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Steady supercritical Taylor vortex flow 

By J. E. BURKHALTER? AND E. L. KOSCHMIEDER 
College of Engineering, The University of Texas, Austin 

(Received 5 September 1972) 

Experiments studying steady supercritical Taylor vortex flow have been made 
using pairs of long cylinders with two different radius ratios, three fluids of 
different viscosities and three different end boundaries for the fluid column. The 
emphasis in these experiments is on the determination of the wavelength of the 
Taylor vortices and the size of the end rings. The wavelength which one measures 
in a finite cylinder differs from the wavelengths found theoretically for infinitely 
long cylinders. Provided that the end effects were properly taken into account, 
the wavelength of singly periodic Taylor vortices in an infinitely long cylinder was 
found to remain constant between TIE = 1 and TIT, w 80 in experiments with 
radius ratios 7 = 0.505 and 7 = 0.727. Further studies of Taylor vortex flow a t  
very high Taylor numbers, where the vortices are either doubly periodic or truly 
turbulent, showed that the wavelength increases under these conditions. How- 
ever, the observed wavelengths were no longer unique but distributed statistically 
around a wavelength larger than the critical wavelength. 

1. Introduction 
Supercritical Taylor vortex flow is one of the principal objects of study in the 

current efforts t o  develop a nonlinear stability theory. The work on this topic has 
recently been reviewed by Stuart (1971). It is important that further experi- 
mental data be obtained so that the success of the theoretical endeavours can 
be verified. The information which follows most directly from an experiment 
with supercritical Taylor vortices concerns the size or the so-called wavelength 
of the vortices. The present investigation studies the wavelength of Taylor 
vortices which are established at  the critical Taylor number T, and whose Taylor 
number is later increased quasi-steadily. The question of how the wavelength of 
a Taylor vortex may vary if the Taylor number T is increased slowly has 
apparently not been investigated theoretically. However, information is available 
concerning the possible range of wavelengths for given supercritical T. The most 
recent theoretical investigation of the range of stable wavelengths, that is wave- 
lengths for which the calculated Taylor vortex flow is stable to axisymmetric 
disturbances, has been made by Kogelman & DiPrima (1970). Knowledge of the 
actual behaviour of the wavelength under supercritical conditions is uncertain; 
there are several contradictory statements concerning the wavelength in the 
experimental literature. Pai (1943), working with a short apparatus with radius 

t Present address : Auburn University, Auburn, Alabama. 

35-2 



548 J. E. Burkhalter and E .  L. Koschmieder 

ratio 7 = R.,IRo = 0.88, observed a change from 6 to 4 rings a t  fairly high Taylor 
number. A reduction of the number of rings is equivalent to an increase in the 
wavelength. Schdtz-Grunow & Hein (1956) have published photographs which 
likewise show a reduction of the number of vortices when the Taylor number was 
increased to very high values. They used a long apparatus with 7 = 0.84. An 
increase of the wavelength in the case of doubly periodic flow in a long apparatus 
with 7 = 0.874 has, furthermore, been observed by Coles (1965). The first 
deliberate measurements of the wavelength h seems to have been made by 
Donnelly & Schwarz (1965). Their measurements indicate a small decrease of 
h up t o  T = 2100 in a set-up with 7 = 0.95. However, when 7 was either 0.90 or 
0.85 a definite increase of h was observed. When 7 = 0.85 the increase of h was 
observed up to T = 45 000, corresponding to T/% = 25. In  this case the flow had 
a small ‘harmonic distortion’. On the other hand Snyder (1969), working with 
singly periodic flow in a long apparatus with 7 = 0.5, found that “the variation of 
wavelength with Taylor number is linear and the slope is exceedingly small and 
negative”. 

It is usually assumed that the similarity between Bknard convection and 
Taylor vortex flow holds for supercritical conditions too. Prom this point of view 
one should expect an increase of the wavelength of Taylor vortices with Taylor 
number, since it is an unambiguous result of experimental work that the wave- 
length of Bihard convection increases with increased Rayleigh number. For 
a review of the relevant investigations see Koschmieder (1973), who cites ten 
papers all of which demonstrate the increase of A. An actual increase of the wave- 
length of Taylor vortices would agree with the fairly clear-cut evidence obtained 
by Schultz-Grunow & Hein (1956). However, it remains tobeshowninmuchmore 
definite form under which conditions and in which interval of Taylor numbers 
the wavelength changes and by how much. 

2. Description of the apparatus 
A schematic section through the apparatus is shown in figure 1. The working 

fluid was placed in the space between two concentric cylinders mounted verti- 
cally. The outer cylinder was held stationary at  all times while the inner cylinder 
was rotated around the axis of the apparatus. The outer cylinder was a pyrex 
glass pipe which was borrowed from the Hydrodynamics Laboratory of the 
University of Chicago, and was the same as that used by Donnelly & Fultz (1960). 
The inside surface was ground smooth so that the internal radius was 6.285 
& 0.006 cm. The length of the glass cylinder was 91.44 cm and the wall thickness 
was about 7 mm. 

Two inner cylinders were used in the experiments. The first cylinder was brass 
and was machined to B diameter of 6.350 -t 0.003 cm. At any particular location 
no variation in the diameter was detectable with a dial indicator accurate to 
0.001 in. The variation in diameter of f 0.003 cm occurred because of machining 
taper over the length of the cylinder. With this cylinder a gap width of 3.110 

0.006 cm was obtained; the radius ratio 7 = R,/R, was then 0.505. The second 
inner cylinder was bronze and was machined to a diameter of 9.144 & 0.003 cm, 
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FIGURE I .  Section through the apparatus. \\\\, inner cylinder assembly; 1/11, support 
frame assembly; v&,, support flanges for outer glass cylinder; f@, fluid. 

where again the variation in diameter was due to machining taper. The gap 
width was in this case 1.713 .t 0.006 cm and 7 = 0-727. Both cylinders were 
polished to a near mirror finish. The fluid column length was 87.30 cm, with both 
cylinders. There was space for 14 rings (28 cells) if r ]  = 0-505 and 25 rings if 

The inner cylinder was turned by a Graham drive. Using various gear belt 
pulley systems, the angular velocity !2 of the inner cylinder was continuously 
variable up to 600 revlmin. This system could maintain any given rotation rate 
to an accuracy of 0.4 yo of the mean angular velocity. Precise measurement of 
the time for one revolution, i.e. the angular velocity of the inner cylinder, was 
obtained electronically with a microsecond counter. The angular velocity of the 
inner cylinder could be changed without sudden finite steps by using a small 
motor to turn the speed control of the Graham drive. The Taylor number T for 
an apparatus with radius ratio 7 is given by the formula (Roberts 1965) 

r ]  = 0.727. 

with d the gap width and v the kinematic viscosity. 
Three different fluids were used in the experiments, two being commercial 
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Temperature Fluid 1 Fluid 2 Fluid 3 
("(4 Glycerol Medium oil Heavy oil 

Kinematic viscosity 22 0.029 0-448 1.460 
(em2 s-l) 23 0.026 0-424 1.420 

24 0.024 0.400 1.380 

TABLE 1. Viscosity of fluids used 

(Gulf Harmony) machine oils and one a water-glycerin mixture. The viscosity 
of these fluids was measured and is listed in table 1.  

The viscous diffusion times t = d2/v for the case 7 = 0.727 were 108 s, 6.9 s and 
2.0 s for fluids 1, 2 and 3 respectively. In  all experiments with the fairly viscous 
fluids 2 and 3, the flow was always in equilibrium when the increase of the rotation 
rate was controlled by the secondary gear motor and the acceleration rate of the 
inner cylinder was either 0.0014rad/s2 or 0.00077 rad/s2. Also, in all cases, when 
increases of C2 were made by hand and were consequently unsteady, the fluid 
adjusted to equilibrium in around a minute. Steady experiments, when referred 
to here, are concerned with such conditions. With fluid 1, equilibrium was not 
established as easily since the diffusion time is so much longer. Since, on the other 
hand, with fluid 1 the range of possible Taylor numbers is very much larger, it is 
practically impossible to go through the entire Taylor number range with the 
fluid in equilibrium all the time. Hence, Q was increased stepwise, followed by 
long waiting periods in which the fluid obtained equilibrium. Finally, at  very high 
Taylor numbers, when the flow was turbulent, the diffusion time of fluid 1 
decreased drastically. Waiting times of about a minute then assured equilibrium. 

The fluid motion was made visible by adding aluminium powder to the liquids. 
This tracer makes the fluid appear dark (black) if the motions in the fluid are in 
the radial direction towards or away from the observer. The fluid appears light 
(silvery) if the fluid is moving parallel to the observer. 

A cathetometer accurate to k 0.1 mm was used to measure the size or height 
of the rings or cells. Usually five cells or rings were measured: the two end cells, 
the rings adjacent to the end cells (or rings) and a ring in the middle of the fluid 
column. There were experiments in which the sizes of all the rings in the column 
were measured. It was found that the five measurements mentioned above were 
representative and were adequate for experimental analyses. 

A sample of measurements of the vertical extent 6 of all cells is given in table 2. 
Results for four rings adjacent to the upper and lower boundaries of the fluid are 
listed together with those for two rings in the middle of the column. The average 
length of all rings in the fluid column is listed with the standard deviation of the 
measurements of all rings. The first line in table 2 shows results for the large gap, 
where the accuracy of the measurement is best and the end effects are large. It 
shows that the second ring at both boundaries is about 1% larger than the 
average ring size. With the small gap the rings adjacent to the end ring usually 
do not differ from the average ring size within the error of measurement. In other 
words, the end boundaries affect the size of the second ring very little. All photo- 
graphs of the vortices substantiate this. The variation of the size of the second 
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TOP Middle - A 

0.505 4.23 5.80 5.07 5.04 5.07 5.02 5.03 
0.727 4.23 (Om) { 3.84 3.45 3.48 3.46 3.39 3.44 

7 TITc Rings: 1 2 3 4 1 2 

Bottom 
I > 

4 3 2 1 8 he, Fluid 2 Rings 

5.00 5.00 5.08 5-94 5.02+ 0.03 1.61 Resting end 17 
3.44 3.51 3.48 3.82 3.46k0.03 2.02 boundaries 25 

TABLE 2 

rings is a t  most about 1 yo and affects the measured average size of all rings by at 
most 0.15%, which is small compared with the standard deviation of the 
measurements of all rings. 

Further details of the apparatus concerning the very precise alignment of the 
cylinder axes, the temperature control and the mounting of the apparatus cannot 
be discussed here but can be found in Burkhalter (1972). 

3. Wavelength definition 
Since experiments can only be made in cylinders of finite length, an experi- 

menta,lly measured wavelength differs from the theoretical wavelength A, which 
is defined as the ratio of the vertical extent of one ring to the gap width in a 
cylinder of infinite length. For experimental investigations, two definitions of 
the wavelength must be considered. The first definition of the wavelength for 
a finite fluid column makes no provisions for end effects, and is 

A, = L/Nd, (2) 

where L is the fluid column length, N is the number of rings ( = half the number of 
cells) and d is the gap width. At the onset of instability, A, can differ from the 
theoretical wavelength h by the amount AAlh = If: 100/2N %, because an integral 
number of rings N has to fill the fluid column, the so-called quantization condi- 
tion. The wavelength defined by ( 2 )  cannot change unless the number of Taylor 
vortices changes. Also, the uncertainty Ah changes only with N ,  regardless 
of whether the conditions are critical or supercritical. The wavelength as defined 
by (2) approximates the wavelength in an infinite cylinder whenever L / d  is large. 
Variations in the end cell size then have increasingly less bearing on the other 
cells in the fluid column. 

The second definition of an experimentally measured wavelength takes into 
account changes in the end cell size, as well as changes in the number of rings. 
The effective wavelength is defined by the formula 

h e B  E (L-  E)/N’d = &Id, (3) 
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where E is the sum of the size of the two end cells or rings, 6 the actually measured 
vertical length of a ring free from end effects and N’ is the number of rings 
excluding the end rings. Great care must be exercised in interpreting results 
obtained with & since the effective wavelength is a function of the end cell 
size E. The effective wavelength can vary continuously since the end cell size can 
vary continuously with Taylor number. However, changes in the end cell size are 
not necessarily caused by changes in the size of Taylor vortices but rather are due 
to the boundary conditions at  the ends of the fluid column. Also, the uncertainty 
Ah due to quantization is only k A / 2 N  at the onset of instability. For super- 
critical conditions, AA is a function of AE too. However, as does A,, the effective 
wavelength A,, approximates the theoretical h if L / d  is sufficiently large. 

4. Investigation of the end cells 
Since the effective wavelength is dependent upon the size of the end cells a 

systematic study of the variation of the size of the end cells with Taylor number 
is necessary. In  the present experiments three different end boundaries were 
considered: (i) rotating solid end boundaries, (ii) non-rotating solid end 
boundaries, and (iii) a free-surface boundary on top of the fluid column in 
conjunction with either a rotating or non-rotating boundary at the bottom. 

A rotating solid end boundary means that the end plate, which covers the 
entire fluid gap except for a small space less than 1 mm wide at the outer cylinder, 
rotates with the same angular velocity Q as the inner cylinder. .A rotating 
boundary always produced a source (fluid moving radially outwards) a t  the end 
boundary. Consequently a single cell or half a ring formed at  the ends of the fluid 
column. A typical example of such an end cell and its growth with increased IR 
can be seen a t  the bottom of the fluid column in figures 2 (a)-(e) (plate 1) .  The 
size hE of the end cell increased with Taylor number as long as the flow was 
singly periodic. In  experiments where both the top and bottom end boundaries 
were rotating, both end cells increased in size uniformly. In  all experiments with 
symmetric end boundaries the fluid column was symmetric about the horizontal 
centre-line. Measured values of the size hE of the rotating end cell, normalized 
with the gap width, are shown in figures 3 (a) and ( b )  for two different 7 and the 
different fluids. It is obvious that AE is proportional to (TIE)+. The only deviation 
from the linear relationship occurred with the wide gap and fluid 2 when the 
upper surface was free. Within experimental error it makes no difference to the 
growth of the end cells whether both end plates rotate or only the lower end plate 
rotates and the upper surface is free. However, it  is quite apparent that the radius 
ratio 7 has a profound effect on the cell size. With a larger gap (7 smaller) the end 
cells grow more rapidly. This might imply that, as 7 approaches 1-0, the end cell 
ceases to grow. The equations governing the cell growth rate in figure 3 for 
7 = 0.505 are given by 

dhE/d t  = A ,  (4) 

where 5 = (T/T,)B and 0.39 < A < 0-46. For 7 = 0.727, it follows that 
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FIGURE 3. Variation of the end cell size with Taylor number. (a) Both end plates rotating. 
(6) Top surface free, bottom end plate rotating. 0,  fluid 1;  0, fluid 2; A,  fluid 3 ;  
-, 7 = 0.727;  ---, 7 = 0.508. 

where 0-13 d B Q 0.18. The variations in the constants A and B are due to the 
different fluid viscosities. These variations are +_ 8.9 o/o in the mean slope for 
7 = 0.505 and f 14.8% for 7 = 0-727. 

A non-rotating end boundary means that the end plate, which again covers 
almost the entire gap between both cylinders, is attached to the non-rotating 
outer cylinder. With this configuration a sink (fluid moving radially inwards) is 
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FIGURE 6. Variation of size of free end cells or rings with Taylor number. Upper curves 
for a ring, lower for a single cell. 0, fluid 2; A, fluid 3. 

always formed adjacent to the end plate. Consequently a full ring appeared at 
each end of the fluid column. A typical example of the flow with a non-rotating 
end boundary is shown in figures 4 (a)-(e) (plate 2 ) .  For photographs of the flow 
when neither boundary is rotating see Burkhalter (1972). In  figure 4 it appears 
that the size of the end ring a t  the bottom remains unchanged over a large range 
of Taylor numbers. Measurements of the wavelength A, are presented in figure 5. 
Within the accuracy of the measurement, the size of the end ring does not depend 
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on the Taylor number. However, the end ring is in general about 10 yo larger than 
the other rings in the fluid which are free from boundary effects. 

A free surface boundary at the top of the fluid column produces either a sink 
or a source a t  the liquid-air interface. Qualitatively, a source is formed by fluids 
of lower viscosity a t  low rotation rates. A sink, always accompanied by a full 
ring, is formed by fluids with higher viscosities and higher rotation rates. Typical 
examples of free-surface cells have been shown in figures 2 and 4. Both figures 
show the apparatus with an air gap of 1 cm between the fluid surface and the 
top end plates, which are of the same type as the bottom end plates. The top ring 
or cell under a free surface does not change with Taylor number, as in the case of 
non-rotating ends. I n  figure 6, measured sizes of both full rings and single cells for 
both 7 under a free surface are shown. Note that the size of the end rings or cells is 
slightly larger than that of the rings or cells in the rest of the fluid column. This 
was also the case when the end plates were non-rotating. 

5. Analysis of wavelength variations 
An analysis of the variations of the size of the end cells and consequent conclu- 

sions regarding the effective wavelength yield pertinent information concerning 
the variation of the wavelength in infinite cylinders with the same radius ratios 
as in these experiments. All experimental evidence obtained in finite cylinders 
has to  be compared with theoretical results which pertain to an infinite cylinder 
with a comparable 7. We now make use of the definition of the wavelength for 
a finite fluid column and recall that this definition does not account for end 
effects and thereby approximates the infinite cylinder case. If we assume that the 
actual wavelength h can be approximated by A, = L/Nd and note that the num- 
ber of cells did not vary in any of the experiments as long as the flow was singly 
periodic, then it follows that the wavelength h does not vary for Taylor numbers 
less than 80 T,. The range up to which singly periodic flow can be maintained 
depends on the gap width and the end boundaries. Singly periodic flow was 
observed up to 80 T,  with fluid 1 with 7 = 0.505 as well as 7 = 0.727 with a free 
upper surface. A determination of the range of singly periodic flow as a function 
of the gap width was not attempted since there is no clear-cut point of transition 
from singly to doubly periodic flow. 

The uncertainty Ah/h of the measurements is 5 2 yo. This simply means that, 
over the Taylor number range under consideration, if the wavelength had 
increased or decreased by 2 % or more, then the number of cells would have 
changed by one cell or more. The rate of change of the wavelength with Taylor 
number is dh/d(T/T,) = 0 0.00048 up to 80%. This conclusion concerns singly 
periodic flow. Actual changes in the number of cells occurred a t  Taylor numbers 
greater than 4000T, as will be discussed later. The rate of change of the wave- 
length with Taylor number which follows from figure 8 (j) (plate 4) ,  where the 
flow is turbulent, is dh/d(T/T,) = + 1-2 x & 0.6 x lop5. The positive sign of 
the rate of change is significant; the wavelength increases, but in order to do so 
the flow has to be turbulent. 

We can likewise find the wavelength in the infinite cylinder by using the 
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effective wavelength as a measure for A. The experiments with non-rotating end 
boundaries show that the size of the end cells does not vary and consequently 
AeE = constant. This is fairly obvious from figures 4 (a)-(e). These experiments 
show, furthermore, that the non-rotating end boundaries behave as the free- 
surface boundary does. Therefore, a finite fluid column with non-rotating end 
boundaries imitates a finite fluid column with two free surfaces a t  the ends. This 
would certainly be the best experimental approximation to the infinite cylinder 
case. From the observation that with non-rotating ends neither the end cell 
size E nor the number of rings N changed, we can therefore conclude that the 
wavelength in an infinite cylinder would not change either, for singly periodic 
flow up to SOT,. Since AE = 0, it follows from (2) that the uncertainty of this 
result is again approximately k 2 yo and that the rate of change of the wave- 
length with Taylor number is again dA/d (T /T , )  = 0 with an uncertainty of about 

0.0005. 
The experiments with rotating end boundaries make it quite obvious (see 

figures 2 (a)-(e)) that in this case the effective wavelength of the rings free from 
end effects decreases. For example in figure 2 ( e ) ,  A, = 1.88. In  other experi- 
ments with shorter fluid columns A, has been reduced to 1.51 ; for more detail see 
Burkhalter (1972). On the other hand, with constant fluid column length, the 
wavelength A, remained constant inall experiments with rotating end boundaries 
since the number of rings never changed, The question arises now as to whether 
the observed decrease in A,, under these circumstances is due to a true decrease 
of the wavelength A that might occur in an infinite cylinder, or whether this is 
caused by an effective reduction of the fluid column length caused by the growth 
of the end cells during the experiments. 

Information concerning this problem can be obtained from experiments with 
fluid columns of different lengths. Suppose that a ring free from end effects would 
naturally shrink with increased Taylor number by the amount A. This must 
necessarily cause an equivalent growth of the bottom end cell, since the entire 
column has to be filled with vortices. Provided that there is little interaction 
between the size of the free rings and the size of the end cells, the growth of the 
end cell would then be proportional to the number n of rings on top of it, pro- 
ducing a variation of the end cell size of nA. Since the number of rings is basically 
determined by the length of the fluid column, the end cells of long columns at  a 
given supercritical Taylor number should therefore be longer than those of short 
fluid columns at  the same supercritical Taylor number. Figure 7 (a )  shows the 
end cell size AE for fluid columns 20, 40 and 86.30 cm long. All fluid columns had 
free upper surfaces since this was the easiest way to vary the column length. As 
can be seen in figure 7 (a) ,  the end cell size varies very little with column length; 
the increase of A, for L = 86.30 ern is certainly not four times the increase of A, 
for L = 20.0 em. We also note on figure 7 (a)  that the variation of A, with Taylor 
number in the case of the long column is much smaller than with the shortest 
column. As can be seen, the slope of the A,,, versus Taylor number curve will 
approach zero if the infinite cylinder case is approached. This means that the 
wavelength 4 actually does not vary and that the observed decrease of A,, is 
caused by increases in the end cell size. We arrive at  the same conclusions if we 
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L= 86.30 cm 
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FIGURE 7. Variation of end cell size and A, for fluid 2. (a) For differentfluidcolumnlengths; 
1 = 0-505. (b)  For different radius ratios. -, A E ;  ---, Aew 

study the variations of the end cell size and the effective wavelength as a function 
of radius ratio 7, see figure 7 (b) .  Large 7 means many rings if the fluid column 
length is maintained, as is the case here. Many rings should, if the rings actually 
shrink, cause larger end cells as was discussed before. However, A, for 7 = 0.727 
is much smaller than A, €or 7 = 0.505. Also, as in the case with different column 
length, the rate of change of the effective wavelength with Taylor number 
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approaches zero with increasing 7, which means that as 7 increases, the infinite 
cylinder case is more closely approximated. The inference is again that the wave- 
length in an infinite cylinder would not change with Taylor number. 

6. Wavelength variation at very high supercritical Taylor numbers 
The previous discussion concerning the wavelength variations with Taylor 

number was applicable to singly periodic flow, where no waves in the azimuthal 
direction are present. We now ask the question: what changes (if any) occur in 
the effective wavelength, end cell growth, etc., a t  very high supercritical Taylor 
numbers where the flow is doubly periodic or turbulent? 

To answer this question it was necessary to resort to fluid 1, of lower viscosity, 
in order to generate very high supercritical Taylor numbers. Representative 
photographic results of one of the experiments in the very high supercritical 
Taylor number regime are shown in figure 8 (plates 3 and 4). At low Taylor 
numbers (TIT, < 80) fluid 1 behaved in exactly the same manner as the other 
two fluids used in the experiments for the case with rotating end plates (see 
figures 8 (a)-(a)).  The end cells increased in size, as before, thereby causing a 
decrease in the effective wavelength. As the Taylor number was increased in 
a quasi-steady fashion past TIT, = 80, some interesting phenomena were 
observed. Although not discernible in the photograph, figure 8 (d ) ,  there 
developed very slight oscillations or disturbances in the rings primarily associ- 
ated with the sources. As the Taylor number was quasi-steadily increased to 
T / q  = 124.8, figure 8 ( e ) ,  the disturbances in the flow became more apparent 
and visible. Note in figure 8 ( e )  that the sources are tilted very slightly or have 
very small disturbances superimposed on them while the sinks (the darker lines) 
still remained laminar, straight and perfectly parallel to the horizontal. In  
addition, the end cells have continued to grow, causing a further decrease in the 
effective wavelength. Note that at  about the Taylor number where the disturb- 
ances firstappeared in thesources, figure 8(d) or (e) ,  there are small perturbations 
in the end cells (see the bottom end cell, figure 8 (e)). Apparently the disturbances 
in the end cells are created by the end boundaries; however, these disturbances do 
not necessarily cause the disturbances to the sources since they both appear at  
about the same Taylor number. As the Taylor number was quasi-steadily 
increased still further to TIT, = 186.2, figure 8 (f), the disturbances on the 
sources became clearly visible as well as those in the end cells. It is remarkable, 
however, that the sinks are still laminar, straight, thin andperfectlyparallel to the 
horizontal even though the sources are wavy and somewhat erratic. At  a Taylor 
number of T/T, = 269.5, all the rings are wavy, as shown in figure 8 (9).  The sinks 
have also become slightly wavy and the end cells are filled with disturbances 
createdbytheendplates. Itwasat thispoint, figure8 ( g ) ,  thattheflowiscompletely 
doubly periodic. That is, finite tangential waves are now superimposed upon all 
the rings. Another interesting feature noted in figure 8 (9)  is that the end cell has 
ceased to grow. As doubly periodic flow is established in the fluid column, the 
growth of the end cell stops. If the Taylor number is increased still further as in 
figure 8(h ) ,  the frequency of the tangential waves becomes higher, the sinks 
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thicken and the end cells actually decrease in size. Note in figure 8 ( h )  that the 
sources, though very wavy, are still discernible and discrete. In figure 8 (i), where 
TIT, = 2305, the source lines have disappeared and the flow can only be described 
as being turbulent. Individual tangential waves are no longer discernible and the 
end cells have continued to shrink. 

Up to this point, figure 8 (i), the number of rings or cells in the fluid column 
remained constant. As the Taylor number was increased to TIT, = 4695, 
figure 8 (j), the number of rings decreased to  23, thereby increasing the effective 
wavelength as well as A. The two rings that suddenly disappeared were the ones 
adjacent to the end cells. For the wavelength to increase it is apparently a neces- 
sary condition that the flow be first doubly periodic. As the Taylor number was 
increased to TIT, = 7175 and finally to 11 330, figures 8 (k) and ( I ) ,  more rings 
disappeared (again adjacent to the end cells), until finally, figure 8 ( l ) ,  only 18 full 
rings were left (not counting end cells). Note that the size of the end cells has 
increased again. It is remarkable that a t  this extremely large Taylor number, 
where the flow is highly turbulent, the Taylor vortices are still clearly visible in 
the flow. Qualitatively the same observation was made by Schultz-Grunow & 
Hein (1956), who also observed the decrease in the number of rings, as did Pai 
(1943). The maximum rotation rate was reached when figure 8 (1 )  was taken and 
it is not known if more rings would have disappeared at higher Taylor numbers. 
The effective wavelength in figure 8 (I) is A, = 2-54. Repeating such an experi- 
ment exactly in a quasi-steady way does not necessarily produce the same wave- 
length at  the same highly supercritical Taylor number. However, there is a 
definite decrease in the number of rings at large supercritical Taylor numbers 
which makes it necessary that the average wavelength be definitely larger than 
the critical wavelength. Much more information concerning the wavelength at 
large supercritical Taylor numbers will be presented with the results of sudden- 
start experiments, see Burkhalter & Koschmieder (1973). The indeterminacy of 
the measured wavelengths makes the results of the experiments a t  highly super- 
critical Taylor numbers quite different from the results with laminar, singly 
periodic flow. In  the singly periodic case the size of the rings as well as the size 
of the end rings were strictly reproducible, as long as the experiment was 
performed in a quasi-steady way. 

7. Conclusions 
The experiments described above deal with a comparatively simple problem, 

namely the question of what happens to the size of the Taylor vortices if the 
Taylor number is increased in a quasi-steady way beyond the critical Taylor 
number. We have simplified the problem further by restricting the investigation 
to singly periodic flow. There seems to be no theoretical investigation available 
which would predict how the wavelength of Taylor vortices should vary under 
these conditions. Coles (1965) has shown experimentally that the relations 
between the wavelength, number of tangential waves and Taylor number are 
very complex in the case of doubly periodic flow. The results of the above experi- 
ments show that the wavelength of the Taylor vortices which one would observe 
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in an infinitely long cylinder does not vary with the Taylor number as long as 
the flow is singly periodic, in these experiments up to SOT,. With regard to the 
effective wavelength it was found that A,, does not vary if either both end plates 
are non-rotating or the upper end is free and the lower one non-rotating. The 
case of two non-rotating end plates seems to approximate the hypothetical case 
with two free ends and is therefore the best experimental approximation to the 
infinitelylong cylinder. It was, on the other hand, quite obvious that the effective 
wavelength decreases substantially with increased T if either both end plates 
rotate or the upper one is free and the lower one is rotating. Control experiments 
made with different fluid column lengths indicate, however, that in the case with 
rotating boundaries the wavelength in an infinite cylinder would not vary with 
Taylor number either. This can only be inference; it needs a theoretical analysis 
of the variation of the size of the end cells with Taylor number to make these 
observations conclusive. 
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