08
31

.6
0.

76
43

.9
2.

78
42

.9
0.

63
l

C
1

17
.2

0.
55

45
.8

1.
00

18
.8

0.
22

15
.3

0.
46

39
.3

0.
95

33
.0

0.
60

4.
4

0.
06

30
.8

0.
55

41
.0

1.
93

42
.5

0.
55

a
C

2
19

.7
0.

76
46

.4
1.

17
20

.9
0.

21
15

.2
0.

63
39

.8
0.

99
30

.0
0.

78
3.

9
0.

06
31

.9
0.

96
44

.3
2.

72
42

.7
0.

74
s

C
3

17
.9

0.
61

37
.5

0.
91

19
.0

0.
17

14
.9

0.
51

40
.6

0.
93

33
.9

0.
66

4.
1

0.
05

31
.1

0.
58

44
.5

2.
23

35
.8

0.
58

G
O

rg
16

.4
0.

88
69

.0
2.

37
39

.4
0.

50
15

.8
0.

62
35

.9
1.

04
45

.7
1.

66
4.

7
0.

04
33

.9
1.

09
50

.7
4.

45
63

.0
1.

20
l

C
1

16
.2

0.
84

69
.1

2.
68

43
.5

0.
50

16
.1

0.
55

37
.7

1.
06

46
.0

1.
52

4.
9

0.
03

38
.9

0.
99

49
.7

3.
67

63
.3

1.
14

o
C

2
17

.7
0.

88
69

.1
2.

03
43

.6
0.

54
16

.0
0.

78
42

.2
1.

24
46

.5
1.

63
3.

9
0.

05
33

.5
1.

23
49

.3
4.

74
63

.3
1.

22
b

C
3

16
.8

0.
82

68
.5

2.
41

46
.2

0.
52

16
.2

0.
62

41
.7

1.
03

46
.2

1.
49

4.
2

0.
03

37
.5

1.
00

51
.3

3.
53

62
.9

1.
12

Ta
bl
e
5.
10

:
R
ed
uc
ti
on

er
ro
r
ra
te
s
(%

)
fo
r
ex
am

pl
e
Fa

M
T

re
du

ct
io
n
te
ch
ni
qu

es
an

d
co
rr
es
po

nd
in
g
ra
nd

om
te
ch
ni
qu

es
T
ec

h
.

T
im

eM
o
n
ey

J
a
xe

n
X
m

l-
S
ec

C
o
m

-L
a
n
g

J
D

ep
en

d
J
od

a
-T

im
e

J
M

et
er

M
im

e4
J

B
a
rb

ec
u
e

T
ot

al
E
rr

.
D

ev
.

E
rr

.
D

ev
.

E
rr

.
D

ev
.

E
rr

.
D

ev
.

E
rr

.
D

ev
.

E
rr

.
D

ev
.

E
rr

.
D

ev
.

E
rr

.
D

ev
.

E
rr

.
D

ev
.

E
rr

.

F
aM

T
1

0.
93

0.
30

1.
16

1.
27

0.
42

0.
27

0.
51

0.
07

0.
36

0.
30

0.
51

0.
07

0.
06

0.
03

1.
06

0.
28

1.
09

0.
40

0.
61

R
an

d
.

9.
73

1.
25

11
.5

9
1.

32
8.

40
1.

15
6.

54
0.

56
18

.4
1

3.
23

13
.0

4
0.

68
1.

38
0.

21
11

.2
9

2.
31

17
.0

8
1.

78
9.

58

F
aM

T
2

0.
73

0.
27

1.
76

1.
34

0.
50

0.
21

0.
33

0.
06

0.
55

0.
41

0.
44

0.
05

0.
08

0.
03

0.
45

0.
09

0.
62

0.
27

0.
53

R
an

d
.

10
.7

8
1.

09
11

.5
6

1.
41

8.
97

1.
13

7.
20

0.
24

18
.3

5
3.

19
14

.7
0

0.
49

1.
56

0.
18

12
.6

0
2.

51
17

.2
6

1.
84

10
.4

7

F
aM

T
3

0.
98

0.
29

0.
30

0.
07

0.
58

0.
19

0.
69

0.
07

0.
79

0.
35

0.
62

0.
08

0.
05

0.
02

1.
03

0.
17

1.
00

0.
57

0.
60

R
an

d
.

9.
69

1.
05

12
.6

2
0.

68
8.

03
0.

93
6.

16
0.

21
17

.6
1

2.
91

12
.9

8
0.

40
1.

35
0.

15
10

.7
8

2.
09

16
.3

8
1.

32
9.

47

F
aM

T
4

0.
77

0.
31

0.
50

0.
60

0.
52

0.
17

0.
42

0.
05

0.
53

0.
40

0.
50

0.
06

0.
05

0.
03

0.
49

0.
09

0.
53

0.
31

0.
44

R
an

d
.

10
.4

2
1.

04
11

.9
0

1.
35

9.
02

1.
06

6.
80

0.
23

19
.7

1
3.

51
14

.3
8

0.
47

1.
53

0.
15

12
.5

5
2.

55
17

.2
5

1.
53

10
.3

1

136

5.4.5.2 RQ2: FaMT Test Reduction

Evaluation with default threshold and minratio. We applied FaMT

reduction techniques with Threshold and MinRatio both at the default value

of 0.3 on all subject programs. Similar with FaMT prioritization techniques, we

compared FaMT reduction techniques with DR for 20 times for each subject.

Table 5.8 presents the mean reduction ratios and mean error rates across 20

runs for all FaMT techniques with P1 formula. Columns 1 and 2 show the

levels of adaptive history (denoted as A.) and initial orderings (denoted as

I.) used. Columns 3-20 present the reduction ratios and error rates achieved

by the studied techniques for each subject. Columns 21 and 22 list the total

reduction ratios and error rates over all subjects. Similarly, Table 5.9 presents

the experimental results for FaMT reduction using the P2 formula.

First, all the techniques can reduce the test executions effectively with-

out causing high error rates. In total, when using P1, the FaMT reduction

techniques with both Threshold and MinRatio of 0.3 reduce test executions

by 48.1% to 65.1%, while only causing error rates from 0.44% to 2.46%. When

using P2, the FaMT reduction techniques can reduce the number of test exe-

cutions by 5.3% to 63.3%, while only causing error rates from 0.07% to 1.22%.

Second, using the P2 formula gets more conservative reduction than

using the P1 formula. For example, for the statement-level history, techniques

using P2 reduce executions from 5.3% to 13.6% and cause less than 0.1% error

rates, while techniques using P1 reduce executions by higher ratios (from 48.1%

to 49.9%) and cause slightly higher error rates (from 0.44% to 0.61%). The

137

reason is that using P2 causes tests to have larger power values and tend to

stay in the first priority list (i.e., T1 from Section 5.3.4) and thus be run. One

interesting finding is that when the history level becomes global, techniques

using P2 achieve similar execution reductions with techniques using P1, but

cause much lower error rates. For example, a technique using global history

and P2 formula reduces all test executions by 63.3% while causing an error

rate of 1.14%, while the corresponding technique using global history and P1

formula reduces executions by 62.4% while causing a twice as high error rate,

2.36%. The reason is that using the global history of all neighbor mutants

unnecessarily lowered the power of tests, causing some powerful tests to be

moved into the secondary list (i.e., T2 from Section 5.3.4) and not run later.

Third, there are many techniques that can reduce test executions sig-

nificantly with negligible error rates. In total, techniques using global-level

history and P2 formula reduce executions by more than 63.0% with less than

1.22% error rates. Techniques using statement-level history and P1 formula

reduce executions by around 50.0% with only around 0.50% error rates. Al-

though the techniques using statement-level history and P1 formula reduce

executions by smaller ratios, their error rates are smaller and more stable. For

example, when using the C3 initial ordering, it only causes error rates of 0.05%

to 0.77% across all subjects.

Effectiveness and error rate trends when using various thresholds

and minratios. Figure 5.3 illustrates the total reduction and error rate trends

for all subjects when two example FaMT reduction techniques use different

138

Threshold and MinRatio values from 0.0 to 1.0. The two example techniques

are carefully chosen such that they are different enough from each other. The

trends for other FaMT reduction techniques should be similar. More precisely,

Figures 5.3(a) and 5.3(b) present the reduction and error rate trends for FaMT

reduction using the C3 initial ordering, statement-level history, and P1 formula.

Figures 5.3(c) and 5.3(d) present the reduction and error rate trends for FaMT

reduction using the C3 initial ordering, global-level history, and P2 formula. In

each sub-figure, the two horizontal axes represent Threshold and MinRatio,

and the vertical axis represents the reductions or error rates.

First, when Threshold is fixed, if MinRatio increases from 0.0 to 1.0,

the reductions achieved by FaMT reduction techniques drop linearly for both

techniques, while the error rates drop more dramatically when MinRatio in-

creases from 0.0 to 0.1. For instance, for the first example technique with

Threshold=1.0, when MinRatio increases from 0.0 to 0.1, the reduction drops

from 71.7% to 63 .0%, while the error rate drops from 9.42% to 1.22%. When

MinRatio increases from 0.1 to 0.2, the reduction ratio drops from 63 .0% to

55.9%, while the error rate only drops from 1.22% to 0.93%. A similar ob-

servation can be made for the second example technique. This indicates that

using the MinRatio of 0.0 is not cost-effective, and using MinRatio from 0.5

to 1.0 might cause low reduction. Therefore, using MinRatio values between

0.1 and 0.5 can be cost-effective choices.

Second, when MinRatio is fixed, if Threshold increases from 0.1 to

139

1.02, the reductions achieved by FaMT reduction techniques increase linearly

for both techniques, while the error rates increase more dramatically when

Threshold increases from 0.5 to 1.0. For instance, for the first example tech-

nique with MinRatio of 0.0, when Threshold increases from 0.5 to 1.0, the re-

duction ratio increases from 71.6% to 71.7%, while the error rate increases from

5.68% to 9.42%. Similarly, for the second example technique with MinRatio

of 0.0, when Threshold increases from 0.5 to 1.0, the reduction ratio increases

from 81.3% to 93.4%, while the error rate increases from 9.56% to 40.74%. This

indicates that Threshold values between 0.1 and 0.5 are more cost-effective

than Threshold values between 0.5 and 1.0 for FaMT reduction.

Comparison of FaMT reduction with random techniques. To fur-

ther investigate the effectiveness of FaMT reduction techniques, we compare

FaMT techniques with random techniques that execute the same number of

tests as FaMT reduction for each mutant. Table 5.10 presents the mean val-

ues and standard deviations of error rates caused by the four example FaMT

techniques using statement-level history and P1 formula with corresponding

random techniques across 20 runs. Column 1 lists all the compared techniques

(each example FaMT technique followed with a random technique). Columns

2-19 list the mean error rates and their standard deviations for each subject.

Column 20 lists the overall error rates for all subjects in total.

The error rates caused by random techniques are much larger than those

2When Threshold=0.0, all the tests are stored in the first priority list and thus executed,
and the reduction ratios are close to 0.

140

Table 5.11: Comparison between FaMT and regression test prioritization and
reduction

Sub Test Prioritization (%) Test Reduction (%)
FaMT Tot. Add. FaMT Greedy

TimeMoney 17.0 -15.7 4.7 16.7 (0.77) 30.1 (3.99)
Jaxen 67.4 -144.0 55.8 54.9 (0.50) 72.7 (2.62)

Xml-Sec 28.8 -29.4 -9.2 34.0 (0.52) 38.2 (4.12)
Com-Lang 8.8 -12.5 5.2 16.7 (0.42) 24.3 (1.97)

JDepend 29.4 -4.8 18.3 27.3 (0.53) 45.2 (3.15)
Joda-Time 38.3 5.5 27.0 27.1 (0.50) 50.5 (3.97)

JMeter 5.4 -2.7 3.3 7.9 (0.05) 5.2 (0.09)
Mime4J 23.9 -30.7 -1.0 30.7 (0.49) 31.8 (1.61)
Barbecue 38.6 -46.5 -18.0 30.8 (0.53) 53.4 (16.59)

of FaMT techniques although they reduce the executions to the same extent.

For example, the first FaMT technique causes an error rate of 0.61% in total for

all subjects, while the corresponding random technique causes an error rate of

9.58%. In addition, the error rates caused by FaMT techniques are more stable

than those of random techniques. For example, the standard deviations of error

rates caused by the first FaMT technique range from 0.03% to 1.27%, while

the standard deviations of error rates caused by the corresponding random

technique range from 0.21% to 3.23%.

5.4.5.3 RQ3: Comparison with Regression Techniques

Table 5.11 summarizes the comparison of two example FaMT tech-

niques and traditional regression testing techniques. Column 1 lists all the

subjects. Columns 2-4 present the mean reduction of executions for killed

mutants (across 20 runs for each subject) achieved by the example FaMT

prioritization technique (using the C3 initial ordering, class-level history, P2

formula, and default Threshold) with the total and additional regression test

141

prioritization techniques. Columns 5 and 6 present the mean reduction of ex-

ecutions for all mutants with mean error rates in brackets (across 20 runs)

achieved by the example FaMT reduction technique (using C3 initial ordering,

statement-level history, P1 formula, and default Threshold and MinRatio)

and the greedy regression reduction technique.

Both regression prioritization techniques do not always reduce the num-

ber of executions for killed mutants. For example, the total technique reduces

executions by -144.0% to 5.5%, while the additional technique reduces execu-

tions by -18.0% to 55.8%. In contrast, the example FaMT prioritization effec-

tively reduces executions from 5.4% to 67.4% for all subjects. We believe the

reason is that regression prioritization techniques were not originally designed

for mutation testing. One interesting finding is that the additional regression

prioritization technique is able to reduce executions effectively for several sub-

jects. For example, it reduces executions by more than 10% for three subjects.

The reason is that diverse tests tend to be executed early against each mu-

tant because the additional technique always picks the test that covers most

uncovered program elements as the next test. The early execution of diverse

tests may have a higher probability to kill a mutant earlier.

The greedy regression reduction technique can significantly reduce the

number of executions for all subjects (from 5.2% to 72.7%). However, the

error rates caused by it can be extremely high for some subjects, e.g., 16.59%

for Barbecue, making it not suitable for reducing the cost of mutation test-

ing. In contrast, although the example FaMT reduction reduces executions

142

Table 5.12: Runtime overhead by FaMT techniques
Sub Javalanche FaMT Prioritization FaMT Reduction

Time (s) P1 (s) P2 (s) P1 (s) P2 (s)
TimeMoney 433 0.04 0.04 0.03 0.04

Jaxen 2901 18.34 17.68 17.72 17.47
Xml-Sec 3184 0.91 0.70 0.89 0.59

Com-Lang 4475 0.71 0.70 0.70 0.69
JDepend 182 0.07 0.06 0.05 0.06

Joda-Time 11788 8.55 8.13 8.16 8.28
JMeter 3452 0.22 0.16 0.15 0.13

Mime4J 10880 0.41 0.44 0.47 0.41
Barbecue 455 0.10 0.08 0.09 0.09

by smaller ratios (from 7.9% to 54.9%), it incurs small and stable error rates

(from 0.05% to 0.77%), demonstrating that FaMT reduction is more suitable

than regression reduction for reducing mutation testing cost.

5.4.5.4 RQ4: FaMT Efficiency

We measured the runtime overheads for all FaMT prioritization and re-

duction techniques. Due to the space limitation, we only show the overheads

for the most expensive techniques that use C3 (i.e., the heuristic that com-

bines C1 and C2, thus needing more time to calculate) and the global history.

The runtime overheads for other FaMT techniques are no more than the ones

shown. In Table 5.12, Column 1 lists the subjects, and Column 2 lists the

total execution time for the state-of-the-art Javalanche tool to calculate the

mutation score. Columns 3 and 4 list the execution time for the example FaMT

prioritization techniques using P1 and P2, respectively. Similarly, Columns 5

and 6 list the execution time for the reduction techniques using P1 and P2,

respectively. All the presented four techniques cause similar overheads. The

reason is that all the techniques are based on the same basic algorithm (Algo-

143

rithm 3). The overhead for each technique varies a lot across different subjects,

because FaMT techniques cost more for subjects with a larger number of mu-

tants or larger sets of tests that reach each mutant. The results also show

that FaMT costs at most 18.34s (on Jaxen), which is negligible compared to

the cost of mutation testing (2901s on Jaxen) and demonstrates the efficiency

of FaMT.

5.4.5.5 Threats to Validity

Threats to external validity. First, although we used 9 medium-

sized Java programs, our results may not be generalizable to other programs.

Second, the results may not be generalizable to other test suites. Third, our

results based on mutants generated by Javalanche may not be generalizable

to mutants generated by other tools.

Threats to internal validity. The main threat to internal valid-

ity for our study is that there may be faults in our implementation of the

352 variant prioritization techniques and 3872 variant reduction techniques of

FaMT, as well as the other controlled techniques. To reduce this threat, we

reviewed all the code that we produced for our experiments before conducting

the experiments.

Threats to construct validity. The main threat to construct va-

lidity is the metrics that we used to assess the effectiveness and cost of our

techniques. To reduce this threat, we used the ratio of executions reduced to

assess the techniques’ effectiveness, and used the runtime overhead to assess

144

the techniques’ cost. We also used error rate to measure the approximation

caused by FaMT reduction.

5.5 Summary

This chapter makes the following contributions:

• Idea: We introduce the general idea of optimizing mutation testing

using test prioritization and reduction. The cost of mutation testing has

two key elements—executing some tests for killed mutants and executing

every test for non-killed mutants—and test prioritization and reduction

address both of these elements.

• Techniques: We embody our idea in algorithms for test prioritization

and reduction, and we define a family of techniques. These techniques

are based on coverage information about test execution (e.g., the number

of times the test reaches the mutated statement while executing on the

original, unmutated program), on the history of test executions on other

mutants (e.g., the accumulating number of mutants that the test killed

or did not kill before executing the current mutant), and on the history

granularity level (e.g., history at the statement level or the method level).

• Evaluation: We plan evaluate all 352 variant techniques of FaMT pri-

oritization and 3872 variant techniques of FaMT reduction on real-world

Java programs to show the effectiveness and efficiency of FaMT.

145

Chapter 6

Mutation Testing for Fault Localization in
Regression Testing

The pervious two chapters (Chapters 4 and 5) presented two unifica-

tion approaches, each using regression testing techniques to help with muta-

tion testing. This chapter presents an approach that uses mutation testing

to address the fault localization problem in the context of regression testing.

This chapter is based on our paper presented at the ACM SIGPLAN Confer-

ence on Object-Oriented Programming Systems, Languages, and Applications

(SPLASH/OOPSLA 2013) [158].

6.1 Introduction

Software systems usually undergo evolution to add new features, fix

bugs, and refactor existing code. It is hard to keep software evolution free

from faults. Therefore, regression testing has been utilized to validate the

program edits during software evolution. When regression tests fail after edits,

developers may need to localize and fix the failure-inducing program edits.

The problem of fault localization, i.e., identifying the locations of faulty

lines of code, remains challenging, often requiring much manual effort. This

146

chapter presents a novel solution to this problem in the context of code that

evolves. Our insight is that the essence of failure-inducing edits made by

the developer can be simulated using mechanical program transformations.

Specifically, some transformations are likely to share the same locations with

failure-inducing edits if those transformations transform the old program ver-

sion (i.e., the version right before the faults were introduced) to have similar

test pass/fail results as the new version with real developer edits.

To simulate developer edits, we use program transformations based on

mutation testing [20,32,42,46,49,53,96,121,122,156], which is a methodology

originally designed for measuring test-suite quality based on injected faults.

Mutation testing generates variants (termed mutants) for the original program

under test using mechanical transformation rules (termed mutation operators).

Each mutant is the same with the original program except for the mutated

statement. A mutant is termed killed by a test suite if some test from the suite

produces different results on the mutant and the original program. Empirical

studies have shown that test suites that kill a high percentage of mutants are

likely to reveal more faults and mutation testing is often viewed as the strongest

test criteria [12, 41]. It has been used to evaluate the quality of existing test

suites [32,96,122,131] and to generate test suites with high quality [34,42,49,

95,156].

To our knowledge, mutation changes have not been utilized to simulate

developer edits to achieve precise fault localization. The existing approaches

for fault localization during software evolution mainly use sole coverage in-

147

formation of developer edits. Change impact analysis [110] is a well-known

methodology for determining affecting changes, i.e., a subset of program edits

that might have caused the test failure, based on edit coverage information

in regression testing [51, 110, 150]. It has been shown that the number of

affecting changes for each failed test can still be large [150]. Therefore, vari-

ous techniques have been proposed to localize failure-inducing changes more

precisely [109, 128, 150]. The recently developed FaultTracer approach [150]

introduces spectrum-based fault localization [8, 66, 77, 144] to localization of

failure-inducing edits; experimental results show that FaultTracer significantly

outperforms Ren et al.’s ranking heuristic [109] based on test call graph struc-

tures. However, FaultTracer still suffers from lack of accuracy, because the

spectrum information (i.e., the edits that are mainly executed by failed tests

are considered more suspicious) is still based on only coverage information

and the suspicious edits may not be responsible for test failures. For instance,

some edits are ranked at the top just because they are accidentally executed

by failed tests.

A straightforward idea to refine the fault localization results is to au-

tomatically apply various subsets of program edits according to their ranking

to localize failure-inducing edits more precisely. However, there are three ba-

sic reasons that make this idea impractical. First, program edits might have

complex compilation dependences between them, which does not allow them

to be applied independently. Second, iteratively applying various combina-

tion of edits may cost extra test execution time. Third, iteratively applying

148

program edits does not work for concurrent programs, since some faulty edits

may be missed just because they accidentally passed the test suite once. As a

result, existing techniques for localizing failure-inducing edits usually recom-

mend manually applying and inspecting edits after ranking them [23,109,150].

Modern software systems usually undergo evolution to add new fea-

tures, fix bugs, or refactor existing code. The extensive use of subtyping and

dynamic dispatch in object-oriented programming makes it difficult to analyze

root causes (i.e., failure-inducing edits) for software failures during software

evolution. Therefore, a large body of research has been dedicated to localizing

failure-inducing program edits for object-oriented languages [23, 109, 110, 128,

150].

Change impact analysis [110] is a well-known methodology for determin-

ing affecting changes, i.e., a subset of program edits that might have caused the

test failure, for each failed test. It has been shown that the number of affecting

changes for each failed test can still be large in number [150]. Therefore, var-

ious techniques have been proposed to localize failure-inducing changes more

precisely [109, 128, 150]. As a state-of-the-art approach, FaultTracer [150] in-

troduces the spectrum-based fault localization methodology [8, 66, 77, 144] to

localize failure-inducing edits, and has been shown to outperform Ren et al.’s

ranking heuristic [109] based on test call graph structures significantly. How-

ever, FaultTracer still has the accuracy problem, because it only uses the

spectrum information (i.e., the edits that are mainly executed by failed tests

are more suspicious), and the suspicious edits may have no impact to the test

149

execution. For instance, some edits are ranked top might just because they

are accidentally executed by failed tests.

Mutation testing [20, 32, 42, 46, 49, 53, 96, 121, 122, 156] is a fault-based

methodology for enabling testing programs with high-quality test suites. Gen-

erally speaking, mutation testing generates variants (known as mutants) for

the original program under test based on mechanical transformations (known

as mutation operators). Each mutant is the same as the original program ex-

cept the mutated statement. A mutant is denoted as killed by a test suite if

some tests of the suite derive different results on the mutant and the original

program. Since each mutant can be treated as a faulty version of the original

program, a test suite that can kill more mutants has the potential to reveal

more real faults. Therefore, mutation testing has been used to evaluate the

quality of existing test suites [32,96,122,131], and to generate test suites with

high quality [34, 42,49,95,156].

Although real program edits by developers and mechanical mutation

changes by mutation testing are both changes to the original program, they

are traditionally treated as two separate dimensions. This chapter unifies these

two dimensions of changes. We use both the spectra of edits (obtained using

FaultTracer) as well as the potential impacts of edits (simulated by mutation

changes) to achieve more accurate fault localization.

This chapter presents our methodology of fault injection for fault local-

ization (FIFL) and our framework that embodies it for achieving more precise

fault localization during software evolution based on mutation testing. To lo-

150

calize failure-inducing edits, FIFL first utilizes the mutation testing results on

the old version1 and gets the test execution results for each mutant. Second,

following FaultTracer, FIFL uses spectrum-based techniques [8, 66, 77, 144] to

calculate the suspiciousness of program edits between the old and new versions.

Third, FIFL builds a mapping between program edits with mutants of the old

version that can potentially simulate the corresponding edits based on a set

of inference rules. Fourth, FIFL determines the impacts of mutation changes

by calculating the similarity between test execution results (Pass/Fail) of the

mutants for the old version with the test execution results of the new version,

and treats the similarity as the suspiciousness of mutants. Finally, for every

program edit, FIFL refines its suspiciousness based on the suspiciousness of its

mapped mutants, because those mutants can simulate the potential impact of

the edit.

We believe our basic insight into unifying mutation changes with devel-

oper edits is also applicable to other key software testing realms. For example,

mutation testing results for the old program version can optimize test selec-

tion [51] and prioritization [116] for the new version, because the potential

impact of program edits can be simulated by existing mutants. We plan to

establish these connections in future work.

151

1 public class BankAcnt{
2 public static String bank="ABank"

3 public String account;
4 public double saving=100;
5 public double iRate=0.01;

6 public double iRate2=0.02;
7 public Acnt(String a){account=a;}
8 public double getBalance()
9 {return saving;}

10 public double withdraw (double v) {

11 if(saving>=v) {

12 saving = saving-v;
13 return v;
14 }else return 0;
15 }
16 public void deposit (double v)
17 {saving = saving+v;}
18 double getRate(){return iRate;}
19 double getRate2(){return iRate2;}
20 }
21 public class SuperAcnt extends

BankAcnt {

22 public double iRate=0.03;

23 public SuperAcnt(String a){super(a)
;}

24 public void deposit(double v) {

25 //fault, "0" should be "v"
26 saving=saving+0;
27 if(v>=50){saving=saving+1.0;}
28 }
29 }
30 (a)

1 public class TestSuite{
2 void test1() {
3 BankAcnt acnt=new BankAcnt("acnt1

");
4 acnt.withdraw(20);
5 double rate=acnt.getRate();
6 assertEquals(acnt.getBalance(),

80);
7 }
8 void test2() {
9 SuperAcnt acnt=new SuperAcnt("

acnt1");
10 acnt.withdraw(40);
11 assertEquals(acnt.getBalance(),

60);
12 }
13 void test3() {
14 SuperAcnt acnt=new SuperAcnt("

acnt1");
15 acnt.deposit(0);
16 assertEquals(acnt.getBalance(),

100);
17 }
18 void test4() {
19 BankAcnt acnt1=new BankAcnt("

acnt1");
20 SuperAcnt acnt2=new SuperAcnt("

acnt2");
21 double amount=acnt1.withdraw(80);
22 double rate1=acnt1.getRate();
23 acnt2.deposit(amount);
24 double rate2=acnt2.getRate();
25 assertEquals(acnt2.getBalance(),

180);
26 }
27 }
28 (b)

Figure 6.1: (a) Example in evolution. Note that methods/fields in box are
added, methods/fields with line-through are deleted, and methods/fields with
underlines are changed. The statements with underlines inside changed meth-
ods are added. (b) Tests for the example.

152

6.2 Example

In this section, we use the example in Figure 6.1 to illustrate the

FaultTracer approach for localizing failure-inducing edits and to motivate our

FIFL approach. Figure 6.1 (a) shows the edited program, which manages

the basic bank account functionality of two account types, i.e., BankAcnt (ba-

sic account type), SuperAcnt (super account type). Figure 6.1 (b) presents

the regression test suite for validating the edits made on the example pro-

gram. Assuming that the developer made a failure-inducing edit when adding

SuperAcnt.deposit()2 (shown in gray), test4 then fails and detects the fault.

The goal is to identify the failure-inducing edit precisely. We first show the

steps applied by FaultTracer, then we show the limitations of FaultTracer and

the intuition of FIFL.

Following traditional change impact analysis [110,150], FaultTracer first

extracts the edits between program versions as atomic changes, denoted as ∆.

Atomic changes are categorized as added methods (AM), deleted methods (DM),

changed methods (CM), added fields (AF), deleted fields (DF), changed instance

fields (CFI), changed static fields (CSFI), field lookup changes (LCf) due to the

field hiding hierarchy changes, and method lookup (i.e., dynamic dispatch)

changes (LCm) due to the method overriding hierarchy changes. Note that

FaultTracer splits all higher-level changes (e.g., class changes) into atomic

1For evolving software systems, the mutation testing results for the old version may be
already available in the repository, and ready to use.

2Please note that in this chapter we omit the parameters and return types for methods
to make the method names shorter.

153

changes. FaultTracer also infers dependences between atomic changes. For

example, a method/field lookup change is dependent on the method/field ad-

dition or deletion that causes the lookup change. A non-lookup change c1

(e.g., CM or AM) is dependent on another atomic change c2 iff applying c1 to the

original program version without applying c2 results in a syntactically invalid

program. FaultTracer extracts atomic changes AM(SuperAcnt.deposit()),

LCm(SuperAcnt, SuperAcnt.deposit())3, DF(BankAcnt.iRate2), etc., for

Figure 6.1. For the change dependences, DF(BankAcnt.iRate2) is determined

to be dependent on DM(BankAcnt.getRate2()) (DM(BankAcnt.getRate2())

� DF(BankAcnt.iRate2)), as deleting BankAcnt.iRate2 without deleting method

BankAcnt.getRate2() can cause BankAcnt.getRate2() to access a field with-

out definition. FaultTracer also infers LCm(SuperAcnt, SuperAcnt.deposit())

depends on addition AM(SuperAcnt.deposit()) (AM(SuperAcnt.deposit())

� LCm(SuperAcnt, SuperAcnt.deposit())), since the AM change causes the

LCm change.

Second, FaultTracer determines the set of affected tests in the regression

suites that have been influenced by the program edits based on the precise

Extended Call Graph (ECG) analysis [150]. For each affected test, FaultTracer

further identifies the set of atomic changes that might have changed the test’s

behavior, and denotes them as affecting changes for the test. For the example

program, all the four tests are affected tests, and their affecting changes are

3An LCm change LCm(R,S.m()) models the fact that an invocation to method S.m() on
an object with run-time type R results in a different target method due to method additions
or deletions during evolution.

154

Table 6.1: Suspiciousness Calculation for Developer Edits and Mutation
Changes.

Affected Tests Suspiciousness Score

te
st
1

te
st
2

te
st
3

te
st
4

T
ar
an

tu
la

SB
I

Ja
cc
ar
d

O
ch
ia
i

Edits Mapping Mutants
CFI(BankAcnt.iRate) X X 0.75 0.50 0.50 0.71

CM(BankAcnt.withdraw()) X X X 0.60 0.33 0.33 0.58
AF(SuperAcnt.iRate) X 1.00 1.00 1.00 1.00

AM(SuperAcnt.deposit()) X X 0.75 0.50 0.50 0.71
CFI(BankAcnt.iRate) line 5: BankAcnt.iRate=1.0 0.00 0.00 0.00 0.00

line 5: BankAcnt.iRate=0.0 0.00 0.00 0.00 0.00
line 5: BankAcnt.iRate=-1.0 0.00 0.00 0.00 0.00

CM(BankAcnt.withdraw()) line 12: saving = saving+v; X X 0.00 0.00 0.00 0.00
line 12: saving = saving/v; X X 0.00 0.00 0.00 0.00
line 12: saving = saving*v; X X 0.00 0.00 0.00 0.00
line 12: saving = saving%v; X X 0.00 0.00 0.00 0.00

AF(SuperAcnt.iRate) line 5: BankAcnt.iRate=1.0 0.00 0.00 0.00 0.00
line 5: BankAcnt.iRate=0.0 0.00 0.00 0.00 0.00
line 5: BankAcnt.iRate=-1.0 0.00 0.00 0.00 0.00

AM(SuperAcnt.deposit()) line 17: saving = saving-v; X 1.00 1.00 1.00 1.00
line 17: saving = saving/v; X X 0.75 0.50 0.50 0.71
line 17: saving = saving*v; X X 0.75 0.50 0.50 0.71
line 17: saving = saving%v; X X 0.75 0.50 0.50 0.71

Out P P P F

shown in Columns 3-6 in the upper part of Table 6.1. A checkmark denotes

that an atomic change is an affecting change of a affected test.

Third, FaultTracer uses the correlation between tests and affecting

changes to determine the potential failure-inducing edits. The basic intuition

is that an affecting change that is mainly executed by failed tests rather than

passed tests is more suspicious. Therefore, FaultTracer utilizes the correlation

between affecting changes and the failed tests to calculate the suspiciousness

score for each affecting change. Columns 7-10 of Table 6.1 show the suspicious-

ness score for each affecting change calculated by four well-known suspicious

calculation formulae, i.e., Tarantula [66], Statistical Bug Isolation (SBI) [77],

155

Jaccard [8], and Ochiai [8, 144]. However, the localization results are not

ideal for this example: all the four formulas rank the real failure-inducing

edit AM(SuperAcnt.deposit()) as the tied third suspicious edit. The reason

is that AM(SuperAcnt.deposit()) is executed by test3, which passed, and

AF(SuperAcnt.iRate) happens to be executed by the only failed test, thus

mistakenly lowering the rank of AM(SuperAcnt.deposit()) and lifting the

rank of AF(SuperAcnt.iRate).

The basic intuition of FIFL is that the mutation changes made by

mutants of the old program version are able to simulate the impacts of de-

velopers’ edits, and make the test execution results on some suspicious mu-

tants (which share the same locations with real failure-inducing edits) similar

to the test execution results on the new program version (with program ed-

its). Therefore, we can directly use the existing mutation testing results of

the old program version to boost the fault localization results while avoiding

the drawbacks of iteratively applying subsets of program edits. For exam-

ple, we can use the mutants occurring on the statements inside the same

code element with CFI(BankAcnt.iRate) or CM(BankAcnt.withdraw()) to

simulate the effect of these two edits. For AM(SuperAcnt.deposit()) and

AF(SuperAcnt.iRate), we cannot find the statements that share the same

code elements with them because they do not exist on the old version. After an-

alyzing the program, we find that a mutant occurring in BankAcnt.deposit()

has a similar impact with adding SuperAcnt.deposit(), because the invoca-

tion to SuperAcnt.deposit() was directed to BankAcnt.deposit() in the

156

old version. Therefore, adding SuperAcnt.deposit() may have a similar im-

pact with changing BankAcnt.deposit() (using mutation). Similarly, we find

that a mutant occurring in BankAcnt.iRate has a similar effect with editing a

SuperAcnt.iRate, since SuperAcnt.iRate hides BankAcnt.iRate in the new

version (detailed change mapping inference is shown in Section 6.3.1). For each

edit, Column 2 of the lower part of Table 6.1 shows some example mapping

mutants that may simulate each edit. Columns 3-6 show the test execution

results for each mutant of the old program version. A checkmark denotes a mu-

tant is killed by a test, i.e., the test fails on the mutant. Intuitively, we can find

that any mapping mutants of the first three edits cannot fail the real failed

test, test4, while a mapping mutant (in BankAcnt.deposit()) of the real

failure-inducing edit, AM(SuperAcnt.deposit()), has exactly the same test

execution results with the test execution results after evolution, indicating the

benefits of improving edit suspiciousness calculation based on mutation test-

ing. The detailed fault localization for this example will be further illustrated

in Section 6.3.3.

6.3 Approach

Figure 6.2 shows the general framework of FIFL. Assume we have two

program versions during software evolution, P and P ′, together with their re-

gression test suite T , which passes on P but failed on P ′. First, traditional

mutation testing process is applied on P : generating all the mutants M for

P and recording the mutant execution results, i.e., the correlation between

157

Old Version P

Edits with refined
Suspicioiusness △”

Change
Extraction

Program Edits
△

Suspiciousness
Calculation

ECG
Analysis

2. FaultTracer

Mutant
Execution Mutants M

Mutant
Generation

1.Mutation Testing

Regression Test Suite T New Version P’

Mutant Correlation
with Tests MT

Edits with initial
Suspiciousness △’

5. Suspiciousness
Combination

3. Change Mapping
Inference

Mapping between Edits
and Mutants Map

4. Mutant
Suspiciousness
Calculation

Mutants with
suspiciousness M’

Figure 6.2: FIFL architecture.

mutants and the tests that kill them (denoted as MT). As FIFL only requires

mutation testing results on the old version, FIFL recommends that this step

is performed in the background in parallel with developing the new version,

and thus the mutation testing results are directly available before applying

FIFL. Second, FIFL extracts edits between P and P ′ and calculates the sus-

piciousness of each edit using FaultTracer [150], which utilizes the spectrum

information of edits and assigns a higher suspiciousness value to a edit if it

is mainly executed by failed tests. Third, FIFL infers the mapping between

developer edits and mutants based on a set of inference rules. Fourth, FIFL

calculates the suspiciousness value for each mutant. A mutant is assigned with

a higher suspiciousness value if it has a similar impact to regression tests with

the program after edits, P ′. Finally, FIFL refines the suspiciousness values

158

c ∈ CM ∪DM µ ∈M sµ<Pmc
c 7→ µ (1)

c ∈ CFI ∪ CSFI ∪DF µ ∈M sµ<P fc
c 7→ µ (2)

c ∈ AM µ ∈M sµ<Pm mc→P ′m
c 7→ µ (3)

c, c′ ∈ AM µ ∈M c′ 7→ µ mc→P ′mc′
c 7→ µ (4)

c ∈ AF µ ∈M sµ<P f fc99KP ′f
c 7→ µ (5)

c, c′ ∈ AF µ ∈M c′ 7→ µ fc99KP ′fc′
c 7→ µ (6)

c ∈ AM c′ ∈ DM c′′ ∈ LCm µ ∈M sµ<Pmc′ c � c′′ c′ � c′′
c 7→ µ (7)

c ∈ AF c′ ∈ DF c′′ ∈ LCf µ ∈M sµ<P fc′ c � c′′ c′ � c′′
c 7→ µ (8)

c ∈ AM ∪AF c′ ∈ ∆ µ ∈M c′ 7→ µ c � c′
c 7→ µ (9)

Figure 6.3: Rules for inferring change mapping.

of program edits (based on spectrum information) using the suspiciousness of

their mapping mutants (based on impact information), and returns the ed-

its with final suspiciousness values, ∆′′, as the final result. As the first two

steps (i.e., mutation testing and FaultTracer) are based on existing techniques,

the following subsections show the change mapping inference (Section 6.3.1),

mutant suspicious calculation (Section 6.3.2), and suspiciousness combination

(Section 6.3.3) in detail.

6.3.1 Change Mapping Inference

In order to bridge the developer edits between P and P ′ with the me-

chanical changes to P via mutation, FIFL defines a set of inference rules for

inferring the mapping between them. Figure 6.3 shows the inference rules. In

the figure, mc denotes the corresponding method for method-level change c, fc

denotes the corresponding field for field-level change c, and sµ denotes the mu-

159

public StringBuffer format(Calendar calendar, StringBuffer buf) {
866: if (mTimeZoneForced) {
867: calendar.getTimeInMillis();
868: calendar = (Calendar) calendar.clone();
869: calendar.setTimeZone(mTimeZone);
870: }
871: return applyRules(calendar, buf);

}

Figure 6.4: Code snippet of Com-Lang V3.03 to illustrate change mapping
for CM edits

tated statement of a mutant µ. s<Px denotes that statement s is within the

scope of method or field x in the old program version P . f99KP ′f ′ denotes that

field f hides field f ′ in the new version P ′, and m→P ′m
′ denotes that method

m overrides method m′ in P ′. c � c′ denotes change c′ depends on change

c. Finally, c 7→ µ denotes that edit c is mapped with mutant µ. To better

motivate and illustrate the rules, we present simple artificial examples as well

as real-world code snippets to show how the change mapping can help increase

the suspiciousness of failure-inducing edits and/or decrease the suspiciousness

of fault-free edits.

6.3.1.1 Inference for Changed/Deleted Elements

Shown by the first two rules, for modifications and deletions of methods

and fields, the mapping is trivial: FIFL just maps a change with a mutant if

the change and the mutant occur in the same method or field (since the method

or field exists in the old version). The mapped developer edits and mutation

changes occur at the same functional point and thus these two dimensions of

changes may have similar impacts to the program under test.

160

For example, when Com-Lang evolves from V3.02 to V3.03, the de-

veloper changed the format() method of class FastDateFormat and removed

lines 866 to 870. As the changed method is executed by 35 tests with only one

failed, making traditional approaches based on spectrum information not able

to localize the fault precisely. In contrast, FIFL directly maps the CM change

to the 5 mutants occurred inside the format() method in V3.02. Within the

mapped mutants, 3 mutants, which remove method invocations for line 867

to line 869 respectively, have exactly the same failed test as V3.03, demon-

strating that the mapped mutants can be used to simulate the effect of real

method changes. This mapping significantly increase the ranking of the failure-

inducing edit (details shown in Section 6.5).

6.3.1.2 Inference for Added Elements Overridding/Hiding Existing
Elements

The mutant mapping inference rules for additions of fields and methods

are more complex because they have no corresponding code elements in the old

version. We illustrate those rules with examples in Figure 6.6. In the figure,

we connect an added element (AM or AF) with another non-added element

using a twin line if and only if the added element can be mapped to the

mutant within the scope of the non-added element. The basic intuition for

Rules 3-6 is that the mutants occurring in a method/field c′ that is close to

the added method/field c in the overriding/hiding hierarchy (such that an

invocation/access to c actually executes c′ in the old version) can be used to

simulate the impact of adding c, because both adding c and mutating c′ may

161

change the execution of c′. Rules 3 and 4 define the mapping inference for

method additions that override some methods: If the added method overrides

some existing methods that are not newly added, Rule 3 maps the addition

change to all mutants that occur inside the existing method; if the atomic

change of the method overridden by the added method is already mapped

with a set of mutants, Rule 4 also maps the added method with those mutants.

Similarly, Rules 5 and 6 infer the change mapping for field additions that hide

other fields: If the added field hides some existing fields that are not newly

added, Rule 5 maps the addition change to all mutants that occur inside the

existing field; otherwise, if the change on the field hidden by the added field

is already mapped with a set of mutants, Rule 6 also maps the added field

to those mutants. Note that Rules 4 and 6 should be iteratively applied until

they reach a fix point. To illustrate, the change mapping inference steps for

Figure 6.6(a) are shown as follows:

Applied Rules AM(m3) AM(m4)
Rule 3 Mm2 -
Rule 4 Mm2 Mm2

where Mm2 denotes the mutants occurring in the body of method m2. Simi-

larly, the two AF changes in Figure 6.6(b) are mapped with mutants inside f1

and f3.

For example, when Joda-Time evolves from V1.10 to V1.20, the fault-

free edit AM(getDateTimeMillis()) in class BasicChronology was ranked

high because it was executed by some failed tests accidentally. As the method

was newly added, Rule 1 cannot map the edit with any mutants of the old

162

class org.joda.time.chrono.AssembledChronology:
public long getDateTimeMillis(int year,

int monthOfYear, int dayOfMonth, int hourOfDay,
int minuteOfHour, int secondOfMinute, int millisOfSecond) {...}

Iclass org.joda.time.chrono.BasicChronology:
public long getDateTimeMillis(int year,

int monthOfYear, int dayOfMonth, int hourOfDay,
int minuteOfHour, int secondOfMinute, int millisOfSecond) {...}

Figure 6.5: Code snippet of Joda-Time V1.20 to illustrate change mapping for
AM edits with overridden methods

version. Figure 6.5 shows the class inheritance hierarchy for the class contain-

ing the added method. In the figure, I denotes the below class is a subclass

of the above class. As the added method overrides an existing method in class

AssembledChronology (denoting that the two methods have similar function-

alities), the invocation to the specific functionality of the new method may

be resolved to the overridden method in the old version. Thus, some mu-

tation changes to the old overridden method may have similar impacts with

the edit of adding the faulty method, and thus the mutants in the overridden

method can be mapped to the AM edit to simulate its impact. In fact, using

this mapping, FIFL successfully decreases the suspiciousness of the fault-free

edit.

6.3.1.3 Inference for Added Elements Sharing Overriding/Hiding
Hierarchy with Deleted Elements

There may also be some added method/field c that shares the same

overriding/hiding hierarchy with some deleted method/field c′, i.e., although

they never co-exist in one version, they may implement the same functional-

163

m1

m2

f1

f3

m1

AM:m3

AM:m4

AF:f2

AF:f4

DM:m1

LCm

AM:m2

CM:m1

AM:m2

AF:f1

AM:m2

AM:m3

AF:f1

(a) (b)

(c) (e)
(f)

Method
Node

Field
Node
Method
Override
Field
Hide

Change
Dependence
Change
Mapping

DF:f1

LCf

Af:f2

(d)

Figure 6.6: Illustration for mutant mapping.

ity. Therefore, the mutants within mc′ in the old version may also be able to

simulate the impact of c. As added and deleted elements do not exist in the

same version, FIFL cannot use the ordinary overriding/hiding hierarchy anal-

ysis to infer the change mapping. Instead, FIFL utilizes the fact that both

addition changes and deletion changes would cause method or field lookup

changes, and uses those lookup changes to bridge the mapping between addi-

tion changes and mutants in deleted elements. For any method/field addition

c, if some method/field deletion c′ causes the same method/field lookup change

with c, Rule 7/8 maps the mutants inside the corresponding deleted element

of c′ with c. Figures 6.6(c) and 6.6(d) illustrate that the mutants within the

deleted methods/fields can be mapped with addition changes.

In the same revision with the last example (i.e., when Joda-Time evolves

from V1.10 to V1.20), the fault-free edit AM(getAverageMillisPerMonth())

in class BasicFixedMonthChronology was ranked high by the existing Fault-

Tracer approach, because it was executed by the failed tests accidentally. As

the added method does not override any existing method, Rules 3 and 4 cannot

map the edit with any mutant. Figure 6.7(b) shows the inheritance hierarchy

164

class org.joda.time.chrono.AssembledChronology
Iclass org.joda.time.chrono.BaseGJChronology

Iclass org.joda.time.chrono.CopticChronology:
long getAverageMillisPerMonth() {...}

(a) Joda-Time V1.10

class org.joda.time.chrono.AssembledChronology
Iclass org.joda.time.chrono.BasicChronology

Iclass org.joda.time.chrono.BasicFixedMonthChronology:
long getAverageMillisPerMonth() {...}
Iclass org.joda.time.chrono.CopticChronology

(b) Joda-Time V1.20

Figure 6.7: Code snippets of Joda-Time V1.10 and V1.20 to illustrate change
mapping of AM edits with deleted methods sharing the same overriding hierar-
chy

for the class of the added method (BasicFixedMonthChronology). The con-

taining class of the edit has a superclass named AssembledChronology and a

subclass named CopticChronology. Shown in Figure 6.7(a), the old version

has a method (which was deleted in the new version) with the same signature

and under the same class inheritance hierarchy as the added method. The

actual change logic is that the developer pulled up the deleted method to a

new superclass in the new version. In this way, the old deleted method and the

new added method implement the same functionality and thus the mutation

changes to the deleted method and the edit for adding the new method may

have the same impact to the program. Therefore, using Rule 7, FIFL identifies

that both the deleted method and the newly added method cause the same LC

change: LCm(CopticChronology, *.getAverageMillisPerMonth()) (i.e., in-

vocation of method getAverageMillisPerMonth() on run-time object of type

CopticChronology resolves to a different method), and thus maps the mutants

occurring on the old method with the method addition. In fact, the mutants

165

for the old method have different test execution results with the new version,

making the ranking of the fault-free AM(getAverageMillisPerMonth()) de-

creased, and thus the ranking of actual failure-inducing edits increased.

6.3.1.4 Inference for Other Added Elements

For the other added method/field c that neither overrides/hides any ex-

isting method/field nor shares the overriding/hiding hierarchy with any deleted

method/field, if c is executed by the regression test suite, cmust be invoked/ac-

cessed by some changed or added method c′. Then, a mutant µ occurring in c′

may be used to simulate the impacts of c, because mutant µ in c′ may have the

same impacts with adding invocation to c in c′. In this situation, the change

impact analysis component of FIFL would have detected that change c′ de-

pends on change c (i.e., c � c′), because c′ would invoke/access undeclared

method/field without applying change c. Rule 9 then directly maps any mu-

tant that has been mapped with c′ to c. Note that Rule 9 should be iteratively

applied until it arrives a fix point. To illustrate, the change mapping inference

for Figure 6.6(e) is shown as follows:

Applied Rules AM(m2) AF(f1)
Rule 9 Map[CM(m1)] -
Rule 9 Map[CM(m1)] Map[CM(m1)]

where Map[CM(m1)] denotes the mutants that have been mapped to change

CM(m1) (Rule 1). The first inference using Rule 9 does not find mapped mu-

tants for AF(f1), because AM(m2) has no mapped mutants yet. On the contrary,

the second application of Rule 9 successfully finds mapped mutants for AM(f1),

166

public XStream(ReflectionProvider...) {
...

367: this.mapper=mapper==null?buildMapper():mapper;
...

}
private Mapper buildMapper() {

379: Mapper mapper = new DefaultMapper(classLoaderReference);
380: if (useXStream11XmlFriendlyMapper()){
381: mapper = new XStream11XmlFMapper(mapper);
382: }

...
}

Figure 6.8: Code snippet of XStream V1.21 to illustrate change mapping for
AM edits without methods sharing the same method overriding hierarchy

because AM(m2) is mapped to mutants at the first step.

Among the studied subjects, when XStream evolves from V1.20 to

V1.21, the developer added the faulty method buildMapper(). Shown in Fig-

ure 6.8, the added faulty method buildMapper() was invoked by a changed

method XStream() at line 367 (which is the only changed line for the method,

and invoked an old method for building mappers in the old version). The faulty

AM change is executed by every tests because it is used for initializing mappers,

and thus cannot be distinguished from other edits. Because the functional-

ity of building mappers in the old version was also invoked by the changed

method, some mutation changes (especially mutation changes on the specific

line for invoking the mapper builder) may have similar impacts as adding a

new method for building mappers. Thus, FIFL maps the AM edit with the

mutants that occurred in the old version of XStream() based on Rules 1 and

9. In fact, some mutants that occurred at the changed line of the old method

XStream() exactly fail the same tests with the new version because the state-

167

ment for constructing the old map builder was changed, demonstrating that

mapped mutants can be used to simulate the effect of method additions when

the added methods do not override any existing method or share overriding

hierarchy with any deleted method.

Finally, Figure 6.6(f) illustrates a slightly more complex situation: an

added method m2 overrides an existing method m1, and also invokes another

added method m3, which in turns accesses an added field f1. FIFL first maps

AM(m2) with mutants in m1 based on Rule 3, then maps AF(f1) and AM(m3)

with mutants in m1 based on Rule 9. The detailed inference is shown as

follows:

Applied Rules AM(m2) AM(m3) AF(f1)
Rule 3 Mm1 - -
Rule 9 Mm1 Mm1 -
Rule 9 Mm1 Mm1 Mm1

Note that each program edits will be applied with any applicable rules and

may be mapped to mutants from various methods/fields. FIFL uses all those

mutants to select the most suitable one (details are shown in the next section).

6.3.2 Mutant Suspiciousness Calculation

The calculation of mutant suspiciousness is based on the intuition that

a mutant that has a similar test pass/fail results with the program after ed-

its might share same positions with the real failure-inducing program edits.

Therefore, the suspiciousness of a mutant can be calculated based on the sim-

ilarity between its test execution results and the test execution results after

edits.

168

As mutant suspiciousness will be used to refine edit suspiciousness, we

use the same suspicious calculation formulae used by FaultTracer, for calculat-

ing the suspiciousness of edits [150]. The difference is that FIFL additionally

uses the correlation between tests and mutant killing as input, while Fault-

Tracer only uses the correlation between tests and edits as input. FIFL adapts

four representative suspiciousness computations for mutants as follows.

(1) Statistical Bug Isolation. Liblit et al. [77] first proposed Statistical

Bug Isolation (SBI) to rank faulty predicates. Yu et al. [144] adapted SBI

to rank potential faulty statements. FaultTracer adapted the SBI formula to

calculate the suspiciousness for program edits [150]. We further adapt the

formula to define a suspiciousness score for a mutant µ as Ss(µ):

(|K(µ, T ′) ∩ T ′f |︸ ︷︷ ︸
failed(µ)

)/(|K(µ, T ′) ∩ T ′p|︸ ︷︷ ︸
passed(µ)

+ |K(µ, T ′) ∩ T ′f |︸ ︷︷ ︸
failed(µ)

)

In this formula, T ′ denotes all affected tests, T ′p denotes the passed

affected tests, T ′f denotes the failed affected tests, K(µ, T ′) denotes the affected

tests that kill µ, failed(µ) denotes the number of failed affected tests that kill

mutant µ, and passed(µ) denotes the number of passed affected tests that kill

µ.

(2) Tarantula. Jones et al. [66] proposed Tarantula, which assigns

higher suspiciousness scores to statements primarily executed by failed tests

than statements primarily executed by passed tests. FaultTracer then adapted

the Tarantula formula to calculate the suspiciousness for program edits [150].

169

Similarly, we adapt the formula to define a suspiciousness score for a mutant

µ as St(µ):

(|K(µ, T ′) ∩ T ′f |/|T
′
f |︸ ︷︷ ︸

%failed(µ)

)/(|K(µ, T ′) ∩ T ′p|/|T ′p|︸ ︷︷ ︸
%passed(µ)

+ |K(µ, T ′) ∩ T ′f |/|T
′
f |︸ ︷︷ ︸

%failed(µ)

)

In this formula, %failed(µ) denotes the ratio of failed affected tests that

can also kill mutant µ to all failed affected tests, while %passed(µ) denotes

the ratio of passed affected tests that can kill mutant µ to all passed affected

tests.

(3) Ochiai. Yu et al. [144] and Abreu et al. [8] used the Ochiai formula,

which originated from the molecular biology domain, to rank faulty statements

in one specific program version. FaultTracer then adapted the Ochiai formula

to calculate the suspiciousness for program edits [150]. Similarly, we adapt the

formula to define a suspiciousness score for a mutant µ as So(µ):

(|K(µ, T ′) ∩ T ′f |︸ ︷︷ ︸
failed(µ)

)/
√√√√ |T ′f |︸︷︷︸
all_failed

∗(|K(µ, T ′) ∩ T ′p|︸ ︷︷ ︸
passed(µ)

+ |K(µ, T ′) ∩ T ′f |︸ ︷︷ ︸
failed(µ)

)

In this formula, all_failed denotes the number of all failed affected

tests.

(4) Jaccard. Abreu et al. [8] used the Jaccard formula, which was used

for measuring the statistical similarity and diversity between sample sets, to

rank faulty statements. FaultTracer then adapted the Jaccard formula to

calculate the suspiciousness for program edits [150]. We further adapt the

formula to define a suspiciousness score for a mutant µ as Sj(µ):

170

(|K(µ, T ′) ∩ T ′f |︸ ︷︷ ︸
failed(µ)

)/(|T ′f |︸︷︷︸
all_failed

+ |K(µ, T ′) ∩ T ′p|︸ ︷︷ ︸
passed(µ)

)

In this way, the suspiciousness values for all mutants are between 0.00

and 1.00. If a mutant failed exactly the same set of tests with the program

after edits, its suspiciousness would be calculated as 1.00 by all formulae. To

illustrate, we show the suspiciousness score calculated for each mutant of the

example program in Columns 7-10 of the lower part of Table 6.1. Shown in

the gray row, FIFL directly determines a mapping mutant of the real failure-

inducing edits as the most suspicious. Note that when a real program has

multiple faulty edits, the suspiciousness of mapped mutants for all the faulty

edits can be determined as suspicious because the injection of each mutant

may make the program fail a subset of the real failed tests. Therefore, all

the four formulae can calculate those mutants mapped with faulty edits as

suspicious.

6.3.3 Suspiciousness Combination

In this section, we present suspiciousness combination based on the

suspiciousness for mutants, the suspiciousness for edits, and the mapping be-

tween edits and mutants. FIFL integrates three general combination strategies

shown as follows. Note that FIFL uses the maximum suspiciousness value for

the set of mapping mutants (i.e., using the most suitable mutant) to refine

the suspiciousness of an edit, because a large ratio of mutants might not be

effective in simulating the impacts of program edits.

171

(1) Min-Max. This strategy refines an edits’s suspiciousness by using the min-

imum value between the edit’s initial suspiciousness value and the maximum

suspiciousness value for its mapping mutants:

Srefined(c) = Min(S(c),Maxµ∈Map[c]S(µ))

To illustrate, when we use Ochiai for both the edit and mutant suspiciousness

calculation, the refined suspiciousness value for AM(SuperAcnt.deposit()) is

calculated as follows.

Srefined (AM(SuperAcnt.deposit())) =

Min(0.71,Max(1.00, 0.71, 0.71, 0.71)) = 0.71

The suspiciousness value for other three edits are all refined to 0.00, making

AM(SuperAcnt.deposit()) as the top one suspicious edit.

(2) Max-Max. This strategy refines an edits’s suspiciousness by FaultTracer

using the maximum value between the edit’s initial suspiciousness value and

the maximum suspiciousness value for its mapping mutants:

Srefined(c) = Max(S(c),Maxµ∈Map[c]S(µ))

in which Map[c] denotes all the mapping mutants for edit c. To illustrate,

when we use Ochiai for both the edit and mutant suspiciousness calculation,

the refined suspiciousness value for AM(SuperAcnt.deposit()) is calculated

as follows.

Srefined (AM(SuperAcnt.deposit())) =

Max(0.71,Max(1.00, 0.71, 0.71, 0.71)) = 1.00

172

The suspiciousness value for other three edits are refined as 0.71, 0.58, and

1.00, making AM(SuperAcnt.deposit()) tied as the top ranking edit.

(3) Ratio-Max. This strategy refines an edit’s suspiciousness by assigning

different weights to the edit’s initial suspiciousness value and the maximum

suspiciousness value of its mapping mutants. The combination is shown as

follows.

Srefined(c) = α ∗ S(c) + (1− α) ∗Maxµ∈Map[c]S(µ)

where α ∈ [0.0, 1.0) denotes the weight for an edit’s initial suspicious4. Note

that when α = 0.0, the strategy ranks edits only based on the suspiciousness of

their mapping mutants. To illustrate, when we use Ochiai for both the edit and

mutant suspiciousness calculation and the default α value of 0.5, the refined

suspiciousness value for AM(SuperAcnt.deposit()) is calculated as follows.

Srefined (AM(SuperAcnt.deposit())) =

α ∗ 0.71 + α ∗Max(1.00, 0.71, 0.71, 0.71)

0.5 ∗ 0.71 + 0.5 ∗ 1.00 = 0.86

The suspiciousness value for other three edits are refined as 0.36, 0.29, and

0.50, making AM(SuperAcnt.deposit()) as the top one suspicious edit.

Note that when the number of mapping mutants for an edit is smaller

than a threshold (2 in this work), those mutants may not be sufficient to

4We exclude the α value of 1.0, because the edit’s suspiciousness is not refined at all in
such a case.

173

simulate the impact of the edit. Therefore, for this circumstance, FIFL simply

keeps the initial suspiciousness for that edit.

6.3.4 Tackling the Cost of FIFL: Edit-Oriented Mutation Testing

Compared with the existing FaultTracer technique, FIFL additionally

utilizes the available mutation testing results of the old program version from

the repository to further refine the fault localization results. Mutation testing

results can already be available due to its other applications, e.g., generat-

ing [34,42,49,95,156] or evaluating test suites [20,121,122]. In addition, since

FIFL depends on the mutation testing results of the old version, the mutation

testing process can be conducted at the same time with developing the new

version, thus improving the fault localization results with no overhead.

However, the mutant testing results for the old program version might

still be absent when doing fault localization, we further show how to tackle

the cost of mutation testing at that situation. We propose the concept of

Edit-Oriented Mutation Testing, which only collects mutation testing results

of the mutants mapping with program edits, since the execution results of other

mutants are not used by FIFL. Formally, the subset of mutants executed by

edit-oriented mutation testing can be represented as follows.

Medit = {µ|∀c ∈ ∆, µ ∈Map[c]}

where ∆ denotes all the edits between two program versions, and Map[c]

denotes the mapping mutants for program edit c. As the mutant generation is

174

much more efficient than mutant execution [122], our implementation simply

generates all the mutants, and only executes the mutants mapped with edits.

6.4 Implementation

We built our FIFL technique on top of Javalanche [3, 122] and Fault-

Tracer [150]. FIFL uses Javalanche for the first step mutant generation and

execution. Javalanche is a state-of-the-art mutation testing tool for Java pro-

grams. Javalanche allows efficient mutant generation, as well as mutant execu-

tion. More precisely, Javalanche uses a small set of sufficient mutant operators,

and manipulates Java bytecode directly using mutant schemata to enable ef-

ficient mutant generation. In addition, Javalanche only executes the set of

influenced tests for each mutant based on coverage checking, and allows par-

allel execution to enable efficient mutant execution.

FIFL uses FaultTracer for the second step edit detection and suspi-

ciousness calculation. FaultTracer is a state-of-the-art technique for localizing

failure-inducing program edits during software evolution. FaultTracer calcu-

lates the suspiciousness of each program edit based on their correlation with

failed tests. FaultTracer has been shown to outperform the previous ranking

technique [109] by more than 50% [150].

FIFL’s third step change mapping inference requires the method-overriding

hierarchy, field-hiding hierarchy, as well as source code scope for given changed

entities, etc. We implemented this step based on the Eclipse JDT toolkit [2].

The fourth and the fifth steps mainly involve data computation and trans-

175

Table 6.2: Subjects overview.
Projects Description License LoC(Src/Test)
TimeMoney Time and money library MIT 2.7K/3.0K
Barbecue Bar-code creator BSD 5.4K/3.3K

Mime4J Message stream parser Apache2.0 7.0K/3.8K
Jaxen Java XPath library Apache-style 14.0K/8.8K
Xml-Sec XML security standards MIT 19.8K/4.0K
XStream Object serialization library BSD 18.4K/20.1K
JMeter Performance testing Apache2.0 44.6K∗

Com-Lang Java helper utilities Apache2.0 23.3K/32.5K
Joda-Time Time library Apache2.0 32.9K/55.9K

∗ indicates source and test code are written together, and cannot be measured
separately

formation, and are directly implemented with the Java language. Although

FIFL is currently implemented for Java programs, the FIFL methodology of

localizing faulty edits based on fault injection is generalizable for other object-

oriented languages.

6.5 Experimental Study

FIFL aims to make suspiciousness calculation more precise for pro-

gram edits. To evaluate the effectiveness of FIFL, the experimental study

compares FIFL against FaultTracer [150], a state-of-the-art approach for lo-

calizing failure-inducing edits on real-world code repositories.

6.5.1 Independent Variables

According to the theory of experimentation, we used the following inde-

pendent variables (IVs) to investigate their influences on the final experimental

results:

IV1: Different Localization Approaches. We considered the following

176

choices of approaches as the first independent variable: (1) FaultTracer, which

is a state-of-the-art approach for localizing failure-inducing program edits; (2)

FIFL, which is proposed in this chapter and embodies the idea of injecting

faults to localize failure-inducing edits.

IV2: Different Calculation Formulae for Edit Suspiciousness. We

considered all the four formulae used by FaultTracer [150] to calculate the

suspiciousness of program edits: (1) SBI; (2) Tarantula; (3) Ochiai; and (4)

Jaccard.

IV3: Different Calculation Formulae for Mutant Suspiciousness.

Similarly, we considered the same set of formulae for calculating the suspi-

ciousness of mutants (shown in Section 6.3.2): (1) SBI; (2) Tarantula; (3)

Ochiai; and (4) Jaccard.

IV4: Different Combination Strategies. We considered all the three

combination strategies shown in Section 6.3.3 for refining the suspiciousness

of edits based on the suspiciousness of mutants: (1)Min-Max; (2)Max-Max;

and (3)Ratio-Max. For the Ratio-Max strategy, we use values of α ranging

from 0.00 to 0.95 with increments of 0.05, i.e., 20 values of α. Note that when

α=0.0, the strategy ranks edits based on pure mutant suspiciousness.

6.5.2 Dependent Variables

Since we are concerned with the effectiveness as well as efficiency achieved

by our FIFL approach, we used the following dependent variable (DV):

DV: Rank of Failure-Inducing Edits. This variable denotes the total

177

number of edits that developers need to inspect before finding the real failure-

inducing edits when using the compared techniques.

6.5.3 Subjects and Experimental Setup

We obtained versions of the source code of nine open-source projects

in various application domains, which have been widely used for regression

testing and mutation testing research [35,121,122,155]. Table 6.2 depicts brief

information about the latest release of each studied project. The sizes of the

studied projects range from 5,675 lines of code (LoC) (TimeMoney, including

2,678 LoC source code and 2,997 LoC test code) to 88,835 LoC (Joda-Time,

with 32,932 LoC source code and 55,903 LoC test code). We obtained Xml-Sec

and JMeter from the well-known Software-artifact Infrastructure Repository

(SIR) [35], and all the other projects from their host repositories. For each

project, we obtained all the available releases in its repository, and treated

every two continuous releases as a version pair. For each version pair, we

applied the regression test suite of the old version on the new version, and

treated the edits that cause the regression suite to fail on the new version as

regression faults. We studied all those version pairs with regression test failures

to evaluate FIFL’s performance. The experimental study was performed on a

Dell desktop with Intel i7 8-Core Processor (2.8G Hz), 8G RAM, and Win7

Enterprise 64-bit version.

For all the projects, we were able to find version pairs with regression

faults except JMeter . However, JMeter comes with seeded faults in SIR,

178

Ta
bl
e
6.
3:

V
er
si
on

pa
ir
s
w
it
h
te
st

fa
ilu

re
s.

A
ll
M
ut
an

ts
M
ap

pe
d
M
ut
an

ts
N
o

P
ro
je
ct

V
er
si
on

P
ai
r

#
T
es
ts

#
F
T
es
ts

#
E
di
ts

#
F
E
di
ts

N
um

be
r

E
xe
cu
ti
on

T
im

e
N
um

be
r

E
xe
cu
ti
on

T
im

e
P

1
T

im
eM

on
ey

3.
0,

4.
0

14
3

1
21
5

1
17
37

9m
in
24
s

79
2

7m
in
38
s

P
2

T
im

eM
on

ey
4.
0,

5.
0

15
9

1
24
6

1
19
84

6m
in
43
s

32
5

1m
in
5s

P
3

B
ar

be
cu

e
1.
5a
1,

1.
5a
2

16
0

2
23

1
41
31
0

15
m
in
37
s

96
57
s

P
4

M
im

e4
J

0.
50
,
0.
60

12
0

8
28
62

3
19
11
1

18
1m

in
20
s

80
86

37
m
in
50
s

P
5

M
im

e4
J

0.
61
,
0.
70

34
8

3
31
60

4
27
65
4

22
7m

in
14
s

24
44
3

49
m
in
15
s

P
6

Ja
xe

n
1.
0b

7,
1.
0b

9
24

2
20
4

3
38
20

10
0m

in
25
s

96
4

28
m
in
38
s

P
7

Ja
xe

n
1.
1b

2,
1.
1b

5
69

2
41
9

1
54
89

19
m
in
8s

14
93

7m
in
42
s

P
8

Ja
xe

n
1.
1b

6,
1.
1b

7
24
3

2
47
3

5
97
04

44
m
in
49
s

60
37

24
m
in
8s

P
9

Ja
xe

n
1.
1b

9,
1.
1b

11
64
5

1
92

1
10
04
5

61
m
in
59
s

15
7

2m
in
9s

P
1
0

X
m

l-
Se

c
1.
0,

2.
0

91
5

32
9

2
10
59
9

16
m
in
6s

11
34

2m
in
3s

P
1
1

X
St

re
am

1.
20
,
1.
21

63
7

3
20
9

1
10
95
6

49
m
in
51
s

54
7

5m
in
31
s

P
1
2

X
St

re
am

1.
21
,
1.
22

69
8

1
22
2

2
11
51
6

54
m
in
24
s

84
7

6m
in
56
s

P
1
3

X
St

re
am

1.
22
,
1.
30

76
8

24
54
0

11
12
53
6

64
m
in
22
s

18
70

8m
in
25
s

P
1
4

X
St

re
am

1.
30
,
1.
31

88
5

12
41
6

3
14
14
0

96
m
in
43
s

22
06

13
m
in
0s

P
1
5

X
St

re
am

1.
31
,
1.
40

92
4

13
12
25

7
15
00
6

99
m
in
26
s

34
62

22
m
in
15
s

P
1
6

X
St

re
am

1.
41
,
1.
42

12
00

6
13
6

5
18
04
6

13
2m

in
2s

18
17

10
m
in
50
s

P
1
7

JM
et

er
0.
0,

1.
0

51
1

17
14

1
53
63

29
m
in
56
s

17
79

8m
in
40
s

P
1
8

JM
et

er
1.
0,

2.
0

60
2

10
56

1
21
89
6

57
m
in
32
s

36
04

13
m
in
22
s

P
1
9

JM
et

er
2.
0,

3.
0

72
11

28
09

4
80
67

43
m
in
27
s

43
47

34
m
in
44
s

P
2
0

JM
et

er
3.
0,

4.
0

76
1

76
4

1
71
16

34
m
in
36
s

70
3

10
m
in
50
s

P
2
1

C
om

-L
an

g
3.
02
,
3.
03

16
98

1
22
1

1
20
79
2

90
m
in
26
s

80
3

4m
in
7s

P
2
2

C
om

-L
an

g
3.
03
,
3.
04

17
03

2
17
2

2
20
79
2

90
m
in
29
s

14
41

3m
in
33
s

P
2
3

Jo
da

-T
im

e
0.
90
,
0.
95

21
9

4
59
76

2
65
81

6m
in
29
s

53
65

3m
in
37
s

P
2
4

Jo
da

-T
im

e
0.
98
,
0.
99

19
32

6
12
54

2
16
20
8

31
m
in
36
s

36
31

4m
in
45
s

P
2
5

Jo
da

-T
im

e
1.
10
,
1.
20

24
20

1
79
3

1
19
01
2

53
m
in
10
s

19
97

12
m
in
32
s

P
2
6

Jo
da

-T
im

e
1.
20
,
1.
30

25
16

11
57
1

3
19
56
6

10
6m

in
10
s

71
8

31
m
in
32
s

179

thus we use seeded faults for JMeter . In total, we have 26 version pairs

with regression faults, and the details are shown in Table 6.3. In Table 6.3,

Column 1 shows the abbreviations for all the version pairs with regression

faults. Columns 2 and 3 show the project name and corresponding versions

for each version pair. Columns 4 and 5 show the number of tests and failed

tests for each version pair. Columns 6 and 7 show the number of edits and

failure-inducing edits for each version pair.

The table also presents the mutation testing statistics using Javalanche.

Columns 8 and 9 show the number and execution time for all mutants. Simi-

larly, Columns 10 and 11 show the number and execution time for the mutants

that are actually needed by FIFL (i.e., mutants mapped with edits). We ob-

serve that overall mutation testing time by Javalanche for each studied version

pair is acceptable for the studied subjects, ranging from 6 minutes 43 seconds

to 227 minutes 14 seconds. The reason is that Javalanche embodies a set of

optimization strategies for improving efficiency (Section 6.4). We also find

that the mutation testing time for only mapped mutants is much more effi-

cient, and is less than 1 hour for all subjects. Recall that FIFL never costs

the developer the entire mutation testing time: (1) mutation testing results

can already be in the repository before applying FIFL due to its other appli-

cations; (2) the mutation testing results can be collected at the same time as

developing the new version, because FIFL uses the mutation testing results

on the old version; (3) even when mutation testing results are not available

before applying FIFL, developers can only collect the mutation testing results

180

F t . M i n M a x R 9 5 R 9 0 R 8 5 R 8 0 R 7 5 R 7 0 R 6 5 R 6 0 R 5 5 R 5 0 R 4 5 R 4 0 R 3 5 R 3 0 R 2 5 R 2 0 R 1 5 R 1 0 R 0 5 R 0 0
0

5

1 0

1 5

2 0

2 5

3 0
Ra

nki
ng

of F
ailu

re-
Ind

uci
ng

Ed
its

(a) Ranking failure-inducing edits using
the SBI formula.

F t . M i n M a x R 9 5 R 9 0 R 8 5 R 8 0 R 7 5 R 7 0 R 6 5 R 6 0 R 5 5 R 5 0 R 4 5 R 4 0 R 3 5 R 3 0 R 2 5 R 2 0 R 1 5 R 1 0 R 0 5 R 0 0
0

5

1 0

1 5

2 0

2 5

3 0

Ra
nki

ng
of F

ailu
re-

Ind
uci

ng
Ed

its

(b) Ranking failure-inducing edits using
the Tarantula formula.

F t . M i n M a x R 9 5 R 9 0 R 8 5 R 8 0 R 7 5 R 7 0 R 6 5 R 6 0 R 5 5 R 5 0 R 4 5 R 4 0 R 3 5 R 3 0 R 2 5 R 2 0 R 1 5 R 1 0 R 0 5 R 0 0
0

5

1 0

1 5

2 0

2 5

3 0

Ra
nki

ng
of F

ailu
re-

Ind
uci

ng
Ed

its

(c) Ranking failure-inducing edits using
the Ochiai formula.

F t . M i n M a x R 9 5 R 9 0 R 8 5 R 8 0 R 7 5 R 7 0 R 6 5 R 6 0 R 5 5 R 5 0 R 4 5 R 4 0 R 3 5 R 3 0 R 2 5 R 2 0 R 1 5 R 1 0 R 0 5 R 0 0
0

5

1 0

1 5

2 0

2 5

3 0

Ra
nki

ng
of F

ailu
re-

Ind
uci

ng
Ed

its
(d) Ranking failure-inducing edits using
the Jaccard formula.

Figure 6.9: Ranking failure-inducing edits using various techniques with var-
ious formulae.

for the mutants mapped with edits (Section 6.3.4).

6.5.4 Results and Analysis

In this section, we first compare all strategies of FIFL with FaultTracer

(Section 6.5.4.1). Then we compare the default strategies of FIFL with Fault-

Tracer in detail (Section 6.5.4.2). Finally, we discuss about the scope and

limitations of the FIFL approach and its evaluation (Section 6.5.4.3).

6.5.4.1 Overall comparison between FaultTracer and various strate-
gies of FIFL

Figures 6.9(a) to 6.9(d) show the comparison of FIFL with FaultTracer

for different suspicious calculation formulae. We denote FaultTracer (the rank-

181

ing based on pure edit suspiciousness) as Ft., FIFL’sMin-Max strategy asMin,

and FIFL’s Max-Max strategy as Max. For FIFL’s Ratio-Max strategies, we

use R and the value of α to represent each strategy. For example, we use

R95 to denote the Ratio-Max strategy with α=0.95. In each figure, the hori-

zontal axis shows compared techniques, and the vertical axis shows the rank

of failure-inducing edits by each technique across all the version pairs with

regression faults. Each box plot shows the average (a dot in the box), median

(a line in the box), and upper/lower quartile values for the ranking of failure-

inducing edits across various version pairs5. We mark all the techniques that

outperform the original FaultTracer technique (which is based on the pure edit

suspiciousness) in terms of both average and median values as shadowed box

plots. The key findings from the experimental results are as follows.

First, in terms of median effectiveness across all version pairs, all rank-

ing techniques of FIFL outperform FaultTracer. When using the SBI for-

mula (the median case for the Tarantula formula is similar), in the median

case, FaultTracer localizes failure-inducing edits within 9.5 edits. In contrast,

the Min-Max and Max-Max strategies of FIFL localize failure-inducing edits

within 8.5 and 6 edits, respectively. The Ratio-Max strategies of FIFL with

all α values within [0.00, 0.95] localize failure-inducing edits within 6 edits.

When using the Ochiai formula (the median case for the Jaccard formula is

similar), in the median case, FaultTracer localizes failure-inducing edits within

5Note that for each version pair with multiple faulty edits, we use the average ranking
of all its faulty edits.

182

9.5 edits. In contrast, the Min-Max and Max-Max strategies of FIFL local-

ize failure-inducing edits within 8.5 and 5.05 edits, respectively. Furthermore,

the Ratio-Max strategies of FIFL with α ∈ [0.30, 0.55] localize failure-inducing

edits within 4 edits, an improvement of 57.89% over FaultTracer.

Second, in terms of average effectiveness across all version pairs, the

Max-Max strategy and the Ratio-Max strategies with α ∈ [0.05, 0.95] still

outperform FaultTracer. For example, using the SBI formula, FaultTracer

localizes failure-inducing edits within 15.40 edits, the Max-Max strategy of

FIFL localizes failure-inducing edits within 12.42 edits, and all strategies of

FIFL with α ∈ [0.05, 0.95] are able to localize faulty edits within 11.08 edits.

Furthermore, the Ratio-Max strategy of FIFL with α = 0.35 localizes failure-

inducing edits within 9.68 edits, indicating an average improvement of 37.14%

over FaultTracer. However, the Min-Max strategy and the Ratio-Max strategy

with α = 0.00 (the ranking based on pure mutant suspiciousness) cannot out-

perform FaultTracer. For example, when using the SBI formula, the Min-Max

strategy and the Ratio-Max strategy with α = 0.00 (the ranking based on

pure mutant suspiciousness) localize failure-inducing edits within 19.81 and

17.43 edits, respectively. The reason is that for some failure-inducing edits,

accidentally none mapped mutant can simulate their real impacts. Then the

suspiciousness values for their mapped mutants can be quite low (even 0.00),

making the Min-Max strategy and the strategy based on pure mutant suspi-

ciousness perform extremely worse at those cases.

Third, in terms of stability, the Max-Max strategy and the Ratio-Max

183

strategies with α ∈ [0.05, 0.95] outperform FaultTracer. As Figures 6.9(a) to

6.9(d) show, the box plots representing Max-Max and Ratio-Max strategies

with α ∈ [0.05, 0.95] are consistently more condensed than that of FaultTracer

based on pure edit suspiciousness. To validate this observation, we also com-

pute the Standard Deviations (SD) for each compared technique. The SDs

for the Max-Max strategy and all Ratio-Max strategies with α from 0.05 to

0.95 are also consistently smaller than that of FaultTracer across all the four

formulae.

Fourth, for different formulae, different α values have different impacts

for the Ratio-Max strategy. For example, all α values perform similarly for

both the Ochiai and Jaccard formulae. On the contrary, α values between 0.35

and 0.85 perform better than other values for the SBI formula, and α values

between 0.15 and 0.40 perform better than other values for the Tarantula

formula. An interesting finding is that even adding a little flavor of mutant

suspiciousness to the edit suspiciousness (i.e., α=0.95) would boost the ranking

based on pure edit suspiciousness (i.e., FaultTracer) significantly. For example,

when using the Jaccard formula, in the median case, FaultTracer is able to

localize faults within 9.5 edits, while the Ratio-Max strategy with α=0.95 is

able to localize faults within 5.25 edits, thus significantly reducing the burden

on developers to localize faults.

Finally, we also perform statistical tests to compare FaultTracer with

184

various FIFL strategies6. For each FIFL strategy, we use its ranking of failure-

inducing edits on different version pairs as a sample data set, and compare it

against the corresponding sample set for FaultTracer. Before applying paired

significance test, we first apply the Shapiro-Wilk Normality Test [124] to check

the normality assumption. The results show that the differences between any

FIFL strategy and FaultTracer do not follow normal distribution even at the

0.01 significance level. Therefore, we choose to use the Wilcoxon Signed-Rank

Test [133] to compare FIFL and FaultTracer, because it is suitable for the case

that the sample differences may not be normally distributed [81]. Table 6.4

shows the detailed Wilcoxon test results.

In Table 6.4, Column 1 shows the various FIFL strategies compared

against FaultTracer. Columns 2-5 show the p values for comparing the cor-

responding FIFL strategies with FaultTracer when using the four different

formulae. The Null hypothesis was rejected at the 0.01 significance level (i.e.,

p < 0.01) when comparing all FIFL Ratio-Max strategies with α ∈ [0.05, 0.95]

against FaultTracer, indicating that the vast majority of FIFL strategies are

able to statistically (i.e., not likely to be accidentally) outperform FaultTracer

in localizing failure-inducing edits. The table also shows that the Null hypoth-

esis was not rejected at the 0.01 significance level when comparing FaultTracer

against FIFL’s Min-Max strategy, Max-Max strategy, and the strategy based

on pure mutant suspiciousness (i.e., Ratio-Max strategy with α value of 0.00),

indicating that these three FIFL strategies may not outperform FaultTracer

6All the statistical tests used in this work were performed using the R language [54].

185

consistently. One interesting finding is that although the FIFLMax-Max strat-

egy is able to outperform some FIFL Ratio-Max strategy with α ∈ [0.05, 0.95]

in terms of average/median performance, the Max-Max strategy is not able

to outperform FaultTracer in terms of significance tests while all FIFL Ratio-

Max strategies with α ∈ [0.05, 0.95] outperform FaultTracer. The reason is

that the performance of the Max-Max strategy is not stable for different sub-

jects – it outperforms FaultTracer substantially for some subjects but also

performs worse than FaultTracer for some subjects. On the contrary, al-

though some Ratio-Max strategies with α ∈ [0.05, 0.95] cannot outperform

FaultTracer substantially, it outperforms FaultTracer consistently across dif-

ferent subjects. The results demonstrate that using both edit suspiciousness

and mutant suspiciousness for ranking each edit (i.e., FIFL’s Ratio-Max strate-

gies with α ∈ [0.05, 0.95]) performs better than using either edit suspiciousness

or mutant suspiciousness for ranking each edit (i.e., FaultTracer that uses pure

edit suspiciousness, FIFL Min-Max that uses the lower suspiciousness values,

FIFL Max-Max that uses the higher suspiciousness values, and FIFL Ratio-

Max with α = 0.00 that uses pure mutant suspiciousness). The reason is that

both the spectrum information and the impact information (simulated by mu-

tation testing) are useful for localizing failure-inducing edits, and thus using

any one of them for one edit may not be both precise and stable.

In summary, both the descriptive statistics and the significance tests

show that a vast majority of FIFL strategies are able to outperform Fault-

Tracer significantly. Furthermore, the significance tests show that using both

186

Table 6.4: Wilcoxon tests for comparing FIFL techniques with FaultTracer
FIFL SBI (p) Tarantula (p) Ochiai (p) Jaccard (p)
Min. 0.1179 0.1179 0.6602 0.2679
Max. 0.1487 0.1147 0.1089 0.1207
R95 0.0006∗∗ 0.0011∗∗ 0.0011∗∗ 0.0006∗∗
R90 0.0006∗∗ 0.0007∗∗ 0.0007∗∗ 0.0007∗∗
R85 0.0006∗∗ 0.0011∗∗ 0.0004∗∗ 0.0007∗∗
R80 0.0006∗∗ 0.0009∗∗ 0.0012∗∗ 0.0006∗∗
R75 0.0006∗∗ 0.0008∗∗ 0.0006∗∗ 0.0010∗∗
R70 0.0007∗∗ 0.0008∗∗ 0.0006∗∗ 0.0011∗∗
R65 0.0006∗∗ 0.0008∗∗ 0.0006∗∗ 0.0013∗∗
R60 0.0006∗∗ 0.0012∗∗ 0.0007∗∗ 0.0013∗∗
R55 0.0004∗∗ 0.0006∗∗ 0.0004∗∗ 0.0008∗∗
R50 0.0004∗∗ 0.0004∗∗ 0.0005∗∗ 0.0009∗∗
R45 0.0004∗∗ 0.0004∗∗ 0.0006∗∗ 0.0008∗∗
R40 0.0004∗∗ 0.0004∗∗ 0.0005∗∗ 0.0017∗∗
R35 0.0004∗∗ 0.0004∗∗ 0.0008∗∗ 0.0010∗∗
R30 0.0013∗∗ 0.0004∗∗ 0.0009∗∗ 0.0035∗∗
R25 0.0013∗∗ 0.0004∗∗ 0.0021∗∗ 0.0035∗∗
R20 0.0013∗∗ 0.0004∗∗ 0.0024∗∗ 0.0035∗∗
R15 0.0014∗∗ 0.0004∗∗ 0.0038∗∗ 0.0040∗∗
R10 0.0014∗∗ 0.0013∗∗ 0.0040∗∗ 0.0040∗∗
R05 0.0014∗∗ 0.0012∗∗ 0.0045∗∗ 0.0040∗∗
R00 0.4665 0.4444 0.4079 0.2762

∗ indicates significance at the 0.05 level (p<0.05)
∗∗ indicates significance at the 0.01 level (p<0.01)

edit suspiciousness and mutant suspiciousness for ranking each edit performs

better than using either edit suspiciousness or mutant suspiciousness for rank-

ing each edit, further demonstrating the motivation of the work – combining

edit spectrum information and edit impact information (simulated by muta-

tion testing) can achieve better fault localization results.

6.5.4.2 Detailed comparison between FaultTracer and FIFL with
the default settings

We present the detailed comparison between FaultTracer and FIFL’s

Ratio-Max strategy with the default α of 0.50 on all the version pairs. In

Table 6.5, Column 1 lists all the version pairs with regression faults. Columns

187

2-4 present the average rank of faulty edits by FaultTracer, the average rank

of faulty edits by FIFL, and improvement by FIFL over FaultTracer(%) using

the SBI formula for each subject. Note that we also show the improvement

achieved by FIFL without mapping approximations for addition edits (Rules

3-9 in Figure 6.3) in parentheses. Similarly, Columns 5-13 present the compar-

ison between FaultTracer and FIFL using the Tarantula, Ochiai, and Jaccard

formulae.

In general, using all the formulae, all FIFL techniques in Table 6.5

are able to achieve improvements over FaultTracer for the majority of the

version pairs. Also, the statistical test in Table 6.4 also confirms that all

FIFL techniques in Table 6.5 can statistically outperform FaultTracer. For

example, using the default SBI formula, FIFL outperforms FaultTracer by

2.33% to 86.26% for 16 of 26 version pairs and is only slight inferior than

FaultTracer on one version pair (with an average improvement of 36.46%).

The reason FIFL techniques in Table 6.5 outperform FaultTracer over the

vast majority of the studied subjects is that those FIFL techniques use both

the edit suspiciousness and mutant suspiciousness for ranking each edit, which

provide both coverage and impact information for precise fault localization.

The reason FIFL techniques do not outperform FaultTracer on every case is

that FaultTracer techniques already rank the failure-inducing edits precisely

using only edit suspiciousness for some version pairs, and the use of mutant

suspiciousness may bring some noises to the ranked list. The experimental

data supports this reasoning: for example, among the 10 version pairs where

188

FIFL cannot outperform FaultTracer using the SBI formula, FaultTracer is

already able to localize failure-inducing edits within 5 edits for 8 version pairs,

leaving little room for FIFL to improve.

We also observe that even FIFL without mapping approximations is

also able to outperform FaultTracer significantly. For example, using the SBI

formula, FIFL without mapping approximations can outperform FaultTracer

for 14 of 26 version pairs with an average improvement of 30.72%. For some

version pairs (e.g., P14), FIFL without mapping approximations even slightly

outperforms FIFL with mapping approximations. The reason is that FIFL

without mapping approximations aggressively ignores the chance to increase

the suspiciousness for addition edits using mutant suspiciousness, and thus per-

forming better for some version pairs with only faults in non-addition edits.

However, for the majority of the version pairs, FIFL with mapping approxi-

mations performs better.

To further understand the performance of FIFL, we also manually ana-

lyzed why FIFL outperform or cannot outperform FaultTracer for each subject

using the SBI formula. We describe the following interesting cases:

Case 1. When XStream evolved from V1.20 to V1.21 (P11), 3 tests

failed because the developers added faulty method XStream.buildMapper()

(shown in Figure 6.8), which is used to initialize XStream object and is executed

by every test. Therefore, FaultTracer, which treats edits mainly executed by

failed tests as more suspicious, cannot rank this AM edit high. FIFL without

mapping approximations cannot improve over FaultTracer because it cannot

189

Ta
bl
e
6.
5:

C
om

pa
ri
so
n
be

tw
ee
n
Fa

ul
tT

ra
ce
r
an

d
de
fa
ul
t
se
tt
in
gs

of
F
IF

L.
R
ev
.

SB
I

T
ar
an

tu
la

O
ch
ia
i

Ja
cc
ar
d

F
t.

F
i.

Im
pr
ov
em

en
t(
%
)

F
t.

F
i.

Im
pr
ov
em

en
t(
%
)

F
t.

F
i.

Im
pr
ov
em

en
t(
%
)

F
t.

F
i.

Im
pr
ov
em

en
t(
%
)

P
1

4.
00

3.
00

25
.0
0

(2
5.
00
)

4.
00

3.
00

25
.0
0

(2
5.
00
)

4.
00

3.
00

25
.0
0

(2
5.
00
)

4.
00

3.
00

25
.0
0

(2
5.
00
)

P
2

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

P
3

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

P
4

6.
33

6.
33

0.
00

(0
.0
0)

6.
33

6.
33

0.
00

(0
.0
0)

2.
33

2.
33

0.
00

(0
.0
0)

2.
33

2.
33

0.
00

(0
.0
0)

P
5

25
.0
0

14
.2
5

43
.0
0

(2
3.
00
)

25
.0
0

13
.5
0

46
.0
0

(2
3.
00
)

12
.2
5

12
.0
0

2.
04

(4
.0
8)

11
.0
0

12
.2
5

-1
1.
36

(-
9.
09
)

P
6

16
.0
0

14
.0
0

12
.5
0

(2
5.
00
)

16
.0
0

14
.6
7

8.
33

(2
0.
83
)

16
.0
0

14
.3
3

10
.4
2

(2
2.
92
)

16
.0
0

14
.3
3

10
.4
2

(2
2.
92
)

P
7

34
.0
0

32
.0
0

5.
88

(2
.9
4)

34
.0
0

32
.0
0

5.
88

(2
.9
4)

30
.0
0

16
.0
0

46
.6
7

(2
3.
33
)

30
.0
0

16
.0
0

46
.6
7

(2
3.
33
)

P
8

16
.2
0

8.
40

48
.1
5

(4
8.
15
)

16
.2
0

12
.2
0

24
.6
9

(2
4.
69
)

14
.6
0

8.
40

42
.4
7

(4
2.
47
)

16
.2
0

8.
40

48
.1
5

(4
8.
15
)

P
9

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

1.
00

1.
00

0.
00

(0
.0
0)

P
1
0

5.
50

4.
50

18
.1
8

(0
.0
0)

5.
50

4.
00

27
.2
7

(0
.0
0)

5.
00

4.
00

20
.0
0

(0
.0
0)

5.
00

4.
50

10
.0
0

(0
.0
0)

P
1
1

13
.0
0

3.
00

76
.9
2

(0
.0
0)

13
.0
0

4.
00

69
.2
3

(1
5.
38
)

13
.0
0

3.
00

76
.9
2

(0
.0
0)

13
.0
0

3.
00

76
.9
2

(0
.0
0)

P
1
2

7.
00

4.
00

42
.8
6

(4
2.
86
)

7.
00

4.
50

35
.7
1

(3
5.
71
)

7.
00

4.
00

42
.8
6

(4
2.
86
)

7.
00

4.
00

42
.8
6

(4
2.
86
)

P
1
3

59
.4
5

37
.3
6

37
.1
6

(2
2.
94
)

59
.4
5

42
.4
5

28
.5
9

(1
4.
37
)

78
.7
3

63
.3
6

19
.5
2

(1
8.
24
)

73
.6
4

59
.4
5

19
.2
6

(1
4.
44
)

P
1
4

43
.6
7

6.
00

86
.2
6

(9
3.
13
)

43
.6
7

10
.0
0

77
.1
0

(8
3.
21
)

42
.0
0

5.
67

86
.5
1

(9
2.
06
)

44
.0
0

4.
33

90
.1
5

(9
4.
70
)

P
1
5

62
.8
6

39
.4
3

37
.2
7

(4
3.
64
)

62
.8
6

43
.4
3

30
.9
1

(3
3.
64
)

66
.0
0

62
.1
4

5.
84

(7
.5
8)

64
.8
6

48
.0
0

25
.9
9

(2
9.
52
)

P
1
6

15
.4
0

6.
60

57
.1
4

(3
6.
36
)

15
.4
0

6.
40

58
.4
4

(3
7.
66
)

12
.2
0

4.
40

63
.9
3

(3
4.
43
)

15
.4
0

6.
60

57
.1
4

(3
6.
36
)

P
1
7

4.
00

4.
00

0.
00

(0
.0
0)

4.
00

4.
00

0.
00

(0
.0
0)

4.
00

4.
00

0.
00

(0
.0
0)

4.
00

4.
00

0.
00

(0
.0
0)

P
1
8

13
.0
0

9.
00

30
.7
7

(1
5.
38
)

13
.0
0

9.
00

30
.7
7

(1
5.
38
)

13
.0
0

9.
00

30
.7
7

(1
5.
38
)

13
.0
0

9.
00

30
.7
7

(1
5.
38
)

P
1
9

32
.2
5

31
.5
0

2.
33

(2
.3
3)

32
.2
5

31
.0
0

3.
88

(3
.1
0)

48
.5
0

47
.0
0

3.
09

(2
.5
8)

51
.0
0

49
.7
5

2.
45

(4
.4
1)

P
2
0

9.
00

9.
00

0.
00

(0
.0
0)

9.
00

9.
00

0.
00

(0
.0
0)

9.
00

9.
00

0.
00

(0
.0
0)

9.
00

9.
00

0.
00

(0
.0
0)

P
2
1

10
.0
0

2.
00

80
.0
0

(8
0.
00
)

10
.0
0

2.
00

80
.0
0

(8
0.
00
)

10
.0
0

2.
00

80
.0
0

(8
0.
00
)

10
.0
0

2.
00

80
.0
0

(8
0.
00
)

P
2
2

2.
50

2.
50

0.
00

(0
.0
0)

2.
50

3.
00

-2
0.
00

(-
20
.0
0)

2.
50

2.
50

0.
00

(0
.0
0)

2.
50

2.
50

0.
00

(0
.0
0)

P
2
3

1.
50

1.
50

0.
00

(0
.0
0)

1.
50

1.
50

0.
00

(0
.0
0)

1.
50

1.
50

0.
00

(0
.0
0)

1.
50

1.
50

0.
00

(0
.0
0)

P
2
4

3.
00

3.
00

0.
00

(0
.0
0)

3.
00

3.
00

0.
00

(0
.0
0)

2.
50

2.
50

0.
00

(0
.0
0)

2.
50

2.
50

0.
00

(0
.0
0)

P
2
5

10
.0
0

6.
00

40
.0
0

(3
0.
00
)

10
.0
0

6.
00

40
.0
0

(3
0.
00
)

10
.0
0

6.
00

40
.0
0

(3
0.
00
)

10
.0
0

6.
00

40
.0
0

(3
0.
00
)

P
2
6

3.
67

4.
00

-9
.0
9

(-
18
.1
8)

3.
67

3.
67

0.
00

(-
9.
09
)

2.
00

2.
67

-3
3.
33

(-
33
.3
3)

3.
67

3.
67

0.
00

(-
9.
09
)

A
vg

15
.4
0

9.
78

36
.4
6

(3
0.
72
)

15
.4
0

10
.4
5

32
.1
4

(2
6.
12
)

15
.7
4

11
.2
2

28
.6
7

(2
3.
75
)

15
.8
7

10
.7
4

32
.3
5

(2
7.
49
)

190

map the addition edit to any mutant. In contrast, FIFL with mapping approxi-

mations maps the edit to mutants inside changed method XStream.XStream()

using Rules 1 and 9. Some mapped mutants failed exactly the same set of tests

with the new program version because those mutants mutate the old state-

ments for building mappers inside XStream.XStream(), and therefore boost

the ranking of the failure-inducing edit by 76.92%.

Case 2. When Com-Lang evolved from V3.02 to V3.03 (P14), test

FastDateFormatTest.testLang538 failed because the developer removed a

conditional block for updating time zone in method FastDateFormat.format()

(shown in Figure 6.4). The changed method is used by 35 tests that involve

date format transformation. However, only 1 of them failed because the other

34 tests do not check the detailed time zone, making CM(FastDateFormat.format())

have a suspiciousness value of only 0.0286 using FaultTracer, and not able to be

ranked high. In contrast, using Rule 1, FIFL maps CM(FastDateFormat.format())

with 5 mutants (each mapped with a line in the method in V3.02), three of

which are killed exactly by the failed test and thus have suspiciousness values

of 1.0. In this way, FIFL precisely localizes the failure-inducing program edit

within top 2 edits, outperforming FaultTracer by 80%. In this case, FIFL

without mapping approximation can also localize the fault precisely because

the failure-inducing edits is not addition change.

Case 3. When JMeter evolved from V1.0 to V2.0, test testArgumentCreation

in class ArgumentsPanel.Test and test testTreeConversion in class Save.Test

failed because of one faulty edit, AM(NamePanel.updateName()). Although

191

the suspiciousness value of the edit is already 1.0 using FaultTracer, 12 other

edits also have the suspiciousness value of 1.0, making FaultTracer only rank

the failure-inducing edit within top 13 edits. In contrast, FIFL is able to

localize the failure-inducing edit within 9 edits because FIFL refines the sus-

piciousness of each edit based on their mapping mutants, and decreases the

suspiciousness values of 4 top-ranked fault-free edits.

Case 4. When Mime4J evolved from V0.61 to V0.70, 3 tests failed

because of 4 failure-inducing program edits. FaultTracer and FIFL perform

similarly on 2 failure-inducing edits. The other 2 failure-inducing edits are

CM and AM edits on constructors of MimeBoundaryInputStream class. Because

the 2 failure-inducing edits are constructor edits, they are executed by almost

all tests, making FaultTracer only localize them within 25 edits. In contrast,

FIFL maps the two constructor edits with mutants using Rule 1 and Rule

3, respectively. Some mapped mutants have the suspiciousness value of 1.0

because they are only killed by one failed test, making FIFL able to localize

the two failure-inducing edits within top 2 edits.

Case 5. When Xml-Sec evolved from V1.0 to V2.0 (P10), there are two

failure-inducing edits: AM on method engineCanonicalizeXPathNodeSet()

inside the class CanonicalizerBase, and CM on circumventBug2650() in

class XMLUtils. Using Rule 7, FIFL finds that mutants in the deleted method

engineCanonicalizeXPathNodeSet() of class Canonicalizer20010315 are

able to simulate the impacts of the newly added method. The mapped mu-

tants increase the rank of the failure-inducing AM edit by 1. In addition,

192

AF(CanonicalizerBase._includeComments) can also be mapped with mu-

tants inside a deleted method by applying Rules 7 and 9. Then, AF edit’s rank

was lowered correspondingly, making the rank of the failure-inducing CM edit,

CM(XMLUtils.circumventBug2650()), increased by 1. Therefore, the average

ranking for two failure-inducing edits is improved by 18.18%.

Case 6. The evolution from Joda-Time1.20 to 1.30 (P26) is the only

case where FaultTracer outperforms FIFL using SBI. The reason is that one

failure-inducing edit, CSFI(GregorianChronology.MAX_YEAR), does not have

mapped mutants, and another fault-free edit, CM(BasicChro- nology.getYear()),

has mapped mutants that accidentally share some failed tests with the new

version.

In summary, the Ratio-Max strategy of FIFL with default setting is able

to outperform FaultTracer significantly. For example, even the default setting

of FIFL with SBI formula outperforms FaultTracer by 2.33% to 86.26% on

16 of 26 studied version pairs, and is only inferior than FaultTracer on one

version pair.

6.5.4.3 Discussions

Although automated fault localization approaches [8,48,66,77,107,144–

146, 150, 163] have been intensively studied for more than a decade, there are

common limitations for them. For example, Parnin and Orso [105] recently

argued that existing fault localization approaches rely on a strong assumption

that examining a potential faulty statement in isolation is enough to localize

193

and fix a fault. They performed a case study showing that a traditional fault

localization technique (which ranks all program statements to localize faults)

does not help the developer much with localizing faults. The study shows that

traditional fault localization at the statement granularity can be painful be-

cause (1) it may cause the developer to inspect a extremely long ranked list for

large program and (2) developers tend to also inspect the context of each state-

ment other than the statement itself. Therefore, the study suggested that fault

localization at the method or file granularities may be a promising direction

for fault localization, because those granularities provide a shorter candidate

list and provide enough context information for each ranked entity. Although

our FIFL approach may share the same limitations with traditional fault lo-

calization, FIFL makes attempts to address the limitations of traditional fault

localization. For example, FIFL focuses on program edits during software

evolution, which provides a much shorter ranked list than ranking all program

statements. In addition, FIFL extracts program edits at the method/field

level, which provide the developer enough context information for reasoning

each ranked entity.

There is also another intrinsic limitation for the spectrum-based fault

localization approaches that FIFL is based on [8,66,77,144,150] – they only use

the correlation between the coverage of program elements with test pass/fail

results to localize faults. However, there is a gap between the coverage and

the actual impact of program elements to the test pass/fail results. In this

work, we make an attempt to bridge the gap by using the simulated impact

194

Table 6.6: Summary results when using the default R50 strategy to rank all
edits and rank edits for each failed test

R50 Rank all edits Rank edits per test
Formula Ft. Fi. Impr. Ft. Fi. Impr.
SBI 15.40 9.78 36.46% 10.12 5.83 42.44%

Tarantula 15.40 10.45 32.14% 10.12 6.10 39.70%
Ochiai 15.74 11.22 28.67% 10.43 6.21 40.48%
Jaccard 15.87 10.74 32.35% 10.80 6.00 44.47%

information via mutation testing. However, the impact information simulated

by mutation testing may be still not precise enough. In addition, some edits

may not even have mapped mutants due to various reasons, e.g., the muta-

tion operators do not support the specific statement pattern. In the future,

we hope more research efforts can be put into this area to bridge the gap

between program coverage information and actual impact information using

more advanced techniques.

Our experimental evaluation also has limitations. In this work, we used

FaultTracer and FIFL to directly rank all the edits once for all failed tests.

This corresponds to the debugging process that the developer iterates over

all the edits to find all the potential faults for the failed program version.

However, some deveopers may prefer to inspect related edits for each failed

test to fix failed tests one by one. Therefore, we also used FaultTracer and

FIFL to rank edits related to each failed test (i.e., only ranking the edits that

are affecting changes of each failed test based on their suspiciousness). In this

case, we would have a ranked list of edits for each failed test. For each subject,

we collected the average rank of each failure-inducing edit on each failed test.

Table 6.6 shows the average summary results across all subjects for FaultTracer

195

and FIFL’s default strategy when ranking all edits together and when ranking

edits for each failed test. In the table, Column 1 presents the four formulae.

Columns 2-4 show the average rank of failure-inducing edits by FaultTracer

and FIFL when ranking all edits together, and the improvement of FIFL over

FaultTracer. Similarly, Columns 5-7 present the comparison between FIFL

and FaultTracer when ranking edits for each failed test. We can observe that

FIFL outperforms FaultTracer even more when ranking edits for each failed

test. For example, when using the default strategy with the SBI formula, FIFL

is able to localize failure-inducing edits within 5.83 edits for each failed test,

indicating an improvement of more than 40% over FaultTracer.

Last but not least, Murphy-Hill et al. [91] recently presented an inter-

esting study showing a suite of factors that can cause a program fault to be

fixed in different ways at different circumstances or time points. One such

factor is the development phase of the project. For example , when fixing a

fault at an earlier phase, developers may choose to fix the root cause of the

fault so that if a risk raises, they would have a longer period to compensate.

On the contrary, when fixing a fault at a later phase, developers may choose

to make a walk-around which would be “least disruptive”. The findings in this

study raises serious questions for traditional bug prediction [69, 165] or fault

localization techniques [8,66,77,144,150], because faults can actually be fixed

in different ways and locations rather than the root causes. The effectiveness

evaluation of FIFL may also be influenced, because we only evaluate FIFL

in localizing the root cause of failure-inducing edits, whereas the developer

196

may choose to fix the faults in different ways at different program locations.

However, we believe that FIFL may still be useful for developers even when

they finally decide not to fix the faults at the root-cause locations, because

fully understanding of the fault root cause is still preferred no matter where

the faults are finally fixed (also confirmed by the same study [91]).

6.5.5 Threats to Validity

Threats to internal validity are concerned with uncontrolled factors

that may also be responsible for the results. In this work, the main threat

to internal validity is the possible faults in the implementation of the com-

pared techniques. To reduce this threat, we built FIFL on top of state-of-the-

art tools [122, 150], and implemented FIFL using well-known libraries such

as Eclipse JDT toolkit and ASM bytecode manipulation framework. We also

reviewed all the code that we produced to assure its correctness. The first au-

thor, with Java programming experience for eight years, isolated the failure-

inducing edits manually. We have also reviewed all outputs produced by

FIFL manually to ensure correctness. However, because this inspection was

done manually, there is still a risk of introducing subjectivity and errors.

Threats to external validity are concerned with whether the findings

in our study are generalizable for other situations. To mitigate threats to

external validity, we used all released versions of nine medium sized open

source projects from various application areas. In addition, as our work is

related to both regression testing and mutation testing, we also ensure that

197

the selected subjects have been used for regression testing or mutation testing

research [27,28,35,88,121,122,148,150,155,160,161]. However, they still might

be not representative for all the possible subject programs.

Threats to construct validity are concerned with whether the measure-

ment in our study reflects real-world situations. To mitigate threats to con-

struct validity, we measured the ranking of failure-inducing edits, which de-

notes the number of edits that the developer need to manually inspect before

finding the fault. Furthermore, we also compare FIFL with the existing tech-

nique for localizing failure-inducing edits (FaultTracer [150]) in the same ex-

perimental setting. The ranking of failure-inducing program elements has been

widely used in the fault localization research area [8,66,105,109,110,144,150].

However, the ranking of failure-inducing program elements may still not corre-

late with the actual costs in inspecting those elements. To further reduce this

threat, inspired by user case studies in other areas [72, 86], rigorous and well-

designed studies for investigating the correlation between the ranking of faulty

elements and actual fault localization costs should be performed in future work.

In addition, as recent work has shown that it is suitable to use program repair

techniques to evaluate fault localization techniques fully automatically [107],

we also plan to use automated program repair techniques [75, 132] to further

demonstrate the effectiveness of FIFL.

6.6 Summary

This chapter makes the following contributions:

198

• We unify two widely used dimensions of software changes: me-

chanical mutation changes and developer edits. This chapter leverages

this unified view to calculate the spectra as well as impacts of program

edits to localize faults for evolving software. Furthermore, this unified

view can also impact other realms of software testing.

• We present the FIFL fault localization framework to improve the

accuracy of state-of-the-art techniques for localizing failure-inducing ed-

its using the existing mutation testing results on the old program version.

This framework creates a new dimension of possibilities to improve fault

localization during software evolution.

• We present an empirical study on the code repositories of nine real-

world Java programs. The experimental results show that FIFL (using

its default settings) is able to outperform the state-of-the-art FaultTracer

technique significantly (e.g., by more than 80% for some subjects) in lo-

calizing failure-inducing edits, indicating a promising future for localizing

faulty edits by injecting mechanical faults.

199

Chapter 7

Related Work

7.1 Regression Testing

Regression testing [39, 47, 50, 51, 67, 102, 114, 117, 142, 148, 159], which

aims to efficiently and effectively run the regression test suites on new program

versions, mainly consists of three areas: test selection, test prioritization, and

test reduction. Table 7.1 shows these areas and their applications to the mu-

tation testing area.

7.1.1 Test Selection

Test selection determines a subset of tests which have been influenced

by program changes and need to be rerun on the new program version. Rother-

mel et al. [114] identified the differences between two program versions as dan-

gerous edges on control-flow graphs, and only incrementally re-executed the

subset of tests whose behaviors might have been influenced by the danger-

Table 7.1: Regression testing areas and their applications for mutation testing

Regression Testing Mutation Testing
Test Selection Others [51, 102,114], Us [150–152] Us [155]

Test Prioritization Others [39, 116], Us [88,148,159] Us [153,155]
Test Reduction Others [18, 22,47,50], Us [154] Us [153]

200

ous edges. Harrold et al. [51] then extended the test selection technique with

object-oriented features and applied it to Java programs. Orso et al. [102]

further proposed to apply test selection in two phases: (1) compute a coarser-

level graph analysis, (2) perform finer-level graph analysis only when needed.

This two-phase approach scaled test selection for larger Java programs. Tra-

ditional change impact analysis techniques [109,110,118] also contain the test

selection methodology. Compared with traditional test selection, change im-

pact analysis techniques apply test selection at a coaser granularity, i.e., at

the level of method changes and field changes. As shown in Table 7.1, our

FaultTracer approach [150–152] introduced the extended call graph represen-

tation and enabled more accurate change impact analysis, in terms of both test

selection and regression fault localization. In addition, we also presented the

ReMT approach [155], which is inspired by traditional regression test selection

to incrementally collect mutation testing results based on program differences.

7.1.2 Test Prioritization

Test prioritization reorders regression tests to detect program faults

faster. Rothermel et al. [116] proposed two general strategies for test prior-

itization: (1) the total strategy which prioritizes tests based on the number

of code elements they covered, (2) the additional strategy which prioritizes

tests based on the number of additional elements they covered. Elbaum et

al. [39] conducted an extensive empirical study of both total and additional

strategies using various code coverage. As test coverage information may be

201

absent when applying test prioritization, we presented an approach to use

static analysis to compute estimated code coverage for test prioritization in

absence of coverage information [88,159]. Recently, we also presented proposed

unified models for test prioritization which subsume the total and additional

strategies as extreme cases, and also contain a spectrum of general strategies

between the total and additional strategies [148]. As shown in Table 7.1, our

previous work, ReMT [155], first proposed to apply test prioritization for mu-

tation testing, but it requires mutation testing results on old versions. Our

FaMT work [153] aims to present a more general test prioritization approach

for mutation testing, which does not require mutation testing results on old

versions. The basic intuitions for traditional test prioritization and our FaMT

prioritization are similar: to reorder the tests to make regression/mutation

testing faster. However, the FaMT prioritization is totally different from tra-

ditional test prioritization. The main reason is that in regression testing we

do not know where the real faults are and can only use other related informa-

tion (e.g., coverage information) to guide test prioritization, while in mutation

testing we know the locations for all mutation faults, and can directly use fault

execution information to guide prioritization.

7.1.3 Test Reduction

Test reduction executes only a representative subset of regression tests

which can still satisfy all the testing requirements. Harrold et al. [50] were

inspired by the fact that some essential tests should be selected as early as

202

possible because they test rarely tested requirements, and proposed a heuris-

tic for iteratively selecting essential tests. Chen et al. [22] further found that

some redundant tests which test only a subset of requirements tested by other

tests should be reduced as early as possible, and proposed to reduce tests

by iteratively applying essential test selection and redundant test reduction.

Black et al. [18] considered integer linear programming models for reducing

regression tests. As test reduction can lose fault detection capability, Dan

et al. [47] proposed an on-demand approach which allows user to specify the

acceptable loss in fault detection when reducing tests. In addition, we also em-

pirically studied the cost-effectiveness of traditional test reduction techniques

for real-world Java programs with JUnit test suites [154]. While test reduction

has been proposed for decades, to our knowledge, similar ideas have not been

applied to reduce the cost of mutation testing. In other words, our FaMT

approach [153] is the first to apply test reduction for faster mutation testing.

As Table 7.1 shows, our FaMT reduction shares the same intuition with tra-

ditional reduction: to execute only a subset of tests instead of the entire test

suite. However, the detailed FaMT reduction approach is technically differ-

ent from the traditional reduction techniques. Also, FaMT reduction aims to

predict which mutant(s) cannot be killed precisely, while traditional reduction

aims to capture most program faults.

203

7.2 Mutation Testing

Mutation testing [6, 32, 42, 46, 83, 122, 149, 156] is a methodology for

assessing quality of test suites. Research related to mutation testing mainly

contains three areas: mutation cost reduction, equivalent mutant detection,

and applications of mutation testing. We describe each category in the follow-

ing subsections.

7.2.1 Reducing Cost of Mutation Testing

Traditionally, there are mainly three ways to reduce the cost of mu-

tation testing: selective mutation testing, weakened mutation testing, and

accelerated mutation testing.

Selective mutation testing selects a representative subset of all mu-

tants that can achieve similar results as the entire set of mutants. Since the

first proposal of selective mutation testing by Mathur [84], a large body of

research efforts has been dedicated to this area. Researchers [16, 92, 96] have

experimentally investigated subsets of mutation operators to ensure that those

representative sets of operators achieve almost the same results as the whole

mutation operator set. Acree et al. [9] first proposed to select mutants ran-

domly from the whole set rather than based on mutation operators. Although

random mutant selection does not attract much research attention, Zhang

et al. [149] recently demonstrated that operator-based selection is actually

not more effective than random selection. Instead of investigating operator-

based and random mutant selection separately, our sampling mutation testing

204

work [147] showed that operator-based and random mutant selection can be

applied in tandem to further reduce mutation testing cost. In addition, our

recent work also extensively studied selective mutation testing for concurrent

code [43].

Weakened mutation testing proposes a relaxed definition of mutant

killing. In traditional strong mutation, for program p, test t kills mutant m if

and only if the final output of executing t on m differs from the final output

of executing t on p. Howden [53] first proposed the concept of weak muta-

tion, which checks whether t produces a different program internal state when

executing m than when executing p. Later, Woodward and Halewood [137]

proposed firm mutation, which is a spectrum of techniques between weak and

strong mutation. Offutt and Lee [97] then experimentally investigated the

relationships between the weak mutation and the strong mutation.

Accelerated mutation testing uses efficient ways to generate, com-

pile, and execute mutants. DeMillo et al. [31] extended compilers to compile

all mutants at once, thus reducing the cost of generating and compiling mu-

tants. Similarly, Untch et al. [131] proposed schema-based mutation, which

integrates all mutants into one meta-mutant that can be compiled by a stan-

dard compiler. Researchers have also used parallel processing [85,100] to speed

up the execution of mutation testing.

Recently, we introduced the idea of test selection from the regression

testing area to the mutation testing area, and proposed the ReMT tech-

nique [155], which relies on program differences and incrementally collects

205

mutation testing results based on old mutation testing results of a previous

version. Although ReMT includes an initial test prioritization approach, it is

based on program differences, and cannot be applied without mutation testing

results on old versions. In contrast, our FaMT work introduces the general idea

of test prioritization and test reduction to the area of mutation testing [153].

Furthermore, the FaMT techniques do not rely on program differences, and

can directly apply to any programs without old mutation testing results. Both

our ReMT and FaMT techniques are orthogonal to existing techniques that

optimize mutation testing and can be directly combined with those techniques

to further reduce the cost of mutation testing.

7.2.2 Detecting Equivalent Mutants

Equivalent mutants are mutants that are semantically identical to the

original program. As equivalent mutants would impact the calculation of a

test suite’s quality, it is preferable to identify equivalent mutants for mutation

testing. However, the problem of detecting equivalent mutants is undecidable

in general. Therefore, researchers investigate approximation techniques for

this problem. Offutt and Craft [94] proposed a technique to detect equivalent

mutants via compiler optimization. Hierons et al. [52] used slicing to reduce

the numbers of possible equivalent mutants. Schuler et al. [122] proposed to

use execution information to detect equivalent mutants. While not directly

targeting detection of equivalent mutants, our ReMT technique [155] may also

be utilized for this purpose: ReMT determines that some tests have the same

206

execution on a mutant for the old and new versions and thus may reduce the

cost of collecting execution information needed by equivalent mutant detec-

tion [122].

7.2.3 Applications of Mutation Testing

Mutation testing was first proposed for assessing test quality [32, 46,

83, 122]. Later, some studies have even shown that mutation testing can be

more suitable than manual fault seeding in simulating real program faults for

software testing experimentation [13, 36]. A number of research projects also

use mutation testing to guide the automated generation of high-quality tests.

DeMillo and Offutt [34] proposed constraint-based testing (CBT), which uses

control-flow analysis and symbolic evaluation to generate tests each killing

one mutant. Offutt et al. [95] further proposed dynamic domain reduction to

address some limitations of CBT. In addition to developing dedicated test-

generation techniques to kill mutants, researchers have also used existing test

generation engines to kill mutants. Liu et al. [80] proposed to generate tests

each killing multiple mutants using an engine based on the iterative relax-

ation method [45]. Fraser and Zeller [42] used search-based software testing

(SBST) to generate tests that kill mutants. Zhang et al. [156] and Papadakis

et al. [103] used dynamic symbolic execution (DSE) to generate tests that

kill mutants. Harman et al. [49] combined SBST and DSE to generate tests

that kill multiple mutants. Our ReMT approach [155] may be also utilized

to reduce the cost of generating such high-quality test suites: it is possible to

207

incrementally generate tests for killing mutants in a way similar to augmenting

existing test suites [140]. Our FaMT approach [153] may also be utilized to

prioritize program paths to generate tests with higher-quality first.

A recent work by Papadakis et al. [104] is closely related to our FIFL

work [158]. Their work to our knowledge is the first to utilize mutation testing

to facilitate traditional fault localization. Our FIFL differs from their work

in three key ways. First, their work only considers mutation changes and

aims to localize faults for one specific version, whereas FIFL considers two

dimensions of changes, including mutation changes and programmer edits, and

aims to localize faulty edits during software evolution. Second, our approach is

different: their approach uses mutation testing as a coverage criterion, whereas

FIFL uses mutation testing to simulate the impact of program edits. Third,

their technique is not applicable to tests with assertions, which are widely used

in real-world systems. The reason is that they directly apply mutation testing

on the faulty program with failed tests and the set of mutants killed by already

failed tests cannot be determined. In contrast, FIFL applies to more general

forms of tests because FIFL applies mutation testing on the old version where

all tests pass.

208

Chapter 8

Conclusion

My thesis is that an unified, bi-dimensional, and change-directedmethod-

ology can form the basis of novel techniques and tools that can make testing

and debugging significantly more effective and efficient and allow us to find

more bugs at a reduced cost. My view of change is bi-dimensional: (1) we can

mechanically induce changes to code or specifications to lead to higher quality

test suites as originally conceived in mutation testing; (2) we can utilize man-

ual changes made by programmers to test evolving programs more efficiently

as originally conceived in regression testing. Based on this view, I proposed

a set of techniques to combine mechanical changes with manual changes (i.e.,

combining mutation testing with regression testing) to make both regression

testing and mutation testing more effective and efficient. I believe that this

work can lay the foundation of more scalable and powerful techniques that are

based on a synergistic application of multiple dimensions of change.

A conceptual opposite of change is invariant, e.g., a property or ex-

pression that is constant throughout a certain range of operations. I recently

introduced a novel technique for precise discovery of likely program invariants

based on symbolic execution and model checking [157]. I also plan to inves-

209

tigate the fundamental relationship between software changes and program

invariants, which can be leveraged to develop more effective synergistic tech-

niques. For example, precise program invariants can help validating program

changes while program changes can help incremental invariant generation. I

believe the connection between changes and invariants can further enable a

suite of novel techniques for more efficient and effective software testing and

analysis.

210

Bibliography

[1] ASM ByteCode Manipulation Framework. http://asm.ow2.org/.

[2] Eclipse JDT. http://www.eclipse.org/jdt/.

[3] Javalanche Mutation Tool. http://www.st.cs.uni-saarland.de/mutation/.

[4] MuJava Mutation Tool. http://cs.gmu.edu/~offutt/mujava/.

[5] OriginLab. http://www.originlab.com/.

[6] PIT Mutation Tool. http://pitest.org/.

[7] Software-artifact Infrastructure Repository. http://sir.unl.edu/portal/

index.html.

[8] R. Abreu, P. Zoeteweij, and A. Van Gemund. On the accuracy of

spectrum-based fault localization. 2007.

[9] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.

Mutation analysis. Technical report, Georgia Institute of Technology,

1979.

[10] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A sys-

tematic review of the application and empirical investigation of search-

based test case generation. IEEE TSE, 36(6):742–762, 2010.

211

http://asm.ow2.org/
http://www.eclipse.org/jdt/
http://www.st.cs.uni-saarland.de/mutation/
http://cs.gmu.edu/~offutt/mujava/
http://www.originlab.com/
http://pitest.org/
http://sir.unl.edu/portal/index.html
http://sir.unl.edu/portal/index.html

[11] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge

University Press.

[12] P. Ammann and J. Offutt. Introduction to Software Testing. 2008.

[13] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate

tool for testing experiments? In Proc. ICSE, pages 402–411, 2005.

[14] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using

mutation analysis for assessing and comparing testing coverage criteria.

IEEE TSE, pages 608–624, 2006.

[15] Barbecue Home. http://barbecue.sourceforge.net/.

[16] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi. Toward the

determination of sufficient mutant operators for C. STVR, 11(2):113–

136, 2001.

[17] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test suites for

efficient fault localization. In Proc. ICSE, pages 82–91, 2006.

[18] J. Black, E. Melachrinoudis, and D. Kaeli. Bi-criteria models for all-uses

test suite reduction. In ICSE, 2004.

[19] L. Briand, Y. Labiche, and Y. Wang. Using simulation to empirically

investigate test coverage criteria based on statechart. In Proc. ICSE,

pages 86–95, 2004.

212

http://barbecue.sourceforge.net/

[20] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. The-

oretical and empirical studies on using program mutation to test the

functional correctness of programs. In Proc. POPL, pages 220–233,

1980.

[21] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In

Proc. OSDI, pages 209–224, 2008.

[22] T. Chen and M. Lau. A new heuristic for test suite reduction. IST,

40(5), 1998.

[23] O. Chesley, X. Ren, B. Ryder, and F. Tip. Crisp–A Fault Localization

Tool for Java Programs. In Proc. ICSE, pages 775–779, 2007.

[24] P. K. Chittimalli and M. J. Harrold. Recomputing coverage information

to assist regression testing. IEEE TSE, 35(4):452–469, 2009.

[25] Apache Commons Home. http://commons.apache.org/proper/commons-lang/.

[26] Instrumented Container Classes - Predicate Coverage. http://mir.cs.

illinois.edu/coverage/.

[27] B. Daniel, T. Gvero, and D. Marinov. On test repair using symbolic

execution. In Proc. ISSTA, pages 207–218, 2010.

[28] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. Reassert: Suggesting

repairs for broken unit tests. In Proc. ASE, pages 433–444, 2009.

213

http://commons.apache.org/proper/commons-lang/
http://mir.cs.illinois.edu/coverage/
http://mir.cs.illinois.edu/coverage/

[29] M. E. Delamaro and J. C. Maldonado. Proteum–A tool for the assess-

ment of test adequacy for C programs. In Proc. the Conference on

Performability in Computing Sys PCS 96, pages 79–95, 1996.

[30] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi. Proteum/im

2.0: An integrated mutation testing environment. In Mutation testing

for the new century, pages 91–101. Springer, 2001.

[31] R. A. DeMillo, E. W. Krauser, and A. P. Mathur. Compiler-integrated

program mutation. In Proc. COMPSAC, pages 351–356, 1991.

[32] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data

selection: Help for the practicing programmer. Computer, 11(4):34–41,

1978.

[33] R. A. DeMillo and R. J. Martin. The Mothra software testing environ-

ment user’s manual. Technical report, Software Engineering Research

Center, 1987.

[34] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data

generation. IEEE TSE, 17(9):900–910, 1991.

[35] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experi-

mentation with testing techniques: An infrastructure and its potential

impact. ESE, 10(4):405–435, 2005.

214

[36] H. Do and G. Rothermel. On the use of mutation faults in empirical

assessments of test case prioritization techniques. IEEE TSE, pages

733–752, 2006.

[37] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing test cases

for regression testing. In ISSTA, pages 102–112, 2000.

[38] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying

test costs and fault severities into test case prioritization. In ICSE,

pages 329–338, 2001.

[39] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritiza-

tion: A family of empirical studies. IEEE TSE, pages 159–182, 2002.

[40] Our FaMT Project. https://webspace.utexas.edu/~lz3548/issta13support.

html.

[41] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses vs mutation testing: An

experimental comparison of effectiveness. JSS, 38(3):235–253, 1997.

[42] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and

oracles. In Proc. ISSTA, pages 147–158, 2010.

[43] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam. Selective mutation

testing for concurrent code. In Proc. ISSTA, pages 224–234, 2013.

[44] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated

random testing. In Proc. PLDI, pages 213–223, 2005.

215

https://webspace.utexas.edu/~lz3548/issta13support.html
https://webspace.utexas.edu/~lz3548/issta13support.html

[45] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated test data genera-

tion using an iterative relaxation method. In Proc. FSE, pages 231–244,

1998.

[46] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE TSE,

pages 279–290, 1977.

[47] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel. On-demand test

suite reduction. In Proc. ICSE, pages 738–748, 2012.

[48] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. Vida: Visual in-

teractive debugging. In Proc. ICSE, pages 583–586. IEEE Computer

Society, 2009.

[49] M. Harman, Y. Jia, and W. B. Langdon. Strong higher order mutation-

based test data generation. In Proc. FSE, pages 212–222, 2011.

[50] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling

the size of a test suite. ACM TOSEM, 2(3):270–285, 1993.

[51] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,

S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test selection for

java software. In Proc. OOPSLA, pages 312–326, 2001.

[52] R. Hierons and M. Harman. Using program slicing to assist in the

detection of equivalent mutants. STVR, 9(4):233–262, 1999.

216

[53] W. E. Howden. Weak mutation testing and completeness of test sets.

IEEE TSE, pages 371–379, 1982.

[54] R. Ihaka and R. Gentleman. R: A language for data analysis and graph-

ics. Journal of computational and graphical statistics, 5(3):299–314,

1996.

[55] Jaxen Home. http://jaxen.codehaus.org/.

[56] JDepend Home. http://clarkware.com/software/JDepend.html.

[57] D. Jeffrey and N. Gupta. Test suite reduction with selective redundancy.

In ICSM, pages 549–558, 2005.

[58] D. Jeffrey and N. Gupta. Improving fault detection capability by selec-

tively retaining test cases during test suite reduction. TSE, 32(2):108–

123, 2007.

[59] Y. Jia and M. Harman. Higher order mutation testing. IST, 51(10):1379–

1393, 2009.

[60] Y. Jia and M. Harman. An analysis and survey of the development of

mutation testing. IEEE TSE, 37(5):649–678, 2011.

[61] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. Adaptive random test

case prioritization. In ASE, pages 257–266, 2009.

217

http://jaxen.codehaus.org/
http://clarkware.com/software/JDepend.html

[62] B. Jiang, Z. Zhang, T. Tse, and T. Y. Chen. How well do test case

prioritization techniques support statistical fault localization. In Proc.

COMPSAC, volume 1, pages 99–106. IEEE, 2009.

[63] Apache JMeter Home. http://jmeter.apache.org/.

[64] JavaSourceMetric Home. http://sourceforge.net/projects/jsourcemetric/.

[65] Joda Time Home. http://joda-time.sourceforge.net/.

[66] J. Jones, M. Harrold, and J. Stasko. Visualization of test information

to assist fault localization. In Proc. ICSE, page 477. ACM, 2002.

[67] J. A. Jones and M. J. Harrold. Test-suite reduction and prioritization

for modified condition/decision coverage. IEEE TSE, pages 195–209,

2003.

[68] JTopas Home. http://jtopas.sourceforge.net/jtopas/index.html.

[69] S. Kim, E. J. Whitehead, and Y. Zhang. Classifying software changes:

Clean or buggy? IEEE TSE, 34(2):181–196, 2008.

[70] K. N. King and A. J. Offutt. A Fortran language system for mutation-

based software testing. Software: Practice and Experience, 21(7):685–

718, 1991.

[71] A. Kinneer, M. Dwyer, and G. Rothermel. Sofya: A flexible frame-

work for development of dynamic program analyses for java software.

Technical report, CSE, UNL, 2006.

218

http://jmeter.apache.org/
http://sourceforge.net/projects/jsourcemetric/
http://joda-time.sourceforge.net/
http://jtopas.sourceforge.net/jtopas/index.html

[72] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory

study of how developers seek, relate, and collect relevant information

during software maintenance tasks. IEEE TSE, 32(12):971–987, 2006.

[73] E. W. Krauser, A. P. Mathur, and V. Rego. High performance software

testing on SIMD machines. IEEE TSE, 17(5):403–423, 1991.

[74] W. B. Langdon, M. Harman, and Y. Jia. Multi objective higher order

mutation testing with genetic programming. In Proc. TAIC PART,

pages 21–29, 2009.

[75] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic

study of automated program repair: Fixing 55 out of 105 bugs for $8

each. In Proc. ICSE, pages 3–13, 2012.

[76] Z. Li, M. Harman, and R. Hierons. Search algorithms for regression test

case prioritisation. TSE, 33(4):225–237, 2007.

[77] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan. Scalable statis-

tical bug isolation. In Proc. PLDI, pages 15–26. ACM, 2005.

[78] S. Lin. Computer solutions of the travelling salesman problem. Bell

System Technical Journal, 44(5):2245–2269, 1965.

[79] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. SOBER: statistical

model-based bug localization. ACM SIGSOFT Software Engineering

Notes, 30(5):286–295, 2005.

219

[80] M.-H. Liu, Y.-F. Gao, J.-H. Shan, J.-H. Liu, L. Zhang, and J.-S. Sun.

An approach to test data generation for killing multiple mutants. In

Proc. ICSM, pages 113–122, 2006.

[81] R. Lowry. Concepts and applications of inferential statistics. R. Lowry,

1998.

[82] Y. S. Ma, J. Offutt, and Y. R. Kwon. MuJava: An automated class

mutation system. STVR, 15(2):97–133, 2005.

[83] Y. S. Ma, J. Offutt, and Y. R. Kwon. Mujava: a mutation system for

java. In Proc. ICSE, pages 827–830, 2006.

[84] A. P. Mathur. Performance, effectiveness, and reliability issues in soft-

ware testing. In Proc. COMPSAC, pages 604–605, 1991.

[85] A. P. Mathur and E. W. Krauser. Mutant unification for improved

vectorization. Technical report, Purdue University, 1988.

[86] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik. An

empirical study of the influence of static type systems on the usability

of undocumented software. In Proc. OOPSLA, pages 683–702, 2012.

[87] T. McCabe. A complexity measure. TSE, (4):308–320, 1976.

[88] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel. A

static approach to prioritizing junit test cases. TSE, 38(6):1258–1275,

2012.

220

[89] D. Melski and T. Reps. Interconvertibility of a class of set constraints

and context-free-language reachability. Theoretical Computer Science,

248(1-2):29–98, 2000.

[90] Apache Mime4J Home. http://james.apache.org/mime4j/.

[91] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan. The

design of bug fixes. In Proc. ICSE, pages 332–341, 2013.

[92] A. S. Namin, J. H. Andrews, and D. J. Murdoch. Sufficient mutation

operators for measuring test effectiveness. In Proc. ICSE, pages 351–

360, 2008.

[93] National Institute of Standards and Technology. The economic impacts

of inadequate infrastructure for software testing. Planning report 02-3,

May 2002.

[94] A. J. Offutt and W. M. Craft. Using compiler optimization techniques

to detect equivalent mutants. STVR, 4(3):131–154, 1994.

[95] A. J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction

approach to test data generation. Software Practice and Experience,

29(2):167–193, 1999.

[96] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An exper-

imental determination of sufficient mutation operators. ACM TOSEM,

5(2):99–118, 1996.

221

http://james.apache.org/mime4j/

[97] A. J. Offutt and S. D. Lee. An empirical evaluation of weak mutation.

IEEE TSE, 20(5):337–344, 1994.

[98] A. J. Offutt and J. Pan. Automatically detecting equivalent mutants

and infeasible paths. STVR, 7(3):165–192, 1997.

[99] A. J. Offutt, J. Pan, and J. M. Voas. Procedures for reducing the size of

coverage-based test sets. In Proc. International Conference on Testing

Computer Software, 1995.

[100] A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K. Khambekar. Muta-

tion testing of software using MIMD computer. In Proc. International

Conference on Parallel Processing, pages 257–266, 1992.

[101] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation

of selective mutation. In Proc. ICSE, 1993.

[102] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large

software systems. In Proc. FSE, pages 241–251, 2004.

[103] M. Papadakis, N. Malevris, and M. Kallia. Towards automating the

generation of mutation tests. In Proc. AST, pages 111–118, 2010.

[104] M. Papadakis and Y. L. Traon. Using mutants to locate unknown faults.

In Proc. ICST Workshop on Mutation Analysis, pages 691–700, 2012.

[105] C. Parnin and A. Orso. Are automated debugging techniques actually

helping programmers? In Proc. ISSTA, pages 199–209, 2011.

222

[106] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental

symbolic execution. In Proc. PLDI, pages 504–515, 2011.

[107] Y. Qi, X. Mao, Y. Lei, and C. Wang. Using automated program repair

for evaluating the effectiveness of fault localization techniques. In Proc.

ISSTA, pages 191–201, 2013.

[108] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-aware regression

testing: an empirical study of sampling and prioritization. In ISSTA,

pages 75–86, 2008.

[109] X. Ren and B. Ryder. Heuristic Ranking of Java Program Edits for

Fault Localization. In Proc. ISSTA, pages 239–249, 2007.

[110] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A tool

for change impact analysis of java programs. In Proc. OOPSLA, 2004.

[111] M. Renieres and S. Reiss. Fault localization with nearest neighbor

queries. In Proc. ASE, pages 30–39, 2003.

[112] T. Reps. Program analysis via graph reachability. Information and

software technology, 40(11):701–726, 1998.

[113] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and X. Qiu.

On test suite composition and cost-effective regression testing. TOSEM,

13(3):227–331, 2004.

223

[114] G. Rothermel and M. J. Harrold. A safe, efficient regression test selec-

tion technique. ACM TOSEM, 6(2):173–210, 1997.

[115] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong. Empirical

studies of test-suite reduction. STVR, 12(4):219–249, 2002.

[116] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing test cases

for regression testing. TSE, 27(10), 2001.

[117] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case

prioritization: An empirical study. In Proc. ICSM, pages 179–188,

1999.

[118] B. G. Ryder and F. Tip. Change impact analysis for object-oriented

programs. In Proc. PASTE, pages 46–53, 2001.

[119] Our Sampling Mutation Project. https://webspace.utexas.edu/

~lz3548/ase13support.html.

[120] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold. Lightweight fault-

localization using multiple coverage types. In Proc. ICSE, pages 56–66,

2009.

[121] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation testing by

checking invariant violations. In Proc. ISSTA, pages 69–80, 2009.

[122] D. Schuler and A. Zeller. Javalanche: Efficient mutation testing for

Java. In Proc. FSE, pages 297–298, 2009.

224

https://webspace.utexas.edu/~lz3548/ase13support.html
https://webspace.utexas.edu/~lz3548/ase13support.html

[123] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing

Engine for C. In Proc. FSE, pages 263–272, 2005.

[124] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality

(complete samples). Biometrika, 52(3/4):591–611, 1965.

[125] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov. Testing

container classes: Random or systematic? In Proc. FASE, pages 262–

277, 2011.

[126] M. Staats, G. Gay, and M. P. Heimdahl. Automated oracle creation

support, or: How i learned to stop worrying about fault propagation

and love mutation testing. In Proc. ICSE, pages 870–880, 2012.

[127] M. Staats, G. Gay, M. Whalen, and M. Heimdahl. On the danger of

coverage directed test case generation. In Proc. FASE, pages 409–424.

2012.

[128] M. Stoerzer, B. Ryder, X. Ren, and F. Tip. Finding failure-inducing

changes in Java programs using change classification. In Proc. FSE,

pages 57–68, 2006.

[129] N. Tillmann and J. De Halleux. Pex–white box test generation for. net.

Tests and Proofs, pages 134–153, 2008.

[130] Time and Money Home. http://timeandmoney.sourceforge.net/.

225

http://timeandmoney.sourceforge.net/

[131] R. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using

program schemata. In Proc. ISSTA, pages 139–148, 1993.

[132] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically

finding patches using genetic programming. In Proc. ICSE, pages 364–

374, 2009.

[133] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics

bulletin, 1(6):80–83, 1945.

[134] L. J. Williams and H. Abdi. Fisher’s least significance difference (LSD)

test. In Encyclopedia of Research Design, pages 491–494. Thousand

Oaks, 2010.

[135] W. Wong, J. Horgan, S. London, and H. Agrawal. A study of effective

regression testing in practice. In ISSRE, pages 230–238, 1997.

[136] W. E. Wong and A. P. Mathur. Reducing the cost of mutation testing:

An empirical study. JSS, 31(3):185–196, 1995.

[137] M. Woodward and K. Halewood. From weak to strong, dead or alive? an

analysis of some mutation testing issues. In Proc. the Second Workshop

on Software Testing, Verification, and Analysis, pages 152–158, 1988.

[138] Santuario Home. http://santuario.apache.org/.

[139] XStream Home. http://xstream.codehaus.org/.

226

http://santuario.apache.org/
http://xstream.codehaus.org/

[140] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen. Directed

test suite augmentation: techniques and tradeoffs. In Proc. FSE, pages

257–266, 2010.

[141] G. Yang, M. B. Dwyer, and G. Rothermel. Regression model checking.

In Proc. ICSM, pages 115–124, 2009.

[142] S. Yoo and M. Harman. Regression testing minimization, selection and

prioritization: a survey. STVR, 22(2), 2012.

[143] S. Yoo, M. Harman, and S. Ur. Measuring and improving latency to

avoid test suite wear out. In ICSTW, pages 101–110, 2009.

[144] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study of the effects

of test-suite reduction on fault localization. In Proc. ICSE, pages 201–

210. ACM, 2008.

[145] A. Zeller. Yesterday, my program worked. today, it does not. why? In

Prc. FSE, pages 253–267, 1999.

[146] A. Zeller. Automated debugging: Are we close? Computer, 34(11):26–

31, 2001.

[147] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid. Operator-based

and random mutant selection: Better together. In Proc. ASE, pages

92–102, 2013.

227

[148] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei. Bridging the

gap between the total and additional test-case prioritization strategies.

In Proc. ICSE, page to appear, 2013.

[149] L. Zhang, S. S. Hou, J. J. Hu, T. Xie, and H. Mei. Is operator-based

mutant selection superior to random mutant selection? In Proc. ICSE,

pages 435–444, 2010.

[150] L. Zhang, M. Kim, and S. Khurshid. Localizing failure-inducing pro-

gram edits based on spectrum information. In Proc. ICSM, pages 23–32.

IEEE, 2011.

[151] L. Zhang, M. Kim, and S. Khurshid. Faulttracer: A change impact and

regression fault analysis tool for evolving java programs. 2012.

[152] L. Zhang, M. Kim, and S. Khurshid. Faulttracer: a spectrum-based ap-

proach to localizing failure-inducing program edits. JSME, 25(12):1357–

1383, 2013.

[153] L. Zhang, D. Marinov, and S. Khurshid. Faster mutation testing in-

spired by test prioritization and reduction. In Proc. ISSTA, pages

235–245, 2013.

[154] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. An empirical study

of junit test-suite reduction. In Proc. ISSRE, pages 170–179, 2011.

[155] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. Regression mutation

testing. In Proc. ISSTA, pages 331–341. ACM, 2012.

228

[156] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and H. Mei.

Test generation via dynamic symbolic execution for mutation testing.

In Proc. ICSM, pages 1–10, 2010.

[157] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid. Feedback-

driven dynamic invariant discovery. In Proc. ISSTA, page to appear,

2014.

[158] L. Zhang, L. Zhang, and S. Khurshid. Injecting mechanical faults to

localize developer faults for evolving software. In Proc. OOPSLA, page

to appear, 2013.

[159] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei. Prioritizing junit test

cases in absence of coverage information. In Proc. ICSM, pages 19–28,

2009.

[160] S. Zhang. Practical semantic test simplification. In Proc. ICSE, pages

1173–1176, 2013.

[161] S. Zhang, C. Zhang, and M. D. Ernst. Automated documentation in-

ference to explain failed tests. In Proc. ASE, pages 63–72. IEEE,

2011.

[162] X. Zhang, N. Gupta, and R. Gupta. Locating faults through automated

predicate switching. In Proc. ICSE, pages 272–281. ACM, 2006.

[163] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with con-

fidence. In Proc. of PLDI, pages 169–180, 2006.

229

[164] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage

and adequacy. ACM Comput. Surv., 29(4), Dec. 1997.

[165] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy. Character-

izing and predicting which bugs get reopened. In Proc. ICSE, pages

1074–1083, 2012.

230

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Problem Context
	This Thesis
	Regression Test Prioritization (ICSE'13)
	Selective Mutation Testing (ASE'13)
	 Test Selection for Mutation Testing (ISSTA'12)
	Test Prioritization and Reduction for Mutation Testing (ISSTA'13)
	Mutation Testing for Regression Fault Localization (OOPSLA'13)

	Contributions
	Organization

	Chapter 2. Regression Test Prioritization
	Background
	Example
	Approach
	Basic Model
	Extended Model
	Differentiating p Values

	Implementation
	Experimental Study
	Independent Variables
	Dependent Variable
	Subject Programs, Test Suites, and Faults
	Experiment Procedure
	Threats to Validity
	Results and Analysis
	RQ1: Existence of Better Strategies Between the Total and Additional Strategies
	RQ2: Impact of Coverage and Test-Case Granularities
	RQ3: Using Differentiated p Values

	Implications

	Summary

	Chapter 3. Selective Mutation Testing
	Background
	Study Approach
	Problem Definition
	Measurement
	Combining Operator-Based and Random Mutant Selection

	Empirical Study
	Subject Programs
	Experimental Design
	Independent Variables
	Dependent Variables
	Experimental Setup

	Results and Analysis
	Effectiveness for Adequate Test Suites
	Predictive Power for Non-Adequate Test Suites
	Savings Obtained by Mutation Sampling

	Below 5%
	Threats to Validity

	Summary

	Chapter 4. Test Selection for Mutation Testing
	Background
	Definitions
	Mutation Testing
	Regression Testing
	Regression Mutation Testing

	Example
	Approach
	Overview
	Preprocessing
	Mutant Mapping
	Dangerous-Edge Reachability Analysis

	ReMT Algorithm
	Basic Algorithm
	Dangerous-Edge Reachability Checking

	Mutation-Specific Test Prioritization
	Discussion and Correctness

	Implementation
	Experimental Study
	Research Questions
	Independent Variables
	Dependent Variables
	Subjects and Experimental Setup
	Results and Analysis
	RQ1: Full Mutation Testing Scenario
	RQ2: Partial Mutation Testing Scenario
	RQ3: Mutation-Specific Test Prioritization

	Summary

	Chapter 5. Test Prioritization and Reduction for Mutation Testing
	Background
	Example
	Approach
	Coverage-Based Initial Test Ordering
	Power-Based Adaptive Test Ordering
	Test prioritization
	Test reduction

	Experimental Study
	Research Questions
	Independent Variables
	Dependent Variables
	Subjects and Experimental Setup
	Result Analysis
	RQ1: FaMT Test Prioritization
	RQ2: FaMT Test Reduction
	RQ3: Comparison with Regression Techniques
	RQ4: FaMT Efficiency
	Threats to Validity

	Summary

	Chapter 6. Mutation Testing for Fault Localization in Regression Testing
	Introduction
	Example
	Approach
	Change Mapping Inference
	Inference for Changed/Deleted Elements
	Inference for Added Elements Overridding/Hiding Existing Elements
	Inference for Added Elements Sharing Overriding/Hiding Hierarchy with Deleted Elements
	Inference for Other Added Elements

	Mutant Suspiciousness Calculation
	Suspiciousness Combination
	Tackling the Cost of FIFL: Edit-Oriented Mutation Testing

	Implementation
	Experimental Study
	Independent Variables
	Dependent Variables
	Subjects and Experimental Setup
	Results and Analysis
	Overall comparison between FaultTracer and various strategies of FIFL
	Detailed comparison between FaultTracer and FIFL with the default settings
	Discussions

	Threats to Validity

	Summary

	Chapter 7. Related Work
	Regression Testing
	Test Selection
	Test Prioritization
	Test Reduction

	Mutation Testing
	Reducing Cost of Mutation Testing
	Detecting Equivalent Mutants
	Applications of Mutation Testing

	Chapter 8. Conclusion
	Bibliography

