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Supervisors:  Ashish Deshpande, Matthew I. Campbell 

 

The challenges in automating the design of planar mechanisms are tremendous 

especially in areas related to computational representation, kinematic analysis and 

synthesis of planar mechanisms. The challenge in computational representation relates to 

the development of a comprehensive methodology to completely define and manipulate 

the topologies of planar mechanisms while in kinematic analysis, the challenge is 

primarily in the development of generalized analysis routines to analyze different 

mechanism topologies. Combining the aforementioned challenges along with appropriate 

optimization algorithms to synthesize planar mechanisms for different user-defined 

applications presents the final challenge in the automated design of planar mechanisms. 

The methods presented in the literature demonstrate synthesis of standard four-bar and 

six-bar mechanisms with revolute and prismatic joints. But a detailed review of these 

methods point to the fact that they are not scalable when the topologies and the 

parameters of n-bar mechanisms are required to be simultaneously synthesized. Through 

this research, a comprehensive and scalable methodology for synthesizing different 

mechanism topologies and their parameters simultaneously is presented that overcomes 

the limitations in different challenge areas in the following ways. In representation, a 

graph-grammar based scheme for planar mechanisms is developed to completely describe 

the topology of a mechanism. Grammar rules are developed in conjunction with this 
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representation scheme to generate different mechanism topologies in a tree-search 

process. In analysis, a generic kinematic analysis routine is developed to automatically 

analyze one-degree of freedom mechanisms consisting of revolute and prismatic joints. 

Two implementations of kinematic analysis have been included. The first implementation 

involves the use of graphical methods for position and velocity analyses and the equation 

method for acceleration analysis for mechanisms with a four-bar loop. The second 

implementation involves the use of an optimization-based method that has been 

developed to handle position kinematics of indeterminate mechanisms while the velocity 

and acceleration analyses of such mechanisms are carried out by formulating appropriate 

linear equations. The representation and analysis schemes are integrated to parametrically 

synthesize different mechanism topologies using a hybrid implementation of Particle 

Swarm Optimization and Nelder-Mead simplex algorithm. The hybrid implementation is 

able to produce better results for the problems found in the literature using a four-bar 

mechanism with revolute joints as well as through other higher order mechanisms from 

the design space. The implementation has also been tested on three new challenge 

problems with satisfactory results subject to computational constraints. The difficulties in 

the search have been studied that indicates the reasons for the lack of solution 

repeatability. This dissertation concludes with a discussion of the results and future 

directions.  
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Chapter 1: Introduction 
 

 The process of designing a planar mechanism can be broadly categorized into 

two stages. The first stage is identifying the type of application where the mechanism 

may trace a path (e.g.: conveyor mechanism), describe a motion (e.g.: opening and 

closing of a convertible roof-top in an automobile) or follow a function (e.g.: cam-

follower mechanism for valve-opening in an engine). The second stage is synthesizing a 

mechanism to satisfy those design specifications. The preferred approach is to select a 

reference mechanism from handbooks such as [1] or textbooks such as [2–4]. The 

selection may also be augmented by the designer’s experience in the related field. The 

selected concept is then modeled in a CAD package such as SolidWorks [5] Motion, 

Working Model [6], ADAMS [7], SAM [8] or WATT [9] and manually iterated to attain 

the solution. Packages such as SAM have built-in optimization routines based on gradient 

and evolutionary algorithms that can search the space for better solutions given the 

bounding box constraints for links and joints. This process of designing is time-

consuming despite the existence of various mechanism atlases and references in 

handbooks as the magnitude of manual activity is high. The lengthy process discourages 

the designer from exploring many potential alternatives and leaves the user with only one 

or utmost two design concepts.  

The vast amount of knowledge available in textbooks and handbooks can be 

harnessed into a database for mechanism concepts that can be used to automatically (i.e., 

computationally) generate planar mechanisms.  Though there has been research on 

creating such repositories, there has not been much research into developing design rules 

that can be used to automatically synthesize planar mechanisms. Also, most of the 

research on automated synthesis has been restricted to solving four-bar and six-bar 

mechanisms for certain path tracing problems. With the exception of WATT, which can 

generate four-bar and six-bar mechanisms with revolute joints, there is no tool available 

currently that can simultaneously generate planar mechanism concepts and optimize them 
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for any user-defined application. The reasons for the non-availability of a complete tool 

for planar mechanism design may be attributed to the absence of a standardized 

repository of design rules, a generic kinematic analysis tool and generic and powerful 

optimization algorithms that can be employed for synthesis. This research seeks to fill 

these vacancies.  

1.1 STATEMENT OF RESEARCH 

            A generalized methodology for automatically synthesizing planar 
mechanisms is developed by incorporating  
 
a.   a simplified and comprehensive knowledge representation scheme,  
 
b.  a generic kinematic analysis tool that can analyze any single-degree of 
freedom mechanism, and  
 
c. generative search and optimization algorithms to simultaneously 
synthesize topology and parameters 
 
such that multiple valid one-degree of freedom mechanisms are generated 
for any problem.  
 

 
The objective of this research is to demonstrate the ability to computationally generate 

planar mechanism designs and optimize those mechanisms to satisfy user specifications. 

The planar mechanisms considered in this research are composed of revolute (R), and 

prismatic (P) joints. Through a simplified but comprehensive knowledge representation 

scheme, design rules are developed in this research that describe the design space of valid 

one-degree of freedom planar mechanisms. These designs are optimized using different 

algorithms to determine their compatibility for user specifications, the data for which is 

obtained from an integrated kinematic analysis routine. Those mechanisms that conform 

to specifications are presented to the user. The key element in this research is to develop 

a generic methodology for automated design of planar mechanisms. Making a process 

generic not only elevates the design complexity but also helps in understanding the 
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limitations of such processes and tools and their applicability to actual design practice. In 

addition, we feel that this approach will result in designs being generated rapidly to 

complement the manual approach that a designer normally adopts. The major topics of 

research in this dissertation are representation of knowledge using graph-grammar 

methodology, generalization of kinematic analysis and integration and development of 

algorithms for search and optimization of single and multiple design objectives.  

1.2 ORGANIZATION OF DISSERTATION  

The dissertation is organized as follows. Chapter 2 will present a brief review of 

the related work. This will be followed by an illustration of the plan of work and the 

problems that will be tackled in Chapter 3. The graph grammar based representation 

scheme developed for planar mechanisms and the grammar rules used in the generation 

process are presented in Chapter 4. The generated mechanisms are kinematically 

analyzed and Chapter 5 presents our generalized implementation of geometrical methods 

for position and velocity analyses and analytical equation method for acceleration 

analysis for determinate mechanisms. In the same chapter, an optimization based method 

for position analysis of indeterminate mechanisms is presented. Chapter 6 will present 

details on the optimization algorithm used in this research as well as the overall 

implementation pseudo code. The results obtained using our implementation is presented 

in Chapter 7 followed by a discussion on the same in Chapter 8. Concluding remarks will 

be presented in Chapter 9 where future activities are included.  

 

 

 

 

 

 

 



4 
 

Chapter 2: Related Work 
 

The related work on the three aspects of automated design namely knowledge 

representation, kinematic analysis and optimization will be presented in the same order in 

this chapter.  

2.1 KNOWLEDGE REPRESENTATION 

The synthesis of planar mechanisms was aided largely due to the formal structure 

proposed by Freudenstein and Maki [10], who classified different kinematic entities 

based on structure and function that also included graph representation of different 

kinematic structures. Their work popularized the application of graph theory in this 

domain and hence, this section will focus only on work related to graph theory. This idea 

was further developed by Tsai (as explained in his book in [11] published as a collection 

of his work) and others as the graph based Systematic method where the nodes in a graph 

represent the links in the mechanism and the edges (arcs) represent the type of joint 

existing between the two links. This representation is very popular among researchers in 

the automated type synthesis of planar mechanisms. The graph representation is then 

transformed to an adjacency matrix formulation for computational purposes. A few 

papers that use the systematic method for enumerating planar mechanisms are listed in 

[12–14]. Mruthyunjaya’s review paper on kinematic structures [15] also provides a 

detailed overview of the other papers that make use of this technique. The graph 

representation was further developed by Sohn and Freudenstein [16] where they used 

dual graphs to represent planar mechanisms for automated generation of one-, two- and 

three-degree of freedom mechanisms. In all these works, the focus has primarily been on 

representing planar mechanisms consisting of revolute joints, though there have research 

such as [12], [17] that have attempted to incorporate prismatic joint types. The graph 

representation based on the systematic method deals only with structural outline and does 
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not contain any information regarding input and ground links, which are usually 

bookmarked during later stages in design.  

The graph representation is then used to generate the planar mechanisms that are 

part of the space of valid designs. Though there are several techniques available in the 

literature, only a few commonly used methods will be detailed here. Mayourian and 

Freudenstein [18] employed the restrictions in graph representation and actual design to 

generate a set of mechanisms (2D and 3D) with up to six links, that can serve as the basis 

for conceptualizing mechanisms and automating their synthesis for different applications. 

Another technique to identify the space of mechanisms is through number synthesis. In 

this technique, the Gruebler’s Criterion is used, which determines the degree of freedom 

(M) of a planar mechanism through the equation M=3(n-1)-2*f1-f2, where n denotes the 

number of links, f1 is the number of one-degree of freedom joints and f2 is the number of 

two-degree of freedom joints. Depending on the required degree of freedom, the values 

of n, f1 and f2 can be varied to locate a mechanism. Once the number of links and joints 

are obtained, the assembly configuration of the mechanisms is determined and there may 

be multiple possibilities for the same configuration. In order to enumerate all possible 

configurations, exhaustive search techniques are employed. Some of these configurations 

are available in textbooks ([3,4]) and also in publications such as [15,19] where the 

number of unique one-degree of freedom mechanisms with revolute joints possible for 

mechanisms up to 14-links are listed. Enumerating mechanisms with more than one-

degree of freedom is complex and is therefore not widely reported in the literature and 

hence not considered in this dissertation.  

There are also techniques based on the addition of Assur group members (as 

illustrated in [20,21]) to generate multi-link planar mechanisms, where different 

structural elements are attached to a base mechanism in such a way that the degree of 

freedom of the planar mechanism remains unaffected. This technique is also employed 

only on planar mechanisms with revolute joints to generate mechanisms with one-, two-, 

and three-degrees of freedom. In all the techniques mentioned above, there are 
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possibilities for the presence of structurally equivalent candidates (isomorphic) and there 

are techniques illustrated within those publications as to how isomorphism is detected 

and such candidates eliminated. Another technique for generating planar mechanisms 

with fewer isomorphic candidates is presented by Rao in [22,23].  

2.2 KINEMATIC ANALYSIS 

Automated synthesis of planar mechanisms requires a reliable kinematic analysis 

tool, which may be based on graphical techniques or the analytical loop equation solution 

procedure as illustrated in various texts on kinematics. Some of the research projects on 

automated synthesis such as [24–26] base their analysis on the analytical loop equation 

method and Newton-Raphson solution technique [27]. There are other projects that 

propose reduction of complex mechanisms into Assur groups and then use the analytical 

loop equation technique for obtaining solutions. A careful examination of the different 

research projects shows that the focus is limited to standard four- or six-bar mechanisms 

with revolute joints and 1-degree of freedom since kinematic solutions are already 

available for such mechanisms. One of the reasons for not exploring mechanisms with 

more number of links (like eight or ten-bars) and joints such as prismatic and pin-in-slot 

is due to the absence of analysis tools that can handle generic topologies in a reliable 

manner. Though there are commercial tools such as ADAMS, Working Model, etc. 

available, they do not include any application-programming interface (API) that can be 

used in conjunction with the graph representation so that as the topologies are generated, 

they can be automatically analyzed in order to achieve automation in actual sense.   

In addition to the non-existence of a generic tool for kinematic analysis, the 

graphical and analytical techniques available in the literature have certain limitations in 

their solution procedure. The graphical techniques such as the instantaneous center of 

rotation method for velocity (based on Kennedy-Aronholdt theorem [2]) and the dyadic 

decomposition technique for position analyses require a four-bar loop (or a dyadic 

configuration) for determining solutions. Due to this requirement, mechanisms such as 
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the double butterfly linkage [28], also known as an indeterminate mechanism, cannot be 

analyzed using the graphical technique. The mechanism also cannot be analyzed by 

applying the Newton-Raphson method to the analytical loop equations since that method 

does not generate reliable solutions for mechanisms with higher-order loops as there are 

higher numbers of unknowns in as many non-linear equations. This constraint in existing 

techniques is rarely highlighted in standard textbooks on kinematics [29]. In order to 

solve such mechanisms, Sreenivasan and Waldron [29] and Sommese et al. [30] provide 

numerical solutions for the loop equations using the polynomial continuation method 

(more details about polynomial continuation in Morgan [31]). There is an alternative 

method suggested by Wampler [32] which is, in turn, based on the method suggested by 

Nielson and Roth [33] where the Dixon determinant [34] is used but differs in the 

implementation.  The difference in the approach of Wampler [32] and Nielson and Roth 

[33] is that equations are formulated directly in the complex plane in the Wampler 

approach as against the sine and cosine formulation in the Nielson and Roth approach. 

There are also methods based on elimination techniques for solving analytical position 

loop equations of planar mechanisms.  

On the graphical methods for position analysis, there is a geometric iterative 

method [35] that claims to offer an alternate approach to solving the position problem. 

This method begins with the orientation of the input link, followed by a random 

positioning of one of the links connected to the input link, following which dyadic 

decomposition of the remaining links is carried out based on a set of rules listed in the 

article. Once all the pivots are assigned, correction (iterative process) is initiated and 

continued till the appropriate convergence is achieved. On the graphical velocity analysis, 

Foster and Pennock [36] suggest a graphical method to solve for two arbitrary secondary 

instant centers in a double butterfly linkage, which allows for determining other instant 

centers using the Kennedy-Aronholdt theorem. This method is based on an iterative 

technique described by Klein [28]. There are also other techniques for kinematic analysis 

proposed by Gea et al. [37] and Chen et al. [38] that are based on the minimum potential 
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energy and constraint superposition principles respectively. There is also another 

optimization-based technique proposed by Porta et al. [39] for linkage analysis. Though 

these new methods are available for solving the position and instant centers, there are no 

formal generalized implementations of these techniques available, thus making it difficult 

to analyze the reliability of these methods or their applicability for a wider class of 

problems.  

2.3 OPTIMIZATION 

Optimization has been used for many decades for dimensional synthesis of planar 

mechanisms. To effectively use optimization, there are several inputs required. The 

inputs define the problem type (i.e., path, motion or function) and the related design 

specifications such as the topology of the mechanism (four-bar or six-bar), the location of 

inputs and ground, the output joint or link, the overall size of the mechanism (bounding 

box) and so on.  In addition, an objective function is formulated based on the input design 

specifications, which is minimized by the algorithm. Cossalter et al. [25] provide a brief 

review of the related work in this area (such as the least squares approach, penalty 

functions, selective precision synthesis and stochastic formulations) in addition to their 

work on using a quasi-Newton non-derivative optimization approach for synthesizing 

planar mechanisms. In the paper, the authors explain the formulation of an objective 

function, which is based on the sum of the squares of distance between the desired and 

actual points, and the use of a weighted scheme to distinguish between path, function and 

motion problems. The authors demonstrate their method and its efficiency for different 

problems using four and six-bar mechanisms. Alizade et al. [40]were one of the first to 

demonstrate the use of penalty functions along with inequality constraints for optimizing 

function-generating four-bar mechanisms. Sancibrian et al. [41] proposed an alternate 

formulation of the objective function consisting of kinematic, synthesis and assembly 

constraints that aids in analytically taking the derivative for use in a search algorithm. 
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The authors demonstrate their formulation using four- and six-bar mechanisms 

(Stephenson-III and Watt II) for path, motion and function type mechanisms synthesis.  

There has also been a lot of research employing evolutionary algorithms for the 

synthesis of planar mechanisms. Cabrera et al. [24] proposed a genetic algorithm based 

synthesis of planar mechanisms where in benchmark path problems are synthesized using 

different planar mechanisms consisting of revolute joints. In another work Cabrera [42] 

proposed a multi-objective framework using a new algorithm whose basis is genetic 

algorithm and demonstrated the algorithm’s effectiveness in the design of robotic hand 

grippers consisting of revolute and prismatic joints. Sedlaczek et al. [17] too 

demonstrated the synthesis of 1-degree of freedom planar mechanisms with revolute and 

prismatic joints for path-time problems using a genetic algorithm formulation. The 

authors presented a comprehensive structure that also included knowledge representation 

and kinematic analysis and were able to generate solutions in times varying from 17 

minutes to 23 hours using genetic algorithms. While the previous works were based off 

genetic algorithm, Archarya and Mandal [43] estimated the performance of different 

evolutionary algorithms namely genetic algorithms, Particle Swarm Optimization and 

differential evolution for synthesis of planar mechanisms. Basing their evaluation 

criterion on the least error between desired and actual paths, the authors found that 

differential evolution algorithm produces the best result among the algorithms tested. 

Some of the other works on the synthesis of planar mechanisms are listed in [44–49].  

While most papers adopt similar objective function formulations and problems, 

the major constraints as mentioned by Cossalter et al. [25] are related to kinematic 

analysis and the actual mechanical assembly of those mechanisms. Also, the methods 

developed thus far are not generic to any kind of synthesis problem [41] as the same 

benchmark problems or simpler mechanisms have only been evaluated in most cases.  
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2.4 CONCLUSION 

The review of literature proves that there is still significant room for improvement 

in all the areas that can be used to create a totally automated conceptual design tool for 

planar mechanisms.   
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Chapter 3: Methodology 
 

The methodology followed in this dissertation is summarized in Figure 3-1 where 

the limitations and challenges in current literature will be explored further in two phases. 

The first phase ((a) in Figure 3-1) focuses on the development of a comprehensive 

representation scheme as well as the generalization of kinematic analysis routines. Under 

representation, a rich graph-grammar based scheme will be presented using which 

building block rules will also be developed that can be used to generate planar 

mechanisms. The goals in knowledge representation are: 1. Develop a generic planar 

mechanism representation scheme that can be used to represent different joints and link 

types within the same scheme 2. Use the scheme to generate the largest set of valid 

designs, in this case 1-degree of freedom planar mechanisms with the least number of 

invalid designs using minimum number of rules. At this juncture, revolute (R), prismatic 

(P) and pin-in-slot (R-P) type joints will be considered with the possible extension to gear 

representations. The kinematic analysis routine involves development of generalized 

analysis schemes based on the methods available in the literature. In addition, alternate 

methods for solving kinematics of indeterminate mechanisms will be explored.  The goal 

here is to create a generic and robust kinematic analysis tool that is also computationally 

efficient to be used in the automated conceptual design of planar mechanisms.  
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Figure 3-1: (a) Phase I: Generalizing Knowledge Representation and Kinematic Analysis 
(b) Phase II: Type Synthesis and Dimensional Synthesis and Test Problems 

 

The second phase  ((b) in Figure 3-1) will focus on type and dimensional 

syntheses. During this phase, the grammar rules developed in the first phase are 

combined to generate different planar mechanisms with an exhaustive tree-search 

algorithm. The focus is to test whether the grammar rules are able to generate all the one-

degree of freedom mechanisms as reported in the literature [15,19] for revolute joints. In 

addition, the set of valid planar mechanisms consisting of prismatic and pin-in-slot joints 

is also enumerated. These mechanisms will then be synthesized for different problems in 

the literature (referred to as benchmark problems in this report) using appropriate 

optimization algorithms during which the kinematic analysis routines developed in the 

first phase will be used to guide the optimization process.  Four bar mechanisms with 

revolute joints will be synthesized to solve the benchmark problems (listed in Table 3-1). 

In addition, the design space will be explored to solve benchmark problems with higher 

order mechanisms. Once the benchmark problems have been solved and the capability of 

our implementation proved, three additional challenge problems are tested using our 

approach for further evaluation and discussion. The second phase amalgamates our 
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research in knowledge representation, kinematic analysis and search and optimization 

into a complete tool.  

The ultimate goal is to develop an automated design tool that follows the flow 

chart presented in Figure 3-2. As shown in the figure, the design tool requires 

specification of the problem in terms of either the path to be traced or the motion to be 

followed. After this, using grammar rules, the set of all possible mechanisms are 

generated (based on (a) in Figure 3-1). From this input (also called the design space), 

each mechanism is synthesized for obtaining the specifications set by the user using 

appropriate optimization algorithms. At this stage, the goal is to synthesize as many 

mechanisms as possible that can satisfy the requirements set by the user. The mechanisms 

presented to the user may be different variations of the same mechanism as in different 

link lengths in a four-bar mechanism or completely different mechanism topologies such 

as a four-bar mechanism with sliding members and a six-bar mechanism with revolute 

and prismatic joints.  This research is carried out using GraphSynth software [50] 

developed by Campbell [51]. 
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Figure 3-2: Overall flow depicting the automated design of planar mechanisms 
 

3.1 BENCHMARK PROBLEMS SOLVED IN THIS RESEARCH 

The benchmark problems used to test our implementation are listed in Table 3-1 

where each problem is described in terms of the coordinates of the path traced by the 

mechanism. Two types of problems are considered namely path and path-time where the 

path is dependent on the input crank angle. The table also lists the source of each problem 

along with the least error obtained in the literature for that problem (Note that the least 

error is not necessarily obtained in the original paper). The error displayed in the 

rightmost column is defined in terms of the sum of squares of the distances between the 

synthesized set of coordinates and the original defined by the user unless otherwise noted 

(in parenthesis for a couple of problems).  
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Table 3-1: Benchmark problems for path synthesis 

Problem Description Source Least Error  

(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20, 
45) 

Cabrera et 
al. [52,53] 0.0002 

(20, 10), (17.66, 15.142), (11.736, 17.878), (5, 16.92
8), (0.60307, 12.736), (0.60307, 7.2638), (5, 3.0718)
, (11.736, 2.1215), (17.66, 4.8577), (20, 10) 

Cabrera et 
al. [52,53] 0.0047 

(-24, 40), (-30, 41), (-34, 40), (-38, 36), (-36, 30), (-
28, 29), (-21, 31), (-17, 32), (-8, 34), (3, 37), (10, 
41), (17, 41), (26, 39), (28, 33), (29, 26), (26, 23), 
(17, 23), (11, 24), (6, 27), (0, 31) 

Hongying et 
al. [54] 

0.906 (average 
distance error) 

(-27,1), (-21.857, -3.214), (-16.7, -7.428), (-6.428, -
15.857), (-1.285, -20.071), (3.857, -24.285), (9, -
28.5), (15, -29.9), (20, -30), (27.2, -25), (29.2, -20), 
(28, -10), (22.7, 2), (15, 10.6), (5, 16.5), (-10, 19.6), 
(-22, 17), (-28, 11), (-29, 5) 

Hongying et 
al. [54] 

0.4154 (average 
distance error) 

(5, 0), (4.9240, 0.8682), (4.6985, 1.7101), (4.3301, 2
.500), (3.8302, 3.2139), (3.2129, 3.8302), (2.5, 4.33
01), (1.7101, 4.6985), (0.8682, 4.9240), (0, 5), (-
0.8682, 4.9240), (-1.7101, 4.6985), (-2.5, 4.3301) 

Matekar and 
Gogate [55] 0.0154 

Path: 
(0, 0), (1.9098, 5.8779), (6.9098, 9.5106), (13.09, 9.
5106), (18.09, 5.877), (20, 0) 
Time: (π / 6, π / 3, π / 2, 2 π / 3, 5 π / 6, π) 

Acharyya 
and Mandal 

[56] 
1.2162 

Path: 
(0.5, 1.1), (0.4, 1.1), (0.3, 1.1), (0.2, 1.0), (0.1, 0.9), (
0.005, 0.75), (0.02, 0.6), (0.0, 0.5), (0.0, 0.4), (0.03, 
0.3), (0.1, 0.25), (0.15, 0.2), (0.2, 0.3), (0.3, 0.4), (0.
4, 0.5), (0.5, 0.7), (0.6, 0.9), (0.6, 1.0) 
Time (in °):  
(0, 21, 42, 63, 84, 105, 126, 147, 168, 
189, 210, 231, 252, 273, 294, 315, 336, 357) 

Kunjur and 
Krishnamoo

rthy [57] 
0.0196 

x(t)=3 cos(t), y(t)=2 sin(t), t is time  
Sedlaczek et 

al. [17] 
 

0.1298 

x(t)=-cos(t)*(0.5+cos(t)), y(t)=- sin(t)(0.5_cos(t)), t 
is time 8.055 E-5 
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Table 3-1 continued.  

Problem Description Source Least Error  

x(t)=0.5*(2*sin(t)-sin(2t)), y(t)=0.5 
*(2*cos(t)+cos(2t)), t is time 

Sedlaczek et 
al. [17] 1.139 

 

3.2 CHALLENGE PROBLEMS SOLVED IN THIS RESEARCH 

Once the benchmark problems have been solved and alternate mechanisms 

explored for those applications, the final step is to extend the algorithms to solve three 

challenge problems. These problems are representative of the complexity in an actual 

design setting and will test the algorithms and implementations that have been devised 

for benchmark problems. The first problem (shown in Figure 3-3) from [3] is a path 

synthesis problem that is part of a conveyor system. As shown in the figure, the 

mechanism used for this problem is a four-bar mechanism (O2APBO4) to which an Assur 

group (consisting of links 5,6,7,8) is connected. The specifications for the problem such 

as the bounding box for housing the mechanism and the path details are given in Table 3-

2. The four-bar mechanism in the figure below is one of the expected outcomes while 

alternate mechanisms will also be explored from the design space of valid mechanisms.  
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Figure 3-3: Challenge problem #1: Conveyor Mechanism from Norton [3]  

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

Table 3-2: Coordinates of the pivot “P” from Figure 3-3.  

S. 
No. X Y S. No. X Y 

1 4.0223 -0.479 19 2.0598 0.0328 
2 3.9031 -0.7466 20 2.0655 0.0692 
3 3.6805 -1.0186 21 2.0898 0.0887 
4 3.3864 -1.2353 22 2.1357 0.0942 
5 3.0816 -1.3577 23 2.2051 0.0892 
6 2.8189 -1.3853 24 2.2985 0.078 
7 2.6197 -1.3409 25 2.4151 0.0646 
8 2.48 -1.2495 26 2.5526 0.0527 
9 2.3858 -1.1295 27 2.7078 0.0451 
10 2.3219 -0.993 28 2.8767 0.0432 
11 2.2763 -0.8486 29 3.0545 0.0469 
12 2.2402 -0.7022 30 3.2362 0.0541 
13 2.2079 -0.5591 31 3.4164 0.0603 
14 2.1766 -0.4234 32 3.5896 0.0586 
15 2.1454 -0.2991 33 3.7491 0.0391 
16 2.1153 -0.1893 34 3.8867 -0.0108 
17 2.0887 -0.0965 35 3.9906 -0.106 
18 2.0689 -0.0222 36 4.0436 -0.2603 

Bounding Box: (Max Width: 15, Max Height: 15) 
 

The second challenge problem is a bio-mimicking problem where the motion of a 

coconut crab’s legs ((reference video is given in [58]) is replicated using a planar 

mechanism that traces the trajectories of different joints. A snapshot of the coconut crab 

is shown in Figure 3-4 where the joints considered for mimicking are highlighted in the 

figure using arrows in red. The trajectories traced by the joints of the rear leg of the 

coconut crab are listed in Table 3-3. This problem unlike traditional path and path-time 

problems requires identification of mechanisms where the joints are lined up as in the 

coconut crab in order to exactly the mimic the particular leg in the animal.  
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Figure 3-4: A snapshot of the coconut crab 

Table 3-3: Coordinates of different joints in terms of absolute reference 

Joint 1 Joint 2 Joint 3 Joint 4 
X Y 

155.25 -77.25 
151.5 -84 
139.5 -86.25 
127.5 -88.5 
138 -85.5 

 

X Y 
156 -89.25 

153.75 -94.5 
140.25 -95.25 
131.25 -98.25 
138.75 -95.25 

 

X Y 
155.25 -97.5 
157.5 -102 
140.25 -103.5 

132 -105.75 
141.75 -104.25 

 

X Y 
149.25 -100.5 

153 -109.5 
132.75 -106.5 
124.5 -110.25 
134.25 -108.75 

 

 

The third problem is to develop a mechanism to trace the trajectory shown in 

Figure 3-5, which is the logo of the University of Texas at Austin. The coordinates for the 

curve are listed in Table 3-4. This trajectory is complex and may be traced by either a 

single mechanism or using multiple planar mechanisms. The trajectories in challenge 

problems 2 and 3 are examples of problems where multi-objective optimization scenarios 

are explored. These example problems demonstrate the level of complexity that can be 

handled through algorithms in an automated design scenario and the eventual goal is to 

prove that a tool for automated synthesis of planar mechanisms is capable of generating 

useful design suggestions.  
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Figure 3-5: Logo of the University of Texas at Austin (also called “Longhorn”) 

Table 3-4: Coordinates of the “Longhorn” 

S. No. X Y S. No. X Y 
1 10 10 21 523 152 
2 55 10 22 483 169 
3 121 24 23 437 157 
4 194 68 24 435 178 
5 275 90 25 399 258 
6 310 81 26 406 309 
7 311 82 27 402 330 
8 338 76 28 380 352 
9 360 76 29 343 355 
10 386 82 30 311 330 
11 404 81 31 313 309 
12 435 90 32 318 258 
13 510 68 33 283 178 
14 571 24 34 285 157 
15 637 10 35 240 169 
16 701 10 36 195 152 
17 701 30 37 234 124 
18 617 42 38 172 96 
19 554 96 39 110 42 
20 493 124 40 10 30 

Bounding Box: (Max Width: 750, Max Height: 750) 
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3.3 CONCLUSION  

A detailed research plan is presented in this chapter that focuses on creating a 

graph-grammar based representation and rules system, developing a generic kinematic 

analysis tool and implementing an optimization algorithm that aids in the generation of 

different mechanism designs. The benchmark problems and the challenge problems that 

are used to test the proposed implementation are also listed.   
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Chapter 4: Representation 
 

Computational tools to automatically synthesize planar mechanisms are explored 

as a way to overcome the difficulties and complexities of creating mechanisms manually. 

A powerful yet simple approach is to employ the concept of generative grammars. The 

review presented in Chapter 2 presents the limitations in existing representation schemes. 

The graph-based approach presented here builds on the traditional approaches but 

implements a novel representation scheme. The method represents links and pivots using 

nodes and the relationship between them using arcs. Labels and variables are used so that 

the graphs can be used for generation and evaluation of planar mechanisms. The 

presented scheme is generic and is able to represent different joints and link types. Based 

on this representation, grammar rules are developed so that topologies can be generated 

on the fly using a tree-search process starting from an initial seed graph. This chapter 

presents a detailed overview of the representation scheme and the grammar rules used in 

the overall search process. The next section 4.1 will explain need for a better 

representation scheme followed by section 4.2 where details on the graph-grammar based 

representation for planar mechanisms are presented. The grammar rules that are used to 

generate different planar mechanisms are explained in section 4.3, which will be followed 

by the generation of mechanism topologies using a search process in section 4.4. Section 

4.5 will discuss the limitations and issues such as isomorphism and confluence followed 

by concluding remarks in section 4.6.  

4.1 NEED FOR BETTER REPRESENTATION 

Graph based schemes have been popular in representing planar mechanisms for 

synthesis and enumeration of topologies. The traditional graph based schemes, as 

explained in the related work (refer Chapter 2, section 2.1), are extensive but do not 

consist of all relevant information such as information on grounded joints, inputs, the 

output joint, etc. that completely describes a mechanism. Instead, they require tedious 
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bookmarking during runtime. The lack of a succinct but rich representation scheme is one 

of the reasons that research in the automated design of planar mechanisms is restricted to 

a few topologies such as four-bar and six-bar mechanisms. This is without considering 

the limitations in kinematic analysis.   

The graph-grammar approach on the other hand helps in formulating a more 

generalized scheme through the use of descriptive labels that is currently unavailable in 

the existing approaches. This representation along with grammar rules help in 

formulating a generative design scheme that is akin to the natural design process than 

what is possible in the traditional graph approaches. That is, in traditional graph based 

formulations, the designer or the user would not be able to relate to the designs being 

generated since they do not contain any information such as grounded links and the type 

of joints until the post processing stage while in the approach presented here, the 

grammar completely defines the topology at every stage in the topology generation 

process. Not only this, the ability to present a descriptive graph will be of great advantage 

to the design community rather than a just a node-edge representation. In addition, a 

comprehensive information-rich representation scheme helps in the formulating better 

design automation approaches as will be shown in this dissertation. The representation 

scheme presented here has been developed through the use of GraphSynth [50], which is  

a graph-grammar manipulation tool developed by Prof. Matthew I Campbell.  

4.2 BASIC REPRESENTATION 

Two different representation schemes and grammar rules have been developed 

during this dissertation. The initial representation scheme and set of grammar rules are 

detailed in [59]. Though the underlying principle behind the representation scheme 

presented here remains the same, there are several changes in the grammar (referred to as 

labels) usage in order to increase the degree of generalization. Also, since a few 

constraints in kinematic analysis (will be explained in Chapter 5) and parallel 

computation were encountered, the grammar rules have certain changes from the first set 
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illustrated in [59]. Hence, only the latest version of the representation scheme and 

grammar rules will be described in this chapter.  

The improved representation scheme developed is illustrated by means of an 

example four-bar mechanism shown in Figure 4-1. The graph-grammar representation for 

this four-bar mechanism is shown in Figure 4-2.   

 

Figure 4-1: An illustration of a four bar mechanism  
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Figure 4-2: Graph-grammar representation of the four-bar mechanism shown in Figure 4-
1 

 
As shown in Figure 4-2 and comparing that to Figure 4-1, links and pivots are 

represented using nodes. The nodes are identified by small black dots in Figure 4-2. Arcs 

connect pivot and link nodes to create the mechanism. Every node is identified by a name 

but in the figure above the node names are not shown and only the labels are shown. 

Node names are used only as placeholders whereas labels are indicative of the function of 

the node. In Figure 4-2, there are different labels (listed in Table 4-1) associated with 

every node. On a closer observation of the graph and labels, it can be seen that the node 

with “ground” and “link” labels is used to represent the ground link or the global frame 

(refer Figure 4-1) in the planar mechanism. There are two pivots attached to the ground 

link. This information (as to which pivots are attached to the ground) can be ascertained 

using  “pivot” and “ground” labels. The pivot on the left side of the graph has a label 

called “input” that indicates that the input is connected at this joint location. The 

“revolute” label is used to indicate the presence of revolute joints (R) at the concerned 

pivot nodes. You may notice that this graph has only revolute joints due to the presence 

of “revolute” label at each of the “pivot” nodes (also corresponds to Figure 4-1). The 



26 
 

“input” pivot is connected to another pivot with labels “gp,ic,linked,pivot,revolute” 

through a link with labels “gp,link”. This joint corresponds to the joint between the input 

link and the coupler link in Figure 4-1. The node with “link” label is used to represent a 

link and additional labels such “gp” are used to indicate that there is grounded pivot at 

one of the ends of that link. This information is useful during the formulation of grammar 

rules. For instance, labels such as “gp” and “ic” are part of both link and pivot nodes. If 

they are part of the link node, then there is a grounded joint or an input or both connected 

to one end of that concerned link. The same meaning carries over if these labels are part 

of a pivot node (“gp” is short form for grounded pivot and “ic” for input connected). Note 

that the “link” nodes contain labels such as “gp” and “ic” while the arcs that connect such 

nodes contain the “gp” label.  

The node with labels “gp,ic,linked,pivot,revolute” is connected to another pivot 

node with labels “linked,gp,pivot,revolute” through a link node with label “link”. This 

corresponds to the joint between the coupler link and the follower link in Figure 4-1. The 

label “linked” is used to indicate whether a particular pivot is connected to another link or 

not. The labels “gp”, “linked” and “ic” are used to formulate better grammar rules and 

reduce the search space so that a concise set of mechanism topologies are produced. An 

arc with label “pivotarc” connects the pivots. This is helpful during kinematic analysis to 

calculate the distance between two pivots. The arrowhead on each arc is used to reduce 

the list of applicable options during the generation process in order to reduce confluent 

recognition options in GraphSynth. Table 4-1 below gives a summary of the list of the 

labels used to define a generic four-bar mechanism. This list is applicable for all 

mechanisms that have joints with similar characteristics.  
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Table 4-1: Details of the graph-grammar representation used in a four-bar mechanism 
with revolute joints 

Link / Pivot 
 (ref Figure 4-2) 

Grammar Representation 
(Node/Arc) Labels Used 

Ground Link Node ground,link 

Input Link 
Node gp,link, ic 
Arcs gp 

Coupler Link Node link 

Follower Link 
Node gp,link 
Arcs gp,link 

Input Joint Node pivot,revolute,input,linked,ground 
Joint between Input 
and Coupler links 

Node pivot,revolute,linked,gp,ic 

Joint between Coupler 
and Input Links Node pivot,revolute,linked,gp 

Ground Joint (between 
Follower and Ground 

links) 
Node pivot,revolute,linked,ground 

Arcs between Pivots Arcs pivotarc 
 

 

Figure 4-3: Graph-grammar representation for a slider-crank mechanism 
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Figure 4-3 (shown above) presents the graph-grammar representation for a slider 

crank mechanism. It can be seen from the figure that the representation is similar to that 

of the four-bar shown in Figure 4-2 except that there are changes in two pivot nodes and 

one link node. The pivot node that is connected to the ground link (with labels “ground” 

and “link” on the right side) has the label “slider” instead of “revolute” and the 

corresponding follower link has an additional label “sc” indicating the presence of 

“slider” at one of its end. The pivot between the coupler and the follower link also has an 

additional label “sc” indicating that the presence of a slider at the other end of the link 

with label “sc”. In this representation scheme, the input is set to a revolute joint since the 

kinematic analysis is robust for such mechanisms. But it is also possible to have the input 

to be a sliding joint (P). The sliding angle is represented using the “variable” feature for 

nodes in the GraphSynth tool. More details about the software are available in [51]. The 

representation scheme described here can be expanded to include other elements such as 

gears and cams, thereby generating a diverse set of topologies within the same 

framework.  

4.3 GRAMMAR RULES 

Using the representation scheme, grammar rules are developed to generate 

different mechanism topologies. The rules have been developed by reviewing earlier 

iterations [59] and through experiences in other graph-grammar based research. A 

building block methodology is adopted in formulation of these rules where new 

mechanisms are created by adding links and pivots to existing graphs (topologies). This 

aspect will be evident explanation of rules in the following sections.  

4.3.1 Grammar Rule Formulation and Identification 

Grammar rules are integral to the design generation process and GraphSynth is 

used to develop and test these rules. A typical search process that will be followed in this 

dissertation is shown in Figure 4-4, where the process begins with a seed graph and 
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grammar rules will be successively applied to create candidate graphs or just called 

“candidates” at every level. This step corresponds to the “Design Space Generation” 

module in Figure 3-2. The “candidates” at every level in the tree are potentially different 

mechanism topologies. Though there are topologies with higher degrees of freedom in 

the search tree, only one-degree of freedom are extracted for synthesis purposes. The 

secondary candidates in turn form seeds at the respective levels to generate candidates 

further down in the tree. Due to this process flow, the seed is an important parameter 

since it influences the character of the rules being formulated and also the degree of 

generalization for the entire process. The seed used in this work is shown is Figure 4-5.  

 

Figure 4-4: An illustration of the tree-search process using seed and grammar rules 

 

Figure 4-5: The starting seed graph used in the tree-search process 



30 
 

The above figure shows that the seed has two nodes; one is a ground link defined 

by labels “ground, link” and the other is a revolute joint and an input defined by labels 

“input pivot revolute, ground”.  This indicates that the process begins with the knowledge 

of the type of input and the reference frame. The position of the joints and links are 

adjusted during optimization and are not controlled during the topology generation 

process.  

Using this seed as the base, all the grammar rules are formulated. The graph-

grammar rules are organized into different sets based on their functions and there are four 

different grammar rules used in this research. The first grammar rule set consists of eight 

rules. The grammar rules pertaining to the first rule set are shown below in various tables 

(Tables 4-2 to 4-9). Shown in Table 4-2 is a rule that attaches a link to the pivot node in 

the input seed. The rule recognizes that the seed graph does not contain any global label 

(in this case “1”) and after applying the rule assigns a label of “1” to the seed graph. This 

rule is applied only once as there is a negating label entry “1” under rule properties that 

prevents this rule being used again on a candidate graph that has the said label. The node 

on the left side of the rule consists of a “Negate Labels” entry for the label called 

“linked”. This means that if the seed consists of a node with the label called “linked”, 

then the rule is not recognized on that graph. This is done to prevent attaching a link to 

that pivot if it is already connected to another link. Though there can be several links 

connected at any pivot, for the sake of simplicity and correctness of rules, we are 

restricting that number to just two links at every joint.   

Table 4-2: Rule to connect the input pivot with a link  

Left Hand side of rule Right Hand side of rule 
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Table 4-2 continued.  

Negate Labels: linked  
Rule Properties:  
L Negating Labels: 1, 2 
R Labels: 1  

 
The second rule in this set is shown in Table 4-3. Here, the rule is attaching a link 

and a pivot to another pivot node that does not contain any of the “Negate Labels” 

specified in the table. That is, if the particular node in consideration consists of any of 

those labels under “Negate Labels” (Note: the labels in graph indicate the minimum 

number of labels that should be part of the node), then that node will not be recognized. 

After the rule is applied, the new pivot that is created does not contain the label “linked”, 

indicating the availability of that pivot for further manipulation by rules. At the same 

time, the original pivot where the link is attached has attained the “linked” label. Also, 

this rule works only on those graphs that contain label “1”.  

Table 4-3: Rule to add a link to an existing pivot  

Left Hand side of rule Right Hand side of rule 

 

 
Negate Labels: linked, input, 
ground, slider, sc 

 

Rule Properties:  
L Labels: 1 
L Negating Labels: 2 
R Labels: 1  
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The third rule is shown below in Table 4-4 that creates a ternary link from a 

binary link. In this study, we are limiting the type of links to binary and ternary, though it 

is very easy to develop grammar-rules to create other link types such as quaternary and 

pentagonal links.  

Table 4-4: Rule to convert a binary link to a ternary link  

Left Hand side of rule Right Hand side of rule 

 
 

Negate Labels on pivot nodes: slider 
Negate Labels on link node: ground, 
addplate, sc 

 

Rule Properties:  
L Labels: 1 
L Negating Labels: 2 
R Labels: 1  

 
The rule shown in Table 4-5 adds a “link” node between two “pivot” nodes that 

are already part of different links and do not contain “linked” label on the “pivot” nodes. 

This way two unconnected pivots are joined by a link. Also note that there should not be 

any prior connection between these two “pivot” nodes in consideration. Though the 

“linked” label specified under “Negate Labels” for this rule should take care of that 

situation, the other labels on the node as well as the label that “Must NOT Exist” on the 

arc are provided just as a safety net. Table 4-6 displays a rule that identifies the presence 

of a four-bar loop around the input pivot. This rule is required to add sliding joints to the 

mechanism. The reason for this is that the generalized kinematic analysis for 



33 
 

indeterminate mechanisms with sliding members has not been developed (will be 

explained further in Chapter 5) and hence the restriction in adding sliding members to 

those mechanisms with input four-bar loop. Also, for simplicity sake, the sliding 

members are restricted to align alongside the frame (i.e., grounded sliding members). 

This rule assigns a “fourbar” label to the overall graph (and not to the concerned node).  

Table 4-5: Rule to connect two pivots with a link  

Left Hand side of rule Right Hand side of rule 

 
 

Negate Labels on “link” nodes: ground 
Negate Labels on “pivot” nodes: linked, 
slider, sc, notcon 
“Must NOT Exist” on arc with label 
“pivotarc”  

 

Rule Properties:  
L Labels: 1 
L Negating Labels: 2 
R Labels: 1  

 
Table 4-7 shows a rule that replaces the grounded revolute joint in a four-bar 

mechanism with a sliding member (prismatic “P” joint). Note the associated label 

changes at the pivot and link nodes. The seventh rule adds two links that represent a 

sliding member and is shown in Table 4-8. Table 4-9 adds a grounded revolute joint to a 

pivot that does not contain “linked” label.  
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Table 4-6: Rule to identify a four-bar input loop within a mechanism  

Left Hand side of rule Right Hand side of rule 

  
Rule Properties:  
L Labels: 1 
L Negating Labels: 2, fourbar 
R Labels: 1, fourbar 

 

Table 4-7: Rule to replace revolute joints with sliding joints 

Left Hand side of rule Right Hand side of rule 

 
 

Rule Properties:  
L Labels: 1, fourbar 
L Negating Labels: 2 
R Labels: 1, fourbar 
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Table 4-8: Rule to add a sliding joint to a pivot  

Left Hand side of rule Right Hand side of rule 

  
Negate Labels on “pivot” node: 
input, ground, sc, slider, linked 
“Must NOT Exist” on arc between 
the “ground, link” node and 
“pivot” node 

 

Rule Properties:  
L Labels: 1, fourbar 
L Negating Labels: 2 
R Labels: 1, fourbar 

 

Table 4-9: Rule to connect a pivot to the ground with a link 

Left Hand side of rule Right Hand side of rule 
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Table 4-9 continued.  

Negate Labels on “pivot” node: 
linked, ground, gp, ic, notokay 
Negate Label on “ground,link” 
node: ic, gp 

 

Rule Properties:  
L Labels: 1 
L Negating Labels: 2 
R Labels: 1 

 
The eight rules belonging to the first rule set can be summarized as shown in Table 4-10 
below.   

Table 4-10: Summary of the functions of each rule in rule-set #1  

Rule No Function 

1 Add a link to the input joint 

2 Add a link and a pivot to another joint 

3 Create a ternary link from a binary link 

4 Connect two pivots 

5 Identify a four-bar input loop 

6 Replace revolute joint with a sliding joint 

7 Add a sliding member to a pivot 

8 Connect a ground pivot through a link with another joint 

 
 
Though all the grammar rules have been extensively tested, there were some mechanism 

topologies that consisted of a truss structure resulting in a 0-degree of freedom. In order 

to avoid generating a mechanism with a truss, another set of rules was created to detect 

such cases, remove those invalid connections in the graph and then add a “notokay” label 

as in rule 1 in Table 4-11 or “notcon” label as in rules 2, 3 and 4 in Table 4-11 to the 

concerned nodes so that when the first rule set is reapplied, topologies with trusses are 
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not regenerated. There are four rules that form part of the second rule set and are shown 

below in Table 4-11.  

Table 4-11: Rules in rule set #2  

Rule 
No Left Hand side of rule Right Hand side of rule 

1 

 
 

2 

  
3 

 
 

 
 
 
 
 



38 
 

Table 4-11 continued.  

Rule 
No Left Hand side of rule Right Hand side of rule 

4 

  
 

Despite the second rule set, there is a class of topologies that returns a one-degree 

of freedom based on Greubler’s equation despite the presence of a truss as shown in 

Figure 4-6. The figure returns a degree of freedom equal to 1 due to the fact there is a 

ternary link connected at joint H while the rest of the structure is a truss. This is not 

detected by rule set 2 since link (D-F) is connected only at the last stage in the generation 

process after which this topology is retrieved for further synthesis. Therefore, the strategy 

adopted to avoid this candidate or similar candidates being generated is to detect the 

presence of a link where one or more joints are not connected. That is, if the Gruebler’s 

criterion returns a value of 1 but the graph consists of a binary link with a pivot without 

“linked” label or a ternary link with two pivots that do not contain the “linked” label, then 

the situation similar to Figure 4-6 is encountered and the concerned candidate graph is 

removed from further consideration. This ensures that only valid one-degree of freedom 

joints are presented for further synthesis.  
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Figure 4-6 A mechanism with 1-degree of freedom when calculated using Gruebler’s 
equation but consists of a truss as indicated by the hashed representation 

 
The third rule set shown in Table 4-12 assigns an “output” label to one of the “pivot” 

nodes. This label is used to inform the optimization routine that this pivot is required to 

trace the desired path specified by the user. “output” labels are not assigned to joints that 

are grounded or to those joints part of the “input” binary link node. There are two rules 

here, the first rule assigns “output” label to a node representing a revolute joint and the 

second rule assigns “output” label to the sliding joint. The associated properties are listed 

under each rule in Table 4-12.  
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Table 4-12: Rules in rule set #3 

Rule 
No Left Hand side of the rule Right Hand side of the rule 

1 

  
Negate Labels on “link” node: ground, 
ic 
Negate Labels on “pivot” node: input, 
ground, slider, ic, sc 

 

Rule Properties:  
L Labels: 1 
L Negating Labels: 2 
R Labels: 1,2 

2 

  
Negate Labels on “slider” node: input, 
sc, avoid 

 

Rule Properties:  
L Labels: 1 
L Negating Labels: 2 
R Labels: 1,2 

 
 
Note the “avoid” label in rule number 2 in the above table. This label is assigned during 

runtime in the optimization routine whenever the desired path to be traced by the 

mechanism is not a straight line. This is done to avoid unnecessary computations such as 

trying use a grounded slider to trace an elliptical curve, which is not feasible.  

There is another set of rules that will be used in conjunction with rule sets #1 to 

#3 to solve challenge problems #2 and #3. This rule set is used to solve single input –

multiple output (SIMO) scenarios. Two rules are part of rule set #4 and are shown below 

in Table 4-13. The first rule adds additional labels such as “output1”, “output2” and 

“output3” to different pivots and the second rule assigns the same labels but to two 

different ternary links.  
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Table 4-13: Rules in rule set #4  

Rule 
No 

Left Hand side of the rule Right Hand side of the rule 

1 

  
Negate Labels on “pivot” nodes: output, 
ground, ic, slider 

 

Rule Properties:  
L Labels: 1,2 
L Negating Labels: 3 
R Labels: 1,2,3 

 

2 

  
Negate Labels on “pivot,revolute” node: 
ic, ground, input, sc, slider, output1, 
output2, output3 
Negate Labels on “link” node: ground 

 

Rule Properties:  
L Labels: 1,2 
L Negating Labels: 3 
R Labels: 1,2,3 
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The four rule sets (#1 to #4) are organized as per the flow chart given below in Figure 4-

7. The flow chart depicts a typical tree-search scenario and the overall rule application 

process by which all possible one-degree of freedom planar mechanisms are generated at 

every level in the tree. The final list of candidates is passed onto the optimization routine 

where the candidates are parametrically optimized depending on the requirements of the 

user.  

 

 

Figure 4-7: Flow chart to illustrate the rule application process 

 
In the flow chart, the degree of freedom is calculated using Gruebler’s criterion [2]. In the 

next section, the type of topologies generated for different levels in the search tree will be 

presented.  
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4.4 ENUMERATION OF TOPOLOGIES 

During the grammar rule formulation process, all mechanism topologies that are 

described in textbooks and other literature for revolute and prismatic joints have been 

manually generated. This process helped in testing the rules as well as fine-tuning them. 

The developed grammar rules are used to generate all possible topologies through an 

exhaustive generation process. The enumeration was carried out using a program written 

in C#. Although the algorithm is very similar to the flow chart described in Figure 4-7, 

there are a few additional functions used in order to be computationally efficient and 

generate the maximum amount of mechanism topologies. Those functions serve two 

purposes. The first function is used to remove isomorphic candidates from the search 

process and the second is used to remove confluent rule options during the generation 

process. Though the number of confluent options (same rule is recognized at the same 

location – just the direction is different) has been minimized due to the use of directed 

arcs (arcs with arrowheads used in different), we still wanted to ensure that duplicate 

candidates are not generated and computational resources wasted. Moreover, since we are 

using the open-source mono for C# client, we are unable to completely take advantage of 

C#’s built-in parallelization routines. Due to this, the memory was maxed out and we had 

to restrict the generation process to level 11. The list of topologies generated till this level 

is presented below in Table 4-14. Detailed information about the different types of four-

bar mechanisms generated is given as a sample in Table 4-15. This clearly shows the 

presence of isomorphic candidates and possibly confluent options during the rule 

recognition process.  

Table 4-14: List of topologies generated till level 11 in the search process 

No of Links No of Pivots Total Candidates Generated 
4 4 50 
6 7 497 
8 10 360 
10 13 2 
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Table 4-15: Types of four-bar mechanisms enumerated till level 11  

No of 
Ground 

No of 
Links 

No of 
Pivots 

No of Ternary 
Links 

Prismatic Joints 
Present Count 

2 4 4 

0 
No 1 
Yes 1 

1 
No 6 
Yes 4 

2 
No 14 
Yes 9 

3 
No 9 
Yes 6 

 

A typical topology is described in the following manner “2-4-4-2-revolute-no 

prismatic”. This should be read as: “2 ground pivots-4 links-4 joints-2 potential ternary 

links-revolute joints-and not prismatic joints”. You may notice that we have a 

nomenclature stated as “potential ternary links”. This is used to indicate that there are 

links containing three pivots but all the pivots may not be connected to other links. But as 

the curve produced by any point on those links will be different, we feel it is important to 

identify the presence of such links. Additionally, the graph names of ternary links may 

also be presented when listing the generated topologies. This gives an idea to the user 

about the topology before even looking at the appropriate candidate graph. The results 

presented in Chapter 7 will present the mechanism topologies in a similar manner.  

There are a total of 909 valid candidates and a total of 4846 candidates when 

“output” label is assigned to the generated graphs using rule set 3. The number of 

candidates with links 10 and more is generated further down the tree, at levels 12 and 

greater and due to the insufficient capability in handling large stack of data using the 

open-source mono for c# implementation, we are unable to present data on the types of 

links that are generated at those levels. But on a survey of the four and six bar 

mechanisms, we have been able to confirm the validity of rules through a manual review 

of the topologies generated in this process.  
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The numbers of mechanisms listed in Table 4-14 clearly point the need for a 

rigorous isomorphism detection methodology since duplicate candidates can be prevented 

from being optimized. But this aspect has not been considered in this dissertation, as our 

primary goal is to implement a repeatable algorithm for automatically synthesizing the 

topologies and their parameters.  

4.5 DISCUSSION 

The grammar rules explained in the earlier sections are able to capture maximum 

information about the topology, including information about joints and links. There are a 

total of 16 rules in four different rule sets. Though we are able to generate different 

mechanisms, our rules are limited to generating binary and ternary links and permit only 

two links to be connected at any joint. Also, the prismatic joints are restricted to slide 

alongside the frame and are connected to a mechanism with four-bar input loop since we 

do not yet have a generalized routine for solving indeterminate mechanisms with 

prismatic joints (P). These constraints were primarily added to adequately manage 

computational resources when the complete program is executed i.e., when the search 

process is coupled with optimization and kinematic analysis, the resources required are 

enormous and the current implementations of the software (aka our programming as well 

as mono for C#) is not robust for multi-threaded multi-core processing. Despite these 

constraints, it is possible to extend this representation scheme to include different joint 

types in planar mechanisms with the availability of better tools.  

4.5.1 Isomorphism and Confluence 

Since our research deals with a methodology to represent mechanisms using 

graph grammars for synthesis purposes, isomorphism and confluence are important issues 

to be addressed. Isomorphism refers to the structural equivalence of topologies and 

researchers have developed different methods to identify and deal with isomorphic 

solutions as stated in the review by Mruthyunjaya[15]. While a particular degree of 



46 
 

freedom system is desired by the user-designer, there are usually constraints on 

kinematics that are not considered in isomorphism. Since our goal is synthesis where 

topologies generated by a search process will be evaluated, one could take isomorphism 

into advantage to reduce computation. This has been done in our topology enumeration 

code as well as the overall synthesis code, where a first-level isomorphism check has 

been introduced. This code basically checks if two mechanism configurations are 

basically the same by comparing a few parameters of the topology. The parameters 

considered are: number of ground pivots, number of links, number of joints, number of 

ternary links and the names of the nodes representing ternary links and positions. This 

helps in segregating some of the isomorphic candidates but not all of them. Through this 

first-level basic check, we have a slight reduction in the usage of computational 

resources. Though the best solution is to develop rules that reduce the occurrence of 

structurally equivalent topologies, it is not always possible to compose rules that do not 

generate any isomorphic candidate. This is because when the focus is on developing 

fewer rules to generate maximum candidates, there is a higher chance for producing 

isomorphic candidates and invalid solutions (as described in section 4-2). Thus, the 16 

rules developed result in distinct topologies but with isomorphic variations. Also, the rich 

set of labels that are associated with every node and arc used in this research produce an 

information rich graph but at the same time make the detection of isomorphically 

equivalent candidates tougher. But then without labels, it is not possible to associate the 

parameters that uniquely define a mechanism topology, as is the case in other related 

research that make use of the systematic method. The topological variations, as shown in 

Figure 4-8 where the topology is the same but the desired output pivot’s locations are 

different (using rule set 3), are also achieved using our rules since those mechanisms are 

characteristically different (can be seen by the curves generated by the respective pivots).  
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Figure 4-8 An instance of a four-bar mechanism with two different output locations that 
produce different output curves 

 
From Table 4-14, the total number of valid solutions (before assigning output 

locations to each candidate) is 1936, while the actual number of solutions without 

isomorphic candidates and confluent options is 909. The first order isomorphic 

candidates and confluent option identification code has helped in removing about 47% of 

such candidates and helped in gaining significant computational resource as a result.  

Also (refer to Figure 4-4), it is important to note that search trees may 

unavoidably include repeat states.  This indicates that there may be multiple paths to the 

same configuration. This is an issue in graph rewriting systems known as confluence, 

wherein identical topologies at different locations in the tree can be traced to a common 

parent. This has been significantly reduced through a first-order confluent options check 

during the rule-application process but still we can see from the results displayed in Table 

4-14 that there are duplicate candidates in the results (for instance, 50 four-bar 

mechanisms). Due to the generic nature of rules, it is not possible to completely remove 

all duplicate candidates through a first-order check since these topologies are generated at 
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completely different levels. In order to completely eliminate such candidates, detailed 

isomorphic and confluent check routines have to be incorporated.  

4.6 CONCLUSION 

A comprehensive representation scheme has been developed along with grammar 

rules to generate all possible topologies of one-degree of freedom planar mechanisms in a 

generic manner. Enumerating candidates using an exhaustive search process has tested 

the grammar rules for completeness. The implementation of first-order checks for 

isomorphism and confluence option reduction has helped in reducing computation though 

it is has been shown to not completely remove the occurrence of duplicate candidates. 

The generated candidates combined with kinematic analysis (Chapter 5) will be used to 

synthesize concept designs for various benchmark problems using an optimization 

algorithm that will be explained in Chapter 6 whose results will then be presented in 

Chapter 7.  
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Chapter 5: Kinematic Analysis 

  
The topologies generated using grammar rules are parametrically optimized 

(explained in the next chapter) to user requirements. Typically the requirement is 

specified in terms of (x, y) coordinates of the path traversed by a joint in the mechanism 

or as an array of angles followed by a link depicting a particular motion. In order to 

ascertain these details during optimization, kinematic analysis is used to evaluate the 

position, velocity and acceleration of different joints and links in the planar mechanisms. 

This is an important part of the system proposed in Figure 3-2. Restricting the simulation 

to kinematics helps to quickly generate designs in kinematic outline form rather than 

exhaustively evaluating each mechanism for their dynamic characteristics too. There are 

several commercial programs available for kinematic analysis of planar mechanisms such 

as Working Model [6], ADAMS [7] and SAM [8], but these programs do not have an 

API (application programming interface) that would help in simulating the results of our 

optimization implementation. There are also no robust and generic open-source kinematic 

analysis tools available for this purpose. Hence, considerable time and effort have been 

devoted to developing a generic kinematic analysis tool for planar mechanisms that can 

be used in an automated setting.  

This chapter details the development of this generic kinematic analysis tool for 

planar mechanisms. Section 5.1 explores the need for a generic tool for kinematic 

analysis. This is followed by the implementation procedures and results for planar 

mechanisms with one-degree of freedom consisting of four-bar loops in section 5.2. 

Section 5.3 highlights the method developed for solving positions of indeterminate one-

degree of freedom mechanisms where the existing methods in literature are not applicable 

and the alternate solution methods are not scalable to a generic level.  
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5.1 INTRODUCTION  

In order to computationally synthesize planar mechanisms, it is important to 

automatically define the boundary conditions and adjust the necessary parameters to 

evaluate the kinematics of the mechanism in consideration. This is in sharp contrast with 

the existing software available for kinematic analysis that requires the user to manually 

input the mechanism for analysis. Furthermore, such commercial tools analyze 

mechanisms through dynamics-based physics engine that can be erroneous in comparison 

to pure kinematic analysis. While the inclusion of dynamics information has benefits, it 

challenges the mechanism designer to fully specify all features and speeds in order to test 

whether a concept traces a desired path or motion.  

As mentioned in the beginning of this chapter and in the literature review, there 

are no open source kinematic analysis tools available that can be integrated with a design 

generation tool as envisioned in this dissertation. One of the reasons is the absence of a 

method, which not only solves the kinematics reliably but also is applicable to 

generalized n-bar mechanisms.  This has led the automated-synthesis projects in this area 

to be limited to fixed topologies such as a four-bar mechanism or a six-bar mechanism 

with revolute joints [48,52,60] and occasionally prismatic joints [17] as there are standard 

formulations in existing textbooks [2–4] to solve such topologies. As a result, only 

variations in the link lengths are produced and no alternate mechanisms are suggested. 

Designing planar mechanisms is a challenging activity, where mechanisms consisting of 

multiple links and different joint types have to be synthesized. Automating this task is 

beneficial but lack of kinematic analysis solvers that can be used to automatically analyze 

generic mechanism designs has hindered its progress.  

The methods to determine the position kinematics of planar mechanisms are 

classified into two categories in the literature namely graphical and analytical. The 

graphical method is the dyadic decomposition method while the analytical method 

involves solving trigonometric loop equations. In the next section (Section 5.2), the 

generalization of kinematic analysis is presented for mechanisms with four-bar loops. 
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The generalized algorithm includes the instantaneous center of rotation method for 

velocity analysis, vector polygon approach for acceleration analysis and the dyadic 

decomposition method for position analysis of planar mechanisms. The graphical 

methods have an algorithmic nature and can be easily generalized. The presented 

implementation also includes the methods developed by Foster and Pennock [36] and 

Hernandez et al. [61] for determining the instant centers and positions respectively of the 

double-butterfly linkage. The implementation takes advantage of object-oriented 

programming and the graph representation of planar mechanisms into building a 

generalized kinematic solver that can operate on any single-degree of freedom system 

with at least one four-bar loop along with the double-butterfly linkage. Another 

advantage of the program is its ability to evaluate mechanisms consisting of R, P and R-P 

joints.  

But this implementation is not applicable to multi-loop indeterminate mechanisms 

such as Stephenson II mechanism [3] and the double-butterfly linkage [28] since it is not 

possible to obtain the decomposition necessary to compute subsequent positions of pivots 

in the mechanism. Although there are geometric methods for double-butterfly linkages in 

the implementation, their performance is not reliable and hence alternate methods had to 

be explored to compute the positions of indeterminate mechanisms.  The analytical loop 

equation method is a possible alternative on the other hand that involves formulating loop 

equations in terms of sine and cosine of the angles of the different links in the 

mechanism. The resulting equations are non-linear and there are solution forms available 

for simple four to six-bar mechanisms in the literature. But for a mechanism like the 

double-butterfly linkage, whose loop equation formulation results in six equations with 

six unknowns, there are no standard solution forms available and the existing numerical 

methods (in packages such as MATLAB) often fail to obtain any meaningful solutions. 

The lack of kinematic methods for solving such mechanisms has possibly impeded the 

use of such planar mechanisms in practical applications.  Section 5.3 explains the 

optimization-based approach that has been developed for solving the position kinematics 
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of single-degree of freedom planar mechanisms by minimizing error of link lengths. The 

method is tested on indeterminate single-degree of freedom mechanisms consisting of 

revolute joints, where it is shown that precise results can be obtained with excellent 

computational efficiency. The capability of the method in solving both initial and finite 

position problems is also demonstrated, where it is also shown that the method and 

implementation are generic to any n-bar mechanism with revolute joints.  

5.2 KINEMATIC ANALYSIS OF PLANAR MECHANISMS WITH FOUR-BAR LOOPS 

The kinematic analysis routine requires the location information (coordinates) of 

the pivots at the initial point in time (time t=0). The evaluation function outputs the 

kinematic properties (namely position, velocity and acceleration) of all pivots. 

Assumptions made include a constant input angular velocity and single input-single 

output system while formulating the problem. The programming is carried out in C#. 

Since our implementation is integrated with the representation explained in the previous 

chapter, the following section is explained using the example of a four-bar mechanism 

(Figure 4-1 and Figure 4-2). While describing the algorithm, a brief overview of the 

kinematic method is provided followed by the generalization algorithm. The focus is on 

evaluating determinate n-bar one-degree of freedom systems with R, P and R-P joints.  

As shown in Figure 5-1, the analysis proceeds with velocity computation followed by 

acceleration and then position. This order is not a necessary condition as the position and 

velocity computations are independent for mechanisms with four-bar loops due to the 

implementation of graphical methods.  
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Figure 5-1: Flow chart for the kinematic analysis of mechanisms with four-bar loops  

5.2.1 Velocity Formulation 

Velocity is determined using the graphical instant center method, which involves 

comparing the instant centers between every link and every other link, which can be 

classified as primary and secondary. The instant centers are determined using the 

Kennedy-Aronholdt theorem [3]. This theorem states that the primary instant centers are 

those defined between connected links and are located at shared pivots. Each secondary 

instant center is located at the intersection of two lines (the end points of each line being 

instant centers), which can be determined using the circle-diagram method. The instant 

center technique is chosen for velocity determination since it exhibits an algorithmic 

logic that can be easily programmed, can be generalized to any topology and is 

completely analytical. 

Computationally, the basis of solving the instant center method is to create a list 

of objects of type  𝜙, for each pair of links; 

𝜙 = {𝑥,𝑦,𝜔, 𝑙𝑖𝑛𝑘! , 𝑙𝑖𝑛𝑘! ,𝑝𝑖𝑣𝑜𝑡}     
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where (x, y) is the location of an instant center; 𝜔 is the relative angular velocity between 

the links and pivot is the common pivot to the links if it is a primary instant center. The 

linki, linkj and pivot reference particular nodes in graph representation. Consider an 

instance of 𝜙 (referring to Figure 4-1 and Figure 4-2) where linki is the leftmost link node 

with labels “link,gp,ic” and linkj is the topmost link node with labels “link”. Since these 

two links are connected at the joint with labels “pivot,ic,gp,revolute,linked”, this joint 

information (consisting of information such as the node name, (x, y) position, etc.) is 

assigned to the pivot variable in 𝜙. For the entire mechanism, corresponding to each 

unique instant center, there are 𝜙′𝑠 defined that follows the condition p*(p-1)/2, where p 

is the number of pivots (“pivot” nodes in graph terms) in the mechanism. The 

information on primary instant centers is available from the topology of the mechanism 

since they are located at pivots common to two links. During the first pass of the velocity 

program, these primary instant centers are determined first and the corresponding entries 

in 𝜙 are filled.  Following this, secondary instant-centers are obtained using an 

innovative programming logic that replicates the circle-diagram approach. The secondary 

instant centers are obtained by the intersection of the lines containing primary instant 

centers. The algorithm below indicates the method to determine primary and secondary 

instant centers. (Note: In the algorithm below, PIS indicates an R-P joint (pin-in-slot) and 

Slider indicates a prismatic (P) joint and pivot in general refers to a revolute (R) joint).  

 
𝑆𝑒𝑡  𝜙 = 𝑥,𝑦,𝜔, 𝑙𝑖𝑛𝑘! , 𝑙𝑖𝑛𝑘! ,𝑝𝑖𝑣𝑜𝑡  for each N   
N=p*(p-1)/2; p=number of pivots; N=number of instant centers 
//Primary instant centers are located on Pivots and are recorded in 𝜙 
Start Do  
       Let i=𝑙𝑖𝑛𝑘!   𝑎𝑛𝑑  𝑗 = 𝑙𝑖𝑛𝑘! 
      If 𝑙𝑖𝑛𝑘!   𝑜𝑟  𝑙𝑖𝑛𝑘!𝑎𝑟𝑒  𝑛𝑜𝑡  𝑃𝐼𝑆  𝑜𝑟  𝑆𝑙𝑖𝑑𝑒𝑟 
       Create two new instances of 𝜙 ->  𝜙1,𝜙2 
       𝜙1 =  CALL InstantCenters connected to i 

  𝜙2   =CALL InstantCenters connected to j 
 Create Matrix K (2x2) for Circle Diagram Path 

      Obtain New Secondary Instant Center 
     //For Double-butterfly Linkage  
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     Obtain Two Secondary Instant Centers [6] 
   Else //separate for PIS and Slider 
 𝜙1 =  CALL InstantCenters connected to i 

                𝜙2   =CALL InstantCenters connected to j 
 Create Matrix K (2x2) for Circle Diagram Path 

      Obtain New Secondary Instant Center 
 End Loop after N instances of 𝜙  𝑎𝑟𝑒  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 
 
 // To Obtain 𝜙1 and 𝜙2 
Function InstantCenters 
Start For Each 𝜙 
     If 𝜙   𝑥,𝑦 is not NULL and i=𝑙𝑖𝑛𝑘!   𝑎𝑛𝑑  𝑗 = 𝑙𝑖𝑛𝑘! 
    Add 𝜙  𝑡𝑜  𝜙1 
End Loop 
End 
 
// To Determine Circle Diagram Path 
Function Circle Diagram Path 
Start For Each 𝜙1 
     If 𝜙1(𝑙𝑖𝑛𝑘!) ==i -> Add to B 
    Else Add to B 
End Loop 
Start For Each 𝜙2 
    If B==  𝜙2(𝑙𝑖𝑛𝑘!) OR B==  𝜙2(𝑙𝑖𝑛𝑘!) 
      Then Add B to Matrix K 
   End If 
End Loop 
End 
 
//To Determine Secondary Instant Center 
//Matrix K is of the form [a b;c d]  
//where a, b, c, d are (x,y) of known Instant centers 
//Intersection of Line a-d and b-c will result in the New Secondary Instant Center 
 

During the execution of the overall do-while loop, there could be situations when 

the required two equation paths in the circle diagram approach are not obtained. So the 

do-while loop would continue to the next instant center and revisit missing instant centers 

during subsequent cycles of the loop. The use of the do-while-loop makes the process 

generic since, until all instant centers are determined, the process repeats. If, during one 
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complete pass, new instant centers are not determined, the program exits, and this could 

be due to an infeasible topology (indeterminate mechanism). These built-in checks are 

some of the unique features of the generalization methodology presented in this chapter. 

There are a few special cases built-in for prismatic and pin-in-slot joints since the method 

of determining instant centers vary for such elements.  These are incorporated in such a 

way that the generic architecture of the program is unaffected. Once all instant centers are 

obtained, the computation of angular and linear velocities is carried out using the 

standard procedure explained below for one of the links and pivots. For the coupler link 

(considered as link 3) in Figure 4-1 (in Figure 4-2, this corresponds to the node with only 

“link” label), 

 
ω! =   

!!  ×(!!!!!!!!!)
(!!!!!!!!!)

 rad/s 
 

V! = ω!  ×(  I!!!  – I)    unit/s 
 

where ω! denotes angular velocity of the link and V!  denotes the linear velocity of the 

pivot between input and coupler links  (in Figure 4-1). “I” in the V! equation above 

represents the instant center located at that joint between input and coupler links. Given a 

known input angular velocity, other angular and linear velocities can be easily 

determined once the instant centers are obtained. The velocity module also computes slip 

velocities and Coriolis component if they exist in the particular topology.  The algorithm 

also includes the method demonstrated by Foster and Pennock [36] to determine two 

secondary instant centers of a double-butterfly linkage. The inclusion of this method 

enables solving velocities of the indeterminate double-butterfly linkage mechanism, 

which is an eight-bar one-degree of freedom mechanism.  
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5.2.2 Acceleration Formulation 

  Angular and linear accelerations are computed by forming the appropriate 

acceleration equations as listed below for the four-bar mechanism in Figure 4-1 and 

Figure 4-2.    

a! = a! +   2  v!×ω! + r!/!× ω!×ω! +   a!"#$!! +  ∝!×r!/!  
a! = a! +   2  v!×ω! + r!/!× ω!×ω! +   a!"#$!! +  ∝!×r!/!  
a! = a! +   2  v!×ω! + r!/!× ω!×ω! +   a!"#$!! +  ∝!×r!/! 
a! = a! +   2  v!×ω! + r!/!× ω!×ω! +   a!"#$!! +  ∝!×r!/! 

 
where a refers to the absolute acceleration; 2  𝑣×𝜔 corresponds to the Coriolis 

acceleration; 𝑟× 𝜔  ×𝜔    is the radial acceleration and α×r corresponds to the tangential 

acceleration. Subscripts A, B, C and D refer to the four links of the four-bar mechanism 

(ground, input, coupler and follower). The acceleration equation is linear and the 

unknown acceleration terms can be obtained by solving these simultaneous equations 

using the form Cx=b, where x is the list of unknowns, C is the coefficient matrix and b is 

the list of constants. While solving the linear equations is trivial, the challenge lies in 

automatically creating C and b for an arbitrary n-bar mechanism for each time step. In 

order to formulate these simultaneous equations, an object ψ is generated for each 

acceleration equation (each row of C and b), 

 
𝜓 = 𝑑𝑖𝑟,𝑛𝑜𝑑𝑒! ,𝑛𝑜𝑑𝑒! ,∝,𝜔, 𝑟𝑎𝑑𝐴, 𝑟𝑎𝑑𝑉,𝐴,𝑉      

 
where dir refers to the x or y acceleration component, nodex and nodey refer to the pivots 

or links relative to absolute and relative accelerations, ∝ is the angular acceleration, 𝜔 is 

the angular velocity obtained from the velocity program, radA is the radial acceleration, 

radV is the radial velocity, A is the absolute acceleration and V is the absolute velocity. 

Initially, there is an instance of ψ created for acceleration along x and y directions, which 

results in eight unique ψ’s for the four-bar mechanism corresponding to eight equations. 

As the equations are formed, terms such as ω! are eliminated since it refers to the angular 

velocity of ground link, which is zero. This automatic equation reduction ensures that we 
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have the same number of equations as unknowns. The number of equations that are 

eventually solved depends on the topology of the mechanism. For example, the 

acceleration equations for the four-bar mechanism used in the illustration reduce to 

solving six unknowns in six equations. This would be different for a six-bar mechanism 

or a double-butterfly linkage since those mechanisms consist of more number of links 

and pivots.  The equations are solved using a matrix inversion technique. Cramer’s rule is 

not practical in this case, since the method is extremely inefficient for matrices with order 

six or more when solved on a typical desktop computer. Likewise, the Gauss-Elimination 

and Gauss Seidel techniques require dominant diagonals, which are not guaranteed in this 

automated method for generic topologies. Therefore, the LU Decomposition technique is 

chosen wherein the existing matrix is subject to a reordering to ensure non-zero 

diagonals. The inversion technique gives appreciable results with errors on the order of 

10-9. The algorithm for generalizing the acceleration program is given below.  

 
Start For 
    Form Acceleration Equation for Each Pivot in x & y directions 

𝜓 = 𝑑𝑖𝑟,𝑛𝑜𝑑𝑒! ,𝑛𝑜𝑑𝑒! ,∝,𝜔, 𝑟𝑎𝑑𝐴, 𝑟𝑎𝑑𝑉,𝐴,𝑉      
       //Important to be unidirectional to prevent repetition 
 Get dir 
 nodex, nodey, 𝜔, 𝑟𝑎𝑑𝑉  𝑎𝑛𝑑  𝑉 
End Loop 
Form Ax=b  
//x=Column Matrix of Unknown Acceleration terms 
//A=Coefficient Matrix; b=Column of Known Values 
Eliminate Ground link data and Reduce Order  
x=A-1b 
 

5.2.3 Position Formulation 

After velocity and acceleration analyses, position kinematics can be determined 

by employing a Taylor’s series expansion or by using the graphical decomposition 

method. The pivot positions are obtained geometrically through dyadic decomposition. 

During this process, it is possible for a pivot to be in one of two positions (also referred to 
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as a solution branch in literature). The choice between the two is made based on previous 

position information as well as from the results of the numerical approximation (where 

position is approximated from velocity and acceleration information using Newton’s 

laws). Due to limitations in the dyadic decomposition technique, mechanisms such as the 

double-butterfly linkage cannot be analyzed [29]. In order to overcome this disadvantage, 

the geometric iterative technique proposed by Hernandez et al. [61] has been included to 

handle such situations. The following algorithm gives the overall methodology for 

determining position.  

  
Set Counter to 1 
Develop Adjacency Matrix for Distance between Pivots 
Set time-steps 
Rotate Input Link by ϴ 
Assign NULL values to all other pivots’ (x,y) except ground 
Start Do 
If No PIS or Slider Connection 
  If Four Bar Loop Present 
      Start from Two Known Positions 
      Link Lengths as Radii 
      Intersect Two Circles 
  Compare with NewtonMethod & PrePos 
  New Pivot Position is Obtained 
    Else  
  Geometric Iterative Technique  
Else 
 PIS or Slider Program //Circle-Line intersection 
End Loop until Pivots have (x,y)  

 
As one may notice in this implementation, pin-in-slots and prismatic joints require 

separate computation (like circle-line intersection), which is adapted into the program 

structure to increase the generality. The geometric iterative method is also programmed 

into this algorithm to operate on mechanisms that cannot be solved using dyadic 

decomposition. The algorithm checks if existing methods are applicable before 

computing velocities and position using the new method.  The position module is also 

generic since the do-while loop operates in the same way as explained during instant 
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center determination and continues until all pivots are assigned new positions. The 

position module is also programmed to determine in-feasibilities (such as the limitation 

preventing the input from rotating a full 360°) in the mechanism. At the same time, the 

direction of the input crank can be reversed to determine the maximum travel in the 

opposite direction. In this way, rocker type mechanisms can also be analyzed and 

therefore the method is not restricted to solving only those mechanisms where the input 

crank can be rotated by 360°.  

Once the kinematic properties are determined, the path generated by a path or the 

motion of a link is compared with the original problem specified by the user. This process 

is cast as an objective function, which is optimized to synthesize appropriate designs.   

5.2.4 Results of Implementation 

 This generalized implementation of kinematics of planar mechanisms with the 

different joint types is validated using mechanisms available in standard textbook 

references. The mechanisms (such as a four-bar, a quick return and a six-bar) are 

manually created following the graph approach explained in Chapter 4 and the pivots are 

assigned coordinate locations as specified in various textbook references. The simulation 

is carried out for different time steps for 360° rotation of the input crank and the output 

(position, velocity and acceleration) of the links and pivots are obtained in a text (.txt) 

file. Figure 5-2 shows the kinematics of a four-bar mechanism (shown in the center) 

obtained using this tool for 500 time-steps. The plot on the top-left corner shows the 

acceleration profile of pivot D while the one on the bottom-left displays the predicted 

velocity of pivot C located on the ternary coupler link. Similarly, the plot on the top-right 

shows the path traced by the pivot B on the input link, which is a circle, while the one on 

the bottom-right predicts the profile traced by the coupler point C. The position, velocity 

and acceleration profiles obtained for the mechanism in the figure have been verified 

using the analytical loop equations for a four-bar mechanism.  
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Figure 5-2: Kinematic properties of a four-bar mechanism 

 Similarly, the position kinematics of a quick-return mechanism is shown in Figure 

5-3, where the positions of points C, D and E are traced for 500 time-steps. These results 

are verified using the procedure given in the textbook references as well as through 

commercial packages such as Working Model and SAM. The quick-return mechanism 

example demonstrates the capability of this tool in analyzing a mechanism with R, P and 

R-P joints. The examples shown here, though simple, demonstrate the tool’s ability to 

analyze different topologies (different links and joints) within the same generic structure. 

Through a constant input angular velocity assumption, the accuracy of the 

implementation has been verified. It may also be pointed to the reader that significant 

numerical errors in Working Model affect the output values, which is eliminated in this 
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implementation and thereby results in an accurate prediction of position, velocity and 

acceleration.  

 

Figure 5-3: Position kinematics of a four-bar mechanism 

 Figure 5-4 shows the deviation in the position (defined as a ratio between the 

original value and the actual value obtained) of different links in a Watt-II mechanism 

between Working Model and our implementation. Similarly Figure 5-5 shows the 

variation in the input angular velocity (460 rad/s) of a four-bar mechanism in Working 

Model. Since this implementation is based purely on the kinematic methods shown 

above, it is not prone to the errors experienced in Working Model, which is really solving 
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the dynamics of the mechanism (forces as well as position, velocity and acceleration). 

This accuracy is essential for synthesizing different planar mechanisms.  

 

 

Figure 5-4: Variations in position values between results of Working Model and this 
implementation 

 

Figure 5-5: Variation in velocity values between Working Model and the instant center 
method in this implementation  
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 The new methods integrated in this implementation, namely the instant center 

method for the double-butterfly linkage and the geometric iterative method for position 

analysis have also been tested. Table 5-1 displays the differences in angular velocity 

between the analytical solution demonstrated by Wampler [32] and the graphical instant 

center method [36] of all link velocities in a double-butterfly linkage at an instant in time. 

In this method, the result of the analytical method (from [32]) is taken as the reference 

and compared with solutions from the graphical method and the Working Model 

simulation in terms of percentage deviation from the reference value. It could be seen 

from Table 5-1 that the link velocities of the double-butterfly linkage (described in [36]) 

obtained using the graphical method and Working Model have an error of up to 10% and 

8% respectively when compared to the analytical method [32]. The reason for the 

difference in velocities obtained using the graphical instant center method for double 

butterfly linkage is not known despite having tested the original instant center method 

extensively on mechanisms from standard textbook references. One possible way to 

overcome this deviation would be to derive a method based on the curvilinear locus 

assumption of the secondary instant center as against the rectilinear locus assumption in 

the new method. The error in the results of Working Model could be attributed to the 

numerical approximation within Working Model’s simulation engine. The geometric 

iterative method fails for the above double butterfly linkage since the method handles 

finite position problems better than initial position problems. Only through such 

generalized implementation as in this paper, we are able to truly assess their capability 

and utility in automated design synthesis. Due to their inconsistencies, the graphical 

methods for double-butterfly linkage have not been included in our final implementation.  
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Table 5-1: Comparison of angular velocities of links of a double-butterfly linkage using 
different methods 

 
 

 
Despite analytical loop equations resulting in accurate solutions and being 

applicable to any class of mechanisms, there are no generalized implementations for 

solving these non-linear equations on an n-bar scale. Therefore, this generalized 

implementation will greatly advance the field of automated synthesis of planar 

mechanisms that has so far been limited to mechanisms with fewer links and joints 

(mainly revolute joints).  

The next section will describe the new optimization based technique for solving 

the position kinematics of indeterminate mechanisms. Once the position kinematics is 

determined, the velocity and acceleration can be ascertained using existing linear loop 

equations.  

5.3 POSITION ANALYSIS FOR INDETERMINATE MECHANISMS 

       There have been several methods developed by researchers to solve the 

kinematics of indeterminate mechanisms such as the double butterfly linkage and their 

details are available in section 2.2. The new methods show promise but there are neither 

generalized implementations available for [29,32,33] nor are these methods [35,37–39] 

simple to implement and computationally efficient. Generalization, reliability and 

computational efficiency are important goals in our efforts to automatically synthesize 

(mm) 
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planar mechanisms and this has led to the development of an optimization-based 

approach for solving position kinematics of indeterminate mechanisms.  

In the optimization-based approach developed here, the lengths of different links 

in the mechanism are cast into an objective function, where the mean squared difference 

between the actual and the desired lengths is minimized. This formulation can be easily 

solved using Newton’s method since the first and the second derivatives are analytically 

obtained. This method shows great promise and is also easy to implement and generalize 

as discussed further in this section. The length-error minimization method is described in 

detailed in sections 5.3.1 to 5.3.5 followed by its applicability for different types of 

indeterminate mechanisms in Section 5.3.6. Section 5.3.7 will highlight the benefits of 

this approach followed by concluding remarks.  

5.3.1 Length-error minimization method 

The optimization-based length-error minimization approach is based on a second 

order (i.e., gradient and Hessian method) method commonly referred as Newton’s 

method. The overall process is illustrated using the flowchart in Figure 5-6. A 

walkthrough of the flowchart will be followed by a detailed explanation using an 

example of the Stephenson II mechanism. The algorithm begins with the specification of 

the known pivot positions (ground and input) and unknowns in the mechanism by the 

user, which is followed by the formulation of the objective function. The objective 

function is a length-error minimization function where the gradient (∇𝑓) and the Hessian 

(H) are analytically computed. There are two kinds of start vectors used; one for the finite 

position problem where the pivot positions at time t are used to obtain the positions at 

time t+1 and the other being random pivot positions for the initial position problem 

where information regarding lengths of all links are available. The Newton method 

commences with the calculation of the perturbation vector, δ, which is a product of the 

inverse of H and ∇𝑓 of the objective function (which is described below). This vector is 

then passed onto an optional golden section routine, which is employed to determine if 
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the perturbation is too large. If it is, then the golden section method reduces the 

perturbation magnitude to prevent instabilities. From this perturbation, a new candidate 

state x!"#  is determined and its objective function is calculated.  The new direction 

vector is subtracted from the start vector, x!"#  and the value of the objective function with 

these new positions is calculated. If the specified convergence criterion is met, then the 

values within x!"# define new positions for the pivots. If that criterion is not met, the 

cycle repeats. There may be cases where the maximum number of iterations is exceeded 

in which case, the mechanism cannot be assembled in the given configuration while 

solving the finite position problem. If the maximum number of iterations is exceeded 

while solving the initial position problem, a different randomized start vector will be used 

and the process continued. This algorithm will now be explained in detail using the 

Stephenson II mechanism shown in Figure 5-7. 
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Figure 5-6: Flow chart for the optimization-based position kinematics method 
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5.3.2 Illustrative Example  

 

Figure 5-7 Stephenson II mechanism example 

The process begins with the specification of the known and the unknown 

positions of pivots in terms of their coordinates (x, y). For the finite and the initial 

position problems, the ground pivots and the input crank are the known elements in the 

mechanism. Additionally, the finite position problem specifies information on the 

positions of the remaining pivots at a previous time step. At this time, lengths of different 

links in the mechanism are determined. Since the methodology is being developed for 

rigid bodies, there should be no change in the lengths of links at any instant. The 

coordinates of the pivots for the Stephenson II mechanism shown below are listed in 

Table 5-2 and the lengths between all pairs of pivots connected by known binary or 

ternary links are listed in Table 5-3. The pivots whose positions are known throughout 

the process are O, R and A. The other pivots namely B, C, D and E have their positions 

known at time t and the algorithm is used to determine their subsequent positions. The 

initial coordinates for pivots B, C, D and E will be considered as the starting vector for 

the finite position problem. As the input link OA is rotated, the corresponding positions 

of the pivots B, C, D and E will change. For the initial position problem, the user is 

required to specify the grounds and the input as before along with the lengths of various 

links.  The initial starting vector is randomly chosen in this case.  
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Table 5-2: Pivot positions of the Stephenson II mechanism shown in Figure 5-7 

Pivot Coordinate 
O (0.18, -6.65) 
R (10.1390, -5.9360) 
A (0.0, -2.751) 
B (1.3970,0.2370) 
C (2.7960, -2.6260) 
D (8.1040,1.3580) 
E (5.5810,0.0) 

 

Table 5-3 Lengths of different links in Stephenson II mechanism 

Link Length  
(indicated using variable names) 

OA L1 = 3.903 
OR L2 = 10.1641 
AB L3 = 3.2984 
AC L4 = 2.7987 
BD L5 = 6.800 
BC L6 = 3.1865 
CE L7 = 3.8278 
DE L8 = 2.8653 
ER L9 = 7.4841 
DR L10 = 7.5726 

 

5.3.3 Objective Function Formulation and Derivatives 

The next step in the process is to formulate the objective function, which is a 

length-error minimization function of 2n variables, where n is the number of unknown 

joints (collectively referred to as  𝐱). In the test case, n is 4 and there are 8 variables to 

solve (xB, yB, xC, yC, xD, yD, xE, yE). The ground pivots O and R and the pivot A connected 

to the input link are the known parameters and not part of the optimization. The terms in 

the objective function correspond to the lengths of links where one or more pivots of the 
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link, lk, may be unknown. The number of unknown lengths is denoted by m. In the test 

case, m is equal to 8 (AB, AC, BD, BC, CE, DE, ER, and DR). Therefore, the objective 

function is the sum of the squared-difference in the actual length, lk, and the distance 

between candidate points: 

min 𝑓 𝐱 = 𝑓

𝑥!
𝑦!
𝑥!
⋮
𝑦!

= 𝑙! −    𝑥! − 𝑥!
!+ 𝑦! − 𝑦!

!
!

!!!

!

=    𝐷!"

!

!!!

   

 
For simplicity of notation in the remaining derivation, each squared term is 

indicated as Dij. As an unconstrained optimization problem, this equation alone could lead 

to acceptable results. While using optimization to solve a system of equations seems 

imprudent (as opposed to any non-linear equation solving approaches such as root-

finding), the squaring of the entire term in Dij leads to a well-behaved, smooth and locally 

convex objective problem. Furthermore, the expression is readily and analytically 

differentiable which drastically improves our ability to employ optimization. Methods to 

solve uni-modal non-linear objective function spaces are strongly dependent on the 

quality of the search direction that can be obtained. As mentioned earlier, a pure 

Newton’s method can be employed without requiring a numerical approximation of the 

first (∇𝑓) and second derivatives (H).  

For each term, Dij, in the objective function, the partial derivative with respect to 

xi can be expressed as: 

!!!"
!!!

=   2(𝑥! −   𝑥!) 1− !!

!!!!!
!! !!!!!

!
    

This derivative with respect to xj yields the same result- only negative and similar 

equation holds for yi, and yj as well:  

 

!!!"
!!!

=   2(𝑦! −   𝑦!) 1− !!

!!!!!
!! !!!!!

!
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Obviously the derivative is zero with respect to all other variables in the objective 

function, f. With this analytical result, the gradient can be exactly calculated for all values 

of f nearly as quickly as finding the value of f. Using only the gradient information in 

optimization to determine search direction leads to the well-known Steepest-Descent 

method, which is rarely the most efficient optimization method. Fortunately, the second 

derivative is also determined analytically, thus eliminating the need to employ quasi-

Newton methods. The second derivative is the Hessian matrix and is indicated by H. The 

analytical equations for the terms are summarized in Table 5-4.  

Table 5-4: The second derivative of Dij can be expressed by the following analytical 
expressions 

 
 In the case of the Stephenson II mechanism, the gradient has 8 elements each 

comprised of two or three terms. For instance, the lengths AC, BC and CE are related to 

joint C and thus the gradient has three terms from the three relevant Dij expressions. The 

second derivative is an 8-by-8 symmetric matrix. 

5.3.4 Perturbation Vector and Golden-Section Search 

As indicated by the Newton method, the gradient and Hessian are used to 

determine the perturbation vector, d. 

𝐻×  𝛿 = ∇𝑓        

The new value for the variable, x!"# is found from 

 

𝜕!𝐷!"
𝜕𝑥!

! = 2 !1 −
𝑙!
𝑠!"
!+

2∆𝑥𝑙!
𝑠!"
!  

𝜕!𝐷!"
𝜕𝑦!

! = 2 !1 −
𝑙!
𝑠!"
! +

2∆𝑦𝑙!
𝑠!"
!  

𝜕!𝐷!"
𝜕𝑥!𝑥!

= −2 !1 −
𝑙!
𝑠!"
!−

2∆𝑥𝑙!
𝑠!"
!  

𝜕!𝐷!"
𝜕𝑦!𝑦!

= −2 !1 −
𝑙!
𝑠!"
! −

2∆𝑦𝑙!
𝑠!"
!  

𝜕!𝐷!"
𝜕𝑥!𝑦!

=
2∆𝑥∆𝑦𝑙!
𝑠!"
!  

𝜕!𝐷!"
𝜕𝑥!𝑦!

= −
2∆𝑥∆𝑦𝑙!
𝑠!"
!  

where 𝑠!" = !!𝑥! − 𝑥!!
!
+!𝑦! − 𝑦!!

!;  

                                                                      ∆𝑥 = !𝑥! − 𝑥!!;   ∆𝑦 = !𝑦! − 𝑦!! 
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 x!"# = x!"# − 𝛿           
 

This is iteratively determined until a value of x is found where 𝑓 x  is insignificantly 

close to zero (a value of 10-9 is used in the experiments shown here). The “Converged” 

box on the flowchart in Figure 5-6 indicates this condition. In fact, other convergence 

criteria are also provided in order to prevent cases of divergence (e.g. if a maximum 

number of iterations is exceeded) or stagnation (e.g. no continual reduction in the value 

of f). 

An additional step that is part of the optimization approach is the Golden Section 

line search. This is used to reduce the step taken by the perturbation vector, 𝛿. Given that 

quick changes can exist in the objective function space, we are concerned that blindly 

accepting the move might inadvertently lead to a worse solution as is shown in Figure 5-

8. Therefore, if the perturbation vector leads to better solutions than that at the former 

position (f(𝑥!"#) < f(𝑥!"#)) and of the two intermediate positions 𝑥!  and 𝑥!, then the 

change is accepted. If it is not better, than the iterative Golden Section algorithm 

commences to find the local minimum. This routine adds robustness to this method.  
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Figure 5-8: An example of how Golden Section line search is used. In case (a), the 
perturbation (between 𝑥!"# and 𝑥!"#) is sufficient, but in some cases as in 
(b) the predicted perturbation may lead to a worse solution (f(𝑥!"#)>f(𝑥!"#). 
By recursively finding the golden sections, a local minimum can quickly be 
found. 

5.3.5 Optimization Initialization and Restart 

The output of this process is an optimal vector, 𝑥∗, which is comprised of the 

individual x and y positions of all unknown pivots in the mechanism. This entire process 

is then repeated for each position of the input crank (discretized by a specified angle; 

usually 0.1° or 1°). The start vector for the finite position problem is the last calculated 

position (for the last input angle). Given that the change in the input angle is small, the 

optimization rarely needs more than two or three iterations to find the subsequent 

positions with a high degree of accuracy. This is validated in our experiments shown in 

section 5.3.6. As mentioned above, the approach can also be used to solve initial position 

problems. In this case, the starting vector, x, is randomly defined with values in the range 

of the lengths provided. This only occasionally leads to a candidate solution without an 

acceptably low value of f. The approach then continues to try new random starting 

vectors until an acceptable value is found. 

(a) (b) 

 

f 

𝒙!!⃑ 𝒐𝒍𝒅 𝒙!!⃑ 𝟏 𝒙!!⃑ 𝒏𝒆𝒘 

   

𝒙!!⃑ 𝟐 
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5.3.6 Results  

The algorithm explained in the previous subsection has been tested on several 

one-degree of freedom mechanisms. These mechanisms have been subject to both finite 

and initial position testing. The algorithm for these experiments is coded using Visual C# 

and makes use of the Object Oriented Optimization Toolbox [62] that is available as an 

open-source tool. The planar mechanism code also consists of a generic routine to 

determine the gradient and the Hessian of objective functions of any given mechanism 

consisting of revolute joints.  

5.3.6.1 Finite Position Problem 

The solution to the finite position problem is a multitude of positions that results 

in an overall path for each of the pivots in the mechanism. The various paths plotted in 

the respective figures are of those pivots not connected to ground or the input crank. The 

algorithm is tested by stepping the input link by 0.1° and 1° increments for each of the 

five mechanisms. This section lists the results from the Stephenson II example shown 

above as an illustrative example and an eight-bar mechanism known as the Single-flier 

mechanism. Appendix A then shows similar results for two double-butterfly mechanisms 

(eight-bar mechanism) and a ten-bar mechanism. 

5.3.6.2 Stephenson II Example 

The Stephenson II mechanism shown in Figure 5-6 is used to illustrate the 

solution to the finite position problem using our algorithm. OA is the input link and O 

and R are the ground pivots of this mechanism. The coordinates of the pivots are listed in 

Table 5-5. The results of the algorithm on the Stephenson II mechanism are shown in 

Figure 5-9, where the paths traversed by pivots B, C, D and E are displayed. 
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Table 5-5: Pivot positions of the Stephenson II mechanism for the finite position problem 

Pivot Coordinate 
O (0.1800, -6.6500)(input CW) 
R (10.1390, -5.9360) 
A (0.0000, -2.7510) 
B (1.3970, 0.2370) 
C (2.7960, -2.6260) 
D (8.1040, 1.3580) 
E (5.5810, 0.0000) 

 

 

 

Figure 5-9: Path traversed by the four pivots (B,C,D and E) of the Stephenson II 
mechanism in Figure 5-7 
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5.3.6.3 Single-flier Example 

Figure 5-10 shows the model of a Single-flier mechanism (an eight-bar, single 

degree of freedom system) whose pivot positions are listed in Table 5-6. Link OAH is the 

input link on this mechanism. The paths traversed by different pivots are plotted in Figure 

5-11. Through this plot, it is clear that the input link rotates a full 360°. 

 

Figure 5-10: Single-flier mechanism [35]  

 

Table 5-6: Pivot positions of the Single-flier mechanism shown in Figure 5-10 for the 
finite position problem 

Pivot Coordinate 
O (-1.5000, -8000) (input CW) 
I (3.0010, -8.9020) 
A (-3.6550, -6.3460) 
B (-4.4950, -3.4660) 
C (-2.7350, -3.9830) 
D (-0.4680, -3.5960) 
E (0.3030, -1.7010) 
F (0.2590, -5.1160) 
G (2.7400, -4.9990) 
H (-2.0790, -6.1230) 
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Figure 5-11: Path traversed by pivots B,C,D,E,F,G,H in the Single-flier mechanism of 
Figure 5-10 

 
In order to estimate the accuracy of our method, we computed the percentage 

error in link lengths by comparing with actual lengths as done in axial strain (e.g. Dl / l). 

For the single-flier mechanism, of the sixteen lengths, fourteen are compared with the 

output from the algorithm using different angle increments such as 0.1°, 1° and 3°. Two 

lengths namely that of the input link (OA) and the ground link (OI) are not considered 

since they are not subject to the optimization.  For an angle increment of 0.1°, the 
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algorithm results in a variation of 10-9 to 10-5 compared to the 10-4 obtained using 1° and 

3° angle increments. The difference is more pronounced when the mechanism is close to 

a toggle position. At such locations, there are two minima in the objective function space 

that are close together, which could affect how the optimization progresses. An example 

of 10-4 of strain is a 10cm bar that is stretched by 10µm. It is also noteworthy that there is 

no error accumulating in our technique since during each step the optimization must meet 

the criteria for each known position of the input crank.  

Upon observing how the optimization process progresses, we find that the 

solution is obtained in just a few iterations. For instance, for 0.1° increment, the method 

requires only two objective function evaluations at every position, while four and five 

iterations are required respectively for angle increments of 1° and 3°. Due to the fairly 

few objective-function evaluations required, this method is able to compute solutions 

very quickly. The number of objective function evaluations for different angle increments 

is evaluated for a convergence criterion of 10-9.  

5.3.6.4 Time of Computation 

The length-error minimization method was tested on these different mechanisms 

using a Visual C# program executed on a laptop computer with a 2.1 GHz processor and 

4GB RAM. The computational efficiency is measured in terms of the clock time from 

start to finish. This time value is measured programmatically to achieve high accuracy 

(i.e. using the stopwatch class in Visual C#). It is surprising that the total time is highest 

for the simplest of the four mechanisms. We conjecture that this is a result of the tight 

interplay between the links of Stephenson II mechanism that form a four-bar. The 

optimization is forced to solve a highly coupled problem, which requires more iterations 

than when solving more variables that are less coupled.  Table 5-7 lists computational 

times for different mechanisms for the finite position problem using two angle 

increments, 0.1° and 1°. The angle indicated in parentheses against each mechanism in 

the table is the maximum permissible angle of rotation of the input crank measured from 
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the initial position. This is important because the total time will be less for mechanisms 

where the input crank is incapable of rotating a full 360°. It is clear from the table that the 

method produces accurate results quickly, with the first position being computed in less 

than 0.2s and entire mechanism (up to the permissible angle of rotation of the input 

crank) in about 15s or less.  

Table 5-7: Speed of computation for 0.1° angle increment of the input link 

Mechanism 

0.1° 1° 

Time for first 
Position (sec.) 

Total Time 
(sec.) 

Time for first 
Position 

(sec.) 

Total Time 
(sec.) 

Stephenson II (360°) 0.075 15.593 0.071 1.82 
Single Flier 8 bar 
(360°) 0.069 1.973 0.198 0.579 

Double-butterfly 
1(75°) 0.13 3.02 0.068 3.012 

Ten Bar (9.3°) 0.204 0.424 0.095 0.142 
 

5.3.6.5 Initial Position Problem 

The results of the algorithm on initial position problems are given in this 

subsection. As explained previously, the initial position problems require computing the 

joint coordinate data given different link lengths, thereby generating the assembly. The 

program terminates when the algorithm finds a single configuration using the same error-

limits used in the finite position problem (i.e., 10-9). It is important to realize that there 

may be multiple equally correct solutions. In the following results, two distinct solutions 

are displayed along with their pivot positions. Each of these solutions is obtained through 

the process illustrated in the flowchart given in Figure 5-6, which includes multiple 

restarts of the optimization – each with different random start vectors. The results for a 

Stephenson II mechanism are shown in Figure 5-12 and Figure 5-13 whose parameters 

are listed in Table 5-8 and Table 5-9 respectively. Similarly, the solutions for a single-
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flier mechanism are shown in Figure 5-14 and Figure 5-15 and their respective pivot 

parameters are listed in Table 5-10 and Table 5-11.  

 

  

Figure 5-12: Initial position problem solution #1 for Stephenson II mechanism 

Table 5-8: Pivot parameters of the Stephenson II mechanism shown in Figure 5-12 

Pivot Coordinates 
O (0.0000, -6.6500) 
R (10.1390, -5.9360) 
A (0.0000, -2.7510) 
B (1.7732, -0.5856) 
C (3.2230, -3.4196) 
D (5.5586, -0.0172) 
E (8.0765, 1.3503) 
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Figure 5-13: Initial position problem solution #2 for a Stephenson II mechanism 

Table 5-9: Pivot parameters of the Stephenson II mechanism shown in Figure 5-13 

Pivot Coordinates 
O (0.0000, -6.6500) 
R (10.1390, -5.9360) 
A (0.0000, -2.7510) 
B (0.9833, -0.1228) 
C (-2.2032, -0.2832) 
D (3.1517, -3.2718) 
E (4.5847, -0.7875) 

 

 

Figure 5-14: Initial position problem solution #1 for a Single-flier mechanism 
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Table 5-10: Pivot parameters of the Single-flier mechanism shown in Figure 5-14 

Pivot Coordinates 
O (-1.5000, -8000) 
I (3.0010, -8.9020) 
A (3.6550, -6.3460) 
B (-2.9589, -3.4035) 
C (-2.3330, -5.1366) 
D (-0.5629, -3.6164) 
E (-4.6219, -8.2149) 
F (0.2386, -5.1102) 
G (-06114, -7.4352) 
H (-2.0927, -6.1534) 

 

 

Figure 5-15: Initial position problem solution #2 for a Single-flier mechanism 

Table 5-11: Pivot parameters of the Single-flier mechanism shown in Figure 5-15 

Pivot Coordinate 
O (-1.5000, -8000) 
I (3.0010, -8.9020) 
A (3.6550, -6.3460) 
B (-6.5056, -7.2841) 
C (-4.6950, -6.9849) 
D (-3.3384, -8.8421) 
E (-2.9522, -3.6080) 
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Table 5-11 continued.  

Pivot Coordinate 
F (-1.6661, -8.6349) 
G (-0.1890, -6.6381) 
H (-2.0789, -6.1229) 

 

5.3.6.6 Other Mechanisms 

The other mechanisms that have been tested under the finite and initial position 

analysis methods include the double butterfly linkage and the ten-bar linkage whose 

results can be found in Appendix B.   

5.3.7 Discussion 

The length-error minimization method presented here is based on an objective, 

which is a function of x- and y-coordinates of a planar mechanism. This is an alternative 

formulation to the simultaneous non-linear loop equations presented in other works 

where angles are solved instead of coordinates. Furthermore, an optimization approach is 

used to solve this function since it is well suited and easy to solve by optimization. This is 

because the objective function is nearly convex (given the profusion of quadratic terms) 

and the gradient and the Hessian can be obtained analytically – all of which are rare and 

fortuitous in engineering optimization. In addition, the use of the golden section method 

when the perturbation vector suggested by Newton’s method is flawed adds robustness 

and speed to the process. It is interesting to note that this method makes use of twice the 

number of variables in the objective function in comparison to other methods in the 

literature. This is because this formulation uses link lengths that are specified using x and 

y coordinates, while other formulations use trigonometric loop equations solving only for 

a single angle for each unknown position.  

This algorithm was also compared with the results for the double-butterfly linkage 

example given in Porta et al. [39]. This paper was selected since the authors have stated 
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that their results are in agreement with other methods based on polynomial continuation. 

This comparison is for the initial position problem, where given the link lengths and 

coordinates of the known pivots, all possible configurations of the mechanism are 

generated. The implementation presented here was configured to generate 200 different 

mechanisms in as many trials where different random starting values for the unknown 

links are provided at the onset of the optimization. Upon analyzing those resulting 

configurations, the length-error minimization method was able to generate 16 unique 

configurations (as shown in Figure 5-16) out of which four are in agreement1 with those 

presented in [39]. A histogram over the 200 trials is shown in Figure 5-17. Each of the 

200 trials completes in an average of 0.258 seconds with an error of 10-9. Though a direct 

comparison of the time for computation is not appropriate considering differences in the 

computation hardware as well as the convergence criterion used, the results from the 

reference are still presented to give a perspective of the new method’s ability. The 

reference paper gives a figure of 0.3s and 8s respectively for the box-approximations 

approach and the continuation approach to generate the required number of solutions. 

Supposing the method in the reference paper produces all six solutions in about 0.3s, that 

method is computationally efficient compared to our algorithm and the polynomial 

continuation method. Also if their convergence criterion is increased to the levels used in 

this algorithm, one may expect that method’s performance to be slower than what has 

been presented.   The timing produced by our algorithm for the finite position problem is 

also less than 0.2s for every angular orientation of the input crank (as noted in Table 5-6). 

This shows the capability of this algorithm and has been equal to or better than results 

obtained using commercial programs.  

  

                                                
1 It must be pointed to the reader that in Figure 3 in [39], the figures and the corresponding angular data 
below are not in direct agreement and care should be taken before utilizing the data. 
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Figure 5-16: Different configurations of a double butterfly linkage generated using our 
algorithm 
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Figure 5-17: Percentage of unique configurations generated out of 200 solutions 

It may seem counterintuitive that this approach generates accurate results in 

comparison to those methods that solve for angles since more variables must be solved. 

The simplistic objective function and the additional variables give this approach 

robustness as has been demonstrated in our results. In addition, this method is also able to 

generate these results fairly quickly. The method solves two types of problems; finite 

position and initial position and is able to generate the position kinematics of different 

mechanisms such as the Stephenson II, Single-flier, double-butterfly (in Appendix A and 

Appendix B) and the ten-bar linkage (in Appendix A and Appendix B) without any 

additional case-by-case tweaking. The method has also been tested on simple 

mechanisms like a four-bar (results not shown), which demonstrates the universality of 

this method. 
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5.4 CONCLUSION 

This chapter clearly explains the development of the kinematic analysis routines 

applicable for one-degree of freedom mechanisms with both four-bar loops and 

indeterminate mechanisms with revolute joints. The implementation described has been 

tested against commercial software as well as results from kinematics literature and found 

to be accurate. The implementation is able to generate solutions quickly. This is a very 

important characteristic since during optimization we do not want results delayed owing 

to a slow output kinematic analysis tool. This kinematic analysis implementation is also 

available as an open-source code at http://pmksim.codeplex.com and is hosted online at 

http://purl.org/pmks/ through Prof. Matthew I Campbell’s efforts who has not only 

incorporated the two implementations, but has also worked on graphics and some 

advanced implementations for joints such as the R-P joints.  

As part of future activities, the extension of the implementations and algorithm to 

solve mechanisms with different joint types such as prismatic (P) and revolute-prismatic 

(R-P or pin-in-slot) joints and also non-dyadic components such as gears and cams are 

being considered. The initial position problem also produces accurate results but 

additional work is required to generate all possible configurations for a given position. 

The method shows promise for initial position problems, but it may be of interest to add 

constraints on the feasibility of assembling such mechanisms. Finally, the availability of a 

tool, such as the one described here, would benefit the mechanisms community, and will 

be shown in the next chapter as to how this tool is helpful in automatically synthesize 

planar mechanisms for solving path and motion problems.  
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Chapter 6: Optimization 

 
Dimensional synthesis of planar mechanisms has been carried out using graphical 

and analytical methods stated in textbook references for simpler path generation 

problems. As the problems increase in complexity, the graphical method does not work 

and the analytical equation method requires solving complex non-linear equations and is 

tedious. In light of these difficulties and due to the increased computational capabilities 

currently, numerical optimization techniques have been employed to explore the search 

space to dimensionally synthesize mechanisms. The gradient-based numerical 

optimization methods involve computation of gradients that are easier to obtain in 

simpler problems but computationally expensive for complex problems [57] and have 

resulted in poor solutions based on the experiments conducted during the course of this 

dissertation. Researchers have used several global (or direct) optimization algorithms 

over several years to synthesize four-bar and six-bar planar mechanisms for different path 

problems. The most common algorithms used in recent times are of evolutionary nature 

namely Genetic algorithms [63], Differential evolution [64] or Particle Swarm 

Optimization [65]  or a variation of these methods primarily due to the notion that these 

methods do not require in depth information about the search space [53]. Also, the 

literature has several instances (see section on related work) of using a single planar 

mechanism like a four-bar mechanism with revolute joints for synthesis purposes. The 

aim here is to use our grammar rules and kinematic analysis to generate the topology and 

simultaneously synthesize the parameters of several different planar mechanisms for the 

same application. That is, a path-tracing problem can be solved using different 

mechanisms such as a four-bar mechanism or a six-bar mechanism also.   

The chapter is organized as follows. Section 6.1 will briefly highlight the overall 

process flow that will be used to generate and synthesize planar mechanisms. This will be 

followed by section 6.2 on objective function formulation for different problems along 

with the associated constraints. Section 6.3 will describe our algorithm selection 
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methodology that will test the benchmark problems as well as the challenge problems, 

whose results are given in Chapter 7. Finally, concluding remarks will be presented in 

section 6.4.  

6.1 PROCESS FLOW FOR AUTOMATED DESIGN OF PLANAR MECHANISMS 

The pseudo code for the overall process flow (refer Figure 3-2) followed in this 

dissertation is given below.  

 

Input: Problem Definition 
IF Problem is PATH or PATH with TIME, 
   Obtain PATH characteristics 
   SET Optimization parameters 
   ADJUST TIME Parameters if necessary 
END IF  
For Search Level 1 to N  
      Do 
           Generate all possible 1-DoF mechanisms 
       While (options>0)  
       Function: Optimize All 1-DoF using Optimization ToolBox 
             Generate possible locations for “output” label 
              Add Kinematic Analysis, Objectives to Optimization ToolBox 
              Optimize 
              Return Results to Main Loop 
        End Optimization Function 
     Store RESULTS  
End For-Loop 
Output: RESULTS for Levels till N   
 
 
While Chapters 4 and 5 focused on design space generation and kinematic analysis 

respectively, this chapter is where all that work will be combined to generate meaningful 

solutions for different user specifications. The first step in the process as shown in the 

pseudo code above is to describe the problem. The problem can be either to trace a 

trajectory or describe a motion. In the case of tracing a trajectory, a joint in the 

mechanism is required to trace the desired trajectory. The joint can either be part of a 
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binary link or a ternary link. The benchmark problems have mostly used four-bar 

mechanisms with a ternary coupler link or in rare cases six-bar mechanisms with sliding 

members.  The trajectory to be traced is usually specified in the form of Cartesian 

coordinates (x, y) that has to be traced by the concerned joint. The trajectory can also be 

time bound where the path is related to the angle of rotation of the input link. To describe 

a motion type mechanism, the angles followed by a link are specified.  

For simplicity sake, let us consider a path-tracing problem going forward to 

explain the entire process. The desired path is at first analyzed to check whether “slider” 

nodes can be assigned the “output” label (refer Chapter 4 for related discussion).  During 

this time, some optimization parameters will be set at this time and their details will be 

discussed in section 6.4. The next stage is the search process where the candidates are 

generated by combining different rules. One-degree of freedom planar mechanisms are 

segregated at every level in the search tree (refer Figure 4-7) and then passed onto the 

optimization routine where the actual parametric synthesis of mechanisms takes place. 

Within this optimization routine, the first step is to generate candidate graphs with 

“output” labels appended to the “pivot” nodes. Following this, random (x, y) coordinates 

are set for each pivot in the topology. This is different from literature where the 

formulation is in terms of loop equations and hence the lengths and angles are the initial 

specifications. The Optimization Toolbox [62] used here can incorporate custom 

objective functions that can be calculated based on the results of kinematic analysis for 

each perturbation of the design vector within the optimization algorithm. After 

optimization, the results are stored and the original candidate graph is passed to the main 

loop to generate other candidates at further levels in the search tree.  

  Depending on the number of levels traversed in the search-tree, the list of possible 

solutions (graphs that are parametrically synthesized) is collected and presented to the 

user on a webpage (shown in Chapter 7 Figure 7-1).  Those solutions, where the error 

between set of points that describe the desired path and the ones synthesized by the 

algorithm, is close to 0 (or near optimal) is ideal since that represents the mechanisms’ 
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ability to exactly (or nearly) satisfy the requirements of the user. The main purpose in this 

dissertation is to explore the design space and parametrically synthesize different 

topologies to solve a particular problem. Another focus area in this dissertation is also to 

develop an algorithm that can ensure a higher rate of obtaining near optimal solution as 

our experience in implementing different algorithms has shown that guaranteeing near-

optimal solutions is a challenging task.  Though our algorithm is able to generate more 

near-optimal solutions, a study of the search space (in Chapter 8) will reveal potential 

reasons for not being able to guarantee solutions for this class of problems.  

6.2 PROBLEM FORMULATION 

The path synthesis problem is formulated as  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝜑(𝑋) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜  𝑔! 𝑋 ≤ 0, 𝑖 = 0,1,…𝑛 

 

where 𝜑(𝑋) is the objective or error function, whose ideal value is close to 0.0 and 𝑔! 𝑋  

refers to the different constraints ranging from none to 𝑛 that are used to define the search 

space. The objective function that is commonly used in the literature is the sum of the 

squares of the distances between the points denoting the desired path and the points 

synthesized by the algorithm. There are also instances in the literature (refer Table 3-1) 

where the average distance error is used and very rarely do we find root mean square 

distance formulation being used. In our case, we have used the sum of the distances and 

the equation is given below,  

𝜑 𝑋 =    (𝑋!" − 𝑋!")! + (𝑋!" − 𝑋!")!
!

!!!

 

 

where 𝑋! is the actual value obtained from optimization and 𝑋! is the point 

corresponding to the desired path. Note that the (x, y) coordinates of the joint node with 
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“output” label is converted into a vector X and this vector is input to the optimization 

toolbox. So in effect  

 

𝑋 =    𝑥!,𝑦!, 𝑥!,𝑦!⋯𝑦!  

 

where 0,1,…n denote the points on the desired path at different time intervals.  

There are several constraints used in the literature where the ranges for various 

link lengths, maximum angle of rotation of the input crank, etc. are set. While these are 

valid design constraints especially the length since we do not want to have a very small or 

very large link length, we are not clear from a review of the literature as to how these 

constraints have been determined for most of the problems. Also, it may not be possible 

at the conceptual stage to arrive at these minute details. It should be noted that since the 

dimensional synthesis in the literature is usually limited to four-bar mechanisms, it is 

easy to specify constraints for link lengths. But if the topology is varied where there are 

several links and sliding joints, setting precise bounds for each of the links and sliding 

members becomes a tedious process and is not desirable or possible at the conceptual 

design level. Also, Grashof’s criterion is valid for a four-bar mechanism (as specified in 

the literature) but not for higher order mechanisms. Due to this, the following two generic 

constraints are used, 

 

𝑔! 𝑋 :𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚  𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔  𝐵𝑜𝑥 − 𝑀𝑎𝑥  𝑊𝑖𝑑𝑡ℎ,𝑀𝑎𝑥  𝐻𝑒𝑖𝑔ℎ𝑡 < 0 

 

𝑔! 𝑋 : 𝑆𝑝𝑎𝑐𝑒  𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝐺𝑟𝑜𝑢𝑛𝑑  𝑃𝑖𝑣𝑜𝑡𝑠 −𝑀𝑖𝑛𝑖𝑚𝑢𝑚  𝐺𝑟𝑜𝑢𝑛𝑑  𝑃𝑖𝑣𝑜𝑡  𝑆𝑝𝑎𝑐𝑖𝑛𝑔 <   0 

 

The first constraint sets a bounding box that will completely house the 

mechanism. The values for this constraint are determined based on the maximum and 

minimum bounds of the coordinates that describe the desired path. The logic used for 

setting the bounds is given below:  
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𝑀𝑎𝑥  𝑊𝑖𝑑𝑡ℎ,𝑀𝑎𝑥  𝐻𝑒𝑖𝑔ℎ𝑡 =
10,10                      0 < 𝑋 < 10

150,150                10 < 𝑋 < 100    
750,750            100 < 𝑋 < 500

 

 

The first two bounds are based on the different benchmark problems evaluated (described 

in Table 3-1 and further in Section 6.4) using our method and are based on the absolute 

values of vector X. The third bound is based on two challenge problems that will be 

discussed in section 6.5. It should be noted that the bounds can be varied and the resulting 

solutions will be different.  

The second constraint sets a minimum distance between any two-grounded pivots 

of the mechanism. The reason for introducing this constraint is to prevent the tendency of 

the algorithm to gravitate towards a minimum where the grounded pivots are on top of 

each other (explained in Chapter 8). The use of these two generic constraints mounts a 

significant challenge in trying to arrive at an optimization algorithm that can be used to 

solve different kinds of problems. If these constraints are violated, a squared exterior 

penalty (𝑝!) term is added to the objective function.  Therefore the modified objective 

function can be stated as 

 

𝜑 𝑋 =    (𝑋!" − 𝑋!")! + (𝑋!" − 𝑋!")!
!

!!!

+   𝑝!,  𝑖𝑓  𝑔! 𝑋 > 0    

 

The objective function remains the same for path and path-time problems. In this 

work, as we are interested in evaluating several mechanisms simultaneously, the results 

from the kinematic analysis have to be quick and at the same time accurate. The time for 

geometric computations involved in kinematic analysis increases if the angle increments 

of the input crank are very small say 1°. Therefore, we decided to evaluate mechanisms at 

10° increments of the input crank. But this would mean loss of information, especially if 

the kinematic analysis predicts that the mechanism is a poor candidate for the problem 

whereas in reality, the mechanism is tracing the path at positions other than the 10° 
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increments of the input. For example, consider a link that moves from position 1 to 

position 2 in Figure 6-1.  

 

Figure 6-1 A link at two positions tracing a curve  

Assume that the angular deviation between the two positions is 10°. The data (position, 

velocity and acceleration) is only available for those two points. If the desired path has a 

location that corresponds to one of the intermediate positions as shown in Figure 6-2, 

then we will not be able to detect the presence of those valid positions by using higher 

angle increments during kinematic analysis.  

 

 
 

Position	  1 

Position	  2 
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Figure 6-2: Valid intermediate positions between position 1 and position 2 

In order to prevent this situation, we have incorporated a numerical approximation 

based on the Wilson-Theta Method [66] to estimate the kinematics at intermediate 

positions (i.e., between Position 1 and Position 2 shown in Figure 6-2). This numerical 

approximation technique is able to fairly accurately predict values for positions, 

velocities and accelerations since the kinematic input to this method are predicted using 

analytical techniques (as described in Chapter 5). Its accuracy increases based on the 

granularity in the approximation i.e., a coarse subdivision (say 10 subdivisions) between 

the two positions may result in a poor approximate compared to a fine subdivision (say 

100 or 1000 subdivisions). In this dissertation, we have considered 100 subdivisions 

between two positions since the results are obtained fairly quickly and accurately at that 

level of granularity between two positions. The same procedure is used in the case of 

path-time problems, where the positions related to intermediate times (between times at 

Position 1 and Position 2) are obtained. The pseudo-code below gives an overview of the 

 

 

Position	  1 

Position	  2 

 

   

Intermediate	  Positions 
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objective function calculation for a path problem based on the results from kinematic 

analysis. The same has been extended to problems that are based on path and time 

formulation.  

 

Input: X(x,y)=Kinematic Analysis Results of “output” pivot, Y(x,y)=Desired Path 
FOR every Y, 
         Minimum Distance =0 
         FOR every X 
               Distance = Distance between X and Y 
               If Distance < Minimum Distance 
                 Minimum Distance = Distance 
         END FOR Loop 
 
        IF Minimum Distance > 0.4 
            Use Wilson-Theta Method to evaluate intermediate positions 
                  For both PATH and PATH-TIME problems 
            Compute Distances and Minimum Distances 
       END IF 
END FOR Loop 
 

A careful observation of the pseudo code will highlight the fact that the order of the path 

to be traced is not enforced to be in the exact same order as the specification. This is done 

in order to generate those mechanisms that trace different sections of the same curve at 

different instances. This will be evident in the results that are presented in the next 

chapter.  

One simplification that has been included in our formulation is the assignment of 

one (x, y) point from the desired set to the “pivot” node with “output” label. Since this 

pivot has to trace the desired path, we felt it was prudent to carry out this assignment 

thereby reducing the dimensionality of the problem by 2. Therefore, as soon as the 

“output” label is generated, this joint is assigned a default (x, y) from the desired Path. In 

path-time problems, where it is possible that the input angle required might not start at 0°, 

in those cases, the time vector is adjusted to start from 0°, without loss of any generality.  

Also, it may be pointed to the reader that the “output” label is assigned to sliding joints 
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only if the path has straight-line characteristics. That is, if the angle between consecutive 

points in the desired path is the same, then we can conclude that such paths can be traced 

using a slider. This way, unnecessary computation is avoided. There are also a few 

convergence criteria set into the optimization toolbox such as the maximum number of 

iterations and delta convergence (to exit as a result of sustained stagnation). Further 

details about these convergence parameters will be specified in section 6.3.  

All the benchmark problems as well as the Challenge problem #1 can be subject 

to the above objective function. Challenge problems #2 and #3 require modification in 

the objective function calculation. In challenge problem #2 (ref Figure 3-4 and Table 3-

4), the objective is to determine the right combination of linkages that can produce the 

motion of the coconut crab. To do so, we have adopted two approaches. The first is to 

purely consider the problem as a single-input multi-output path synthesis problem. 

During the generation process, rule #1 from the rule set #4 (ref Chapter 4 for related 

discussion) is applied on the concerned 1-degree of freedom mechanism graph after the 

assignment of “output” label. This way, the mechanism will have four “pivot” joints with 

one of the following labels: “output”, “output1”, “output2” and “output3”. Each of these 

joints will trace one of the four paths specified in the problem.  This means there are four 

objective functions that are simultaneously solved and a multi-objective formulation 

given below will be used to estimate the resulting error, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑤!𝜑!(𝑋)
!

!!!

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜  𝑔! 𝑋 ≤ 0, 𝑖 = 0,1,…𝑛 

 

where 𝜑! 𝑋  is the objective function corresponding to the ith desired path corresponding 

to each joint and 𝑤! is the weight assigned to that objective. The constraints 𝑔! 𝑋  are the 

same as the benchmark problems. Equal weights are assigned to the objective functions. 

The second approach is to use rule #2 instead of rule #1 from rule set 4. The idea in using 

that rule is that in addition to path synthesis, the two ternary links will resemble the joint 
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connection in the coconut crab (ref Figure 3-4), so that a better bio mimicking is 

achieved. Even for this case, the multi-objective formulation shown above is only used. 

Challenge problem #3 is interesting due to its varied curves. The presence of 

several inflection points indicate that no single joint in a mechanism will be able to 

produce that curve. Therefore, one approach is to use the single-input multi-output 

scenario that was carried out in challenge problem #2, whereby rule #1 from rule set #4 is 

used. The second approach adopted involves a multiple mechanism approach, where 

different output pivots will trace different segments of the curve. In both these 

approaches, the desired path is split into several segments (as shown in Figure 6-3) at 

extreme inflection points and then each curve is independently optimized. The reader 

may also notice that the curve in Figure 6-3 is one half of the overall curve in Figure 3-5. 

Due to the symmetric nature of the original curve, the mechanisms generated for the 

curve shown in Figure 6-3 can be used to replicate the entire curve as shown in Figure 3-

5. If the overall curve (Figure 3-5) is considered and is split into several segments, then 

the topological and parametric synthesis results will be different than what is presented in 

this results chapter.  
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Figure 6-3: Segmentation of the curve for challenge problem #3 from Figure 3-5. Each 
red oval highlights a different section of the curve 

Challenge problem #3 becomes a multi-objective problem with the exception that the 

four individual objectives are each single-input single-output cases. The results for the 

benchmark problems as well as the challenge problems are presented in Chapter 7.  

6.3 ALGORITHM DEVELOPMENT 

A brief overview of the benchmark problems will be provided followed by 

investigations into the algorithms that are ideal for solving these mechanisms.  
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6.3.1 Review of Benchmark problems 

Since parametric synthesis of planar mechanisms has been carried out for several 

years, there are a few problems, which have been subjected to synthesis using different 

algorithms by different researchers, classified as benchmark problems. The benchmark 

problems are predominantly path problems or path-time problems where the path is 

dependent on the angle of the input crank. The different problems are listed in Table 3-1 

along with the best results for those problems. Further details of these problems are 

available in the respective references.  

The solution for most benchmark problems is a four-bar mechanism with a 

ternary coupler link, with the pivot on the ternary coupler link traversing the path with or 

without the prescribed timing. The only exception to this is the work presented by 

Sedlaczek et al. [17] who have obtained results such a four-bar slider crank mechanism 

and two six-bar mechanisms with sliding members through a generative process in a 

genetic algorithm formulation. The objective function commonly used is the sum of the 

squares of the distances between the point traced by the mechanism and the desired point. 

The objective function is usually appended by a penalizing factor for violation of 

different constraints such as the nature of the input crank, Grashof’s criterion and lengths 

of different links. Also, most of the benchmark problems have used some form of 

evolutionary algorithm for dimensional synthesis. The results obtained are impressive 

and essential to be replicated before proceeding to solving the challenge problems. This 

will give a good indication about the robustness of the algorithms being used on the 

challenge problems.  It will also be an interesting study to present a list of alternate 

mechanisms to these benchmark problems taking advantage of our rule-based generative 

process.  

6.3.2 Algorithms Tested 

Based on the literature, different algorithms were tested on a few benchmark 

problems to check their suitability and to check if ever the solutions presented in the 
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literature are repeatable. The algorithms that were tested include Genetic Algorithm [63], 

Simulated Annealing [67], Hill Climbing [68], Nelder-Mead simplex [69], Particle 

Swarm Optimization [65], Multi-swarm optimization [70] and Pattern Search [71]. The 

implementations for Genetic Algorithm, Simulated Annealing, Hill Climbing and Nelder-

Mead simplex were already part of the optimization toolbox and it was decided to use the 

same. Other algorithms have been coded into the toolbox using pseudo codes available in 

http://msdn.microsoft.com. The reason for studying different algorithms is to come up 

with a single formulation that has a high probability of finding solutions to any given 

problem. In our tests with Genetic Algorithm, Simulated Annealing, Hill Climbing, 

Multi-swarm and Pattern search optimizations, we were unable to obtain any good results 

(i.e., a near optimal solution or a trend towards the goal) for a variety of path problems.  

Moreover, there are no details in the literature specifying any limitations in the 

algorithms  (apart from limitations that arise from stochastic formulations) that explains 

our inability to use the same algorithm (in most cases Genetic Algorithm) to attain 

similarly good results.  Hence, it was decided to explore alternate algorithms and in the 

process, we were able to obtain better results with the Nelder-Mead simplex algorithm 

although it is widely perceived to be ideal for unconstrained problems. Nelder-Mead 

simplex algorithm is part of the class of global (or direct) optimization algorithms that are 

used to obtain a global minimum. Similarly, our studies with Particle Swarm optimization 

showed that the algorithm when integrated Nelder-Mead is able to generate consistently 

better results compared to techniques illustrated in the literature. Therefore, the next 

subsections will describe our tests on these algorithms and eventual usage and results.  

6.3.3 Tests with Nelder-Mead Simplex Algorithm 

Nelder-Mead simplex algorithm is a global optimization algorithm [69,72] that 

works best for unconstrained optimization problems with fewer dimensions though it has 

been shown (in [73]) in recent times to be scalable to problems with several dimensions. 

In order to test the algorithm, we took a four-bar mechanism with a known solution and 
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tried to obtain the same using this algorithm.  Consider the four-bar mechanism with the 

curves traced by different pivots (B, C and E) shown in Figure 6-4 below.  

 

Figure 6-4: A four-bar mechanism screenshot from http://purl.org/pmks/sim  

The input joint is located at A(21,3) and the other joints are located at B(25,16), 

C(12,24), D(2,7) and E(15,5). The coordinates of point E are extracted for every 30° as 

the input rotates a full 360° to be the desired path for the optimization problem. The 

bounding box is defined by a maximum width of 50 units and a maximum height of 50 

units while the input ground has to be located at a minimum of 1 unit from other 

grounded joints. The goal is to test whether the Nelder-Mead algorithm is able to 

reproduce the original solution or synthesize a different near-optimal solution.  

Since the algorithm requires a starting vector, the approach followed here is to 

generate a set of random vectors based on a design of experiments method called Latin 

Hyper Cube sampling [74]. A maximum and minimum value for each element in the 

vector will be specified so that the eventual vector generated through the Latin Hyper 

Cube sampling will fall within the specified range. This range is usually based on the 

A 

B 

C 

D 

E 
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maximum and minimum values of the points that define the desired path and varies 

depending on the nature of this path. Generating many vectors based on this range will 

ensure sufficient exploration of the design space. These random vectors are kinematically 

analyzed and the objective function is evaluated for each case and ordered from the 

lowest to the highest objective function value.  The vector that produces the lowest 

objective function is used as the starting vector for the Nelder-Mead simplex algorithm. 

A pseudo code for the process described is given below.  

 

Obtain MAX and MIN number from the Desired PATH 
MAX = MAX + a; MIN=MIN +a //𝑤ℎ𝑒𝑟𝑒  𝑎, 𝑏   ∈ ℝ  𝑎𝑛𝑑  𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝐷𝑒𝑠𝑖𝑟𝑒𝑑  𝑃𝐴𝑇𝐻 
Set Required Number (N) based on Desired PATH  
VECTOR= Latin Hyper Cube Sampling (N, Max, Min) 
FOR EACH VECTOR 
 Perform Kinematic Analysis 
 Compare with the Objective Function 
 Add to Sort List //sorted based on the least objective function 
END FOR EACH Loop 
Return the Best Vector from the Sort List 
  

A random vector that was arrived using the above procedure for the problem in Figure 6-

4 is  

X = {  6.29054, 12.8167, 21.48074, 22.26838,  

10.51004, 6.79688, 18.21766, 7.69704  } 
 

While testing the algorithm, we set the maximum number of iterations to 100. The result 

is shown in Figure 6-5 below, where it can be seen that there is very limited change in the 

objective function value. The objective function value starts at a little above 49 and then 

only marginally reduces to 48.80. This contradicts our earlier assertion that this method 

worked better than other techniques in the literature. This behavior will be explained in 

Chapter 8.  
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Figure 6-5: Results of the Nelder-Mead algorithm starting from vector X for problem in 
Figure 6-4 

A similar trend is observed when many different random vectors were used. 

While investigating the knobs (𝜒,𝜓,𝜌,𝜎) of the algorithm that are used to generate the 

different simplex shapes through reflection, expansion, contraction, etc. , the work in [73] 

suggested using alternate values for these knobs. Those values are based on the 

dimension of the problem and are given below:  

𝜒 = 1+ 2/𝑛 

𝜓 =   0.75−
1

2 ∗ 𝑛 

𝜌 = 1, 

𝜎 = 1−
1
𝑛 

 

where n is the problem dimension. In the case of a four-bar mechanism, the dimension 

(n) is 8 (4 pivots and each pivot is represented by (x, y)). Therefore, the knobs translate to 

(1.25,0.6875,1,0.88) respectively when n = 8 for our example. Using the modified knobs, 
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the algorithm, now referred to as the Adaptive Nelder-Mead algorithm, predicts a slight 

improvement as shown in Figure 6-6 below.  

 

 

Figure 6-6: Comparison between the Original Nelder-Mead and the Adaptive Nelder-
Mead methods 

You may notice from the above figure that though there is a slight improvement between 

the two methods, the overall goal is not attained. While investigating ways to improve the 

performance, it was decided to do a line-search around the Nelder-Mead solution in order 

to jump over any local minima. Therefore, a line-search technique namely the Golden 

Section [75] is appended to improve the coordinates of the Nelder-Mead simplex. The 

Golden Section algorithm is already part of the Optimization toolbox and the only input 
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required is the step-size. The Golden Section routine is applied to the resulting vector of a 

Nelder-Mead simplex iteration so that core process is not affected by the line-search 

technique. This in turn has the effect of restarting the Nelder-Mead process each time.  

The results of appending Golden section routine to the two types of Nelder-Mead 

algorithm are shown in Figure 6-7 below. It can be seen from the figure that the Golden 

Section routine is improving both the formulations but is more pronounced in the 

Adaptive Nelder-Mead formulation.  

 

 

Figure 6-7: Effective of including Golden Section method as part of Nelder-Mead 
simplex algorithm 

 

This trend was witnessed in several iterations using different values and we can fairly 

conclude that appending Golden Section to the Adaptive Nelder-Mead algorithm is 
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definitely beneficial. But these improvements are not sufficient in getting to the goal and 

hence another algorithm namely the Particle Swarm Optimization was tested.   

6.3.4 Particle Swarm Optimization 

The two main parameters governing Particle Swarm Optimization are the number 

of particles and maximum and minimum values for the parameters. The number of 

particles required is based on the desired path specified by the user and is given below 

 

𝑛 =
5,                        0 < 𝑚𝑎𝑥,𝑚𝑖𝑛 < 10
25, 10 < 𝑚𝑎𝑥,𝑚𝑖𝑛 < 50    
50,                                        𝑚𝑎𝑥,𝑚𝑖𝑛 > 50

 

 

where max, min are the maximum and minimum coordinate values in absolute terms in 

the desired path. This formulation ensures balance between exploration and exploitation 

of the search space. These values have been arrived after several testing. The algorithm 

also requires initializing the particles. For this purpose, we decided to assign the vector 

that was selected based on the Latin Hyper Cube Sampling technique to be the position of 

one particle. That particle’s velocity along with other particles’ positions and velocities 

are randomly assigned within the algorithm. This approach was arrived after several trials 

and has been able to produce consistent results.   

The algorithm is tested on the problem shown in Figure 6-4 using the same 

starting vector used in the Nelder-Mead algorithm and one result trend is displayed in 

Figure 6-8 below. The number of iterations is limited to 100 in these trials.  
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Figure 6-8: The trend in the objective function value using Particle Swarm Optimization  

You may see from the above figure, that the algorithm is able to produce an 

objective function value that is significantly better than what was produced using the 

Adaptive Nelder-Mead Algorithm with Golden Section routine. But still the algorithm is 

unable to produce a near-optimal value. In this scenario, it was decided to combine the 

two algorithms with the understanding the results from the Particle Swarm Optimization 

will be improved by the Adaptive Nelder-Mead algorithm so that near-optimal solutions 

can be obtained. The result of this hybrid approach for the sample problem is shown 

below in Figure 6-9, where the first 100 iterations correspond to the Particle Swarm 

Optimization and the remaining 100 iterations correspond to the improvement using the 

Adaptive Nelder-Mead algorithm with Golden Section routine. The reason for limited 

correction using Nelder-Mead may be due to the fact that the vector that resulted from 

Particle Swarm Optimization is already at a local minima and the second algorithm is 

unable to improve much further from there.  
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Figure 6-9: Results of the hybrid algorithm combining Particle Swarm Optimization and 
Adaptive Nelder-Mead algorithm with Golden Section  

You may notice that the random vector and the random particles are unable to 

synthesize the desired curve. It should be pointed out to the reader that this output will be 

different for different random starting vectors X. Though the hybrid approach is unable to 

attain good results for the sample problem presented here, these are still better than the 

results that we were getting using other algorithms stated in the literature. Repeated trials 

were also conducted using all the algorithms mentioned on the benchmark problems and 

the percentage of better results was higher in this hybrid method compared to the rest and 

that is the reason for selecting this hybrid implementation over other algorithms.  This 

will be evident in our results in Chapter 7. Further experiments in Chapter 8 will 
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highlight the limitations in the search space, which will also explain the behavior of 

different algorithms in the way they do for this class of problems.  

The overall pseudo-code for the Automated Design of Planar Mechanisms is 

shown below.  

 

Input: Problem Definition 
IF Problem is PATH or PATH with TIME, 
   Obtain PATH characteristics 
   SET Optimization parameters (number of particles,n, maxWidth, maxHeight, (max,min) 
from PATH) 
   ADJUST TIME Parameters if necessary 
END IF  
For Search Level 1 to N 
      Do 
           Generate all possible 1-DoF mechanisms 
       While (options>0)  
       Function: Optimize All 1-DoF using Optimization ToolBox 
             Generate possible locations for “output” label 
 Assign (x,y) from the desired path to the “output” pivot //remove this from 
optimization  
              Add Kinematic Analysis, Objectives to Optimization ToolBox 
 Generate random Numbers based on Latin HyperCube Sampling  
 Sort based on the Objective Function Value  
 Using the Top 2 Vectors 
               Optimize  

X = Function(Particle Swarm (750 Iterations)) 
X1 = Function(Nelder-Mead (100 Iterations), X) 
Store X1 to Results 

              Return Results to Main Loop 
        End Optimization Function 
     Store RESULTS 
End For-Loop 
Output: RESULTS for Levels till N   
 

You may notice that we have assigned 750 iterations for the Particle Swarm 

Optimization and 100 iterations for the Nelder-Mead algorithm. This setting was based 

on the improvements in the objective function value that these algorithms were able to 

produce over several trials. Some of the other parameters that are provided to the 
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optimization toolbox are listed in Table 6-1. These parameters have also been arrived 

after several trials and also with an intention to optimally use the available computational 

resources so that the results are generated quickly but at the same time include sufficient 

exploitation by the algorithms.  

Table 6-1: Optimization Parameters 

Maximum No of Iterations 750 (PSO), 100 (NM) 

Maximum Age 750 

Maximum Age Convergence 0.01 

Delta X Convergence 0.001 

To Known Best Function Convergence 0.01 

Squared Exterior Penalty 10 

  

The results are automatically organized into a HTML page that lists the configuration, the 

objective function value as well as a link to the actual mechanism viewable online at 

http://purl.org/pmks/sim.  

6.4 CONCLUSION 

The chapter describes the formulation of objective functions for different 

benchmark problems as well as the challenge problems. A hybrid implementation has 

been introduced by combining Particle Swarm Optimization and Nelder-Mead simplex 

with Golden Section line-search and basic experiments detailing their trend is shown. The 

different constraints are explained and so are the pseudo codes for various sections of this 

implementation.  
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Chapter 7: Results 
 

The results of optimization to the benchmark problems and the challenge 

problems are presented in this chapter. Section 7.1 will present the solutions obtained 

using our method to the benchmark problems. Two sets of solutions will be presented. 

The first set will include the results of optimizing a four-bar mechanism for the 

benchmark problems and the second set will include a few alternate mechanisms for the 

same benchmark problems that have been generated using our technique. The solutions to 

the challenge problems will be presented in section 7.2.  

The synthesis results are automatically listed on a webpage. A screenshot of such 

a page is shown below in Figure 7-1, where MechSynth refers to Mechanical Synthesis. 

The page displays the configuration, objective function value and a link to the online 

implementation PMKS (http://purl.org/pmks/sim) where all the parameters of the 

mechanism can be obtained and the user can see the mechanism in operation. 

  

 

Figure 7-1: Snapshot of the HTML page displaying the results of optimization 

For conciseness, we will present screenshots of the generated mechanism along 

with its characteristics such as the paths traversed by each joint (in certain cases only the 

path of interest is shown for clarity) in green along with the desired path in gray. 

Depending on the orientation of the mechanism, axis lines from the online 

implementation will be visible. There are instances where the mechanisms have a 
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challenging scale. For those cases, a comparison plot between the desired and the actual 

path obtained is presented. You may also notice that the number of solutions listed vary 

between problems. This is primarily due to computational limitations and the nature of 

the search space and will be further explained in the next chapter.  

7.1 RESULTS TO BENCHMARK PROBLEMS 

The following list of tables (Table 7-1 to Table 7-10) will present the solutions 

generated by our technique to the different benchmark problems. The desired path for the 

benchmark problem will be displayed followed by the synthesis results and a listing of 

the errors obtained in comparison to the literature. The objective function will be 

specified in terms of the sum of the squares of distances so as to compare with the 

literature.   

Table 7-1: Results to Problem #1 

Problem 1:  
(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20, 45) 
Results: Four Bar Mechanism 
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Table 7-1 continued.  

 
URL: http://goo.gl/dAaUZi 
Objective function value: 0.02| 0.00007 (as per sum of the squares of distances) 
Best results from literature: 0.0002 | 0.0178 

 
 
 
 
 
 
 
 
 
 
 
 

Actual	  Path	  (in	  green) 

Desired	  Path	  (in	  gray) 

Output	  Pivot 
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Table 7-1 continued.  

 
URL: http://goo.gl/jNzlrp  
Objective function value: 0.1| 0.00018 (as per sum of the squares of distances) 
Best results from literature: 0.0002 | 0.0178 
Results Combining search and optimization given below:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Actual	  Path	  (in	  green) 

Desired	  Path	  (in	  gray) 

Output	  Pivot 
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Table 7-1 continued.  

 
URL: http://goo.gl/xCeGzy  Objective function value: 0.051 | 0.0005 

(as per sum of the squares of distances) Configuration: 2-4-4-2 -revolute-no 
prismatic 

 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-1 continued.  

 
URL: http://goo.gl/vtNR8x  Objective function value: 0 
Configuration: 3-6-7-2 -revolute-no 
prismatic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 



119 
 

Table 7-1 continued.  

 
URL: http://goo.gl/nGj9Je  Objective function value: 0 
Configuration: 3-6-7-2-revolute-
prismatic 

 

Table 7-2: Results to Problem #2 

Problem 2:  
(20, 10), (17.66, 15.142), (11.736, 17.878), (5, 16.928), (0.60307, 12.736), (0.60307, 
7.2638), (5, 3.0718), (11.736, 2.1215), (17.66, 4.8577), (20, 10) 
Results: Four Bar Mechanism 

 

Output	  Pivot 
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Table 7-2 continued.  

 
URL: http://goo.gl/yWSLcI 
Objective function value: 0.11 | 0.0013 (as per sum of the squares of distances) 
Best results from literature: 0.0047 | 1.9523 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-2 continued.  

 
URL: http://goo.gl/vv7LQH  
Objective function value: 0.46 | 0.02 (as per sum of the squares of distances) 
Best results from literature: 0.0047 | 1.9523 
Results Combining search and optimization given below: 

 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-2 continued.  

 
URL: http://goo.gl/j3MTdp  Objective function value: 

0.19 | 0.0038 (as per sum 
of the squares of 
distances) 

Configuration: 2-4-4-2- revolute-no prismatic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-2 continued.  

 
URL: http://goo.gl/zXEPrG  Objective function value: 

0.87 | 0.08 (as per sum of the 
squares of distances) 

Configuration: 2-4-4-2-revolute-no prismatic 

 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-2 continued.  

 
URL: http://goo.gl/NkpcBW  Objective function value: 0.17 | 

0.003  (as per sum of the 
squares of distances) 

Configuration: 3-6-7-2-revolute-prismatic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-2 continued.  

 
URL: http://goo.gl/FL3erL  Objective function value: 0.07 | 

0.0005 (as per sum of the squares 
of distances) 

Configuration: 2-4-4-2-revolute-prismatic 

 

Table 7-3: Results to Problem #3 

Problem 3: 
(-24, 40), (-30, 41), (-34, 40), (-38, 36), (-36, 30), (-28, 29), (-21, 31), (-17, 32), (-8, 
34), (3, 37), (10, 41), (17, 41), (26, 39), (28, 33), (29, 26), (26, 23), (17, 23), (11, 24), 
(6, 27), (0, 31) 
Result: Four-bar Mechanism 

 

Output	  Pivot 
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Table 7-3 continued.  

 

URL: http://goo.gl/h4d6NT  
Objective function value: 12.23 | 0.63 (average distance error) 
Best result from literature: 0.98 

 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-3 continued.  

 
URL: http://goo.gl/PfHySZ  
Objective function value: 10.40 | 0.52 (average distance error) 
Best result from literature: 0.98 
Results Combining search and optimization given below: 

 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-3 continued.  

 
URL: http://goo.gl/OHkz3f  Objective function value: 

12.96 | 0.648 (average 
distance error) 

Configuration: 2-4-4-2-revolute-no prismatic 

 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-3 continued.  

 
URL: http://goo.gl/zqoCy6  Objective function value: 

16.56 | 0.83 (average 
distance error) 

Configuration: 2-4-4-1-revolute-prismatic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-3 continued.  

 
URL: http://goo.gl/WxOqhN  Objective function value: 

14.00 | 0.7 (average distance 
error) 

Configuration: 3-6-7-2-revolute-prismatic 

 

Table 7-4: Results to Problem #4 

Problem 4: 
(-27,1), (-21.857, -3.214), (-16.7, -7.428), (-6.428, -15.857), (-1.285, -20.071), 
(3.857, -24.285), (9, -28.5), (15, -29.9), (20, -30), (27.2, -25), (29.2, -20), (28, -10), 
(22.7,2),  (15,10.6), (5,16.5), (-10,19.6), (-22,17), (-28,11), (-29,5) 
Result: Four-bar Mechanism 

 
 
 
 

Output	  Pivot 



131 
 

Table 7-4 continued.  

 
URL: http://goo.gl/pObY62  
Objective function value: 3.0 | 0.15 (average distance error) 
Best result from literature: 0.4154 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-4 continued.  

 
URL: http://goo.gl/dwmFEa  
Objective function value: 3.78 | 0.19 (average distance error) 
Best result from literature: 0.4154 
Results Combining search and optimization given below:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-4 continued.  

 
URL: http://goo.gl/axXi9r  Objective function value: 

5.99 | 0.30 (average 
distance error) 

Configuration: 2-4-4-2-revolute-no prismatic 

Output	  Pivot 
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Table 7-4 continued.  

 
URL: http://goo.gl/LHc2J5  Objective function value: 

21.33 | 1.07(average 
distance error) 

Configuration: 2-4-4-2-revolute-no prismatic 

 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-4 continued.  

 
URL: http://goo.gl/Tzx6du  Objective function value: 4.23 

| 0.21 (average distance error) Configuration: 3-6-7-1-revolute-prismatic 
 

 

Table 7-5: Results to Problem #5 

Problem 5: 
(5, 0), (4.9240, 0.8682), (4.6985, 1.7101), (4.3301, 2.500), (3.8302, 3.2139), (3.2129,
 3.8302), (2.5, 4.3301), (1.7101, 4.6985), (0.8682, 4.9240), (0, 5), (-
0.8682, 4.9240), (-1.7101, 4.6985), (-2.5, 4.3301)  
Result: Four-bar Mechanism 

 
 
 
 

Output	  Pivot 
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Table 7-5 continued.  

 
URL: http://goo.gl/LKK4Wj  
Objective function value: 0.09 | 0.0007 (as per sum of the squares of distances) 
Best result from literature: 0.0154 

 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-5 continued.  

 
URL: http://goo.gl/Wsa5XN  
Objective function value: 0.27 | 0.006 (as per sum of the squares of distances) 
Best result from literature: 0.0154 
Results Combining search and optimization given below:  

 
 
 

Output	  Pivot 
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Table 7-5 continued.  

 
URL: http://goo.gl/PJOsdD Objective function value: 

0.02 | 3E-5 (as per sum of 
the squares of distances) 

Configuration: 3-6-7-1-revolute-no prismatic 

 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-5 continued.  

 
 
URL: http://goo.gl/TIxRXw   Objective function value: 0.142 | 0.002 

(as per sum of the squares of distances) Configuration: 3-6-7-1-revolute-no 
prismatic 

 

Table 7-6: Results to Problem #6 

Problem 6: 
(0, 0), (1.9098, 5.8779), (6.9098, 9.5106), (13.09, 9.5106), (18.09, 5.877), (20, 0) 
Time: (π/ 6, π / 3, π / 2, 2 * π / 3, 5 * π / 6, π) 
Result: Four-bar Mechanism 
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Table 7-6 continued.  

 
URL: http://goo.gl/FjPnh9  
Objective function value: 1.184 | 0.25 (as per sum of the squares of distances) 
Best results from literature: 1.2162 | 5.5207 
Results Combining search and optimization given below:  

 
 

Output	  Pivot 
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Table 7-6 continued.  

 
URL: http://goo.gl/95cUuf  Objective function value: 1.23 | 

0.26 (as per sum of the squares 
of distances)  

Configuration: 2-4-4-1-revolute-no prismatic 

 
 
 

Output	  Pivot 
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Table 7-6 continued.  

 

URL: http://goo.gl/RFd5ie  Objective function value: 0.09 | 
0.001 (as per sum of the 
squares of distances)  

Configuration: 3-6-7-2-revolute-prismatic 

 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-6 continued.  

 
URL: http://goo.gl/qvPYUJ  Objective function value: 0.87 | 

0.13 (as per sum of the squares 
of distances)  

Configuration: 2-4-4-2-revolute-prismatic 

 

Table 7-7: Results to Problem #7 

Problem 7: 
(0.5, 1.1), (0.4, 1.1), (0.3, 1.1), (0.2, 1.0), (0.1, 0.9), (0.005, 0.75), (0.02, 0.6), (0.0, 0.
5), (0.0, 0.4), (0.03, 0.3), (0.1, 0.25), (0.15, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5), (0.5, 
0.7), (0.6, 0.9), (0.6, 1.0) 
 
Time: (0,21 * π / 180, 42 * π / 180, 63 * π / 180, 84 * π / 180, 105 * π / 180, 126 * π 
/ 180, 147 * π / 180, 168 * π / 180, 189* π / 180, 210* π / 180, 231* π / 180, 252* π 
/ 180, 273* π / 180, 294* π / 180, 315* π / 180, 336* π / 180, 357 * π / 180) 
Result: Four-bar mechanism 

 
 
 
 

Output	  Pivot 
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Table 7-7 continued.  

 
URL: http://goo.gl/FliZXK  
Objective function value: 0.36| 0.008 (as per sum of the squares of distances) 
Best results from literature: 0.0196 | 0.043 
Results Combining search and optimization given below:  
Configuration: 2-4-4-1-revolute-no prismatic | URL: http://goo.gl/SLvuQk  
Objective function value: 0.64 | 0.024 (as per sum of the squares of distances)  
 
Configuration: 3-6-7-1-revolute-no prismatic | URL: http://goo.gl/lgQdKK  
Objective function value: 0.69 | 0.028 (as per sum of the squares of distances)  

 

Table 7-8: Results to Problem #8 

Problem 8: 
x(t)=3 cos(t), y(t)=2 sin(t), where t is time 
Result: Four-bar Mechanism (the benchmark is solved using a four-bar slider crank 
mechanism while the result shown below is using a four-bar mechanism with 
revolute joints) 
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Table 7-8 continued.  

 
URL: http://goo.gl/niDoV9 | http://goo.gl/e8MkY6  
Objective function value: 1.38 | 0.17 (as per sum of the squares of distances) 
Best results from literature: 0.1298 
Results Combining search and optimization given below: 
 
Configuration: 2-4-4-2-revolute-no prismatic |  URL: http://goo.gl/cAE5ZW  
Objective function value: 1.41| 0.17 (as per sum of the squares of distances) 
 
Configuration: 2-4-4-1-revolute-no prismatic |  URL: http://goo.gl/nO8Lmx  
Objective function value: 1.61| 0.23 (as per sum of the squares of distances) 
 
Configuration: 3-6-7-1-revolute-no prismatic |  URL: http://goo.gl/xuk1tq  
Objective function value: 2.64 | 0.61 (as per sum of the squares of distances) 
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Table 7-9: Results to Problem #9 

Problem 9: 
x(t)=-cos(t)*(0.5+cos(t)), y(t)=- sin(t)(0.5_cos(t)), t is time 
Result: Four-bar Mechanism (the benchmark is solved using a six-bar mechanism 
while the result shown below is using a four-bar mechanism with revolute joints) 

 
URL: http://goo.gl/hfcCqc | http://goo.gl/KGVJav  
Objective function value: 0.02 | 0.0035 (as per sum of the squares of distances) 
Best result from literature: 8E-5 
Results Combining search and optimization given below: 
Configuration: 3-6-7-1-revolute-no prismatic |  URL: http://goo.gl/VP28pW   
Objective function value: 1.37 | 0.16 (as per sum of the squares of distances) 

Configuration: 3-6-7-2-revolute-prismatic |  URL: http://goo.gl/cq9r4Z  
Objective function value: 2.04 | 0.36 (as per sum of the squares of distances) 

Configuration: 3-6-7-1-revolute-prismatic |  URL: http://goo.gl/tFrRq6  
Objective function value: 2.28 | 0.45 (as per sum of the squares of distances) 
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Table 7-10: Results to Problem #10 

Problem 10: 
x(t)=0.5*(2*sin(t)-sin(2t)), y(t)=0.5 *(2*cos(t)+cos(2t)), t is time 
Result: Four-bar Mechanism (the benchmark is solved using a six-bar mechanism 
while the result shown below is using a four-bar mechanism with revolute joints) 

 
URL: http://goo.gl/9Mlfxm | http://goo.gl/F2qsjK  
Objective function value: 1.17| 0.12 (as per sum of the squares of distances) 
Best result from literature: 1.139  
Results Combining search and optimization given below: 
Configuration: 3-6-7-1-revolute-prismatic |  URL: http://goo.gl/7EIlmM  
Objective function value: 2.08 | 0.38 (as per sum of the squares of distances) 
 
Configuration: 2-6-7-2-revolute-prismatic |  URL: http://goo.gl/o8uXtp  
Objective function value: 0.81 | 0.06 (as per sum of the squares of distances) 
 
Configuration: 2-4-4-1-revolute-no prismatic |  URL: http://goo.gl/NuD40d  
Objective function value: 0.95 | 0.08 (as per sum of the squares of distances) 
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A summary of our results to the benchmark problems is listed in Table 7-11.  

Table 7-11 Summary of results on benchmark problems 

Problem 
Best Result from 

Literature (Objective 
Function Value) 

Result from this hybrid 
Implementation for a four-

bar mechanism 

Result for Other 
Mechanisms from 

Design Space  
1 0.0002 0.00007 0 
2 0.0047 0.0013 0.0005 
3 0.98 0.52 0.7 
4 0.4154 0.15 0.21 
5 0.0154 0.0007 3E-5 
6 1.2162 0.26 0.001 
7 0.0196 0.008 2E-5 
8 0.1298 0.17 0.61 
9 8E-5 0.0035 0.16 
10 1.139 0.12 0.06 

 

As shown in Table 7-11, the hybrid implementation is able to generate better results 

using a four-bar mechanism as well as higher order mechanisms (the best results for 

which are displayed in the last column on the right) for most of the problems except 

problem #8 and #9, which we feel is due to scaling issues in the problem (described in 

Chapter 8). It should be pointed out to the reader that the same algorithm was used on all 

problems with automatic parameter setting based on the desired path. Also shown in 

Table 7-1 to Table 7-10 are snapshots of results from the design space when the topology 

and parameters are synthesized simultaneously for each problem. The results include 

four-bar and six-bar mechanisms with revolute and prismatic joints. Higher order 

mechanisms are not shown due to computational time constraints with the facilities using 

which all these computations were carried out. In some mechanisms where the 

dimensions are very small compared to other problems, you may notice that even though 

the resulting objective function is a very low value (close to zero), the generated curve 

does not exactly match the requirements set by the user. This is one of the topics of 
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discussion in the next chapter where if the method is not scale sensitive, erroneous results 

can be obtained and does not bode well in the long-term usage of such methods in design.  

7.2 SOLUTIONS TO CHALLENGE PROBLEMS 

7.2.1 Challenge Problem #1 

The solutions to challenge problem 1 (refer Chapter 3 for data) are presented in 

Table 7-12 below. The first solution is obtained using a four-bar mechanism consisting of 

only revolute joints in the actual scale specified in the problem description. The 

remaining two solutions are obtained for the curve whose scale is increased by a factor of 

10. The best solutions for the second case are obtained using 6 bar mechanisms with both 

revolute and prismatic joints and are shown in Table 7-13.  
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Table 7-12: Results to challenge problem #1 

 
URL: http://goo.gl/1tnC4l  
Objective function value: 2.80  
Configuration: 2-4-4-1-revolute-no prismatic 

 

 

 

 

 

 

 

 

Output	  Pivot 
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Table 7-13: Results to challenge problem #1 using a different scale 

 
URL: http://goo.gl/1W7wwX  
Objective function value: 11.79 | 4.05 (as per sum of the squares of distances) 
Configuration: 3-6-7-2 -revolute-prismatic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output	  Pivot 
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Table 7-13 continued.  

 
URL: http://goo.gl/0sm9O7  
Objective function value:  10.94 | 3.49 (as per sum of the squares of distances) 
Configuration: 3-6-7-2-revolute-prismatic 

 

From the above results, a four-bar mechanism is not predicted for the scale variant of the 

problem in Table 7-13. You may also notice that the solutions obtained are not quite 

close to the required goal. One possible reason is that the number of data points on the 

desired path is much higher than other problems. This increases the computational time 

for calculating the objective function value since 36 different coordinates have to be 

checked for each iteration of the algorithm within which there are several more function 

evaluations carried out. Since the computational resource available to us does not permit 

longer computational times, we are unable to check for better results using higher order 

systems or for that matter even using four-bar mechanism. Also, the mechanism is 

constrained to follow the path exactly due to the presence of more data points and this 

increases the complexity of the search process.  But since the original application is part 

Output	  Pivot 
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of a conveyor (refer Chapter 3), the important section in that path is the straight-line 

section. Suppose the desired path is changed to a straight-line as against the original, the 

result produced is given below in Figure 7-2. This shows that it is possible to obtain 

different results that may be better just by virtue of changing the desired path.  

 

Figure 7-2 Modified challenge problem #1 (URL: http://goo.gl/65svrI ) 

7.2.2 Challenge Problem #2 

As mentioned in the previous chapter, this challenge problem has been 

approached as a path-tracing single-input multi-output problem.  The results presented 

here are only for the case 1 wherein rule #1 from rule set #4 is applied to generate the 

appropriate candidate (refer to Chapter 4 for discussion). Table 7-14 and Table 7-15 

present two results for this case. Table 7-14 also displays the path traced by the four 

joints in the actual biological animal.  

Output	  Pivot 
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Table 7-14 Results to challenge problem #2 
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Table 7-14 continued.  

Desired Curve:  

  
URL: http://goo.gl/jzZlz5  
Objective function value: 6.46  
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Table 7-15 Results to challenge problem #2 

 
URL: http://goo.gl/U4q7Ja 
Objective function value: 7.38 

 

As you may see from the results and comparing those that with the desired path, we can 

find that from a pure position synthesis point of view (leaving aside computational 

constraints), we are able to obtain an average objective function value of around 7. It 

should be noted that the given positions are absolute values from the reference image of 
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the coconut crab (refer to Chapter 3). But in reality, it is important to obtain relative 

positions of the joints so that a more meaningful result can be obtained.  

The results after applying rule #2 from rule set #4 have not been displayed since the 

computational time required for the particular mechanism using our approach exceeded 

the permissible limits of the facilities at our end.  

7.2.3 Challenge Problem #3 

The results to the challenge problem #3 are shown in the tables below. This 

problem requires tracing the logo of the University of Texas at Austin.  Table 7-16 shows 

the result for the single-input multi-output scenario. Each figure shows the section of the 

curve traced by a particular pivot (also highlighted by showing on the desired curve).  

Table 7-16 Results to challenge problem #3 
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Table 7-16 continued.  
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Table 7-16 continued.  

 
URL: http://goo.gl/D0E2Jb  
Configuration: 2-4-4-3-revolute-no prismatic 
Objective function value: 79.09 (sum of distances) 

 

From the above result, it can be seen that there are certain segments of the overall 

curve that are traced better than the rest. Only a four-bar mechanism is shown in this 

result as due to computational time limitations, we were unable to produce results with a 

six or higher-bar mechanisms that may have been a better synthesis candidate. Also, 

during optimization, only the node with “output” label (ref Chapter 4) is assigned a point 

from the desired path and is not subject to optimization while the positions of nodes with 

labels namely “output1”, “output2” and “output3” are determined by the optimization. 

Assigning a point for these graph nodes may significantly improve the result obtained in 

such single-input multi-output mechanisms since the number of variables being 

optimized is significantly reduced. It can also be seen from the result in Table 7-16 that 

since there are certain sections of the curve that have fewer points, the generated 

mechanism is able to match a few points but not able to produce the exact curve. This 
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highlights the need for an optimum number of points in the desired path such that the 

trend shown in the desired path can be obtain during synthesis.  

The other approach adopted here is the scenario where different mechanisms trace 

different sections of the curve. Due to restrictions in the time of computation available to 

us, we were unable to completely automate this process. Instead, we synthesized 

mechanisms for individual curves separately and manually selected different mechanisms 

to produce the following results. This way, we are able to show that the technique is 

promising and alternate ways to improve the usage of computational resources can be 

explored to produce better results. The following tables (Table 7-17, Table 7-18 and 

Table 7-19) display the results using this approach. The links for the mechanisms that 

trace different sections of the curve are presented. The dotted line is the desired curve and 

the mechanisms are able to cover most sections of the desired curve. All the mechanisms 

obtained are four-bar mechanisms with revolute joints. Though a few six bar mechanisms 

were also obtained, they were not selected since their error was higher than what was 

obtained using a four-bar mechanism.   
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Table 7-17 Results to challenge problem #3 

 
Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4 
URL: 
http://goo.gl/iJcvr
V  

URL: 
http://goo.gl/r03ry
2  

URL: 
http://goo.gl/XQGJs
N  

URL: 
http://goo.gl/ojvY
nE  
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Table 7-17 continued.  

Overall Result:  

 
Desired Result:  

 
Objective Function Value: 5.76 
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Table 7-18 Results to challenge problem #3 

 
Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4 
URL: 
http://goo.gl/c4rsV
Q  

URL: 
http://goo.gl/pasFt
E  

URL: 
http://goo.gl/I5EII
E  

URL: 
http://goo.gl/NoH7
Xl  
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Table 7-18 continued.  

 
Objective Function Value: 8.55 
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Table 7-19 Results to challenge problem #3 

 
Mechanism 1 Mechanism 2 Mechanism 3 Mechanism 4 
URL: 
http://goo.gl/CQZ3
y0  

URL: 
http://goo.gl/xBVR
W3  

URL: 
http://goo.gl/k7is
ZF  

URL: 
http://goo.gl/WoX
Y82  
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Table 7-19 continued.  

Overall Result:  

 
Objective Function Value: 8.86 

 

You may notice from the three results that by using multiple mechanisms, we are 

able to produce a result that is very close to the desired curve. Our view is that if the 

number of points that describe the desired path is increased, better results may be 

obtained but this is subject to increased computational expense. It should be also pointed 

out to the reader that we have employed the technique of increasing the number of points 

on the desired path for the second section of the curve in the above results for this 

challenge problem. If the constraints are changed, for instance, that the mechanisms 

should not interfere with one another, then the synthesized result will be totally different. 

All these different possibilities are discussed in the next chapter. 
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7.3 CONCLUSION 

The results obtained using our method for the benchmark problems are better than 

the existing results from the literature for most of the problems. In addition, alternate 

mechanisms for those benchmark problems that were generated by combining tree-search 

and optimization are also presented. Three challenge problems have been attempted and 

their results are shared. With better computational resources and employing better coding 

schemes to take advantage of parallelization, the algorithm may yield better results.  
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Chapter 8: Discussion  

 

In this chapter, we will discuss the results presented in the previous chapter. 

Section 8.1 will focus on the insights gathered during algorithm development and during 

various experiments performed to understand the search space. Section 8.2 will discuss 

the results of the benchmark problems, which will be followed by comments on the 

challenge problems in section 8.3. Computation time has been a major constraint in this 

research and section 8.4 will discuss some of the activities carried out in that area. 

Conclusions will be presented in section 8.5.  

8.1 ALGORITHMS AND SEARCH SPACE 

The results to the benchmark problems that are presented in this dissertation are 

better than those in the literature for most problems.  But towards the end of this section, 

we will describe how these results are not guaranteed all the time. This is a function of 

the different constraints and the size and shape of the search space. In order to understand 

how different parameters affect the solutions obtained, several experiments were 

performed on various aspects of the problem and the details are presented in the 

subsections below.   

8.1.1 Constraints and Problem Definitions 

First let us consider the constraints used during the dimensional synthesis of 

planar mechanisms. In the literature, several constraints are used such as Grashof’s 

criterion and length constraints between different pivots in the four-bar mechanism. 

Through these constraints, the size of the search space is significantly reduced although it 

is not necessarily easier to navigate. In our implementation, we are using a bounding box 

constraint where the links may take up any length but the complete position kinematics of 

the mechanism should lie within a specified region. In addition, we also specify the 

maximum and minimum limits for each joint position in the mechanism to enable us to 
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generate the starting vector using the Latin Hypercube Sampling technique. But once the 

best starting vector has been determined, the particles in Particle Swarm Optimization (or 

vertices of the simplex of Nelder-Mead simplex algorithm) will take up other positions 

during the course of swarm movement yielding better solutions to a problem. For 

instance, the initial set of particles are generated within an initial box, but due to the 

swarm movement, the final solution is enclosed within a second box while still satisfying 

the bounding box constraint. If one of the particles is assigned a position that exceeds the 

bounding box, then the particle is reinitialized and the process is continued.  

So it is possible that the initial maximum and minimum bounds that were 

assigned before generating the starting vector is no longer enforced during optimization. 

The only parameter that is enforced is the mechanism’s bounding box. This allows our 

search space to not be reduced unlike what is enforced through constraints in other 

methods. Additionally this relaxation could also be beneficial in enabling to better 

synthesize the mechanisms. This is like formulating a less constrained problem to an over 

constrained problem.  In addition to the bounding box constraint, we are using another 

constraint to space the “input” grounded pivot at a slight distance away from the other 

grounded pivots.  We will explain the reason for this constraint using the example given 

below in Figure 8-1 whose URL is http://goo.gl/nvYxYF.  

 

Figure 8-1: Four-bar mechanism used to explain “input spacing” constraint 
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This is a four-bar mechanism where input pivot is aligned with the two axes at 

(0,0) and the other grounded pivot is at (10,0). The ternary coupler pivot that traces the 

circle is at (6,6), the joint between the coupler and the input is at (0,5) and finally the 

joint between the coupler and follower is at (10,5).  The arbitrary circular path generated 

by pivots (6,6) will serve as the optional goal and the set of random neighbors are 

generated around this known vector and used as the starting vector in our search process. 

An example of the neighborhood position will be (-1,0) instead of (0,0); (11,0) instead of 

(10,0) while keeping the other positions the same. One would imagine that since the 

vector is only slightly perturbed from the actual solution, the optimization would easily 

find the original mechanism as the solution. Therefore, 28 random neighborhood 

positions differing by no more than 2 units in all positions were generated to check if the 

optimization algorithm is able to produce the original result. Out of the 28 starting 

vectors, only 11 starting vectors produced objective function values of less than 0.5 (i.e., 

with a value of 0.5 sum of distances from the desired circle).  The results are shown 

below in the Figure 8-2 (the coupler point (6,6) is not included) and none of the results 

(each result is termed as a series) ever produce the same original joint positions. This is 

possible considering the nature of the desired curve and that there are infinite solution 

possibilities. But what is intriguing is the location of the grounded pivots that are shown 

using a dotted circle in the same figure. Most of the mechanisms have their grounded 

joints very close to each other.  This led us to introduce the “input spacing” criterion so 

that the grounds are spaced apart.  
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Figure 8-2: Results of applying optimization algorithm to random neighborhood points 

The input spacing is also an inequality constraint and for test purposes we have 

been using values of 1 or 2 units between ground joints. This could be increased for 

problems with large dimensional scales.  The results for the benchmark problems as well 

as the challenge problems do not have grounded joints close to one-another primarily due 

to this constraint.  It is also clear from this discussion we are obtaining near-optimal 

solutions for only 40% of the trials. This trend was spotted while running separate 

instances of Nelder-Mead algorithm and Particle Swarm Optimization as well as on the 

hybrid implementation presented in this dissertation. This will be dealt further in section 

8.1.2.  
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An important aspect in our technique is the removal of the “output” labeled pivot 

from optimization consideration. This not only reduces the number of dimensions in the 

problem but also significantly speeds up the computation. The thinking behind this was 

that since the desired path has to follow all the points anyway, we might as well assign 

one of those points to the output location. Like the moving bounding box, this reduction 

alleviates difficulties in the search without reducing the generality of the resulting 

solutions. In terms of other constraints such as the bounding box specification, the norms 

adopted in Chapter 6 are valid for a generic class of problems.  

8.1.2 Search Space  

In the previous subsection, it was mentioned that the lack of additional constraints 

makes the search space huge. Also, in the experiment carried out in the previous 

subsection (related to Figure 8-2), only about 40% of the starting vectors resulted in a 

near-optimal solution.  This may be due to the presence of discontinuities and/or local 

minima in the search space. This is also validated by a review of the solutions obtained 

for three benchmark problems (#1, #2 and #3) at the seventh level in the search tree as 

shown in Table 8-1. As can be seen from the table, of the 24 candidates evaluated, the 

optimization is able to produce near optimal solution on all the candidates only for the 

first benchmark problem (sample results in Table 7-1) whereas the second benchmark 

problem (sample results in Table 7-2) has none and the third (sample results in Table 7-3) 

has only one solution. These results are at one instant in time and at a different instant, 

entirely different results may be predicted. To understand this variability, more studies on 

the search space are conducted.  
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Table 8-1 Number of solutions generated for three different benchmark problems at level 
7 in the tree-search 

	  
Benchmark	  	   Benchmark	  	   Benchmark	  	  

	  
Problem	  1	   Problem	  2	   Problem	  3	  

No	  of	  Solutions	   24	   24	   24	  
Near	  Optimal	  
Solutions	  /	  
Better	  than	  
Existing	  Results	  

24	   0	   1	  

 

To better understand the complexities of the space, consider the example used in 

Figure 6-4, where an arbitrary four bar mechanism consisting of revolute joints and a 

ternary coupler link is shown. The input joint is located at A(21,3) and the other joints are 

B(25,16), C(12,24), D(2,7) and E(15,5). The curve produced by E is set as the goal and 

the maximum width and height of the bounding box are each set at 50.  A set of 25 

random neighborhood positions is generated around the original solution for the pivots A, 

B, C and D. The pivot E is not part of the optimization since the output is always 

assigned a coordinate (x, y) from the desired path. Due to this, the number of variables in 

the problem is eight (each (x, y) position correspond to 2 variables). The objective 

function with respect to each of these random neighborhood positions is calculated and 

shown in Figure 8-3 below.  
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Figure 8-3: Objective function values for different neighborhood positions for the four-
bar in Figure 6-4 

The above figure (Figure 8-3) shows the objective function values for different random 

neighborhood positions of the pivots (A, B, C and D). For example, a slight perturbation 

of point A from (21,3) to (20,3) produces an objective function value of 48 i.e., the sum 

of the distances between the points traced by the curve using random position and the set 

of points describing the original curve is 48.  

Let us now walk along the unit vector starting from this new position to the 

original position and beyond and see how the objective function values are changing. 

This trend is shown in Figure 8-4 below.  
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Figure 8-4: Objective function values along a unit vector around the original solution 

The plot may be considered to be equivalent to slicing the 8 dimensional space 

(since there are 4 pivot positions that are optimized and each position is defined by (x, y)) 

and observing the trend that lies within. It can be seen that the objective function 

undergoes a drastic drop and as it proceeds towards the actual solution, there is a slight 

increasing trend in the objective function value (noticed around -10 from the origin 0). 

The drastic drop is because the Grashof’s criterion was not satisfied at the initial position. 

While moving away from the original solution along the same vector (between trials 100 

and 200), we do not find any pronounced inflections in the objective function value. But 

contrast this with Figure 8-5 below, which is from a different neighborhood position and 

it can be seen that the region on the right has several inflection points that could affect the 

algorithms’ performance and result in a poor solution with a high objective function 

value.   
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Figure 8-5: Objective function values along a unit vector around the original solution 

Now, we will use an optimization algorithm such as Nelder-Mead simplex 

algorithm to illustrate how this algorithm is able to navigate the search space using the 

first neighborhood point where A is (20,3). The starting vector is therefore 

(20,3,25,16,12,24,2,7).   For about 100 iterations, the trend produced using Nelder-Mead 

Algorithm is shown in Figure 8-6 and the vector produced after these iterations is 

(21.12,3,25.01,16.02,12.02,24.10,2.07,7.06). Though the starting objective function value 

is 48 as observed in the trend shown in Figure 8-4, we are not including the starting value 

in our plot in Figure 8-6 so as to present a clearer trend in the objective function value 

produced during optimization.  
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Figure 8-6: Objective function values obtained using Nelder-Mead optimization for a 
neighborhood point 

The algorithm is able to produce a low objective function value but is stagnant around 

0.2. Let us examine this space by moving along a unit vector generated based on the 

output from the algorithm to the actual position. That trend is shown in the figure below.   
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Figure 8-7: Objective function values trend between stagnation point in Figure 8-6 and 
the original solution and beyond 

The trend in Figure 8-7 clearly shows the presence of several points of inflection. Due to 

these points, the Nelder-Mead operations on the simplex are resulting in poor values 

around the existing region as indicated by the oval on the figure and this probably 

explains the stagnation in the objective function value produced in Figure 8-6. This trend 

is witnessed in several other examples too. Due to the search space being so different in 

different regions; one region exhibits an almost linear trend (as in Figure 8-4 and Figure 

8-5) while in another region (around the region closer to solution), we find the presence 

of many points of inflection. This example is representative of the search space for a 

typical problem in the area of planar mechanisms. As shown in the results from Chapter 

7, there are a few problems where the solutions are obtained easily (examples like 

benchmark problem #1) while in others (such as benchmark problem #3), there are not 

many solutions generated. This is shown in Table 8-1. The investigations on the nature of 
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the search space reveals that since the space is so different, it is not possible to guarantee 

solutions each time. In addition to the search space, the nature of the desired path also 

affects the algorithm output.  

8.1.3 Desired Path 

The desired Path is usually specified in terms of (x, y) coordinates. The number of 

points on the desired path affects the performance of the algorithm and the search space.  

If the number of points specified is too low, then the generated solution does not trace the 

path but just passes through those points. This can be seen in the solutions to challenge 

problem #2 and the second segment in challenge problem #3, where the number of points 

specified are too low for any solution to exactly follow the path. That is why, after 

initially synthesizing that segment in challenge problem #2 with four points, it was 

decided to increase the number of points that describe the second longhorn curve without 

loss of generality. This explains the reason for better results obtained during the multiple 

mechanism approach for the same curve. But, if too many points describe the desired 

path, the computational effort to compute the objective function increases in addition to 

algorithmic complexities in determining a near optimal solution. So finding the optimum 

number of points on the desired path is required for good performance of the algorithm. 

A potential method that can be used if a large number of points are specified (say 100) 

would involve trimming the desired path using the Ramer-Douglas-Peucker 

approximation technique [76] and then use the vector resulting from the optimization of 

the approximate path to be used while synthesizing the actual path without trimming. 

This concept of finding an approximate solution quickly and then refining the same may 

be computationally efficient.  

8.1.4 Algorithm Selection 

In the implementation presented, a hybrid approach involving Particle Swarm 

Optimization and Nelder-Mead simplex algorithm is adopted. This combination was 
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arrived after several tests. Figure 8-8 presents the improvement effected by the Nelder-

Mead simplex algorithm in 100 iterations for the solution produced by Particle Swarm 

Optimization (after 750 iterations) for benchmark problem #1. But for the same problem, 

Figure 8-9 shows that the Nelder-Mead algorithm is also able to determine near-optimal 

solutions on two out of the three trials. In both these methods, there is a stochastic 

element involved. In the Particle Swarm Optimization, the assignment of positions and 

velocities of particles is random while in the Nelder-Mead algorithm the starting vector is 

randomly generated. So the varying nature of the performance is naturally expected. You 

may also notice from Figure 8-8 that if the solution from Particle Swarm Optimization is 

already at a minimum (Trial 2), then the Nelder-Mead algorithm does not produce any 

improvement.  
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Figure 8-8 Performance of the hybrid algorithm on benchmark problem #1  
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Figure 8-9 Performance of the Nelder-Mead simplex algorithm on benchmark problem 
#1 

This simple trial proves that it is not possible to accurately predict the 

performance of any optimization method. Based on several experiments that were carried 

out on different problems, the hybrid algorithm generated more near optimal solutions 

(based on results in Chapter 7) and hence it was decided to adopt the same.  

8.2 DISCUSSION ON THE RESULTS FOR BENCHMARK PROBLEMS 

Our implementation is able to produce better results than the literature. At the 

same time, using our integrated search and optimization scheme, we are able to generate 

alternatives to the four-bar mechanism to solve the benchmark problems. The results in 

Chapter 7 show that our algorithm is able to synthesize mechanisms with revolute and 

prismatic joints. At the same time, the results also highlight the fact that the implemented 

method does not produce near-optimal solutions or solutions better than the literature on 

all mechanism topologies that are considered for synthesis. This corresponds to the 

discussion in the previous section that guaranteeing a near-optimal solution every time is 
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not practical. At the same time, since several candidates are evaluated at the same time, 

the percentage of feasible candidates is higher in this approach. Since information is scare 

about the percentage of feasible candidates for other methods in the literature, no 

comparison with literature is made in this regard  

The reader will also notice from the results that there are certain cases where the 

objective function value predicted are very low but when the actual curve is plotted, there 

is a marked difference between the actual and the desired curve. For instance, let us 

consider the benchmark problem #7. Though we have been able to produce good results, 

there are instances, such as the case shown below in Figure 8-10, where the curve is not 

traced correctly but still a low objective function value was obtained.   

 
Figure 8-10: Different output curves but still resulting in a low objective function value   

 

This indicates that the method is sensitive to scaling issues. Both the path as well 

as the resulting mechanism is in a dimensionally smaller unit scale compared to some of 

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

-‐0.1	   0.1	   0.3	   0.5	   0.7	   0.9	   1.1	   1.3	  

y	  

x	  

Original	  Curve	  

Case	  1	  

Case	  2	  



184 
 

the other problems.  Such scale sensitive problems require modifications to the objective 

function calculation procedure such that these problems are handled better. One possible 

modification that can be done is to further reduce the convergence criteria for such scale 

sensitive problems. That way, partially synthesized mechanisms can be avoided from 

being shown as potential solutions.  The other possible option is to adopt the process of 

exactly matching the points in the desired path, i.e., avoid using the Wilson-Theta 

approach. This might result in increased computational time. So there is a tradeoff 

between the input angle increments for analytical solutions versus computational time. 

Currently, the increments for the input crank are 10° coupled with the Wilson-Theta 

method for interpolating intermediate positions. This approach has been successful in 

solving most of the problems but there are instances as pointed out in Figure 8-8. Issues 

related to scale sensitivity have to been taken up further such that the applicability of this 

generic method is not affected if a user decides to employ our tool to create mechanisms 

at the milli- or micro-scales.  

8.3 CHALLENGE PROBLEMS 

Since this implementation has been able to generate good results for the 

benchmark problems, the generality of the implementation has also been tested using 

different challenge problems. The first challenge problem is a path-tracing problem. The 

result generated is encouraging considering the fact that our implementation has been 

tested on two different scales with a high number of points describing the desired path. A 

total of three results are presented and it can be seen that the path followed by all three 

mechanisms are very similar to each other despite having totally different configurations. 

Such information can be useful in understanding the limits of mechanisms and the kind of 

curves that can be generated by them. Studies have been conducted on four-bar 

mechanisms that predict a sixth-order curve, while the same cannot be said about high 

order mechanisms. This information can be also used to create a learning system that can 

understand which linkage combinations can produce a particular section of a curve. For 
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instance, in this challenge problem, there is a straight-line section followed by an angular 

section (as part of the conveyer system).  Through a learning system, we could modify 

the linkage on the fly by either adding or removing links based on the kinds of motion 

being generated. Currently the system generates a topology and then uses an optimization 

algorithm to synthesize that topology’s parameters. Instead, if the linkages are built on 

the fly based on a learning system, then that would lead this research area in a new 

direction.  

The second challenge problem has only a few points that are part of each joint’s 

desired path.  This path problem is solved as a single-input multi-output problem. The 

results for the first case (where the multiple outputs are randomly assigned) show that 

precise tracing has not been achieved. This is because of the low number of points in the 

desired path that causes the synthesis program to generate a mechanism that traces a 

circular path that lies over the desired path. The second case (where two ternary links are 

used to represent the four joints that make up the rear leg of the coconut crab) could not 

be completed due to the computational time limits at our facility.  Better results can be 

obtained by synthesizing one mechanism at a time rather than all the possible candidates 

at a particular level on the search tree.  

 The third challenge problem has also been solved using two methods – the first 

being single-input multi-output case and the second being the multiple mechanism 

approach.  In both cases, the given desired curve has been sub-divided into four since we 

do not have any information currently or confidence that a single joint in a planar 

mechanism can trace the complete curve as it is. Hence we selected this approach. It can 

be seen that the single-input multi-output case does not generate good results. This is 

primarily due to the fact that only four-bar mechanisms are used. Higher order 

mechanisms are not generated at the time of writing this dissertation primarily due to 

computational time constraints. The second approach of using multiple planar 

mechanisms to solve is able to better trace different sections of the curve as shown in the 

results. The idea of using multiple mechanisms enables amalgamation of different paths 
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traced by each mechanism to produce the composite curve. In the results, individual 

curves were determined separately and manually selected to attain the composite curve. 

This could be easily automated but again could not be done due to computational time 

constraints. One aspect in using multiple mechanisms that can be explored is how to 

generate these multiple mechanisms without intersecting with other mechanisms as well 

as avoiding a grounded pivot on one of the other curves. This could be specified as 

additional constraints similar to the “input spacing” constraint.  The other aspect is to 

determine how to create subsections of a complex curve such as the one in challenge 

problem #3. Currently, this was manually done using a simple first-order check of the 

inflection points in the curve. But a consistent methodology is required to expand this 

approach to other problems.  

8.4 COMPUTATION TIME 

One aspect in our research that has not been mentioned is the time of 

computation. While synthesizing a standalone four-bar mechanism, quoting the 

computational time (as in the literature) can provide an indication of the ability of a 

particular implementation. But in this dissertation, in addition to generating good quality 

results using four-bar mechanisms, we have been keen on exploring other planar 

mechanism designs that have rarely been carried out in the literature. In doing so, only an 

overall assessment of time is possible. For instance, Table 8-2 shows the average time of 

computation for three different benchmark problems at level #7 in the search tree. This 

indicates that the optimization algorithm spends an average of 25 minutes in trying to 

parametrically synthesize a mechanism topology. The table also shows that the time of 

computation is a function of the desired path as well as the number of valid mechanisms 

being synthesized. For instance, since more solutions are being synthesized for 

benchmark problem #1, the time for each candidate is much higher than the other two 

problems.  
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Table 8-2 Time of computation for three benchmark problems  

	  
Benchmark	  	   Benchmark	  	   Benchmark	  	  

	  
Problem	  1	   Problem	  2	   Problem	  3	  

No	  of	  Solutions	   24	   24	   24	  
Near	  Optimal	  
Solutions	  /	  
Better	  than	  
Existing	  Results	  

24	   0	   1	  

Time	  (in	  min)	   741	   635	   465	  

Time	  (in	  min)	  /	  
solution	   30.88	   26.46	   19.38	  
Average	  Time	  
(min)	   25.57	  

 

The above table gives an indication of the total time required to synthesize 

different mechanisms using this technique. Moreover, based on several tests, we 

concluded that the Particle Swarm Optimization could be allowed to run a maximum of 

750 iterations for every potential candidate followed by 100 iterations on the Nelder-

Mead algorithm.  Additionally, multi-output problems require a much higher time frame 

to arrive at a solution.  

This necessitates incorporating alternative strategies and better memory 

management and programming to ensure quicker results. One such improvement is to 

compute the positions for large angle increments of the input link by taking advantage of 

the Wilson-Theta method. In this dissertation, we have used 10° increments of the input 

link. This way, the objective functions calculations are much faster than when smaller 

time increments are used for input rotation. The Wilson-Theta approach has been 

thoroughly tested and we can confirm that there is only a minimal loss of information in 

using large increments for input angle. The other is to reduce the number of duplicate 

candidates that are generated by the grammar rules. Finally, it is important to ensure code 

parallelization to take advantage of the multi-core CPUs that are currently available.  
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8.5 CONCLUSION  

This chapter highlights some of the limitations as well as the complexities in the 

search that affect the results being generated for this class of problems. The motivations 

behind certain solution strategies are also highlighted in this chapter.  
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Chapter 9:  Summary and Future Work 
 

A methodology for automating the design of planar mechanisms is presented in 

this dissertation. Three major aspects of this research are presented in detail. The first 

aspect is the graph-grammar based representation scheme used to represent different 

elements of planar mechanisms. Using this representation scheme, grammar rules are 

formulated that are used to generate different mechanisms in an exhaustive tree search 

process The representation scheme as well as the rules formulated is generic due to the 

small set of rules required to generate all revolute and prismatic joints. Due to the small 

set of rules, there are duplicate candidates generated. Though this increases the 

computational resources required while evaluating candidates at every level in the tree, 

such rules also provide an indication to the designer or a general user about different 

ways of building a particular mechanism. The second aspect presented in this study is the 

kinematic analysis required to automatically evaluate a planar 1-degree of freedom 

mechanism. Graphical methods to evaluate position and velocity and analytical 

acceleration equation solving method have been formulated in a generic way that can 

evaluate any mechanism on the fly during the search process. In addition, since generic 

implementations of advanced methods to solve indeterminate mechanisms are not 

publicly available, an optimization-based method has been developed to solve the 

position kinematics of mechanisms with revolute joints. The kinematic analysis 

developed is also publicly available as an open-source code.  

The third and final aspect in this research is the optimization of the generated 

mechanisms to solve user-defined path problems. Here, after evaluating several different 

algorithms, a hybrid implementation of Particle-Swarm Optimization and Nelder-Mead 

optimization has been developed to automate the shape of mechanisms. This hybrid 

implementation is able to produce better results on most of the benchmark problems 

without requiring any change in the core algorithm used.  The use of the design generator 

has helped in producing mechanisms (topologies) other than a four-bar mechanism to 
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solve the different benchmark problems. The hybrid method has also been tested on three 

challenge problems. Due to the nature of the challenge problems, three different scenarios 

have been tested in this research namely single input single output, single input multi 

output and multiple mechanism approach. A discussion on the search space and the 

constraints for this class of problems are presented where different aspects that influence 

the results are investigated to understand the difficulties in consistently yielding 

solutions.    

9.1 CONTRIBUTIONS 

The overall design automation scheme has been successfully demonstrated 

through this dissertation. The following are some of the major contributions of this 

research to the design and mechanism community.  

1) Developed a generic graph-grammar based representation and rules system for planar 

mechanisms consisting of different joints 

2) Developed a generic kinematic analysis tool based on graphical and analytical 

methods for determinate 1-degree of freedom planar mechanisms 

3) Developed an optimization based approach to accurately determine the position 

kinematics of planar indeterminate mechanisms consisting of revolute joints 

4) Implemented a modification for Nelder-Mead algorithm to improve its performance 

for constrained problem class such as planar mechanism synthesis 

5) Developed a hybrid implementation of Particle-Swarm Optimization and Nelder-

Mead algorithm that is able to produce better results on most of the benchmark 

problems using four-bar mechanisms 

6) Synthesized higher-order mechanisms for benchmark problems by combining 

grammar rules to generate the mechanisms and evaluating them using the developed 

algorithm 

7) Provided insights into the search space that explains the lack of repeatability and the 

lower probabilities of algorithms finding the best or near-optimal solutions 
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8) Demonstrated that a generic tool for automated conceptual design of planar 

mechanisms can be developed 

9.2 FUTURE WORK 

In terms of advancing this work, the following are the activities that are being 

planned.  

9.2.1 Representation 

Grammar rules for R-P joints are planned so that planar mechanisms consisting of 

R, P and R-P joints can be created in addition to the current capability of generating 

mechanisms with just R and P joints. The representation will also be expanded to 

integrate machine elements like gears, which also will help advance the multiple 

mechanism approach where by mechanisms generated using our technique can be 

combined with appropriate gearing automatically to create a more complete device  

9.2.2 Kinematic Analysis 

The current optimization based method for indeterminate mechanisms will be 

improved to solve such mechanisms with sliding members. Through this implementation, 

we can ease the restriction in rules that prismatic joints can only be connected to those 

mechanisms consisting of an input four-bar loop. Incorporating computations for geared 

mechanisms as well as robust implementations for R-P joints will be part of future work 

in the area of kinematic analysis.  

9.2.3 Search and Optimization 

Improved techniques to detect duplicate mechanisms generated during the search 

techniques will be incorporated into our system since as shown in this dissertation that 

the first order isomorphism detection is unable to eliminate duplicate candidates. The 

other aspect in this research is to test our implementation on other types of problems such 

as links following a particular motion, mechanisms where there are a combination 
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requirement i.e., follow a particular path for certain orientations of the input crank and 

then a particular link will follow a particular motion.  Research will also be conducted on 

the changes that affect the curves generated as a result of adding a link or removing one. 

This information would be useful to create rules that are adaptive to the optimization 

process compared to the process demonstrated here where a topology is completely 

generated before the algorithms synthesize different parameters of that topology.  
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Appendix A: Additional Finite Position Problems 
 

Figure A-1 shows the model of a double-butterfly linkage, whose pivot positions 

are listed in Table A-1. OA is the input link of this mechanism. The results of the 

algorithm are available in Figure A-2. It may be noted that the maximum permissible 

travel of this input link is 75° beyond which the mechanism encounters a toggle position 

and the mechanism takes the topology of another kinematically equivalent branch. 

 

Figure A-1: Double butterfly linkage [36] 

Table A-1: Pivot positions of the double butterfly linkage (Figure A-1) for the finite 
position problem 

Pivot Coordinate 
O (-5.0000, 0.0000) (input CW) 
R (-2.5000, 2.5000) 
S (0.0000, 0.0000) 
A (-9.2400, 4.2400) 
B (-5.9000,9.3000) 
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Table A-1 continued.  

Pivot Coordinate 
C (-4.5000,6.5000) 
D (-5.0000,4000) 
E (0.0000,4.000) 
F (-0.1340,8.7170) 
G (5.2680,10,7820) 

 
 

 

Figure A-2: Path traversed by the pivots (B, C, D, E, F, G) of the double butterfly linkage 
in Figure A-1 

 
Figure A-3 shows the model of another double-butterfly linkage whose pivot 

parameters are listed in Table A-2. The ground pivots for this mechanism are A, R and S. 
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This example has been tested with different input links such as RD, RE and SG. The 

results of the algorithm with RE as input are shown in Figure A-4. The maximum angle 

traversed in this configuration is approximately 230°. Since the results with RD as input 

link is similar that with RE as input, they are not listed here. The results with SG as input 

are listed in Table A-3 in angle increments of 0.1°. As the maximum angle traversed in 

this configuration is only 2.9°, no graph is plotted for this case. 

 

Figure A-3: Double-butterfly linkage – example II [32] 

Table A-2: Pivot positions of the double butterfly linkage (Figure A-3) for the finite 
position problem 

Pivot Coordinate 
O (0.0000, 0.0000) 
S (13.0000, 0.0000) 
A (4.1276, 11.2684) 
B (10.4289, 14.2544) 
C (6.4193, 9.7727) 
D (5.9286, 2.8454) 
E (4.4152, 3.8987) 
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Table A-2 continued.  

Pivot Coordinate 
F (6.8309, 12.5685) 
G (8.1434, 9.8698) 
R (7.4000, 4.2000) 

Inputs: R; S (CW) 
 
 

Figure A-4: Path traversed by pivots (A, B, C, D, F, G) with RE as input 
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Table A-3: Positions of pivots at angle increments of 0.1 ° with SG as input 

 
 

 
Figure A-5 shows the model of a ten-bar mechanism, whose pivot positions are 

displayed in Table A-4 where O, Q, R and S are the ground pivots and SI is the input 

link. The results of the algorithm are displayed in Table A-5. The maximum angle 

traversed by the input link in this configuration is 9°.  This is another example 

demonstrating the capability of the method in solving different types of planar 

mechanisms.  
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Figure A-5: Ten-bar mechanism [77] 

 

Table A-4 Pivot positions of the ten-bar mechanism for the finite position problem 

Pivot Coordinate 
O (-1.2500, -6.4000) 
S (12.3020, -3.7960) 
A (-1.1860, -4.6000) 
B (0.7330, 1.3560) 
C (2.6280, -1.7200) 
D (0.7010, -4.4430) 
E (3.8870, -3.8080) 
F (8.5290, -1.6950) 
G (5.7100, -0.8030) 
H (10.1200, -2.5930) 
I (12.2380, 1.1040) 
R (8.9500, -4.0900) 
Q (6.1750, -4.7290) 

Input Link: SI (CW) 
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Table A-5: Positions of pivots (A, B, C, D, E, F, G, and H) at angle increments of 1° 

 
 

 

  

x y x y x y x	   y x y x y x y x y
0 10.12 -‐2.59 5.71 -‐0.80 0.70 -‐4.44 3.89 -‐3.81 8.53 -‐1.69 2.63 -‐1.72 0.73 1.36 -‐1.19 -‐4.60
1 9.99 -‐2.48 5.70 -‐0.43 0.92 -‐4.37 4.06 -‐3.54 8.94 -‐2.07 3.10 -‐1.24 0.66 1.42 -‐0.95 -‐4.62
2 10.03 -‐2.48 5.77 -‐0.35 1.06 -‐4.37 4.18 -‐3.49 9.14 -‐2.29 3.38 -‐1.01 0.70 1.41 -‐0.71 -‐4.68
3 10.06 -‐2.47 5.83 -‐0.27 1.22 -‐4.40 4.32 -‐3.45 9.35 -‐2.56 3.72 -‐0.78 0.83 1.39 -‐0.78 -‐4.66
4 10.09 -‐2.46 5.90 -‐0.20 1.43 -‐4.48 4.50 -‐3.42 9.58 -‐2.95 4.21 -‐0.52 1.09 1.31 -‐0.70 -‐4.69
5 10.13 -‐2.47 5.98 -‐0.15 1.81 -‐4.73 4.79 -‐3.46 9.88 -‐3.73 5.17 -‐0.19 1.78 1.07 -‐0.57 -‐4.73
6 10.21 -‐2.49 6.05 -‐0.18 1.83 -‐4.72 4.81 -‐3.46 9.90 -‐3.76 5.20 -‐0.18 1.81 1.07 -‐0.57 -‐4.73
7 10.27 -‐2.51 6.13 -‐0.19 1.86 -‐4.72 4.83 -‐3.45 9.91 -‐3.78 5.23 -‐0.18 1.83 1.07 -‐0.56 -‐4.73
8 10.32 -‐2.53 6.20 -‐0.19 1.91 -‐4.71 4.86 -‐3.42 9.92 -‐3.81 5.27 -‐0.17 1.87 1.07 -‐0.55 -‐4.72

9 10.37 -‐2.54 6.27 -‐0.18 1.96 -‐4.71 4.88 -‐3.39 9.93 -‐3.85 5.31 -‐0.16 1.90 1.06 -‐0.54 -‐4.72

Pivot	  B Pivot	  AAngle Pivot	  H Pivot	  G Pivot	  D Pivot	  E Pivot	  F Pivot	  C
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Appendix B: Additional Initial Position Problems 
 

The results of the initial position problem for a double-butterfly linkage and a ten-

bar linkage are presented in this section. The length parameters for the double-butterfly 

linkage are taken from the mechanism shown in Figure A-1 and the two solutions for this 

linkage are shown in Figure B-1 and Figure B-2 along with their pivot coordinates in 

Table B-1 and Table B-2 respectively. Similarly Figure B-3 and Figure B-4 are the two 

solutions for a ten-bar linkage (length parameters are taken from mechanism shown in 

Figure A-5) whose pivot coordinates are displayed in Table B-3 and Table B-4 

respectively.  

 

Figure B-1: Initial position problem solution #1 for a double butterfly linkage  

Table B-1: Pivot parameters of the double butterfly linkage shown in Figure B-1 

Pivot Coordinate 
O (0.0000, 0.0000) 
S (13.0000, 0.000) 
A (11.5948, 3.0345) 
B (7.2705, -2.4634) 
C (12.4648, 0.4835) 
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Table B-1 continued.  

Pivot Coordinate 
D (5.9286, 2.8454) 
E (4.4192, 3.9521) 
F (4.1993, -5.0235) 
G (2.3147, -2.6617) 
R (7.4000, 4.2000) 

 

 

Figure B-2: Initial position problem solution #2 for a double butterfly linkage  

Table B-2: Pivot parameters of the double butterfly linkage shown in Figure B-2 

Pivot Coordinate 
O (0.0000, 0.0000) 

          S  (13.0000, 0.0000) 
A (3.3367, 11.5273) 
B (7.9666, 6.3132) 
C (2.5420, 8.9086) 
D (5.9286, 2.8454) 
E (6.8546, 1.2503) 
F (7.3409, 10.2372) 
G (10.3111, 10.6664) 
R (7.4000, 4.2000) 
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Figure B-3: Initial position problem solution #1 for a ten-bar mechanism  

Table B-3: Pivot parameters of the ten-bar mechanism shown in Figure B-3 

Pivot Coordinate 
O (-1.2500, -6.4000) 
S (12.3020, -3.7960) 
A (-2.4556, -5.0559) 
B (3.7091, -6.1585) 
C (1.8439, -3.0581) 
D (-0.3168, -1.9833) 
E (2.7503, -3.0671) 
F (7.4314, -1.0742) 
G (5.8366, -1.3178) 
H (10.3632, -2.7609) 
I (12.2380, 1.1040) 
R (8.9500, -4.0900) 
Q (6.1750, -4.7290) 
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Figure B-4: Initial position problem solution #2 for a ten-bar mechanism  

Table B-4: Pivot parameters of the ten-bar mechanism shown in Figure B-4 

Pivot Coordinate 
O (-1.2500, -6.4000) 
S (12.3020, -3.7960) 
A (-1.3395, -4.6011) 
B (4.9148, -4.7995) 
C (2.2797, -7.27128) 
D (10.6262, -3.79518) 
E (8.9997, -0.9829) 
F (3.9378, -1.6078) 
G (5.5679, -0.2241) 
H (9.8043, -2.3931) 
I (12.2380, 1.1040) 
R (8.9500, -4.0900) 
Q (6.1750, -4.7290) 
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