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ABSTRACT 
The sensitivity of spatial analytic results to the way in which the areal units are defined is known 
as the modifiable areal unit problem (MAUP).  Although to date a general solution to the 
problem does not yet exist, it has been suggested in the literature that the effects of the problem 
may be controllable within specific application contexts.  The current study pursues this line of 
inquiry and addresses the MAUP in the context of residential location choice modeling.   

Previous residential location choice analysis typically involves the representation of 
alternative locations by areal units and the measurement of residential neighborhood 
characteristics based on these areal units.  This study demonstrates the vulnerability of such an 
approach to effects of the MAUP.  We contend that the fundamental issue is the inconsistency 
between the analyst’s definition of areal units and the decision maker’s perception of residential 
neighborhoods.  An alternative approach of using a multi-scale modeling structure is proposed to 
mimic the notion of a neighborhood being a hierarchy of residential groupings.  The proposed 
approach allows the spatial extent of choice factors to be determined endogenously.  We show 
that the multi-scale approach produces richer and more interpretable results than its single scale 
counterpart. 
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1. INTRODUCTION 
Generalization is an innate skill that we use all the time.  We generalize about people, things and 
events.  We generalize by filtering everything that we absorb with our five senses through our 
values, beliefs, attitudes and experiences.  During the process, trivial details are deleted and 
attention is devoted to important features.  Generalization is also an important consideration in 
the scientific analysis of data.  As analysts, we collapse and aggregate observations in order to 
make the data more workable to the problem at hand, to gain understanding of the phenomenon 
in question, and to uncover patterns confounded by the noise typically found in observations.  
Filtering, in this case, is performed through what statisticians refer to as the data’s support (1), 
that is, the units within which the aggregate measures of observations are computed.  A data’s 
support is characterized by its geometrical shape, size, and orientation.  A change in any of these 
characteristics defines a new variable (2).  For instance, when aggregating traffic counts 
observed on a link, we can use hours of a day, or days of a week, as the temporal units (supports) 
to arrive at hourly traffic volume, or daily traffic volume (variables).  Different link volume 
variables derived from different choice of units will result in different interpretations about the 
observed traffic counts.  This dependency of data interpretations on support is referred as the 
support effect. 

The problems generated by support effects are ubiquitous.  In studying spatial 
phenomenon, we often aggregate spatially scattered observations into predefined areal units, or 
spatial support.  During the aggregation process, information is lost about the uniqueness of, and 
the variations between, the observations that fall within the same areal unit.  As a study region 
can be segmented in different ways (in terms of shape, size, and orientation) to yield different 
spatial supports, the magnitude of information loss may vary.  Consequently, the result of further 
analysis of the data will vary.  This spatial version of the support effect has been known to 
spatial analysts as the modifiable areal unit problem (MAUP) (3).  To date, a general workable 
solution to the problem does not yet exist and the MAUP remains one of the most stubborn 
problems in geography and spatial science (4).  However, not all attempts in resolving the 
problem have been futile.  As Miller (5) indicates in a review of recent MAUP-related studies, 
“it is clear that antecedent factors can be controlled and [the problem’s] effects predicted, 
particularly within specific application contexts” (p.375).  The current study pursues this line of 
inquiry and aims to address the issue of spatial support in the context of discrete choice 
modeling. 

Discrete choice models have found considerable application in travel analysis.  They are 
formulated to help analysts understand the behavioral process that leads to a decision maker’s 
choice among a set of alternatives.  The underlying behavioral assumption is that a decision 
maker evaluates every alternative before selecting the one yielding the maximum benefit.  This 
concept is operationalized through a utility function consisting of factors that collectively 
determine the benefit of each alternative.  The probability of an alternative being chosen is then 
derived from the corresponding utility value.  The MAUP arises when there are spatial factors 
influencing the choice. 

The presence of spatial determinants is common to many choice models, especially for 
activity-based travel modeling.  This is because, as people travel to take part in activities 
distributed over space, their decisions regarding mobility, vehicle ownership, travel mode and 
activity participation location are influenced and/or constrained by the surrounding spatial 
structure and the urban environment.  In cases where the decision is about locations in space, the 
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variability in ways of representing the alternative locations further compounds the effects of 
MAUP.   

Despite the long recognition of the MAUP, past studies often involve aggregating spatial 
attributes over predefined areal units, such as census tracts or transport analysis zones (TAZ), 
prior to incorporating spatial measures into the utility function.  Since the effects of spatial 
attributes on choice behavior are interpreted through the arbitrarily chosen spatial support, the 
logical questions to ask are: How accurate and interpretable are the parameter estimates obtained 
from such spatial measures? Can we rely on the modeling results to design effective spatial 
policies relating to the topic at hand?  To what extent does, or does not, the MAUP affect the 
conclusions drawn from such studies? 

The objective of this paper is to seek answers to the aforementioned questions through 
models developed for residential location choice.  Using the multinomial logit structure, we 
show contradicting modeling results that suggest the vulnerability of discrete choice models to 
effects of the MAUP.  We contend that the fundamental reason for the manifestation of the 
MAUP is the modeler’s inability to relate the configuration of the spatial support to decision 
makers’ perception of space.  Had the characteristics of the space been measured in the same 
way as a decision maker filters spatial information, there would be no concern of the MAUP.  In 
order to bring the spatial representation one step closer to the decision maker’s perception of 
reality, we propose a multi-scale modeling structure which, in the context of residential location 
choice, mimics the notion of a neighborhood being a hierarchy of ecological groupings.     

The remainder of this paper begins with a brief review of studies relating to the MAUP 
and of mechanisms previously proposed to resolve the problem.  In Section 3, we discuss the 
behavioral foundations and measurement issues relating to residential location choice analysis.  
Section 4 surveys previous empirical studies on the subject and identifies their shortcomings.  
Section 5 describes our multi-scale approach to discrete location choice modeling.  In Section 6, 
we present empirical results obtained from residential location choice models developed using 
different spatial supports for the San Francisco Bay area.  The paper then concludes with a 
synthesis of the contribution of the current study. 
 
2. THE MAUP 
As mentioned earlier, the MAUP is essentially the spatial instance of the support effect.  This 
effect has been found in a variety of spatial analysis and modeling studies, including univariate 
statistical analyses (6), bivariate regression (6), multivariate statistical analysis (7), spatial 
interaction models (8,9), and location-allocation modeling (10,11).  Readers are referred to 
Openshaw (3) and Arbia (6) for more detailed reviews on the topic.  The findings from the above 
studies raise our skepticism on the reliability of the outcome of any spatial study relying on the 
use of pre-defined areal units in the analysis.  Though the degree of the impact has been found to 
vary from study to study, this unpredictability further complicates the problem and stresses the 
need for more insight, and solutions, to the problem.   

While several research efforts have focused mostly on revealing the MAUP, the search 
for effective solutions has not been widely attempted, at least not with satisfactory results.  
According to Wong (12), past attempts may be categorized into three approaches: data 
manipulation, technique-oriented, and error modeling.  The data manipulation approach entails 
constructing optimal areal units with respect to predefined objective functions (see 8, 13, 14, 15).  
The technique-oriented approach, on the other hand, involves replacing the classical statistical 
techniques with frame independent analyses (16,17).  Another group of researchers (18) propose 
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the error modeling approach of explicitly documenting variations derived from changing scale, 
and incorporating these changes into modeling and analysis. 

The reason that none of the efforts discussed above provide a general solution to the 
MAUP lies perhaps in the fact that “[t]he precise forms of generalization that prove successful 
with respect to any given phenomenon depend on the nature of that phenomenon” (19, p.5).  To 
make generalizations work, whether over temporal, spatial or other domains, it is necessary to 
know something about the general nature of that phenomenon.  In the temporal instances, there 
are often strong organizing principles associated with the observations that give rise to self-
similarity, which analysts can exploit to pursue generalization.  For example, it is intuitive that 
traffic volumes vary significantly between peak and off-peak hours.  Based on this 
understanding, analysts produce level-of-service measures for peak and off-peak periods as 
opposed to some random temporal units.  What often makes the spatial instances difficult is our 
lack of such intuition about the phenomenon at hand which, in turn, requires us to decide on the 
spatial support even before attempting to study the phenomenon.  However, this is not always 
the case.  As we will discuss in the next section, in residential location choice studies, knowledge 
about human perception may provide just what we need to devise successful forms of spatial 
generalization.   
 
3. RESIDENTIAL LOCATION CHOICE  
Residential location choice is a multidisciplinary topic of interest to sociologists, psychologists, 
urban economists, geographers and transportation planners.  The substantial body of literature on 
the subject covers both theoretical and empirical investigations from different perspectives, 
including the relationship between life quality and location, market differentiation in housing 
demand, societal value of urban amenities and neighborhood quality, and effects of spatial 
policies.  For transportation planning, the subject is of interest because residential land use 
occupies about two-thirds of all urban land, and because the association between the household 
and the rest of the urban environment influences the activity-travel patterns of individuals of the 
household.  
 
3.1. Behavioral Foundations 
The underlying decision mechanism behind residential location choice is an enormously 
complex process.  First of all, it is intricately interrelated with other choices such as housing 
type, tenure, work location and vehicle ownership.  For the purpose of the current study, the 
complete interplay among all these choice dimensions is not accommodated, so that we may 
focus our attention on spatial analysis issues specific to residential location choice.  However, it 
should be noted that the concept and methodology proposed in this study can be applied to a 
comprehensive model system of these interrelated choices. 

Another source of complexity underlying residential location choice is the notion of 
‘location’.  In the broader sense, location refers to the neighborhood within which a property 
situates.  It also refers to the exact land parcel that a building occupies.  In the narrowest sense, 
location refers to the street address that uniquely identifies one dwelling unit from another.  
Therefore, the decision on location encompasses the choice of housing unit, property and 
neighborhood.  As a consequence of this multi-faceted meaning of location, the decision making 
process involves a large number of factors.  Based on past theoretical and empirical studies on 
residential location, we identified four groups of choice factors (see Table 1): dwelling, land 
parcel, neighborhood and accessibility.  The dwelling factors are associated with the physical 
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structure of the housing unit and of the dwelling to which the unit belongs (in case of a multi-
unit dwelling).  The land parcel group of factors relates to the non-structural property attributes.  
The neighborhood group of variables includes considerations relating to the neighborhood, such 
as crime rates and housing density.  The fourth group, the accessibility measures, can be viewed 
as part of the neighborhood factors.  But since they are specifically travel related, we categorize 
them separately.   

Naturally, our list in the Table 1 is by no means exhaustive nor do households necessarily 
consider all the factors listed.  Further, some of the variables may be endogenous or co-
determined with the residential location choice.  For example, as indicated earlier, the dwelling 
type variables and work location choice (that determine the commute distance and time variables 
included in the accessibility category) are likely to be jointly determined with residential choice.  
We, like several other earlier studies (but see 20), are ignoring their interdependency.  Another 
point to note about the residential location choice factors is that some factors are objective and 
easy to quantify (such as number of bedrooms), while others are subjective and personal (such as 
the view from a property or the cleanliness of a street).  The latter group of factors is obviously 
difficult to introduce in any quantitative analysis.    
 
3.2. What is a Neighborhood? 
In the context of the four groups of factors identified in the previous section, there is no 
ambiguity in defining the dwelling and land parcel attributes.  However, the last two groups 
(neighborhood and accessibility) are tied to a neighborhood, which is an ambiguous term.  In 
practice, very little attention is paid to what is meant by a ‘neighborhood’ – it is often implicitly 
assumed to be the same as the spatial level at which data is available.  For example, if the 
primary source of data is at the TAZ level, then the TAZ boundaries are assumed as being 
coterminous with neighborhood boundaries.  The validity of such an assumption is certainly 
dubious; we need a more precise definition of neighborhood for improved conceptual 
understanding as well as practical measurement of neighborhood factors. 

The question of the definition of a ‘neighborhood’ has been raised in several other 
research fields, which we now turn to for insights on the term.  One such research field that is 
closely related to residential location choice is real estate appraisal, which is concerned with the 
market value of properties.  Real estate analysts use neighborhoods as the primary spatial 
cognitive aid to identify distinct markets.  The concept of neighborhood is defined as a group of 
complementary land uses in terms of grouping of inhabitants, buildings, or business enterprises 
(21).  The definition obviously does not translate directly into a practical means of defining 
neighborhood boundaries.  For market analysis, administrative boundaries such as census tracts 
or ZIP codes are typically used as neighborhood definitions.  In general, a specific neighborhood 
may include three-block groups or may be one-fourth of a census tract (21).  However, the use of 
administrative boundaries to define neighborhoods in real estate appraisal has been criticized for 
not matching up with the actual market isochrones of housing quality.   

Another arena in which neighborhood definition plays an important role is the study of 
neighborhood effects, which refers to the neighborhood influences on the well-being and 
behavior of families, and often children in particular.  One of the pioneers in the field, 
sociologist Robert Park (22), identified local communities as natural areas that developed as a 
consequence of competition between businesses for land use and population groups for 
affordable housing.  A neighborhood, based on this view, is a subsection of a larger community – 
a collection of both people and institutions occupying a spatially defined area influenced by 
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ecological, cultural, and sometimes political forces.  Later, Suttles (23) argued that, in addition to 
being the result of free-market competition, some communities’ identities and boundaries are 
imposed by outsiders.  Suttles also suggests that the neighborhood is best thought of not as a 
single entity, but rather as a hierarchy of progressively more inclusive residential groupings.  In 
practice, similar to real estate analysis, virtually all studies of neighborhood effects rely on 
administratively defined units as proxies for neighborhoods that, as the researchers themselves 
realize, do not necessarily reflect real neighborhoods (24,25).  Furthermore, this approach is 
flawed in that neighborhood boundaries are not necessarily fixed.  Rather, an individual’s 
perceived neighborhood almost certainly depends on where she or he lives: “an individual living 
on the boundary of a census tract probably has more in common with residents of the adjoining 
tract than with residents on the far side of his own” (24, p. 435).  This leads to the concept of 
‘sliding neighborhoods’. 

Given the concern that administratively defined units are not commensurate with 
neighborhoods as perceived by residents, Coulton et al. (25) conducted a study in which 140 
parents of minor children from the City of Cleveland were instructed to draw a map of what they 
considered as the boundaries of their neighborhoods.  The study finds evident discrepancies 
between resident-defined neighborhoods and census geography, though the average size of 
residents’ definition is close to the size of a census tract.  The study also demonstrates that 
individuals residing in close proximity can differ markedly from one another in how they define 
the physical space of their neighborhood.  This variability renders the task of defining resident-
perceived neighborhoods a challenging proposition. 

While the question of neighborhood definition remains to be further explored, the 
experiences of real estate appraisers and social scientists have shed some light on human 
perception of neighborhood boundaries.  First, administratively defined units do not represent 
real neighborhoods and are thus imperfect operational definitions of neighborhoods for research 
and policy.  However, census geography in terms of tracts, block groups and blocks are 
reasonably consistent with the notion of neighborhoods as nested ecological structures.  Second, 
while neighborhoods may in part be defined by objectively recognizable boundaries such as 
major roads and geographical barriers, the definition is often subjective and depends on the 
characteristics and location of the residents.  Third, and as a result of the previous two points, 
there is a lack of consensus on the size of a perceived neighborhood, which can range from 
multiple census blocks to multiple tracts. 
 
4. EMPIRICAL MODELS OF RESIDENTIAL LOCATION CHOICE  
Discrete choice theory has been widely used to model residential location choice, where the 
consumption decision is a discrete choice between alternative houses and/or neighborhoods.  A 
household is assumed to evaluate the various factors characterizing each location and to choose 
the location that yields the highest utility.  As analysts, we want to uncover how decision makers 
assign utilities to alternative locations.  This is achieved by representing the utility of alternative 
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In Equation (1),  represents the utility factors observable to the analyst, while  represents 
the unobserved factors that affect utility.  As stated in Equation (2), it is common practice to 
specify  as a linear-in-parameters function of (a) observable aspatial attributes,  (such as 
floor area size), (b) observable spatial (neighborhood) attributes,  (such as population 
density), and (c) observable characteristics of the household, 
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nX  (such as household income).  

 and β  are parameter vectors to be estimated.  The assumption that the error term  is 
independently and identically extreme value distributed across all attributes and decision leads to 
the multinomial logit (MNL) model, which has a very convenient form for the choice 
probability: 
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In the case of residential location choice, however, the validity of the assumption of 

independence across spatial attributes is questionable.  For example, a decision maker’s 
preference toward one location for the cleanliness of its nearby streets (presumably 
unobservable) is probably equally applicable to other locations around those same streets.  The 
presence of spatial dependency, that nearby things are more similar than distant things, often 
subject MNL models to criticisms in their application to spatial choices.  This issue is certainly 
important but is beyond the scope of the current study.  Interested readers are referred to Bhat 
and Guo (26) for a mechanism proposed to address this problem in a residential choice context. 

Despite the criticisms surrounding its underlying assumptions, the MNL model has been 
used for studying residential location choice (see McFadden (27), Hunt, McMillan and Abraham 
(28), Sermons and Koppelman (29), Gabriel and Rosenthal (30), and Sermons (31)).  There is 
also a body of literature that considers residential location choice jointly with other choices in a 
nested logit structure, including the works of Lerman (32), Anas and Chu (33), Quigley (34), 
Waddell (20), Abraham and Hunt (35), Ben-Akiva and Bowman (36), and Sermons and Seredich 
(37). 

The aforementioned modeling efforts contribute to the field by considering different 
study areas, subpopulations of residents, and decision determinants.  Common to almost all the 
studies is the representation of alternative locations by areal units (as opposed to individual 
dwelling units) and the measurement of spatial attributes based on these areal units.  That is, the 
studies implicitly assume neighborhoods to be the same as the alternative residential zones.  In 
light of our earlier discussion on neighborhood perception, this assumption can be flawed for at 
least a couple of reasons.  First, since individuals’ perceived neighborhoods are not observed, the 
estimates obtained for β  in Equation (2) can be interpreted only with respect to the zones chosen 
for analysis and not as the effects of neighborhoods.  Second, by measuring spatial attributes 
over a single definitional configuration of zones, one assumes that every spatial factor operates 
at one and the same spatial scale.  The hierarchical nature of neighborhoods renders this 
assumption rather unrealistic, as previously observed by Orford (38) in the context of hedonic 
pricing.  The conflicting and insignificant parameter estimates on spatial attributes in previous 
residential location choice models may be attributable to the naïve measurement of spatial 
effects and the ill representation of neighborhoods. 
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5. DISAGGREGATE MULTI-SCALE LOGIT (MSL) MODEL 
In view of the limitations of earlier work on residential location choice with regard to 
neighborhood definition, and also to address the MAUP, we propose a choice model with 
neighborhood attributes measured at a hierarchy of spatial units.  More specifically, let each 
alternative housing unit i be geographically described by ( )iii TGBi ,,, , where ,  and  are 
the census block, block group and tract that the unit belongs to, respectively.  Suppose also that 
spatial attributes, denoted as ,  and , are observed at these three levels.  We then 
replace Equation (2) by:  
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where  and iH nX  are defined as before.  The parameter vectors α , Bβ ,  and  are then 
estimated using a MNL structure, as before.  

Gβ Tβ

It should be noted that the above utility structure can be generalized to any number of 
spatial scales and is not limited to spatial units defined by census geography.  In fact, the use of 
census boundaries may be undesirable in view of the sliding neighborhood effect.  A more ideal 
neighborhood representation might be, for instance, circular units of 1, 2 and 3 mile radii 
centered around each alternative housing unit.  However, the current study does not adopt this 
spatial support because data is not readily available at these spatial support levels.   
 
6. CASE STUDY 
The study region used to empirically test the MSL model against the conventional single-level 
approach is the San Francisco Bay Area.  The primary data source is the 2000 Bay Area Travel 
Survey (BATS) that collected detailed information on individual and household 
sociodemographic information, employment-related characteristics, and all activity and travel 
episodes for a two-day period from members of 15,064 households.  The dataset also collected 
detailed geographic information, including the point geocodes of household residence from 
which the census block, block group and tract of residence can be identified.   

For the current analysis, we randomly selected 50% of those households who lived in a 
single-family detached house, yielding a sample size of 4,791.  The choice alternatives for each 
household are defined at the most disaggregate level, i.e. the individual dwelling.  In theory, the 
universal choice set in this case comprises all the single-family detached houses in the Bay area.  
However, data on all such housing units in the area are unavailable.  Therefore, we assume that 
the 4,791 residences observed in the sample are a random subset of all housing opportunities in 
the Bay area.  We also assume an identically and independently distributed structure for the error 
terms across the choice alternatives, so that the model can be consistently estimated with only a 
subset of the choice alternatives (27).  One straightforward way of drawing a choice subset from 
the set of 4,791 alternatives is the random sampling technique, which is the approach we use in 
estimation.  Our final sample for estimation consists of the chosen alternative and nine randomly 
selected non-chosen alternatives for each of the 4,791 households.  Attributes of the choice 
alternatives are derived from the 2000 Census data and the TAZ profile data obtained from the 
Bay Area Metropolitan Transportation Commission.   
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A complete listing of the variables considered, and the spatial scale at which the 
measurements are available for each variable, is provided in Table 2.  A few points to note here.  
First, the ordering of the different spatial levels in terms of decreasing spatial resolution, or 
increasing spatial aggregation, is as follows: block level, block group level, tract level, and 
county level.  While the TAZ are more disaggregate than the county level, they cannot be 
directly mapped to the census geography.  Second, in our final specifications, the only commute-
related variable that we used corresponded to commute time, though we had both commute time 
and commute cost variables. This was because of the high correlation between the time and cost 
variables, which resulted in statistically insignificant fit improvements when both variables were 
considered over when commute time was the only variable considered (between the commute 
time and commute cost variables, the former performed much better). Third, we considered 
county-specific dummy variables in the estimation process to capture the average effects of any 
unobserved attributes at the county level.  However, no such effects were found to be statistically 
significant.  Fourth, crime rates (measured at the county level) were also considered, but 
excluded from the final specifications due to lack of statistically significant impacts.  This does 
not, however, necessarily reject the hypothesis that safety is not an influencing factor on 
residential utility.  Rather, it is likely that the counties are too broad a spatial scale to reflect 
safety considerations. Crime rate statistics at a finer spatial resolution would be very helpful, but 
were not available.     
 
6.1 The Single-Level Models 
Four MNL models, as defined by Equations (1), (2) and (3), are developed to examine spatial 
effects at different scales.  The parameter estimates and t-statistics are presented in Table 3.  In 
model 1, the base model, only the variables listed under the TAZ and county columns from 
Table 2 are considered.  The intension is to isolate the influence of census attributes we have 
available at three different spatial scales.  Model 2, 3 and 4, on the other hand, represent the best 
specifications after considering all the variables in model 1 plus those variables available at the 
census block, block group and tract levels, respectively, as indicated in Table 3.  Below, we 
discuss the similarities and differences in the model estimates.  

As shown in Table 3, the best specification found for model 1 includes the commute 
times and generalized accessibility measures interacted with gender, employment level (full time 
versus part time), income, and race.  The parameter estimates relating to commute indicate that 
households tend to locate themselves closer to, rather than farther from, the work locations of the 
workers in the household. In particular, households locate themselves close to the workplace of 
the female workers in the household. The gender disparity, which is found to be independent of 
employment level, is consistent with the household responsibility hypothesis; that is, the female 
partner invests less time in commuting relative to her male partner because she shoulders more 
of the household maintenance responsibility (29,35,39). A similar higher responsibility 
hypothesis may be the underlying cause for the greater commute time effect of part-time workers 
relative to full-time workers. The racial disparity in commute sensitivity indicates greater spatial 
job-housing mismatch for non-Caucasians compared to Caucasians (40,41).  The positive sign 
associated with the interaction of commute time and income may be a reflection of the 
willingness of higher income earners to travel further in exchange for better housing quality. 

The parameter on employment accessibility suggests households’ general aversion to 
locations too close to substantial employment centers, after the direct accessibility to work 
locations is accounted for.  However, taken together with the parameter on the interaction term 



Guo and Bhat 9

between employment accessibility and income, the results indicate that households earning an 
annual income greater than $101,818 tend to locate themselves near employment centers.  The 
three parameters associated with shopping accessibility indicate that multi-person households 
whose annual incomes are less than $66,304 prefer locations closer to shopping opportunities; 
however, the reverse is true for multi-person households earning over $66,304. The 
attractiveness of good shopping access is clearly higher for single-person households. Finally, in 
the class of accessibility-related variables, the preference for good access to recreation is 
confined to nuclear-family households.  The differential effects of the accessibility-related 
variables based on income earnings and household family type need further careful exploration 
and research. 

Most of the observations made above regarding the base model also apply to models 2 
through 4.  However, in addition to the variables discussed above, models 2 through 4 also 
include several additional variables, whose effects we discuss next. 

A consistent finding among models 2 through 4 is the evidence of substantial racial 
segregation, which may be attributed to one or more of the following factors: (a) racial 
discrimination in the housing market, (b) differences between racial groups in preferences for 
neighborhood attributes, or (c) a preference to be with others of the same ethnic background.  
Disparity is also found in households’ preferences for residential density.  All else being equal, 
African-American households are found more likely than households of other racial backgrounds 
to locate in census blocks of high density – a result also found in Waddell (20).  On the other 
hand, nuclear family households have an aversion to high density at the census block group and 
tract level. The impact of annual household income in all three models indicates that high 
income households are less likely to locate in high density areas compared to low income 
households.  

Models 3 and 4 are further comparable in terms of additional variables that are available 
only at the block group level and up.  The income dissimilarity measure, captured by the 
absolute difference between the zonal median income and household income, confirms the 
income segregation hypothesis found in literature.  In addition to segregation by race and 
socioeconomic status, households tend to cluster with other households of similar structure as 
suggested by the parameters associated with household size dissimilarity and the household type 
composition.  For example, couple households tend to locate themselves in neighborhoods 
(block groups, tracts) populated by other couple households, while the clustering of nuclear-
family households is also evident at the block group level.  The most prominent difference 
between models 3 and 4 lies in their parameter estimates for zonal median housing value. Model 
4 suggests that households will, in general, prefer lower housing values, while model 3 indicates 
that high-income households (earning over $125,000) prefer high housing values. This 
difference in modeling results appears to be a result of the MAUP. 
 
6.2 The MSL Model 
The MSL model considers all the variables listed in Table 2 jointly, as discussed in Section 5. 
Based on Horowitz’s (42) adjusted likelihood ratio test, the goodness-of-fit of the MSL model is 
superior to the previously estimated single level models. 

In the overall, the MSL model is consistent with the previously estimated single level 
models in the signs of the parameters (see Table 4).  The parameter estimates relating to 
commute time and accessibility are of similar magnitudes as those found in the single level 
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models.  The more interesting results correspond to the different spatial scales at which other 
variables are found significant or insignificant. 

Across all the single level models in section 6.1, the four racial composition variables 
were statistically significant, suggesting the presence of racial segregation at the respective 
spatial scales.  When the variables measured at all three spatial levels are examined at the same 
time, segregation among races is most prominent at the block level, as indicated in Table 4.  
When ‘zoomed’ out to the block group level, the preference of residing near households of the 
same race is significant only for the Asian and Hispanic populations.  The reason that the 
segregation of these two racial groups carries from the block to the block group level is most 
likely related to their small shares represented in the sample (and in the population).  Hence, for 
example, for a neighborhood to include enough Asians to be perceived and characterized as an 
Asian neighborhood, the spatial extent of this neighborhood likely needs to be larger than for a 
Caucasian neighborhood.  If the spatial extent of reference is further expanded, perceptions of 
racial concentration are likely to decrease because of more heterogeneity in the population at the 
higher spatial level.  This can explain the statistical insignificance of the race variables at the 
tract level. 

Interestingly, the consistency of the density parameters between the MSL model and the 
single-level models is mixed.  The block level density continues to have a positive influence on 
residential location of African American households, but shows no differential effects on 
households of different income levels.  The relationship between density and household type 
(nuclear family households) is picked up by the model at the block group level, indicating that 
nuclear families are averse to high-density neighborhoods.  The relationship between density and 
income, on the other hand, is significant only at the tract level.  This variation in spatial extent of 
density effects may, again, be the product of aggregation. 

Segregation by income level and household size are both significant at, and only at, the 
block group level, the finest scale at which measures for these variables are available.  As for 
segregation by household type, we again observe variation in the spatial scale of significance.  
Couple households’ preference for locating near similar households is identified at both block 
group and tract levels.  On the other hand, the clustering of single person households and of 
nuclear-family households is significant at the tract level and the block group level, respectively.  
This is perhaps an indication of the size of clusters by household types.  It may also suggest the 
hypothesis that nuclear families are more conscious of their immediate environment, possibly 
because of the presence of children in the household.  Lastly, the parameters in Table 4 that 
relate to zonal housing value have similar interpretations as those given by model 3. 
  
7. CONCLUSIONS 
The success of a discrete choice modeling exercise, like for other modeling efforts, relies on 
correct model specifications, which are tied closely to accurate representation, or measurement, 
of relevant variables.  Of particular interest to the current study is the measurement of spatial 
variables that is subject to the spatial support effect, or alternatively referred as the MAUP.  In 
the context of residential location choice analysis, the literature points to a range of intuitive 
hypotheses about the impact of neighborhood characteristics on residential utility.  Yet, the 
corresponding effects are not always empirically evident.  The problem is most likely 
attributable to the MAUP, or more specifically, the ill representation of perceived neighborhoods 
and the naïve measurement of spatial effects.   
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The innovation introduced in this paper is that spatial attributes are considered at multiple 
scales, as opposed to the conventional approach based on a single scale.  The MSL model 
structure is a more realistic representation of how a neighborhood is perceived as a hierarchy of 
residential groupings.  Although in the current study the census geography was used as the 
neighborhood hierarchy, the application of the MSL model is certainly not limited to 
administratively defined boundaries.  In fact, the MSL model should be viewed as a valuable 
tool for future research in evaluating alternative hierarchical representations.  The MSL structure 
is also advantageous in that it allows the spatial extent of each variable to be determined 
endogenously.  By interpreting the parameters with reference to the spatial scale at which they 
are statistically significant, we gain insights about the underlying clustering of observations.  We 
also demonstrate empirically how households of different characteristics may have different 
spatial cognitions of their neighborhood boundaries.  In short, by accounting for the decision 
maker’s perception of space, the proposed approach exploits the modifiability of areal units of 
measurement to produce richer and more interpretable results than with the conventional 
approach. 
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TABLE 1 Factors Influencing Residential Location Choices 

 
Dwelling Land Parcel  Neighborhood Accessibility 

• Number of bed rooms • Distance between houses • Prestige • Accessibility to CBD 

• Number of rooms • Backyard size  • Street quality • Commute distance  

• Structure type • Spaciousness • Pollution levels • Commute time by different modes  

• Architecture style • Parking availability • Housing density • Accessibility to on-CBD centers 

• Size of floor area • Distance from house to sidewalk • Amount of open space • Proximity to local amenities (e.g. 
hospital) 

• Sense of privacy • View and other aesthetic 
attributes 

• Non-residential land use  • Accessibility to shopping, recreational 
and employment opportunities 

• Construction materials   • Quality of local amenities  

• Amenities  • Demographic and socio-economic 
status of neighbors 

 

• Cost / Rent  • School catchment areas and quality  

• Dwelling age and condition  • Pavement/Traffic condition  

• Number of units in dwelling  • Reputation and policies of local 
government 

 

• Number of stories in dwelling  • Security and safety (crime rates)  
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TABLE 2 Exogenous Variables Considered in the Residential Choice Models for Bay Area 

Variable 
Group Variable Property TAZ Block Block 

Group Tract County

Number of residents per square mile over total 
area 

  X X X  

Number of residents per square mile over land 
area 

  X X X  

Distribution of household income in zone    X X  

Average household size per occupied housing 
unit in zone 

   X X  

Share of single person households    X X  

Share of couple households    X X  

Share of nuclear households    X X  

Share of other types of households    X X  

Share of single detached unit housing    X X  

Median number of rooms per housing unit    X X  

Median value of owner occupied housing units 
in zone 

   X X  

Share of non-Hispanic Caucasian population   X X X  

Share of non-Hispanic African American 
population 

  X X X  

Share of non-Hispanic Asian / Pacific Islanders   X X X  

Share of other non-Hispanic ethnicity   X X X  

Socio-
demographics, 
economic and 
housing 
compositions 
 

Share of Hispanic population   X X X  

Commute time between work zone and 
candidate residential zone 

 X  
   

Commute cost between work zone and 
candidate residential zone 

 X  
   

Accessibility to socio-recreational 
opportunities 

 X     

Accessibility to shopping opportunities  X     

Accessibility 
measures 

Accessibility to employment opportunities  X     
Crime rate      X 

Share of zonal area occupied by water   X X X  Environmental  
Share of zonal area occupied by land   X X X  

Housing Housing type X      
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TABLE 3 Estimation Results for the Single-Level Models 

Model 1 
(Base) 

Model 2 
(Block) 

Model 3 
(Block group) 

Model 4 
(Tract) Variables 

Param. t-stat. Param. t-stat. Param. t-stat. Param. t-stat. 
Commute time          

Full-time male workers -0.0422 -9.8 -0.0433 -10.0 -0.0419 -9.4 -0.0420 -9.4 
Full-time female workers -0.0565 -12.5 -0.0571 -12.4 -0.0553 -11.8 -0.0558 -11.9 
Part-time male workers -0.0753 -9.1 -0.0751 -8.9 -0.073 -8.6 -0.0735 -8.7 
Part-time female workers -0.0896 -16.1 -0.0911 -16.3 -0.0868 -15.2 -0.0872 -15.2 
Interacted with Caucasian household -0.0099 -3.3 -0.0094 -3.1 -0.0105 -3.4 -0.0105 -3.4 
Interacted with household income (in 
$100,000) 0.0063 2.0 0.0066 2.1 0.0061 1.8 0.0061 1.9 

Employment Accessibility -0.0224 -5.1 -0.0220 -5.0 -0.0094 -5.2 -0.0099 -5.3 
Interacted with household income (in 
$1,000) 0.0002 4.9 0.0002 4.7 0.0001 4.1 0.0001 4.5 

Shopping Accessibility 0.0303 2.0 0.0294 2.0     
Interacted with household income (in 
$1,000) -0.0005 -3.0 -0.0004 -2.6 -0.0002 -2.1 -0.0002 -2.2 

Interacted with single-person household 0.0361 6.6 0.0366 6.6 0.0332 5.9 0.0300 5.3 
Recreation Accessibility         

Interacted with nuclear-family household 0.0063 2.7 0.0059 2.5     
Racial composition         

Share of Caucasian population interacted 
with Caucasian household    0.6005 6.7 0.7321 5.8 0.6897 5.7 

Share of African population interacted 
with African household    9.8462 9.7 11.4118 8.1 10.9941 7.1 

Share of Asian population interacted 
with Asian household    4.6986 12.1 5.2321 11.7 5.2673 11.6 

Share of Hispanic population interacted 
with Hispanic household    4.2477 6.7 4.6100 5.6 4.9068 5.9 

Density over land area (per 10,000 mi2)         
Interacted with African American 
household    0.2446 2.7     

Interacted with nuclear-family household     -0.1630 -2.3 -0.2535 -3.4 
Interacted with household income 
between $25,000 and $45,000     0.1945 2.4 0.2517 2.9 

Interacted with household income 
between $45,000 and $75,000     0.1198 1.9 0.1567 2.4 

Interacted with household income > 
$75,000   -0.0824 -2.6     

Absolute difference between zonal median 
income and household income (in $1,000)     -0.0102 -12.4 -0.0103 -11.8 

Absolute difference between zonal average 
household size and household size     -0.1975 -4.9 -0.2439 -5.8 

Household type composition         
Share of couple-only household 
interacted with couple-only household     1.7116 5.7 2.5558 6.5 

Share of nuclear-family household 
interacted with nuclear-family household     1.0571 3.1   

Zonal Median housing value (in $1,000)     0.0003 2.0   
Divided household income     -0.0376 -5.0 -0.0259 -4.7 

Number of observations  4791 4791 4791 4791 

Log-likelihood at convergence -9436.35 -9214.53 -9026.72 -9071.28 

Adjusted log-likelihood ratio 0.14353 0.16309 0.17966 0.17580 
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TABLE 4 Estimation Results for the Multi-Scale Logit Model 

Model 5 (MSL) Variables 
Param. t-stat. 

Commute Time   
Full-time male workers -0.0424 -9.5 
Full-time female workers -0.0560 -11.9 
Part-time male workers -0.0733 -8.7 
Part-time female workers -0.0876 -15.3 
Interacted with Caucasian household -0.0101 -3.3 
Interacted with household income (in 
$100,000) 0.0063 1.9 

Employment Accessibility -0.0098 -5.3 
Interacted with household income (in $1,000) 0.0001 3.9 

Shopping Accessibility   
Interacted with household income (in $1,000) -0.0001 -1.9 
Interacted with single-person household 0.0278 4.8 

Recreation Accessibility   
Interacted with nuclear-family household 0.0036 1.5 

 Block level Block group level Tract level 
 Param. t-stat. Param. t-stat. Param. t-stat. 

Racial composition       
Share of Caucasian population interacted with 
Caucasian household  0.6210 6.2     

Share of African population interacted with 
African household  9.8956 9.8     

Share of Asian population interacted with 
Asian household  2.8256 3.9 2.4318 3.0   

Share of Hispanic population interacted with 
Hispanic household  2.0197 2.0 2.8344 2.3   

Density over land area (per 10,000 mi2)       
Interacted with African American household  0.1863 2.2     
Interacted with nuclear-family household   -0.1505 -2.1   
Interacted with household income between 
$25,000 and $45,000     0.2315 2.6 

Interacted with household income between 
$45,000 and $75,000     0.1389 2.1 

Absolute difference between zonal median income 
and household income (in $1,000) 

  -0.0100 -12.1   

Absolute difference between zonal average 
household size and household size 

  -0.1830 -4.2   

Household type composition       
Share of single-person household interacted 
with single-person household 

    0.8999 2.0 

Share of couple-only household interacted with 
couple-only household 

  0.9197 2.2 1.6450 3.0 

Share of nuclear-family household interacted 
with nuclear-family household 

  1.0477 3.0   

Zonal Median housing value (in $1,000)   0.0004 2.4   
Divided household income   -0.0383 -5.1   

Number of observations  4791 
Log-likelihood at convergence -8999.41 
Adjusted log-likelihood ratio 0.18159 
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