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Abstract 

In this paper, we explore different conceptualizations to represent neighborhoods in residential 

location choice models, and describe three alternative ways for constructing operational units to 

represent neighborhoods.  In particular, we examine the possibility of using the census units to 

represent the hierarchical ‘fixed neighborhood’ definition, and the circular units and network 

bands to represent the hierarchical ‘sliding neighborhood’ definition. Overall, the network band 

definition is conceptually appealing. It also is marginally superior to the other two operational 

representations from a model fit standpoint. 

 

Keywords: Neighborhood; Spatial definition; Residential location choice; Modifiable areal unit 

problem 



1. Introduction 

In the literature relating to urban planning and travel behavior modeling, ‘neighborhood’ is a 

widely used and important term.  Studies of the housing market investigate what kind of people 

live in what kind of neighborhoods (Hunt et al., 1994).  Research work on the land-

use/transportation interaction frequently use neighborhood as a synonym for built environment 

or land-use.  In particular, advocates and skeptics of the ‘New Urbanism’ concept talk about 

whether neighborhood design and other characteristics can affect various aspects of travel 

behavior (Ewing and Cervero, 2001).   

Obviously, any study about neighborhoods is a spatial investigation.  Yet, the spatial 

definition of neighborhood has received very little attention in the literature.  Theoretical studies 

of neighborhood effects often use the term neighborhood rather loosely.  For instance, New 

Urbanism designs tend to focus on the micro scale of four hundred meters (one-quarter mile) or 

less.  Yet it is not clear on an a priori basis whether residential and travel choice behavior is 

influenced by the urban form within small neighborhoods, or over larger areas, or both.  On the 

other hand, empirical studies of neighborhood effects across many disciplines typically use 

census tracts, zip code areas, or transport analysis zones (TAZ) as operational surrogates for 

neighborhoods (Sampson et al., 2002; Dietz, 2002).  This use of administrative boundaries as 

operational units typically has little theoretical foundation and subjects the analysis to the 

modifiable areal unit problem (MAUP) (Openshaw, 1984), leading to potentially inaccurate 

analytic outcomes and erroneous recommendations for urban policy (see, for example, 

Fotheringham and Wong, 1991, and Guo and Bhat, 2004, for more detailed discussions of the 

MAUP). 
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So how do we define neighborhoods?  Or, how do we measure neighborhood 

characteristics and the associated effects?  Our simple answer is that we should measure what 

matters to people over the area that really matters to people.  For example, in the study of 

residential location choice, a common hypothesis is that good access to stores is an attractive 

neighborhood feature.  When examining such a hypothesis, if we define a neighborhood over too 

large an area, any spatially concentrated commercial activities would likely be averaged out with 

surrounding low-density patterns.  Consequently, it would be difficult to associate the 

commercial intensity with the choice behavior being studied.  Alternatively, if we arbitrarily 

define a neighborhood to exclude a commercial center that is in fact easily accessible for a given 

household, it would again be difficult to account for the presence of the commercial center in 

explaining the residential location choice of that household.  Therefore, only when the chosen 

definition reflects the decision makers’ perceived neighborhoods can we accurately study the 

effect of neighborhoods.   

The objective of this paper is to clarify what we, as decision makers and as analysts, 

mean by neighborhood and to develop ways of operationalizing the concept of neighborhood.  

With residential location choice as the application context, we expand on an earlier work (Guo 

and Bhat, 2004) that proposed a hierarchical spatial representation of neighborhoods to examine 

neighborhood effects.  Our previous study showed the superiority of the hierarchical, multi-scale, 

approach over the conventional, single-scale,  approach to accommodate the effect of built form, 

land use, and other neighborhood attributes.  However, the challenge remains regarding how to 

exploit the flexibility of using analyst-defined spatial units to appropriately identify the impacts 

of neighborhood factors.  In this paper, we specifically examine three alternative sets of 

operational units for neighborhood definition and embed these spatial representations to study 
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the effects of neighborhood factors on households’ residential location choices.  Our results 

demonstrate the feasibility of using these operational units of neighborhood, the sensitivity of 

modeling outcomes to the choice of spatial units, and the strengths and limitations of the 

alternative units. 

The remainder of this paper is structured as follows.  The next section discusses the 

concept of neighborhood, as used in earilier studies.  Section 3 provides a background for 

residential location choice analysis and discusses the methodological shortcomings in the 

conventional approach with regard to the definition of neighborhood.  Section 4 briefly reviews 

the hierarchical approach proposed in Guo and Bhat (2004) for representing neighborhoods in 

residential location choice analysis.  Section 5 discusses three different ways to operationalize 

the concept of hierarchical neighborhoods.  An empirical application of the three ways of 

representing neighborhoods is described in Section 6.  Finally, Section 7 concludes with a 

summary of the contribution of the study. 

2. Concept of Neighborhood 

Urban social scientists have treated ‘neighborhood’ in much the same way as 

courts of law have treated pornography: a term that is hard to define precisely, 

but everyone knows it when they see it. (Galster, 2001, p.2111) 

Indeed, ‘neighborhood’ is a vague, difficult-to-define, concept.  Scholars investigating the 

significance of neighborhood for individuals’ behavior and well-being often do not provide the 

term with an explicit definition.  When spatial definition of neighborhood is required for the 

purpose of quantitative analysis, “most social scientists and virtually all studies of neighborhoods 

… rely on geographic boundaries defined by the Census Bureau or other administrative 

agencies… [which] offer imperfect operational definitions of neighborhoods for research and 
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policy” (Sampson et al., 2002, p.445).  This widespread practice suggests that perhaps we don’t 

really know ‘it’ − at least not as well as we think − when we see ‘it’.  To better understand the 

nature of neighborhood, we review and discuss below a collection of approaches for defining the 

term.  The review is by no means exhaustive, as our focus is on definitions that will bring us 

closer to formulate operational units for neighborhoods.  The reader is referred to Galster (2001) 

for a more extensive survey of the literature. 

An area in which neighborhood definition plays an important role is the study of 

neighborhood effects, which refers to the neighborhood influences on the well-being and 

behavior of families, and often children in particular.  A pioneering study (Park, 1916) in the 

field points out that cities are generally outlined by their physical geography, natural advantages, 

and transportation systems.  The processes of human nature then proceed to shape cities through 

competitive forces for efficient locations among businesses and individuals.  These informal 

processes result in the formation of neighborhoods – naturally segregated localities that share 

similar sentiments, traditions and history.  Followers of this line of thought tend to consider 

neighborhoods as discrete, non-overlapping, communities, leading to the common use of 

administratively defined zones for analyzing neighborhood effects.   

 Later, Suttles (1972) argues that, in addition to being the result of free-market 

competition, some communities’ identities and boundaries are imposed by outsiders.  Suttles also 

suggests that neighborhoods are best thought of not as distinct areas of a city, but rather as a 

hierarchy of ecological grouping at four levels.  At the lowest level is the ‘local networks and the 

face-block’, namely, a grouping of residents who share the same local facilities and residential 

condition because of their proximity to each other.  A neighborhood, defined at this level, is 

usually different for each person and is unlikely to have any sharp boundaries.  The second level 
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is labeled the ‘defending neighborhood’, defined as “the smallest area which possesses a 

corporate identity known to both its members and outsiders”.  Its size may vary, but it is 

generally large enough to include a complement of establishments (grocery, liquor store, church, 

etc.) that people use in their daily round of local movements.  The next level, the ‘community of 

limited liability’, is typically a construct imposed by external commercial and governmental 

interests.  Residents may be associated with multiple communities whose boundaries are 

fragmented and overlapping.  The highest level in the neighborhood hierarchy is the ‘expanded 

community of limited liability’.  These are large scale community organizations referring to 

entire sectors of a city, such as North Austin, whose identity usually arises from government 

policies and programs.   

Galster (2001) defines a neighborhood as a ‘complex commodity’ that is produced by the 

same actors – households, businesses, property owners and local governments – that consume 

them.  Neighborhood is a bundle of spatially based attributes, including structural, 

infrastructural, demographic, class status, tax/public service package, environmental, proximity, 

political, social-interactive, and sentimental characteristics.  Consistent with Suttle’s (1972) 

multi-scale view of neighborhood, Galster argues that the geographical scale across which a 

neighborhood attribute varies is often different for different attributes.  Consumers’ perceived 

delineation of a neighborhood thus depends on the particular neighborhood attributes of interest.  

This view is also shared by O’Campo (2003), who contends that the processes operating in the 

neighborhood environment are often many and that the ideal geographic units of analysis for 

different social processes may not be compatible.   

The multi-scale structure of neighborhood can also be viewed as residents having 

multiple neighborhood memberships.  As different processes (social, educational or religious) 
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unfold, a household can identify its local identity through its residential neighbors, the school the 

children go to, its membership in a church, etc.  These group memberships lead to spatial 

clusters, some of which may be objectively recognizable (such as a school catchment area or a 

gated community).  In other cases, however, there are often no clear cutoff points for 

determining how far social contact or other processes reach.  The boundaries for such 

neighborhood attributes are subjective and fuzzy.  As group memberships of individuals evolve 

with their changing roles in the network of social interaction and their stage in life cycle, their 

perceptions of neighborhood also change (Horton and Reynolds, 1971).  The perception may 

also be influenced by race (Lee et al., 1991) and gender (Guest and Lee, 1984).  Furthermore, an 

individual’s perceived neighborhood also depends on where she or he lives: “an individual living 

on the boundary of a census tract probably has more in common with residents of the adjoining 

tract than with residents on the far side of his own” (Dubin, 1992, p.435).  The concept that no 

set of fixed neighborhood boundaries can accurately describe an urban area is referred to as 

‘sliding neighborhoods’. 

Motivated by the uncertainty about how to construct operational units for neighborhoods 

in view of the many factors influencing residents’ perception, Coulton et al. (2001) examine the 

residents’ perception through their mental maps.  They asked 140 parents of minor children to 

draw a map of what they considered as the boundaries of their neighborhoods.  The study found 

evident discrepancies between resident-defined neighborhoods and census geography.  The study 

also demonstrated that individuals residing in close proximity and homogenous on race, age and 

gender can differ markedly from one another in how they define the physical space of their 

neighborhood.  This variability renders the task of defining resident-perceived neighborhoods a 

very challenging proposition.  Coulton et al. conclude by suggesting further research on mental 
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maps of neighborhoods.  However, even residents’ hand drawn mental maps, which may be 

influenced by neighborhood names or generally acknowledged definitions, may not reflect the 

geographic areas that truly affect them (Shinn and Toohey, 2003). 

Grannis (1998, 2003) also attempts to construct practical representations of 

neighborhoods.  He contends that street networks are one of the primary tools populations use to 

organize themselves in urban settings and that “the network of tertiary [small, residential-type] 

streets give rise to a network of neighborly relations” (Grannis, 1998) (p.1560).  In a subsequent 

effort, Grannis (2003) models cities as multiple independent ‘islands’ – discontinuous networks 

of pedestrian streets that are separated by major thoroughfares.  By comparing these islands with 

residents’ cognitive maps of their neighborhood, he shows that, while islands circumscribe 

residents’ perception of their neighborhoods, residents typically perceive only a portion of their 

island as their neighborhood.  Like Coulton et al. (2001), he is unable to construct operational 

spatial units as close proxies for perceived neighborhoods. 

The studies discussed above reflect the well-recognized difficulty in defining a 

neighborhood, both at the conceptual and the operational levels.  While the question of 

neighborhood definition remains to be further explored, the existing literature provides a few 

pointers for constructing neighborhood boundaries.  First, a neighborhood has a geographical 

reference, but its meaning depends on function and domain.  The relevant units depend on the 

specific process, or the outcome of the process, being studied.  Thus, the conventional practice of 

using a single definition of spatial units to analyze multiple neighborhood processes (such as the 

effects of various neighborhood factors on residential location choice) may lead to spurious 

conclusions.  Second, an urban region can be viewed as a mix of fixed (objectively recognizable 

boundaries such as major roads, geographical barriers and political demarcations) and sliding 
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(subjective boundaries that depend on the characteristics and location of the residents) 

neighborhoods.  Certain neighborhood processes are related to fixed boundary definitions, while 

others are associated with sliding definitions.  Third, administratively defined units do not 

represent real neighborhoods and thus constitute imperfect operational definitions of 

neighborhoods for research and policy.  However, census geography in terms of tracts, block 

groups and blocks are reasonably consistent with the notion of neighborhood as a nested 

ecological structure, where different processes take place at different levels of the structure.   

3. Residential Location Choice 

The home is where people typically spend most of their time, a common venue for social contact 

and, for most people, a major financial and personal investment.  One’s choice of residence also 

reflects one’s choice of the surrounding neighborhood, which has a significant impact on one’s 

well-being and quality of life.  The concept of neighborhood and its definition are, therefore, 

central to residential location choice analysis. 

Residential location choice has long been a multidisciplinary research topic.  For urban 

and transportation planning, the interest in the causes and consequences of individuals’ choice of 

residence arises from the recognition that it is the values, decisions, and actions of the people 

who are attracted to certain types of land use patterns that ultimately shape the transportation, 

land-use, and urban form.  The decision of residential location not only determines the 

connection between the household with the rest of the urban environment, but also influences the 

household’s activity time budgets and perceived well being.  Altering land use characteristics by 

itself might not affect the residents’ travel behavior, as expected by proponents of New 

Urbanism.  Rather, travel characteristics might only change after new residents are attracted by 

new land use and move into an area, while old residents who find the land use unsuitable 
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eventually move out (Kitamura et al., 1997; Lund, 2003; Bhat and Guo, 2005).  Hence, 

understanding the why, who, and where questions associated with residential choices is 

important for devising effective spatial policies to manage travel demand. 

Over the past four decades, there has been considerable development in the mathematical 

modeling of residential activities.  A popular modeling approach is based on the discrete choice 

formulation pioneered by McFadden (1978).  Such a formulation is appealing for residential 

choice analysis for at least the following two reasons:  First, the decision on residential location 

is one that encompasses housing choices as well as the physical and social attributes of the 

neighborhood.  Based on microeconomic random utility theory, the discrete choice approach 

provides a way of understanding how residents trade-off among the wide range of choice factors 

that come into play.  Second, the discrete choice approach allows the sensitivity to choice 

attributes to vary across socio-demographic segments of the population through the inclusion of 

interaction terms of spatial characteristics with demographic characteristics of households.  The 

modeling results can thus help devise urban policies that effectively target specific population 

groups. 

Of the past discrete choice modeling efforts of residential location, most adopt Lerman’s 

(1976) grouped alternatives choice (GAC) model (e.g. Quigley,1985; Gabriel and Rosenthal, 

1989; Waddell, 1993 and 1996; Rapaport, 1997; Levine, 1998; Nechyba and Strauss, 1998; 

Chattopadhyay, 2000; Sermons and Koppelman, 2001; and Deng, Ross, and Wachter, 2003).  

The GAC model is essentially a multinomial logit (MNL) model where the choice alternatives 

are the spatial groupings of dwellings, as opposed to the individual dwellings.  The probability 

 that decision maker  chooses a dwelling in grouping  by is given by: cnP , n c
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where  is the utility that decision maker  obtains from grouping :  cnU , n c
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In the above equation,  is a vector of observed grouping-specific attributes; cnX , β  is a 

vector of the model parameters to be estimated; and  is used to correct for the grouping 

process so that, other conditions being equal, a large grouping would have a higher probability of 

being selected than a small grouping.  In almost all of the past residential location choice 

analyses that have adopted the GAC model, the spatial groupings are interpreted as alternative 

neighborhoods of residence and are conceived as commodities with fixed, clearly defined, 

boundaries based on administratively defined units such as census tracts (e.g. Lerman, 1975; 

Sermons and Koppelman, 2001), school districts (Nechyba and Strauss, 1998), or TAZs 

(Waddell, 1996; Deng, Ross, and Wachter, 2003).  The neighborhood characteristics  are 

then constructed accordingly.  Such constructs are assumed to provide an accurate representation 

of the perceived neighborhood of relevance during the household’s decision making process.   

cJ

cnX ,

The GAC modeling approach has a number of limitations.  First, by examining 

neighborhood attributes over a single definitional configuration of zones, one in fact assumes 

that every neighborhood factor operates at one and the same spatial scale.  The multi-scale nature 

of neighborhood, as discussed in the preceding section, casts serious doubts on the validity of 

such an assumption.  Second, the use of mutually exclusive administrative zones is a ‘fixed 

neighborhoods’ representation, excluding the consideration of the ‘sliding neighborhoods’ 

concept.  Third, the model parameters β  are typically interpreted as the effects of the 
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neighborhood attributes on location choice.  Yet, as a manifestation of the MAUP, parameter 

estimates may differ when different zonal configurations are used.  Hence, unless the zones are 

coterminous with neighborhoods as perceived by residents, model estimates derived from 

arbitrarily defined zones should be interpreted only with respect to these zones and may not 

correctly reflect the residents’ choice behavior.  This highlights the need to address the 

limitations of the GAC approach and to seek more accurate ways of representing residential 

neighborhoods in models of residential location choice.  

4. The Multi-Scale Logit Model 

The use of the GAC model to approximate the ideal disaggregate models (where every 

distinguishable dwelling is treated as a distinct choice entity) was a result of the lack of detailed 

data for modeling purposes (Lerman, 1976).  The same data constraint has also in part 

contributed to the use of administrative boundaries as proxy spatial separations for neighborhood 

definitions.  However, the growing availability of rich, micro-level spatial data and the 

proliferation of geographical information systems (GIS) makes it possible to conceive the Multi-

Scale Logit (MSL) model (Guo and Bhat, 2004) as an alternative approach for modeling 

residential location choices.   

The basic idea of the MSL model is to use multiple definitions of neighborhood within 

the same study1.  This solution has been implemented in, for example, hierarchical linear models 

for studying community psychology (Brodsky, 1999; Duncan et al., 2003), housing price 

(Orford, 2002) and, to a limited extent, urban form effect on travel behavior (Boarnet and 

                                                 
1 The MSL model can be considered as a spatial application of the multilevel modeling approach (Goldstein, 1995) 

where factors from multiple geographical scales (representing a hierarchical structure of neighborhoods) are 

considered in the same analysis.    
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Sarmiento, 1998).  To the best of our knowledge, the MSL model of Guo and Bhat (2004) 

represents the first implementation of the multi-scale concept of neighborhood in a discrete 

choice modeling framework.   

The MSL model considers each available dwelling unit as a choice alternative.  The 

geographic location of an alternative  is described by a hierarchy of spatial units .  Let  

denote the vector of location attributes observed over a spatial unit s  (

i iS in
sX ,

iSs∈ ) for household n  of 

alternative .  The utility experienced by household  from choosing dwelling unit i  is formally 

defined as:     

i n

∑∑
∈∈

+′=
ii Ss

in
s

Ss

in
ss

in XU ,,, εβ . (3) 

The error terms, , represent any unobserved effects at each spatial scale.  By assuming that 

the error terms between different spatial scales are independent of each other, we collapse all the 

error terms into one and rewrite the above equation as: 

in
s

,ε

in

Ss

in
ss

in

i

XU ,,, εβ +′= ∑
∈

. (4) 

Furthermore, the error terms are assumed to be independent across alternatives i  to allow the 

estimation of the β  parameters using a MNL structure.  Relaxing the independence assumptions 

across spatial scales and/or alternatives is an important research avenue for future research2.   

The MSL model can be considered as a generalization of Lerman’s GAC model by 

allowing the neighborhood variables measured over more than one spatial scale to enter the 

utility function.  The MSL model structure thus provides a more realistic representation of how 

                                                 
2 If the spatial hierarchical structure follows a fixed-neighborhood definition, then the assumption of independence 

across alternatives can be accommodated within the general framework of multi-level models by allowing 

correlations across error terms at each spatial level (see, for example, Goldstein, 1995; Hox and Kreft, 1994). 
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neighborhoods are perceived as a hierarchy of ecological structures.  Moreover, it allows the 

scale, or scales, at which each neighborhood factor operates to be determined endogenously.  

That is, the model estimation process reveals not only the neighborhood determinants of 

significance to the choice behavior but also the spatial extent of their influence.  By interpreting 

the parameters with reference to the spatial scale at which they are statistically significant, we 

gain insights about the spatial strengths, or cluster sizes, of various neighborhood processes.  The 

empirical results reported in Guo and Bhat (2004) suggest that the MSL approach yields 

statistically superior models than the GAC approach.  The analysis was based on spatial 

variables measured using census units, thus representing a fixed neighborhood representation.  

The findings supported the notion that households of different characteristics have different 

spatial cognitions of their neighborhood boundaries.  The MSL modeling approach was found to 

successfully exploit the modifiability of areal units of measurement to produce richer and more 

reliable results. 

The other advantage of the MSL model over the GAC model is the capability of allowing 

more flexible representations of neighborhoods.  This capability is achieved through configuring 

the spatial hierarchy, , to represent different hypothetical delineations of neighborhoods based 

on the concepts discussed in section 2.  For example,  can be specified as operational units 

representing a hierarchy of ‘fixed neighborhoods’, ‘sliding neighborhoods’, or a mix of both.  

However, following this flexibility in neighborhood representation are the questions of how to 

appropriately implement the different concepts of neighborhoods and how to determine the ‘best’ 

implementation for the application at hand.  The remainder of this paper represents our first steps 

in answering these questions.   

iS

iS
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5. Neighborhood Representations 

As discussed earlier, the MSL model structure promotes the use of a hierarchy of spatial units to 

capture the effects of neighborhood variables.  In this section, we consider three alternative ways 

of operationalizing some of the ideas discussed in section 2 to produce spatial units that can be 

used in a MSL model to represent residential neighborhoods.  Below, we describe each of these 

three ways and also discuss their respective merits and drawbacks.   

5.1. Census-unit Representation 

Since the census data is often the main source of data about the spatial distribution of socio-

demographic variables, one convenient way is to define  based on the census geography such 

that , where  indicates the land parcel on which 

dwelling i  is located, and , , and are the census block, block-group, 

and tract that contain dwelling i , respectively.  Figure 1(a) illustrates an example of the census-

based neighborhood representation for a dwelling.   

iS

} tract,group-block ,block,parcel{ iiiiiS = iparcel

iblock igroup-block  tract i

The census-based definition of  is a case of ‘fixed neighborhood’ representation.  The 

spatial delineations represent objectively defined neighborhood boundaries and, by definition,  

the boundaries at each level of the hierarchy are non-overlapping.  Since the boundaries of 

census units usually follow geographical barriers, streets, and administrative demarcations, the 

census-unit representation of neighborhoods is suitable when, and only when, the neighborhood 

process being studied is confined to these boundaries.  This could be a very restrictive condition, 

especially if the analysis is conducted at the relatively micro-scale of census blocks.  For 

example, if the average property value is computed for a given census block to capture the 

market potential of a dwelling unit in that block, then one in fact assumes that the value of any 

iS
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properties in an adjacent block – which could be right across the street from the dwelling unit of 

interest – is irrelevant to the analysis.  Another drawback of using the census-based 

representation is that census units can vary significantly across space in size and shape.  For 

example, it is highly unlikely that an individual who happens to reside within a census block of 

100 km2 would consider the entire block as his/her immediate neighborhood.   

5.2. Circular-unit Representation 

The use of circles to represent an individual’s perceived neighborhood is motivated by the 

concept of ‘sliding neighborhoods’, where the neighborhood boundaries are subjectively defined 

by the residents of a dwelling unit.  Here, the hierarchy of spatial units is defined as 

, where  are circular areas of varying radii  

demarcated around and centered about each alternative dwelling.  The radii of the circular units 

may in theory vary for different dwelling units to allow for spatial heterogeneity in perceived 

neighborhood extents.     

}c, ,c ,parcel{ 1
i

k
iiiS K= k

iii c,,c ,c 21 K k
iii r,,r ,r 21 K

Figure 1(b) shows the circular-unit representation of neighborhoods for the same 

dwelling considered in Figure 1(a).  The circular representation is a simple, but naïve way of 

implementing the sliding neighborhoods concept.  It implies that the surrounding environment 

within a given distance in all directions is equally important to the decision making process.  

Therefore, the circular-unit representation is suitable only if the neighborhood process under 

investigation is not confined to natural or artificial barriers that are present within the circular 

area. 

5.3. Network-band Representation 

A more sophisticated way of representing sliding neighborhoods is to take into account the street 

network configuration.  As suggested by Grannis (1998, 2003) and discussed in section 2 of this 
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paper, residents’ cognitive maps of their neighborhood are at least partially guided by the 

(connectivity of) street network in the vicinity of their residence.  To implement this idea, we 

define , where  are network bands constructed for varying 

distances .  Each network band is a buffer defined around dwelling i  such that 

the network distance from the dwelling to any point in the buffer is no greater than the pre-

specified value . 

}b, ,b ,parcel{ 1
i

k
iiiS K= k

iii b,,b ,b 21 K

k
iii d,,d ,d 21 K k

ib

k
id

In practice, one way of constructing the network bands is as follows:   

1. Grow a shortest path tree (SPT) from a given dwelling, ; i

2. Truncate the SPT branches to include only the nodes within the pre-specified 

distance, , from the dwelling; k
id

3. Construct a minimum convex hull that covers the truncated SPT.  The resulting 

convex hull is the desired network band . k
ib

The above procedure may be implemented using the GISDK script language provided by 

TransCAD, which is a commercial GIS developed especially for transportation applications.  

Figure 1(c) shows an example of a network-band generated using a GISDK macro written by us. 

Compared to the circular neighborhood representation, the network-bands are 

conceptually more appealing because the bands are less likely to contain natural or physical 

barriers.  Also, while the circular units constructed for a predefined buffer size have identical 

shapes and sizes, the network-band  corresponding to each dwelling  can vary in size and 

shape, depending on the density and layout of the surrounding street network.  Whereas denser 

and grid-like streets lead to smaller and more compact network bands, sparse and cul-de-sec 

k
ib i
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streets lead to network bands that are larger and more irregular in shape.  The degree of variation 

in the network bands’ sizes and shapes is, however, not as great as that of the census units.   

6. Empirical Application 

The three alternative ways described in section 5 for representing neighborhoods have been 

implemented and empirically applied to the context of residential location choice modeling.  The 

empirical application involves estimating three MSL models, each based on one of the three 

neighborhood representations.  The objectives here are twofold: (1) to examine if, and how, the 

three configurations suggest different neighborhood effects on residential location choice 

behavior; and (2) compare the statistical fitness of the models to determine their relative 

explanatory power.  Below, we describe the sample used for model estimation in section 6.1, the 

spatial data processing considerations in section 6.2, the variable specifications in section 6.3, 

and the estimation results in section 6.4.   

6.1. Estimation Sample 

The study region we have chosen to empirically apply the three neighborhood representation 

methods is the San Francisco Bay Area.  The primary data source is the 2000 Bay Area Travel 

Survey (BATS) that collected, from members of 15,064 households, detailed information on 

individual and household socio-demographic information, employment-related characteristics 

and all activity and travel episodes for a two-day period.  The dataset also contains the point 

geocodes of household residences from which the census block, block group and tract in which 

the residence is situated can be identified.  The geocodes also enable us to construct concentric 

circles and network bands of varying distances around each residence (the sizes of the circles and 

bands are described later in section 6.2).  From the surveyed households, we randomly select 
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50% of those households living in single-family detached houses.  The sub-sampling allows us to 

avoid the need of differentiating between housing markets.  The final sample contains 4791 

households.   

Following from the MSL structure, the choice alternatives faced by each household are 

the individual dwellings.  In theory, the universal choice set in this case comprises all the single-

family detached houses in the Bay area.  However, not only are data about all such housing units 

in the area unavailable, but it would be computationally impractical to consider them all.  

Therefore, we assume that the 4791 residences observed in the sample are a random subset of 

such housing opportunities, and consider this as the unobserved choice set faced by each 

individual household.  We also assume an identically and independently distributed (IID) 

structure for the error terms across the alternatives in this universal choice set so that the model 

can be consistently estimated with only a subset of the choice alternatives (McFadden, 1978).  

The individual choice set constructed for each of the households in the sample includes the 

chosen alternative and nine randomly selected non-chosen alternatives. 

6.2. Spatial Data Processing 

Spatial attributes describing the choice alternatives are derived from a number of data sources, as 

listed in Table 1.  These sources provide raw data for such spatial units as TAZ and census 

blocks and block groups.  For our purpose of implementing the alternative neighborhood 

representations, we need to first construct the hierarchy of census units, circular units, and 

network bands, respectively.  Once the spatial units are created, we then overlay the geographic 

layer associated with the raw data (the source layer) on to these spatial constructs (the target 

layer), followed by appropriate disaggregation and aggregation operations to produce the 

neighborhood measures desired for model estimation.  It should be noted that, since our source 
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data are already in an aggregate form, the process of disaggregating and aggregating them to the 

target layer may introduce further information loss or distortion, with the degree of loss or 

distortion depending on the configurations of the source and target polygons.  To avoid such 

information distortion, one should use source data with the highest spatial resolution.     

The construction of the census units is trivial as the Census Bureau provides GIS layers 

that readily define the census blocks, block groups, and tracts.  The construction of the circular 

units and the network bands, however, requires us to first determine the appropriate radii (in the 

case of circular units) and band sizes (in the case of network bands).  Our selection of radii and 

band sizes is based on two considerations.  First, in order to reduce the magnitude of information 

distortion due to data disaggregation, the circles and bands should be of sizes no smaller than the 

census units.  The great variation in area size of the census units, however, makes the selection of 

distance thresholds difficult.  For example, the area size of the 1106 census tracts in the Bay 

Area ranges from 0.05 to 1515.07 km2, which are equivalent to circular areas of radius ranging 

from 0.13 to 21.97 km.  Our second consideration in determining the appropriate sizes for the 

circular units and network bands is related to the possibility of high correlations between 

neighborhood variables measured at the different scales.  To be sure, such correlation effects also 

exists among the census units.  However, the correlation problem may be worse for the circular 

units and network bands if the differential increments between the scales are relatively small.  

Based on these two points of considerations, we choose 0.4 km, 1.6 km and 3.2 km as the radii 

and band sizes for the three-scale circular-unit and network-bands representations3.  The 0.4 km 

is slightly greater than the radius of a circle equivalent to the average size of the census blocks 

                                                 
3 The exact measurements of the radii are 0.25, 1.0, and 2.0 mi.  Their respective metric equivalents of 0.4, 1.6, and 

3.2 km are used in this paper. 
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(which is 0.27 km).  It captures the surroundings within what is commonly regarded the average 

‘walkable’ distance.  The second level of 1.6 km radius is comparable to the size of most census 

block-groups and tracts and perhaps caps the ‘walkable’ distance.  The third level of 3.2 km 

radius is selected to detect neighborhood effects that might operate beyond individuals’ walking 

distance.   The census units associated with, and the circular units and network bands of the 

chosen sizes constructed around, each of the 4791 residential locations in the sample are then 

used to compute the various neighborhood variables described in the following section. 

6.3. Variable Specification 

The following two sets of neighborhood variables are computed for the three sets of  spatial 

units:  

 (1) Neighborhood socioeconomic and demographic variables 

Several variables are computed to test for the presence of segregation along 

various socioeconomic and demographic dimensions.  These include the racial 

composition variables (percentage of population by race), household type 

composition variables (percentage of households by type), tenure composition 

variables (percentage of households owning or renting), household income 

homogeneity (absolute difference between household income and zonal median 

income), and household size homogeneity (absolute difference between 

household size and zonal average household size).  The racial, household type and 

tenure composition variables are further interacted with the corresponding 

household racial, family type, and tenure attributes.  

(2) Neighborhood design variables  
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A variety of neighborhood design measures were considered for this analysis.  

These include density measures (population density, housing density), land-use 

composition measures (percentage of coverage by land-use type) and employment 

density measures (number of employees per person by sector).  We also 

considered a more complex measure of land-use diversity defined by:  

( ) 5.1414141411 −+−+−+−−= sssssssss TOTITCTRMIX  (5) 

where  is the total area of the unit of analysis sT s ; and , ,  and  are 

the acreage of residential, commercial, industrial and other land use types.  This 

land-use mix index takes a value between 0 and 1, where 1 indicates perfect 

mixing of land uses and 0 indicates that the land in a particular area is completely 

dedicated to a single land use (Bhat and Gossen, 2004). 

sR sC sI sO

Two additional sets of variables are also considered in our MSL models to capture 

the effects of regional access, for both commute and non-commute purposes, on the 

choice of residential location.  These variables are:  

(1) Commute-related variables 

Based on the residents’ work and alternative residential TAZ locations, we extract 

from the level-of-service data the auto commute times and costs, which are then 

interacted with individual work status, gender, ethnicity, and income variables. 

(2) Regional accessibility 

A residential location’s attractiveness depends not only on its immediate 

surroundings, but also how it relates spatially to the rest of the urban area.  This is 

the motivation for considering regional accessibility measures for shopping, 

recreational, and employment activities.  We compute the accessibility measures 
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, respectively;  is the distance between zones i  and .  Due to data 

constraints, these zonal accessibility measures are used in our analysis as proxy 

for point-to-region accessibility measures for each observed residence.  Large 

values of the accessibility measures indicate more opportunities for activities in 

close proximity of that residence, while small values indicate residences that are 
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6.4. Estimation Results 

We arrived at the final specification for each of the three models based on a systematic process 

of testing and eliminating variables found to be statistically insignificant.  The specification was 

also guided by parsimony and intuitive considerations, and the results from earlier studies.  The 

final specifications are presented in Table 2 (census-unit representation), Table 3 (circular-unit 

representation) and Table 4 (network-band representation).  The results are discussed below by 

variable group.  Overall, the three models are consistent in the signs of the parameter estimates.  

The final specifications differ in the presence and the absence of certain variables and the spatial 

level at which the variables are significant.   

 22



Commute-related variables 

The three models are most comparable in terms of the parameter estimates (both in sign 

and magnitude) associated with commute time.  All models reveal that households tend to locate 

themselves closer to the work locations of the workers in the household.  In particular, 

households locate themselves close to the workplace of the female workers in the household.  

This gender disparity supports the household responsibility hypothesis (Sermons and 

Koppelman, 2001).  A similar higher responsibility hypothesis may be the underlying cause for 

the greater commute time effect on part-time workers relative to full-time workers. The racial 

disparity in commute sensitivity suggests greater spatial job-housing mismatch for non-

Caucasians compared to Caucasians.  The positive sign associated with the interaction of 

commute time and income may be a reflection of the willingness of higher income earners to 

travel further in exchange for better housing quality. 

Accessibility-related variables 

The three models also have similar estimates for the sensitivity to employment 

accessibility.  Taken together with the parameter on the interaction term between employment 

accessibility and income, the results indicate that households earning an annual income greater 

than $16 000 (in the census-unit model) or $12 000 (in the circular-unit model) or $8 000 (in the 

network-band model) tend to locate themselves near employment centers even after the direct 

accessibility to work locations has been accounted for.  Single-person households are also found 

to locate in closer proximity to regional employment opportunities than other types of 

households.  The effect of regional shopping accessibility is different for the models.  While the 

census-unit model suggests that, compared to other household types, couple-only households 

tend to locate in areas with good access to shopping opportunities, the other two models do not 
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suggest any difference in sensitivity to shopping accessibility across household types.  

Recreation accessibility measures were introduced into the utility function during the estimation 

process, but were not found to impact residential choice. 

Residential segregation effects 

A consistent finding in all models is the evidence of residential segregation across a 

number of dimensions.  As indicated by the magnitude of the parameter estimates, African-

Americans are the most segregated group, while Hispanics and Asians are segregated to a lesser 

degree – this finding is in agreement with the national demographic trend found in Iceland et al. 

(2002).  The results essentially indicate that African-Americans and Hispanics are more likely to 

integrate with other minority groups compared to Caucasian and Asians.  It is also interesting 

that, despite the common impression of strong Black-White segregation, the coefficient 

associated with the share of Caucasian population interacted with Caucasian household is 

relatively smaller than the respective coefficient associated with the share of African-

American/Asian/Hispanic population interacted with African-American/Asian/ Hispanic 

household.  This perhaps indicates that the Caucasians in the Bay area have a relatively high 

tolerance for the presence of the other population groups as a whole in their neighborhoods.   

Evidence of strong racial segregation is a common finding in past studies of residential 

location choice.  What past studies have not been able to reveal is the differential spatial extents 

of the racial clustering behavior.  Our estimation results show that the size of racial clusters does 

vary for different racial groups and that different neighborhood definitions suggest different 

cluster sizes.  In Tables 3 and 4, almost all the racial clustering variables are significant at, and 

only at, the 0.4 km direct/network distance level, with the exception being the aggregation of the 

‘other’ ethnic population with African-American households.  This suggests that racial clusters 
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are generally of 0.4 km in radius.  The census-unit model in Table 2, however, tells a different 

story.  The aggregation among Caucasians and among African-Americans is prominent in census 

blocks only; whereas the aggregation among Asians and among Hispanics is found in both 

census blocks and block-groups.  Also, the integration of African-Americans and of Hispanics 

with the other minority groups is found only at the tract level.  This difference in spatial scales of 

racial segregation between the two models is perhaps a result of the MAUP, the variation in the 

sizes of census units, or other factors that require further research to uncover.    

The household structure-related segregation effects suggest that a household tends to 

locate in an area with a high proportion of other households with a similar household structure 

and household size as their own.  Table 2 suggests the presence of clustering among couple-only 

and nuclear-family households at the census block-group level, and clustering among single-

person and couple-only households at the census tract level.  Tables 3 and 4 both show that the 

cluster size of single-person households (1.6 km) is higher than that of the other household types 

(0.4 km).  In addition to segregation by race and household structure, households are found to 

locate near other households of similar income level, household size, and residential tenure 

status.  Again, the observed inconsistency between the three models regarding the clustering size 

of households along various demographic and socio-economic dimensions calls for further 

research.   

Neighborhood design factors 

The consistency of the neighborhood design parameters among the three models is very 

mixed.  Density and density interacted with nuclear-family households are significant in all three 

models, but show different spatial extents of influence.  The census-unit model implies that 

households generally locate in census tracts of high population density, but nuclear-families are 
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less likely to location in census block-groups of high density.  The circular-unit and network-

band models indicate that high population density within close proximity (0.4 km in terms of air 

or network distance) of households’ residence generally has a positive influence on households’ 

residential location choice.  However, population density has a negative influence on nuclear-

family households, and the extent of this influence is within a 1.6 km radius of their residence 

(the circular-unit model) or 3.2 km network distance from their residence (the network-band 

model).  In the census-unit model, density is also found to have an additional positive effect on 

African-Americans and a negative effect on high-income households.  In the network-band 

model, density also has a negative effect on high-income households (annual income above $114 

000).  

Of the several land-use composition variables and their interaction terms with household 

characteristics, only the share of the commercial land-use variable and the share of commercial 

land-use interacted with household income variable are significant in both census-unit and 

circular-unit model specifications.  Taken together, the parameters suggest that the attractiveness 

of local access (within the same census block-group, or within the 1.6 km radius neighborhood) 

to stores diminishes as household income increases.   In addition, as suggested by the census-unit 

model but not the circular-unit model, couple-only households are less likely to location in 

census block-groups with high commercial land-use than other types of households.  The census-

unit model also indicates different effects of residential land-use at two spatial scales on single-

only households.  On the other hand, the network-band model suggests that, compared to lower-

income households, high income households are more likely to locate themselves in residential-

oriented areas (within 1.6 km of the residence).  Also, couple-only households tend to locate 

themselves in areas with less open space then other types of households.      
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Of the employment density variables tested, only the service employment density 

variable has an influence on residential choice decisions.  The census-unit model indicates that, 

on the one hand, nuclear-family, couple-only and single-only households are more likely to 

locate in census tracts with high service employment density, with the degree of likelihood being 

highest for nuclear-families and lowest for single-only households; but on the other hand, 

households other than these three types are less likely to locate in such tracts.  The effects of 

service employment density, however, are not evident in the circular-unit model nor the network-

band model.  

It is surprising that the land-use mix parameter, either by itself or through interaction with 

the various household characteristics, does not appear to be a significant factor in the census-unit 

model.  This suggests that, after the access to particular types of land-use (commercial) or 

amenity (service) is accounted for, mixed land-use does not have influence on residential 

location choice behavior.  With the network-band model, however, we find evidence supporting 

the hypothesis that households with no car are more likely to reside in mixed land-use 

environment.  The circular-unit model also suggests effects of land-use mix, measured within 1.6 

km network distance, on residential location choice.  Measured within a 3.2 km radius around the 

residences, heterogeneous land-use composition has a positive effect on households with none or 

one car, and a negative effect on households with young children.  These effects appear to be 

intuitive.   

Measures of fit 

Since the number of variables present in the final specifications is different between the 

census-unit model and the circular-unit model, the log-likelihood ratios are not directly 

comparable.  Instead, we compare the goodness-of-fit of the two models using the adjusted 
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likelihood ratio (ALR).  The values of the ALR for the census-unit, circular-unit, and network 

band models are 0.183, 0.183, 0.184, respectively.  That is, statistically speaking, the network-

band model is found to be superior to the other two models.  The differences in model goodness-

of-fits are, however, quite small and not statistically significantly different based on non-nested 

likelihood ratio tests (see Ben-Akiva and Lerman, 1985, for a discussion of non-nested 

likelihood ratio tests).   

7. Summary and Conclusions 

The ‘neighborhood’ is a key concept in urban study.  Its attributes can be observed and 

accurately measured only after a location has been specified and a space of relevance been 

demarcated.   In this study, we investigate the spatial definition problem of neighborhood in the 

context of residential location choice analysis.  From past research efforts aimed at 

conceptualizing the nature of neighborhood, we learn that neighborhood is intrinsically 

hierarchical and is continuously shaped by the infrastructure and the many ecological and social 

processes that take place in the urban environment.  The hierarchical organization and the spatial 

boundaries of neighborhood are very much domain dependent.  In certain contexts they can be 

described by objectively recognizable spatial delineations while, in other situations, they are 

constructed by individuals’ perception.  This dynamic nature of neighborhood renders the 

popular grouped alternatives modeling approach methodologically flawed.  By not appropriately 

considering neighborhood attributes over the area that really matters to the decision makers, 

these past modeling efforts produce biased parameter estimates that lead to erroneous 

interpretations and ineffective policies.     

  We contend that, with the increasing availability of micro-level spatial data and the 

proliferation of GIS, researchers should re-examine the conventional practice and consider the 
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more general, and behaviorally more realistic, MSL modeling approach.  The MSL model serves 

as a useful tool for uncovering the appropriate spatial structure to best represent neighborhood 

for a given study context.  Our earlier work (Guo and Bhat, 2004) showed that, at least in the 

context of residential location choice analysis, the hierarchical nature of the MSL model 

outperforms the single-level model both conceptually and statistically.  The MSL model is 

especially valuable in its ability to allow the spatial scale of relevance for each variable to be 

determined endogenously.  

In this paper, we explore different conceptualizations of neighborhoods and describe 

three alternative ways for constructing operational units to represent neighborhoods.  In 

particular, we examine the possibility of using the census units to represent the hierarchical 

‘fixed neighborhood’ definition, and circular units and network bands around housing units to 

represent the hierarchical ‘sliding neighborhood’ definition.  Each of these three neighborhood 

representations has its conceptual merits and drawbacks.  The fact that the boundaries of census 

units often follow the street network makes the units a good candidate for studying the 

neighborhood factors whose influence are perceived to differ from one street block to the other.  

However, the same quality also makes the census unit unsuitable for studying other types of 

neighborhood processes.  Another major drawback is that the census units vary greatly in size 

and shape, rendering it difficult to interpret the associated parameters.  One the same note, the 

distance-based units (circular units and network bands) provide much more tangible indication of 

the spatial extents of the neighborhood factors’ influence.  Moreover, since the network bands 

are constructed based on the street network, they have the desirable quality of including major 

natural/physical barriers in their boundary definition.      
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Our empirical application of the three neighborhood representation methods in studying 

households’ residential location choices showed that the network band representation is 

statistically, but not significantly, superior to the other two representations.  A number of 

additional conclusions can be drawn from the empirical results.  First, the three models are 

generally consistent in the signs and magnitudes of the parameter estimates relating to the 

commute-related and the regional accessibility variables.  For the other variables considered in 

the analysis, the models differ in the variables that are significant and the spatial scale at which 

these variables are significant.  Second, for parameters that are found to be significant, they tend 

to have the same sign but their respective values can differ up to 300%.  Third, all three models 

suggest that the social-economic and demographic composition variables have significantly 

smaller spatial extent of influence than the land-use variables.  The aforementioned findings can 

perhaps explain why previous residential choice models utilizing the GAC approach sometimes 

fail to provide empirical evidence for certain intuitive hypotheses about the impact of 

neighborhood characteristics on residential utility.   

The current study has demonstrated the feasibility, and the potential benefits, of breaking 

away from utilizing administrative zones in residential location choice analysis, as well as other 

activity-based analyses that involve neighborhood variables.  Yet, it does not necessarily answer 

the question of what operational units are most suitable for analyzing neighborhood variables.  In 

fact, this study represents only the beginning of an inquiry into that question.  Future research 

along this line of inquiry may include the following: (1) empirically applying and comparing the 

alternative spatial representations based on disaggregate data (as opposed to, for example, land 

use data at the TAZ level) to more accurately assess their empirical explanatory power; (2) 

devising alternative hierarchical representations of neighborhoods to incorporate both of (or the 
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merits of both) the fixed- and sliding-neighborhood concepts; (3) examining the appropriate 

scales of analysis to successfully identify the effects of neighborhood variables while avoiding 

the effects of multi-colinearity; (4) designing surveys to collect data that will help identify 

respondents’ perceived neighborhood boundaries. 
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TABLE 1. Spatial variables considered in the residential choice models 

Data source Spatial level at which data 
is available Variables considered 

Bay Area Metropolitan 
Transportation 
Commission  

Transport analysis zone  • Number of employment by sector (retail, 
wholesale, service, manufacturing, agriculture, and 
other) 

• Land-use acreage by purpose (residential, office, 
retail, and vacant) 

Bay Area Metropolitan 
Transportation 
Commission 

Transport analysis zone Inter-zonal  
• Distances 
• Peak and off-peak travel times and costs by travel 

mode (car, shared ride, transit mode by both walk 
access, and transit mode by drive access) 

Census block  • Number of households 
• Population 
• Land/water area 
• Number of people by ethnicity (non-Hispanic 

Caucasian, African American, Asian, Hispanic, 
and other)   

Census 2000 population 
and housing data 
summary file 1 (SF1) 

Census block-group  • Median household income 
• Average household size 
• Number of housing units by size (single-family 

detached, apartments, etc) 
• Median housing value 
• Number of households by income quartiles 
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Table 2. Estimation results for the census-unit neighborhood model 

Variables Multi-scale 
Location attribute (  x  Household attribute         ) Param. t-stat. 

Commute-related variables   
Commute Time x Full-time male workers -0.043 -9.55 
Commute Time x Full-time female workers -0.056 -11.88 
Commute Time x Part-time male workers -0.073 -8.57 
Commute Time x Part-time female workers -0.088 -15.26 
Commute Time x Caucasian household -0.010 -3.21 
Commute Time x household income (in $100 000) 0.006 1.89 
Accessibility-related variables     
Employment Accessibility -0.016 -6.76 
Employment Accessibility x Household income (in $1 000) 0.001 6.10 
Employment Accessibility x Single-person household 0.009 4.25 
Shopping Accessibility x Couple only household 0.003 1.91 
   Block Block group Tract  
   Param. t-stat. Param. t-stat. Param. t-stat. 
Residential segregation effects       
Share of Caucasian population  x Caucasian household 0.667 6.72     
Share of African population  x African household 9.426 8.97     
Share of Asian population  x Asian household 2.887 3.92 2.348 2.87   
Share of Hispanic population  x Hispanic household 1.737 1.66 3.467 2.69   
Share of other ethnic population  x African household     38.606 2.98 
Share of other ethnic population  x Hispanic household     32.074 3.14 
Share of single-person household  x Single-person household     0.962 2.10 
Share of couple-only household  x Couple-only household   0.987 2.39 1.286 2.14 
Share of nuclear-family household  x Nuclear-family household   1.136 3.23   
Absolute diff. between zonal median income and household income  
($1 000)   -0.010 -11.45   
Absolute diff. between zonal average household size and household 
size   -0.185 -4.23   

Share of owner-occupied housing x Own house     0.234 1.67 
Zonal Median house value ($1 000) x Inverse of  total income   -0.020 -3.56   
Neighbourhood design factors         
Density (per 10 000 mi2)     0.227 3.70 
Density (per 10 000 mi2) x African American household  0.182 2.00     
Density (per 10 000 mi2) x Nuclear-family household   -0.161 -2.06   
Density (per 10 000 mi2) x Household income > $75,000     -0.240 -3.28 
Share of commercial land-use   1.283 3.59   
Share of commercial land-use x Couple only household   -0.712 -1.92   
Share of commercial land-use x Household income (in $1 000)   -0.012 -3.12   
Share of residential land-use x Single-person household 1.202 2.08 -1.118 -1.88   
No. of service employment (per 10 people)     -0.055 -2.30 
No. of service employment (per 10 
people) x Single-person household     0.058 2.40 
No. of service employment (per 10 
people) x Couple only household     0.059 2.28 
No. of service employment (per 10 
people) x Nuclear family household     0.080 2.90 

Number of observations  4791 
Log-likelihood at convergence -8973.83 
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Table 3. Estimation result for the circular-unit neighborhood model 

Variables Multi-scale 
Location attribute (  x  Household attribute) Param. t-stat. 

Commute-related variables   
Commute Time x Full-time male workers -0.042 -9.28 
Commute Time x Full-time female workers -0.055 -11.74 
Commute Time x Part-time male workers -0.073 -8.53 
Commute Time x Part-time female workers -0.087 -15.09 
Commute Time x Caucasian household -0.011 -3.37 
Commute Time x household income ($100 000) 0.006 1.65 
Accessibility-related variables   
Employment Accessibility -0.011 -4.98 
Employment Accessibility x Household income ($1 000) 0.001 4.85 
Employment Accessibility x Single-person household 0.008 5.01 

  R = 0.4 km  R = 1.6 km R = 3.2 km 

  Param t-stat. Param t-stat. Param t-stat. 
Residential segregation effects        
Share of Caucasian population  x Caucasian household 0.794 6.45     

Share of African population  x African household 10.544 7.41     

Share of Asian population  x Asian household 5.209 11.71     

Share of Hispanic population  x Hispanic household 5.236 5.89     

Share of other ethnic population  x African household     50.792 4.18   

Share of other ethnic population  x Hispanic household 32.357 3.34     
Share of single-person 
household  x Single-person household   1.285 2.84   

Share of couple-only 
household  x Couple-only household 2.077 5.78     

Share of nuclear-family 
household  x Nuclear-family household 1.003 2.18     

Absolute difference between zonal median income and 
household income (in $1 000) -0.011 -12.11     

Absolute difference between zonal average household size and 
household size   -0.221 -4.10   

Share of owner occupied housing x Own house     0.617 3.31 
Zonal Median housing value  
($1 000) x Inverse of household 

income -0.024 -3.89     

Neighbourhood design factors         
Density (per 10 000 mi2) 0.150 3.11     

Density (per 10 000 mi2) x Nuclear-family household   -0.237 -2.21   

Share of commercial land-use   1.108 2.45   

Share of commercial land-use x Household income  
($1 000)   -0.011 -2.040   

Land-use mix x Own no cars     1.944 1.63 

Land-use mix x Own 1 car     0.553 1.98 

Land-use mix x Presence of kids in 
household     -0.576 -2.02 

Number of observations  4791 

Log-likelihood at convergence -8984.32 
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Table 4. Estimation result for the network-band neighborhood model 

Variables Multi-scale 
Location attribute (  x  Household attribute) Param. t-stat. 

Commute-related variables   
Commute Time x Full-time male workers -0.042 -9.49 
Commute Time x Full-time female workers -0.055 -11.93 
Commute Time x Part-time male workers -0.072 -8.63 
Commute Time x Part-time female workers -0.087 -15.13 
Commute Time x Caucasian household -0.011 -3.31 
Commute Time x household income ($100 000) 0.006 1.87 
Accessibility-related variables   
Employment Accessibility -0.009 -4.47 
Employment Accessibility x Household income ($1 000) 0.001 4.17 
Employment Accessibility x Single-person household 0.008 4.93 

  R = 0.4 km R = 1.6 km R = 3.2 km 

  Param t-stat. Param t-stat. Param t-stat. 
Residential segregation effects        
Share of Caucasian population  x Caucasian household 0.769 6.41     

Share of African population  x African household 10.266 7.41     

Share of Asian population  x Asian household 5.151 11.71     

Share of Hispanic population  x Hispanic household 5.024 5.76     

Share of other ethnic population  x African household     49.832 4.12   

Share of other ethnic population  x Hispanic household 18.760 2.70     
Share of single-person 
household  x Single-person household   1.491 3.17   

Share of couple-only 
household  x Couple-only household 1.707 5.15     

Share of nuclear-family 
household  x Nuclear-family household 1.110 2.69     

Absolute difference between zonal median income and 
household income (in $1 000) -0.010 -11.84     

Absolute difference between zonal average household size and 
household size -0.184 -4.04     

Share of owner occupied housing x Own house     0.485 3.01 
Zonal Median housing value  
($1 000) x Inverse of household 

income -0.028 -3.91     

Neighbourhood design factors         
Density (per 10 000 mi2) 0.151 2.87     

Density (per 10 000 mi2) x Nuclear-family household     -0.274 -2.46 

Density (per 10 000 mi2) x High income households -0.110 -1.64     

Share of residential land-use     -0.360 -2.41 

Share of residential land-use x Household income  
($1 000)   0.003 2.00   

Share of open space  x Couple-only households     -0.259 -2.28 

Land-use mix x Own no cars   2.009 2.16   

Number of observations  4791 

Log-likelihood at convergence -8974.07 

 



Figure 1. Alternative ways of representing perceived neighborhood 

(a) Fixed neighborhood representation based on census units 

 

(b) Sliding neighborhood representation based on circular-units 

 

(c) Sliding neighborhood representation based on network bands 
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