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Abstract 

The model developed in this paper generalizes (in the context of multiple exit states from a 

duration spell) extant competing risk methods which tie the exit state of duration very tightly with 

the length of duration. In the current formulation, the exit state is modeled explicitly and jointly with 

duration models for each potential exit state. The model developed here, however, is much more 

broad in its applicability than only to the competing risk situation; it is applicable to multiple 

durations arising from multiple entrance states, multiple exit states, or a combination of entrance and 

exit states. Multiple entrance states occur frequently in many situations, but have received little 

attention in the literature. Explicit consideration of the entrance state is important even in single or 

multiple competing risk models in order to accommodate the sample selection in duration based on 

the no-entry/entry (to the duration spell) outcome. The generalized multiple durations model 

developed in the paper is applied to an empirical analysis of activity behavior during the return home 

from work. 

 

Keywords: Proportional hazard, multiple durations, competing risks, activity-type choice, 

activity durations, work commute.  
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1.  Introduction 

Hazard-based duration models, which had their roots in biometrics and industrial 

engineering, are being increasingly used to model duration time in the marketing, economics, and 

travel demand fields (the reader is referred to Jain and Vilcassim, 1991, Kiefer, 1988, and Hensher 

and Mannering, 1993 for a review of the applications of duration models in marketing, economics, 

and travel demand, respectively). Most applications of the hazard model to date have focused on the 

case where durations end as a result of a single event. For example, the length of unemployment 

ends when an individual gains employment (Meyer, 1990). A limited number of studies have been 

directed toward modeling the more interesting and realistic situation of multiple duration-ending 

outcomes. For example, failure in the context of unemployment duration (i.e., exit from the 

unemployment spell) can occur either because of a new job, recall to the old job, or withdrawal from 

the labor force.  

Previous research on multiple duration-ending outcomes (i.e., competing risks) have 

extended the univariate proportional hazard model to the case of two competing risks in one of three 

ways. The first method assumes independence between the two risks (Katz, 1986; Gilbert, 1992). 

Under such an assumption, estimation proceeds by estimating a separate univariate hazard model for 

each risk. Unfortunately, the assumption of independence is untenable in most situations and, at the 

least, should be tested. The second method generates a dependence between the two risks by 

specifying a bivariate parametric distribution for the underlying durations directly. For example, 

Diamond and Hausman (1985) specify a log bivariate-normal distribution for the durations. This 

method has the result of placing very strong (and non-testable) parametric restrictions on the form of 

the baseline cause-specific hazard functions. The third method accommodates interdependence 

between the competing risks by allowing the unobserved components affecting the underlying 

durations to be correlated. Cox and Oakes (1984) develop a model which generates a positive 

dependence between the underlying durations based on common dependence on an observed random 

variable. More recently, Han and Hausman (1990) propose a model which allows an unrestricted 

correlation in random unobserved components affecting the competing risks. This model permits 

nonparametric baseline hazard estimation, enables estimation from interval-level data of the type 

commonly found in econometrics and other fields, and retains an interpretation as an incompletely 

observed continuous-time hazard model.  
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A shortcoming of all the extant competing risk methods discussed above is that they tie the 

exit state of duration very tightly with the length of duration. The exit state of duration is not 

explicitly modeled in these methods; it is characterized implicitly by the minimum competing 

duration spell. Such a specification is restrictive, since it assumes that the exit state of duration is 

unaffected by variables other than those influencing the duration spells and implicitly determines the 

effects of exogenous variables on exit state status from the coefficients in the duration hazard models 

(this situation is analogous to the difference between a general endogenous switching regression 

equation system and the more restrictive disequilibrium market model of demand and supply; see 

Maddala, (1983).  

In this paper, I consider a generalization of the Han and Hausman competing risk 

specification where the exit state is modeled explicitly and jointly with duration models for each 

potential exit state. The resulting formulation follows strictly from the proportional hazard 

specification for the duration spells. This is in contrast to the Han and Hausman specification which 

uses an approximation to the proportional hazard specification. The model proposed here also 

extends the Han and Hausman framework to multivariate competing risks.2 The formulation in this 

paper does not require placing parametric restrictions on the shapes of hazards within discrete time 

intervals, as required in the specifications of Han and Hausman, 1990 and Sueyoshi, 1992 (Han and 

Hausman and Sueyoshi maintain an assumption of a constant hazard within each discrete time-

interval in deriving the competing-risk model specification). 

A particularly desirable characteristic of the model proposed here is that it is a generalized 

multiple durations model where the durations can be characterized either by multiple entrance states, 

multiple exit states or by a combination of entrance and exit states. The focus of econometric 

literature has been on multiple durations due to multiple exit states (i.e., the competing risk model). 

However, in many applications, multiple durations may arise because of multiple entrance states. 

Examples of multiple entrance states include layoffs, being fired, or first-time labor force entry for 

unemployment duration, activity-type participation choice (shopping, recreation, visiting, etc.) for 

activity duration, and type of initial acquaintance (in college, though personal advertisement, etc.) 

                                                 
2 Sueyoshi (1992) has also extended the Han and Hausman framework to the multivariate case. However, like all earlier 
competing risk models, he characterizes the exit state implicitly based on the duration spells. Further, the Sueyoshi 
approach becomes cumbersome when dealing with multivariate competing risks since it requires computation of 
multivariate integrals. In contrast, the approach proposed here requires only the computation of bivariate integrals 
independent of the number of competing risks. 
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for marriage durations. Ignoring the entrance state when there are common unobserved factors 

affecting entrance status and spell duration will lead to biased and inconsistent hazard model 

parameters due to classic sample selection problems. In this context, information on the absence of a 

duration spell itself may be valuable; that is, it may be important to consider the “no-entry” state (for 

example, the “employed” state in unemployment duration modeling, the “home” state in activity 

duration modeling, or the “unmarried” state in marriage duration modeling) as an explicit entrance 

state in modeling durations for other entrance states.  

In the next section, we develop the model structure and present the estimation procedure for 

the generalized multiple duration hazard model. Section 3 discusses the data used to model a 

multiple activity durations model where the multiple durations arise because of multiple entrance 

states corresponding to participation in different types of activities during the work-to-home trip of 

individuals. Section 4 presents empirical results from the analysis. The final section provides a 

summary and identifies important findings.   

 

2.  Model Structure 

Let sqi represent the (continuous) duration time to failure for individual q corresponding to 

outcome i, i = 1, 2, ..., I (the outcomes may represent multiple entrance states, multiple exit states, or 

a combination of the two). The outcome-specific hazard function for individual q at some specified 

time T on the continuous-time scale, , is defined using the proportional hazard specification 

as (see Kiefer, 1988): 
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where  is the continuous-time baseline hazard at time T for outcome i,  is a column vector 

of covariates for individual q and outcome i, and 

)(0 Tλ i qix

γ i  is a column vector of parameters specific to 

outcome i. We assume in this paper that the covariates do not change with time T. As indicated by 

Han and Hausman, one can include time-varying covariates by using the value of  in each 

discrete interval or its mean during the interval if  changes within intervals. Equation (1) can be 

written in the equivalent form (Han & Hausman, 1990; Bhat, 1996a), 
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Where  is the integrated baseline hazard for outcome i and (.)0iΛ qiη  takes an extreme value form 

with distribution function given by: 
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The dependent variable in equation (2) is a continuous unobserved variable when data on failures is 

available only in grouped form (as is the case in most econometric applications). However, we do 

observe the time interval, tqi, in which failure occurs for the observed outcome i. Let the time 

intervals be represented by an index k (k = 1,2,3,...K) with k = 1 if T 0 [0,T1], k = 2 if T 0 [T1,T2],..., k 

= K if T 0 [TK-1,4] (the duration intervals can be different for different outcomes; however, for ease 

of notation, we consider them to be the same for all outcomes). Thus, tqi = k if the duration spell of 

individual q ends in time interval k for observed outcome i. 

Next consider the modeling of the outcome states using a discrete choice model. Define 

latent variables  as follows: *
qiu
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Assume that the qiε ’s are identically and independently gumbel distributed across outcomes i and 

individuals q with a location parameter equal to 0 and a scale parameter equal to 1. Outcome i is 

observed for individual q if, and only if,  
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Let Rqi be a dichotomous variable; Rqi = 1 if the ith outcome is observed for the qth individual and 

Rqi = 0 otherwise. Defining 
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and substituting the right side for u  from equation (4) in equation (5), we can write: *

qi
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The implied marginal distribution of  can be obtained from equation (6) and from the 

distributional assumptions on the 

qiv

qiε ’s as (see McFadden, 1973): 
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The overall equation system for the joint outcome and outcome-specific duration hazards can be 

written from equations (2) through (7) as: 
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Let the correlation between the random components ),( qiqiv η   for each outcome be iρ   (as in the 

case of the endogenous switching regression system, the correlations among the random components 

qiη   in the different duration equations are not identified). It is the presence of the iρ  terms that do 

not allow separate duration hazard model estimations for each outcome. The key to accommodating 

this correlation is to transform the non-normal random variables,  and qiv qiη , into standard normal 

random variables. With the completely specified marginal distributions  and  for  and (.)iF (.)iG qiv

qiη , respectively, we write: 
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where   is the standard normal distribution function. It then follows from the probability integral 

transform result (Feller, 1971) that the transformed variables  and  are standard normal. Then, 

a bivariate distribution L

(.)Φ
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2 for  and qiv qiη  having the marginal distributions  and  can be 

specified as (see Lee, 1983): 
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Also, because  and  are absolutely continuous (monotonically increasing) distribution 

functions, the transformations  and  are strictly increasing. Thus, we can re-

write equation (9) as 
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From the above equation and the bivariate normal distribution of  and  (equation 11), the joint 

probability of observing outcome i and failure in discrete time k for individual q is: 
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The parameters to be estimated in the multiple duration hazard model are the (K-1) δ ki,  parameters 

)  and  ( ,0, +∞=−∞= Kii δδ  and the vectors  for each possible outcome i. Defining a set of 

dummy variables 

γβ i and i
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the log likelihood function for the multiple durations model takes the form 
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Accommodation of unobserved heterogeneity in the duration models is conceptually straight-

forward, but will result in numerical evaluation of integrals in the log-likelihood function above. 

Also, it should be noted that duration is never observed for the “no-entry” entrance state. Thus, the 

component of the likelihood function for this outcome becomes 
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The log-likelihood function in equation (15) does not consider right-censoring. If right-censoring is 

present in a multiple durations model defined by multiple entrance states, then the entrance state of 

the censored observation is known and the contribution of the observation (say q) to the likelihood 

function takes the following form (assuming censoring at time-period k): 
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If right-censoring is present when the outcomes are defined by exit states, then the exit state of the 

censored observation is unknown. The contribution of a censored observation q to the likelihood 

function in this case takes the form: 
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If right-censoring is present when the outcomes are defined by a combination of entrance and exit 

states, the appropriate contributions of censored observations can be obtained in a manner similar to 

equations (17) and (18). 

All the parameters in the multiple duration model are consistently estimated by maximizing 

the log-likelihood function. The standard errors of the parameters are obtained as usual from the 

inverse of the Hessian matrix of the log-likelihood function. 

It is easy to see that if ρ i  is equal to zero for each (and every) outcome i, then the likelihood 

in equation (15) partitions into a component corresponding to that of a discrete choice model for 

outcomes and another component which represents independent univariate ordered logit duration 

hazard models for each outcome category. The latter component has the form given below (Han and 

Hausman, 1991): 
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In general, ignoring ρ i  and estimating independent hazard models for each outcome in a multiple 

outcome situation will lead to biased estimates of the baseline hazard parameters as well as covariate 

effects. Thus, it is always preferable to estimate a model which accommodates the sample selection 

in spell durations based on outcome.  

The maximization of the function in equation (15) is achieved using a three-step procedure. 

In the first step, a separate discrete choice model for outcome i is estimated along with independent 

ordered-logit hazard duration models for each outcome. In the second step, the discrete choice model 

parameters are held fixed and the log-likelihood function in equation (15) is maximized with respect 

to the duration hazard parameters and the correlation parameters (the hazard parameters from the 

independent ordered-logit estimations are used as the start parameters, and the correlation terms are 

initialized to zero). Finally, the parameters from the second step are used as start values for the full-

information maximum likelihood estimation of equation (15). The likelihood function at each step is 

maximized using standard techniques. Maximization is done using the GAUSS matrix programming 

language. The analytical gradients of the log-likelihood function with respect to the parameters are 

coded. 

The baseline hazard for discrete period k and outcome i, , can be computed using the 

expression: 
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where theδ ki, ’s are estimated from the maximization of equation (15). The continuous-time 

proportional hazard assumption of equation (1) translates to the following relationship between the 

discrete-period baseline hazard  and the discrete-period hazard  at period k for )(*
0 kiλ )(* kqiλ

individual q and for outcome i: 
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3.  Data Source and Sample Description 

We apply the generalized multiple durations model proposed in the previous section to 

examine the duration of participation in shopping and social/recreational activities of workers during 

the evening work to home commute (in the rest of this paper, we will refer to social/recreational 

activities together as recreational activities for ease in terminology). Recent studies in the travel 

demand field have indicated an increasing trend in the number of non-work activity stops made by 

individuals during the work tour. Gordon et al. (1988) report, based on their analysis of the 1990 US 

National Personal Transportation Survey (NPTS), that non-work travel is the major cause of the 

evening peak-period congestion and accounts for more than two-thirds of all evening peak-period 

trips. In an analysis of non-work trips in the northern Virginia suburbs of the Washington, D.C. 

metropolitan area, Lockwood and Demetsky (1994) find that a significant number of individuals 

make one or more non-work activity stops during their evening work-to-home trip. These studies 

emphasize the importance of examining the activity pattern during the evening work-to-home trip 

and have led to many recent efforts in the travel demand field directed toward this goal (Hamed and 

Mannering, 1993; Bhat, 1996a). However, none of these previous modeling efforts have attempted 

to estimate a discrete activity-type choice model jointly with hazard-based activity duration models. 

In the current activity duration analysis setting, the outcomes are characterized by multiple 

entrance states to the duration spell. The entrance states are: return home directly from work (the 

“no-entry” state), participation in shopping activity after work, and participation in recreational 

activity after work. 

The data source used in the present study is a household activity survey conducted by the 

Central Transportation Planning Staff (CTPS) of the Massachusetts Highway Department in the 

Boston Metropolitan region. The survey was conducted in April 1991 and collected data on socio-

demographic characteristics of the household and each individual in the household. The survey also 

included a 1-day (mid-week working day) activity diary to be filled out by all members of the 

household above 5 years of age. Each activity pursued by an individual was described by: (a) start 

time, (b) stop time, (c) location of activity participation, (d) travel time from previous activity, (e) 

travel mode to activity location, and (f) activity type. 

The sample for the current analysis comprises 1950 employed adult individuals who made a 

work-trip on the diary day. Variable definitions and descriptive statistics are provided in Table 1. 

About 73% of individuals (1432 individuals) do not participate in any activity after work; they 
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return home directly. The percentage (number) of individuals who participate in recreational and 

shopping activities during the return home from work is about 9% (163) and 18% (355), 

respectively. Table 2 provides descriptive information on recreational activity durations for 

individuals who participate in recreational activities and Table 3 provides corresponding information 

on shopping activity durations. The length of the discrete periods is 5 min to about 1 h (except for 

the first period which has a length of 7.5 min), 10 min between 1 h and 90 min, and 20 min between 

90 min and 150 min. Durations are observed until termination for all individuals. Thus, there is no 

right censoring. The final discrete period is open-ended. 

The column labeled “Failures” in Tables 2 and 3 indicates the number of individuals whose 

activity participations end in discrete time period k. The column titled “No. at Risk” provides 

information on the number of individuals who are “at risk” of termination of their activity 

participation in period k; that is, it is the number of individuals whose activity durations have not 

ended at the beginning of period k. The discrete-period sample hazard rate associated with each 

period is computed using the Kaplan-Meier (KM) non-parametric estimator (Kiefer, 1988) as the 

number of individuals who end their activity participations in period k divided by the risk set in 

period k. 

The hazard rates across periods in Table 2 and 3 cannot be compared directly since the length 

of the discrete time periods vary in the current data. To examine the variation in the hazard rates 

with time, we plot the equivalent continuous-time sample hazard functions )(0 Tiλ  under the 

assumption that the continuous-time hazard remains constant within each period k; that is, 

)()( 00 kT ii λλ =  for  all . Then, we can write: },{ 1 kk TTT −∈
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where kT∆  is the length of the period k (in minutes) and  is the Kaplan-Meier sample 

estimate of the hazard in period k.

)(*̂
0 kiλ

3

                                                 
3 The assumption of constant hazard within time-intervals is made solely for the purpose of examining the temporal 
evolution of the hazard function when the time-intervals are of varying length (when all the time-intervals are of equal 
length, the discrete time interval hazard rates can be compared directly across intervals). This assumption is not required 
by the model structure itself, as indicated in section 1. 
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The continuous-time sample hazard functions are shown in Fig. 1. These plots show that the 

sample hazard rate is substantially lower for recreational activity duration compared to shopping 

activity duration in the first 30 min or so. This is to be expected since participation in recreational 

activity, in general, implies a certain minimum time investment. In contrast, brief spells of 

participation in shopping activity are not uncommon. The sample hazard function for recreational 

activity exhibits sharp peaks between 30 and 60 min, suggesting that most recreational activity 

durations last for 30-60 min. The shopping activity duration hazard shows more widespread peaking, 

indicating a more even distribution (on the time scale) of shopping durations. Finally, the hazard is 

higher for shopping activity relative to recreational activity in the high time range (greater than 2 

hours).   

 

4.  Empirical Results 

In this section, we present the results for two models. The first model assumes independence 

between activity-type choice (outcome) and activity duration. The second model accommodates the 

potential endogeneity in activity-type choice arising from correlation in unobserved components in 

the activity-type choice and activity duration decisions. The “Independent Durations Model” (first 

model) is a restricted version of the “Generalized Multiple Durations Model” (second model). We do 

not consider unobserved heterogeneity in the analysis since it requires time-consuming numerical 

evaluation of integrals in the generalized multiple durations model. There is some empirical 

evidence (for example, see Han and Hausman, 1990) that inclusion of heterogeneity has only a 

minor effect on results when a nonparametric baseline hazard is used. Thus, our decision to ignore 

unobserved heterogeneity may not result in very serious mis-specification [however, recent work by 

Bhat (1996a) cautions against generalizing Han and Hausman's result to other empirical contexts; 

thus, examining alternative ways to incorporate heterogeneity into the current generalized multiple 

duration framework is an important direction for future research]. 

The parameters in the activity-type choice model, the effect of covariates on the duration 

hazard, and the correlation in unobserved components between activity-type choice and durations 

are presented in Table 4. We discuss each of these sets of estimates in turn in the next few 

paragraphs. The log-likelihood value at convergence for the independent durations model is -2750.7 

and the corresponding value for the generalized multiple durations model is -2745.8. The log-

likelihood value for the independent durations model with only alternative specific constants in the 
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activity-type choice model and only baseline hazard parameters in the recreational and shopping 

duration models is -2847.0.  

The results of the activity-type choice model are almost the same in both the independent 

durations model and the generalized multiple durations model. In Table 4, we adopt the notation 

“Var (RA)” to indicate a recreational activity-specific variable and “Var (SA)” to represent a 

shopping activity-specific variable. Among the socio-demographic variables, the effect of age 

indicates that older people are less likely to engage in recreational activities and more likely to 

participate in shopping activities relative to heading directly home after work. The sex of the 

individual appears to be a strong determinant of participation in shopping and recreational activities; 

specifically, males are more likely to engage in recreational activities and less likely to engage in 

shopping activities compared to women [see Chapin (1974) similar results]. The presence of 

children has been known to influence the activity participation behavior of adults in the household 

(Jones et al., 1990). The results indicate that individuals with one or more children under 11 years of 

age are likely to go home directly after work rather than make any shopping or recreational stops. 

Between recreational and shopping stops, they are less likely to make recreational stops. This may 

be a reflection of the more discretionary nature of recreational stops relative to shopping stops so 

that when faced with the responsibility of taking care of young children at home, parents are likely 

to forego discretionary activities more so than the maintenance-oriented shopping activities. A high 

income leads to a greater probability of participating in recreational activity. As the number of 

unemployed individuals in a household increases, it places less burden on the employed individuals 

to fulfill household maintenance activities and thus is likely to lead to lesser shopping stops on the 

way back from work, as the results suggest. The coefficients on the work-related characteristics 

indicate a higher propensity to participate in shopping activities (relative to participation in 

recreational activities or going home directly) for individuals who drive alone to work (probably 

because driving alone makes it more convenient to make stops and to transport shopping items back 

home) and for individuals who leave work before 4 p.m. (presumably because of more time 

availability). A higher work duration leads to a greater likelihood of going home directly after work. 

The estimates of the covariate effects in the hazard duration models for shopping and 

recreational activities show larger differences (compared to the activity-type choice parameters) 

between the independent durations model and the generalized multiple durations model. A positive 

coefficient on a covariate implies that the covariate increases activity duration (equation 2) or, 
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equivalently, the covariate lowers the hazard rate (equation 1). As to the magnitude of the effect of 

covariates, a unit change in a covariate results in a  100]1[exp( ×−− iγ  percent change in the 

continuous-time hazard for activity-type i. The results indicate that men and individuals whose 

households have high income tend to have larger durations for recreational activity compared to 

women and individuals whose households have low income, respectively; however, these effects are 

smaller for the generalized multiple duration model compared to the independent durations model 

(the effect of being a male reduces the recreational activity (continuous-time) hazard by 12% in the 

independent durations model and by 7.4% in the generalized multiple durations model; the 

corresponding numbers for an increase in household income by $1,000 are 0.12% and 0.10%, 

respectively; these results indicate that the effect of income, though statistically significant at the 

0.05 level, is rather small). Returning young adults have larger durations in both recreational and 

shopping activity (no significant differences in the effect of this variable were found between the 

two activity-types). This is intuitively reasonable since such individuals have less familial 

responsibilities and, therefore, may have less constraints on their time. The magnitude of the effect 

of this variable is high relative to the effect of other covariates, and is underestimated in the 

independent duration models (the continuous-time hazard associated with an individual who is a 

returning young adult is estimated to be 53% smaller in the independent durations model and 60% 

smaller in the multiple durations model relative to the hazard of other individuals). Work-related 

characteristics have a very significant impact on activity duration. Individuals who drive alone to 

work have shorter shopping activity durations compared to individuals who rideshare or use transit. 

Departure from work before 4:00 p.m. provides more time and opportunity to participate in shopping 

activity after work and therefore appears to increase shopping duration. The effect of the “departure 

from work before 4:00 p.m.” variable on activity duration is overestimated in the independent 

durations model, while the effect of the “individual drives alone” variable is underestimated. These 

variables did not have any significant impact on recreational activity duration. Finally, a longer 

duration at work leaves less time for participation in other activities after work and, therefore, 

decreases activity duration (increases the activity duration hazard). The effect of this variable was 

not significantly different between the shopping and recreational duration hazards. The independent 

durations model overestimates the effect of work duration on activity duration. The percentage shifts 

in the hazard due to changes in work-related characteristics can be computed in the usual way. 
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There are two correlation terms in the generalized multiple durations model. These 

correspond to the correlation in unobserved components affecting recreational activity choice and 

recreational activity duration and the corresponding correlation for shopping activity and shopping 

duration. If both of these correlation terms are statistically insignificant, then (and only then) does 

the multiple durations model collapse to the independent durations model. In the current estimation, 

both these correlation terms are positive and significantly different from 0 at about the 0.05 level or 

better (the likelihood ratio test statistic for the test of the hypothesis that both correlation terms are 

zero is 9.8, which is larger than the chi-squared with 2 degrees of freedom at any reasonable level of 

significance). Thus, there is sample selection in activity duration based on activity-type choice and 

the generalized durations model is to be preferred over the independent durations model (note that 

the correlation terms may be insignificant in certain empirical contexts; however, estimating a 

generalized multiple durations model is to be always preferred over imposing an a priori assumption 

of independence). From equation (9), note that the positive correlations imply that unobserved 

factors, that increase the propensity to participate in recreational or shopping activity, also decrease 

the duration of participation in that activity. The positive correlations may suggest that individuals 

who by nature tend to participate for shorter durations in a particular activity type are most likely to 

participate in that activity type, presumably since participation in that activity type presents less time 

constraints to such individuals than to other individuals. On the other hand, the positive correlations 

may also be a reflection of the trade-off between frequency of participation in an out-of-home 

activity-type and activity duration: longer-duration activities are likely to be engaged in less often, 

making them rarer in the sample.4

We now proceed to a discussion of the baseline hazard estimates in the independent 

durations and generalized multiple durations model. For both models, the nonparametric baseline 

hazard clearly rejected parametric specifications such as the Weibull distribution.  As in the case of 

the sample hazard rates, we plot the equivalent continuous-time hazard functions under the 

assumption that the continuous-time hazard remains constant within each discrete-time period. The 

continuous-time hazard plots are shown in Figs. 2 and 3 for recreational activity and shopping 

activity, respectively. The temporal trend of the hazard function is similar for each outcome between 

the independent and generalized multiple durations models (these trends are also similar to the 

                                                 
4 The author would like to thank an anonymous referee for suggesting this alternative explanation for the positive 
correlations in unobserved components between activity-type choice and activity durations. 
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corresponding sample hazards plotted in Fig. 1). However, the hazard rate values are lower in the 

generalized multiple durations model compared to the independent durations model for both 

outcome categories. The difference in hazard rates is particularly significant for shopping activity. 

Thus, ignoring the negative correlation between activity type choice and activity duration leads to an 

overestimation of the hazard rates for each outcome in the current empirical context. This is because 

the low durations for individuals who participate in out-of-home activities manifested as high hazard 

rates in the independent durations model. The baseline hazards for the two different outcomes in the 

generalized multiple durations model indicate the same pattern of differences as discussed earlier 

with respect to the sample hazard functions.  

 

5.  Summary and Conclusions 

This paper has developed a methodological framework to estimate a joint model of outcome 

and outcome-specific hazard durations. The outcome-specific hazard models assume a proportional 

hazard form for incorporating the effects of covariates and are nonparametric with respect to the 

baseline hazard. The model accounts for the discrete nature of duration data frequently encountered 

in practice. 

The multiple durations model developed in this paper generalizes extant competing risk 

methods which tie the exit state of duration very tightly with the length of duration. This 

generalization is achieved by modeling the exit state (or outcome) explicitly and jointly with 

duration models for each potential exit state. The resulting model follows strictly from the 

proportional hazard specification for the duration spells. This is in contrast to the Han and Hausman 

specification which uses an approximation to the proportional hazard specification. The model 

proposed here lends itself easily to the analysis of multivariate competing risks since it requires only 

the evaluation of bivariate integrals regardless of the number of competing risks. Current methods, 

on the other hand, become cumbersome very quickly as the number of competing risks increases, 

since they require multivariate integration of the same order as the number of risks. Our formulation 

also does not require placing parametric restrictions on the shapes of hazards within discrete time 

intervals. 

In addition to its application to competing risks, the model proposed here is also applicable to 

the case where multiple durations arise from multiple entrance states. Such a situation occurs 

frequently in many practical situations, but has received little (if any) attention in the literature. 



16 

Explicit consideration of the entrance state is important, even in single or multiple competing risk 

models in order to accommodate the sample selection in duration based on the no-entry/entry 

outcome. The current model formulation can accommodate the sample selection discussed above; 

more generally, the formulation corresponds to a generalized multiple durations model where the 

multiple durations can be characterized by multiple entrance states or by multiple exit states or by a 

combination of entrance and exit states.  

The model is applied to an empirical analysis of activity behavior during the return home 

from work. The outcomes in this empirical context correspond to the multiple entrance states of “go 

home directly”, “participate in recreational activity”, and “participate in shopping activity”. The 

results indicate that there is significant sample selection in activity duration based on the entrance 

state. Ignoring this “endogeneity” in activity-type choice and modeling durations for each outcome 

independently leads to biases in both baseline hazard estimates and covariate effects. The empirical 

results also indicate that the activity-type choice and activity durations of individuals during the 

return home from work are affected in important (and intuitively reasonable) ways by socio-

demographic and work-related characteristics.  

In closing, it should be noted that the model structure developed in this paper has far wider 

applicability than to duration hazard models alone. In particular, the formulation corresponds to a 

joint unordered-ordered choice model in discrete choice literature. The author has recently applied 

this formulation to analyze mode choice to work (unordered choice) and number of stops during the 

work tour (ordered choice) in a travel demand context (Bhat, 1996b) and is currently applying it to 

estimate a model of brand choice (unordered choice) and number of units of purchase (ordered 

choice) in a marketing context.  
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Figure 1. Continuous-time sample hazard functions. 
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Figure 2. Continuous-time hazard for recreational activity duration. 
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Figure 3. Continuous-time hazard for shopping activity duration. 
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Table 1.  Variable Definitions and Descriptive Statistics (n = 1950) 
 

Variable Definition Minimum Maximum Standard 
Deviation Mean

 
Socio-demographic 

 
 

 
 

 
 

 
 

 
 

 
Age 

 
Age of individual in years 

 
18.000 

 
  83.000 

 
  41.460 

 
  12.518 

 
Male 

 
1 if male 

 
 0.000 

 
   1.000 

 
   0.535 

 
   0.499 

 
Presence of kids < 11 yrs 

 
1 if there are one or more children less than 11 
years of age in individual's household  

 
 0.000 

 
   1.000 

 
   0.200 

 
   0.400 

 
Household income x 10-3

 
Household income in thousands of dollars per year 

 
15.000 

 
115.000 

 
  60.025 

 
  27.566 

 
No. of unemployed in HH 

 
Number of unemployed adults in individual's 
household  

 
 0.000 

 
   4.000 

 
   0.324 

 
   0.567 

 
Returning young adult 

 
1 if individual is an employed adult living with one 
or both parents 

 
 0.000 

 
   1.000 

 
  0.080 

 
   0.271 

 
Work-related 

 
 

 
 

 
 

 
 

 
 

 
Drive alone to work 

 
1 if individual drives alone to work 

 
 0.000 

 
   1.000 

 
   0.698 

 
   0.459 

 
Depart from work before 4 pm 

 
1 if individual leaves work before 4 pm 

 
 0.000 

 
   1.000 

 
   0.294 

 
   0.456 

 
Work duration  

 
Time between arrival at work in the morning to 
departure from work at the evening (in minutes) 

 
60.000 

 
900.000 

 
515.560 

 
106.377 
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Table 2.  Recreational Activity Durations and the Discrete Period Sample Hazard 
 

Period 
k Time interval (mins.) Failures 

Fk
1

No. at Risk 
Rk

2
Discrete-period  

Hk= Fk/Rk

Std. error of 
Hk

 
 1 

 
  0.0  -   7.5 

 
 7 

 
163 

 
0.0429 

 
0.0159 

 
 2 

 
  7.5  -  12.5 

 
 9 

 
156 

 
0.0577 

 
0.0187 

 
 3 

 
 12.5  -  17.5 

 
 8 

 
147 

 
0.0544 

 
0.0187 

 
 4 

 
 17.5  -  22.5 

 
 3 

 
139 

 
0.0216 

 
0.0123 

 
 5 

 
 22.5  -  27.5 

 
10 

 
136 

 
0.0735 

 
0.0224 

 
 6 

 
 27.5  -  32.5 

 
19 

 
126 

 
0.1508 

 
0.0319 

 
 7 

 
 32.5  -  37.5 

 
 6 

 
107 

 
0.0561 

 
0.0222 

 
 8 

 
 37.5  -  42.5 

 
12 

 
101 

 
0.1188 

 
0.0322 

 
 9 

 
 42.5  -  47.5 

 
16 

 
 89 

 
0.1798 

 
0.0407 

 
10 

 
 47.5  -  52.5 

 
 4 

 
 73 

 
0.0548 

 
0.0266 

 
11 

 
 52.5  -  57.5 

 
10 

 
 69 

 
0.1449 

 
0.0424 

 
12 

 
 57.5  -  62.5 

 
 7 

 
 59 

 
0.1186 

 
0.0421 

 
13 

 
 62.5  -  72.5 

 
 4 

 
 52 

 
0.0769 

 
0.0370 

 
14 

 
 72.5  -  82.5 

 
 3 

 
 48 

 
0.0625 

 
0.0349 

 
15 

 
 82.5  -  92.5 

 
 7 

 
 45 

 
0.1556 

 
0.0540 

 
16 

 
 92.5  - 112.5 

 
11 

 
 38 

 
0.2895 

 
0.0736 

 
17 

 
112.5 - 132.5 

 
 9 

 
 27 

 
0.3333 

 
0.0907 

 
18 

 
132.5 - 152.5 

 
 6 

 
 18 

 
0.3333 

 
0.1111 

 
19 

 
152.5 - 212.5 

 
 5 

 
 12 

 
0.4167 

 
0.1423 

 
20 

 
> 212.5 

 
 7 

 
  7 

 
1.0000 

 
- 

 
 
1 Failures, Fk, represents the number of individuals whose recreational participation end in period k. 
 
2 The number at risk, Rk, is the number of individuals who are “at risk” of terminating their recreational 

activity participation in period k. 
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Table 3.  Shopping Activity Durations and the Discrete Period Sample Hazard 
 

Period 
k Time interval (mins.) Failures 

Fk
1

No. at Risk 
Rk

2
Discrete-period 

hazard Hk= Fk/Rk

Std. error of 
Hk

 
 1 

 
  0.0  -   7.5 

 
64 

 
355 

 
0.1803 

 
0.0204 

 
 2 

 
  7.5  -  12.5 

 
59 

 
291 

 
0.2027 

 
0.0236 

 
 3 

 
 12.5  -  17.5 

 
38 

 
232 

 
0.1638 

 
0.0243 

 
 4 

 
 17.5  -  22.5 

 
22 

 
194 

 
0.1134 

 
0.0228 

 
 5 

 
 22.5  -  27.5 

 
 9 

 
172 

 
0.0523 

 
0.0170 

 
 6 

 
 27.5  -  32.5 

 
35 

 
163 

 
0.2147 

 
0.0322 

 
 7 

 
 32.5  -  37.5 

 
10 

 
128 

 
0.0781 

 
0.0237 

 
 8 

 
 37.5  -  42.5 

 
11 

 
118 

 
0.0932 

 
0.0268 

 
 9 

 
 42.5  -  47.5 

 
17 

 
107 

 
0.1589 

 
0.0353 

 
10 

 
 47.5  -  52.5 

 
 2 

 
 90 

 
0.0222 

 
0.0155 

 
11 

 
 52.5  -  57.5 

 
 6 

 
 88 

 
0.0682 

 
0.0269 

 
12 

 
 57.5  -  62.5 

 
20 

 
 82 

 
0.2439 

 
0.0474 

 
13 

 
 62.5  -  72.5 

 
 5 

 
 62 

 
0.0806 

 
0.0346 

 
14 

 
 72.5  -  82.5 

 
10 

 
 57 

 
0.1754 

 
0.0504 

 
15 

 
 82.5  -  92.5 

 
14 

 
 47 

 
0.2979 

 
0.0667 

 
16 

 
 92.5  - 112.5 

 
 5 

 
 33 

 
0.1515 

 
0.0624 

 
17 

 
112.5 - 132.5 

 
11 

 
 28 

 
0.3929 

 
0.0923 

 
18 

 
132.5 - 152.5 

 
 6 

 
 17 

 
0.3529 

 
0.1159 

 
19 

 
152.5 - 212.5 

 
 6 

 
 11 

 
0.5455 

 
0.1501 

 
20 

 
> 212.5 

 
 5 

 
  5 

 
1.0000 

 
- 

 
 
1 Failures, Fk, represents the number of individuals whose shopping participation end in period k. 
 
2 The number at risk, Rk, is the number of individuals who are “at risk” of terminating their shopping 

participation in period k. 
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 Table 4.  Parameter Estimates - Independent Durations and Generalized Multiple Durations 
 

Independent Durations Model Generalized Multiple Duration Model Model  
  

Variable
Parameter t-statistic Parameter t-statistic

Constant (RA) -0.5368 -1.23 -0.5599 -1.30 
Constant (SA) -0.5720 -1.50 -0.6109 -1.62 
Socio-demographic characteristics     
Age (RA) 0.0171 2.45 0.0171 2.49 
Age (SA) 0.0108 2.24 0.0113 2.39 
Male (RA) 0.4832 2.74 0.4713 2.66 
Male (SA) -0.3946 -3.13 -0.4159 -3.43 
Presence of kids < 11 yrs (RA) -0.8378 -3.26 -0.8102 -3.10 
Presence of kids < 11 yrs (SA) -0.3145 -1.81 -0.3289 -1.97 
Household Income x 10-3 (RA) 0.0034 1.68 0.0033 1.58 
No. of unemployed in HH (SA) -0.3495 -2.73 -0.3166 -2.52 
Work-related characteristics     
Drive alone to work (SA) 0.2153 1.60 0.2012 1.50 
Depart from work before 4 pm (SA) 0.5100 3.84 0.5210 3.97 

Activity-
Type 

Choice 

Work duration in minutes x 10-2 (Home) 0.2502 4.62 0.2455 4.59 
Recreational Duration Shopping Duration Recreational Duration Shopping Duration 

Variable 
Parameter       t-stat. Paramete t-stat. Parameter t-stat. Parameter t-stat.

Socio-demographic characteristics         
Male    0.1281 -2.91 - 0.0770 1.98 --
Household income x 10-3 0.0012        1.96 - - 0.0010 1.73 - -
Returning young adult 0.7505 3.33 0.7505      3.33 0.9070 3.37 0.9070 3.37
Work-related characteristics         
Drive alone to work - - -0.4626 -3.78 - - -0.5757 -3.88 
Departure from work before 4 pm - - 0.3406 2.72 - - 0.1453 1.86 

Hazard 
Duration 

Work duration in minutes x 10-2 -0.1175        -2.97 -0.1175 -2.97 -0.0712 -2.01 -0.0712 -2.01

Error correlation between activity-type choice and duration Assumed to be zero 0.3116 1.62 0.6169 4.75 

 
Note:  Constant (RA) and Constant (SA) are alternative-specific constants for recreational and shopping activities, respectively. Other variables are to be interpreted similarly 


