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Abstract 

 

A Microsimulation Analysis of the Mobility Impacts of Intersection 

Ramp Metering 

 

William Jared Wall, M.S.E. 

The University of Texas at Austin, 2013 

 

Supervisor:  C. Michael Walton 

 

Urban freeway demand that frequently exceeds capacity has caused many 

agencies to consider many options to reduce congestion.  A series of solutions that falls 

under the Active Traffic Management (ATM) banner have shown promising potential.  

Perhaps the most popular ATM strategy is ramp metering.  Ramp metering involves 

limiting the access of vehicles to freeways at an entrance ramp.  By doing this, freeway 

throughput, speeds, and travel time reliability can be increased, while the number of 

traffic incidents can be decreased.  This study examines the application of an innovative 

ramp metering strategy, Intersection Ramp Metering (IRM), at a section of Loop 1 in 

Austin, TX.  IRM implements the ramp metering function at the intersection immediately 

upstream of the entrance ramp, rather than on the ramp itself.  A microsimulation analysis 

of this application is performed in VISSIM, and the results confirm that freeway 

throughput (+10%), and system average travel time (-14%), can be improved, as well as 

several other performance measures. 



 vii 

Table of Contents 

List of Tables ...........................................................................................................x 

List of Figures ........................................................................................................ xi 

Chapter 1  Introduction ............................................................................................1 

1.1 Problem Statement ....................................................................................4 

1.2 Thesis Summary........................................................................................5 

Chapter 2  Literature Review ...................................................................................6 

2.1 Summary of Prevailing Technologies .......................................................6 

2.2 Ramp Metering .........................................................................................9 

2.2.1 ALINEA .............................................................................12 

2.2.2 Demand Capacity ...............................................................16 

2.2.3 Occupancy Control ............................................................16 

2.2.4 ZONE .................................................................................18 

2.2.5 Stratified ZONE .................................................................19 

2.2.6 Queue Management ...........................................................22 

2.2.7 Flow Control ......................................................................23 

2.2.8 Signing ...............................................................................24 

2.2.9 Geometric Requirements ...................................................25 

2.3 Signal Timing..........................................................................................26 

2.3.1 Webster's Optimal Cycle Length .......................................27 

2.3.2 Timing Strategies for Diamond Interchanges ....................30 

Chapter 3  Methodology ........................................................................................36 

3.1 Intersection Ramp Metering System Design ..........................................36 

3.2 The Intersection ALINEA Algorithm .....................................................38 

Chapter 4  Model Implementation, Calibration, and Validation ...........................40 

4.1 Performance Measures of Freeway Facilities .........................................40 

4.1.1 Flow, Speed, Throughput, and Travel Times ....................41 

4.1.2 Travel Time Reliability ......................................................42 



 viii 

4.2 Model Implementation ............................................................................44 

Chapter 5  Experimental Design ............................................................................45 

5.1 Data Collection .......................................................................................45 

5.2 Evaluation Scenarios ...............................................................................53 

Chapter 6  Result Analysis .....................................................................................54 

6.1 Model Calibration Results ......................................................................54 

6.2 IRM System Parameter Optimization Results ........................................55 

6.3 Scenario Implementation and Optimization Results...............................58 

6.3.1 Base Case Alternative ........................................................58 

6.3.2 Scenario X ..........................................................................58 

6.3.3 Scenario 1...........................................................................59 

6.3.4 Scenario 2...........................................................................59 

6.3.5 Scenario 3...........................................................................62 

6.3.6 Queue Clearance Scenarios ................................................62 

6.4 Modeled Freeway Flow and Speed Characteristics ................................63 

6.5 Network Performance .............................................................................69 

6.6 Freeway and Arterial Performance .........................................................70 

6.7 Travel Time Reliability ...........................................................................73 

6.8 With Queue Clearance ............................................................................74 

Chapter 7  Conclusion and Future Research ..........................................................76 

7.1 Conclusion and Recommendations .........................................................76 

7.2 Furture Research Paths ...........................................................................77 

7.2.1 With a 4-Legged Intersection.............................................77 

7.2.2 With a Typical Frontage Road ...........................................79 

7.2.3 With Ramp Gap Control ....................................................80 

7.2.4 With Adaptive Cycle Length Calculations ........................81 

Appendix ................................................................................................................83 

References ..............................................................................................................91 



 ix 

List of Tables 

Table 2.1: Popular ATM Technologies ................................................................6 

Table 2.2: Required Distance between Meter and Freeway Merge Point ..........26 

Table 2.3: Appropriate Travel Times Between Intersections ............................34 

Table 6.1: Initial VAP Parameter Settings .........................................................57 

Table 6.2: Optimal VAP Parameter Settings – Scenario 1 ................................59 

Table 6.3: Optimal VAP Parameter Settings – Scenario 2 ................................61 

Table 6.4: System-wide Results .........................................................................69 

Table 6.5: Freeway and Arterial Performance Results ......................................71 

Table 6.6: Travel Time Reliability Results ........................................................73 

Table 6.7: System-wide Impacts of Queue Flushing .........................................74 

Table 6.8: Travel Time Reliability Impacts of Queue Flushing ........................75 

 



 x 

List of Figures 

Figure 2.1: Ramp Meter Geometric Characteristics ..............................................9 

Figure 2.2: Required Detector Locations for ALINEA .......................................13 

Figure 2.3: Comparison between Feed-Forward and Feedback Control .............14 

Figure 2.4: Required Detector Locations for Demand Capacity and Occupancy 

Control ..............................................................................................15 

Figure 2.5: Detector Requirements for ZONE and Stratified Ramp Metering ...21 

Figure 2.6: Variation in Queue Discharge Rate During Phase Interval in Saturated 

Conditions .........................................................................................27 

Figure 2.7: Approximate Relationship between Delay and Cycle Length ..........29 

Figure 2.8: Texas Three-Phase Control Strategy ................................................32 

Figure 2.9: Texas Four-Phase Control Strategy ..................................................33 

Figure 2.10: NEMA Phase Numbering .................................................................33 

Figure 3.1: Intersection System Design and Phase Plan .....................................36 

Figure 5.1: Analysis Area ....................................................................................46 

Figure 5.2: Data Collection Equipment ...............................................................47 

Figure 5.3: Aerial of Data Collection Location ...................................................47 

Figure 5.4: View of Intersection 1 .......................................................................48 

Figure 5.5: View of Intersection 2 .......................................................................48 

Figure 5.6: View From Bridge ............................................................................49 

Figure 5.7: Measured Volumes ...........................................................................50 

Figure 5.8: Observed Traffic Flows ....................................................................51 

Figure 5.9: Observed Interchange Timings .........................................................52 

Figure 6.1: Observed Freeway Flows vs. Modeled Freeway Flows ...................54 



 xi 

Figure 6.2: Interchange Timings for Scenario 2 ..................................................61 

Figure 6.3: Queue Clearance Detector Placement ...............................................62 

Figure 6.4: Measured Avergage Freeway Flows for Base Case and Scenario X 64 

Figure 6.5: Measured Average Freeway Flows and Speeds for Scenario 1 ........65 

Figure 6.6: Measured Average Freeway Flows and Speeds for Scenario 2 ........66 

Figure 6.7: Measured Average Freeway Flows and Speeds for Scenario 3 ........67 

Figure 7.1: Example Frontage Road Intersection Metering Layout ....................79 

Figure 7.2: Gap Control Sign ..............................................................................81 

 

  



1 

 

Chapter 1: Introduction 

Urban freeways are becoming increasingly congested during peak hours.  Many 

of these facilities are approaching or have already reached capacity.  Particularly, the 

travel periods during the morning and afternoon peak hours see significant congestion.  

Agencies all across the country have been exploring many different options to ease this 

congestion.  There are only three basic ways congestion can be lessened: increasing 

capacity, improving system operations, or reducing demand.  Historically, the solution to 

congestion has been to increase capacity.  This led to the construction and expansion of 

the freeway system that we currently have.  However, demand has been constantly 

increasing and many of these expansions merely keep congestion at constant levels.  

Many cities across the country have expanded their freeways near the absolute limit, yet 

congestion is still increasing. Now that system expansion is becoming an increasingly 

difficult option, transportation officials must now look to improving operations and 

reducing demand as the primary approach toward easing this congestion.   

One heavily researched and tried and true method of improving operations is 

Active Traffic Management (ATM).  Many agencies are now turning to various ATM 

strategies to help alleviate congestion and improve system performance.  ATM involves 

the implementation of intelligent transportation systems to dynamically manage traffic 

operations based on prevailing conditions to alter traffic flow and driver behavior [1].  It 

can be helpful toward alleviating both recurrent and non-recurrent congestion. Typically 

applied toward urban freeways, most ATM strategies can delay the onset of or reduce the 

duration of congestion, and in some cases prevent it entirely.  One of the primary 
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objectives of such systems is to improve travel time reliability. An additional windfall for 

many ATM strategies is that they concurrently increase system throughput and improve 

highway safety by reducing the number and severity of crashes. 

The travel time reliability of a roadway segment is dictated by the amount and 

character of congestion that that particular stretch of road experiences.  The indices that 

describe travel time reliability are measures of the variation in travel times across a 

segment for different users.  The higher this variation, the less reliable that segment will 

be for producing consistent travel times.   

The designed goal of many ATM strategies is to improve flow along a freeway, 

either by implementing a control system on the mainlines or at a freeway entrance ramp.  

One of the more commonly used ATM strategies implemented at entrance ramps is ramp 

metering.  Ramp metering involves controlling the access of vehicles entering a segment 

of freeway.  With only a traffic control signal, entrance ramp flows can be easily adjusted 

by the presiding agency.  By carefully adjusting the rate at which vehicles can enter the 

freeway, several operational benefits can be obtained. 

At uncontrolled ramps, random vehicle arrivals and large platoons arriving from 

surface street intersections complicate merging and weaving movements and cause a 

traffic breakdown that has the potential to propagate upstream.  These locations are 

considered bottlenecks for the mainlines of a freeway. By guaranteeing a uniform arrival 

rate and breaking up these vehicle platoons, ramp metering will mitigate or in some cases 

even eliminate the traffic breakdown that occurs at these points [2].  This uniform arrival 

rate helps facilitate simpler weaving and merging movements.  When a ramp metering 
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system is properly calibrated, it has the potential to increase freeway volumes, increase 

overall travel speeds, reduce incident rates, and decrease fuel consumption and vehicular 

emissions [3]. 

The first ramp metering system was implemented on the Eisenhower Expressway 

in Chicago, Illinois in 1963.  It consisted of a traffic officer standing on the ramp and 

sending vehicles to the freeway one at a time at a predetermined rate.  By the 1970’s, 

cities such as Minneapolis, Minnesota began using permanent traffic control devices.  

These early devises were pre-timed with fixed metering rates [4].  The 1990’s saw a rise 

in the use of traffic responsive systems, which yielded much better system performance 

results.  Today, more sophisticated ramp metering systems are being widely used in at 

least 29 cities in the United States [5]. 

Austin, Texas suffers from some of the worst freeway congestion in the nation, 

according to researchers at the Texas Transportation Institute. They estimate that Austin 

commuters spend an average of 44 hours a year stuck in traffic.  These delays add up to 

an annual cost of $930 per commuter.  Austin has the worst planning time index score in 

the state, at 4.26.  This means that for a trip that would take 30 minutes under 

uncongested conditions, commuters should allow themselves 2 hours and 8 minutes to be 

assured to making to their destination in time.  Austin’s planning time index score was 

the 6
th

 worst of the 101 largest U.S. cities included in the study.  It is apparent that an 

ATM strategy that could help lessen this congestion would be beneficial to Austin [6]. 
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1.1 – Problem Statement 

In this research, a novel ramp metering approach is introduced.  It seeks to 

facilitate the ramp metering process at the intersection immediately upstream of the 

entrance ramp, as opposed to the ramp itself.  This process is called Intersection Ramp 

Metering (IRM). This method will have limited applicability, specifically to where ramp 

geometries do not allow for a traditional ramp metering system, and where there is plenty 

of queue storage at the intersection approach.  This technique could be further beneficial, 

in that it could reduce the cost associated with having to install a separate traffic control 

hardware system on the ramp. Instead, it uses the existing hardware at the intersection.  

The additional cost could be eliminated altogether if the intersection controller is 

sophisticated enough to facilitate a ramp metering algorithm and could be connected to 

detectors on the freeway mainlines, if these detectors already exist.  However, if detectors 

need to be installed, this would not be cost incurred over traditional ramp metering 

systems because mainline detectors are needed for each. Like traditional ramp metering 

systems, this system strives to improve travel conditions on the freeway by carefully 

controlling the dispatch of vehicles onto the freeway. 

In addition to the description of the system is an initial evaluation of its 

effectiveness.  It is important to remember that the freeway and performance effects of 

IRM are not intended to be superior to existing ramp metering techniques; instead it is 

intended to be equally as effective as the existing systems.  The evaluations consist of 

calibrated VISSIM model simulations, based on an existing intersection in Austin, TX, 
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using real peak hour traffic data collected from that site.  Several different evaluation 

scenarios are presented, and recommendations are made regarding the results. 

1.2 – Thesis Summary  

This thesis introduces and evaluates a novel ramp metering approach where the 

control is applied at the immediate upstream intersection instead of the ramp itself.  

Chapter 2 summarizes general active traffic management strategies as well as several 

ramp metering control algorithms and traffic signal control timing optimization 

strategies.  Chapter 3 describes the methodology of the research.  Chapter 4 presents the 

development of the microsimulation model. Chapter 5 discussed the design of the 

experiment. Chapter 6 presents the simulation results of the research.  Chapter 7 

discusses recommendations and conclusions based on these results as well as future 

research approaches that should be taken.  
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Chapter 2: Literature Review 

2.1 Summary of Prevailing ATM Technologies  

Active traffic management is defined by the Federal Highway Administration 

(FHWA) as the “ability to dynamically manage recurrent and non-recurrent congestion 

based on prevailing and predicted traffic conditions.”  Specifically, its intention is to 

improve trip reliability, maximize the effectiveness of a system, and improve safety 

through the use of systems integrated with technology.  Crucial to the effectiveness of 

ATM is that it features the automation of dynamic deployment, rather than deployment 

by human operators.  Most ATM strategies work by simply influencing driver behavior in 

a way that will improve system operations. The most popular ATM strategies are 

summarized in Table 2.1 below [1].  

 

 

 

 

Table 2.1 - Popular ATM Technologies 

ATM 

Strategy 
Concept 

Used on 

Freeway 

or Arterial 

Control System 
Traffic 

Impact 

Adaptive 

Ramp 

Metering 

Traffic Signals on freeway 

onramps dynamically control the 

rate of vehicles dispatched from 

ramp based on mainline freeway 

conditions 

Freeway Traffic Control 

Signal, Capable 

Signal Controller, 

Mainline and 

Ramp Detectors 

Improved 

Freeway flow 

and travel 

speeds, 

reduced delay 
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Table 2.1 (continued) – Popular ATM Technologies 

ATM 

Strategy 
Concept 

Used on 

Freeway 

or Arterial 

Control System 
Traffic 

Impact 

Adaptive 

Traffic 

Signal 

Control 

Continuously monitors arterial 

traffic conditions and adjusts 

intersection timing (phase lengths, 

cycle lengths, offsets, etc.) to 

achieve predetermined objective 

(minimize delay, maximize flow, 

etc.). Often monitors traffic well 

upstream of intersection so that 

arriving traffic patterns are known. 

Arterial Traffic Control 

Signal, Capable 

Signal Controller, 

traffic detectors at 

intersection and 

upstream 

Increase in 

throughput, 

decrease in 

delay and 

queue lengths 

Dynamic 

Junction 

Control 

Dynamically controls lane 

assignments at freeway onramps 

and off-ramps based on prevailing 

freeway and arterial conditions.  

For example, when exiting 

volumes are high relative to 

through freeway volumes, the right 

freeway lane could be designated 

as exit-only.  If entering volumes 

are high relative to existing 

freeway volumes, a lane drop 

could be implemented upstream of 

the entrance ramp to allow 

entering vehicles an additional 

acceleration lane 

Freeway Lane Assignment 

Indicators, 

detectors on 

mainlines and 

ramps and/or 

arterials 

Increase in 

throughput, 

decrease in 

delay 

Dynamic 

Lane 

Reversal 

Reverses travel direction on lanes 

to dynamically allocate directional 

capacities based on prevailing 

traffic conditions. 

Freeway or 

Arterial 

Lane Assignment 

Indicators, 

detectors on 

mainlines 

Increase in 

capacity 

Dynamic 

Lane Use 

Control 

Dynamically opens or closes lanes 

based on existing freeway 

conditions.  It can be used in 

advance of recurrent bottlenecks or 

incidents.  Advanced warning is 

provided to assist merging 

movements upstream of the lane 

closure 

Freeway Lane Status 

Indicators 

Increase in 

throughput, 

decrease in 

delay 
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Table 2.1 (continued) – Popular ATM Technologies 

ATM 

Strategy 
Concept 

Used on 

Freeway 

or Arterial 

Control System 
Traffic 

Impact 

Dynamic 

Merge 

Control 

Dynamically manages the merging 

of vehicles based on prevailing 

travel conditions.  It can provide 

guidance and merging instructions 

well upstream of a merge point 

Freeway Merge Control 

Signage 

Increase in 

throughput, 

decrease in 

delay 

Dynamic 

Shoulder 

Lanes 

Dynamically allows usage of road 

shoulder to increase the roadway 

capacity during congested periods.  

It can be used either during 

recurrent bottlenecks or 

unexpected conditions such as 

incidents. 

Freeway Shoulder Opening 

Status Signage 

Increase in 

capacity 

Dynamic 

Speed 

Limits 

Dynamically changes speed limits 

based on prevailing freeway traffic 

or weather conditions.  Can be 

freeway wide or individual lane 

assigned limits, 

Freeway Speed Limit 

Signage and 

mainline detectors 

Uniform 

Speed 

Queue 

Warning 

Dynamically displays warnings of 

downstream queues or bottlenecks 

in an attempt to lessen shockwaves 

and reduce rear-end crashes 

Freeway Queue Warning 

Signage 

Uniform 

Speed 

Transit 

Signal 

Priority 

Dynamically adjusts intersection 

signal timings upon the arrival of a 

transit bus, by either extending the 

green interval or bringing up the 

green interval sooner, in an 

attempt to lessen the number of 

intersections the bus will stop at. 

Arterials Bus detection 

sensors, Capable 

Traffic Controllers 

Decrease in 

transit travel 

time 
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2.2 Ramp metering 

Ramp metering control is implemented on freeway entrance ramps.  While the 

control strategies and logic may be unique for different systems, the basic concept is the 

same. By installing ramp meters, engineers can control the rate that vehicles are allowed 

to enter a freeway, reduce freeway demand, and break up vehicle platooning caused by 

releases from upstream signals [2].  Figure 2.1 below shows the basic layout for either a 

single lane or dual-lane ramp metering system. 

 

Figure 2.1 - Ramp Meter Geometric Characteristics 

It can be seen above that the meter is typically placed on the ramp, where 

sufficient acceleration distance for freeway-bound vehicles can be provided.  It is also 

important that the meter not be located so far up the ramp that there will not be enough 

storage space for the queuing vehicles. 
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The FHWA, in their Ramp Management and Control Handbook, recommends 

agencies consider the following 6 elements before determining their ramp metering 

strategy [7]: 

 Geographic extent – the ramp metering will either be isolated around one or 

several ramps, or it will be a part of a larger coordinated system 

 Approach – pre-timed or traffic responsive 

 Metering algorithm – logic used to determine the metering rate 

 Queue management – how ramp queues will be held to an acceptable length 

 Flow control – how vehicles will be dispatched from the ramp (one at a time or 

several at a time) 

  Signing – how drivers will know if the system is on or off 

Each of these six elements is important in determining how a ramp metering 

system will be implemented.  However, the importance of each of these can be ranked 

differently by different individuals. 

Determining whether or not a pre-timed or traffic responsive approach will be 

best depends on the type of congestion that is occurring, and the amount of detectors that 

are available.  In general, the traffic benefits of a traffic responsive system are greater, but 

so are the capital costs.  If the congestion is predictable and nearly always recurrent, a 

pre-timed system may be an acceptable approach.  This is particularly true when there are 

no detectors on the ramp or on the mainline near the ramp.  If the agency determines that 

installing detectors in these locations is not feasible, then a traffic responsive system 



11 

 

would not be possible. Furthermore, there are two degrees of traffic responsive systems.  

One will switch on the metering system when the traffic reaches a critical point.  In this 

system, the ramp metering will begin at a predetermined rate.  Another type of traffic 

responsive system, and the one that is used by a majority of modern agencies, is one in 

which the ramp metering rate itself is determined by traffic conditions.  Typically the 

ramp discharge rate will be lower when there is more congestion on the mainline [7]. 

There are several metering algorithms that are commonly used in practice, and 

several more that have been developed but have yet to be implemented.  Each algorithm 

utilizes a different control logic, and each has different singular objectives.  However, the 

goal of each is to lessen freeway congestion and improve system performance.  In 

general, the more complex an algorithm is, the more sophisticated the controller hardware 

must be and more detectors that would be required.  This would make the system more 

susceptible to equipment failures and would make it more expensive [8].  For this reason, 

many agencies prefer the simple, yet very well performing, techniques.   

There are two different types of ramp metering strategies, local and coordinated.  

Coordinated systems will typically use local control algorithms on the ramp level, and 

include some further control logic that seeks to weave each ramp’s operations together to 

achieve optimal operations throughout a freeway corridor. The following are three of the 

most popular local control strategies, ALINEA, Demand Capacity, and Occupancy 

Control [9]. 
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2.2.1 ALINEA 

One of the more common algorithms for ramp metering is called Asservissement 

LINéaire d’Entrée Autoroutière, or simply, ALINEA.  ALINEA is a very popular local 

feedback ramp metering strategy.  It has been used extensively with little tweaking since 

its introduction in the early 1990’s. It is still used widely throughout Europe with much 

success [10].  The intent of the ALINEA system is to maximize mainline flow by 

maintaining a desired occupancy level.  Hence, it only requires one detector per lane, 

which will be located downstream of the entrance ramp.  Because mainline occupancy is 

the only determinate for a standard ALINEA system, no detectors are required on the 

entrance ramp itself.  The control algorithm for ALINEA calculates metering rates that 

will be applied to achieve the desired mainline occupancy.  The following equation is 

used to calculate the ramp metering rates in ALINEA [11]:   

 ( )   (   )    [        ( )] 

Where r(t) is the ramp metering rate at time step t, Odes is the desired occupancy, 

which is typically the critical occupancy, where the freeway’s flow is maximized.  

Typical values for the desired occupancy range from 18% to 31% [12]. Odn is the 

measured downstream occupancy at time t, r(t-1) is the metering rate from the previous 

time period, and Kr is a regulatory parameter [3].  A value of 70 vehicles per hour has 

been used extensively for Kr with much success [13].  One of the key operational 

advantages of ALINEA is both the simplicity of the control algorithm and the minimal 

detector requirements.  Figure 2.2 depicts the required detector locations for ALINEA.  

The detectors should be placed such that vehicles dispatched from the ramp will reach the 
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detector within the determined time-step for this equation to hold true [3].  Oftentimes, 

the available detector location will be the key parameter in determining the time-step 

length. 

 

Figure 2.2 - Required Detector Locations for ALINEA 

The ALINEA technique is a tried and true method that has performed well over 

many simulations and field implementations with minimal adjustments.  Papageorgiou et 

al. lists the many benefits of ALINEA, which includes its simplicity due to only one 

control equation and variable, its low implementation cost, its efficiency, and its 

flexibility due to the fact that the desired occupancy level can be adjusted at any time, 

either automatically or manually. 

Furthermore, since ALINEA is a feedback control philosophy, it attempts to avoid 

freeway congestion before it occurs, rather than control it after it occurs, which is what is 

done in feed-forward control philosophies.  By the feedback approach being based on 

downstream measurements rather than upstream measurements, it is theoretically more 

suitable for controlling downstream conditions than a feed-forward approach, such as 

Demand Capacity or Occupancy Control [13].  Consider the following control diagram 

on the left side of Figure 2.3, which details the feed-forward approach philosophy. 
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Figure 2.3 – Comparison between Feed-Forward (a) and Feedback Control (b) 

This control diagram represents the logic of the feed-forward and feedback 

approaches.  The feed-forward system is regulated by a set value for a parameter; which 

in the case for our example is the desired mainline flow.  The process output would be 

mainline flow, which we desire to be equal to the freeway capacity.  The process input 

would be the onramp flow, which is dictated by our calculated ramp metering rate.  The 

disturbance would be the mainline upstream conditions.  In order to achieve the desired 

output, this type of system measures the disturbances and applies what the model 

calculated to be the appropriate input to be combined with the disturbance to achieve the 

desired output.  For this reason this type of approach is often called disturbance 

compensation.  Because of the presence of immeasurable disturbances, this structure is 

highly sensitive.  Furthermore, the success of this system is reliant on a highly accurate 

model, because the output is never measured and the model is never readjusted to reach a 

more suitable output.  A more robust approach is the feedback control approach, which is 

utilized by the ALINEA algorithm [11].  This approach is represented by the control 

diagram on the right side of Figure 2.3.  
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In this approach, the output is considered rather than the disturbance.  We still 

have our set value acting as the regulator, but in this instance it is modifying the 

controllable input to keep the output as close to the desired value as possible.  By the 

input being consistently readjusted based on the output, we can be certain that we are 

producing a stronger result.  In the previous feed-forward approach, the output is never 

measured; therefore we have to trust the accuracy of our model and the measured 

disturbances in order to be assured we are near our desired output.  In the feedback 

approach, we are updating the input based on the output, and can therefore be certain we 

are nearing the desired output assuming only modest changes in the disturbance [13]. 

Two popular feed-forward approaches are Demand Capacity and Occupancy 

Control [8].  Because these approaches employ a feed-forward approach, the freeway 

occupancy is measured upstream of the merge point.  The detector locations are shown in 

Figure 2.4 below. 

 

Figure 2.4 - Required Detector Locations for Demand Capacity and Occupancy Control 
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2.2.2 Demand Capacity 

The Demand Capacity strategy (DC) utilizes the following equation to determine 

ramp metering rates: 

 ( )  {
        (   )    (   )     

         
 

Where qcap is the capacity of the downstream freeway segment, qup (t – 1) is the 

upstream freeway flow at time t-1, Oup (t-1) is the upstream freeway occupancy, Ocr is the 

critical downstream occupancy where freeway flow is at its maximum, and rmin is the 

minimum allowable ramp flow. 

This strategy seeks to add to the upstream flow the amount of ramp flow 

necessary to reach the downstream capacity.  If the last measured upstream occupancy is 

greater than the critical occupancy, the system reverts to sending the lowest allowable 

flow [10].  The rmin is a parameter that would be determined by the agency implementing 

the system, and would typically be a function of the ramp queue length, storage capacity, 

and vehicle arrival rate.   

2.2.3 Occupancy Control 

Occupancy control (OCC) is a special form of the DC strategy that assumes a 

linear relationship between the occupancy and flow at a point on the freeway is 

maintained up until the critical occupancy is reached.  This relationship can be described 

by the following equation: 
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Where vf is the freeway free-flow speed and g is the g-factor that converts 

occupancy to density.  This formula yields an estimation of qup based on the measured 

occupancy, which can, under certain circumstances, reduce implementation costs [13].  

With this estimation having been made, the metering rate is the same rate that is used in 

DC when the measured occupancy is under the critical value, which is shown in the 

following formula: 

 ( )       
  

 
    (   ) 

This is a simpler version of the DC strategy, but is even more inaccurate due to 

the assumption of linearity from the fundamental diagram [10]. 

These control algorithms describe how vehicles are dispatched from a single ramp 

during the ramp metering process.  Papageorgiou et al. argues that ALINEA is superior to 

DC and OCC because of the fact that occupancy is the controlled variable, rather than 

volume, because traffic volumes over a detector will be the same for congested and light 

traffic [13].  Another advantage cited is that the critical occupancy is less sensitive to 

weather and outside influences than the capacity is.   

When multiple ramps are considered together, a coordinated system may be 

developed.  Most coordinated systems use one of the above mentioned local ramp 

metering algorithms at the individual ramp level.  The following describes several 

popular coordinated ramp metering strategies. 
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2.2.4 ZONE 

The ZONE algorithm was originally used in Minneapolis, Minnesota. This system 

divides a freeway segment into various zones, between 3 to 6 miles in length, which are 

characterized by boundaries an upstream free-flow section and a downstream bottleneck 

section.  The objective is to maximize throughput through these bottleneck locations [14]. 

The algorithm seeks to control volumes within the zone.  The control equation is: 

          (   ) 

Where M is the total volume of the  metered ramps in the zone, F is the total 

metered freeway to freeway ramp volumes, X is the total off-ramp volumes, B is the 

volumes of the downstream bottleneck section at capacity (usually assumed to be 

approximately 2,200 vehicles per hour per lane), S is the space available within the zone, 

which is estimated based on mainline occupancy, A is the measured volumes at the 

upstream free-flow section, and U is the total measured volumes of the non-metered 

ramps. In this equation, M and F are variables that can be controlled; all others are either 

measured or pre-set. For each individual meter, two metering rates are calculated.  One is 

a local occupancy control algorithm, which is an overriding mechanism intended for non-

recurring congestion.  The other is a system-level metering rate that is determined by 

comparing the five measured variables (X, B, S, A, and U) with a series of thresholds 

based partly on historic peak hour traffic volumes [15]. 

Although the system was continuously amended to improve performance, public 

skepticism over the effectiveness of ramp metering began to rise along with the rise in 

demand throughout the 1990’s.  Eventually, it was mandated that for an 8 week period in 
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2000, the entire Minneapolis ramp meter system would be shut off, and before and after 

data compared. 

The findings from the mandatory shutdown confirmed that the ZONE metering 

system reduced freeway congestion, freeway delays, fuel consumption, vehicular 

emissions, and number of incidents.  At the same time, it increased freeway throughput 

and average speed and it optimized freeway merging [16]. 

2.2.5 Stratified ZONE 

Although the ramp-meter holiday proved the system wide benefits of ramp 

metering, there was still some controversy over onramp wait times. This forced the 

Minnesota DOT to consider the ramp queues, and a new system was developed for the 

region called stratified ramp metering [15].  The stratified ramp metering system still 

incorporates the basic concept of ZONE, but it also factors in ramp demand and queue 

sizes. The control objectives are listed as: 

1. Control flow into a zone so that the capacity is not exceeded 

2. Limit ramp wait times to below the predetermined value 

In order to achieve these objectives, the system utilizes a hierarchal control 

structure with two tiers.  The first involves the zone itself.  All ramp meters within a zone 

are assigned an allocated proportion of zonal capacity, based on their respective ramp 

demands.  The ramp metering rates are based upon this allocation, provided they are 

within the predetermined range of acceptable metering rates, which is determined to be 

1,714 vph to 240 vph.  In the case where a ramp meter is contained within two 
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overlapping zones, the most restrictive metering rate is always used.  The release rates 

and control logic are very similar to those used by the ZONE system. 

The second tier in the hierarchy involves the ramp itself.  Two ramp status 

variables are introduced, ramp demand and minimum release rate.  Ramp demand is the 

hourly flow rate of vehicles wishing to enter a ramp, and is measured by a detector 

located at the far upstream end of the ramp and another just past the stop bar of the ramp.  

The minimum release rate is time-varying and is calculated from the ramp queue lengths.  

This variable is important in ensuring that the ramp wait times are below the 

predetermined value.  The formula used for calculating the minimum rate is: 

     
 

    
 

Where N is the number of vehicles in the queue and Tmax is the predetermined 

maximum allowable ramp wait time for a vehicle, which is 2 minutes for a freeway-to-

freeway ramp and 4 minutes for a standard local access ramp.  Because the calculation of 

ramp demand requires an upstream ramp detector, stratified ramp metering has a greater 

number of detector requirements than ZONE.  A schematic depicting the ramp level 

detector requirements for each system is shown in Figure 2.5 below. 
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Figure 2.5 - Detector Requirements for ZONE and Stratified Ramp Metering 

When the proposed release rate determined in the first tier drops below the 

minimum release rate determined in the second tier, the minimum release rate overrides 

until the proposed rate is once again greater than the minimum.  If the override feature is 

triggered and is maintained throughout several control cycles, the minimum release rate 

will gradually increase until it reaches the ramp flushing rate of 1,714 vehicles per hour.  

If this scenario occurs, it will have a negative impact on freeway conditions.  

The stratified system has met its objectives of improving ramp wait times, but this 

is achieved at the detriment of several mainline performance measures.  However, results 

have shown that total system performance is still improved over the non-metering case 

[15]. 

Selection of a ramp metering algorithm is an important step in implementing a 

ramp metering system.  Each agency, upon deciding that they want to use ramp meters, 

will need to select the algorithm that best suits their desired objectives, and is best 

compatible with the available hardware and controllers. 
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2.2.6 Queue management  

Queue management is an important issue, and one of the main reasons the 

Minnesota DOT switched from ZONE to Stratified ZONE as mentioned above.  In the 

year 2000, Minneapolis performed the famous experiment where the ramp metering 

system was shut off for an 8 week period. The catalyst for this experiment was largely 

public outrage over the effectiveness of the ramp metering systems, which primarily 

stemmed from long onramp wait times.  The study ultimately concluded that ramp 

metering provided an overall benefit in both safety and mobility to freeway facilities, but 

it also highlighted that onramp wait times were often unbearably long during the ramp 

metering operation.  These conclusions led to the development of the stratified ramp 

control algorithm, which factors ramp queues in the calculation of the ramp metering 

rate.  A successful ramp metering system should never have queues that back up to the 

point where they adversely affect surface street traffic.  In fact, many systems include 

detectors at the far upstream end of an entrance ramp that will turn off the ramp metering 

system when it reaches a certain occupancy level.  This process is known as ramp 

flushing [3]. 

Ramp flushing policies are usually implemented to ensure that ramp metering 

does not adversely affect the performance of surface street intersections.  However, much 

research suggests that not only does ramp flushing degrade the performance of ramp 

metering; it may even cause the system to perform worse than a non-metered ramp 

would.  Several simulation results have shown that when ramp flushing is permitted, the 

benefits of traffic responsive ramp metering are minimal [3].  It is recommended that if 
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ramp demand is greater than the meter capacity for any time period throughout normal 

operations, then a ramp meter that permits flushing should not be installed.    

2.2.7 Flow control 

There are three popular strategies for characterizing the flow of vehicles through a 

ramp metering system.  The first, and most popular, is a single-lane one car per green 

strategy.  This approach allows one car to enter the freeway for every ramp metering 

cycle.  The second approach is a single-lane multiple car per green strategy.  This is also 

known as platoon or bulk metering.  Here, two or more vehicles are allowed to enter the 

freeway each metering cycle.  This approach is less effective towards improving freeway 

conditions, because it essentially recreates small platoons.  Also, this approach does not 

necessarily increase the capacity of metering systems, because the longer greens times 

require longer yellow times.  Therefore there are not as many ramp metering cycles, 

hence the lack of any significant increase in capacity.  Finally, is dual-lane metering.  

This consists of two adjacent lanes on the freeway entrance ramp, which reduces to one 

lane before the freeway merge.  The dispatch pattern for this dual-lane approach allows 

the first vehicle in one lane to go, followed by the first vehicle from the next lane.  

Because a vehicle from one lane can be released while a vehicle in the other lane is still 

coming to a stop at the meter, this approach can sustain about 90% more capacity than a 

single lane approach [2]. 
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2.2.8 Signing  

Signing for ramp metering systems should be done such that users will be able to 

quickly and easily identify how the system works and when it is on.  The FHWA’s 

Manual on Uniform Traffic Control Devices requires that only 6 standards be followed 

when implementing ramp metering systems, which are listed below as shown in Section 

4I.02 and 4I.03 [17]: 

 Ramp control signals shall meet all of the standard design specifications for traffic 

control signals, except as otherwise provided in this Section. 

 The signal face for freeway entrance ramp control signals shall be either a two-

section signal face containing red and green signal indications or a three-section 

signal face containing red, yellow, and green signal indications. 

 If only one lane is present on an entrance ramp or if more than one lane is present 

on an entrance ramp and the ramp control signals are operated such that green 

signal indications are always displayed simultaneously to all of the lanes on the 

ramp, then a minimum of two signal faces per ramp shall face entering traffic. 

 If more than one lane is present on an entrance ramp and the ramp control signals 

are operated such that green signal indications are not always displayed 

simultaneously to all of the lanes on the ramp, then one signal face shall be 

provided over the approximate center of each separately-controlled lane. 

 Ramp control signals shall be located and designed to minimize their viewing by 

mainline freeway traffic. 

 The RAMP METERED WHEN FLASHING sign shall be supplemented with a 

warning beacon (see Section 4L.03) that flashes when the ramp control signal is 

in operation. 
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2.2.9 Geometric Requirements 

The installation of a ramp meter signal on an entrance ramp should only be 

attempted if the location meets certain geometric requirements.  In their Roadway Design 

Manual, the Texas Department of Transportation (TxDOT) provides requirements for 

minimum ramp length [2].   

First, there must be sufficient stopping distance from the upstream intersection to 

the back of the queue.  This point coincides with location of a queue detector.  TxDOT’s 

design criteria suggests that for a 35 mph design speed, no less than 240 ft. would be 

desired as the stopping distance.  This value was calculated using the American 

Association of State Highway and Transportation Official’s (AASHTO) stopping sight 

distance equation [18]. 

Additionally, there must be sufficient storage space on the ramp itself for vehicles 

queuing to get on the freeway.  This storage space is between the queue detector and the 

meter itself.  For a single lane meter, the required storage distance in feet is: 

                                           

Where L is the required storage distance in feet, and V is the expected peak-hour 

demand in vehicles per hour.   

Finally, there must also be enough space provided to allow vehicles to accelerate 

comfortably from a stop to a safe merging speed by the time they reach the freeway 

merge point.  The AASHTO values for this distance based on merging speed and ramp 

grade are shown in Table 2.2 below.  
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2.3 Signal Timing 

 When adjustments are being made to existing signal timings, certain 

justifications must be made and certain objectives must be targeted.  Because driver 

behavior is such an integral part of traffic engineering, there is never one correct optimal 

approach for timing an intersection.  Typically, however, certain principals are always 

followed.  One, the total number of phases should be minimized.  This is to reduce the 

total amount of lost time, or the time that no vehicles are being processed through an 

intersection. The more often a phase changes, the more clearance intervals there will have 

to be, and the more lost time that will be incurred.  Additionally, the analyst should 

always seek to maximize the amount of movements that can be served per phase, if 

possible.  The fewer approaches that are stopped at an intersection, the fewer the vehicles 

that will be experiencing stopped delay.  In general, signal timing approaches are 

designed to minimize the amount of control delay inflicted upon drivers.   

 

 

Table 2.2 - Required Distance between Meter and Freeway Merge Point (ft) 

Merging Speed 

(mph) 

Ramp Grade (%) 

-3 0 3 

37 295 367 492 

43 417 518 682 

50 591 748 1027 

56 814 1060 1529 

62 1086 1450 2182 
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2.3.1 Webster’s Optimal Cycle Length 

One of the more popular signal timing approaches was developed by F.V. 

Webster in 1958.  He sought to create a timing scheme in which average control delays 

could be minimized [19].  In this, he developed one of the first widely used, accurate 

measures for control delay.  His estimates were based on quantifying the lost time caused 

by the starting-up of vehicles in a queue, and the slowing of vehicles as the yellow 

indication is displayed.  These variances in flow contribute to control delay, in addition to 

the stopped delay incurred during the red interval.  A demonstration of these delays can 

be seen in Figure 2.6 below. 

 

Figure 2.6 - Variation in Queue Discharge Rate During Phase Interval in Saturated 

Conditions 

In addition to quantifying the lost times, this approach allows us to quantify the 

effective green time per phase.  Based on these principals, Webster was able to estimate 
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average delay through theoretical assumptions and computer simulations, which is shown 

in the following equation:   
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Where d is the average delay per vehicle for this particular approach in seconds, C 

is the cycle length in seconds, g is the effective green time in seconds, x is the degree of 

saturation (this is the ratio of actual flow to maximum possible flow), and q is the  arrival 

rate in vehicles per second. 

The first two terms are purely theoretical.  The first term quantifies delay based 

on a period of uniform arrivals into the intersection.  The second term allows for 

stochastic variability during periods where a Poisson arrival pattern and a constant 

processing rate through the intersection can be assumed. The final term is empirically 

derived from the simulation results.  Its inclusion makes the model fit the observed 

results.  This final term makes up only about 10% of the total delay. 

From this equation, a relationship between delay and cycle length can be deduced.  

An approximate representation of this relationship is shown in Figure 2.7 below.  It can 

easily be seen that there is a certain value for cycle length where the total delay is 

minimized. 
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Figure 2.7 - Approximate Relationship between Delay and Cycle Length 

This value for optimal cycle length can be found by differentiating the delay 

equation with respect to cycle length and setting it to equal zero.  Webster published an 

approximated value of this result, citing the true solution as too complicated for practical 

applications.  Instead, he developed an approximation for optimal cycle length, which is:  

     
      

  ∑(
    
  
)
 

Where Co is the optimal cycle length in seconds, L is the sum of lost time for all 

phases in seconds (typically assumed to be the sum of all red and yellow intervals), CLVi 

is the critical lane volume for approach i, and si is the saturation flow for approach i 

(typically 1800 vphpl).  The critical lane flow is the flow of the lane with the highest 

volumes for that phase, accounting for left and right turn equivalencies.    
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Once the total cycle length is calculated, phase lengths can be calculated based on 

the relative critical lane volumes, as shown in the following equation: 
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Where gi is the green time for phase i, yi is the yellow time for phase i, and ri is 

the red time for phase i. This relationship basically states that the green time for a cycle 

should be divided amongst a cycle based on the relative volumes for each phase. 

2.3.2 Timing Strategies for Diamond Interchanges 

Diamond interchanges present a unique signal timing situation.  Because of the 

existence of frontage roads, Texas utilizes a slightly different control scheme for diamond 

interchanges than other jurisdictions.  The phasing plan is dictated by the geometric 

allowances of the intersection, which in turn is dictated by the land use pattern adjacent to 

the interchange.  The key distinction between the different classificational functions of 

diamond interchanges is the spacing between the two intersections.  These classifications 

are as follows: 

 Conventional Diamond – Intersection spacing is greater than 800 ft.  

These interchanges are most commonly found in rural areas and are 

typically stop sign controlled. 

 Compressed Diamond – Interchange spacing is between 400 and 800 ft.  

These interchanges are commonly found in suburban areas, and are 
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typically signal controlled.  The two intersections do not have to use an 

interconnected signal system. 

 Tight Diamond – Interchange spacing is less than 400 ft.  These 

intersections are typically found in urban areas, and will be signal 

controlled.  Because of the close proximity of the two interchanges, it is 

practically required that they be designed as one system. 

Researchers at the Texas Transportation Institute summarized guidelines that are 

used for timing such intersections in Texas [20].  Basically, for compressed and tight 

diamonds, there are two different control strategies that are used, the Texas Three-Phase 

and the Texas Four-Phase Control Strategies. The Three-Phase Strategy is best used 

when there is sufficient storage between the two intersections, typically a compressed 

diamond.  This strategy does not seek to ensure that the space between intersections will 

be cleared at the end of each phase.  A diagram of the Texas Three-Phase Control 

Strategy is shown in Figure 2.8 below.    
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Figure 2.8 - Texas Three-Phase Control Strategy 

When the intersection spacing is tight and there is little to no storage space in the 

area between the two intersections, the phasing pattern should be arranged so that this 

space will be cleared at the end of each phase.  This is where the Texas Four-Phase 

Strategy comes in.  It utilizes a split-phasing pattern, with overlaps between frontage road 

and arterial phases to prevent excess lost time.  The control diagram for this strategy is 

shown below in Figure 2.9. 
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Figure 2.9 - Texas Four-Phase Control Strategy 

Also, a technique to calculate phase splits is presented.  The National Electrical 

Manufacturers Association (NEMA) phase numbering system for a diamond interchange 

is shown in Figure 2.10 below. 

 

Figure 2.10 - NEMA Phase Numbering 
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The first step in calculating the phase splits is calculating the overlap. The overlap 

calculation is as follows: 

          

Where Φ is the overlap time, ΦLR is the travel time from the left intersection to the 

right intersection minus two seconds, and ΦRL is the travel time from the right 

intersection to the left intersection minus two seconds.  The following table, Table 2.3, is 

provided to assist in the determination of travel times between intersections. 

 

Once the overlap time has been determined, and a cycle length has been pre-

determined, the phase splits using the Texas Four-Phase Strategy can be calculated using 

the following equation: 

   
  

           
(      )                        

Where, ϕi equals the phase time in seconds for phase i, yi is the CLV to saturation 

flow ratio for phase i, C is the cycle length in seconds, and l is the lost time per phase, in 

seconds. 

Table 2.3 - Appropriate Travel Times Between Intersections 

Design 

Speed 

(mph) 

Link Distance (feet) 

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 

20 5 7 9 10 12 14 16 17 19 21 22 24 26 28 29 

25 5 7 8 9 11 12 13 15 16 18 19 20 22 23 24 

30 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22 

35 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

40 5 7 8 9 10 11 12 13 14 14 15 16 17 18 19 

45 5 7 8 9 10 11 12 13 14 14 15 16 17 17 18 
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Then the odd numbered phases can be calculated as follows: 

           

           

Once the phase durations have been calculated, the lost time per phase must be 

subtracted to get the green time per phase.  This approach will give the recommended 

phase intervals for the interchange.  
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Chapter 3: Methodology 

3.1 Intersection Ramp Metering System Design 

The intent of this research is to design a system that can be implemented with 

little to no additional infrastructure requirements.  This system would facilitate a 

modified ALINEA ramp metering process, using only existing traffic control signals. 

Figure 3.1 below shows the interchange layout as well as the required detector locations 

and the existing phasing sequence for the metered intersection, which is the one shown 

on the right side of the image. 

 

Figure 3.1 - Intersection System Design and Phase Plan 
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The interchange analyzed in this research is classified as a tight diamond 

interchange, because the intersection spacing is about 340 ft.  Due to this classification, it 

can be seen above that the intersection is controlled with a modified Texas Four-Phase 

Control Strategy.  This phasing plan is modified because the arterial does not continue 

beyond the right side of the diamond in the above diagram.  Because of this, there is no 

westbound approach, and no need for what was Phase 2 in the conventional Texas Four-

Phase Strategy. 

In this particular application, although the ALINEA algorithm does not require a 

detector at the entrance ramp (or in this case Detector a at the intersection approach), the 

model code used requires detection of a vehicle for the metering system to be activated.  

That is the purpose of Detector a above.  The mainline detector, Detector m, is required 

for any ALINEA application, and should be located at some point downstream of the 

merge point. 

The IRM algorithm implements metered control during a particular display in the 

phasing sequence.  The metered movements are depicted by the orange arrows in Figure 

3.1 above. All normal movements are depicted by blue arrows. In this particular situation, 

because measured volumes for the northbound through movement were considerably 

low, this movement is not metered.  However, for similar intersections, this movement 

could also be metered if the volumes warrant it. The proposed phasing sequence will 

follow the same pattern as the existing sequence, which, shown in the diagram above, is 

the Texas Four-Phase Strategy.  
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3.2 The Intersection ALINEA Algorithm  

The ALINEA algorithm can be modified to account for multiple signal heads 

using the same downstream detector data, and the inclusion of a maximum and minimum 

rate.  The system is implemented using the following control logic: 

  ( )  {
                           

   (   )    [             ( )]                       
  

Where r1 (t) is the current ramp metering rate, OCCm is the measured occupancy 

of the downstream detector, r1 (t-1) is the metering rate during the previous interval, Kr 

is the regulatory parameter which is set at 70 vehicles per hour, OCCm,des is the desired 

mainline occupancy, and OCCm (t) is the current measured mainline occupancy.  The 

metering rate is further bound by the predetermined maximum and minimum metering 

rates. 

The signal control logic converts the ramp metering rate into a signal display.  It 

does this by calculating the red interval and cycle length for each interval.  Since the 

green interval is fixed in our approach, the cycle length will always be the sum of the 

fixed green interval and the calculated red interval. To determine the red time in the ramp 

metering cycle, Tr for the ramp metered approach, the control logic utilizes the following 

equation: 
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Where n is the number of lanes, C is the cycle length, g is the intersection green 

time for the metered approach, and TG is the predetermined green time for the IRM 

signal. This formula dictates the rate at which vehicles are dispatched to the ramp.  At the 
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same time, it could also be set to ensure that queues for the onramp will not back up and 

cause an adverse effect on traffic not wishing to access the freeway.  If the occupancy of 

a detector placed at the point where queues should not stretch beyond is greater than the 

determined threshold, it can be assumed that the queues are backing up into the adjacent 

intersection.  If the queue reaches this length, then the phase 1 metering rate could be 

increased to its maximum value, and the traffic is dispatched to the ramp at that rate until 

the detector occupancy is measured to be lower than the maximum value.  While this 

process, known as “ramp flushing”, will lessen the effectiveness of our ramp metering 

procedure, it is occasionally a necessary element of the system design.  It is not feasible 

to imagine an implementation of this system where onramp queues that are blocking 

other movements will be acceptable.  Because of this, the availability of storage space at 

the intersection is an important parameter in determining the success of the IRM system.  

While this particular application had plenty of storage space for onramp vehicles, a queue 

flushing scenario is included in the simulation. 
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Chapter 4 Model Implementation, Calibration, and Validation 

A base-case model was created first, and it was calibrated to best resemble the 

conditions experienced during the data collection period.  The measured volume inputs 

were put in, incremented into 5 minute intervals.  The measured routing decisions were 

put in as well, also incremented into 5 minute intervals.  The routing decisions were 

entered as a proportion of all approaching vehicles selection a certain route.  These 

routing proportions are considered static and do not change throughout any scenario in 

this research. The car following behavior of vehicles in the model as well as desired 

speed decisions were tweaked until the model most accurately displayed what was 

observed in the field. The model was validated when the bottlenecking caused by the 

platooning vehicles that enter the weaving section from the Far West onramp could be 

accurately replicated. For the metered models, the ramp metering control was overlapped 

on top of the existing pre-timed signal control.  The metering logic was introduced using 

the VISSIM Vehicle Actuated Programing (VAP).  The VAP interprets the coded control 

logic and translates them into the simulated signal control. 

4.1 Performance Measures of Freeway Facilities 

The success of the IRM system will be based upon the changes it causes in certain 

freeway performance measures.  These measures are the same as those that are 

commonly used when evaluating freeway operations. 

 

 



41 

 

4.1.1 Flow, Speed, Throughput, and Travel Times 

Network-wide values of delays, throughputs, speeds, and travel times will be 

averaged and reported.  The analyst can use the results of these values to estimate the 

initial success of the system.  However, before a system can be deemed a success, it must 

be verified that certain other conditions are met as well. 

 In addition to studying the effects on the whole network, individual vehicle paths 

should be examined as well.  Average travel time (in seconds) and total throughput (in 

number of vehicles) for 4 separate paths in the network will be collected. The paths are: 

 Freeway – These are vehicles that exclusively travel along the freeway 

segment throughout their period in the network 

 Southbound Frontage Road – these are the vehicles that enter from the 

north of the network, and continue through the interchange to the 

southbound frontage road 

 Far West Offramp – these are the vehicles that exit at Far West Blvd, and 

continue westbound on that road. 

 Far West Onramp – these are the vehicles that enter the network heading 

eastbound on Far West Blvd, and continue onto the northbound freeway.  

These vehicles will be metered during the IRM implementation 

Also, values for average flow (in vehicles per hour per lane) and average speed 

(in miles per hour) will be measured for those vehicles that are traveling through the 

weaving segment of the freeway in the network.  These values are aggregated into 5 

minute intervals, and the average across that interval is the value reported.  Typically, an 
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analyst would want to see values of these two measures as high as possible, but of equal 

or greater importance is the amount of variation within these values.  A good system will 

not only produce high flows and speeds, but also relatively constant flows and speeds 

throughout the simulation period.  This lack of variation leads to an increase in travel 

time reliability. 

4.1.2 Travel Time Reliability 

Average speed and travel times are a good measure of evaluating freeway 

performance, but they do not tell the whole story.  Because of the variations in individual 

travel times over a segment, each driver does not experience the average travel time.  In 

these instances, driver perception is often as important as or more important than the 

average values.  One of the simplest measures of travel time reliability is the 95
th

 

Percentile travel time.  This measure will give an indication of how bad travel delay will 

be on the heaviest travel days.  This measure is also easily understood by travelers, and 

can be used on traveler information systems. 

Another good way to quantify the effects of variability is to use travel time 

reliability indices [21].  These indices give a representation of the variation in travel 

times.  Two of the most commonly used travel time reliability indices are planning time 

index and the buffer index.  The buffer index (B.I.) is a measure of the amount of extra 

time, or buffer time, that most travelers will allow themselves to ensure on-time arrivals.  

The extra time accounts for any unanticipated delay.  The B.I. is reported as a percentage 

of the average travel time that should be added to the trip to account for unexpected 

delay.  It is calculated as follows: 
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The planning time index (P.T.I.) is a measure of the total travel time that should 

be planned when a buffer time is added in.  The key distinction between the P.T.I. and the 

B.I. is that the P.T.I. quantifies both expected and unexpected delay, while the B.I. only 

quantifies unexpected delay. The P.T.I is a comparison of the free-flow travel time to the 

near worse-case travel time.  It is reported as amount of the free-flow time that should be 

planned for a high-priority trip, like an airline departure or a medical appointment [6]. 

For example, if a trip is 30 minutes during free-flow conditions, a P.T.I of 1.5 means that 

a traveler would need to allot 45 minutes for the trip (1.5 x 30 minutes). The P.T.I is 

calculated as: 
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4.2 Model Implementation  

For the IRM implementation, the VAP used was developed by researchers at the 

Texas Transportation Institute for the purpose of simulating several different types of 

metering algorithms in VISSIM [3].  This particular code has several parameters that can 

be adjusted by the modeler in order to optimize the performance of the system.  In the 

IRM implementations, the VAP parameters are optimized so that total network delay 

would be minimized and system throughput would be maximized in each scenario. In this 

control logic, the ALINEA metering rate equation could be bound by both a minimum 

and maximum allowable rate. Furthermore, a mainline occupancy threshold could be set, 

which turns on the metering system only when that threshold is reached. 
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Chapter 5 Experimental Design 

5.1 Data Collection 

In this study, a location that frequently experiences bottlenecks due to an onramp 

and subsequent weaving segment is analyzed. A VISSIM model was calibrated to 

replicate the actual conditions on Loop 1 northbound at the interchange of Far West 

Boulevard in Austin, Texas, for a typical afternoon peak period.  The P.M. peak is 

typically the busiest time of day for this particular section of roadway. The VISSIM 

network was created to represent approximately 1 mile of the NB mainlines, including a 

weaving segment between the Far West Blvd. onramp and the Anderson Lane offramp.  

The two surface street intersections at Far West Blvd. and both the NB and SB frontage 

roads were also included.  This network is shown in Figure 5.1 below. 
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Figure 5.1 Analysis Area 

Traffic counts taken from a one and one half hour video of the July 10, 2013 p.m. 

peak-hour traffic at the site was used to calibrate the base model.  In addition to traffic 

volumes, signal timings and routing decisions were also collected from the video.  The 

collected data was summarized into 16 five-minute intervals for the simulation.  The two 

major intersections each were filmed independently.  Additionally, another camera was 

fixed on the freeway mainlines downstream of the intersection, just before the merge 

point from the Far West Onramp.  Mainline counts and the Anderson Lane exit counts 

were taken from this video. 
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The cameras used in the data collection were placed on tripods on the bridge 

between the two intersections.  Two cameras were faced towards each intersection, and 

the other was pointed towards the downstream end of the freeway, as shown in Figure 5.2 

below. 

 

Figure 5.2 – Data Collection Equipment 

Figures 5.3, 5.4, and 5.5 show the locations of the cameras on the bridge, as well 

as the locations of the camera operators.  The cameras depicted in green were aimed at 

the intersections, and the cameras depicted in red were aimed at the freeway. 

 

Figure 5.3 – Aerial of Data Collection Location 
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Figure 5.4 – View of Intersection 1 

 

Figure 5.5 – View of Intersection 2 

The camera aimed at the freeway was positioned such that volume counts could 

be made before the merge point from the Far West onramp, and so that vehicles exiting to 

Anderson Lane could be counted as well.  A screenshot of the video produced with this 

camera is shown in Figure 5.6 below. 
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Figure 5.6 - View From Bridge 

By watching a playback of the videos, a counting procedure is done using 

software that registers each input and the time on the video that it occurred.  For instance, 

while watching the playback of the video, when a northbound left is observed, the analyst 

would push 1 on a keyboard, when a northbound through would occur, the analyst would 

push 2 on the keyboard.  The traffic counting software exports a spreadsheet that registers 

the number pushed for each count and the time on the video that it occurred.  From this, 

volume counts can be compiled. The data compiled was summarized into 5 minute 

intervals.  Figure 5.7 below shows the peak interchange hourly counts that were 

collected, as well as the peak 15 minute counts within that hour. 
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Figure 5.7 - Measured Volumes 

From these peak hourly and peak 15 minute volumes, the peak hour factor (PHF) 

for the intersection traffic can be computed.  The PHF is a representation of the variation 

in volumes over the course of the peak hour.  This metric has a range of 0.25 to 1, where 
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lower values represent more variation in volumes and higher values represent less 

variation in volumes.  The PHF for this interchange is computed as follows: 

    
∑[                                ]

  (∑[                                        ])
 

    

  (   )
     

Because the PHF is so close to 1, it can be assumed that volumes do not show 

very much variation throughout the peak hour. 

Also from the video, average flows over various time intervals could be 

determined.  In this research, 5-minute intervals were used for the simulation evaluation.  

Observed flows from the videos for critical areas are shown in Figure 5.8 below. 

 

Figure 5.8 - Observed Traffic Flows 

From the same data, the phasing sequence, cycle length, and phase intervals can 

be calculated.  Since this intersection is pre-timed, most intervals remained constant 

throughout the duration of the data collection effort.  The only changes to these intervals 
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were caused by a few pedestrian actuations.  However, it was determined that since 

pedestrian volumes were so low, it would not be necessary to consider them in this 

experiment.  The measured signal timings and phasing is shown in Figure 5.9 below.  

 

Figure 5.9 - Observed Interchange Timings 

The above represents the modified Texas Four-Phase strategy.  Like many other 

intersections in Austin, this one features a relatively long cycle length, at 130 seconds. 
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5.2 Evaluation Scenarios 

In evaluating the proposed system in the research, attention will be separately 

placed on the freeway conditions and the surface street intersection conditions.  Each of 

the following scenarios will be evaluated by their effects on both the freeway and the 

surface streets. To fully understand the potential benefits of the IRM system, several 

different scenarios will be evaluated in micro-simulation. Each evaluation alternative is 

listed below: 

 Base Case Alternative – this is the do-nothing case 

 Scenario X – in this alternative, the onramp will be closed so that the best 

possible benefit to the freeway can be determined.  

 Scenario 1 – implementing IRM without additional timing or phasing 

adjustments   

 Scenario 2 – implementing IRM with several timing adjustments 

 Scenario 3 – Base Case with the same timing/phasing plan as Alternative 2  

 Additionally, Queue Clearance scenarios will be analyzed with the final 

settings for Scenario 1 and 3  

Each of these scenarios will be modeled in the calibrated VISSIM network, and 

certain output data will be compared.  In each scenario, the IRM signal will be controlled 

by the Intersection ALINEA algorithm, which is laid down in the VAP code. 
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Chapter 6: Result Analysis 

6.1 Model Calibration Results 

An important aspect of model validation in this particular experiment is ensuring 

that the mainline flow breakdowns caused by the bottlenecking behavior at the weaving 

section that were observed in the field could be replicated in the model.  Driver behavior 

parameters were adjusted until the model best mimicked the observed conditions.  Figure 

6.1 below shows the comparison of the observed flows to the base case modeled flows, in 

vehicles per hour per lane (vphpl). 

 

Figure 6.1 - Observed Freeway Flows vs. Modeled Freeway Flows 

Although not technically a continuous function, the graph has smoothed lines to 

help visualize the trends in vehicle flow.  The modeled location is about 100 ft. 

downstream of the freeway merge point.  This point was selected because this is the same 

point on the freeway where the ALINEA algorithm seeks to control the occupancy. This 
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location is so close to the merge point that differences in the backward shockwave speed 

between the field data and modeled results could be minimized.   

Crucially, our model is able to replicate the flow breakdowns with relatively high 

accuracy.  Each flow curve shows three major breakdowns.  The first happens between 

about 600 seconds and 1200 seconds (15 to 20 minutes) in each, and with similar (100-

200 vphpl) quantities.   The second major breakdown occurs at 2400 s (40 minutes) in the 

field data, and about 5 minutes sooner in the model.  The final major breakdown occurs at 

3600s (60 minutes) in the field, and about 10 minutes earlier in the model.  Each flow 

decline lasts about 10 minutes in the model, and 15 minutes in the field results.  In 

general, flows recover in the model a little sooner than the field data shows.  The speed at 

which the flows recover is also quite similar in each scenario, with flows increasing up to 

300 vphpl in a 5 minute period. 

6.2 IRM System Parameter Optimization Results 

In preliminary research for this project, it was found that eliminating the 

maximum rate (by setting it at an unattainable number, 26,000 vph) and setting the 

occupancy threshold only 5% below the optimum occupancy was the best approach.  

Neither of these factors were very sensitive, and the model would produce similar results 

for varying values for each.  The minimum metering rate was very sensitive towards the 

overall system performance.  At very high occupancy levels, the algorithm will nearly 

stop the metered traffic without setting a reasonable minimum rate.  This would cause 

extreme backups on the surface street intersections and greatly degrade system 
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performance.  In the preliminary research, it was found that setting this rate at 900 vph 

would both keep ramp queues in check, and still not hamper the freeway performance.  

Historically, the optimal occupancy is the most important adjustable parameter in 

the ALINEA equation.  Previous research found that the optimal range for the values is 

from 18% to 31%.  In this particular instance, an optimal occupancy level of 30% was 

selected as a starting point for the evaluations.  The next important adjustable parameter 

was the green interval.  This essentially determines the number of vehicles that can 

proceed through each cycle.  It was determined in this research that a green interval of 2.0 

seconds would be best.  This allows 2-3 vehicles per green.  When any more vehicles 

than that were dispatched, they would ultimately start forming a queue to enter the 

mainlines at the downstream end of the ramp.  This would effectively eliminate the 

benefit of the metering system. 

The final adjustable constant was the ALINEA constant itself.  Previous research 

has found that using a value of 70 vph was ideal, and that this value was not immensely 

sensitive in the model.  This value was adjusted several times, but it was never 

determined that a value other than 70 vph would ever improve the model.  The evaluation 

timestep can also be adjusted.  In an ALINEA system, it is important that dispatched 

vehicles are able to reach the downstream detector within the timestep.  It was 

determined that 60 seconds is the appropriate timestep for this model. Table 6.1 below 

lists all adjustable parameters and their initial evaluation values. 
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In each evaluation scenario that involves the IRM system, the above values are 

used as a starting point for the evaluation.  Since there is little to no previous research on 

how to optimize the ALINEA control parameters to meet system objectives, a trial and 

error approach is used.  In each simulation run, a single parameter will be slightly 

adjusted, and the results evaluated.  This process will be continued until it is believed that 

the best possible results are achieved.  A flow chart is kept of the VAP adjustments and 

the corresponding network and freeway performance results for each evaluation scenario 

involving IRM.  The flow charts can be found in Appendix A.  The final optimal settings 

for each scenario are included in the evaluation scenario section below. 

The locations of the mainline detectors were also moved around throughout 

several simulations and the results were compared.  It was found that the optimal location 

of these detectors is the point where the weaving movements can feasibly begin.  This 

correlated with the point just after where the solid white line becomes a broken white line 

on the parallel acceleration lane. 

 

 

Table 6.1 - Initial VAP Parameter Settings 

Parameter Initial Setting 

Kr 70 vph 

Desired Mainline Occupancy 0.30 

Mainline Occupancy Threshold 0.25 

Maximum Rate 26,000 vph 

Minimum Rate 900 vph 

Green Interval 2.0 sec 
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6.3 Scenario Implementation and Optimization Results 

Each evaluation scenario was modeled based off of the original calibrated 

VISSIM network.  Each scenario was developed and evaluated independently of the 

others. 

6.3.1 Base Case Alternative 

In this case, the initial calibrated model is simulated without any adjustments to 

signal timing, volume inputs, routing decisions, or driver behavior parameters.  This is 

the scenario that best replicates what is experienced in the field. The results from this 

analysis will serve as the benchmark which all other scenarios will be measured against.  

Each IRM model is calibrated so that it should achieve the best possible results over the 

Base Case Scenario. 

6.3.2 Scenario X 

In this scenario, the entrance ramp from Far West Blvd is deleted from the 

network before the simulation is run.  In this case, vehicles from the intersection are not 

able to reach the freeway.  This is done to evaluate the “best possible” scenario for the 

freeway.  Without the interference from merging traffic, the bottlenecks should be 

reduced and the exiting movements to Anderson Ln. should be achieved easier.  Network 

results from this scenario will not be collected.  Rather, only freeway performance results 

will be collected and included in the analysis.  These results will show us the absolute 

ceiling for freeway improvements through IRM. 

 



59 

 

6.3.3 Scenario 1 

In this case, the IRM system will be added to the existing network and no 

additional signal timing alterations will be made. The final optimal parameter settings are 

shown in Table 6.2 below. The flow chart showing parameter adjustments and results is 

in the Appendix. 

6.3.4 Scenario 2 

In this case, IRM is included.  Additionally, the interchange will be retimed to see 

if any additional benefits can be gained. In determining cycle length it becomes important 

to specify the goals the evaluator wants to achieve.  In general, the approach that is taken 

is a delay minimizing approach. When implementing the IRM approach, it must be 

determined which movements through the intersections will be impacted, and by how 

much.  Naturally, the ramp bound traffic will incur increased delay with such a system, 

but it must be determined how much extra delay is too much.  Also, how much the non-

ramp bound vehicles are punished by the IRM system must be determined.  In adjusting 

the timing for this particular approach, any negative effects to the non-ramp bound 

vehicles due to the IRM are sought to be eliminated.  While the additional incurred delay 

to the ramp bound traffic is attempted to be checked by modifications to the ramp 

Table 6.2 - Optimal VAP Parameter Settings – Scenario 1 

Parameter Optimal Setting 

Kr 70 vph 

Desired Mainline Occupancy 0.30 

Mainline Occupancy Threshold 0.25 

Maximum Rate 26,000 vph 

Minimum Rate 850 vph 

Green Interval 1.5 sec 
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metering rate. The optimal cycle length used in this scenario is based on Webster’s delay 

minimizing approach.  The calculations are shown as follows: 
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Once the cycle length was calculated, the desired phase splits should be 

determined. Using the phase split calculations for the Texas Four-Phase diamond 

interchange timing strategy, the phase lengths were calculated as shown below: 

ϕ2 = 39 s 

ϕ4 = 47 s 

ϕ6 = 5 s 

ϕ8 = 25 s 

 

Since there is no phase 6, the 5 seconds allotted to that phase were redistributed to 

the other phases based on the relative amount of green time they were already assigned.  

The corrected phase lengths are shown below. 

 

ϕ2 = 41 s 

ϕ4 = 49 s 

ϕ6 = 0 s 

ϕ8 = 26 s 

 

When implemented into the signal control, these timings will look as they are 

represented in Figure 6.2 below. 
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Figure 6.2 - Interchange Timings for Scenario 2 

The optimal VAP settings are shown in Table 6.3 below.  Ultimately, most of the 

optimal parameter settings found in Scenario 1 were also optimal in Scenario 2. 

 

 

 

Table 6.3 - Optimal VAP Parameter Settings – Scenario 2 

Parameter Optimal Setting 

Kr 70 vph 

Desired Mainline Occupancy 0.30 

Mainline Occupancy Threshold 0.25 

Maximum Rate 26,000 vph 

Minimum Rate 900 vph 

Green Interval 2.0 sec 
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6.3.5 Scenario 3 

In this scenario, the intersection timing adjustments made in Scenario 2 will be 

kept, but the IRM system will be shut off.  This is to determine if the network-wide 

changes measured in Scenario 2 should be attributed to the changes in signal timing, or to 

the IRM system. 

6.3.6 Queue Clearance Scenarios 

The final model settings for Scenarios 1 and 3 will also be evaluated with queue 

flushing enabled.  These results will be compared to the Base Case and Scenario 1 and 3.  

To implement the queue flushing in the model, an additional detector must be installed.  

When the measured occupancy of this detector reaches 0.90, it will trigger the meter to 

turn off, until the occupancy is back within the allowable limits.  The detector location in 

this scenario was placed so that queues backing up on Far West Blvd. would not block 

the upstream intersections and driveways.  This location corresponded with a point about 

400 ft. from the Southbound Frontage Road intersection, as shown in Figure 6.3. 

 

Figure 6.3 - Queue Clearance Detector Placement 
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This placement still allows for a significant amount of queuing, with 730 ft. of storage 

space between this position and the meter.  Assuming average spacing for vehicles in a 

queue to be 20 ft., this would allow about 73 vehicles to queue. 

6.4 Modeled Freeway Flow and Speed Characteristics 

One of the best ways of evaluating freeway performance is by measuring the 

volume flow rate and mainline speeds.  A good way to evaluate the effectiveness of any 

change to the system is to compare it with the results from the Base Case (assumed to be 

the worst feasible scenario) and the Ramp Closed (assumed to be the best possible 

scenario).  Figure 6.4 below shows the comparison between the Base Case and Ramp 

Closed freeway flows and speeds. 
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Figure 6.4 - Measured Avergage Freeway Flows and Speeds for Base Case and Scenario X 

The chart above practically shows the best and worst case scenarios for freeway 

conditions.  It can be seen that there is not much variation in flows between the two 

scenarios.  This is likely because of the interference in flow caused by exiting vehicles at 

Anderson Lane. For speeds, there seems to be a larger variation.  The ramp closed 

scenario allows for speeds on average of about 5 mph higher than the base case. Below, 

Figures 6.5, 6.6, and 6.7 show the measured freeway flows and speeds for each scenario.  

Scenarios 1, 2, and 3, are compared to the Base Case and the Ramp Closed Scenarios. 
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Figure 6.5 - Measured Average Freeway Flows and Speeds for Scenario 1 
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Figure 6.6 - Measured Average Freeway Flows and Speeds for Scenario 2 
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Figure 6.7 - Measured Average Freeway Flows and Speeds for Scenario 3 

Scenario 1 is the scenario that best replicates the ramp closed freeway conditions.  

During the first half of the simulation, Scenario 1 keeps the freeway flows practically at 

the ramp closed levels.  Toward the latter half of the simulation, the flow rate drops back 

to base case levels before ultimately spiking at the end.  It can be seen that not only does 

this scenario delay the onset of the flow breakdowns; the breakdowns also recover 

quicker than they do in the Base Case Scenario. Scenario 2 also delays the onset of flow 

breakdowns, but it does not do so as quickly or to the extent that was seen in Scenario 1.  

However, Scenario 2 has less variation amongst the flows over the entire simulation 
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period, and shows flow recovery occurring before it does in Scenario 1.  In both of these 

measures Scenario 2 outperforms Scenario 1. 

Scenario 3, by incorporating a shorter cycle length than the Base Case Scenario 

actually improves freeway flows without the use of a meter.  This is achieved by 

dispatching smaller platoons of vehicles more often rather than large platoons less often.  

Scenario 3 shows a similar average flow across the simulation period as the Base Case 

Scenario, but the variation in flows is greatly reduced. Both Scenario 1 and 3 appear to 

smooth the variation in flows throughout the simulation period.  It appears from the 

charts that both scenarios, particularly Scenario 1, bring the Base Case and Ramp Closed 

curves together. Even in cases where the overall flows were less than the Base Case, the 

slope of the flow curves are less.  This can have a significant impact on travel time 

reliability. 

It can be seen that the IRM scenarios not only increase freeway speeds, but they 

also reduce the variations in speed across the simulation period.  Scenario 2 in particular 

maintains nearly constant freeway speeds after the onset of congestion about ten minutes 

in.  Even Scenario 3 improves the average speed and lessens the variation, mostly 

because the shorter cycle length employed at the intersection more evenly distributes the 

large platoons dispatched from the interchange than the longer cycle length in the Base 

Case did.  It seems apparent that even in the absence of ramp metering, shortening 

upstream cycle lengths can improve freeway conditions. 

Based upon a review of the freeway impacts, it would be determined that Scenario 

1 is the preferred scenario.  But network-wide conditions must be considered as well. 
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Because of the needed balance between freeway and arterial performance, explained in 

more detail later, Scenario 2 is superior. 

6.5 Network Performance 

The metering system was analyzed based on the changes in delay, throughput, 

speed, and travel time for the entire system and for the freeway.  In general, ramp 

metering systems hope to improve the performance of the freeway while not hindering 

the performance of the surface streets.  Before and after values of system wide results are 

shown in Table 6.4 below. 

* - better or worse compared to Base Case 

It can be seen that purely in terms of network improvements, no scenario was 

more effective than Scenario 3, which merely adjusted intersection timings.  However, it 

is important to remember that the ramp metering scenarios are supposed to significantly 

Table 6.4 - System-wide Results (% change) 

 
Base 

Case 

Scenario 

X 
Scenario 1 Scenario 2 Scenario 3 

Average 

Delay  

(s) / veh 

161.6 N/A 
166.7 

(3%) 

155.1 

(-4%) 

150.2 

(-7%) 

Throughput  

(# vehicles) 
8420 N/A 

8241 

(-2%) 

8372 

(-1%) 

8565 

(2%) 

Average 

Speed 

(mph) 

12.5 N/A 
13.0 

(4%) 

13.3 

(6%) 

13.2 

(6%) 

Total 

Travel 

Time (hr) 

553.4 N/A 
545.3 

(-1%) 

528.1 

(-5%) 

531.8 

(-4%) 

Total 

Delay (hr) 
402.7 N/A 

400.2 

(-1%) 

380.8 

(-5%) 

379.3 

(-6%) 

Color Coding Scheme* 

More than 

25% worse 

5% to 25% 

worse 

2% to 4% 

worse 

1% worse 

to 1% 

better 

2% to 4% 

better 

5% to 25% 

better 

More than 

25% better 
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improve freeway performance, while having little to no improvement to the system as a 

whole.  The above results validate part of this statement.  While the adjustments of signal 

timing can lessen the negative effects of IRM (Scenario 2), implementing the system into 

the Base Case timing plan will slightly increase average delay and throughput, as shown 

in Scenario 1.  It was mentioned in previous sections that although Scenario 1 provided 

the best freeway improvements, it is not the preferred scenario because of the negative 

arterial impacts.  The above network-wide results show an indication of that.  Scenario 2 

is intended to be a “system optimal” solution, rather than a “freeway optimal” solution, 

and thus it provides system-wide improvements over Scenario 1. 

6.6 Freeway and Arterial Performance 

It is important to ensure that the improvements to the freeway are worth any 

negative changes in system-wide performance. As Table 6.5 below shows, the values of 

average travel time and total throughput for the mainline vehicles are dramatically 

improved when the intersection metering system is implemented, but some arterial 

movements can be negatively impacted. 
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* - better or worse compared to Base Case 

It can be seen from above, that while Scenario 1 shows tremendous improvements 

to the freeway, with a 25% decrease in average travel times and a 17% increase in 

throughput, its negative impacts to the southbound frontage road traffic, and the 

excessive onramp queue times may not make this a feasible scenario.  Scenario 2 was 

tweaked so that the two uninvolved paths (southbound frontage road and far west 

offramp), would not be negatively affected.  In the final calibration of this scenario, these 

Table 6.5 Freeway and Arterial Performance Results (% change) 

Freeway Performance 

Path  
Base 

Case 

Scenario 

X 
Scenario 1 Scenario 2 Scenario 3 

Freeway 

Avg. 

Travel 

Time (s) 
234.5 

125.0 

(-47%) 

176.5 

(-25%) 

201.1 

(-14%) 

232.5 

(-1%) 

Throughput 

(# vehicles) 
5019 

6371 

(27%) 

5873 

(17%) 

5530 

(10%) 

5044 

(0%) 

Arterial Performance 

Path  
Base 

Case 

Scenario 

X 
Scenario 1 Scenario 2 Scenario 3 

Southbound 

Frontage 

Road 

Avg. Travel 

Time (s) 
102.1 N/A 

336.7 

(230%) 

94.6 

(-7%) 

59.4 

(-42%) 

Throughput 

(# vehicles) 
268 N/A 

202 

(-25%) 

281 

(5%) 

311 

(16%) 

Far West 

Offramp 

Avg. Travel 

Time (s) 
104.0 N/A 

85.4 

(-18%) 

100.9 

(-3%) 

112.8 

(8%) 

Throughput 

(# vehicles) 
314 N/A 

361 

(15%) 

341 

(9%) 

314 

(0%) 

Metered 

Onramp 

Avg. Travel 

Time (s) 
343.8 N/A 

899.1 

(162%) 

642.4 

(87%) 

316.7 

(-8%) 

Throughput 

(# vehicles) 
911 N/A 

332 

(-64%) 

477 

(-48%) 

912 

(0%) 

Color Coding Scheme* 

More than 

25% worse 

5% to 25% 

worse 

2% to 4% 

worse 

1% worse 

to 1% 

better 

2% to 4% 

better 

5% to 25% 

better 

More than 

25% better 
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two paths actually show travel time improvements of 7% and 3%, and throughput 

improvements of 5% and 9%, respectively.  

In Scenario 1, the SB Frontage Road average travel time is increased because of 

vehicles queuing up in the left lane to get to the metered approach. Also, the Far West 

offramp average travel time is so improved because the freeway bottleneck is no longer 

backing up beyond the Far West offramp. 

A trade-off must be made between freeway performance and arterial performance, 

as it is difficult to implement a metering system that improves both.  The goal of this 

model is to produce average travel time improvements of around 15% for the freeway 

while keeping average travel time for the entire network the same.  Any increases in 

arterial travel times could be considered a necessary sacrifice to improve the freeway. 

However, as the results above show, these increases in travel times can be limited to the 

metered offramp.  The models were calibrated such that the non-metered movements 

would be affected minimally, while the metered movements would bear the burden of the 

increased delay and travel times, within an acceptable range.  Intuitively, the metered 

movements will always see an increase in travel times.  Here the travel times are 

significantly increased, which could be considered reasonable considering the 

improvements made to the freeway bottleneck.  The Scenario 2 timing scheme was 

designed so that the additional travel time for ramp bound vehicles would be kept below 

5 minutes. 
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6.7 Travel Time Reliability 

The travel time reliability measures mentioned previously were also calculated 

from the simulation results for the freeway segment.  The results for each scenario are 

shown in Table 6.6 below.  To calculate the P.T.I., free-flow travel time through the 

freeway was needed, which in this case is determined to be 51.6 seconds. 

* - better or worse compared to Base Case 

The significant effects of the IRM implementation are shown in the travel time 

reliability improvement.  Both scenarios showed significant improvements in both travel 

time reliability indices. These results confirm what was hypothesized before, that the 

lessening of flow and speed variations across the simulation period would improve the 

travel time reliability.  The buffer index of 88% for the Base Case shows that the time 

needed to travel is nearly double the free-flow travel time.  The two IRM scenarios bring 

the B.I. to 48% and 56%, this would be a savings of 10 – 12 minutes for a trip that takes 

Table 6.6 - Travel Time Reliability Results (% change) 

 
Base 

Case 
Scenario X Scenario 1 Scenario 2 Scenario 3 

Average travel 

time (s) 
583.4 

125.0 

(-47%) 

176.5 

(-25%) 

201.1 

(-14%) 

232.5 

(-1%) 

95
th
 Percentile 

Travel Time 

(s) 

440.2 
189.0 

(-57%) 

261.0 

(-41%) 

313.8 

(-29%) 

434.2 

(-1%) 

Buffer Index 88% 
51% 

(-42%) 

48% 

(-45%) 

56% 

(-36%) 

87% 

(-1%) 

Planning Time 

Index 
8.5 

3.7 

(-57%) 

5.1 

(-41%) 

6.1 

(-29%) 

8.4 

(-1%) 

Color Coding Scheme* 

More than 

25% worse 

5% to 25% 

worse 

2% to 4% 

worse 

1% worse 

to 1% 

better 

2% to 4% 

better 

5% to 25% 

better 

More than 

25% better 
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30 minutes under free-flow conditions.  The decreases in planning time index are even 

more pronounced.  The P.T.I. of 8.5 for the Base Case suggests that for a trip normally 

taking 30 minutes, travelers would need to allow themselves 4 hours and 15 minutes to be 

guaranteed an on time arrival. The IRM P.T.I.’s of 5.1 and 6.1 mean that a savings of 1 

hour and 12 minutes to 1 hour and 42 minutes can be achieved for the same trip.  Stated 

in these terms, the travel time reliability impacts seem very crucial. 

6.8 With Queue Clearance 

When queue flushing is permitted, the following network wide results are 

collected, as shown in Table 6.7. 

 
Base 

Case 
Scenario 1 

Scenario 1 

Queue Flush 
Scenario 2 

Scenario 2 

Queue Flush 

Average Delay  

(s) / veh 
161.6 

166.7 

(3%) 

167.4 

(4%) 

155.1 

(-4%) 

163.4 

(1%) 

Throughput  

(# vehicles) 
8420 

8241 

(-2%) 

8491 

(1%) 

8372 

(-1%) 

8513 

(1%) 

Average Speed 

(mph) 
12.5 

13.0 

(4%) 

12.2 

(-2%) 

13.3 

(6%) 

12.4 

(-1%) 

Total Travel 

Time (hr) 
553.4 

545.3 

(-1%) 

571.6 

(3%) 

528.1 

(-5%) 

561.9 

(2%) 

Total Delay 

(hr) 
402.7 

400.2 

(-1%) 

420.3 

(4%) 

380.8 

(-5%) 

410.5 

(2%) 

Color Coding Scheme* 

More than 

25% worse 

5% to 25% 

worse 

2% to 4% 

worse 

1% worse 

to 1% 

better 

2% to 4% 

better 

5% to 25% 

better 

More than 

25% better 

* - better or worse compared to Base Case 

It is interesting to note that in areas where the IRM did not improve over the Base 

Case, the queue clearance scenarios did not greatly degrade from the IRM scenarios.  

Table 6.7 – System-wide Impacts of Queue Flushing (% change) 
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However, queue clearance has eliminated all of the network wide gains as a result of the 

IRM.  Freeway travel time reliability results were also collected, as shown in Table 6.8. 

 

 
Base 

Case 
Scenario 1 

Scenario 1 

Queue Flush 
Scenario 2 

Scenario 2 

Queue Flush 

Average 

travel time (s) 
583.4 

176.5 

(-25%) 

227.0 

(-61%) 

201.1 

(-14%) 

230.1 

(-61%) 

95
th
 

Percentile 

Travel Time 

(s) 

440.2 
261.0 

(-41%) 

431.8 

(-2%) 

313.8 

(-29%) 

429.7 

(-2%) 

Buffer Index 88% 
48% 

(-45%) 

90% 

(2%) 

56% 

(-36%) 

87% 

(-1%) 

Planning 

Time Index 
8.5 

5.1 

(-41%) 

8.4 

(-1%) 

6.1 

(-29%) 

8.3 

(-2%) 

Color Coding Scheme* 

More than 

25% worse 

5% to 25% 

worse 

2% to 4% 

worse 

1% worse 

to 1% 

better 

2% to 4% 

better 

5% to 25% 

better 

More than 

25% better 

* - better or worse compared to Base Case 

It can be seen in the table above that nearly all of the improvements in the travel 

time reliability indexes gained in the IRM scenarios are practically eliminated in the 

queue flushing scenarios.  Anytime large platoons are allowed to be dispatched onto the 

freeway, travel time reliability will suffer.  This is extremely apparent in the case above.  

Table 6.8 – Travel Time Reliability Impacts of Queue Flushing (% change) 
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Chapter 7: Conclusion and Future Research 

7.1 Conclusion and Recommendations 

In conclusion, a new ramp metering strategy, intersection ramp metering, is 

introduced in this research.  This system is well suited to implement a ramp metering 

procedure where existing infrastructure and roadway geometries may not allow for a 

standard ramp metering system.  This system is shown to improve both freeway travel 

times and throughput, while not having an overly detrimental effect on the surrounding 

arterial network.  This control system is implemented using the VISSIM VAP program 

on a calibrated model representing an actual freeway segment with recurring bottlenecks.  

The results show a decrease in freeway travel times by 14% and an increase in freeway 

throughput by 10%, while the overall network shows a decrease in travel time of 5% and 

a decrease in throughput of 1%. 

The major contributions of this study include the following: 

 Proposed the idea of intersection ramp metering to address the deployment 

issue of ramp metering on urban freeway with limited right of way and ramp 

geometry. 

 Developed optimization models and framework for adjusting system design 

parameters. 

 Conducted simulation studies to evaluate the mobility and reliability 

performance of the proposed system with the base case model calibrated with 

field traffic flow and signal timing data. 
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Based on the evaluation results, the following recommendations can be made 

regarding the deployment strategies of the proposed intersection ramp metering system. If 

considering the improvements made to the freeway only, Scenario 1, where the IRM 

system is implemented without any signal adjustments, is the best alternative. However, 

the negative impacts on the un-involved paths would likely eliminate this scenario from 

field implementation.  Scenario 2, where the IRM implementation also included 

adjustments to the intersection signal timing, was calibrated with these items in mind.  

The final results for Scenario 2 suggest that freeway improvements can be achieved, 

while concurrently the un-involved paths have improved conditions.  If this system were 

to be implemented in the field, this scenario would likely be the best scenario.  

7.2 Future Research Paths 

This research presents the most simplified application of IRM.  Future research 

should focus on better ways to integrate signal timing with the IRM operation, and the 

implementation of such a system on different geometric intersection alignments. The 

IRM system is designed to be able to be implemented in nearly any intersection upstream 

of a freeway entrance ramp.  This network would be tweaked in any of the following 

scenarios: 

7.2.1 With a 4-Legged intersection  

If there were a westbound leg into the metered intersection, as there typically is in 

the field the system can easily be adapted to accommodate the additional traffic.  If it is 

determined that the approach volumes destined for the freeway are significant, those 

movements could also be metered during their appropriate phases.  Consider the 
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following scenario when multiple movements are metered.  In this case, imagine the 

same intersection modeled previously, except it has a westbound approach with enough 

traffic turning on to the freeway to warrant metering.  In this case, the control logic would 

be based on the following: 

  ( )  {
                    

    (   )    [             ( )]                 
 

  ( )  {
                    

    (   )    [             ( )]                 
 

Where OCCa is the measured occupancy of detector “a”, OCCa,max is the 

predetermined maximum allowable occupancy on detector “a” (which is set to ensure that 

onramp queues do not affect other traffic movements), r1 (t) is the ramp metering rate 

during phase 1, r1,max is the maximum allowable ramp metering rate during phase 1, r1,2 

(t-1) is the metering rate during the previous interval (whether the measurement occurred 

during phase 1 or 2), OCCb is the measured occupancy of detector b, OCCb,max is the 

predetermined maximum allowable occupancy on detector b, and r2 (t) is the ramp 

metering rate during phase 2. 

Since each approach may require different regulating parameters, each metering 

signal would be guided by its own VAP logic in a simulation.  For instance, if the 

westbound approach does not have nearly the amount of storage as the eastbound 

approach, it may be necessary to include ramp flushing in the logic for the westbound 

traffic, as well as increasing the green interval and the minimum metering rate for this 

movement alone.  Because each approach and their regulatory parameters are 
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independent of the others, the entire system can be optimized based on the individual 

approaches. This system could similarly be further expanded to include intersections with 

three metered approaches. 

7.2.2 With a Typical Frontage Road 

The particular intersection modeled in this research did not include a true frontage 

road.  However, for a majority of the intersections in the state of Texas, the system would 

have to be implemented on a location that includes a frontage road.  In this scenario, one 

of the through lanes for the frontage road approach would have to be converted into a 

metered lane only.  Consider the example shown below in Figure 7.1 of the intersection 

of the Interstate 35 N frontage road with 12
th

 Street in downtown Austin. 

 

Figure 7.1 - Example Frontage Road Intersection Metering Layout 

Here the dashed lines represent the lanes that could potentially be metered.  

Complicating this scenario is the fact that the left turn lane for the NB approach would 
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still have to be operational, while at the same time many through vehicles will stay on the 

frontage road, so vehicles queued for the freeway would have vehicles moving on both 

sides of them.  These queues would have to be carefully managed so that they would not 

get so long that they would complicate the lane selection procedure for vehicles 

approaching the intersection.  It would likely be that the minimum metering rate for this 

approach would be higher than it would be in the other approaches.  Further studies will 

simulate intersections with this layout. 

7.2.3 With Ramp Gap Control 

Because most ramp metering systems are implemented just close enough to the 

freeway to allow for metered vehicles to accelerate to an appropriate speed and merge in 

with freeway traffic, these systems are able to effectively control the rate at which the 

metered vehicles arrive.  However, for an intersection ramp metering system, the 

metering occurs at the far upstream end of the ramp.  In this scenario, differences in 

driver behavior cause the rate at which vehicles are metered at the intersection to be 

slightly different than the rate at which they arrive at the freeway merge point.  In this 

scenario, it would be helpful to implement a form of gap control that ensures that the 

vehicles will not be platooning by the time they reach the merge point.  This could be 

carried out by a series of regulatory signs that tell motorists to leave a certain gap 

between them and the vehicle in front of them, such as one car length. An example of 

such a sign is shown in Figure 7.2 below. 
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WHEN 
FLASHING: 
YIELD GAP 
FOR RAMP 
VEHICLES

Gap Metered Section
 

Figure 7.2 - Gap Control Sign 

This concept would simply make the metering operation more effective, as it 

would improve the accuracy of the ramp metering rate. 

7.2.4 With Adaptive Cycle Length Calculations 

The effectiveness of IRM could be even further enhanced if adaptive traffic signal 

control functions were included in the control logic.  An ideal situation would be a traffic 

responsive calculation of cycle length and phasing splits.  This could be implemented 

based on Webster’s optimal cycle length equation.  Here, the optimal cycle length Co can 

be determined based on the revised Webster’s optimal cycle length equation. 

   
      

  ∑ (     )
 
      

      
 

Where L is the total lost time for all phases, S is the saturation flow rate (assumed 

to be 1800 vphpl), and Vp is the volume of the critical movement which is assumed to the 

volume of the metered approach, and rD is the current ramp metering rate within the 

allowable range. Here, there is a key difference in the calculation of the lost time since 

vehicles under ramp metering control need to start from a stop in every ramp metering 

cycle. The total lost time can be calculated as the following: 
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    ∑  

 

 

Where g is the green time assigned to the ramp metering approach, l0 is the start-

up lost time which is assumed to be two seconds per vehicle, and p indicates other minor 

phases. Combining the previous two equations we get: 

  
 

      
      

      (
    

      
  )    

Substituting L in and solving for C0, we can get the optimal cycle length for IRM, 

which becomes the following function with respect to    

     
        

  
  
  

     
     

 

This equation can be used to determine the cycle length of the intersection on 

which the ramp metering signal is applied. This relationship could be tied into the VAP 

logic for a simulation analysis. 
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Appendix  

Example VAP Code [3], this was used for Scenario 1 

PROGRAM RampMeter; /** Ramp meter for Peak direction **/ 

 

CONST /** select ALGORITHM to run **/ 

 

    Algorithm = 1, /** 1 - ALINEA; 2 - Fixed; 3 - No Meter; 4 - Ramp 

closure**/ 

    QueueOverRide = 0, /** 1 - queue override; 0 - no queue override 

**/ 

    QueueCountInterval = 5, 

    OccupancyInterval = 1, 

    GreenInterval = 1.5, 

    KR = 70, /** ALINEA constant **/ 

    MaxRate = 26000,  

    MinRate = 850,  

    FixedRate = 900, /* used for fixed metering, Can only model rates 

400, 450, 515, 600, 720, 900, 1200 */ 

    RedInterval = 1.5, 

    TransitionPeriod = 60, 

    NumberofDetectors = 2,  /** total num. of downstream detectors **/ 

    dd1 = 11, dd2 = 12, /**downstream detector numbers**/ 

    NumberMeterLane = 2, 

    d_Presence1 = 2, /** presence detector-Lane 1 **/ 

    QueueDetector_Advance = 1, 

    Occupancy_Opt = 0.30, /** optimal or target occupancy **/ 

    Occupancy_Threshold = 0.25, /** threshold to metering **/ 

    Queue_Threshold = 0.90, /** for ramp queue detection **/ 

 

/* Data Collection Parameters */ 

StartTime = 0, 

EndTime = 4800; 

 

/*********************************************************************/ 

SUBROUTINE ALINEA; 

 

  IF CountTimer = OccupancyInterval THEN 

    TRACE (variable (MeterPrevious)); 

    IF OccupancyInterval = 1 THEN             /** set interval to 1-

sec, for report purposes **/ 

      AverageOcc := (Occup_rate (dd1) + Occup_rate 

(dd2))/NumberofDetectors; 

      AvgOccup_DownStreamDet := AverageOcc; 

    ELSE 

      AvgOccup_DownStreamDet := Occup_DetDownStream / 

(OccupancyInterval); 

    END; 

    IF AvgOccup_DownStreamDet < Occupancy_Threshold THEN 

      MeterRate := 80000; 

    ELSE 
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      MeterRate := MeterPrevious + KR*(Occupancy_Opt - 

AvgOccup_DownStreamDet)*100; 

    END; 

    IF MeterRate >= MaxRate THEN 

      MeterRate := MaxRate; 

      RedInt := (3600/MeterRate)*NumberMeterLane - GreenInterval; 

      MeterPrevious := MeterRate; 

    ELSE 

      IF MeterRate <= MinRate THEN 

        MeterRate := MinRate; 

        RedInt := (3600/MeterRate)*NumberMeterLane - GreenInterval; 

        MeterPrevious := MeterRate; 

      ELSE 

        RedInt := (3600/MeterRate)*NumberMeterLane - GreenInterval; 

        MeterPrevious := MeterRate; 

      END; 

    END; 

    /**SumVeh := front_ends(dd1) + front_ends(dd2);**/ 

    SumVeh := rear_ends(dd1) + rear_ends(dd2); 

    FlowRate := (SumVeh/OccupancyInterval) * 3600; 

    /** TRACE (variable); **/ 

    TRACE (variable (AvgOccup_DownStreamDet, FlowRate)); 

    TRACE (variable (MeterRate, RedInt)); 

     /** TRACE (variable (AvgOccup_DownStreamDet)); **/ 

    RESET(CountTimer); 

    Occup_DetDownStream := 0; 

    clear_rear_ends(dd1); 

    clear_rear_ends(dd2); 

  ELSE 

    AverageOcc := (Occup_rate (dd1) + Occup_rate 

(dd2))/NumberofDetectors; 

    Occup_DetDownStream := Occup_DetDownStream + AverageOcc; 

  END. 

/*********************************************************************/ 

SUBROUTINE FixedMeter; 

  MeterRate := FixedRate; 

  /* RedInt := (3600/MeterRate)*NumberMeterLane - GreenInterval. */ 

  RedInt := RedInterval. 

/*********************************************************************/ 

SUBROUTINE NoMeter; 

  IF CountTimer = OccupancyInterval THEN 

    IF OccupancyInterval = 1 THEN /** set interval to 1-sec, for report 

purposes **/ 

      AverageOcc := (Occup_rate (dd1) + Occup_rate 

(dd2))/NumberofDetectors; 

      AvgOccup_DownStreamDet := AverageOcc; 

    ELSE 

      AvgOccup_DownStreamDet := Occup_DetDownStream / 

(OccupancyInterval); /** **/ 

    END; 

    SumVeh := rear_ends(dd1) + rear_ends(dd2); 

    FlowRate := (SumVeh/OccupancyInterval) * 3600; 

    /** TRACE (variable); **/ 

    TRACE (variable (AvgOccup_DownStreamDet, FlowRate)); 



85 

 

    /**TRACE (variable (MeterRate, RedInt)); **/ 

    /** TRACE (variable (AvgOccup_DownStreamDet)); **/ 

    RESET(CountTimer); 

    Occup_DetDownStream := 0; 

    clear_rear_ends(dd1); 

    clear_rear_ends(dd2); 

   ELSE 

    AverageOcc := (Occup_rate (dd1) + Occup_rate 

(dd2))/NumberofDetectors; 

    Occup_DetDownStream := Occup_DetDownStream + AverageOcc; 

   END. 

SUBROUTINE RampClose; 

  RedInt := 1000000; 

  sg_red(1); 

  IF CountTimer = OccupancyInterval THEN 

   IF OccupancyInterval = 1 THEN /** set interval to 1-sec, for report 

purposes **/ 

    AverageOcc := (Occup_rate (dd1) + Occup_rate 

(dd2))/NumberofDetectors; 

    AvgOccup_DownStreamDet := AverageOcc; 

   ELSE 

    AvgOccup_DownStreamDet := Occup_DetDownStream /(OccupancyInterval); 

   END; 

   SumVeh := rear_ends(dd1) + rear_ends(dd2); 

   FlowRate := (SumVeh/OccupancyInterval) * 3600; 

   /** TRACE (variable); **/ 

   TRACE (variable (AvgOccup_DownStreamDet, FlowRate)); 

   TRACE (variable (MeterRate, RedInt)); 

   /** TRACE (variable (AvgOccup_DownStreamDet)); **/ 

   RESET(CountTimer); 

   Occup_DetDownStream := 0; 

   clear_rear_ends(dd1); 

   clear_rear_ends(dd2); 

  ELSE 

   AverageOcc := (Occup_rate (dd1) + Occup_rate 

(dd2))/NumberofDetectors; 

   Occup_DetDownStream := Occup_DetDownStream + AverageOcc 

  END. 

/*********************************************************************/ 

SUBROUTINE MeterOperation; 

/************************************/ 

/**** METERING OPERATIONS ****/ 

/************************************/ 

/*Single-lane meter */ 

 

TRACE (variable (QueueSpill,FlushFlagCurrent)); 

TRACE (variable (FlushFlagPrevious,TransitionTimer)); 

IF (t_green(1) >= GreenInterval) OR (Occupancy(d_Presence1) <=0) THEN 

  IF (QueueOverRide AND QueueSpill) THEN 

    MeterPrevious := MaxRate; /** Do not start red if queuespill and 

with override policy **/ 

    IF (SimuTime >= StartTime) AND (SimuTime < EndTime) THEN 

          TotalMeterFlushTime := TotalMeterFlushTime + 1; 

          TRACE (variable (SimuTime,TotalMeterFlushTime)); 
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    END; 

  ELSE 

    /* No queue spill. Meter flush stops after transition */ 

    IF TransitionFlag = 0 THEN /* Not in transition */ 

      sg_red(1); 

    ELSE 

      IF TransitionTimer >= TransitionPeriod THEN 

        sg_red(1); 

        Stop(TransitionTimer); 

        Reset(TransitionTimer); 

        TransitionFlag := 0; 

      END; 

    END; 

   END; 

END; 

IF (t_red(1) >= RedInt) THEN /*Red has the desired metering rate */ 

  IF Occupancy(d_Presence1) > 0 THEN 

    sg_green(1); 

  END; 

END. 

 

/*****************************/ 

/**** This is the main routine ****/ 

/*****************************/ 

 

START(QueueTimer); 

START(CountTimer); 

SimuTime := SimuTime + 1; 

 

IF QueueTimer = (QueueCountInterval + 1) THEN 

  AvgOccup_AdvanceQueueDet := Occup_AdvanceQueueDet / 

QueueCountInterval; 

  QueueSpill := AvgOccup_AdvanceQueueDet >= Queue_Threshold; 

  FlushFlagPrevious := FlushFlagCurrent; 

  IF QueueSpill THEN 

    FlushFlagCurrent := 1; 

  ELSE 

    FlushFlagCurrent := 0; 

  END; 

  IF (FlushFlagPrevious = 1) AND (FlushFlagCurrent = 0) THEN 

    Start(TransitionTimer); 

    TransitionFlag := 1; 

  END; 

 

  RESET (QueueTimer); 

  Occup_AdvanceQueueDet := 0; 

ELSE 

  Occup_AdvanceQueueDet := Occup_AdvanceQueueDet + 

Occup_rate(QueueDetector_Advance); 

END; 

 

IF Algorithm = 1 THEN 

  GOSUB ALINEA; 

  GOSUB MeterOperation; 
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ELSE 

  IF Algorithm = 2 THEN 

    GOSUB FixedMeter; 

    GOSUB MeterOperation; 

  ELSE 

    IF Algorithm = 3 THEN 

      GOSUB NoMeter; 

    ELSE 

      IF Algorithm = 4 THEN 

        GOSUB RampClose; 

      END; 

    END; 

  END; 

END. 

  

Also, the flow charts of changes in VAP code and corresponding simulation 

results for each IRM scenario were tracked. These flow charts are shown below.  To help 

fit on the page, the flow charts are split into 3 tables.  In the first, the simulation 

parameter settings for each run are shown.  Blank cells mean that the above parameter 

was kept the same for that run.  In the second table, the simulation results for each run are 

shown.  In the third table, general comments made after each run are recorded. The final 

parameter selections are shown in bold. 
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Scenario 1 

 

 

 

 

 

 

 

 

 

 

Run OCCdes OCC 

Threshold 

Min 

Rate 

Green 

Interval 

1 0.30 0.25 900 2.0 

2 0.29    

3 0.31    

4 0.30 0.26   

5  0.24   

6  0.25 850  

7   800  

8   950  

9   850 1.5 

10    1.0 

11    2.5 

Run Avg. 

Delay/Veh 

(s) 

Throughput 

(# veh) 

Avg. 

Speed 

(mph) 

Total 

Travel 

Time (hr) 

Total 

Delay 

(hr) 

Freeway 

Avg. 

Travel 

Time (s)  

Freeway 

Throughput 

(# veh) 

1 166.2 8251 12.9 547.4 401.9 184.2 5764 

2 167.5 8226 12.9 547.9 402.9 183.7 5763 

3 170.5 8200 12.6 554.5 409.9 187.3 5724 

4 168.0 8254 12.8 551.6 406.1 184.8 5774 

5 169.2 8228 12.7 552.5 407.5 186.2 5753 

6 167.1 8209 12.9 545.5 400.8 177.7 5838 

7 167.1 8209 12.9 545.5 400.8 177.7 5838 

8 170.1 8214 12.7 554.0 409.2 187.5 5734 

9 166.7 8241 13.0 545.3 400.2 176.5 5873 

10 170.5 8182 12.8 551.7 407.6 176.7 5879 

11 166.4 8240 12.9 547.0 401.7 183.09 5768.8 
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Scenario 2 

 

 

 

 

 

 

 

Run After Notes 

1 Good results, try lowering des occ 

2 No performance improvements, try a higher des occ 

3 Even worse, go back to 0.30, now adjust occ threshold 

4 No performance improvements, try a lower threshold 

5 Still no performance improvements, return to .25, try a lower min rate 

6 Good improvements, try going even lower 

7 Same, try increasing 

8 Worse, go back to 850 and adjust green interval 

9 This is the best so far, let’s try to further restrict the green interval 

10 No freeway improvements and overall system is worse, try a higher green interval 

11 Good system-wide results, but no freeway improvements, return to run 9 

Run Cycle 

Length 

Green 

Interval 

Minimum 

Rate 

1 100 2 900 

2 90   

3 115   

4  1.5  

5 100   

6  2 850 

Run Avg. 

Delay/Veh 

(s) 

Throughput 

(# veh) 

Avg. 

Speed 

(mph) 

Total 

Travel 

Time (hr) 

Total 

Delay 

(hr) 

Freeway 

Avg. 

Travel 

Time (s)  

Freeway 

Throughput 

(# veh) 

1 155.1 8372 13.3 528.1 380.8 201.1 5530 

2 159.8 8330 13.0 536.9 390.3 201.9 5514 

3 155.9 8358 13.2 530.2 383.0 203.9 5497 

4 157.8 8317 13.2 530.9 384.6 196.6 5583 

5 158.0 8345 13.2 533.5 386.6 193.0 5631 

6 157.3 8370 13.3 533.4 386.1 192.2 5648 
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Run SB 

Frontage 

Rd. 

Avg. 

Travel 

Time (s)  

SB 

Frontage 

Rd. 

Throughput 

(# veh) 

Metered 

Onramp 

Avg. 

Travel 

Time (s)  

Metered 

Onramp 

Throughput 

(# veh) 

Far 

West 

Offramp 

Avg. 

Travel 

Time (s)  

Far West 

Offramp 

Throughput 

(# veh) 

1 94.6 281 642.4 477 100.9 341 

2 121.2 272 642.8 487 98.5 343 

3 90.7 283 629.0 489 105.1 340 

4 111.8 266 708.1 430 104.5 345 

5 139.9 261 708.6 430 98.6 348 

6 140.59 262.3 709.59 429.4 98.07 348.4 

Run Notes 

1 Try shorter cycle, raise sat flow to 1900 

2 Not good, try sat flow = 1700 

3 Neither, try lowering G from 2.0 to 1.5 to improve 

freeway flow 

4 SB frontage TT too high, return to 100 sec cycle, 

keep 1.5 sec green 

5 SB frontage even worse, return to 2.0 green, lower 

min rate to 850 

6 SB frontage no better, return to run 1 
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