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Abstract 
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The University of Texas at Austin, 2013 

 

Supervisor:  Bugao Xu 

 

Fabric appearance is usually the highest priority consideration for consumers. 

Pilling and wrinkling are two major factors which cause the fabric to have a worse 

appearance after a certain service period. In order to prevent more piling and wrinkling, a 

fabric pilling and wrinkling severity evaluation is very important. Traditional visual 

examination needs at least three trained experts to judge each sample, which is both 

subjective and time-consuming. Objective, high efficiency, and automatic pilling and 

wrinkling evaluation based on computer processing techniques are now being developed 

quickly. 

In this study, an integrated fabric pilling and wrinkling measurement system 

based on stereovision was developed. The hardware part of the system consists of a pair 

of consumer high resolution cameras and a mounting stage, which is affordable and 

portable in comparison with other 3D imaging systems. A novel pilling detection 
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algorithm focusing on 3D image local information was proposed to extract three pilling 

features including pilling density, pilling average height, and pilling average size. The 

logistic regression classifier was applied for pilling severity classification because it 

showed a good accuracy with 80% on the 120 3D pilling images.  

A fast wrinkle detection algorithm with leveled 3D fabric surface was developed 

to measure wrinkle density, hardness, tip-angle, and roughness. According to these four 

wrinkling features, 180 3D wrinkling images were tested by the logistic regression 

classifier with an overall 74.4% accuracy in comparison with visual judging results. 

Both pilling and wrinkling results obtained from the proposed automatic 3D 

fabric pilling and wrinkling severity evaluation system were consistent with the 

subjective visual evaluation results. The system is ready for practical use.   
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Chapter 1: Introduction 

1.1 MOTIVATION AND GOALS 

As with any garment, after a certain service period, its aesthetic appearance will 

deteriorate. Wrinkles and pilling are the two major factors in a garment’s worn or aged 

appearance. Wrinkles are easily formed by folding and pressing during ordinary wearing 

and washing. Long time abrasion and tumbling will generate pilling. For garments, 

pilling may easily appear at elbow part and backside. In order to extend garments serving 

time, easy-care garments conception was proposed and now it becomes more and more 

popular. Fabrics for easy-care garments mean that fabrics were processed wrinkling-

resistant and pilling-resistant before finishing. The severity of fabric wrinkling and pilling 

is routinely examined for quality assurance. Therefore, textile manufacturers and 

researchers put lots of efforts on fabric wrinkling and pilling evaluation. Wrinkles and 

pilling detections are taken as a kind of property investigation of target fabric, which is 

significant in the research of fabric material development and application. 

Although some quantitative methods including 2D digital image processing 

technology [1-8], 2D infrared imaging system [9], and 3D imaging technology [10-12] 

have been developed, visual examination for wrinkling and pilling is still the only method 

that is standardized and widely accepted in the textile industry; still, this conventional 

method is both subjective and time-consuming. The major flaw of 2D image processing 

is that the measurement accuracy highly depends on fabric colors or texture patterns. 

Comparingly, the 2D infrared imaging system has no influence on fabric color and 

texture, but a lower resolution and redundant noise does not allow the system to detect 

pilling. 3D imaging technology has a good potential, but up to now, there is no integrated 
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system that can measure both wrinkling and pilling, while providing a quantitative 

understanding of the replicas used for visual examination. 

The principle goal of this study is to design an integrated fabric pilling and 

wrinkling appearance evaluation system, and to present a physical meaning— length, 

density, etc. — of the visual evaluation replicas for both wrinkling and pilling.  

1.2 BACKGROUND OF FABRIC APPEARANCE 

Aesthetic appeal of a garment includes its appearance, its hand, and even its scent. 

Fabric appearance includes several aspects, such as: wrinkling, stiffness, pilling, 

colorfastness, dimensional stability, stain removal, water repellency, etc. When 

purchasing, most consumers regard aesthetic appearance as a priority, because their first 

impression of the garment is based on visual aspects. Usually, if a garment has an easy 

care label such as no-wrinkle or pilling-resistant, it will be more attractive to most 

consumers. 

1.2.1 Fabric Pilling 

Pilling occurs when several balls form on the surface of a fabric due to abrasion, 

longevity, and give an undesirable appearance. Short fibers pill more due to their loose 

ends protruding out of yarns. Smooth fiber materials, like nylon, however, resist pilling 

more readily as opposed to rougher ones, like wool. Higher strength fibers hold pilling on 

the surface more securely and take on obvious pilling appearance. Higher linear density 

fabrics with coarser and heavier yarns pill much easier. Higher thread count structures, 

found in plain weave fabrics, could pill less, a factor attributing to their compactness. 

Fabrics cannot avoid the generating of pilling, and the quantity of pilling will only 
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increase with a longer service period. Figure 1.1 lists pilling effects after different 

laundry cycles from 25 to 100 of the same fabric.   

 

 

 

1.2.2 Fabric Wrinkling 

Wrinkling, a kind of residue bending deformation that appears on the surface of 

the fabric, can be caused by the motions of wearers, folding, and washing. Wrinkling is a 

physical phenomenon, and it is influenced by several intrinsic properties of fabrics. Short 

fibers produce more obvious wrinkles than longer fibers because of their easy 

displacement and permanent deformation maintenance. Fibers with round cross-sectional 

geometry resist bending stronger than other types of fiber shapes. Medium twisted fabrics 

have little chance to be displaced compared with low twisted and high twisted ones. 

(a) (b) 

(d) (c) 

Figure 1.1 The same fabric after different laundry cycles: (a) 25, 
(b) 50, (c) 75, and (d) 100. 
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Lower thread count fabrics own higher yarn mobility and resist bending easily. Certainly, 

a fiber’s composition also plays a crucial role in wrinkling production. Wool ranks in first 

place for higher wrinkling resistance, and the next two are silk and nylon when compared 

with cotton and flax.  

1.3 METHODS FOR FABRIC PILLING/WRINKLING APPEARANCE MEASUREMENT 

1.3.1 Traditional Evaluation Methods 

The traditional wrinkling and pilling measurements are both based on the visual 

examination which compares fabric samples with different levels of standard replicas. 

Pilling conditions are quantified by a standard set of photographic pilling standards 

supplied by ASTM, as seen in Figure 1.2. Five grades from most severe pilling, grade 1, 

to no pilling, grade 5, were defined to describe fabric pilling condition. 

 



5 
 

 

Figure 1.2 ASTM standard replicas for pilling assessment. 

In most cases, wrinkling results are measured with 3-dimensional reference 

standards from grade 1 to grade 5, as seen in Figure 1.3. This AATCC Test Method 124 

firstly defined five wrinkling grades from severe wrinkling, SA-1, to very smooth, SA-5, 

as a fabric wrinkling measurement. SA-3.5 was added to the standard to describe a fairly 

smooth, non-pressed appearance [13].   
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Visual examination method is mostly traditional, and being widely used in the 

textile related laboratories and industries. For this method, at least three trained observers 

should independently judge specimens. Several issues in this method include being time-

consuming, subjective, and unreliable. Even for a given fabric sample, it is impossible to 

(a) Grade 1 (b) Grade 2 (c) Grade 3 

(d) Grade 3.5 (e) Grade 4 (f) Grade 5 

Figure 1.3 AATCC standard replicas for wrinkling assessment. 
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get identical opinion across different raters. Thus, the accuracy of traditional evaluation 

methods limits its further adoption.  

1.3.2 2D Image Processing Evaluation Methods 

In order to overcome the shortcomings of traditional evaluation methods, 

algorithms based on 2D image processing methods were developed, starting with 1990s 

[1-8]. Xu et al. and Na et al. relied on computer image analysis to measure the wrinkles 

from surface ratio and shade ratio parameters, which were highly correlated with 

different levels of AATCC wrinkle recovery replicas [1, 2]. Choi et al. applied 2D-FFT 

(Fast Fourier Transform) to the fabric surface [4]. FFT is a kind of signal procession, 

which transformed wrinkle data into small circles with different types and numbers. 

Through the analysis of such transformed circles, different smoothness levels can be 

determined. Although the algorithm developed by Choi et al. [4] was a big breakthrough 

in the field of wrinkle measurements at that time, gray-scaled input images were strongly 

sensitive to light sources and image noises, which limited the performance of such 

method. Zaouali et al. proposed another image analysis algorithm from several wrinkle 

descriptors, such as wrinkle density, profile, sharpness, randomness, overall appearance, 

and fractal dimension [3], which were suggested by Johnson [14]. The complexity and 

time consumption of this algorithm were high. Furthermore, it cannot process large 

pieces of fabric or printed fabrics.  

Digital image analyzing for pilling measurements have been proposed in [5-8]. 

Xu applied the Fast Fourier Transform to remove weave texture information from an 

image, and a template-matching scheme to locate pilling areas [5]. Torreset et al. took 

advantage of spatial and frequency domain operations to calculate pilling areas [6]. 

Wagner correlated pilling area with axes length ratio (pill major axis breadth / pill major 



8 
 

axis length) to eliminate unwanted textural effects highlighted by an oblique lighting [7]. 

Xin et al. carried on the idea of obtaining a pill threshold from a trained pill template 

which uses a 2D Gaussian fit method on a batch of pill images [8].  

1.4 3D MEASUREMENT FOR FABRIC PILLING/WRINKLING APPEARANCE 

Because 2D imaging processing method had obvious defects on colored or printed 

fabric, 3D fabric surface reconstruction methods were proposed. The 3D measurement 

systems, called “color-blind” systems, are independent of changes of sample colors and 

therefore can improve the reliability of detecting surface features in the 3D space [15, 

16]. With the introduction of the laser probe, whose resolution has the order of micron, 

more and more fabric image analysis were processed under the assistance of such 

technology [17] to ensure highly precise results. Su and Xu composed laser triangulation 

formed by projectors, cameras and fabrics samples, and image processing technologies 

together, which used a neural network to classify the wrinkle respecting to the visual 

replicas [12]. Laser line projector worked onto the fabric sample that was placed on a 

rotating stage, and the computer received the images captured by CCD camera above the 

sample. Because of the sample rotating duration, the whole data acquisition time of this 

method was longer. Compared with laser probe, CCD camera owns higher visual image 

density and performs the same visual effect as human observations. This system 

advanced wrinkle measurement because of its high degree of automation and reliability. 

However, its high accuracy of mechanical requirements caused lower efficiency and 

higher cost. The limitation of the system was only orientated to measure wrinkling, 

making the system limited in its acceptance. Other 3D systems include laser line-

scanning system for fabric imaging developed by Abidi [18], and a grid-line projection 
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technique for fabric 3D shaped image by Kang et al. [11]. These 3D wrinkling 

measurement systems’ efficiency and accuracy were restricted. 

A laser range sensor based on 3D fabric fuzziness and pilling measurement 

system was proposed by Xu and Yao [10]. This system with a high scanning resolution 

about 10 micrometers was able to detect detailed information such as pilling and 

fuzziness on the fabric. In order to achieve a higher resolution, the system would be very 

time consuming since the laser point needs to move in both x and y directions. Limited 

scanning area resulted a specimen not fully been scanned. This was an additional 

limitation for the system. 

Compared to scanning-based 3D sensing technology, stereovision appears to be a 

more efficient and economical approach for fabric surface reconstruction, because it only 

requires a pair of images taken by two regular digital cameras [16]. With a proper setup 

and calibration, a stereovision system can possess high resolutions in x, y and z, and 

generate a 3D image that shows fine structures on the fabric surface [15]. Data acquiring 

time is the camera’s aperture time with a high efficiency, which is less than 10 micro 

seconds. This system has no scanning area limitation, which suits different size fabrics. 

In this research, we attempted to develop new algorithms for pilling and wrinkling 

detection and characterization using 3D information of a fabric surface. 3D fabric images 

are first generated using a stereovision system developed in the prior study. Based on the 

depth information available in the 3D image, the pilling detection process starts from the 

seed-searching at local depth maxima to the region-growing around selected seeds using 

both depth and distance criteria. The pilling appearance can be characterized by the 

density, heights and areas of individual pills in the image. The depth information in a 3D 
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image permits more reliable pilling detections and more comprehensive descriptions of 

pilling features than in a 2D image.  

The wrinkling detection procedure directly used the depth information in the 3D 

image. Each 3D wrinkling image was firstly leveled by B-spline method. After detecting 

the ridge and valley points in the 3D image, four wrinkling features— density, hardness, 

tip-angle, and roughness— determine the fabric severity level.  

1.5 STRUCTURES OF THE THESIS 

This thesis will cover four parts, Chapter 2 to Chapter 6, to report our contribution 

to the research of both fabric wrinkling and pilling appearance measurement. 

Chapter 2 will discuss the “Framework of pilling/wrinkling appearance evaluation 

system” including the stereovision system setup, principle of stereovision, and camera 

calibration.  

Chapter 3 describes the measurement of fabric pilling using 3D images generated 

by the stereovision system. In this part, a novel pilling detection algorithm majorly based 

on the 3D image local information will be discussed. According to a pill’s dune like 

shape, peak points firstly will be found in 3D images. Then, each found peak point will 

be set as a seed, and a local seed growing method will be applied to measure the pilling 

size. Three pilling features are extracted: pilling density, as overall pilling information, is 

the first measurand. Pilling average height and average base plane area are two additional 

measurands, which describe the fabric pilling severity in more details. 

Chapter 4 presents a new and fast algorithm for fabric wrinkling detection. Fabric 

surface leveling is firstly used to prepare a leveled 3D image for further wrinkle 

detection. With a leveled surface, wrinkle peak or valley points can be fast detected in 
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certain ranges. Wrinkling density, sharpness, tip-angle, and roughness are four measured 

features in this system. 

In order to give a quantitative meaning for pilling and wrinkle replicas, chapter 5 

will find a suitable classifier according to both pilling and wrinkle features. 120 3D 

images generated from 30 pilling fabrics with different fiber contents, weave structures, 

colors and laundering cycles consist a training set for building the pilling classifier. These 

30 pilling fabrics, 6 for each level, have been judged by three independent persons using 

visual method in advance. As for the wrinkle part, 3D images of 6 wrinkle replicas 

behave as physical standards for wrinkle severity and provide quantitative data results in 

building the wrinkle classifier. Then 180 3D images generated from 30 wrinkling-

severity-leveled fabrics will be used to verify the validity of the chosen classifier. 

Chapter 6 offers a conclusion and future work for this study. 
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Chapter 2: Framework of Pilling/Wrinkling Appearance Evaluation 
System 

Basically, there are three categories of technologies employed in three-

dimensional scanning systems: light-based, laser-based, and stereovision systems. 

Stereovision system is in the manner similar to human vision effect, and it is the safest 

and most accurate one among these three categories, which can be applied to wrinkling 

and pilling detections and evaluations. In this chapter, the basic working principles, 

system setup, and calibration method of the stereovision system are described. 

2.1 STEREO VISION SYSTEM 

Stereo-photogrammetric system determines 3D structure of a scene or an object 

from two or more cameras taken from different positions.  

 
Figure 2.1 Stereovision system setup. 

Stereo matching process is a crucial step to find pixels from the camera taken 

pictures corresponding to the same special point. Matching algorithms for stereovision 

system can be classified into two categories [19], one is local correspondence methods, 

and the second is global correspondence methods. Local methods cover the aspects: 
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block matching [20], gradient methods [21], and feature matching [22]. Global methods 

involve: dynamic programming [23], intrinsic curves [24], and graph cuts [25]. The 

purpose of the stereo matching is to figure out the relative displacement between the 

pictures, which is called disparity. Through the analysis of disparity, depth information 

from 3D target can be obtained. The basic stereovision based structure is shown in Figure 

2.1. 

In order to display the principle of stereovision system, Figure 2.1 can be 

transformed to the form of axes-based structure, as shown in Figure 2.2. Point P is the 

target point with its position (X, Y, Z). In a left-sided image taken by the left camera, the 

position of P can be expressed as (��, �� , �), and the same to a right-sided image, P is 

found in the position (��, ��, �). 

 

The disparity between left and right images can be expressed as: 

 � = �� − �� (2.1)  

And because of the same distances in Y direction, we have: 

Y 

X 

�� 

��(��, ��) ��(��, ��) 

Z P(X,Y,Z) 

�� 

� 

Y 

� 

X 

Z 

Figure 2.2 Principle of stereovision. 
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 �� = �� (2.2)  

The magnification coefficient C can be calculated through: 

 � =
�

�
=  

�

�����
 (2.3) 

Finally, the real word position of P can be derived by equation 2.4 

 �
�
�
�

� = � �

��

��

�
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��

�
� (2.4)  

2.2 SYSTEM SETUP 

In most cases, three-dimensional scanning systems rely on one or more optical 

sources, one or more vision or capturing devices, computer systems, input and output 

connections, and software to obtain the outside shape structure of the target object. 

Because extensive hardware and software are required for current 3D scanning systems, 

one of the most promising developments for the future is the flexibility and potable 

convenience of a whole system. 

Our stereovision system is composed of a pair of 10.2-megapixel Canon® EOS 

Rebel XTi digital cameras. Each camera is mounted perpendicularly to the ground, and 

takes the picture for the target from the top. Each camera is set about 13° faced to each 

other in order to create the convergent angle onto the target. The focal length f is about 28 

mm, the baseline length b is about 130 mm, and the distance from the target to the base-

line is about 350 mm. 

2.3 CAMERA CALIBRATION 

Camera calibration denotes the adjusting of internal parameters of each camera 

according to the position of two cameras. Such internal parameters include two aspects: 

intrinsic parameters and extrinsic parameters [26, 27]. The first aspect refers to the 
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distortion happened inside the camera due to the image sensor, and the second aspect 

results from different positions of left and right cameras. 

The ideal calibration pattern design is according to [28], as shown in Figure 2.3, 

which has two surfaces with the angle of 90 degree. Each surface is full of 9 × 6 black 

circles whose diameters are all 7 mm, and the distance between each circle is 15 mm 

measured from center to center. Through the process of calibration, the circle distortions 

happening in both cameras can be eliminated, and then the real shape of those 108 circles 

can be taken on in the result of the scanning system. 

 

 
Figure 2.3 System calibration pattern. 
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Chapter 3: Measurement of Fabric Pilling 

3.1 INTRODUCTION 

Pilling is a phenomenon that occurs when many clusters of loose fibers are 

formed on a fabric by repeated abrasions or other mechanic actions in laundering or 

service. Entangled fiber clusters look like small balls of various sizes floating on the 

fabric surface. If the fabric surface is flat and levelled, one can simply use a depth 

threshold to separate pilling areas in the 3D image from the fabric background [15, 29]. 

However, a fabric is often wrinkled or folded, and the direct depth thresholding may 

include large surface areas that are not associated with pilling, as shown in Figure 3.1b. 

The size of a pilling area is also sensitive to the selection of the threshold. Therefore, 

pilling segmentation should be based on localized depth information rather than a global 

threshold.  

 

Figure 3.1 Pilling detection result by overall thresholding method, (a) original 3D image 
and (b) overestimated pilling areas by direct thresholding. 

 (a) (b) 
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In order to perform a reliable and robust pilling detection method, this chapter 

will propose a novel algorithm based on local area pilling detection, then, extract feature 

parameters for pilling evaluation. 

3.2 PILLING MEASUREMENT 

3.2.1 Pilling Seed Searching 

A pill, or a pilling area, has a dune-like shape with one peak (semi-spherical) or 

two peaks (ellipsoidal), as seen in Figure 3.2. A peak in a mesh region of 3 × 3 pixels is a 

point where the height is the maximum relative to its eight-connected neighboring points. 

A peak can be postulated as a pilling seed— a starting location to search for a possible 

pill. For an ellipsoidal shape pill (Figure 3.2b), two adjoining peaks will be merged in 

final pill counting, if the distance between the two peaks is under the given threshold (5 

pixels in this project). Figure 3.3a shows the peaks located in Figure 3.1b. Due to the 

influence of fabric weave structure and noise, these peaks are obviously overestimated, 

and must be refined to exclude non-pilling peaks.  

 

 (a) (b) 

Figure 3.2 Dune-like pills, (a) semi-sphericity shape and 
(b) ellipsoidal shape. 
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(a) (b) 

Figure 3.3 Pilling seed detection, (a) peak map and (b) pilling seeds. 

The dune-like shape of a pill is the major characteristic that can be used to 

distinguish a pilling peak from noise or a texture point. For a dune shape, two 

perpendicular parabolic curves can be found. Generally, a pill’s area is around 3 × 3 mm2. 

In the proposed system, according to the yielded resolution, we take a pilling peak as the 

center of a window (e.g., 10 × 10 pixels) which will cover most pills sizes. Scan a profile 

that passes the center horizontally from left to right. If the profile has a parabolic shape, it 

should move upward to its peak and then downward to the end. Locate the first point 

where the profile starts the upward trend and the last point where the profile ends the 

downward trend. If the distance between the two points is larger than the given threshold 

(5 pixels in this project), register them as the “left” and “right” base points, respectively. 

The same procedure is applied to the vertical profile to check if the “top” and “bottom” 

base points exist. If these four base points are found around a peak as seen in Figure 3.4a, 

the horizontal and vertical profiles are considered parabolic, and such peak is regarded as 

a candidate for a pilling seed. Otherwise, if one or no pair of base points is found as 

shown in Figure 3.4b or 3.4c, the peak would be deleted from Figure 3.3a. 
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The four base points can be used to select a base plane for the dune-shaped area, 

from which the localized peak height can be estimated. The peak height is an important 

parameter to decide if the peak is finally deemed to be a pilling seed. A plane, expressed 

in the form of 1ax by cz   , can be defined by three points. Assume the coordinates of 

any three base points are 1 1 1( , , )x y z , 2 2 2( , , )x y z , and 3 3 3( , , )x y z . The line coefficients 

can be calculated as follows: 
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  (3.1)  

where   is the determinant, i.e., =
1 1 1

2 2 2

3 3 3

x y z

x y z

x y z

. The perpendicular distance from the 

forth point 4 4 4( , , )x y z
 to the plane can be computed when the coefficients are known: 

 
4 4 4

2 2 2

1ax by cz
Dis

a b c

  


  .

 (3.2) 

With the four points, four different planes can be obtained. The plane with the 

minimum Dis should be chosen as the base plane for the candidate pill because this plane 

ensures the minimum difference from the four points. From the base plane, the pill’s 

 (a) (b) (c) 

Figure 3.4 Crossing profiles at a peak, (a) dune shape, (b) horizontal profile, and (c) 
vertical profile. 
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height, H, can be calculated. Similar to Dis in equation 3.2, H is the perpendicular 

distance from the peak point to the base plane when coordinate 4 4 4( , , )x y z
 is substituted 

by the peak’s coordinate ( , , )p p px y z . In order to make the 4z  more immune to noise, 

pz can be replaced by the average z value of its 3 × 3 neighbouring region:  

  
8 ( )

( )
mean

p n N p p
z Z n




 ,
  (3.3)  

where p  is the peak position, 8( )N p  represents the peak’s eight-connected neighbors, 

and  ( )Z n  is the average height in the peak region of 3 × 3 pixels. A height filter 

should be used to constrain the minimum peak height because a pill’s peak is normally 1 

to 3 mm above the surface of the fabric. This filter threshold can be estimated by the 

average of the heights of all four-base points in the image, Baver. Only when a peak passes 

the pill height filter, it will be labeled as a pilling seed for the region-growing process. 

The refined pilling seeds from the initial peak map are shown in Figure 3.3b. 

3.2.2 Pilling Seed Region Growing 

Region growing is a process to expand the pilling area based on a detected pilling 

seed. Denote all the pilling seeds as 1 2, ,... nC C C , and take a window of 20 × 20 pixels 

centered at each seed as the maximum region for seed-growing limitation. A set T 

represents all as-yet unallocated pixels in the window: 

 1 4 1{ | ( ) }n n
i i i iT t C N t C      ,  (3.4)  

where ( )N t  is the set of four-connected neighbours of pixel t. If one of the 4 ( )N t ( t T ) 

is the neighbour of iC
 and 4 1( ) n

i iN t C   , the two criteria,  

(1) ( )
iC tt z z   , the depth difference between t and iC , should be always 

positive, and 

(2) tz
 should be always higher than Baver. 
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However, because two peaks of an ellipsoidal shaped pill may appear on the pill’s 

top surface, and are within a window of 5 × 5 pixels centered at iC , ( )t  may not be 

always positive. The current point t only needs to meet tz >Baver, if t is within this 

window. Beyond the window, point t must qualify both criteria. The process is repeated 

until no more point meets above requirements in the region of 20 × 20 pixels.  Let S be 

the set of all detected points in this window and sN
 be the number of points in set S. In 

reality, sN
 should be filtered to prevent small noisy regions and large surface features 

from being counted as pills. In this study, a valid pill size sN
 has been set to be in the 

range of 25< sN <200 pixels based on many visual examinations. After the procedures 

have been applied to all seeds 1
n
i iC , a pilling map (Figure 3.5) will be generated from 

the 3D fabric image (Figure 3.1a).  

 
Figure 3.5 Map of detected pilling areas from Figure 3.1a. 
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3.2.3 Pilling Feature Determination 

The severity level of pilling can be evaluated by three important parameters to be 

extracted after pilling regions are identified: density, height and area of pilling. The 

density, D, is measured by the count of pilling seeds per a unit area in the image. A pill’s 

height, H, is calculated as the Dis in equation 3.2. A pill’s area, A, is considered as the 

pill’s cross-section area on the base plan of the pill. Pixels within a pilling region need to 

be projected onto the base plane as follows (Figure 3.6): 

 
p o bP P N h   ,  (3.5)  

where
oP is an original pilling point, 

pP
 
is the projected point, 

2 2 2

1
( , , )bN a b c

a b c


 
 is the normal vector of the base plane, and h is the 

perpendicular distance from 
oP  to the base plane. In reference to the vertex relation in 

the 3D mesh, A can be calculated by accumulating the area of each triangle composed by 

three projected points. 

 
Figure 3.6 Illustration of surface projection onto the base plane. 
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Po 
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Chapter 4: Measurement of Fabric Wrinkling 

4.1 INTRODUCTION 

Former work for 3D wrinkle detection was converting the 3D depth data into a 

gray scale with 0 to 255 range bitmap image, and then utilizing image processing 

methods, such as edge detection or wavelet transforming, to find wrinkles on a fabric 

[29]. These methods showed good results, but the processing method was superfluous. 

All the procedures were basically 2D image processing, once the wrinkle map was 

obtained, in order to subtract features of wrinkles, 2D image intensity values should be 

converted back into depth values again. In this chapter, a new algorithm directly 

processing 3D depth data will be proposed to detect wrinkling and measure wrinkle 

features.  

4.2 WRINKLE MEASUREMENT 

4.2.1 Fabric Surface Leveling 

Generally, for local region analyzing, wrinkles always exist with maximum or 

minimum depth. Maximum points show as ridges in 3D image, while minimum depth 

points are valleys. Ideally, for a flat fabric, the z = 0 plane should be at the center of the 

fabric thickness. Maximum points should always be above zero to present as ridges, and 

minimum points are negative to form valleys.   

But in practice, fabric samples may have large-scale fluctuation or overall 

inclination that will produce significant distortion on the 3D surface generated from 

stereo matching, as seen in Figure 4.1a. It is necessary to remove these large-scale 

surface variations before locating wrinkle ridges and valleys. The non-uniform rational 

B-spline (NURBS) surface, as a shape representation commonly used in the geometric 
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design, can be used to create a surface that best fits in a 3D fabric image. NURBS has 

two important properties suited for this application. First, it offers a unified mathematical 

formulation for representing not only free-form surfaces but also standard analytic shapes 

such as quadrics and sweeping surfaces. Second, by adjusting the positions of control 

points and manipulating associated weights, it is possible to reconstruct a NURBS 

surface to represent the basic shape of the surface. These properties make a NURBS 

surface robust for the approximation of 3D point clouds and remove unwanted elements 

from the fabric surface [30, 31].   

A NURBS surface is defined by its order, a set of weighted control points, and a 

knot vector � = (��, ⋯ , ��) which is a non-decreasing sequence of real numbers, e.g., 

�� ≤ ����, � = 0, ⋯ , � − 1. Each �� is called knots. If we denote the i-th B-spline basis 

function of degree � by ��,�(�), then a NURBS surface of degree � in the � direction 

and degree �  in the �  direction is a vector-valued piece wise rational function 

�:[0,1]� → � � (� ∈ � ) of the form 

 �(�, �) =
∑ ∑ ��,�(�)��,�(�)� �,���,�

�
���

�
���

∑ ∑ ��,�(�)��,�(�)� �,�
�
���

�
���

, (4.1) 

where ��,� are control points in � �, and � �,� are the weights of the points ��,�. The B-

spline basic function ��,�(�) and ��,�(�) are defined on the knot vectors as 

 � = �0, ⋯ ,0� � �
���

, ����, ⋯ , ������, 1, ⋯ ,1� � �
���

�, (4.2) 

and 
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 � = �0, ⋯ ,0� � �
���

, ����, ⋯ , ������, 1, ⋯ ,1� � �
���

�, (4.3) 

with � having � + 1 and � having � + 1 knots. It is necessary that � = � + � + 1 

and � = � + � + 1. Setting the rational basic function ��,�:[0,1]� → � � as 

 ��,�(�, �) =
��,�(�)��,� (�)� �,�

∑ ∑ ��,�(�)��,�(�)� �,�
�
���

�
���

, (4.4) 

the surface �(�, �) can be written as  

 �(�, �) = � � ��,�(�, �)��,�

���

���

���

���

. (4.5) 

Therefore, the basic function ��,� are dependent on the weights � �,�. 

In this application, a fabric surface (R) constitutes n × n data points, ),,( , jiji zyx  

for nji ,,1,  . The NURBS approximation is to search for a function that realizes

jiji zyxf ,),( 
. This can be done by solving a least-squares problem, resulting in the 

minimization of the following sum: 
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n

s
sss zyxRzyxS  (4.6) 

where Ri,j is the rational basic function from equation 4.4. Figure 4.1b shows a NURBS 

surface generated by the approximation using the least-square method. The NURBS 

surface contains the large-scale (low-frequency) variations of the reconstructed surface. 

Subtracting Figure 4.1a from Figure 4.1b, one can remove those large-scale components 

and flatten the fabric surface, while preserving small-scale variations in the differential 

surface (Figure 4.1c) for wrinkle detection. 
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4.2.2 Wrinkle Detection 

In this project, we defined wrinkle direction according to Figure 4.2. If a wrinkle 

falls in the range I (45° ≤ � < 135° and 225° ≤ � < 315°), we call this wrinkle a 

vertical wrinkle, otherwise if it falls in range II, it is a horizontal wrinkle. 

 

 

After obtaining the leveled fabric surface, we assume the leveled fabric is very 

close to ideal flat fabric. In other words, on the leveled surface, the wrinkle ridge points 

should be positive and valley points should be negative. In order to find wrinkle ridge or 

(a)  
 

(b)  

(c)  

Figure 4.1 3D image surface leveling, (a) raw 3D image data, (b) NURBS surface 
(elevation plane), and (c) Leveled fabric surface. 

0° 180° 

225° 

270° 

315° 

45° 

90° 

135° 
I. 

I. 

II. II. 

Figure 4.2 Wrinkle direction chart. 
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valley points, we first narrow the searching range. Ridge happens with an up-trend, once 

passed over the peak, a down-trend would immediately happen. Valley happens just to 

the contrary. Thus, the first step is to find the tendency starting point. Because of the 

leveled fabric, z = 0 plane is chosen as the reference plane. We decide if current point Zi 

< 0 and its next point Z(i+1) ≥ 0, i is temporally defined as up-trend starting point with 

mark iup. The down-trend starting point is marked with idown when the current Zi is above 

z = 0 plane and its next point Z(i+1) ≤ 0. For vertical wrinkles detection, we follow above 

rules searching row by row. In each row, we detect all the iup and idown points and store 

them in the order from left to right. For a wrinkle existing range, the iup and idown should 

appear in pair, and the distance Rw between iup and idown should not be too short. In this 

study, we define that the distance Rw should be longer than 3 pixels. If an Rw is 

determined, within the Rw, an extreme depth point must be found, and such point will be 

a candidate of wrinkle ridge/valley point. Figure 4.3 shows a close-view of a part of a 

row in 3D image. Red boxes represent downward tendency starting points, and green 

boxes are upward tendency starting points. The starting points idown_1 and iup_1 are stored 

next to each other which are determined as a pair. The distance Rw between this pair is 8 

pixels. Thus, the orange cycled extreme point is cataloged as a valley candidate. 

Although the starting points idown_2 and iup_1, show in a pair, their Rw does not meet our 

requirements. We just skip searching in this range. Finally, three orange cycled points are 

found and cataloged as wrinkle candidates in this row.  
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Figure 4.3 Close-view of a part of a row in 3D image. 

After all rows are processed, a vertical wrinkle map is produced. The same 

procedure is applied to each column to detect horizontal wrinkles. An intermediate 

wrinkle map is created and shown in Figure 4.4b. 

 

At this time, wrinkles are not continuous, and noises are also detected. Some long 

wrinkles are broken into several small parts because those broken parts do not meet our 

preset requirements. In order to make the results closer to human visual detecting 

idown_1 idown_2 idown_3

iup_3iup_2

iup_1

(a) (b) 

Figure 4.4 Wrinkle detection intermediate result, (a) raw 3D image and (b) intermediate 
result. 

z=0 
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sensation, we manually make up those broken points, and call this procedure linking. For 

the linking procedure, we first assume that each ruptured wrinkle part is linear, and 

denote that the connected wrinkle points for each wrinkle consisting of a set Wi. 

Here, Wi = {(��, ��), (��, ��), … ,(��, ��)} and Wi should fit a linear line which 

can be presented as:  

 � = �� + � (4.7) 

where � = (��, ��, … , ��), � = (��, ��, … , � �). Slope a and intercept b can be found 

according to following equations: 

 � =
(∑ �)�∑ ����(∑ �)(∑ ��)

�(∑ ��)�(∑ �)�  (4.8) 

 � =
�(∑ ��)�(∑ �)(∑ �)

�(∑ ��)�(∑ �)�  (4.9) 

By knowing the linear line, the wrinkle profile direction is determined. Along the wrinkle 

direction, we manually extend two end points of a wrinkle for 5 pixels. If the extended 

points meet with other wrinkle points, and such touched wrinkle has a similar direction to 

the extending wrinkle, we will say these two wrinkle parts can be linked together.  

After the linking procedure, a pruning procedure is used to clean the wrinkle map. 

By analyzing the connected components, all objects which have an area less than � 

pixels are removed. A minimum object size of � = 16 is found to be effective for 

removing small spurious wrinkles. The final wrinkle map is seen in Figure 4.5.  
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Figure 4.5 Wrinkle detection result. 

4.2.3 Wrinkle Feature Extraction 

From the 3D wrinkle map, wrinkle geometrical measurements can be performed. 

Four major parameters including wrinkling density, hardness, tip-angle, and roughness 

are measured in this study. 

Wrinkling density indicates the ratio of total wrinkle length in the sample divided 

by the sample area.  

Wrinkling hardness or sharpness presents the shape of the wrinkle, describing the 

ratio of the wrinkle height to the width of the wrinkle. Here, the height of the wrinkle is 

defined as the average ridge or valley height of each wrinkle. The width refers to the 

distance between two end points of a cross profile which is traced at each ridge or valley 

pixel by scanning the wrinkle surface transversely (profile AB and CD in Figure 4.6). 
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The two endpoints for a cross profile, (��, ��) and (��, ��) for example, should 

be the two trend starting points (one is up-trend point, another is down-trend point), and 

they should be fitted on the line � = −
�

�
� + (−

�

�
�� − �� ). Here a is the slope of the 

wrinkle, which was calculated from equation 4.8. xw and yw represent the current wrinkle 

ridge/valley position. 

 

 

Wrinkling hardness sometimes may not describe knitted fabrics correctly. For 

some knitted fabrics, a wrinkle ridge or valley would have a steep angle near the wrinkle 

top, but when points are near the wrinkle edge, the wrinkle gradient will become slight. 

Wrinkling tip-angle is introduced to depict the steep angle near the wrinkle ridge or 

valley. 

Wrinkling roughness is described as the variations in wrinkle heights with on 

consideration of a wrinkle shape. Four parameters are used to define the roughness. 

1. Arithmetic average roughness Ra: 

 �� =
�

�
∑ ���,� − �� (4.10) 

2. Root mean square roughness Rq: 

A (x1,y1) B (x2,y2) 

D (x4,y4) 

Figure 4.6 Close-up of wrinkle area showing the transverse 
profile AB and CD. 

. 

C (x3,y3) 
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 �� = �
�

�
∑ (��,� − �)� (4.11) 

where ��,� is the height of a wrinkle at position (i, j), n is the number of total 

detected wrinkle points, and p is the average height of the scanned surface. 

3. Ten-point height Rz describe the average distance between five highest peak 

zpi and the five lowest valleys zvi on the surface. 

 �� =
�

�
∑ (��� − ���)�

���  (4.12) 

4. Bearing surface ratio tp refers to the wrinkle areas above an established 

reference plane whose height is between the highest peak and the lowest 

valley to the entire scanned surface area. Such plane intersects the surface and 

generates a number of subtended surfaces which are above the reference 

plane. 
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Chapter 5: Experimental Results Analysis 

The purpose of the chapter is to find a data modeling method for the extracted 

fabric characteristics, which can properly represent the difference in pilling and wrinkling 

severity levels based on the 3D images generated from stereovision system. 

5.1 SAMPLE PREPARATION 

5.1.1 Pilling Sample Preparation 

The samples used in the experiment were 100% cotton fabrics of different colors 

and structures that were treated either by random tumbling [32] or home laundering [33]. 

Each sample was rated on a 5-grade scale by three trained individuals using the ASTM 

photographic pilling standard [32]. The first grade stands for the worst pilling 

appearance, the fifth grade represents a non-pilling appearance, and the rest indicate 

intermediate levels on the scale. From all the visually-rated samples, six samples were 

picked for each pilling grade. Thus, there were totally 30 samples for comparison tests. 

The samples were imaged by our stereovision system, and the 3D images were generated 

and processed using the aforementioned algorithms.  

5.1.2 Wrinkle Sample Preparation 

3D images generated from 6 wrinkle grading replicas were directly used as 

training samples. 30 fabrics as testing samples with different fiber contents and weave 

structures were chosen by an appliance company to validate the evaluation results of the 

quantitative wrinkle classification method. Each sample was graded with the AATCC SA 

replicas by the trained personnel. In each level, 5 fabrics were graded. 
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5.2 PILLING EXPERIMENTS 

The first test conducted in the experiment was the repeatability test, in which a 

sample was imaged three times under the same condition. Table 5.1 displays the 3D 

images and pilling measurements of the sample in the repeated tests. The three images 

show no appreciable visual difference. The differences in the measured D, H, and A data 

are 2.08%, 5.30% and 3.83%, respectively, among the three tests. The difference was 

calculated by difference between the maximum and the minimum divided by the average 

of one dataset. 

Table 5.1 Illustration of surface projection onto the base plane. 

 D  (count/cm2) H (mm) A (mm2) 

 

2.37 1.25 4.12 

 

2.42 1.22 4.28 

 

2.41 1.31 4.14 

Difference (%) 2.08 5.30 3.83 
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Table 5.2 lists the three pilling features measured by the stereovision system and 

the pilling density counted manually with a special magnifier on the 30 samples. There 

were five ASTM pilling grades and six samples in each grade in the test. The magnifier 

for manual counting has a viewing area of 2.5 × 2.5 cm2. The comparison between the 

two methods (3D vs. Manual) could be made only for the pilling densities (D) because 

the other two pilling measurements (H and A) were difficult to be measured manually. 

The two sets of D data were compared separately at each grade, and the R2 (R is the 

correlation coefficient) ranged from 0.678 at grade 4 to 0.995 at grade 1. When the Ds of 

all the grades were pooled together, the R2 was 0.985 (see Figure 5.1). In terms of D, the 

stereovision system gave the highly consistent result with the manual counting.  
  



36 
 

Table 5.2 3D and manual measurements of pilling density (D), height (H) and area (A). 

 Sample 
1 2 3 4 5 6 R2 

Grade  

1 

Manual D (count/cm2) 4.19 4.50 6.65 4.50 4.19 3.88 
0.995 

3D 

D(count/cm2) 4.94 5.34 7.30 5.17 4.86 4.70 

H (mm) 1.67 0.79 0.79 0.80 0.80 0.80 N/A 

A (mm2) 9.26 9.60 9.64 9.83 18.53 18.71 N/A 

2 

Manual D (count/cm2) 3.87 2.79 3.10 3.87 3.57 4.03 
0.768 

3D 

D(count/cm2) 3.64 2.96 3.49 4.06 3.73 4.58 

H (mm) 0.79 1.18 0.80 0.50 0.79 0.80 N/A 

A (mm2) 9.03 12.06 10.34 9.54 8.20 9.71 N/A 

3 

Manual D (count/cm2) 2.17 2.02 2.79 3.10 2.48 2.63 
0.682 

3D 

D(count/cm2) 1.96 2.47 2.73 3.21 2.32 2.56 

H (mm) 0.80 0.80 0.79 0.79 0.80 0.53 N/A 

A(mm2) 12.12 15.05 8.49 7.92 12.10 11.95 N/A 

4 

Manual D (count/cm2) 0.78 0.78 0.62 0.78 0.93 1.24 
0.678 

3D 

D(count/cm2) 0.58 0.57 0.54 0.82 0.63 1.02 

H (mm) 0.83 0.88 1.27 0.69 0.72 0.82 N/A 

A (mm2) 4.99 21.67 7.95 7.93 5.05 7.95 N/A 

5 

Manual D (count/cm2) 0 0 0.19 0.23 0 0.08 
0.925 

3D 

D(count/cm2) 0.02 0 0.11 0.11 0 0.02 

H (mm) 0.83 0 0.71 0.79 0 0.79 N/A 

A (mm2) 7.96 0 5.08 5.25 0 7.45 N/A 
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Figure 5.1 Pilling density measurements. 

Unlike the pilling density, the pilling height (H) did not change with the pilling 

grade (G) considerably. For these 30 samples, most of them remained an average H 

around 0.8 mm, and only three samples had heights above 1 mm. Likewise, the pilling 

area (A) did not correlate with the G. There was no clear trend that A increased 

consistently with the severity level of pilling (a smaller G represents more severe pilling). 

This is because the maximum height and size of a pill in the pilling treatment are dictated 

by the length of protruding fibers. The latter is influenced mainly by the fiber content, 

yarn and fabric structures. As the abrading continues, the friction force tends to break 

fibers and thus produce more fiber clusters. Only fiber ends in the reach of the protruding 

length can be entangled together. Therefore, the size and height of a pill will not continue 

to increase with the abrasion. The pilling mechanism in the sample did significantly alter 

the pilling counts. This was also evidenced by the multivariate regression analysis in 

Table 5.3 for the three parameters (D, H, and A) obtained from 3D images of the 30 

samples. The pilling grade (G) had a high correlation with the D (R2 = 0.923), and was 
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improved slightly by including the A and H in the equations. Thus, the pilling grade 

estimation can be based on a sole measurement— D. However, pilling height and area are 

still useful information for assessing severity of pilling, especially among fabrics with 

different fiber contents and structures.  

Table 5.3 Regression analysis between pilling grades and pilling features. 

Model R2 Equation 
D 0.923 G = -0.674D + 4.673 

Dand A 0.938 G = -0.632D–0.043A + 4.977  
D, A and H 0.942 G = -0.624D–0.035A–0.376H + 5.175 

The pilling grade classification can be also performed by using traditional 

classifiers. Three classifiers including the logistic regression [34], the naïve Bayes 

classifier [34], and the linear support vector machines (SVM) [35] were applied. For each 

of the 30 samples, four 3D images were generated from different regions. The total 120 

images were divided into three subsets, S1, S2, and S3, by selecting eight images for each 

of five grades. Of the three subsets, two were used for the training test, and the third for 

the validation test. The cross-validation test was repeated three times for each of the three 

classifiers. Tables 5.4, 5.5, and 5.6 list the classification results and accuracies of the 

three classifiers. The accuracy was evaluated by the ratio of the predicted grade over the 

corresponding visual grade. In these tables, each column represents the visual grades, and 

each row gives the predicted grades from the classifiers. At grades 4 and 5, the accuracies 

for all the three classifiers appeared to be lower than at the other grades in the cross-

validation tests. This might be due to the fact that the poor photographic quality of grades 

4 and 5 in the ASTM standard affected visual judgements for the samples whose pilling 

appearance fell in this range. However, the logistic regression classifier had the 

classification accuracies of three subsets above 0.775, and its average accuracy was the 
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highest among the three classifiers, and thus was chosen to be the pilling classifier for the 

future test.  

Table 5.4 Classification by the logistic regression classifier. 

 Visual Grade 
S1 S2 S3 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

P
re

di
ct

ed
 

G
ra

de
 

1 8 0 0 0 0 7 1 0 0 0 8 1 0 0 0 

2 0 7 1 0 0 1 6 1 0 0 0 7 1 0 0 
3 0 1 6 1 0 0 1 7 0 0 0 0 6 2 0 
4 0 0 1 5 1 0 0 0 6 3 0 0 1 5 2 
5 0 0 0 2 7 0 0 0 2 5 0 0 0 1 6 

Accuracy 1.00 0.88 0.75 0.63 0.88 0.88 0.75 0.88 0.75 0.63 1.00 0.88 0.75 0.63 0.75 

Overall 0.825 0.775 0.80 
Average accuracy of three subsets 0.80 

Table 5.5 Classification by the naïve Bayes classifier. 

 Visual Grade 
S1 S2 S3 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

P
re

di
ct

ed
 

G
ra

de
 

1 5 1 0 0 0 4 1 0 0 0 4 1 0 0 0 
2 3 6 1 0 0 4 5 2 0 0 4 7 2 0 0 
3 0 1 7 0 0 0 2 6 2 0 0 0 6 3 0 
4 0 0 0 5 4 0 0 0 5 3 0 0 0 4 3 
5 0 0 0 3 4 0 0 0 1 5 0 0 0 1 5 

Accuracy 0.63 0.75 0.88 0.63 0.50 0.50 0.63 0.75 0.63 0.63 0.50 0.88 0.75 0.5 0.63 
Overall 0.675 0.625 0.65 

Average accuracy of three subsets 0.65 

Table 5.6 Classification by the linear SVM. 

 Visual Grade 
S1 S2 S3 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

P
re

di
ct

ed
 

G
ra

d
e 

1 6 2 0 0 0 6 1 0 0 0 7 1 0 0 0 

2 2 5 2 0 0 2 5 3 0 0 1 6 2 0 0 
3 0 1 6 2 0 0 2 5 2 0 0 1 6 2 0 
4 0 0 0 5 2 0 0 0 5 2 0 0 0 6 3 
5 0 0 0 1 6 0 0 0 1 6 0 0 0 0 5 

Accuracy 0.75 0.63 0.75 0.63 0.75 0.75 0.63 0.63 0.63 0.75 0.88 0.75 0.75 0.75 0.63 

Overall 0.70 0.675 0.75 
Average accuracy of three subsets 0.708 
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The stereovision can be used to visually and quantitatively trace appearance 

changes of samples due to home laundering. Table 5.7 displays the 3D images and the 

pilling densities of three different samples before and after being treated in 25 laundering 

cycles. Samples 1 and 2 were solid color fabrics, and sample 3 was a fabric with a striped 

color pattern. Before the treatment of 25 laundering cycles, the three samples appeared to 

have no or little pilling. After the 25 washed cycles, the pilling became obvious on the 

surface of these samples with the pilling density varying from 2 to 4 pills/cm2. The 3D 

measured results matched with the manual detected results, which the R2 values for both 

original and treated samples were close to 1. 

Table 5.7 3D images and pilling densities of three different samples. 

 Original 
Density 

(count/cm2) 
Treated 

Density 
(count/cm2) 

1 

 

3D 0.00 

 

3D 3.97 

Manual 0.00 Manual 4.13 

2 

 

3D 0.00 

 

3D 3.68 

Manual 0.00 Manual 3.83 

3 

 

3D 0.02 

 

3D 2.01 

Manual 0.03 Manual 2.15 
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5.3 WRINKLE EXPERIMENTS 

Six 3D wrinkle replica images corresponding to AATCC 124 six grades [13] were 

the training samples. The four major features, wrinkling density, sharpness, tip-angle, and 

roughness made a 4-dimensional feature vector. However, wrinkle roughness was 

described by four parameters, which would expand the feature vector into 8 dimensions. 

It seems that measurement accuracy will decrease when we place 4 subset parameters as 

the same level as 4 major infects, and redundant calculation will happen as well. We try 

to reduce four wrinkle roughness parameters to less than four or even one component. In 

other words, the four-dimensional wrinkle roughness vector will be reduced into fewer 

dimensions. In order to transform a higher-dimensionality feature vector to a smaller-

dimensionality vector, feature extraction algorithms are used to interpret the raw feature 

vectors. Principal-component analysis (PCA) is one of the feature extraction algorithms, 

which uses an orthogonal transformation to convert a set of correlated variables into a set 

of values of linearly uncorrelated variables. PCA finds the best “subspace” that captures 

as much data variance as possible. In this study, we used PCA to do wrinkle roughness 

dimension reduction processing. Before applying PCA, the raw wrinkle roughness listed 

in Table 5.8 should be converted into normalized data by z-score, which is uniform to 

different scaled data and improves comparability. The z-score normalization is based on 

equation 5.1, and the normalized data are shown in Table 5.9.  

 ����������(��) =
����

���(�)
 (5.1) 

where 

 � =
�

�
∑ ��

�
���       � = 6 (5.2) 

 ���(�) = �
�

(���)
∑ (�� − �)��

���  (5.3) 
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Grade Ra Rq Rz tp 

1 
0.126 0.158 0.701 0.499 

2 
0.090 0.112 0.441 0.499 

3 
0.060 0.076 0.307 0.038 

3.5 
0.053 0.067 0.258 0.033 

4 
0.052 0.066 0.286 0.026 

5 
0 0 0 0 

 

Grade Ra Rq Rz tp 

1 
1.4818 1.4831 1.5976 1.2892 

2 
0.6283 0.6103 0.4714 1.2892 

3 
-0.0830 -0.0727 -0.1090 -0.5886 

3.5 
-0.2489 -0.2435 -0.3213 -0.6089 

4 
-0.2726 -0.2625 -0.2000 -0.6375 

5 
-1.5055 -1.5147 -1.4388 -0.7434 

 

Based on the data listed in Table 5.9, according to Table 5.10 (the importance of 

components analyzed by PCA), the number of reduced dimensions can be determined. 

 

 

 

 

 

Table 5.8 Wrinkle roughness raw data. 

Table 5.9 Normalized wrinkle roughness data. 



43 
 

 

 Component  1 Component  2 Component  3 Component  4 

Standard  

deviation 
1.7684 0.4482 0.0727 0.0004 

Proportion of 

variance 
93.81% 6% 0.1% 0.09% 

Cumulative 

proportion 
93.8% 99.84% 99.99% 100% 

From Table 5.10, the proportion of variance row shows that component 1 

occupies the most proportion which is close to 95%. This result indicates that one 

dimension will be sufficient to represent four wrinkle roughness parameters, which 

means the four-dimensional wrinkling roughness feature vector will be reduced to one 

dimension. The PCA dimensional reduction results plotted in Figure 5.2 demonstrates, 

generally speaking, the better separability for the given classes.  

 
Figure 5.2 Distribution of one dimensional wrinkle roughness feature vector by PCA. 

Similar to pilling classification procedure, each of 30 wrinkle fabrics generated 

six 3D images from each fabric different regions. The total of 180 3D wrinkling images 

was randomly divided into three subsets, S1, S2, and S3. The cross-validation was 

performed. Because the logistic regression classifier was used for pilling classification, 

we still chose it for wrinkling classification. Table 5.11 lists the 180 images cataloged 

-3 -2 -1 0 1 2 3 4

Grade 1 Grade 2 Grade 3

Grade 3.5 Grade 4 Grade 5

Table 5.10 Importance of components. 
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results and the result accuracy of the logistic regression classifier. For the wrinkle 

severity of level 1, 2, 4, and 5, all levels showed a good accuracy in which values were 

above 70%. The worst accuracy happened between level 3 and level 3.5 which has the 

accuracies around 60%. This makes sense because, even though samples in these two 

levels are graded by visual method, we still may not tell to which grades these samples 

belong. But the overall accuracy for the logistic regression classifier is acceptable at 

74.4%.  

 

 

Visual Grade 
S1 S2 S3 

1 2 3 3.5 4 5 1 2 3 3.5 4 5 1 2 3 3.5 4 5 

P
re

di
ct

ed
 

G
ra

de
 

1 9 0 0 0 0 0 8 1 0 0 0 0 8 1 0 0 0 0 

2 1 8 1 0 0 0 2 8 1 0 0 0 2 7 1 0 0 0 
3 0 1 6 2 1 0 0 1 5 2 0 0 0 2 6 3 0 0 

3.5 0 1 3 7 1 0 0 0 4 7 1 0 0 0 2 6 1 0 
4 0 0 0 1 7 2 0 0 0 1 8 1 0 0 1 1 8 1 
5 0 0 0 0 1 8 0 0 0 0 1 9 0 0 0 0 1 9 

Accuracy 0.9 0.8 0.6 0.7 0.7 0.8 0.8 0.8 0.5 0.7 0.8 0.9 0.8 0.7 0.6 0.6 0.8 0.9 

Overall 0.750 0.750 0.733 

Average accuracy of three subsets 0.744 

 

 
 
 
 
 

 
 
 

  

Table 5.11 The logistic regression classification results of 180 3D wrinkling images. 
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Chapter 6: Conclusions and Future Work 

6.1 SUMMARY OF THE THESIS 

An integrated fabric wrinkling and pilling appearance evaluation system based on 

3D stereovision technique was presented in this study. Comparing with 2D image 

processing, 3D imaging technology has the advantage in measuring fabric surface and 

shape, which fully utilizes the depth information while disregarding fabric texture, color, 

and intensity information that may be varied by different light sources. After reviewing 

current laser or other light sources based on 3D surface imaging systems, the proposed 

stereovision system provide a portable, affordable, efficient and high resolution 3D 

imaging system. 

A stereovision system that only needs a pair of consumer grade high resolution 

cameras and mounting hardware to support two cameras in parallel is more cost effective 

than other 3D imaging systems with laser or structured lights source requirements. Image 

acquisition time that is less than 10 micro seconds presents the higher efficiency for the 

proposed system. The system only needs to be calibrated when the relative positions of 

the cameras are changed. A portable calibration target was designed for the stereovision 

system. These properties contribute to the portability of the system and also reduce the 

cost of maintenance.  

By taking advantage of data with the depth information obtained from 

stereovision system, two major fabric appearance features, pilling and wrinkling, were 

detected and measured. A novel pilling detection algorithm based on 3D imaging local 

information was proposed. Pilling density, height, and size were extracted features for 

pilling severity classification. A fast wrinkle detection algorithm with leveled 3D surface 

showed a good wrinkle detection result. Four measurands including wrinkling density, 
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sharpness, tip-angle, and roughness were measured, and they would be the basis of 

wrinkle level classification. Both measurements for pilling and wrinkle were repeatable. 

Comparing with the time consuming visual rating method, the proposed 3D fabric surface 

measurement showed a better efficiency and more objectiveness.  

The pilling densities measured from the 3D images of 30 samples were highly 

correlated with those counted manually (R2 = 0.985). Although only the pilling density 

consistently changed with the pilling grade for the given set of samples, the pilling height 

and area should be useful parameters for assessing pilling appearance, especially for 

fabrics with different fiber contents and structures. 

120 3D pilling images were used to find a suitable classifier based on three 

quantitated pilling features. The logistic regression classifier performed the best result 

with 80% in comparison with the naïve Bayes classifier and the linear SVM. We also 

chose the logistic regression classifier for wrinkling severity classification. 180 3D 

wrinkling images gathered from 30 wrinkling-severity-determined fabrics were used to 

evaluate the chosen classifier validity based on the four wrinkling features. The overall 

accuracy for wrinkle grading was 74.4%. The poorest classifications happened on 

wrinkle level 3 and level 3.5 whose accuracies were around 60%. Because level 3.5 was 

added to describe a smooth, non-pressed fabric appearance, the boundary of level 3.5 and 

3 are not easy to be distinguished, even when judged by the visual method. 

6.2 SUGGESTED FUTURE WORK 

There is still room to improve the pilling and wrinkle detection algorithm. Pilling 

detection for some thicker thread fabrics is easy to overestimate because those thread 

connection parts will be misunderstood as small pills by a computer. Recently, the system 
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only allows manually adjusting pilling detecting parameters. More studies relating to 

fabric of different fibers need to be done in the future.  

More pilling and wrinkle samples need to be tested to verify the validity of the 

logistic regression classifier and the repeatability of the proposed pilling and wrinkle 

detection algorithm. The major difference between wrinkle level 3 and 3.5 should be the 

tip-angle. Level 3.5 describes smoother wrinkling in fabrics with small tip-angles in 

comparison with level 3. In the future, with sufficient wrinkle samples, the fabric wrinkle 

tip-angle may be considered to apply more weight when processing the classification.  
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